
A Content Routing System for Distributed

Information Servers
Mark A. Sheldon

Andrzej Duday

Ron Weiss

James W. O'Toole, Jr.

David K. Gi�ord

June 1993

MIT/LCS/TR-578

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139

yAlso with Bull-IMAG Syst�emes, and INRIA

This research was sponsored by the Defense Advanced Research Projects Agency
(DARPA) under contract DABT63-92-C-0012.

The views and conclusions contained in this document are those of the authors and

should not be interpreted as representing the o�cial policies, either expressed or implied,

of the Defense Advanced Research Projects Agency or the U.S. Government.



Keywords: distributed information retrieval, query routing, query

processing, content-based access, distributed heterogeneous databases



Abstract

We describe the �rst system that provides query based associative access

to the contents of distributed information servers. Queries describe desired

object attributes, and are automatically forwarded to servers that contain

relevant information. In typical distributed information systems there are

so many objects that underconstrained queries can produce large result sets

and extraordinary processing costs. To deal with this scaling problem we

use content labels to permit users to learn about available resources and to

quickly formulate queries with adequate discriminatory power. We present

experimental data that show that certain content label attributes can be

automatically chosen. We have implemented associative access to a dis-

tributed set of information servers in the content routing system. A content

routing system is organized as a network of servers called content routers

that present a single query based image of a distributed information sys-

tem. Experiments motivated by our video access service show that substan-

tial performance bene�ts result when content routers are removed from the

client-server path once an object of interest is found.





1 Introduction

We estimate that there are over 220 hosts that provide �le service in the

Internet, with an average of 216 �les per host. This collection of �les rep-

resents a vast potential resource. However, the lack of associative access to

this collection makes it di�cult to discover relevant information.

Even when implementation issues are ignored, it is di�cult to formulate

a query language and corresponding schema that allow a user to easily locate

objects of interest in a collection of 236 objects. For example, if a user is

willing to examine a result set of at most 28 objects, then the user's query

must contain at least 28 bits of information. Thus the semantic challenge

of query based associative access is to provide a convenient way for users

to formulate queries that contain su�cient discriminatory power. Once the

semantic problems are solved there remains the practical problem of how to

implement the search process.

This paper explores the thesis that content labels can be used to orga-

nize the semantics of associative access to a distributed set of information

servers, and that content routers based upon the content labels can serve as

the implementation basis of distributed associative access. We call a collec-

tion of information servers that implements associative access with content

labels and content routers a content routing system. We have implemented

a content routing system that provides associative access to its underlying

servers without regard to where �les are located.

A content label is a succinct description of a collection of objects. Con-

tent labels can include administratively determined attributes, such as li-

brary names, group names, logical locations, and other assigned properties

and relationships designed to aid users. Content labels can also include au-

tomatically extracted attributes, such as Internet domains, the authors of

objects, object types, path names, subjects, key words from abstracts, and

so forth. A collection of objects can correspond to the contents of a host,

the contents of a removable disk, a set of collections, or other groupings of

objects.

The semantics of the query language is designed to help a user formulate

a query that reasonably bounds the object search space. If user queries

are not appropriately constrained, then query processing consists of two

extreme cases: either queries are broadcast to all information servers or

each content router must have complete knowledge of all object attributes.

Neither of these approaches scales well. Query routing based on content

labels represents a compromise for a scalable architecture. In our approach, a

1



user must initially state a query that includes attributes included in content

labels. Available attributes can be enumerated to enable query assembly

from prespeci�ed components. Once the search space is narrowed, more

attributes become available to the user. When the query contains enough

information all attributes are available for query construction.

Query routing is used for both query formulation and query processing.

A content router may require that a query be su�ciently narrow to describe

a router speci�c number of collections before the router forwards a query

to its underlying collections. From the user's perspective a router provides

abstracts of its available collections in terms of content labels. Once a query

is speci�c enough, the router forwards the query to its underling collections,

and the user can employ the full range of attributes that had been abstracted

previously from the speci�ed collections.

