
,. 

LABORATORY FOR 
COMPUTER SCIENCE 

MIT/LCS/fR-505 

MASSACHUSETTS 
INSTITUTE OF 
TECHNOLOGY 

A HIGH-PERFORMANCE 
RET AR GET ABLE SIMULATOR 

FOR PARALLEL ARCHITECTURES 

Chrysanthos N. Dellarocas 

June 1991 

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139 



This b/a11k page was i11serted to preserve paginatio11. 



A High-Performance Retargetable Simulator for 

Parallel Architectures 

by 

Chrysanthos Nicholas Dellarocas 

Diploma of Electrical Engineering 
National Technical University of Athens, Greece (1989) 

Submitted to the Department of 
Electrical Engineering and Computer Science 

in partial fulfillment of the requirements for the degree of 

Master of Science in Electrical Engineering and Computer Science 

at the 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

June 1991 

© Massachusetts Institute of Technology 1991 

Signature of Author ................................................. . 
Department of Electrical Engineering and Computer Science 

May 10, 1991 

Certified by ......................................................... . 
\Villiam E. Weihl 

Associate Professor of Computer Science 
Thesis Supervisor 

Accepted by ......................................................... . 
Arthur C. Smith 

Chairman, Departmental Committee on Graduate Students 



This empty page was substituted for a 
blank page in the original document. 



A High-Performance Retargetable Simulator for Parallel 

Architectures 

by 

Chrysanthos Nicholas Dellarocas 

Submitted to the Department of Electrical Engineering and Computer Science 
on May 10, 1991, in partial fulfillment of the 

requirements for the degree of 
Master of Science in Electrical Engineering and Computer Science 

Abstract 

The complexity of the interaction between software and hardware in MIMD machines 
makes experimental evaluation of parallel programs an important complement to theo
retical analysis. Traditional techniques used to monitor the direct execution of programs 
are intrusive and may lead to inaccurate results when applied to parallel programs. Sim
ulation allows flexible, nonintrusive and repeatable evaluation of parallel programs but 
usually incurs prohibitive overheads that limit its use to the simplest applications. 

In this thesis, we describe Proteus, a high-performance simulation-based system for 
the evaluation of parallel algorithms and system software. Proteus is built around a 
retargetable parallel architecture simulator and a flexible data collection and display 
component. The simulator uses a combination of simulation and direct execution to 
achieve high performance, while retaining simulation accuracy. Proteus can be configured 
to simulate a wide range of shared-memory and message-passing MIMD architectures 
and the level of simulaton detail can be chosen by the user. Detailed memory, cache and 
network simulation is supported. Parallel programs can be written using a programming 
model based on C and a set of runtime system calls for thread and memory management. 
The system allows nonintrusive monitoring of arbitrary information about an execution, 
and provides flexible graphical utilities for displaying recorded data. 

To validate the accuracy of the system, a number of published experiments were re
produced on Proteus. In all cases the results obtained by simulation are very close to 
those published, a fact that provides support for the reliability of the system. Perfor
mance measurements demonstrate that the simulator is one to two orders of magnitude 
faster than other similar multiprocessor simulators. 

Keywords: MIMD computers, Parallel algorithms, Parallel programming, Perfor
mance evaluation, Simulation. 

Thesis Supervisor: William E. Weihl 
Title: Associate Professor of Computer Science 

3 



This empty page was substituted for a 
blank page in the original document. 



Acknowledgements 

I would like to thank Bill Weihl, my thesis supervisor, for his encouragement and support 

of my research, as well as for being a great group leader. I also thank Barbara Liskov, 

my academic advisor during my first 12 months at MIT, for her welcome, support and 

counsel, as well as for suggesting this interesting thesis topic. 

Eric Brewer has been my officemate ever since I came to MIT as well as my partner 

in making Proteus a reality. Collaborating with him has been rewarding and fun. Adrian 

Colbrook, Anthony Joseph and Wilson Hsieh were the first persons (un)fortunate enough 

to use Proteus for their research. Their skill at uncovering the most obscure and nasty 

bugs of the system is greatly appreciated. 

The Parallel Sofware Group of MIT's Laboratory for Computer Science has been the 

ideal place in which to conduct this research, both in terms of human resources and group 

spirit, as well as in terms of technical support and organization. 

I thank my roommates George Stamoulis, Stelios Smirnakis and Mike Goldstein for 

many pleasant moments we spent together. I also thank my good friends Helen Halkias 

and Maria Roussohatzaki for being there when I needed them most. 

Last but not least, I would like to thank my family for always being by my side. 

The research described in this thesis was supported by the National Science Founda

tion under grant CCR-8716884 and by the Defense Advanced Research Projects Agency 

(DARPA) under Contract N00014-89-J-1988. The work was also supported by an equip

ment grant from Digital Equipment Corporation. In addition, the author was supported 

by a Starr Foundation Fellowship. 

5 



This empty page was substituted for a 
blank page in the original document. 



Contents 

1 Introduction 

2 Background 

2.1 Monitoring of direct program execution 

2.2 

2.1.1 

2.1.2 

2.1.3 

2.1.4 

Hardware-assisted monitoring . 

Monitoring based on instruction interrupts 

Microprogramming-based monitoring ... 

Monitoring based on program augmentation 

Simulation techniques . . . . . . . 

2.2.1 Cycle-by-cycle simulators. 

2.2.2 Trace-driven simulators . . 

2.2.3 Execution-driven simulators 

2.2.4 Related work 

3 Proteus Overview 

3.1 Main components of the system 

3.2 Using Proteus . . . . . . . . .. 

3.2.1 Installing Proteus .... 

3.2.2 Writing a parallel program 

3.2.3 Choosing the desired machine configuration 

3.2.4 Compiling into an executable simulator . . 

3.2.5 Running a simulation ........... . 

3.2.6 Displaying and evaluating simulation data 

3.3 Typical uses of the system ............ . 

3.3.1 Evaluation of parallel applications .... . 

3.3.2 Research in parallel programming languages 

3.3.3 Research in parallel operating systems . . . 

7 

15 

19 

19 
20 
20 
21 

21 

22 
23 

23 

26 

27 

29 

29 
30 

30 

30 

33 

33 

34 

34 

36 

36 

37 
37 



3.3.4 Research in architecture-related issues 

3.4 Exploring parallelism with Proteus .. 

3.4.1 The eight queens problem .. 

3.4.2 Evaluation of the eight queens program 

4 System Design 

4.1 Design goals 

4.2 Simulation strategy 

4.2.1 Combining simulation with direct execution 

4.2.2 Timing local instruction blocks .... 

4.2.3 Efficiently implementing user threads 

4.2.4 Interleaving different simulated processors 

4.2.5 Advantages and limitations of our approach 

4.3 Architectural model . 

4.3.1 Processor model . 

4.3.2 Memory model 

4.3.3 Interconnection model 

4. 3.4 Modelling contention 

4.4 Programming model . . 

4.4.1 Low-level simulator calls 

4.4.2 Language extensions 

4.5 Runtime system interface . 

5 Experiments 

5.1 

5.2 

System validation 

Performance measurements . 

5.2.1 

5.2.2 

5.2.3 

5.2.4 

Sources of simulation overhead . 

Overhead of nonlocal operations 

Program slowdown . . . . . . . 

Comparison with Other Systems. 

6 Conclusions 

A Eight Queens Problem Solution 

8 

37 

38 
39 

40 

50 

50 
52 

52 

53 

56 

56 
58 

59 
60 
61 

63 

66 
68 

69 

69 

71 

74 
74 
78 
78 
79 

82 

86 

88 

90 



List of Figures 

2-1 Typical structure of a uniprocessor trace-driven simulation system. . . 24 

2-2 Typical structure of a multiprocessor trace-driven simulation system. 25 

2-3 Typical structure of an execution-driven simulation system. . . . . . . 26 

3-1 Creation, simulation and evaluation of a program using Proteus. Steps in 

dashed boxes are invisible to the user. . . . . . . . . . . . . . . . . . . . 31 

3-2 Sample screen from the config program. Screens not shown control the 

simulator engine parameters, the set of events to collect, and the operating 

system parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 

3-3 Typical parallel program development and evaluation cycle using Proteus. 38 

3-4 A recursive algorithm that generates all solutions of the 8-queens problem. 39 

3-5 Speedup and average concurrency graphs for the 8-queens program with 

a single memory list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

3-6 Number of active threads versus time during execution of the 8-queens 

program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 

3-7 Number of threads spinning in the memory manager semaphore during 

execution of the 8-queens program (processors=64). . . . . . . . . . . . . 42 

3-8 Speedup and average concurrency graphs for the 8-queens program with 

multiple memory lists and random thread placement. . . . . . . . . . . . 43 

3-9 Busy processors versus time for the 8-queens program with random thread 

placement (processors=64). . . . . . . . . . . . . . . . . . . . . . . . . . 44 

3-10 Processor lifelines for the 8-queens program with random thread placement 

(processors=64). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 

3-11 Busy processors versus time for the 8-queens program with improved 

thread placement (processors=64). . . . . . . . . . . . . . . . . . . . . . 46 

3-12 Speedup and average concurrency graphs for the 8-queens program with 

multiple memory lists and improved thread placement. . . . . . . . . . . 4 7 

9 



3-13 Bus latency due to contention versus time for the improved 8-queens pro-

gram (processors=64). . . . . . . . . . . . . . . . . . . . . . 48 

3-14 Average bus contention latencies for various machine sizes. . 48 

3-15 Speedup and average concurrency graphs for the 8-queens program on 

hypercube machines ............ . 49 

4-1 An example of code augmentation. In this example, we assume that each 

statement costs one cycle. . . . . . . . . . . . . . . . . . . . . . 55 

4-2 Typical bus-based architecture supported by the simulator. . . . 63 

4-3 Typical network-based architecture supported by the simulator. 64 

4-4 A simple example of bus contention modelling . . . . . . . . . . 67 

5-1 Performance of spin locks on a bus-based machine (empty critical section) 76 

5-2 Performance of spin locks on a bus-based machine (small critical section) 77 

5-3 Average latency of shared memory operations for various machine config-

urations and sizes. 

5-4 Average latency of ipi operations for various machine configurations and 

sizes ............................. . 

5-5 Program slowdown per processor for the Qsort program. 

5-6 Program slowdown per processor for the Fib program. 

5-7 Program slowdown per processor for the 8Queens program. 

80 

82 

84 

85 

85 



List of Tables 

3.1 Some predefined graphs and execution statistics . . . 

4.1 Architectural parameters of the processor component 

4.2 Architectural parameters of the memory components 

4.3 Architectural parameters of the network components 

4.4 Summary of low-level simulator calls ...... . 

4.5 Summary of supported runtime-system functions . 

5.1 Characteristics of test applications used to measure program slowdown. 

All three measures depend on the simulated machine configuration and 

typically increase with the size of the machine. Listed ranges are for 

35 

61 

62 

65 

70 

72 

machines with 1-64 processors (2-64 for Qsort). . . . . . . . . . . . . . . 83 

11 



This empty page was substituted for a 
blank page in the original document. 





This empty page was substituted for a 
blank page in the original document. 



Chapter 1 

Introduction 

The performance of an algorithm on a parallel computer is heavily influenced by several 

factors that are not typically considered in a theoretical complexity analysis of the algo

rithm itself. The actual details of a parallel architecture (interconnection topology, rout

ing method, cache coherence protocol, etc.) and those of the runtime system ( scheduling, 

locking, communication overheads, etc.) often lead to unexpected performance degra

dations that are not always easily detectable by theoretical analysis. Furthermore, the 

interaction between software and hardware is so complex in MIMD machines that accu

rate analytical modelling of architectural and runtime system parameters is usually not 

possible. For these reasons, experimental evaluation of parallel programs is an impor

tant complement to theoretical analysis, much more than it is in the case of sequential 

algorithms. 

Simply executing a program on a parallel machine and monitoring its performance is 

often difficult, due to a number of technical and economic considerations. 

• Existing parallel machines are expensive and in limited supply; not all research 

groups can afford them. 

• Because of the influence of architectural parameters in program performance [K uck84], 

a reliable evaluation of a new algorithm would require testing it in a wide range of 

different parallel architectures. 

• Even if access to the required number of parallel machines is possible, it can be 

difficult to obtain valid measurements from a live parallel system due to the probe 

effect [Gait86]: Obtaining any kind of measurement from a running program implies 

executing some extra monitoring code either at the program or at the microcode 

15 



level, which has the effect of distorting actual instruction execution time. For paral

lel machines, this distortion inevitably affects the interaction of different processing 

nodes and can therefore change the observable behavior of the program. 

Simulation is emerging as an attractive alternative to actual experimentation in all 

branches of science and engineering. Simulation is especially attractive in the area of 

parallel program evaluation for a number of important reasons. 

• Any parallel architecture can be simulated on an ordinary workstation. Researchers 

who rely on simulations do not need to purchase additional equipment. 

• Simulation offers the ability to perform arbitrary analysis without disturbing timing 

relationships that may be crucial to program performance. 

• Different simulations of the same program produce identical results. Therefore a 

problem identified during one run can be studied more thoroughly by repeating 

the same simulation and capturing more data related to the problem. Many real 

parallel machines on the other hand are nondeterministic: The same program may 

produce different results across different runs. Therefore an interesting phenomenon 

produced during one run may not be repeatable. 

On the minus side, simulation has a number of limitations. 

• Multiprocessor simulators slow down the execution of parallel programs consider

ably. High program slowdowns often limit the usefulness of the approach to only 

the simplest parallel applications. 

• Simulators are based on models of real systems and must be thoroughly validated 

before any data obtained using them can be trusted to reach conclusions and make 

decisions. 

The purpose of this thesis is to describe Proteus1
, a parallel program evaluation 

system that we developed as a tool for further research in parallel systems. 

Proteus was born out of the need for a simulation-based platform on which to test 

the design of a new parallel programming language for MIMD machines. We needed a 

1 In Greek legend, Poseidon's herdsman, an old man and a prophet. Proteus was famous for his power 
of assuming different shapes at will. When caught, however, he was helpful to many Greek heroes by 
his foreknowledge. Proteus lived in a vast cave, and his custom was to count over his herds of sea-calves 
at noon, and then go to sleep. There was no way of catching him but by stealing upon him at this time 
and binding him; otherwise he would elude anyone by a rapid change in shape. 

16 



system that would be accurate enough so as to capture the important interactions of a 

parallel program with the operating system and the hardware. Our system should also 

be appropriate as a target for compilers. For those reasons, we decided to design an 

instruction-level simulator that simulates the behavior of a parallel machine at the level 

of individual machine instructions. 

Since our language system is going to be portable, it is important for us to compare 

the performance of programs on different architectures. Hence, Proteus can be configured 

to simulate a wide range of shared-memory and message-passing MIMD architectures. 

To allow simulations of nontrivial parallel programs in a reasonable amount of time, 

high-performance simulation was a major goal of this project. In addition, since different 

simulations have different accuracy and performance requirements, the user should be 

able to control the tradeoff between accuracy and performance by selecting the desired 

level of simulation detail. 

An important goal of the system is to simplify the collection and display of execution 

and performance data. During simulation of a user program, the system outputs an event 

file that captures the important interactions between software and hardware. The system 

provides a number of predefined event types; the user can easily add other event types 

specific to his own application, or restrict the recorded event types to those relevant to his 

experiment. Event files are read by a sophisticated data display program that displays 

execution statistics in a variety of graphical forms. 

Proteus is primarily used to evaluate parallel algorithms. It aims to provide its 

users with enough information to allow them to choose between different algorithms or 

implementations for a given task. It can also be used for research in operating system 

issues, such as scheduling and load balancing, as well as for testing hardware-related 

concepts, such as network routing methods or software and hardware cache coherence 

techniques. 

Division of responsibilities 

Proteus was developed jointly by the author and Eric A. Brewer as part of their S.M. 

thesis research at the MIT Laboratory for Computer Science. Most of the important 

overall system design and implementation decisions were taken jointly by the two authors. 

The author has been primarily responsible for the following aspects of the system: 

• Design and implementation of an efficient simulation strategy that balances our 

performance and accuracy requirements. 

17 



• Design and implementation of all architectural simulation components. 

• Design of the programming model and implementation of a preprocessor that trans

lates our language extensions into standard C. 

• Design and implementation of the runtime system. 

This thesis will concentrate on the description of the system aspects for which the author 

has been responsible. A brief overview of the other system components will also be given. 

Organization of this Thesis 

The rest of this thesis is organized as follows: 

Chapter 2 is a survey of different techniques that have been used to measure the 

performance of parallel systems. Its purpose is to describe the context in which this 

research is performed and to demonstrate that efficient evaluation of parallel systems is 

a difficult problem. 

Chapter 3 provides an overview of the Proteus system. It describes the different 

components of the system and their interaction. It also demonstrates the system's power 

by explaining how the system was used to analyze and improve the performance of a 

simple program. 