One way to associate attributes with objects in a collection is to use

transducers [GJSO91] that automatically extract attributes from �les, di-

rectories, servers, and other objects. Transducers are object-type speci�c,

and serve to convert an unstructured object into a set of descriptive at-

tributes. A transducer is automatically run on an object when it is created

or updated. Default transducers exist for text �les, source �les, object �les,

mail �les, directories, and many other popular object types. Users can ex-

tend the semantics of the system with customized transducers.

In a large content routing system a user begins at a top level router. At

a top-level router a user constructs a query based on high level attributes

such as author, library name, Internet domain, or host name. Once a query

is narrowed, the top level router forwards the query to matching collections.

The user can then elaborate the query with full-text words, procedure names,

�le extensions, or other common attributes. Ultimately, a set of matching

objects is returned in response to a suitably constrained query. If a user

knows enough to provide a suitably constrained query to a top-level router,

the query will be automatically forwarded to appropriate collections and a

result set will be produced (see Figure 1).

Content routers also serve an administrative role in the management of a

distributed system. Typically, a content router will service an organizational

unit. These units can control access to the servers within the unit domain,

and can also provide value added information exporting the unit logical

attributes. Thus, the units a�ect the logical view of the network underneath

them.

We have implemented a prototype content routing system to explore

how content labels can be used for query routing and the performance im-

2



Figure 1: Associative access to video segments through a content routing

server.

plications of using multiple layers of query routing. Figure 1 shows a video

browser that uses the query facilities of our content routing system to lo-

cate video segments of interest on local servers. We chose to experiment

with video access because of its demanding bandwidth and real-time re-

quirements.

In the remainder of this paper we discuss the previous work upon which

we build (Section 2), the semantics of queries and content labels (Section

3), experimental data from our implementation of a content routing system

(Section 4) and conclusions based upon our experience (Section 5).

2 Related work

Previous work can be broken down into the following broad categories: dis-

tributed naming systems, network navigation systems and network-based

information retrieval systems.

Distributed naming systems such as X.500 [CCI88], Pro�le [Pet88], and

the Networked Resource Discovery Project [Sch89] provide attribute-based

access to a wide variety of objects; however, they do not support the hi-

erarchical relationship between servers and data which our system achieves

3



through its use of content labels. Also, the systems are not integrated into

a �le system, nor do they provide automatic attribute-based access to the

contents of objects.

Network navigation systems such as the Gopher system [AAL+91] and

the Word-Wide Web [BLCGP92] provide a means for organizing servers

into a structure that allows navigating among and browsing through re-

mote information on servers. If the user knows what to look for and where

the resource might be located, then interesting resources can be discov-

ered. These systems provide facilities for individual servers that respond to

queries. There is no support for query routing. However, it would be possi-

ble to install a content routing system into either system. Fremont [WCS93]

is a research prototype for discovering key network characteristics, such as

hosts, gateways and topology.

Network-based information retrieval systems provide access to infor-

mation on remote servers. The Wide Area Information Service (WAIS)

[KM91, Ste91] provides a uniform means of access to information servers on

a network. WAIS permits information at remote sites to be queried, but

relies upon the user to choose an appropriate remote host from a directory

of services. The Archie system [ED92] polls a �xed set of FTP sites on the

Internet. A query yields a set of host/�lename pairs which is then used to

manually retrieve the relevant �les. The Alex �le system [Cat92] is an NFS-

FTP protocol converter. It integrates FTP servers into the local �le system,

but does not address the issue of associative access to remote �les. The

Conit system [Mar83, Mar90] provides a uniform user interface to a large

number of databases accessible from several retrieval systems. User queries

are translated into commands on the di�erent systems. However, there is no

support for the automatic selection of relevant databases for a users query.

The Distributed Indexing mechanism [DANO91] is based on precomputed

indices of databases that summarize the holdings on particular topics of

other databases. The architecture has a three layer �xed structure which is

suitable for incorporation of bibliographic databases, but it is not exible

enough for content based access to �le servers. Simpson and Alonso propose

a querying architecture for a network of autonomous databases [SA89] that

forwards user queries to known information sources. The knowledge about

existing sources is acquired by exchanging messages with neighboring hosts.

This approach has a probabilistic query semantics because �nding all rele-

vant objects is not guaranteed. The Information Brokers of the MITL Gold

project [BC92] share many of our goals. However, Information Brokers do

not provide access to objects directly. Rather, they return descriptions of an

4



object's location and the method that may be used to retrieve the object.

Unlike the previous systems, our architecture combines in a transparent

way associative access to distributed information servers with content based

access to objects on the servers. Key advances o�ered by the present work

include:

� Scalability: Query routing provides a uniform means of content-based

access to large networks of information servers. Query routing fur-

ther provides a mechanism for routing updates to relevant information

servers. It uses a layered routing architecture that maintains limited

knowledge of the attributes at the information servers which is essen-

tial for scaling.

� Usability: Content labels provide a distillation of information server

content so that user queries can be e�ectively routed to appropriate

servers. Content labels also permit users to learn about available re-

sources and to quickly formulate queries with adequate discriminatory

power. The object search space is organized using content labels, and

enables navigation and discovery through a large space of servers such

that the scope of an initial query can be su�ciently narrowed and

re�ned.

� E�ciency: location of objects in a hierarchical network of servers is

complemented by direct access to end-point servers and data objects

once an individual server and/or object is identi�ed.

3 Semantics

Our goal is to design a distributed information system architecture for

content-based navigation and associative access to data objects. Users locate

desired �les, directories, or other objects through use of queries formulated in

terms of content attributes. The fundamental requirement is to allow users

to describe conveniently the desired objects in the distributed information

system, while simultaneously excluding undesirable objects.

Our architecture is composed of two conceptual layers: the query routing

layer, and the end-point information server layer (see Figure 2). Internally,

the routing layer is con�gured as a hierarchical system of nodes, called con-

tent routers. (See Figure 3.) These are in charge of routing user queries to

other content routers or to end-point information servers.

5



Clients

Information
Servers

content
label

content
labels

Content
Routers

Figure 2: Routing queries to information servers.

IS IS IS IS

IS

IS IS IS IS

CR

CR

CR

Figure 3: A content routing system provides access to a network of infor-

mation servers.

3.1 Query and content label semantics

A query is a boolean combination of attributes. Each attribute consists of

a �eld name and a value. Typical attributes are text:multiprocessor and

author:bershad. When a query is applied to a collection of objects the

subset of the collection that satis�es the query is called a query result set.

We chose a perfect search scheme that guarantees that a result set contains

all objects that match a query on accessible servers in the system. In the

process of query re�nement, the user can enumerate the set of de�ned �elds

and browse the set of possible values for any �eld.

A content label is a query that abstracts the contents of a collection. For

example, a content label might be:

6

D D 
j 



[ (collection-type:software) and

((domain:cmu.edu) or

(domain:stanford.edu)) and

(subject:operating-systems) ]

This content label implies that every member of the collection has at-

tribute collection-type:software and subject:operating-systems and

is either in the cmu.edu or the standford.edu domains.

In typical distributed systems there are so many objects that undercon-

strained queries can produce large result sets and extraordinary processing

costs. There are several methods that can be used individually or in combi-

nation to limit the object search space to permit scaling:

� The user can supply the physical location of the server that holds the

data. For example, in the WAIS system, which contains information

about hundreds of servers, the user must choose the physical location

to search.

� The user can supply a query that contains value added attributes that

are created by some administrative means. For example, collection-type:software

might restrict the search space to objects that reside in software repos-

itories.