Chapter 4 is devoted to the system's design. For each of the major parts of the system, 

alternative designs are compared and the chosen design path is discussed in detail. 

Chapter 5 presents and discusses a number of experiments performed to evaluate the 

accuracy and performance of our system. The results of those experiments are analyzed 

and compared to other similar systems. 

Finally, Chapter 6 concludes the thesis by summarizing the main points made in the 

previous chapters. 

18 



Chapter 2 

Background 

In order to evaluate the performance of a program, some sort of data must be captured 

during the program's execution. This data can be analyzed later to provide insight 

into the program's behavior. This section is a survey of different techniques that have 

been used to gather information about program execution. Its purpose is to set the 

context in which the research reported in this thesis was performed. In addition, it 

aims to prove that efficient and reliable evaluation of parallel programs is a difficult 

problem. Most of the techniques that have been used with success to evaluate programs 

running on uniprocessors are either not appropriate or too expensive to be applied on 

multiprocessors. Hence, building a system that allows reliable and efficient evaluation 

of parallel programs is an interesting challenge. This chapter concludes with a brief 

overview of several systems that have similarities to our work. 

Most existing evaluation techniques belong to one of two broad classes: Monitoring 

of direct program execution and simulation. A third class of techniques, analytical mod

elling, is not accurate enough to capture the detailed interaction of a program with the 

rest of the system and is usually used only to provide first order insights into the operation 

of a system. We will not consider analytical modelling in the rest of this chapter. 

2.1 Monitoring of direct program execution 

A large number of evaluation techniques rely on execution data gathered during the direct 

execution of a program on a real machine. Most of these techniques were developed for 

uniprocessor systems and usually do not perform well when applied to multiprocessors. 

In the following paragraphs, we shall examine the most important monitoring techniques 

and shall point out their principal strengths and weaknesses. 

19 



2.1.1 Hardware-assisted monitoring 

A hardware monitor is a device that plugs onto a working backplane bus to record all 

activity on the bus of a system [Carpenter87, Malony89]. This technique has the ad

vantage of nonintrusiveness. The operation of a program is usually not affected by the 

tracing. Captured data is therefore guaranteed to be accurate. Hardware monitoring is 

capable of capturing both user and operating system activity. In that way, an accurate 

evaluation of the interaction of a program with the operating system is possible. The pri

mary drawbacks of this approach are its complexity, cost and lack of flexibility. Hardware 

monitoring can capture a fixed set of low-level machine events (bus accesses, hardware 

signals), but these cannot always be easily related to application events. Due to memory 

limitations, hardware monitors often record only counts of events, rather than the events 

themselves. Finally, hardware monitors are costly. In order to use them on a parallel 

computer, the complex hardware required would grow at least linearly with the number 

of processors. 

2.1.2 Monitoring based on instruction interrupts 

Some computer systems (e.g. some VAX machines [VAX82]) provide the capability of 

interrupting the execution of every machine instruction of a user program. The pro

gram then traps to a system routine that can capture all necessary information about 

the executed instruction. This technique does not need any extra hardware and is very 

flexible, since the monitoring routine can be modified to capture any kind of desired 

information. However, it suffers from some serious limitations. Operating system code, 

which is typically executed with interrupts disabled, cannot be monitored. Calling a trap 

routine before every program instruction slows down the execution of a program consid

erably (up to 100,000 times in some cases). More important, however, interrupt-based 

monitoring is an intrusive technique that considerably distorts the instruction execution 

times. For parallel machines, this distortion inevitably affects the interaction of differ

ent processing nodes and can therefore change the observable behavior of the program. 

Gait [Gait86] reports that when sufficiently large distortions are present, programs that 

contain synchronization errors can appear to execute correctly. Therefore, intrusive mon

itoring techniques not only produce unreliable performance data, but may also affect the 

correctness of parallel programs. 

20 



2.1.3 Microprogramming-based monitoring 

Agarwal et. al [Agarwal86] introduced a different monitoring technique that remedies 

some of the shortcomings of interrupt-based monitoring. Their technique relies on mod

ification of a machine's microcode to capture address traces of executed instructions. 

Microcode modifications have a much smaller overhead than single-stepping interrupts, 

slowing down the execution of a program only by a factor of 10-20. Also, since mon

itoring is done at a level "below" the operating system, accurate tracing of user and 

system code is possible. However, this technique is still intrusive, although less so than 

interrupt-based monitoring. Its most important limitation is that it is only feasible on 

microprogrammed systems that provide control memories large enough to accomodate 

the required microcode changes. Most existing multiprocessors rely on one-chip micro

processors or RISC-based processors that either do not use microcode or contain their 

microcode in ROM. 

2.1.4 Monitoring based on program augmentation 

Programs can be modified by augmenting their code with instructions that gather in

teresting information "on-the-fly" during their execution [Eggers90, Stunkel89]. These 

modifications can be special monitoring statements that must be explicitly added by the 

user or can be inserted automatically by a preprocessor or compiler system. Software

based monitoring has many advantages. One of the most important is that the user has 

full control over the kind and frequency of captured information. While all previously 

discussed techniques capture low-level machine events, such as address traces, when mon

itoring is done in software, events can be recorded in terms of abstractions used by the 

programmer. This makes it easier to report results in terms the user will understand and 

provide better insight into the behavior of the program. However, software-monitoring 

usually cannot monitor the execution of operating system code, or account for the effect 

of multiprogramming on the execution of the monitored program. Also, this technique 

is still intrusive; the distortion of instruction execution times is dependent on the fre

quency and cost of monitoring code. If the recorded events are relatively infrequent, 

software-based monitoring can be reliably used for the evaluation of parallel programs. 

21 



2.2 Simulation techniques 

Simulation allows the behavior of a target system to be emulated on another, possibly 

totally different machine. Simulation is a very attractive technique for the evaluation of 

parallel systems. It allows the behavior of a large number of different parallel architec

tures to be studied on the machine where the simulator runs. It also provides immense 

flexibility on the nature and amount of captured information. Finally, it has two proper

ties that are of extreme importance when evaluating parallel systems: Nonintrusiveness 

and repeatability. 

Nonintrusiveness means that any amount of monitoring information can be captured 

during a simulation without affecting the operation of the simulated system. The simula

tor assumes that all code executed to capture monitoring data is free; it simply does not 

take any time to execute on the simulated machine. As was discussed in Section 2.1.1, 

intrusive monitoring can cause distortions in the observed behavior of parallel programs. 

For that reason the nonintrusive monitoring offered by simulation is especially important. 

Repeatability means that the same simulation will produce the exact same results 

across different runs. Therefore a problem identified during one run can be studied more 

thoroughly by repeating the same simulation and capturing more data related to the 

problem. Many real parallel machines on the other hand are nondeterministic: The same 

program may produce different results across different runs. Therefore an interesting 

phenomenon produced during one run may not be repeatable. 

On the minus side, simulation techniques suffer from severe performance and accu

racy considerations. Systems that simulate the behavior of a parallel machine in full 

detail typically exhibit slowdowns of several hundred or thousand times per simulated 

processor. Such slowdowns can limit the usefulness of simulation to the evaluation of 

only the simplest, and therefore less interesting, parallel programs. In order to achieve 

better performance, a simulation system must sacrifice some accuracy by not simulat

ing some parts of the system, or by simulating them in less detail. Users rarely require 

full simulation accuracy so such tradeoffs, if made successfully, can produce useful and 

practical systems. 

Finally, simulators are based on models of real systems. Before any data obtained 

from simulations can be trusted, the simulator itself must be thoroughly validated to 

ensure that the results it produces indeed do correspond to reality. 

The following paragraphs describe some of the most important classes of multipro

cessor simulation systems in more detail. 

22 



2.2.1 Cycle-by-cycle simulators 

The most straightforward and accurate multiprocessor simulation method is cycle-by

cycle simulation. In a cycle-by-cycle simulation, the behavior of an entire machine is 

simulated for each clock cycle before advancing the global simulation clock to the next 

cycle. The simulator "sweeps" the entire machine at each iteration, simulating the be

havior of each machine component for a single cycle. This method has the advantage of 

accuracy, since the timing of all events in the simulation closely models their timing in 

reality. However, the simulation overhead can be severe, as the simulation of even the 

simplest machine events may require hundreds of instructions. 

An example of a cycle-by-cycle simulator is ASIM, developed at MIT by the Alewife 

group in order to validate the hardware design of a shared-memory multiprocessor [CHL90]. 

Although very accurate, ASIM slows down the execution of a simulated program by a 

factor of 200-5,000 for each processor [Nussbaum91]. Therefore, a program that would 

take one second on a real 64-processor machine may take more than 3 days on ASIM. 

Cycle-by-cycle simulators provide detailed simulations of low-level machine events and 

are typically developed to evaluate new hardware designs. However, their performance 

is too low and their level of detail too high to allow them to be used for the evaluation 

of large parallel programs. 

2.2.2 Trace-driven simulators 

Trace-driven simulators are an important class of simulators that achieve reasonable 

performance by simulating only a part of the target machine. Trace-driven simulators are 

mainly used in studies of cache memory systems [Agarwal88, Eggers89]. In such studies, 

the behavior of the memory system can be fully simulated if a trace of the addresses 

produced during execution of a program is known. On uniprocessor systems such a trace 

can be captured from the direct execution of a program using one of the techniques 

discussed in Section 2.1. Since the trace need not contain any timing relationships, any 

machine can be used to produce it. 

Given an address trace, the simulator need only implement an accurate timing model 

of the memory system of the target machine. More importantly, using the same trace, 

many different memory systems can be accurately simulated. Figure 2-1 depicts the typ

ical structure of a (uniprocessor) trace-driven simulator, highlighting the decomposition 

of tasks between the trace generation and simulation components. 

When attempting to extend trace-driven simulation techniques to multiprocessor sys-

23 



User Application 

Trace Generator 

I Processor model 

Memory system 

Simulator 

Memory model 

Execution 
Statistics 

Trace File 

Figure 2-1: Typical structure of a uniprocessor trace-driven simulation system. 

terns, several problems arise. In multiprocessor systems, each processor produces a sepa

rate address trace. Those traces are not independent; instead, they are closely interleaved 

in time as processors interact and communicate with each other using shared memory 

locations. Therefore the correct relative order of addresses contained in different traces 

becomes very important. As a simple example of this fact, consider a situation where 

the decision of processor 1 to access location a may depend on the contents of location 

b. Location b is written to by processor 2 only and serves as a signalling point between 

the two processors. Depending on whether a write to location b precedes or follows an 

attempt by processor 1 to read that location, an access to location a may or may not be 

issued. Therefore, a change in the relative timing of accesses by the two processors may 

produce different address traces. 

In the uniprocessor case, address traces did not need any timing information. How

ever, when simulating multiprocessors, processor traces must be accompanied by times

tamps that will allow their correct interleaving. This, in turn, requires that the trace 

generator has the capability of at least partially simulating the memory model of the 

target architecture. The accuracy of the later memory system simulation will be limited 

by any inaccuracy in the timing assumptions made by the trace generator. The situation 

24 



User Application 

Trace Generator 

Processor model 

Partial memory 
model 

Partial 
interconnect model 

Target system 

Simulator 

Memory model 

Interconnect 
model 

Execution 
Statistics 

Figure 2-2: Typical structure of a multiprocessor trace-driven simulation system. 

is depicted in Figure 2-2. 

The special requirements of multiprocessors reduce the attractiveness of trace-driven 

simulation methods. In the uniprocessor case a single trace can be used to simulate 

several different systems. Multiprocessor traces contain timing information which is 

specific to the simulated system and cannot be reliably reused. Uniprocessor tracing 

has the advantage that traces can be produced from the direct execution of a program 

with relatively little extra effort. Therefore only simulation of the memory system is 

required. In the multiprocessor case, the trace generator must be able to simulate the 

target architecture in a fair amount of detail (Figure 2-2). Since the trace generator 

already contains a simple memory model, we argue that the separation of the simulation 

into a trace generation and a post-processing stage that produces execution statistics 

does not present any advantages any more. On the contrary, it requires the storage of 

large intermediate trace files, which may be a disadvantage in systems with limited disk 

capacity. 

25 



2.2.3 

User Application 

Execution-driven 
Simulator 

Processor model 

Memory model 

Interconnect 
model 

' 
Execution 
Statistics 

Figure 2-3: Typical structure of an execution-driven simulation system. 

Execution-driven simulators 

In the previous section we argued that the practice of separating the simulation of a 

parallel system into two phases, one that concentrates on the functional behavior of a 

program and one that focuses on the timing of execution on the target machine, does not 

make much sense for multiprocessors, where the execution path of a program, and thus 

its functional behavior, is highly dependent on the timing of different system events. In 

execution-driven simulators, also known as program-driven or algorithm-driven simulators 

[Covington88], the execution of a program is interleaved with the simulation of the target 

system architecture. Therefore, a simulation run directly produces both the program 

results and the execution statistics (Figure 2-3). 

In trace-driven simulations the obtainable types of execution statistics and the accu

racy of the simulation are limited by the types and accuracy of events contained in the 

intermediate trace file. Execution-driven simulators do not suffer from such limitations 

and therefore provide added flexibility and accuracy. They are also limited, of course, by 

the accuracy of the models they use to model the different parts of the target architecture. 

The most important issue in the design of a successful execution-driven simulator is to 

balance accuracy and performance, in order to build a system that provides fairly reliable 

26 



results in a reasonable amount of time. Many systems use a combination of simulation 

and direct execution to achieve that goal: They execute directly the local parts of parallel 

programs and simulate only nonlocal events, that is, events that affect more than one 

component of the target system. If such a combination is used, care must be taken to 

ensure both that the execution of local program parts is accurately timed and that the 

simulation of global events occurs in the correct order. 

Proteus belongs to the class of execution-driven simulators. It takes advantage of a 

combination of simulation and direct execution to achieve better performance and uses a 

number of elaborate techniques to ensure that the resulting system does not substantially 

sacrifice simulation accuracy. The design of Proteus is explained and discussed in detail 

in Chapter 4. 

2.2.4 Related work 

In this section we will briefly present several multiprocessor simulation systems that 

present similarities with our own work. We will refer to them in Chapter 4, when we 

discuss design alternatives for different parts of our system. 

The CARE simulator [Delagi87] provides an elaborate graphical interface for speci

fying different architectures and a programming model (LAMINA) based on LISP. The 

programmer writes a parallel program in LISP, which is then simulated by direct execu

tion of the LISP code. Timing is done by use of a hardware microsecond timer. The use 

of a timer does not provide accurate timing of directly-executed instruction blocks. Per

formance of the system is relatively poor, due to the high overhead of interpreting LISP 

code. Even more important though, the use of a high-level LISP-based programming 

model and the decision to base timings on the actual execution time of code written in 

LISP can lead to erroneous conclusions. There are many hidden costs in the high-level 

semantics of LISP that are counted by the CARE simulator, even though they might not 

exist in an efficient compiled version of the same algorithm written in another language. 

Aspen is a retargetable simulator with a programming model based on C [Elshoff91]. 

Aspen executes code directly and uses UNIX timing routines to time the execution of 

local instruction blocks. The problem with this approach is that it does not have adequate 

accuracy to simulate a fine-grain multiprocessor. UNIX timing routines have a granularity 

of one millisecond, which corresponds to several thousand instructions on a modern 

microprocessor. Fine-grain parallel machines execute local instruction blocks that can be 

as short as a few tens of instructions, and cannot be accurately timed using this approach. 

Rizzo [Rizzo89] presents a retargetable parallel architecture simulator design that also 

27 



uses a programming model based on C. As in our system, local instructions are executed 

directly and a library of calls supports kernel primitives that perform nonlocal operations. 

The main limitation of his system is the primitive way of counting execution time. The 

user has to explicitly specify the estimated time requirements of local blocks by use of a 

takes_time call. Kernel primitives are assigned fixed costs by the user. Since the only 

user-settable architectural parameters are the number of processors and the fixed kernel 

primitive costs, the flexibility of the system is limited. The system described by Dubois 

et al. [Dubois86] suffers from similar limitations. 

In the Threads simulator [Mathieson88] programs are written in the Threads pro

gramming language and translated into machine code. Dynamic instruction counting is 

used to time local instruction blocks and special simulated kernel operations implement 

nonlocal interactions. Total execution time is separated into user and kernel time to 

isolate the costs of the run-time system. However, the machine model used supports 

only shared-memory multiprocessors and provides a very simple generic model for inter

connection that cannot model real-life non-uniform access machines or the possibility of 

hot spots. 

Tango [Davis90], developed at Stanford concurrently with our work, is the system 

that comes closest to ours in terms of accuracy and flexibility. It uses a combination 

of simulation and direct execution, times local instruction blocks using code augmen

tation, and can be configured to simulate several different architectures. The current 

implementation, however, does not accurately model operating system code in terms 

of low-level machine instructions. Also, Tango uses UNIX processes to implement the 

different executing threads with the result that simulation performance is significantly 

reduced. 