� The user can supply information-rich natural attributes. For example,

if the attribute owner:clinton occurs in only �ve servers, a query

that contains this attribute can be e�ectively routed to the appropriate

servers. A natural attribute (as opposed to a value added attribute) is

one that actually arises from indexing an object and thus is emitted

by an object transducer.

The content label of a collection must correspond to the logical disjunc-

tion of the attributes of all collection member objects. Aside from this

constraint, our architecture does not limit the form of content labels. In

principle we could have a content label that consisted of the disjunction of

all of the words that appeared in a collection. Alternatively, a content label

could simply be the name of the host that contains a collection of �les. In

practice we expect content labels to lie between these two extremes, contain-

ing attributes including host names, domains, authors, libraries, priorities,

and subjects.

The lack of constraints on the form of content labels and the range of at-

tribute �eld names and values makes our architecture extensible. If desired,

7



it is possible to enforce a uniform meaning for a given �eld name across

object transducers. For example, owner: could always refer to the owner

of an object. It is also possible to allow the meaning of �eld names to be

de�ned by each transducer. This latter requirement may necessitate includ-

ing object attributes that uniquely identify the semantics of the transducer

used on the object.

Content routing is performed by organizing content labels into a collec-

tion. When a query implies a content label, the content label is said to

match the query. The set of collections relevant to a query is precisely de-

�ned by the corresponding content labels that match the query. If the set of

matching collections is too large, the user can re�ne the query based upon

the attributes present in the matching content labels.

Starting at the top level, a user may explore the logical organization of

information servers. Using content labels, the system generates a view of

the search space implied by the query. The user iteratively re�nes the query

until enough discriminating power is present. At that point, the search space

is su�ciently limited, and the user may submit unrestricted queries that are

processed at all relevant servers.

3.2 An example

The user enters the content routing system

% cd /crs

To get started, we can �nd out what �elds are

supported for navigating among servers

% ls crs-field:

administrator: hostname:

cost: immutable-field:

collection-type: label:

crs-field: location:

8



field: owner:

hostaddress: port:

The user may then enumerate values of

interesting �elds.

% ls location:

massachusetts new_england

mit united_states

% ls collection-type:

articles files user

digital news video

The user may explore an interesting attribute.

There are two user �le system servers available,

Their associated content labels are available for

browsing (the .desc �les)

% cd collection-type:/user

% ls

users1 users1.desc

users2 users2.desc

The user wants to locate some interesting

objects within that search space.

The current implementation requires

an explicit indication to perform the search.

% cd object-search

Find all �les owned by jones that contain

the text keywords content and routing.

The system will automatically merge results from

the two servers discovered previously.

% cd owner:/jones/text:/content/text:/routing

% ls

implementation.tex related-work.tex

paper.text sosp91.tex

proposal-body.tex slides.tex

prop.tex tour.text

psrg-mail.text

Find all movie previews

% cd /crs/collection-type:/video

% cd object-search/subject:preview/ext:/movie

% ls

bond1.movie father_of_bride.movie

forever_young.movie toys.movie

9



IS # of attributes IS size (MB) index size (MB)

comp 564493 65 50.5

rec 309473 43 29.5

users1 247914 184 29.5

nyt 165678 174 29.3

users2 99451 28 15.6

ap 36620 29 3.9

total 1423629 403 158.3

unique 1077522

Table 1: Information servers statistics

3.3 Attribute statistics

In order to demonstrate that certain attributes with high discriminatory

power can be automatically discovered and used in content labels, we have

gathered attribute statistics on six information servers. Table 1 gives the

characteristics of the servers: the number of distinct attributes (�eld-value

pairs), the server size, and the index size. comp is the USENET comp news-

group hierarchy, rec is the rec newsgroup hierarchy, users1 and users2 are

two user �le systems, nyt is a database of New York Times articles, and ap

is a database of Associated Press articles.

Figure 4 shows how the total number of unique attributes grows when

more servers are added. It can be seen from this �gure that text: comprises

a majority of the attributes. Due to the sheer number of distinct attributes, a

system that maintains complete knowledge about all text: attribute values

for content labels appears impractical. However, because there are only 1000

distinct author: attributes, they might be used for content labels.

To evaluate the discriminatory power of attributes over servers, we gath-

ered histograms of the occurrence of attributes on servers. The histograms

give the number of attributes that occur on 1; 2; : : : ; 6 servers. These statis-

tics are helpful in deciding whether query routing can be done based on

certain attribute �elds. If a given attribute has a narrow distribution, that

is it identi�es a small number of servers, then its �eld can be propagated to

content routers in a content label. Figures 5, 6 and 7 present the histograms

for low, medium and high frequency attributes. Low frequency attributes

such as owner: category: and type: as well as some medium frequency

attributes such as newsgroups:, date: and organization: have discrim-

inatory power over servers and can be used for content label routing. Our

10



0

200000

400000

600000

800000

1e+06

1.2e+06

1 2 3 4 5 6

N
um

be
r 

of
 a

ttr
ib

ut
es

Number of servers

Cumulative number of attributes

all
author

subject
text
title

Figure 4: Cumulative number of attributes in n servers

implementation has propagated these attributes into content labels for the

six information servers that we used. Higher frequency attribute �elds like

text: and subject: obviously cannot be exploited in the same way.

1

10

100

1 2 3 4 5 6

Fr
eq

ue
nc

y

Number of occurrence

Attribute histogram - low frequency attributes

category
owner

type

Figure 5: Attribute Frequency Histogram for Low Frequency Attributes

For text: attribute we have further analyzed the gathered statistics in

order to �nd out whether we can group some infrequent values in a new

attribute that can be propagated in a content label. The results are en-

couraging and we are continuing to investigate techniques for automatically

determining what attributes are useful for routing.

4 Implementation

We have built a prototype implementation of a content routing system that

provides query routing to an extensible number of servers. Server brows-

11



1

10

100

1000

10000

1 2 3 4 5 6

Fr
eq

ue
nc

y

Number of occurrence

Attribute histogram - medium frequency attributes

author
date

newsgroups
organization

Figure 6: Attribute Frequency Histogram for Medium Frequency Attributes

1

10

100

1000

10000

100000

1e+06

1 2 3 4 5 6

Fr
eq

ue
nc

y

Number of occurrence

Attribute histogram - high frequency attributes

all
name

subject
text

Figure 7: Attribute Frequency Histogram for High Frequency Attributes

ing and content routing are based on content labels, which are at present

administratively determined.

For our initial prototype, we have chosen a simple routing algorithm

based on partitioning the user's query into a universe speci�cation and an

object speci�cation. The content router uses the universe speci�cation to

determine a set of information servers (some of these servers may be other

content routers). It then forwards the object speci�cation portion of the

query to the above set of nodes. The nodes act on this query based on

their function as either routers or end-point information servers. This type

of naming is useful for users who want to browse the graph of information

servers and/or re�ne a query so that a fewer number of servers need to be

contacted. A complete query composed of the universe speci�cation and the

object speci�cation will invoke the object query portion only on the set of

information servers that match the universe speci�cation.

12



The layered architecture is essential for scaling. As demonstrated in the

previous section, it is impractical for content routers to maintain complete

knowledge of the attribute information at the information servers. At the

other extreme, maintaining no knowledge of the actual content of the in-

formation servers will result in broadcasting to all end-point servers in the

attempt to process a query. Content labels represent a compromise between

these two restrictions for a scalable architecture.

4.1 Content routing system implementation

Our content routing system uses the Semantic File System interface [GJSO91]

for both information servers and content routers. Thus a content router is

implemented as a user level NFS server that may be mounted by any NFS

client. Path names are interpreted as queries, and results are returned in

dynamically created virtual directories.