28 



Chapter 3 

Proteus Overview 

This chapter gives an overview of the Proteus system. Its purpose is to give the reader an 

idea of what the system looks like, and thus set the stage for the discussion of the system's 

design that follows in the next chapter. In addition, it intends to demonstrate that the 

combination, in Proteus, of a high-performance simulator and a flexible, graphics-based 

data display subsystem has resulted in a powerful tool which makes the experimental 

evaluation of parallel programs easy, fast and reliable. To that end, an example of a 

simple but interesting parallel program is presented. It is then explained how Proteus 

has helped in discovering the program's performance problems, identifying their causes 

and coming up with improvements that eliminated them. 

This chapter does not intend to serve as a User Guide of the system and does not 

contain detailed information about the system's use. A detailed Proteus User Guide is 

available as a separate document. 

3.1 Main components of the system 

Proteus is composed of a number of programs and utilities. Most of them are not visible 

to the user but are called indirectly from other parts of the system. From a typical user's 

viewpoint, Proteus consists of three main components: 

• config, a menu-driven program through which a user can set the parameters of 

the simulated machine configuration and compile his application into an executable 

simulator. 

• parsirn, which is the executable instance of a simulator, created by linking together 

the user application with the simulator engine and the components of the simulated 

29 



machine architecture. 

• stats, the data display program, which reads event files generated during a simu

lation, and displays execution statistics in a variety of graphical forms. 

The most important "hidden" parts of Proteus are catoc, a C-preprocessor that 

translates our extended version of C into normal C when compiling user application files, 

and augment, a program that augments user program files with code that correctly times 

their execution. Finally, Proteus also has a special version of the C library and a number 

of simple script files that perform tasks such as installation of the system and compilation 

of a user application into a simulator. 

Proteus is implemented and runs on DECstation workstations under UNIX. Both 

the configuration program and the data display subsystem use the X \,Yindows interface 

standard to draw graphs and to allow mouse interaction. 

3.2 Using Proteus 

This section describes the steps a user needs to follow in order to create, run and evaluate 

a parallel application using Proteus. These steps are depicted in Figure 3-1. 

3.2.1 Installing Proteus 

Before writing an application, Proteus must be installed in the same directory where 

the source files of the application will be stored. A master copy of all Proteus system 

files is assumed to exist in a directory that is known and accessible throughout the host 

machine. A simple shell script is provided to install Proteus in an empty directory. 

During installation, symbolic links to all relevant Proteus system files are created in the 

target directory. Using those links, system files will be compiled and linked together with 

user files to create an executable simulator. 

3.2.2 Writing a parallel program 

Proteus provides a high-level language programming model to allow the writing of parallel 

programs. The model consists of a set of low-level simulator calls, a number of extensions 

to the C programming language, and a runtime system interface. 

The local parts of a parallel program, that is, the operations that are performed locally 

on a processor and do not interact with other parts of the system, are written using normal 

30 



Instruction 
cost file 

Augmented-C 
application 

Choose 
machine 
configuration 

.-----•------. 
Translate 
to C 

1- - - - - ~ - - - - - I .-----,------. 
I I 

C compile 

1_ - - - - ~ - - - - - I 

I - - - - _,_ - - - - - I 

augment 
I 
I 

1- - - - -f -----I 

.-----------. 
I I 

assemble 1 

: ___ J _____ : 
link 

1- - - - - - - - - - - I 

simulate 

Evaluate 
results 

Configuration 
parameter 
files 

Simulator 
source 
files 

I - - - - -♦- - -- - -I 

C compile 

,_ ----r -----I 

Special 
C library 

Figure 3-1: Creation, simulation and evaluation of a program usmg Proteus. Steps m 
dashed boxes are invisible to the user. 

31 



[',I conf 19 ~IJ 
Execute Group Version 1.20 

Bus Based IIWIIMI 
11111111■1 Indirect Network 

Unidirectional iiMMI 
Use Caches ■IHIAIIM 

k-ary Radix 2 n-cube Dimension 6 

Number of Processors: ~ Packet Length in Words 1024 

Switch Delay 1 Wire Delay 1 

111111m111111 1:8] 

Bits in Memory Size 16 Memory Modules: ~ 

If set, use an exact packet-based networt. simulation, othe!Wlse use the 
analytical model that Is faster but does not simulate hot spots. 

Exact Simulation 1:8] 

Figure 3-2: Sample screen from the config program. Screens not shown control the 
simulator engine parameters, the set of events to collect, and the operating system pa
rameters. 

C statements. Operations that require interaction of multiple system components can 

be simulated using low-level simulator calls. We will use the term nonlocal operations to 

refer to those operations in this thesis. Low-level simulator calls are provided to support 

shared-memory accesses, sending of interprocessor interrupts, spinlock creation and use, 

and control of hardware features of the simulated processors. 

C language extensions provide new storage classes and operators that support the 

declaration and use of shared memory variables using the normal C syntax. Language 

extensions are translated into low-level simulator calls during program compilation by a 

preprocessor ( see below). 

The runtime system interface provides a set of calls for thread and shared memory 

management. Using those calls, an application can create and control the behavior of a 

thread on a processor. It can also allocate and deallocate blocks of shared memory. 

The programmer's interface to Proteus is described in more detail in Section 4.4. 

32 



3.2.3 Choosing the desired machine configuration 

Proteus can be configured to simulate a wide range of shared-memory and message

passing MIMD machine architectures. In order to simulate a particular type of parallel 

machine, the user must specify several architectural and runtime system parameters to 

the system. These parameters are independent of the user application; the same user 

program can usually be simulated in a variety of architectures without any modifications. 

We provide a menu-driven tool ( config) for controlling the parameters of a simulation, 

as well as building and executing the specified simulator. In addition, config allows 

users to add their own parameters. For example, when testing multiple variations of an 

algorithm, a user may add a parameter that chooses which one to include in the present 

simulation. Figure 3-2 gives a sample screen from the config program. 

3.2.4 Compiling into an executable simulator 

After specifying the required simulation parameters, the user can use the Execute menu 

of config to compile and link his application into an executable simulator. Alternatively, 

the makesim script can be used for the same purpose. During the compilation process, 

user files are compiled and linked together with simulator source files and configuration 

parameter files. 

The compilation process consists of 5 steps, as depicted in Figure 3-1. User source files 

are first processed by catoc, our C preprocessor1
. Catoe translates references to shared 

memory variables to the appropriate sequences of low-level simulator calls and produces 

normal C files as output. These files are then compiled by the standard C compiler 

and the equivalent assembler files are produced. In the next step, augment transforms 

the assembly code by inserting additional instructions that accurately track the amount 

of simulated time used by the code. The process of augmentation is explained more 

fully in Section 4.2.2. A standard assembler is used to convert the augmented code into 

object files. All simulator source files that are dependent on the configuration parameters 

modified by the user are recompiled. Finally, all user and simulator object files are linked 

together with a special version of the C library to produce an executable instance of the 

simulator. The executable simulator is called parsim. 

1The obscure name means ".ca to .c", since the preprocessor transforms an augmented-C file, which 
has filename extension .ca, into an equivalent C file with filename extension .c 

33 



3.2.5 Running a simulation 

An executable simulator created by the previous steps can be run as a normal UNIX 

process by simply giving its name. During its execution, parsim simulates the behavior 

of the user program on the selected machine configuration and generates a file of execution 

statistics that can be read and interpreted by the data display subsystem. 

The simulator can be interrupted at any time during its execution by pressing the key

board interrupt ( CTRL-C) key. When simulation is interrupted, the user is transferred 

to the snapshot component of the simulator. The snapshot mode provides a simple menu 

that allows the user to examine in detail the state of the parallel machine and the sim

ulator engine at the interrupt point. The snapshot menu also provides features, such as 

single stepping and the ability to set breakpoints, that help the difficult task of debugging 

parallel programs. 

3.2.6 Displaying and evaluating simulation data 

The primary use of a simulation is to provide insight that helps the user resolve specific 

questions about an algorithm or implementation. During a simulation, our system gen

erates a file of interesting execution events and statistics. This file is then interpreted by 

stats, our data display program. 

Our data collection and display system has two major goals: first, collect exactly the 

right data needed to answer the user's questions, and second, display the data in the 

form that best answers these questions. 

One of the best ways for humans to interpret large amounts of data is through the 

use of color graphs. Thus, color graphs are the output of our data display subsystem. 

For a given set of data, there are many useful graphs, hence, users should be able to view 

their data in a variety of ways. The system provides a set of predefined graphs, some of 

which are listed in Table 3.1. In addition, the user can define new graphs via a simple 

but powerful graph language. 

The system currently classifies data into two groups: time-independent and time

dependent. Time-independent data summarizes entire simulations; time-dependent data 

reflects the state of a simulation at a specific time. For example, the overall cache hit 

ratio for a simulation is a single number that is independent of time. If the ratio is 

recorded over time, each point in the record is time-dependent, but the mean of the 

points is independent of time. 

Time-independent data is collected using metrics. Users specify the name and value 

34 



• Concurrency graph (busy processors versus time) 

• Active threads (per system and per processor) versus time 

• Threads waiting on a system lock versus time 

• Processor lifelines 

• Cache hit ratio over time 

• Bus and Network contention over time 

• Total number of calls to each program function and avg. number of cycles per call 

• Total time spent in user and runtime system code 

Table 3.1: Some predefined graphs and execution statistics 

of a metric at run time. After the simulation, the metrics can be referred to by name. 

Users may also specify an array of metrics, which is used to collect the same data for an 

array of objects, such as processors or semaphores. For example, a useful array metric is 

the utilization of each processor. There is one name for an entire array; users reference 

elements by name and index. 

Time-dependent data is collected using events. Events have types that allow all of 

the events of one type to be handled as a unit. For example, one type is processor usage; 

events of this type record the times at which processors become idle or busy. This kind 

of event can be used to generate a graph of the number of busy processors versus time, 

commonly known as a concurrency graph. Furthermore, users may define their own event 

types and may specify an array of events analogous to an array of metrics. 

To help control the volume of data, events may be filtered as they are produced. 

For example, cache information is filtered to reduce the data output by a factor of one 

hundred. This is done by counting the number of cache hits in one hundred accesses and 

using this count as the value of the event. The general filtering mechanism outputs one 

value for every k updates. The user recalculates the event value at every update using 

the previous value, the update information, and any state the user wishes to keep. 

35 



The user specifies the display of data using a general graph language. The display pro

gram, stats, reads a file that specifies the graphs desired by the user. The user switches 

among these graphs using a menu. Facilities are provided for zooming in on portions of 

graphs, calculating the area and average value of a graph, producing a hardcopy2 , and 

switching between graph and table format. 

The graph language currently supports six kinds of graphs: metrics and array met

rics graphs, events-versus-time graphs, bar graphs, array graphs, and multi-simulation 

graphs. Metrics-based graphs display the values of a set or array of metrics in either a 

bar-,graph or tabular format. Event-based graphs display a function of a set of events ver

sus time. Array graphs consist of an array of event-versus-time graphs, and thus contain 

three dimensions. The y-axis is the array index, the x-axis represents time, and the color 

of the point indicates its value. Array graphs are particularly useful for quickly verifying 

behavior and for viewing the simulation as a whole. Multi-simulation graphs display one 

point for each member of a set of simulations; speedup graphs fit this form. Finally, 

groups of event or multi-simulation graphs can be displayed on the same axis, with each 

member of the group in a distinct color. Among the graphs of Section 3.4 below, Fig

ure 3-6 is an example of an event graph, Figure 3-10 is an example of an array graph, 

while the speedup graphs (e.g. Figure 3-5) are examples of groups of multi-simulation 

graphs. 

3.3 Typical uses of the system 

Proteus is used to support research in several areas of parallel processing. It was originally 

conceived as a tool for the evaluation of a new parallel programming language. However, 

the system provides enough power and flexibility to be used in many other areas. 

3.3.1 Evaluation of parallel applications 

The performance of a program on a parallel machine depends on many factors that 

are not considered in a theoretical complexity analysis of the program and usually defy 

satisfactory analytical modelling. As we will observe in the next section, the interaction 

of a program with the runtime system, the method of assigning new threads to processors, 

and the details of the architecture can have a profound effect in the observed program 

2 The graphs in this thesis were created directly from stats, using the Hardcopy menu command, 
combined the command-line flag -latex. 

36 



performance. Proteus accurately models factors such as those mentioned above, and 

allows users to study the behavior of applications running on a variety of machine models. 

It can, therefore, provide a useful complement to the theoretical analysis of new parallel 

algorithms. Furthermore, the efficiency of the simulator component makes it feasible to 

use the system to predict the performance of real applications on different architectures. 

3.3.2 Research in parallel programming languages 

The C language, augmented by the low-level simulator call interface of Proteus, can be 

used as the target language of parallel language compilers. In that way, the system can 

be used to evaluate the performance of high-level parallel programming languages in a 

variety of different machine architectures. 

3.3.3 Research in parallel operating systems 

Proteus provides a complete runtime system which is built on top of its low-level simulator 

call interface and is viewed by the simulator as an application program. Time spent in 

runtime system code is accurately measured and, if desired, separated from time spent 

in user code. Detailed information about threads waiting in various system locks and 

queues can be plotted using the stats program. Therefore, the effects of the runtime 

system on user program performance can be observed. Runtime system routines can 

be partly or completely rewritten. In that way, researchers can test new operating and 

runtime system designs. 

3.3.4 Research in architecture-related issues 

Proteus provides support for research in two architecture-related areas: Cache coherence 

protocols and network routing algorithms. 

The appearance of large-scale shared memory machines has renewed interest in re

search on cache coherence protocols. The shared memory component of Proteus supports 

the detailed simulation of cache coherence protocols. A well-defined interface of calls con

nects the protocol with the rest of the system (see Section 4.3.2). Researchers in that area 

can implement their own protocols and then use Proteus to evaluate their performance. 

Proteus provides a much easier and more reliable way of performing such evaluation than 

the currently popular method of trace-driven simulations (see Section 2.2.2). 

Proteus supports research in network routing algorithms by providing an accurate 

37 



Modify program 

Change machine 
configuration 

Run more 
simulations 

Write program 

config 

parsim 

Evaluate 
stats simulation results 

Figure 3-3: Typical parallel program development and evaluation cycle using Proteus. 

network simulation component and a flexible router interface (see Section 4.3.3). The 

user can replace the routing algorithm with his own, and the behavior of the router 

during simulation of real applications can be easily monitored. 

3.4 Exploring parallelism with Proteus 

The flexibility and interactive nature of Proteus encourage an exploratory approach to 

parallel program evaluation: The user typically runs one or several simulations of an 

application and subsequently enters the stats program to evaluate their results. With 

the help of a number of carefully chosen predefined system graphs, as well as his own 

program-specific graphs, the user can study several aspects of the program's behavior and 

discover any areas of trouble. Once a problem has been detected, more simulations may 

be needed to identify its cause. The program may need to be modified, different types of 

events may need to be added, or different machine configurations may be tried to provide 

further insight into the program's behavior. At the end of every stage of experiments, 

stats is called to display the results of the latest simulations and help decide what needs 

to be done next. This iterative interaction among the system's components is shown in 

Figure 3-3. 

In this section we aim to demonstrate the power of the Proteus system by studying 

38 



proc solve_queens() : 
stage( empty_chessboard , 0 ); 

proc stage( chessboard, i ) : 
if ( i == 8 ) 

f ound_solution( chessboard); 
else 

for( j = I ; j < = 8 ; j + + ) 
if ( saf e_to_add_queen( chessboard, i + I, j ) ) 

stage( add_new_queen( chessboard, i + I, j ), i + 1 ); 

Figure 3-4: A recursive algorithm that generates all solutions of the 8-queens problem. 

a simple but interesting program that implements a parallel algorithm for solving the 8-

queens problem. Our program suffers from a common problem in parallel programming: 

Although the algorithm on which it is based contains a large amount of parallelism, its 

implementation on a real machine produced a disappointing speedup curve. By using 

Proteus in a systematic way, all different causes of the program's poor scaling behavior 

were easily identified and, whenever possible, corrected. Apart from proving the ca

pabilities of the Proteus system, this example also demonstrates the complexity of the 

interaction between the hardware, the runtime system and even the simplest parallel pro

gram, and emphasizes the need for advanced parallel program measurement tools such 

as Proteus. 

3.4.1 The eight queens problem 

The eight queens problem is stated as follows: Eight queens are to be placed on a 

chessboard in such a way that no queen checks against any other queen. The problem 

has exactly 92 solutions and one way to solve it is by a recursive algorithm described by 

the pseudocode shown in Figure 3-4. 

Stage receives a chessboard in which a queen has already been placed in each of 

the first i rows and attempts to place an additional queen in all columns j of row i + 1 

where the new queen does not check against any of the previously placed i queens. Each 

successful new configuration is recursively passed back to stage, which now attempts to 

place a queen in all safe columns of row i + 2, and so on, until either no additional queen 

39 



Speedup and Average Concurrency 

64 

56 

48 

40 

';.>"' .... -,>"/'.< .. -" 

·. ·. . _-_-;;•l. ~-.. -~~~~ ...... ·r _____ .,.-: .... 
.--~---·· 

32 -- - -- -- -... ~.;:......... ... , .. :····.,,....•· 
-······· ·············· 

24 

16 

o.+a,:;,-----+-----i----l--+---+---+----1-----+--1-------------o 8 12 

-- Program speedup 
••••••••

0000 Average Concurrency 
·••••· ···· Optimal Speedup 

16 20 24 28 32 36 40 

Number of available processors 

44 48 52 56 60 64 

Figure 3-5: Speedup and average concurrency graphs for the 8-queens program with a 
single memory list. 

can be safely placed in any of the columns of a given row, or a complete solution has 

been found. The algorithm essentially performs a depth-first traversal of the solution 

space and abandons further traversal of any subtree whose root is an illegal problem 

configuration. 

It is easy to parallelize the above algorithm by transforming all calls to stage into 

invocations of new tasks that will execute stage on different processors from the calling 

tasks. This transformation causes all traversals of subtrees with a common parent to 

execute in parallel. Since the 8-queens solution tree has a maximum branching factor of 

8, and very quickly expands to a very large number of subtrees, it is expected that the 

parallel version of the algorithm will exhibit a significant amount of concurrency. 

3.4.2 Evaluation of the eight queens program 

We implemented a version of the parallel 8-queens solution program using the program

ming model of our simulator. The code is listed in Appendix A and gives an idea of what 

a typical Proteus program looks like. Different chessboard configurations are represented 

using data structures stored in shared memory. Add..new_queen dynamically allocates an 

40 



Active Threads versus Time 

260 

240 

220 

200 

180 

~ 160 

"' I!! 
140 .c 

I-
GI 
> 120 u 

C( 
100 

80 

60 

40 

20 

0 
0 3 6 9 12 ,. 18 21 24 27 30 33 36 39 

Cycles (x 1 0000) 

Figure 3-6: Number of active threads versus time during execution of the 8-queens pro
gram. 

amount of shared memory to store a new configuration with one extra queen, and re

turns the shared memory address of the new configuration. Each new task then receives 

this new configuration and attempts to create new configurations with yet another queen 

placed. We can see therefore that the program makes relatively intensive use of shared 

memory. 

We executed a number of simulations of the program on bus-based machines of dif

ferent sizes. In all machines, a number of processors and a number of shared memory 

modules were connected together through a common bus. All shared memory accesses 

had to pass through the common bus. Each processor was equipped with a 64K 2-way 

associative cache to improve average memory latency and reduce traffic on the bus. From 

the results of our simulations, we produced a program speedup and average concurrency 

graph (Figure 3-5). Program speedup is defined as the ratio of the program execution 

time on one processor to the program execution time on n processors. Average concur

rency gives the average number of processors that were busy during execution of the 

program on a given machine configuration. 

The speedup graph of Figure 3-5 is disappointing. Although we expected the program 

to exhibit a large amount of concurrency, and therefore to scale very well on large parallel 

41 



Number of Threads Waiting on Memory Manager Semaphore 

45 

42 

39 

36 

33 

30 

Ill 
"C 27 

"' e 
.c 24 
I-

~ 21 .... 
~ 18 
m 

15 

12 

9 

6 

3 

Cycles (x 10000) 

Figure 3-7: Number of threads spinning in the memory manager semaphore during exe
cution of the 8-queens program (processors=64). 

machines, speedup does not seem to be able to increase above 9 even on machines with 

64 processors. 

There are several factors that limit the performance of parallel programs. Some of 

the most common are: 

• The underlying algorithm does not have enough concurrency. 

• The implementation does not make good use of available resources. 

• There is a bottleneck in the interaction between the program and the runtime 

system. 

• There is a bottleneck in the interaction between the program and the hardware. 

In the case of our program, we can easily rule out the first listed possible cause. 

Figure 3-6 gives the number of active threads versus time during the execution of the 

8-queens program on a 64-processor machine. At almost all times this number is more 

than the number of available processors and peaks at about 260. As we expected, the 

algorithm has enough concurrency to keep many processors busy! 

42 



f! 
0 
Ill 

Sl 
8 
ci. 
>, 

!I 
m 
C. 
:::, 

~ 
8. 

en 

64 

56 

48 

40 

32 

24 

16 

8 

Speedup and Average Concurrency 

-- Program speedup 
............ Average Concurrency 
--------- Optimal Speedup 

Number of available processors 

Figure 3-8: Speedup and average concurrency graphs for the 8-queens program with 
multiple memory lists and random thread placement. 

We next investigated the interaction of the program with the runtime system. Prob

lems in this area usually arise from shared runtime system data structures that are 

guarded by mutual exclusion semaphores. Such data structures can easily become bot

tlenecks. Stats can produce graphs that depict the number of threads that are blocked in 

any system semaphore versus time. By examining those graphs we were able to discover 

that the memory manager lock was in fact a serious bottleneck (Figure 3-7). It turned 

out that the current implementation of the dynamic shared memory allocator keeps a 

single free list guarded by a mutual exclusion semaphore. With several processors try

ing to allocate and deallocate shared memory blocks at the same time, this can indeed 

become a bottleneck. 

We replaced the memory allocator by a different algorithm that keeps one free list 

per processor. \Ve also modified our program to ensure that each processor would always 

allocate memory blocks from its own free list. In that way, contention for the memory 

manager was eliminated. 

We executed a number of simulatons using the modified program and produced a 

new speedup and concurrency graph which appears in Figure 3-8. Although speedup has 

improved, it was still very low and had a peak value of about 11. Some other factor was 

43 



Concurrency Graph 

60 

56 

52 

48 

44 

40 

!! 
i 36 

I 32 

C. 28 
>-... 
:::, 24 
Ill 

20 

16 

12 

8 

4 

0 
0 2 6 10 12 14 16 18 20 22 24 26 28 30 32 34 

Cycles (x 10000) 

Figure 3-9: Busy processors versus time for the 8-queens program with random thread 
placement (processors=64). 

limiting the performance of our program. 

By taking a closer look at the average concurrency graph of Figure 3-8 we observed 

that that too was not scaling particularly well as the number of processors increased. 

Figure 3-9 shows the concurrency graph ( number of busy processors versus time) for the 

64-processor case. We observed that at all times there were some idle processors in the 

system. Given that the number of active threads was many times the number of active 

processors, this discrepancy suggested that our program did not make good use of the 

available processors. 

A careful look at the lifeline graph of Figure 3-10 helped identify the problem. All 

processors were utilized at some point during the program, but many processors were 

having idle periods during which they were waiting to receive some work. This obser

vation prompted us to take a closer look at the method of assigning new threads to 

processors in our program. 

Placement of threads in the original version of our program was done by choosing 

a target processor at random. Very often, the chosen target processor would be busy 

executing some other thread, while at the same time other processors would be sitting 

idle. Our naive placement method was apparently leading to less than optimal machine 

44 



64 

60 

56 

52 

48 

44 

40 

i 36 

in 
G) 32 u e 28 

D.. 
24 

20 

16 

12 

8 

4 

0 
0 2 4 6 

C==:J Processor Idle 
- Processor Busy 

Processor Lifelines 

8 10 12 14 16 18 20 

Cycles (x 10000) 

22 24 26 28 

, r-

.... 
. 

I --1 ~ 

I -~ ■ l~I ~ 
- I ■- I ,- I,. ..,., 

30 

--- -·' 
I I ■ 11 . '. , ' . 
: 1, 

I I 1-, ' ' 

32 34 

Figure 3-10: Processor lifelines for the 8-queens program with random thread placement 
(processors=64). 

utilization. 

\Ve modified our program to place threads usmg a more sophisticated placement 

algorithm: The program kept a circular queue of idle processors in shared memory. 

Whenever a processor became idle, it inserted its index at the tail of the queue. Whenever 

a processor was ready to create a new thread, it removed a processor index from the head 

of the queue and created the new thread on that processor. If the queue was empty, a 

target processor was chosen at random. The head and tail pointers of the queue were 

read and incremented simultaneously, using atomic shared memory operations (fetch

and-add). Therefore, multiple threads could access the queue at the same time without 

the need for a mutual exclusion semaphore that would make the queue a bottleneck. 

The new placement algorithm substantially improved processor utilization. Figure 3-

11 shows processor utilization on a 64-processor machine using the new algorithm. The 

reader should compare it with Figure 3-9, which depicts processor utilization with random 

placement. 

Unfortunately, although average concurrency increased by almost 25% in the 64-

processor case, even with the new placement algorithm there was only a marginal im

provement in speedup (Figure 3-12). At first this looked like a paradox because now more 

45 



Concurrency Graph 

64 

60 

56 

52 

48 

44 

f! 40 

i 36 Zl e 32 

CL 

~ 28 

::, 
m 24 

20 

16 

12 

8 

4 

0 
0 2 10 12 14 18 18 20 22 24 26 28 30 32 34 

Cycles (x 10000) 

Figure 3-11: Busy processors versus time for the 8-queens program with improved thread 
placement (processors=64). 

processors were busy doing useful work and therefore the program should have better 

performance. 

Trying to identify the cause of our performance problems, we finally examined the 

interaction of the program with the hardware. It is well known that, in bus-based ma

chines, the common bus very quickly becomes a performance bottleneck and, in fact, that 

was the main cause for the poor scaling behavior of our program3
• Figure 3-13, which 

depicts the bus contention latency per shared memory access for the 64-processor case, is 

ample proof of that fact. As long as all shared memory requests have to go through the 

common bus, no program improvement can significantly improve the performance of the 

system. In fact, the better the machine utilization, the larger the number of processors 

that compete for the common bus. Thus, any performance gains obtained by an increase 

in concurrency are offset by a corresponding increase in delays due to bus contention. 

Caching reduces the number of memory accesses that have to go through the bus, but 

the remaining number of accesses is still high enough to completely saturate the bus. 

3This fact was, of course, obvious to us from the start, but we left it for the end in order to make the 
discussion of all the previous performance issues more interesting. 

46 



Speedup and Average Concurrency 

64 

56 

48 

40 

32 

24 

16 

o--------+----+---+---+----i----+--1--------------
0 4 8 12 

-- Program speedup 
············ Average Concurrency 
•········· Optimal Speedup 

16 20 24 28 32 36 40 44 48 52 56 60 64 

Number of available processors 

Figure 3-12: Speedup and average concurrency graphs for the 8-queens program with 
multiple memory lists and improved thread placement. 

Figure 3-14 shows the average bus contention latency for different machine sizes. It can 

be observed that this latency grows faster in the case of the improved placement algo

rithm. This observation explains the apparent paradox of Figure 3-12 where an increase 

in machine utilization had almost no effect on speedup. 

So how can we increase the performance of our program without rewriting it com

pletely? Since we are working on a simulator we simply changed the machine configura

tion to a network-based machine. Network-based machines exhibit much better scaling 

behavior since they do not restrict all nonlocal requests to pass through the same exclu

sive access medium. Figure 3-15 shows the speedup curve of the 8-queens program on 

hypercubes of dimensions 1 to 6. 

We observed that the program now exhibits a much better scaling behavior. Speedup 

remained very close to average concurrency ( average number of busy processors) even for 

large machine sizes. However, average concurrency was lower in the case of hypercubes 

than it was in bus-based machines (see for comparison Figure 3-12). 

By studying the concurrency graph for several sizes of hypercubes, we were able to 

determine that the lower average concurrency was due to the larger amount of time re

quired to create the first few threads that are needed to fully utilize a hypercube machine. 

47 



Bus Delay per Access due to Contention 

120 

110 

100 

90 

80 

70 

Kl 
~ 

60 

50 

40 

30 

20 

10 

0 
0 2 4 6 10 12 14 16 18 20 22 24 26 28 30 32 

Cycles {x 10000} 

Figure 3-13: Bus latency due to contention versus time for the improved 8-queens program 
(processors=64). 

90 

85 

80 

70 

70 

65 

60 

55 

Kl 50 u 
45 ts 
40 

35 

30 

25 

20 

15 

10 

5 

0 

Average Bus Latency due to Contention 

0 4 8 12 16 20 24 28 32 36 40 

Number of available processors 

-- Random assignment of threads to processors 
•······ .. ···· Improved assignment of threads to processors 

44 48 52 56 

Figure 3-14: Average bus contention latencies for various machine sizes. 

48 

60 64 



64 

56 

"' 
48 

0 
"' "' "' 40 e 
a. 
>, 

32 ! 
m 
cl. 
:::, 24 

~ 
!. 

VI 16 

8 

0 

Speedup and Average Concurrency 

0 4 8 12 

-- Program speedup 
·····••

0000
• Average Concurrency 

--------- Optimal Speedup 

16 20 24 28 32 36 40 44 

Number of available processors 

48 52 56 60 64 

Figure 3-15: Speedup and average concurrency graphs for the 8-queens program on 
hypercube machines. 

By comparing hypercube concurrency graphs with Figure 3-11, which shows concurrency 

versus time for a 64-processor bus-based machine, we found that the first, rising part of 

the graph was less steep in hypercube machines. This phenomenon can be explained by 

observing that, before it creates a new thread, stage first calls add..new_queen to create 

a new chessboard configuration. Add..new_queen allocates a block of shared memory to 

store the new configuration, copies the old configuration to the new block, and places an 

additional queen at the new configuration. The old configuration is usually stored on a 

different node from the new one. On a network machine, the longer memory latencies 

when accessing the remotely stored old configuration are responsible for longer delays 

between creation of new threads. This explains the longer start-up times until the ma

chine reaches full utilization. This delay, in turn, has the effect of reducing the average 

concurrency over the entire execution of the program. One way to fix this problem and 

improve the efficiency of our program is to rewrite it so as to store chessboard configu

rations in processor local memory and transmit entire configurations to other processors 

using interprocessor interrupts. 

49 



Chapter 4 

System Design 

The design of any complex computer system is an exercise in balancing several, often 

conflicting, user requirements with the available computer resources. In this chapter, 

we shall describe the design of the Proteus system, concentrating on the parts of the 

system for which the author was primarily responsible: simulation strategy, simulation 

of architectural components, programming model and runtime system interface. We shall 

also briefly discuss the general requirements for the entire system and the overall design 

decisions that gave Proteus its present form. 

For each system part, we shall start by describing our requirements and goals. Fol

lowing that, we shall discuss the alternative design paths we considered and shall explain 

why we chose the design we adopted in the system. 

4.1 Design goals 

This section outlines the requirements and describes the overall design decisions that 

defined the general shape and scope of the system. 

Our goal was to create a simulation-based system that would allow us to test the 

efficiency of portable system software for MIMD architectures. Since we were interested 

in writing portable programs, we did not require detailed simulations of specific parallel 

machines. We did require, however, a system that could capture all essential interactions 

of a parallel program with the other components of a MIMD machine. Such interactions 

can generally be classified into the following categories: 

• Interactions with the runtime system (bottlenecks caused by exclusive access sys

tem data structures, effects of scheduling algorithm, effects of placement policy, 

50 



overhead of different runtime system functions, etc.) 

• Interactions with the hardware ( type and properties of interconnection medium, ef

fects of caching and cache coherence protocols, effects of network routing algorithm, 

efficiency of available synchronization mechanisms, etc.) 

We decided to build a machine-level simulator to satisfy the above requirements. Our 

simulator would simulate the effects of individual machine instructions on the different 

parts of the system and would include detailed simulation of the major interactions that 

affect the performance of a program on a parallel machine. Since we were not interested in 

simulating actual machines, it would only be necessary to simulate the effects of machine 

instructions, not their low-level implementation in terms of registers, data paths, etc. 

Our system should enable us to compare the performance of our portable programs 

on different architectures. Hence, our simulator would be designed from the start to 

be retargetable and able to simulate a wide range of different MIMD machines. Ideally, 

configuration of the simulator would not require any modifications of the user code. 

We recognized very early that the purpose of simulation is to provide information 

that helps the user evaluate his implementation and choose between different design al

ternatives: A simulation is only as good as the insight it provides. The complexity of 

the interaction between different components of a parallel system means that simula

tions of even the simplest program will produce a huge amount of potentially interesting 

information. We decided that our system would provide a dedicated data collection 

and display component that would help users collect exactly the right data needed for 

their experiments and display data collected during a simulation in a variety of graphical 

forms. Section 3.2.6 contains an overview of the data collection and display component of 

Proteus. For a full description, the reader is referred to Eric Brewer's thesis [Brewer91]. 

Finally, we realized that our system would be used both for the evaluation of existing 

programs and for the development of new ones. Therefore, we decided to make it easy 

to use in an interactive manner. Configuration of simulation parameters, generation and 

execution of a simulator would be done from a simple, menu-driven program. The data 

display system itself would be menu-driven. In addition, the simulator would provide 

support for the difficult task of debugging parallel programs. 