Figure 8 shows the architecture of our prototype content router imple-

mentation. the server collects together content labels from a set of servers

to which it will provide access. Server transducing is currently done man-

ually. Clients submit queries that pass through the NFS interface to the

server. In response to user requests, the server constructs and returns vir-

tual directories. On demand, the server computes the contents of virtual

directories. In response to a universe speci�cation, a query on content la-

bels, the server provides users with access to the content labels that satisfy

the query. When the user decides that a result set is su�ciently narrow, the

server will forward queries to speci�ed servers. It then returns the merged

results in a virtual directory. To provide access to individual data objects

and servers, the content router returns symbolic links which are interpreted

by the automount daemon at the client. The client then uses its own mount

point that directly connects to the remote information server. The client

may also access objects through the content router if it does not run the

appropriate automount code. Naturally, mediated object access comes at a

performance penalty to be discussed below.

Our use of an NFS-based protocol has advantages and disadvantages.

Because NFS is widely understood, and because our servers use NFS at

both ends, we are able to recon�gure our system and use new machines

easily. NFS also makes it very easy for clients to participate, and allows us

to leverage existing code. One can run editors, compilers, and standard �le

system tools, all without modi�cation. Unfortunately, NFS systems do not

tolerate failure well as a rule, and error reporting and recovery are awkward

13



in the protocol. Our architecture, however, is independent of the underly-

ing communication protocol. We could use Gopher [AAL+91], World-Wide

Web [BLCGP92], Z39.50 [NIS91], or any other mechanism that provides

distributed access to servers.

Client AMD

CRS
Server

Virtual
Directories

Query
Forward

Content
Labels

NFS

server
mount

Server
Transducer

direct
object
access

Content Router

Mountd
Information
Server Mountd

Information
Server Mountd

Information
Server

Client Host

Server Host Server HostServer Host

NFS

Figure 8: Implementation architecture for our prototype content router.

While a hierarchical system facilitates locating objects, it introduces

communication delays and performance restrictions that become intolerable

for larger sets of applications as the layering gets deeper. In particular,

server load is proportional to the resources consumed by clients accessing the

server. It is important for the performance of the system, and thus of client

applications, to minimize the resources consumed by clients. Therefore, once

a client identi�es an object, or once the content router has discovered that

there is only one information server appropriate to a client's request, the

system must provide direct access to the end-point server. The client then

does not incur the latency of a multilayered communications path, and the

system does not have to provide resources that are not necessary to serving

the client's request.

14

.... 
', I 

----- - -------·~-~---

t 
D 

\ 

' \ \ 
I 
I 
I 

' ' I 
I 
I 

---------L~---
1 I 

/ I 

/ I 

□□□□□D 



4.2 Performance results

We performed a suite of experiments with our server to test the performance

implications of mediated versus direct access to objects. Figure 9 illustrates

the performance penalty incurred when content routers mediate �le read

requests in our prototype. The �gure plots throughput achieved at the client

in Kbytes per second versus load at the content router. For our experiment,

the load was generated by running 0, 1, or 2 processes that continuously

generated lookup and read requests through the content router. Queries

always go through the intermediate content routers. In one set of trials, all

client requests were mediated by the content router, including �le reads. For

this set, the throughput for the case where the content router is not used

is presented for comparison (above the label \direct"). In the other set of

trials, the content router provided the client direct access to the server for

object access.

The content routers provide unmediated access to data by returning

symbolic links. These links are interpreted by a version of the Berkeley

automount daemon [PW91]. Mediated accesses naturally go through the

content router. In Figure 9, each data point represents the average of four

trials each of which reads a 35 MByte digital video data �le. The information

server was running on an SGI 4D/320S. The content routers and clients were

run on Sparc Station IPX's. All these machines were interconnected with a

10Mbit/s Ethernet. These �gures compare with an average throughput of

830 KByte/s for standard NFS �le access.

Two important observations can be derived from the data. First, as ex-

pected, the non-mediating servers do not hamper system throughput. Sec-

ond, mediating routers degrade performance drastically, especially as the

load at the content router increases. Mediated access has such a dramatic

impact even for low loads because our implementation is not multithreaded

and does not do read-ahead. That is, it is not optimized for providing �le

service. Nonetheless, the impact of content router load is inherent in any

implementation that forces clients to use mediated data access. The more

layers there are in the network, the more resources are consumed by each

client, and the greater the likelihood that a client will su�er query router

induced performance degradation.