51 



4.2 Simulation strategy 

Section 2.2 discussed the merits of simulation as a method for evaluating parallel pro

grams. The flexibility and non-intrusive nature of simulation-based systems, however, is 

usually offset by their severe performance overhead. Systems that are accurate enough 

to capture most interesting interactions between the different parts of a system typically 

require execution times that are several thousand times longer than running ?' program 

directly on a parallel machine. This limitation prohibits the use of simulation for longer, 

and therefore more interesting, applications. 

In order to reduce the overhead of simulation, a system designer may choose not to 

simulate some of the components and interactions of a real system, or to simulate them 

in less detail. In that way, the system will present a tradeoff between performance and 

full accuracy. Usually, such a tradeoff is acceptable because the user rarely requires a 

complete simulation of all events that take place in the simulated system. On the other 

hand, different users ( or the same user at different times) have different requirements. For 

example, one user may want to test a new network routing algorithm and thus requires an 

exact simulation of a packet-switched network. However, he may not care about accurate 

shared memory modelling. A different user, who wants to test the performance of a new 

cache coherence protocol, requires accurate modelling of shared memory accesses, but 

may not require detailed network simulation. A successful system should allow the user 

to choose the desired performance/ accuracy tradeoff himself. 

A principal goal in the design of our simulator was to achieve high performance that 

would allow us to simulate large applications. In order to achieve that performance, we 

made a number of tradeoffs. The most important tradeoffs are reflected in our simulation 

strategy that is described in this section. Other tradeoffs in the simulation of individual 

machine components are described in Section 4.3. The user has the power to control 

simulation parameters that control both the efficiency/ accuracy tradeoff of the simulation 

strategy and the detail of simulation of machine components. 

4.2.1 Combining simulation with direct execution 

In order to design an efficient simulation strategy for our system, we examined cycle-by

cycle simulators ( see Section 2.2.1) and tried to determine some of the reasons for their 

very high simulation overheads. Two of the most important were the following: 

• Individual instructions are simulated. Hundreds of machine instructions are typi

cally required to simulate a single user instruction. 

52 



• Even machine components that are idle are simulated, since the simulator "sweeps" 

the entire machine before advancing to the next cycle. 

At the same time, we observed that a multiprocessor CPU spends most of its time 

executing operations on local data stored in processor registers or private memory. Local 

operations are similar to operations on uniprocessor CPUs. Operations that require 

interaction with other parts of the system, such as shared memory accesses, are performed 

using a small set of special machine instructions. We use the term nonlocal instructions 

to refer to those special instructions in this thesis. Apart from the support of a number of 

nonlocal machine instructions, uniprocessor and multiprocessor CPUs are quite similar 

from a programmer's viewpoint. 

By combining the previous observations, we decided to design a system that does not 

simulate local instructions; instead it executes them directly. We make the assumption 

that local instructions on the parallel machine's processors are identical to instructions on 

the uniprocessor where the simulator runs. Special instructions for nonlocal interactions 

are implemented using function calls that transfer control to the simulator engine. The 

simulator incorporates a collection of routines that simulate the functionality of nonlocal 

instructions and account for their performance costs. In that way, local instructions incur 

no overhead and only nonlocal instructions are simulated. 

There are several problems we had to solve to make the above method accurate and 

efficient enough for our purposes: 

• Accurately measure the time taken to execute local instructions. 

• Efficiently implement the threads that would be created on different processors on 

a real parallel machine. 

• Interleave the simulation of the threads that would execute concurrently on different 

processors on a real multiprocessor, so that the timing and sequence of events on 

the simulator closely matches their timing and sequence on a multiprocessor. 

In the rest of this section, we describe how we solved each of these problems. 

4.2.2 Timing local instruction blocks 

A parallel simulation system keeps a clock for the entire machine or a number of clocks 

for each processor. These clocks are incremented to reflect the amount of time consumed 

by instructions executed on each processor. When simulating instructions, it is easy to 

53 



increment the processor clock to account for the time taken by each instruction. However, 

when executing instructions directly, accounting for the amount of time consumed by a 

local block of instructions becomes tricky. 

Existing multiprocessor simulators solve this problem in various ways. Some sys

tems [Delagi87, Elshoff91] use the host processor's real-time clock to get an approximate 

estimate for the time taken by local instructions. This method has limited accuracy, es

pecially since local blocks executed between two nonlocal instructions are usually smaller 

than the interval between two real- time clock ticks. Other systems [Rizzo89] require the 

user to explicitly give an estimate of the time taken by the local parts of his code, using 

a special takes_time function call. This method is no more accurate and also puts an 

added burden on the user of the system. The best method to time local instruction blocks 

is code augmentation, first described by Weinberger [Weinberger84]. Code augmentation 

adds special code to the assembly version of user code to count executed instructions 

dynamically. 

Augmentation is the third step in the compilation of Proteus user source files (Fig

ure 3-1) and is performed by a special program called augment. During augmentation, 

the assembly version of user code is broken into basic blocks. The defining property of a 

basic block is that its instructions execute as an atomic unit. That is, it is not possible 

to execute only a subset of the block's instructions. Three types of statements determine 

block boundaries: labels, branch instructions and call instructions. A label requires a 

new block since otherwise a program could jump into the middle of a block, breaking the 

atomicity requirement. Likewise, a branch instruction ends a block to prevent jumping 

out of the middle of a block. The reason for ending a block after a call is more subtle. 

The called procedure may give up the processor because it contains a nonlocal instruction 

that calls the simulator engine. Therefore, it is important to ensure that the cycles for 

this block prior to the call have been counted. Thus code in the basic block up to and 

including the call instruction is always counted before the call, and code after the call 

instruction is always counted after the call returns. 

After locating basic blocks, the augmentation program consults an instruction cost 

file that contains the cost, in cycles, of every local instruction type. Based on that 

information, augment calculates the cost of each basic block and inserts before each 

block special code that updates the cycle counter by the number of cycles consumed by 

the block. Figure 4-1 gives a simple example of the augmentation process. 

54 



wordlength : 
X = -1; 
bits = O; 

loop: 
X <<= 1; 
bits++; 
if ( x ! = 0 ) goto loop; 
print bits; 

(a) A simple program fragment that calculates the wordlength of the machine. 

wordlength : 
X = -1; 
bits - O· 

' 
loop: 

X <<= 1· 
' bits++; 

if ( X ! = 0 ) goto loop; 

print bits; 

(b) The same program fragment separated into basic blocks. 

wordlength : 
cycles+= 2· 

' 
X = -1; 
bits - O· 

' 
loop: 

cycles+= 3· 
' 

X <<= 1· 
' bits++; 

if ( X ! = 0 ) goto loop; 

cycles + = 1; 
print bits; 

( c) The original program fragment augmented with cycle-counting code. 

Figure 4-1: An example of code augmentation. In this example, we assume that each 
statement costs one cycle. 

55 



4.2.3 Efficiently implementing user threads 

During execution of a parallel program on a real multiprocessor, a large number of dif

ferent tasks or threads would be executing concurrently on different processors. Our 

simulator should provide a way to implement these threads efficiently on a uniproces

sor. Efficiency considerations require a fast way to create and destroy threads and a 

low-overhead mechanism for switching control between threads. 

Some existing systems [Davis90] have made use of the existing UNIX system call inter

face to implement user threads using UNIX processes. This approach has the advantage 

that it does not require writing extra code. However, it has two serious limitations. UNIX 

processes reside in separate address spaces and contain much more state than is needed 

for our purposes and therefore all operations ( creation, destruction, context switch) on 

them incur severe overheads. Also, the maximum number of UNIX processes is limited 

by the size of system tables to about one hundred. On a large-scale parallel machine 

with hundreds or thousands of processors, several thousand threads may well be active 

at the same time. 

We decided to implement our own threads package that would multiplex a large 

number of lightweight threads on top of a single UNIX process. In our package, threads 

have a minimum of state: Each thread is assigned an entry in a threads information table 

and a stack for local data and procedure invocations. All threads share the same global 

data, which provides a cheap way for communicating values across threads. 

A thread information block (TIB) contains space for storing the processor context 

when a thread passes control to another thread, as well as a small amount of additional 

system information. Stack blocks are allocated from a static stack block pool. To avoid 

page faults when searching the stack pool for free blocks, the stack free list is implemented 

as a separate compact table. 

The threads package provides calls to create new threads and discard terminated 

threads. Transfer of control between threads is done using a coroutine mechanism. This 

requires simply storing the processor context of the old thread in its TIB and loading the 

context of the new thread from its TIB. On the MIPS R3000 processor where our system 

is implemented the above procedure requires 135 instructions or 5.4 microseconds. 

4.2.4 Interleaving different simulated processors 

On a real parallel machine, many processors execute different instructions concurrently, 

and several events take place at the same time. A uniprocessor simulating a paral-

56 



lel machine can execute or simulate only one instruction or event at a time. In any 

multiprocessor simulation it is important to provide an interleaving of the concurrently 

executing threads that will ensure that the timing and sequence of simulated events is 

as close as possible to reality. 

The most accurate interleaving is achieved by allowing each thread that is executing 

on a processor to execute a single instruction before passing control to the next thread. 

This approach, used in cycle-by-cycle simulators, ensures that all processors advance 

together in time and all events are simulated in the correct order. However, it results in 

very high simulation overhead. 

We observe that in a parallel machine simulation, nonlocal operations, that is, oper

ations that are visible to more than one system components, are of the greatest interest. 

Local operations can be performed in any order that ensures the correct timing and se

quence of nonlocal operations. Therefore, to achieve better performance, in our system 

we allow processors to drift slightly apart from each other in time. Each processor now 

has its own clock, which reflects the number of cycles the processor has executed since the 

beginning of the simulation. Processors are synchronized whenever one of them executes 

a nonlocal operation. 

On our simulator, every task spawned by the user program on a processor is imple

mented as a thread. The simulator engine itself is also a thread. As it was mentioned, 

transfer of control between threads is done using a coroutine mechanism. 

Whenever control is transfered to a user thread, the thread is allowed to execute a 

block of local instructions ( augmented by cycle-counting code) uninterrupted. As soon 

as a thread needs to perform a nonlocal operation, however, the following events take 

place: 

• A request for the nonlocal operation is placed on a simulator priority queue, ordered 

by timestamp. 

• Control passes to the simulator engine thread. 

The simulator engine maintains a single priority queue where threads that are ready to 

continue execution of local instructions, as well as threads that are waiting for the com

pletion of nonlocal operations, are ordered by their timestamps. Events with identical 

timestamps can be optionally placed in the queue in a random order. This feature can 

be used to simulate the nondeterminism of real parallel machines: Using different ran

dom seeds, slightly different request orderings are expected to produce slightly different 

57 



program behavior, just as it happens across different executions of the same program on 

a real machine. 

When it gains control, the engine always removes and services the earliest thread 

request in the queue. If the earliest thread is ready to continue execution of local instr

cutions, control is transfered from the engine to the thread. Otherwise the engine calls 

a simulator routine that implements the requested nonlocal operation. Implementation 

of a nonlocal operation may cause the generation of additional, intermediate simulator 

requests. When a nonlocal operation is complete, a request is placed to resume the 

requesting user thread. 

This scheme ensures that a synchronous nonlocal operation is started only when 

all earlier nonlocal operations have also been started. The timing and sequence of syn

chronous nonlocal operations on the simulator is identical with their timing and sequence 

on a real machine. This includes all shared-memory accesses and message send opera

tions. 

4.2.5 Advantages and limitations of our approach 

The combination of simulation and direct execution used in our simulator has resulted 

in a system that is two orders of magnitude faster than other systems of comparable 

flexibility (see Section 5.2.4). In a typical program, a parallel machine processor spends 

most of its time executing simple, local instructions. Our approach allows simulation of 

those local parts with the minimal overhead of the cycle-counting code inserted during 

augmentation. 

Our system does not spend any time simulating idle processors. The simulator is 

driven by requests generated by threads running on simulated processors. Whenever 

a processor becomes idle, there is no thread on it to generate any more requests and 

the simulator simply forgets about it. Whenever an event (typically an interprocessor 

interrupt) makes that processor busy again, the clock of the processor is set to the 

timestamp of the event that has woken it up and its simulation is resumed. 

Our simulation method is a tradeoff between complete accuracy and good perfor

mance. There are only two areas where our method introduces some small inaccuracies. 

The direct execution of local instruction blocks assumes that all instruction and local 

data accesses can complete in a fixed number of cycles. This assumption does not permit 

modelling the effects of instruction and local data caching, which would make the cost 

of local fetches smaller on cache hits and larger on cache misses. These effects, however, 

tend to be quite small in modern systems with large, efficient caches. 

58 



The other source of inaccuracies is in asynchronous interrupt reception times. On 

real multiprocessors, interrupt reception can occur at any time. On our simulator, local 

instruction blocks are executed uninterrupted and received interrupts can only be ac

knowledged and serviced at points where threads make nonlocal requests. In most cases 

this results in negligible inaccuracies, since nonlocal requests are very frequent. However, 

in infrequent cases, a user thread may enter a very long block of local instructions and 

thus cause an excessive delay in the service of pending interrupts. Worse still, as a result 

of a program bug or otherwise, a thread may enter an infinite loop and never transfer 

control to the simulator engine again. 

To avoid these problems, the simulator limits the number of local instructions that 

a user thread can execute uninterrupted before it is forced to transfer control to the 

simulator engine. This number is called the simulator quantum; its value is set by the 

user. The simulator quantum is an upper bound on the number of cycles that two 

simulated processors can be apart from each other at any time. It is also an upper 

bound on the inaccuracy in interrupt reception times. In applications where accuracy in 

interrupt reception times is important, the user can increase accuracy at the expense of 

performance by setting low quantum values. 

4.3 Architectural model 

Many research studies (see for example [Kuck84]) have pointed out the important effect of 

the underlying architecture on the performance of a parallel program. Even in the simple 

example we presented in Section 3.4, going from a bus-based to a hypercube machine 

had a dramatic impact on the program speedup. For that reason, any reliable evaluation 

of a parallel program must test its performance on a variety of different architectures. 

One of our major goals in Proteus was to design a system that could be easily configured 

to simulate a wide range of MIMD architectures. We were not interested in simulating 

specific machines in full detail, but wanted to be able to configure the system so as to 

simulate the important interactions between the architecture and a parallel program on 

any given machine. 

Our architectural model consists of a number of architecture simulation components 

that simulate the three main parts of a parallel computer system: processing elements, 

memory and interconnection medium. The user can choose among several different com

ponents for each machine part. In that way, from the combination of a small number of 

components, a large number of different architectures can be constructed. In addition, 

59 



each component has several architectural parameters that can be set to fine-tune our 

simulation to a given target architecture. 

Different simulation components usually simulate different architectures. For exam

ple, there is a bus and a network interconnection component. Different components may 

also simulate the same machine part at different levels of detail ( and performance). For 

example, we provide two network simulation components, an exact hop-by-hop simula

tor, and a faster but less detailed simulator based on an analytical model of network 

contention. By choosing less detailed simulation components users can gain some extra 

performance at the expense of full accuracy. 

In the rest of this section, we will describe the components available in the current 

version of the system. 

4.3.1 Processor model 

A single, generic processor model is used for all machine architectures. Our processor 

architecture combines features found in processors for both shared memory and message 

passing machines. 

The local instruction set of our processor is identical to the instruction set of the host 

machine where the simulator runs. As explained in Section 4.2.2, the simulation method 

used in our system times local instruction blocks by augmenting user code with cycle

counting instructions during compilation. This method assumes that each instruction 

completes in a fixed number of cycles. In architectural terms, this can be translated to 

the assumption that our processor has an amount of fast, private memory where code and 

local data can be stored. An approximately equivalent assumption is that each processing 

element is equipped with large instruction and local data caches that guarantee a very 

high hit ratio. The cost of each instruction type, in cycles, is defined in an instruction 

cost file, used by the augmentation program. This file can be modified to fine-tune the 

simulation of different existing processors. 

Each simulated processor supports two methods of interacting with other parts of the 

system: 

• Shared-memory accesses 

• Interprocessor interrupts 

Shared-memory accesses are handled by the memory model, which is described in the 

next section. Interprocessor interrupts (IP Is) are the principal method of communication 

60 



• Local instruction costs in cycles 

• Context switch latency 
( cycles to save and restore processor state) 

• Interrupt latency 
( cycles needed to save state and branch to interrupt handler) 

• Number of available interrupt types 

Table 4.1: Architectural parameters of the processor component 

in message-passing machines. In our system, an IPI is a packet of data that is trans

mitted through the interconnection medium and causes an asynchronous interrupt upon 

reception at the target processor. Reception of an interrupt results in the execution of 

an interrupt handler routine in the context of the thread that was executing when the 

interrupt arrived. Interrupts have priorities and their servicing can be delayed by tem

porarily disabling a processor's interrupt mask. Each processor also has a countdown 

timer that produces a local interrupt upon timeout. 

Table 4.1 lists the architectural parameters of the processor component. 

4.3.2 Memory model 

Shared memory is divided into memory modules of equal size. Memory modules can either 

be connected to the interconnection medium, or each can be associated with a processor 

to form a processor-memory node. Address to module translation can be based either 

on the lower or on the upper bits of a shared memory address. Basing the translation on 

the lower bits provides memory interleaving, which reduces memory module contention 

when several processors concurrently access the same region of shared memory. Basing 

the translation on the upper bits, on the other hand, enables the allocation of contigu

ous blocks of memory from the same block. Memory module contention is accurately 

modelled. 

The system provides different components that allow the user to specify architectures 

with or without caching. When caching is selected, cache coherence is provided by 

full simulation of an appropriate protocol. We have selected Goodman's snoopy-bus 

61 



• Number of memory modules 

• Memory module size 

• Cache line size 

• Cache set size 

• Number of sets per cache 

• Cache access latency 

• Memory module access latency 

• Address to module translation mechanism (lower or upper bi ts) 

Table 4.2: Architectural parameters of the memory components 

coherence protocol [Goodman83] for bus-based machines and Chaiken's limited directory 

protocol [Chaiken90] for network-based machines. Different cache coherence protocols 

can easily be added by the user, as explained below. The system also allows shared 

memory accesses without cache coherence. In that case every cache behaves as if it is the 

only cache accessing main memory. This option is useful to simulate machines in which 

cache coherence is achieved by software means (e.g. the IBM RP3 [Pfister85]). 

Every byte of shared memory has an associated full/empty bit [Agarwal90, Smith81], 

which can optionally be checked or set by shared-memory accesses. Full/empty bits are 

useful for synchronization, and can also serve as general-purpose tags. 

Table 4.2 lists the architectural parameters of the memory components. 

Cache coherence protocols 

Proteus supports detailed simulation of cache coherence protocols. Users can replace the 

supported cache protocols with their own. The interface between cache protocols and the 

rest of the memory component consists simply of two routines processor_.request_pre 

and processor ..request_post. The first routine is called before a read or write takes 

place, to fetch a location into a local cache. The second routine is called after a local 

62 



QQ 
I I I I 

Processor 

I 
I I 

: Cache : Cache 1 

'- - - - - -· '- - - -- _, 
: Cache 
'- - - - - _I 

Common Bus 

Memory Memory Memory Memory 

Figure 4-2: Typical bus-based architecture supported by the simulator. 

cache has been read or written, in order to perform write-back, or any other bookkeeping 

needed by the protocol. Cache coherence protocols must support five operations: READ 

and WRITE for cache coherent memory accesses, READSOFT and WRITESOFT for memory 

accesses without cache coherence, and FLUSH for explicit invalidation of addresses from 

local caches. In addition, a cache coherence protocol must supply a protocoLfence 

function, which stalls the calling processor until all pending flushes have been completed. 

4.3.3 Interconnection model 

Our simulator supports two kinds of interconnection: Bus and network. 

When bus is selected, all processing elements and all memory modules are connected 

together through a common bus (Figure 4-2). All nonlocal interactions (shared memory 

accesses and IP Is) have to pass through that bus. Uniform shared memory access is 

assumed, that is, access of any memory module from any processor takes the same amount 

of time (ignoring delays due to bus contention). Bus contention is accurately modelled. 

The supported network-based architectures connect a number of processor-memory 

nodes using a variety of direct and indirect networks (Figure 4-3). Direct networks directly 

connect two processing nodes through point-to-point links. In such networks there is a 

variable "distance" between two processing nodes, equal to the number of individual 

63 



Processor/Memory Node Processor/Memory Node 

I_~-;·: -I_ - -~: - I_ ~-;·:_I __ -~:~: _ 
I I I I 

1 Cache Controller 1 1 Cache Controller 1 

·- - - - - - - • - - - - - ... - ,I ,_ - - - - - -. - - - - - -. 
I Network Controller Network Controller 

I 

• 
Interconnection network 

. 
T 

Network Controller 

r - - - - - - t -- ---- -, 
1 Cache Controller 1 
I I 
I I -~2~.---s 

Processor/Memory Node 

Figure 4-3: Typical network-based architecture supported by the simulator. 

64 



• Maximum packet length 

• Direct/Indirect network 

• Unidirectional/Bidirectional links 

• Number of stages (for indirect networks) 

• Network radix ( k) and dimension ( n) ( for k-ary n-cubes) 

• Switch delay 
(cycles needed to send one word through a network switch) 

• Wire delay 
(cycles needed to send one word through a point-to-point link) 

Table 4.3: Architectural parameters of the network components 

point-to-point links that form the shortest path between those nodes. Indirect networks 

do not directly connect any two processors by point-to-point links but rather have a 

number of internal switching stages that automatically route a packet to its destination. 

In these networks, all pairs of processing nodes have the same "distance", equal to the 

number of internal stages plus one. 

Our network components support the complete family of k-ary n-cube direct networks 

[Seitz84] with either unidirectional or bidirectional connections. This family includes 

most usual types of network encountered in MIMD machines, such as rings, meshes 

and hypercubes. Our indirect network model can emulate Butterfly networks [BBN87], 

Omega networks [Lawrie75], Delta networks [Patel81], etc. 

Two different network simulation components are provided: 

• An approximate simulator that calculates network latency based on analytical for

mulas that take into account network contention [ Agarwal89]. This component is 

very fast and reasonably accurate; however, it assumes an uniform distribution of 

network load and it is unable to model hot spots. 

• An exact, hop-by-hop packet-switched direct network simulator for cases where 

65 



high accuracy is important. Static lowest-dimension-first wormhole routing is pro

vided by default. The routing algorithm can be redefined by the user, allowing 

experimentation with other routing methods. User-defined routing algorithms can 

also be used to implement irregular network topologies that do not belong to any 

of the supported network families. 

Table 4.3 lists the architectural parameters of the network components. 

4.3.4 Modelling contention 

All architectural components use the same simple method to model resource contention. 

Our method takes advantage of certain properties of the simulation strategy described 

in Section 4.2 to eliminate the need for busy-waiting or separate resource buffers and 

queues. 

In real machines, when a request arrives to a resource that is already busy servicing 

other requests, the new request is either placed in a buffer or the requesting processor 

busy-waits until the resource is ready to service it. A network routing switch is an 

example of a resource that uses buffers to store pending input and output packets. A 

common bus is an example of a resource that causes requesting processors to busy-wait 

( enter wait states or continuously retry the request) until they gain exclusive access to 

its data paths. 

Our system splits all requests to shared resources into two phases: A request phase and 

a grant phase. The request phase simply calculates the time the resource will be made 

available to the requesting thread and generates a grant request with that timestamp. 

The grant phase actually accesses the resource and performs the requested operation. 

The advantage of this approach is that it eliminates the need for busy-waiting. However, 

the method relies on the ability to correctly calculate the timestamp of the grant request. 

We calculate when a resource will be granted to a requesting thread with the help 

of an integer variable kept for each shared resource. This variable, will be referred to 

as resource-free_again in this section. If a resource is busy, resource_free_again stores the 

earliest time when that resource will become free again. If a resource is free, the variable 

stores the timestamp of the cycle that immediately follows the last period of time during 

which the resource was busy. Resource-free_again is initially set to zero for all resources 

and is updated every time a resource is utilized, as explained below. 

If a resource is free when it is requested, it is granted immediately. Otherwise it is 

granted at the first cycle on which it becomes free again. This is modelled by the formula: 

66 



bus-free_again Request 

bus_Jree_again = 0 Processor 0 time= 100 REQUEST BUS 
bus_free_again = 110 Processor 0 time= 100 BUS GRANTED 
bus_Jree_again = 110 Processor 1 time= 104 REQUEST BUS 
bus_Jree_again = 120 Processor 1 time= 110 BUS GRANTED 

Figure 4-4: A simple example of bus contention modelling 

resource_granted = max( requesLtime, resource_f ree_again) 

Our system uses resource_granted, computed by the previous formula, as the times

tamp of the grant request. The system now knows that some thread will access the 

resource at that time. It also knows the operation this thread will perform on the re

source and presumably its latency (this information is supplied during the request phase). 

With this information, resource_f ree_again can be updated as follows: 

resource_f ree_again = resource_granted + operation_latency 

Requests for access to shared resources are always implemented as simulator calls that 

cause a simulator request to be placed in the simulator engine's queue. Simulator requests 

are extracted from the simulator queue and serviced in their exact timestamp order (see 

Section 4.2.4). Therefore, a request for a shared resource will be serviced exactly when 

all previous requests have already been serviced by the simulator. By induction, this 

means that resource_f ree_again always contains the earliest time when the resource will 

be available. 

Figure 4-4 gives a simple example of how this method works to model bus contention. 

Processor O requests the bus at time 100. At that time the bus is free and is granted 

immediately. We assume that all bus accesses take 10 cycles. Therefore, after the bus is 

granted to processor 0, it will become available again at time 110. At time 104, processor 

1 also requests access to the bus. The system knows that the bus will be available again 

at time 110 and grants it to processor 1 at that time. It also updates bus_Jree_again 

to 120. Using bus_free_again, the system knows exactly when a bus request will be 

granted. Thus, there is no need for processors to busy-wait in the simulator. 

Our strategy services requests to shared resources in a FIFO manner. In reality, FIFO 

servicing is not always the case. In fact, many shared resources ( especially buses) may 

67 



not even guarantee fairness. We can extend our scheme to model resources that are not 

fair by maintaining a list of pending requests for each shared resource. The request phase 

schedules a grant request, as before. In addition, it inserts the requesting thread in the 

list of pending requests for the resource. In this case, the grant request simply means 

that the request will be granted to some thread at the calculated time; it does not specify 

which thread. When serviced, the grant request picks a thread from the pending request 

list and grants the resource to it. Since any algorithm can be used to pick a requesting 

thread, this scheme is able to model any resource arbitration mechanism. 

4.4 Programming model 

Our system provides a programming model for writing parallel programs. There are two 

conflicting requirements from the programming model: 

• It must be low-level enough to enable the programmer to control the behavior of the 

simulated machine at the level of the simulation, which is the machine instruction 

level. A low-level interface is also desirable if the system is to be used as a target 

for experimental compilers of new parallel programming languages. 

• It must be simple enough to be used directly by programmers. 

An assembly-level interface would allow full control of the instruction-level behavior of 

each processor. However, it would make direct coding of new programs difficult and time

consuming. In our system, we have chosen to base our interface on the C programming 

language, augmented with a set of calls and language extensions that implement the 

additional instructions present in multiprocessor CPUs. We chose C because it is a 

rather "low-level" high-level language that has minimal run-time support and does not 

introduce significant distortions to the underlying processor model. On the other hand, 

it hides tedious low-level details such as register allocation, data placement, data type 

conversion, etc. C is simple enough to be used directly by programmers and can also 

function as a high-level assembly language for parallel language compilers. Compilers can 

perform high-level optimizations and produce C code as output. A standard optimizing 

C compiler can then translate this code into assembly, performing low-level, machine 

dependent optimizations. 

Our programming model augments the standard C language with a set of low-level 

simulator calls and a number of language extensions. 

68 



4.4.1 Low-level simulator calls 

The standard C language is used as a high-level assembly in which local parts of user 

programs are written. A set of simulator calls is provided to implement the functionality 

of special instructions that perform nonlocal interactions on a parallel machine. These 

calls are listed in Table 4.4. Low-level calls are used to perform shared memory accesses, 

to send interprocessor interrupts, to define and use spinlocks, and to control hardware 

features of our processor model, such as the interrupt flag and the countdown timer. 

The low-level simulator call interface is useful as a target language for parallel lan

guage compilers or as a building block for higher-level interfaces. 

4.4.2 Language extensions 

Low-level simulator calls are at the level of individual machine instructions. For example, 

shared memory calls require an explicit memory address and number of bytes to access. 

The use of low-level simulator calls may become difficult in user programs whose other 

parts are written in C, since C does not deal with individual memory addresses but 

rather with named variables and structures. In our low-level model, accessing a field of a 

structure stored in shared memory would require explicit calculation of the exact address 

and length of that field. To avoid burdening the user with such tedious calculations, our 

programming model provides extensions to the C language that allow definition and use 

of shared memory variables using the normal C syntax. We also provide a preprocessor, 

catoc, that translates all references to shared variables or structures to the appropriate 

sequence of simulator calls. Catoe is called in the first step of the compilation process 

described in Section 3.2.4. 

A new shared storage class has been added to C to declare variables that are placed 

m shared memory. Shared memory variables can be optionally qualified as tagged, 

untagged and soft. Tagged variables are accessed using full/empty bit synchronization 

(see Section 4.3.2). Soft variables are accessed without cache coherence. The default is 

cache coherent accesses without full/empty bit synchronization. Shared variable decla

rations can be optionally accompanied by placement directives using the new placeat 

keyword. 

A new tag unary operator can be used to read or write the full/empty bits of the first 

location where a shared memory variable is stored. Finally, C pointers can now point to 

data that is stored both in private and in shared storage. To distinguish pointer accesses 

to shared-memory locations from accesses to private locations, a set of new operators 

69 



Shared Memory Support 

• Access an integer value from a shared memory location 
value = Shared_Memory_Read{ address, mode) 

value = Shared_Memory_ Write( address, value, mode ) 

• Access a floating point value from a shared memory location 
value = Shared_Memory_Read_Fl( address, mode) 

value = Shared_Memory_ Write_Fl( address, value, mode ) 

• Access the tag (full/empty bit) of a shared memory location 
value = Shared_Memory_ReadTag( address, mode ) 

value = Shared_Memory_ Write Tag( address, value, mode) 

• Flush an address from a local cache 
Flush( address ) 

Spinlock functions 

• Create and discard a spinlock on a given memory module 
spin_address = sem_open( value, name, module ) 
sem_close{ spin_address) 

• Acquire a spinlock 
sem_P( spin_address ) 

• Release a spinlock 
sem_ V( spin_address) 

I Interprocessor Interrupts 

• Send a interrupt to another processor 
send_ipi{ processor, priority, ipi_type, length, argc, args ) 

Control of hardware features 

• Access the countdown timer 
value = ReadTimer( processor) 
WriteTimer( processor, value ) 

• Enable/Disable interprocessor and timeout interrupts 
value = ReadinterruptFlag( processor) 

WriteinterruptFlag( processor, value) 

Table 4.4: Summary of low-level simulator calls 

70 



has been added for pointer accesses to shared-memory locations. The standard pointer 

access operators have been reserved for accesses to private memory locations. 

4.5 Runtime system interface 

In order to run parallel programs, every real machine requires an operating or runtime 

system that provides basic services, such as thread and memory management. Many 

simulator systems ( e.g. [Rizzo89, Davis90]) chose not to simulate the operation of the 

runtime system in detail, but rather provide a set of simulator calls that approximate 

the functionality of the real runtime system calls. 

Proteus provides a detailed implementation of a simple runtime system, which is built 

on top of the programming model discribed in the previous section and is viewed by the 

simulator as a user program. We believe that a detailed implementation of a runtime 

system is essential for the following reasons: 

• The interactions between the runtime system and a program can have significant 

effects on the program's performance. When unexpected execution behavior is 

observed, it is important to be able to measure which part of it is due to the 

program, and which part is due to the runtime system. 

• Runtime system design for parallel computers is an interesting area of current 

research. By supporting detailed runtime system modelling, our system can be 

used to evaluate new ideas in many runtime-system issues, such as scheduling, 

placement, migration, etc. 

The cost of our runtime system routines is accurately calculated by cycle-counting 

their code. Time spent in runtime system code can be separated from time spent in 

user code to highlight the effects of runtime system functions on overall algorithm per

formance. If desired, the costs of selected runtime system functions can be set to a fixed 

value (including zero), to observe the effects on overall performance. 

Since runtime system routines are not part of the simulator engine, they can be 

partially or completely replaced by user-defined routines. Thus, the system can be used 

for experimentation with different scheduling algorithms and other runtime-system issues. 

Our runtime system model assumes that every processor has an identical copy of the 

runtime system code. The user can choose between two versions of the runtime system: 

Single-ready-list (SRL) and multiple-ready-lists (MRL). In the SRL version, there is a 

global pool of ready threads and each processor picks and executes one of these threads 

71 



I Thread Management 

• Spawn a new thread on a processor 
tid = OS_spawn( function, stacksize, threadname, processor, priority, mode, 

argc, args) 

• Kill a thread 
OS_kill( tid ) 

• Join with a previously created thread 
value = OS_join( tid) 

• Change a thread's scheduling priority 
old_priority = QS_set_priority( tid, new_priority ) 

• Temporarily suspend a thread or resume a suspended thread 
OS-suspend( tid ) 
QS_resume ( tid ) 

• Sleep for a specified amount of time 
QS_sleep( cycles ) 

• Enable or disable interprocessor and timeout interrupts 
old_state = OS_interrupLctrl( tid, new_state ) 

old_state = OS_seLpreempt( tid, new_state ) 

Memory Management 

• Dynamically allocate or deallocate a block of shared memory 
addr = OS_getmem( nbytes) 
addr = QS_getmemfrommodule( nbytes, module) 

OS_freemem( addr) 

Table 4.5: Summary of supported runtime-system functions 

72 



whenever it becomes idle. In the MRL version, threads are created on specific processors. 