The performance of query processing is acceptable. Since the number

of servers supported at a content router is not very large (we expect on the

order of hundreds), queries that return sets of servers can perform quite

well. The performance of some sample routed queries is given in Table 2.

15



0

100

200

300

400

500

600

700

800

direct 0 1 2

C
lie

nt
 th

ro
ug

hp
ut

 K
B

/s
ec

Competing clients at content router

Non Mediating CRS
Mediating CRS

Figure 9: System throughput for mediating and non-mediating content rout-

ing system con�gurations

Q #M #S S1 S2 S3 S4 T1 T2

1 88 1 88 1.2s 0.4s

2 22 1 22 0.6s 0.2s

3 9 1 9 1.2s 0.2s

4 60 2 5 60 2.6s 0.8s

5 31 2 31 0 1.4s 0.4s

6 27 4 7 1 4 15 9.9s 4.5s

Table 2: Routed query performance

These performance measures also include an information server running on

a heavily loaded Microvax 3500 (query 6), as well as the above mentioned

machines. Q identi�es a particular query, #M is the number of �les that

matched the query, #S is the number of servers the query was routed to, S
n

is the number of results returned from server n, T1 is the time it took to list

the result set the �rst time (this includes the time to route and compute the

query result set), and T2 is the time it took to list the result set the second

time (since the server caches the result set, T1 � T2 is the time to route the

queries to the servers and compute the result set). Note that our current

implementation does not route the queries in parallel.

From our experience thus far, we believe that query routing in a hier-

archical collection of distributed servers is feasible. Even demanding appli-

cations such as ones using digital video can achieve adequate throughput

provided content routers do not mediate object accesses.

16



5 Conclusion

We have described how data objects in distributed information systems can

be located and accessed in an associative manner. To be e�cient and scal-

able, associative access to distributed information systems must involve only

a restricted set of relevant servers. The query search space even for simple

queries can be enormous and thus can produce large result sets incurring

high processing cost. For this reason, we have organized the search space

using content labels describing servers and using attributes that have dis-

criminatory power over servers. Content label based query routing is partic-

ularly suitable for navigating through a large space of servers. The visible

structure and logical organization of the space implied by content labels can

be discovered, and the scope of an initial query can be su�ciently narrowed

and re�ned so that the result set is e�ciently computed. Predicates provide

widely varying assistance with formulation of user queries as an iterative

process.

We have discussed how a layered architecture of content routers can be

integrated into existing distributed systems. The layered approach is useful

for scaling and administrative purposes as well as for organizing the global

object search space into small manageable units that are easier to browse.

Moreover, the architecture preserves the autonomy of individual servers:

they propagate some knowledge about the content they provide, and they

do not need to subordinate to some global organization scheme.

We have built a prototype based on the semantic �le system with NFS

as the underlying distributed system protocol. We have successfully used

our system to locate data objects in several servers in our laboratory. Along

with demonstrating the feasibility of our approach, the prototype shows good

performance and allows users to enjoy the bene�t of bypassing layers once

objects of interest are located. The results of these experiments suggest that

the content routing enables transparent search of distributed information

without compromising access performance.

The results to date are consistent with our thesis that query routing

based on content labels is an e�ective way to locate and access data objects

in a distributed information system. We plan to enhance our prototype by

adding automatic content label generation from selected attributes. Fur-

ther analysis of statistics gathered from information servers will be used

for choosing highly discriminatory attribute values for content routing. We

also plan to examine methods for the exclusion of inaccessible servers which

are inevitably present in any large scale distributed system. These servers

17



should be treated in a special way because they may contain some currently

inaccessible objects of interest. Another area of future research is explo-

ration of how associative access can be used to locate replicated objects.

Acknowledgements

The authors would like to thank Brian Reistad and Franklyn Turbak for

their comments on drafts of this paper.

18



References

[AAL+91] Bob Alberti, Farhad Anklesaria, Paul Linkner, Mark McCahill,

and Daniel Torrey. The internet Gopher protocol: A distributed

document search and retrieval protocol. University of Mine-

sota Microcomputer and Workstation Networks Center, Spring

1991. Revised Spring 1992.

[BC92] Daniel Barbara and Chris Clifton. Information brokers: Shar-

ing knowledge in a heterogeneous distributed system. Technical

Report MITL-TR-31-92, Matsushita Information Technology

Laboratory, Princeton, NJ, October 1992.

[BLCGP92] Tim Berners-Lee, Robert Cailliau, Jean-Fran�cois Gro�, and

Bernd Pollermann. World-wide web: The information universe.

Electronic Networking, 2(1):52{58, 1992.

[Cat92] Vincent Cate. Alex | a global �lesystem. Usenix Workshop

on File Systems, 1992.

[CCI88] CCITT. The Directory - Overview of Concepts, Models and

Services. Recommendation X.500, 1988.

[DANO91] Peter B. Danzig, Jongsuk Ahn, John Noll, and Katia Obraczka.

Distributed indexing: A scalable mechanism for distributed

information retrieval. Technical Report USC-TR 91-06, Uni-

versity of Southern California, Computer Science Department,

1991.

[ED92] A. Emtage and P. Deutsch. Archie { an electronic directory ser-

vice for the internet. In USENIX Association Winter Confer-

ence Proceedings, pages 93{110, San Francisco, January 1992.

[GJSO91] David K. Gi�ord, Pierre Jouvelot, Mark A. Sheldon, and

James W. O'Toole. Semantic �le systems. In Thirteenth ACM

Symposium on Operating Systems Principles. ACM, October

1991. Available as Operating Systems Review Volume 25, Num-

ber 5.

[KM91] Brewster Kahle and Art Medlar. An information system for

corporate users: Wide area information servers. Technical Re-

port TMC-199, Thinking Machines, Inc., April 1991. Version

3.

19



[Mar83] Richard S. Marcus. An experimental comparison of the ef-

fectiveness of computers and humans as search intermedi-

aries. Journal of the American Society for Information Science,

34(6):381{404, November 1983.

[Mar90] Richard S. Marcus. Advanced retrieval assistance for the DGIS

gateway. Technical Report LIDS R-1958, MIT Laboratory for

Information and Decision Systems, March 1990.

[NIS91] Ansi z39.50 version 2. National Information Standards Orga-

nization, Bethesda, Maryland, January 1991. Second Draft.

[Pet88] Larry Peterson. The Pro�le Naming Service. ACM Transac-

tions on Computer Systems, 6(4):341{364, November 1988.

[PW91] Jan-Simon Pendry and Nick Williams. Amd: The 4.4 BSD

automounter reference manual, March 1991. Documentation

for software revision 5.3 Alpha.

[SA89] Patricia Simpson and Rafael Alonso. Querying a network of au-

tonomous databases. Technical Report CS-TR-202-89, Prince-

ton University, Princeton, NJ, January 1989.

[Sch89] Michael F. Schwartz. The Networked Resource Discovery

Project. In Proceedings of the IFIP XI World Congress, pages

827{832. IFIP, August 1989.

[Ste91] Richard Marlon Stein. Browsing through terabytes: Wide-area

information servers open a new frontier in personal and corpo-

rate information services. Byte, pages 157{164, May 1991.

[WCS93] David C.M. Wood, Sean S. Coleman, and Michael F. Schwartz.

Fremont: A system for discovering network characteristics and

problems. In USENIX Association 1993 Winter Conference

Proceedings, pages 335{348, 1993.

20