When there is more than one thread on a processor, the processor divides its time between 

them according to a local scheduling algorithm. Finally, there is a version of the run

time system that does not make use of shared memory, to be used when simulating 

message-passing architectures. 

Any thread can invoke a runtime system call that affects any other thread. Threads 

have globally unique identifiers that also identify the processors where they reside. When 

a target thread is on another processor, the call is transmitted to the target processor 

using an interprocessor interrupt and the service is executed there. 

After system initialization, the runtime system creates a thread on processor O that 

executes function usermain of the user program. That thread is responsible for dynam

ically creating all the remaining threads of the program. 

Table 4.5 lists the supported runtime system calls. 

73 



Chapter 5 

Experiments 

This chapter summarizes a number of experiments that were performed to evaluate two 

important aspects of our system: accuracy and performance. 

Since simulation is based on models of real systems, before any data obtained from 

simulations can be trusted, the simulator itself must be validated and proven to provide 

accurate results. Thus, our first goal in this chapter is to provide experimental evidence 

which demonstrates that Proteus is accurate enough to allow the reliable evaluation of 

parallel programs. 

Multiprocessor simulators typically incur high simulation overheads that slow down 

the execution of simulated programs considerably. Our second goal in this chapter is 

to analyze the simulation overhead and measure the overall simulation performance of 

Proteus. These performance measurements allow us to compare our system to other 

similar multiprocessor simulators and prove that the simulation strategy discussed in 

Section 4.2 has indeed resulted in a system with superior efficiency. 

5.1 System validation 

A simulation system must be accurate enough to produce results that do not lead to erro

neous conclusions. Simulators are generally very complex systems and formal validation 

of their accuracy is in practice very difficult. In this section, we do not attempt to prove 

our system correct in a strict mathematical sense. We report experiments, however, that 

support the claim that the system is reliable enough to be used in drawing conclusions 

and making decisions. 

When simulating an existing computer system, simulation accuracy can be validated 

by comparing the results of a simulation run to tho~e of a direct execution of a program on 

74 



the target system. Proteus is not meant to simulate any particular machine in full detail 

but rather to provide insight into the behavior of a program on a wide range of different 

machines. In order to validate our system, we reproduced a number of experiments 

described in published papers and compared the results we obtained from Proteus to 

those reported on the papers. We did not expect absolute simulated running times to 

match those reported in the literature, as that would require an accurate simulation of a 

particular machine model. What we were mainly interested in was to determine whether 

our system correctly simulated the qualitative behavior of a program on a given machine 

(program concurrency versus time, processor lifelines, resource contention versus time, 

spinlock activity versus time, etc.), the relative behavior of an application on a family of 

related machines (program speedup, average concurrency, etc.), or the relative behavior 

of several applications on the same machine. These are the measures that are most 

important for the users of our system. 

Adrian Colbrook used Proteus to reproduce experiments previously performed on a 

Supernode system1 [Colbrook90]. The simulator produced results that were very close 

to those obtained experimentally. The complete set of experiments was implemented on 

the simulator in under two weeks, compared to the six weeks required to implement the 

same experiments on the Supernode. Colbrook et al. also used Proteus to evaluate a 

new algorithm for maintaining a balanced search tree [Colbrook91]. 

In his thesis, Chaiken [Chaiken90] introduces a new directory-based cache coherence 

protocol for large-scale multiprocessors. Chaiken describes a number of thrashing condi

tions that can arise during the protocol's operation and proposes some solutions. Proteus 

supports an exact implementation of Chaiken's protocol. Before the solutions proposed 

by Chaiken were implemented, we were able to observe all the thrashing conditions he 

described. 

Mellor-Crummey and Scott [MCS90] report an extensive set of experiments that test 

the scaling behavior of several spinlock implementations on bus-based and network-based 

machines. We obtained the code that was used to run the reported experiments and 

modified it to run on Proteus. All necessary modifications were completed in just one 

day, which is an indication of the power and convenience of our programming model. We 

then configured our system to match the systems on which the reported experiments were 

performed (the Sequent Symmetry and the BBN Butterfly) as closely as possible, and 

repeated the same experiments on Proteus. The latency curves obtained by our system 

1 a distributed-memory MIMD machine based on Transputers and programmed using a parallel dialect 
of C. 

75 



TilTl<, 

(p.snr:) 

30 

27 

24 

21 

18 

15 

12 

g 

6 

3 

0 

140 

130 

120 

110 

100 

90 

Sl 80 

u 

ca, .. .. ., t,c,,at, & t,c,,at, & ,ac,t, 

c;:, • c;:, • ""· □ t,c,,at, & ,ac,t,, c,xp. backoff 

---- 1TlC8 

2 4 6 

• CiJ • • - .[D -

8 

-CD· .. -CiJ•. • -c.J· • .. tiJ• •. •Gl• • • •Gl• • •• Q- • .. 

• • -CD• - • .Ci] - • • 

10 12 14 16 18 

ProccsRors 

(a) Original graph, as published m [MCS90] 

>- 70 
0 

60 

50 

40 

30 

20 

10 

0 
5 8 9 10 

Processors 

-- Lock delay for simple test&test&set 
............ Lock delay for simple test&set with exp. backolf 
•·· ··· ··•· Lock delay for anderson lock 

· · Lock delay for mes lock 

11 12 13 14 15 

(b) Graph produced by running same experiment on Proteus 

16 17 18 

Figure 5-1: Performance of spin locks on a bus-based machine (empty critical section) 

76 



Tirnc, 
(p.srr:) 

30 

27 

24 

21 

18 

15 

12 

9 

6 

3 

0 

200 

190 

180 

170 

160 

150 

140 

130 

120 
en 

110 GI 

~ 100 

0 90 

80 

70 

60 

50 

40 

30 

20 

10 

0 

oa '"' '"' "'t.c,st. & t.c,st. & sc,t. 

c.i • ca• ca• □ t.c,st. & sc,t., exp. bn.ckoff 

---- lTlC...~ 

, • • • .• ,CiJ • •• ,CiJ • • • •Cil • • • •Cil • • • -ED• • • •wl • • • · 

2 4 6 8 10 12 
Procc~sors 

(a) Original graph, as published in [MCS90] 

2 3 4 6 9 10 

Processors 

--- Lock delay for simple test&test&set 
., .......... Lock delay for simple test&set with exp. backoff 
··· ··· ···· Lock delay for anderson lock 

Lock delay tor mes lock 

11 12 13 14 15 

(b) Graph produced by running same experiment on Proteus 

16 18 

16 17 18 

Figure 5-2: Performance of spin locks on a bus-based machine (small critical section) 

77 



are remarkably similar to those published in the paper (Figures 5.1 and 5.2). 

5.2 Performance measurements 

The viability of simulation as an approach for the evaluation of parallel programs is 

highly dependent on the program slowdown caused by various simulation costs. Typical 

multiprocessor simulator systems exhibit program slowdown of several thousand times 

per simulated processor. \Vhen simulating large-scale parallel machines with hundreds 

or thousands of processors, such slowdowns limit the use of simulation to the simplest, 

and therefore less interesting, parallel applications. One of our goals in Proteus was 

to design a simulator that is efficient enough to allow simulations of nontrivial parallel 

programs. In Section 4.2 we described the design of our simulation component. This 

section describes several experiments we performed to measure its performance. It also 

compares the performance of Proteus to other similar systems. 

5.2.1 Sources of simulation overhead 

Several factors contribute to reducing the performance of parallel programs that are 

executed using our simulator. Generally, these factors can be classified in one of the 

following four categories: 

• Overhead due to code augmentation 

• Overhead due to context switching 

• Overhead due to statistics logging 

• Overhead due to simulated nonlocal operations 

Code augmentation inserts extra cycle-counting instructions in the user program code 

to accurately calculate the cost of local instruction blocks (see Section 4.2.2). Brewer 

[Brewer91] reports that code augmentation increases the number of locally executed 

instructions by a factor of 2 to 2.5. However, since local instruction blocks usually amount 

to a very small fraction of the total simulation time, the effects of code augmentation on 

performance are negligible. 

Our simulator multiplexes a large number of threads on top of a single UNIX process. 

On a real multiprocessor, these threads would execute concurrently on different proces

sors. During a simulation, control is passed from one thread to another using a context 

78 



switch. Context switches are typically performed at the end of a local instruction block, 

after a thread issues a simulator request for a nonlocal operation. In an application with 

many threads and many nonlocal operations, context switches are very frequent. Time 

spent to do a context switch is pure simulation overhead. 

In our system, a context switch saves the contents of all processor registers for the 

old thread and loads the values of all registers for the new thread. In some cases, only a 

subset of the registers needs to be saved or loaded. On a R3000 2 , a full context switch 

saves and restores 65 registers and requires 135 cycles or 5.4 microseconds. By profiling 

the execution of the simulator with several test programs, we observed that 5% to 15% 

of the total simulation time for a typical application is spent doing context switches. 

A simulation run generates an event file that contains several types of execution 

statistics. Those statistics are generated "on-the-fly" during program simulation and 

are written to disk using the putw library call. An event file can be subsequently read 

and interpreted by the data display subsystem (see Figure 3-1). Using config (see 

Section 3.2.2) the user can select the types of statistics to be logged in the event file. 

After measuring a number of programs with statistics logging turned on and off, we did 

not observe a significant difference in the total simulation time. Therefore, we conclude 

that statistics logging incurs a negligible overhead. 

The most significant source of overhead is due to the simulation of nonlocal operations. 

Several thousands of instructions are typically required to simulate an operation that 

would take only a few cycles on a real machine. Since accurate measurements of the 

overhead of nonlocal operations are important, we devote the next section to them. 

5.2.2 Overhead of nonlocal operations 

Our processor model supports two classes of nonlocal operations: Shared memory accesses 

and interprocessor interrupts (see Section 4.3.1). In this section we describe a number 

of experiments we performed to measure the overhead of each of these operation classes 

for different machine configurations and sizes. 

Overhead of shared-memory accesses 

Shared memory accesses are relatively costly to simulate for a number of reasons. On 

machines with caches, each memory access requires simulation of the appropriate cache 

2The MIPS R3000, a RISC processor, is the building block of the DECStation workstation family 
where Proteus was developed. 

79 



1900 

1800 

1700 

1600 

1500 

iii 1400 

"0 1300 C 
0 1200 

i 1100 

., 1000 

g 900 

>, 800 ., 
C 700 Cl) 

ai 600 
...J 

500 

400 

300 

o 

Average latency of shared memory operations 

-··/··· .l:·--.-·~·· 
,l_, .. ···· . ' -,-.~-

}~ 

j 

................. 

' ' -----· 

,... ... ·················: 

. ........... : .............. i_ ..... · ... ,·-···· . ._, .. ,.:,, ....... ·-~··.-- .... · .··.::.·.·.·.:.· .. :: .. : ........... .. 

.............. • ............... : ............ . 

I 
I ··'----=--···"·-·-·"·-"··_:.···,----·:·]:::-::::::·:,.-.:::.-.::.-.:::.-:.:.·.::.··.::.·.::t:.~:::.::·.-.:i.-.:::.·.::.-.:::.r.-.:::.·.::.·.::.r::.~:::.:::·.:r.-.:::.·::.·.:: 

.......:---....... -----,...----·····<·--·············~---······ i : -- ; : 

o 20 40 

--Bus-based with caches 
············ Net-based, no caches, approx. model 
•••••••••· Net-based, no caches, exact model 
" ........ Net-based with caches, approx. model 

100 120 140 160 180 200 220 240 

Number of processors 

------ Net-based with caches, exact model 

Figure 5-3: Average latency of shared memory operations for various machine configura
tions and sizes. 

protocol. On net-based machines, a memory access may require creation and transmission 

of a packet through the interconnection network. On bus-based machines access of the 

common bus must be simulated. 

Figure 5-3 plots the average latency of shared memory operations versus machine size 

for various simulated architectures. The results were obtained by timing the simulation 

of a program that performed a random mix of 100,000 shared memory operations. The 

same program, with shared memory accesses removed, was also run to determine the 

overhead caused by system initialization and other program statements. The difference 

of the two timings gives the total simulation time needed to perform 100,000 shared 

memory operations. By dividing that number by 100,000 we got an estimate of the 

average latency per shared memory operation. 

From Figure 5-3, it can be observed that the latency of shared memory operations 

on bus-based machines increases with machine size. This is due to the nature of the 

snoopy cache coherence protocol used [Goodman83], which requires checking the state of 

all other caches on each memory operation and therefore takes time proportional to the 

number of processors. The original implementation of the protocol exhibited a very bad 

scaling behavior and latency increased almost linearly with the number of processors. 

80 



Since then, the implementation of the protocol has been improved by adding an internal 

directory for each memory block, which stores the processor indices that currently cache 

that block. Using the directory, a simulated memory access need only check those caches 

that are contained in the directory of the accessed block. 

As expected, latency for network-based machines without caching scales very well as 

the size of the machine is increased. When the exact network model is used, a slight 

increase in latency for larger machines is due to the larger average distance that remote 

memory access packets have to travel through the network. 

Memory accesses on network-based machines with caches are significantly more expen

sive than on the other three architecture classes. This difference is due to the significant 

complexity of the simulated cache coherence protocol [ Chaiken90]. In this case, a single 

memory access may cause the generation and transmission of several packets through the 

network. The number of packets is proportional to the number of processors that have 

loaded the accessed memory block in their caches. This number increases as the machine 

size increases. Furthermore, the average distance each packet has to travel through the 

network increases with the size of the machine. These observations explain the rising 

slope of the latency curves. 

Overhead of IPI operations 

Overhead of ipi operations is due to three factors. First, the simulator copies user

supplied ipi packets to internal simulator data structures. Second, each ipi packet has to 

be routed through the network. Third, upon arrival at the target processor, the simulator 

creates an interrupt structure based on the packet and inserts it in a queue of pending 

interrupts for the processor. 

Figure 5-4 plots the average latency of ipi operations versus machine size for various 

simulated architectures. The results were obtained by timing the simulation of a test 

program that operated as follows: Each processor repeatedly chose a target processor 

at random and sent it a fixed-size dummy ipi packet. The ipi handler at the other end 

simply returned the packet to the sender. The total number of packets exchanged in 

each case was equal to 32,768. As we did in the case of shared memory operations, we 

subtracted the time needed to initialize the system and execute the other instructions 

of the program from the timing of the test program, and divided by 32,768 to get an 

estimate of the average latency per ipi operation. 

From Figure 5-4, it can be observed that the latency of ipi operations increases with 

packet size. This is due to the extra time needed to copy the used-supplied packets 

81 



300 

280 

260 

240 

a, 220 
"O 
C 
0 200 

I 180 

u 160 ·e 
140 

>,, u 120 C 
Cl) 

3 100 

80 

60 

40 

20 

0 

Average latency of lpl operations 

0 20 40 60 80 100 120 140 160 

Number of processors 

-- Net-based, exact model, 256-byte packets 
············ Net-based, approx. model, 256-byte packets 
··-·····., Net-based, approx. model, 16-byte packets 
........... Net-based, exact model, 16-byte packets 

180 200 220 240 

Figure 5-4: Average latency of ipi operations for vanous machine configurations and 
sizes. 

to internal simulator data structures. It is also interesting to observe the differences 

in latency between the analytical and the exact network models. The differences are 

negligible for small machine sizes but increase as the size of the machine increases. On 

small machines, the average ipi will only travel a small distance through the network. For 

small distances, the overhead of floating point latency calculations used in the analytical 

model does not present any advantage over the explicit hop-by-hop routing algorithm 

of the exact model. For larger machines however, the analytical model exhibits better 

performance. 

5.2.3 Program slowdown 

Program slowdown (PS) is defined as the ratio of the time taken to run a program on the 

simulator to the time needed to execute the same program on a real machine. Program 

slowdown is the ultimate performance measure of a program simulation system, as it 

determines which applications can be realistically simulated in a reasonable amount of 

time. Program slowdown is highly dependent on the specific program being simulated 

and the selected machine configuration. Programs that make heavy use of the costliest 

82 



Application Total cycles Number of shared Number of ipis 
name executed ( x 106

) memory accesses 

Qsort 21-27 0 4-768 
Fib 41.5-58 5,000-25,400 0-3,150 

8Queens 4-40 152,000-171,000 0-2,000 

Table 5.1: Characteristics of test applications used to measure program slowdown. All 
three measures depend on the simulated machine configuration and typically increase 
with the size of the machine. Listed ranges are for machines with 1-64 processors (2-64 
for Qsort). 

operations will exhibit a much worse slowdown than programs that do not. 

Program slowdown per processor (PSPP) is defined as the ratio of the total simulation 

time, in machine cycles, to the total number of cycles executed on all processors of the 

simulated system (the sum of the number of cycles executed on each processor). PSPP 

gives a notion of how much an average machine cycle costs on the simulator. PS and 

PSPP are related according to the formula: 

( Program Slow down) = ( Program Slowdown per Processor) x ( Average Concurrency) 

In order to characterize the performance of our simulator, we measured program slow

down per processor as a function of machine size for three representative programs with 

different characteristics. Table 5.1 presents a summary of some of the most important 

test program characteristics. 

Qsort is an implementation of the Hyperquicksort sorting algorithm developed for 

hypercube machines [Wagar86]. Qsort does not make any use of shared memory and 

processors communicate relatively infrequently in a nearest-neighbor fashion. The pro

gram spends most of its time executing local instruction blocks. Qsort belongs to the 

class of programs that are simulated most efficiently in our system. 

Figure 5-5 plots PSPP versus machine size for a program that uses hyperquicksort 

to sort 65,536 random words. As expected, slowdown is very low (between 4 and 6) and 

remains relatively stable as the size of the machine increases. It is also interesting to 

observe that in this particular program, the analytical network model performs slightly 

worse than the exact hop-by-hop network simulator. This is a consequence of the nearest

neighbor nature of communication in the program. All messages travel exactly one hop. 

For such small distances, the floating point calculations of latency performed by the 

83 



8.4 

6.0 

5.8 

5.2 

4.8 

4.4 

4.0 
C 
3 3.6 0 

"C 
3 3.2 

.Q 
2.8 U) 

2.4 

2.0 

1.6 

1.2 

0.8 

0.4 

0.0 
20 40 60 80 

-- Net-based, no caches, approx. model 
······"··" Net-based, no caches, exact model 

100 120 140 160 180 200 220 

Number of Processors 

Figure 5-5: Program slowdown per processor for the Qsort program. 

240 

analytical network model cost more than the routing algorithm used by the exact network 

model. 

Fib is an implementation of a recursive algorithm to calculate the first 15 Fibonacci 

numbers according to the formula: 

fibb(n) = { 
1 

fibb(n - 1) + Jibb(n - 2) 

if n < 3 

otherwise 

Fib spawns a new task to execute each recursive call to fibb and uses OS_j oin to 

collect the results of the spawned tasks. Fib does not make any explicit shared memory 

accesses. However, the implementation of OS_j oin uses a spinlock located in shared 

memory to synchronize the parent and child thread. Therefore Fib is a program with a 

large number of very short threads and a lot of spinlock activity. 

Figure 5-6 plots PSPP versus machine size for Fib. We observe that all different 

simulated configurations exhibit comparable slowdown, which ranges between 12 and 22. 

8Queens is an implementation of a recursive algorithm to produce all 92 solutions to 

the 8-queens problem. The algorithm is discussed in more detail in Section 3.4. 8Queens 

spawns a large number of relatively short-lived threads. It makes heavy use of shared 

memory and also uses interprocessor interrupts to transmit spawn requests to the target 

84 



22 

20 

18 

16 

14 

~ 12 
-0 
I: 
0 10 en 

8 

6 

4 

2 

0 

160 

150 

140 

130 

120 

110 

C 100 

! 90 
-0 
I: 80 
0 
en 70 

60 

50 

40 

30 

20 

10 

0 

4 8 12 16 20 24 

--- Bus-based w/ caches 
............ Net-based, no caches, approx. model 

Net-based, no caches, exact model 
··· ·•• · Net-based, w/ caches, approx. model 

28 32 36 40 44 48 52 06 

Number of Processors 

------ Net-based, w/ caches, exact model 

Figure 5-6: Program slowdown per processor for the Fib program. 

.... -;-····•·""'": ....... -------··--

60 64 

• ·--·:-:,-•l:::.-::.-.::r.-.-~~.::.·.:1~.~~-.::~.:r:.·.::~=·I···::~.~:.-.:::.:::~.~:::.-.L-.-.::~~--·····----···l ............ • ····------ ~ .......... '. ........... ; ............ i 

8 12 16 20 24 

--- Bus-based w/ caches 
............ Net-based, no caches, approx. model 

Net-based, no caches, exact model 
··· ··· · Net-based, w/ caches, approx. model 

28 32 36 40 44 48 02 06 

Number of Processors 

------ Net-based, w/ caches, exact model 

Figure 5- 7: Program slowdown per processor for the 8Queens program. 

85 

60 64 



processors. Since it makes intensive use of the operations that are costliest to simulate, 

8Queens is representative of the class of programs that are simulated least efficiently in 

our system. 

Figure 5-7 plots PSPP versus machine size for 8Queens. We observe that different 

machine configurations exhibit large differences in performance. In general, program 

slowdown correlates strongly with shared memory access latency (Figure 5-3). Thus, 

network-based machines with caching exhibit the worst slowdown (between 100 and 170), 

network-based machines without caches come next (slowdown between 50 and 90) and 

bus-based machine configurations perform best (slowdown between 25 and 60). An appar

ent paradox is the declining slowdown in bus-based machines as the number of processors 

increases. This does not correlate well with the results shown in Figure 5-3, where we 

observed that bus-based shared memory access latencies increase with the size of the 

machine. To explain the paradox, we recall from Section 3.4.2 that in the case of bus

based machines, bus contention increases rapidly as the number of processors increases. 

For larger machines, most of the program cycles are wasted waiting to acquire the bus. 

In our system, contention is modelled very efficiently (see Section 4.3.4). Therefore, in 

larger bus-based machines a large percentage of the program is simulated very cheaply, 

which has the effect of reducing overall slowdown. 

5.2.4 Comparison with Other Systems 

The performance of our system compares very favorably to that of other similar multi

processor simulation systems. A brief discussion of the systems mentioned in this section 

can be found in Sections 2.2.1 and 2.2.4. 

The authors of CARE report a latency of a couple of milliseconds per simulation 

event [Delagi90]. Nonlocal operations (message exchanges, shared memory accesses, etc.) 

typically involve a dozen simulation events. Therefore, nonlocal operations typically take 

24 milliseconds to complete. In Proteus, the average cost of a shared memory access is 

between 100 microseconds and 2 milliseconds (Figure 5-3). This is 12 to 240 times faster 

than CARE. IPI operations cost between 60 and 300 microseconds (Figure 5-4). This is 

between 80 and 400 times faster than CARE. There was no information available about 

average slowdown of programs simulated using CARE. 

ASIM [CHL90], the simulator system developed by MIT's Alewife research group, can 

operate in two modes: The fast mode provides an accurate simulation of processing ele

ments, but does not simulate in detail caching and network transactions. The slow mode 

provides an accurate simulation of all machine components. vVhen simulating 9Queens, a 

86 



program similar to 8Queens on a 64-processor network-based machine, slowdown factors 

of between 200 and 500 per processor were reported for the fast mode. The slow mode 

gave slowdown factors of between 1,000 and 5,000 per processor [Nussbaum91]. Depend

ing on the selected machine configuration, Proteus exhibits a slowdown of between 50 

and 170 per processor (Figure 5-7). This is a one order of magnitude improvement over 

ASIM. 

Tango [Davis90] reports a fairly comprehensive set of experiments used to measure 

the performance of the system. As in our system, program slowdown on Tango is highly 

dependent on the frequency of nonlocal operations issued by the simulated application, 

the chosen simulator configuration and the size of the simulated machine. Typical PSPP 

values reported for an efficiently simulated application (Mp3d) were in the range of 2-500. 

Slowdown times for a less efficiently simulated application (Mincut) were in the range 

of 700-18,000. In each case, Proteus exhibits two orders of magnitude better slowdown. 

Furthermore, in Tango, contention simulation is done on a cycle-by-cycle basis. Proteus 

on the other hand has a very efficient way of simulating contention (see Section 4.3.4). 

87 



Chapter 6 

Conclusions 

The complexity of the interaction between software and hardware in MIMD machines 

makes experimental evaluation of parallel programs an important complement to theo

retical analysis. The performance of parallel programs is subject to significant influence 

from a large number of implementation, runtime-system and architectural details. Those 

details are usually hard to predict or model analytically. 

In order to test new ideas, evaluate new parallel algorithms, or choose between differ

ent implementations of the same algorithm, researchers need a reliable tool that provides 

them with information and insight about the behavior of their programs on various par

allel machines. Our aim in designing Proteus was to provide exactly such a tool. 

Proteus evaluates parallel programs by simulating their execution on a variety of par

allel architectures. Simulation is an attractive alternative to monitoring the execution 

of programs on real parallel machines for a number of reasons. Real parallel machines 

are not always easily available to researchers. In addition, traditional techniques used to 

monitor the direct execution of programs are intrusive and may lead to inaccurate results 

when applied to parallel programs. Simulation allows flexible, nonintrusive and repeat

able evaluation of parallel programs. On the minus side, it usually incurs prohibitive 

overheads that limit its use to the simplest parallel applications. 

Our simulator uses a combination of simulation and direct execution to achieve very 

high simulation performance. High-performance makes it feasible to evaluate large par

allel applications. Local parts of a parallel program, that is, parts that do not require 

interaction with other components of a parallel machine, are translated into native code 

and executed directly on the uniprocessor where the simulator runs. Only nonlocal pro

gram parts, whose execution requires interaction with other components of the machine, 

are simulated. 

88 



In order to allow users to compare the behavior of a program on different architectures, 

Proteus can be configured to simulate a large variety of different MIMD architectures. 

Our architectural model allows users to define target architectures by specifying the type, 

properties and level of simulation detail for the three main parts of a MIMD machine: 

processing elements, memory and interconnect. Allowing users to choose the level of sim

ulation detail gives them power to control the simulation accuracy /performance tradeoff 

themselves. 

An important goal of the system is to provide users with insight that will help them 

draw conclusions and make decisions about parallel programs. For that reason, a lot 

of attention has been given to the collection and display of simulation data. During 

simulation of a user program, the system outputs an event file that captures the important 

interactions between software and hardware. The system provides a number of predefined 

event types; the user can easily add other event types specific to his own application, or 

restrict the recorded event types to those relevant to his experiment. Event files are read 

by a sophisticated data display program that displays execution statistics in a variety of 

graphical forms. 

In the few months between the release of the first version of Proteus and the time this 

thesis was written, a number of published experiments were reproduced on our system. 

In all cases the results obtained using Proteus were very close to those published, a 

fact that provides evidence for the reliability of the system. Performance measurements 

demonstrated that our simulator is one to two orders of magnitude faster than other 

similar multiprocessor simulators. 

Several members of our research group are currently using Proteus to evaluate their 

ideas. They found that Proteus has reduced the time it takes them to set up and perform 

experiments. Our group has already published a paper on a new algorithm for maintain

ing concurrent search trees, which was evaluated entirely using Proteus [Colbrook91]. 

89 



Appendix A 

Eight Queens Problem Solution 

This appendix contains the listing of the 8-queens solution program that was discussed in 

Section 3.4. 8Queens is an example of a simple Proteus program. It can give the reader 

an idea of what the current Proteus programming model looks like. 

!*************************************************************************** 
* 
* Parallel solution to the eight queens problem 
* C. N. Dellarocas 1990 

* 

* 
* 
* 
* 

***************************************************************************! 

I* user.h contains common definitions of types and constants *I 
#include "user.h" 

#define N 8 I* Number of queens *I 

I* Target processor to which new threads are assigned is randomly chosen *I 
#define TARGET_PRDCESSOR (random() Y, NO_OF_PRDCESSORS) 

I* Chessboard configuration structure *I 

typedef struct { 
intx[N]; 
int a[N]; 
int b [2*N]; 

int c[2*N]; 

} Solution; 

I* x contains queen column positions for each row *I 
I* a[i] is FALSE if there is a queen in column i *I 
I* b[left_diag(i,j)J is FALSE if there is a */ 
I* queen at the left diagonal crossing (i,j) *I 
I* c[right_diag(i,j)] is FALSE if there is a */ 
I* queen at the right diagonal crossing (i,j) *I 

90 



I* Space for the empty chessboard is statically assigned 
* in shared memory module 0 
*I 

shared Solution NullSolution placeat O; 

#define left_diag(i,j) ((i)+(j)) 
#define right_diag(i,j) (N+(i)-(j)-1) 

I* It is safe to place a new queen at (i,j) if there is no other queen 
* already placed in column j, nor in either the left or the right 
* diagonal crossing (i,j). 
*©>is equivalent to the standard-> C operator and is used for 
* pointers that point to structures stored in shared memory. 

*I 

#define safe_to_add_queen(s,i,j) \ 
( (s) ©> a[j] && \ 

(s) ©> b[left_diag(i,j)J && \ 
(s) ©> c[right_diag(i,j)] ) 

I* Create an empty solution configuration *I 

Solution *empty_chessboard() 
{ 

} 

inti; 

for(i=O; i<N; i++) 
{ 

NullSolution.x[i] 
NullSolution.a[i] 
NullSolution.b[i] 
NullSolution.c[i] 
} 

= 
= 
= 
= 

return( &NullSolution ); 

O· ' 
TRUE; 
NullSolution.b[i+N] 
NullSolution.c[i+N] 

91 

= TRUE; 
= TRUE; 



f* Create a new configuration with an additional queen *f 

Solution *add_new_queen(s, row, col) 
Solution *s; 

{ 

} 

int row; 
int col; 

Solution *news; 
int i; 

f* Allocate a block of shared memory for the new configuration *f 

if ( (news= (Solution *)DS_getmemfrommodule(sizeof(Solution), 
CURR_PROCESSOR)) 

== (Solution *)NULL) 
fatal("Out of shared memory in function add_new_queen.\n"); 

f* Copy old configuration to new *f 

for(i=O; i<N; i++) 
{ 

news ©> x[i] = s ©> X [i]; 
.news ©> a[i] = s ©> a[i]; 
news ©> b [i] = s ©> b [i]; 
news ©> C [i] = s ©> C [i]; 
news ©> b [i+N] = s ©> b [i+N]; 
news ©> c [i+N] = s ©> c[i+N]; 

} 

f* Add new queen at (row, col) *f 

news ©> x [row] = col; 
news ©> a[col] = FALSE; 
news ©> b[left_diag(row,col) ] = FALSE; 
news ©> c[right_diag(row,col)] = FALSE; 

return(news); 

92 



I* Choose a TARGET_PRDCESSDR and spawn a new thread that executes stage *I 

#define SPAWN_STAGE( chessboard, i) \ 
{ \ 

if( OS_spawn( stage, 4, "stage", TARGET_PROCESSOR, USER_PRIDRITY, 0, \ 
2, chessboard, i) \ 

==ERROR)\ 
fatal("Cannot spawn thread at STAGE i = Y.d\n", i); \ 

} 

I* Get a chessboard with i queens and try to place the (i+1)th in all 
* safe columns of row i 

*I 

stage(chessboard, i) 

{ 

Solution *chessboard; 
int i; 

int j; 

if (i == N) 
found_solution( chessboard); 

else 
for(j=O; j<N; j++) 

if ( safe_to_add_queen( chessboard, i, j ) ) 
SPAWN_STAGE( add_new_queen( chessboard, i, j ), i+1 ); 

} 

f* All Proteus user programs begin execution from function usermain, 
* which is executed by a thread spawned on processor 0 

*I 

usermain() 
{ 

stage( empty_chessboard(), 0 ); 
} 

93 



Bibliography 

[Agarwal86] 

[Agarwal88] 

[ Agarwal89] 

[Agarwal90] 

[BBN87] 

[Brewer91] 

A. Agarwal, R. L. Sites and M. Horowitz. "ATUM: A New Technique for 

Capturing Address Traces Using Microcode", Proceedings of the 13th An

nual International Symposium on Computer Architecture, ACM-IEEE, 

June 1986. 

A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz. "An Evaluation of 

Directory Schemes for Cache Coherence", Proceedings of the 15th Annual 

International Symposium on Computer Architecture, ACM-IEEE, June 

1988. 

Arrant Agarwal. "Limits on Network Performance", MIT VLSI Memo 

1989. 

A. Agarwal, B.H. Lim, D. Kranz and J. Kubiatowicz. "APRIL: A Proces

sor Architecture for Multiprocessing", 17th Annual International Sym

posium on Computer Architecture, Seattle WA, MAy 1990. 

Inside the Butterfly Plus, BBN Advanced Computers Inc., Cambridge, 

MA, 1987. 

Eric A. Brewer. "Aspects of a High-Performance Parallel-Architecture 

Simulator", Master's Thesis, MIT Laboratory for Computer Science, ex

pected 1991. 

[Carpenter87] Robert J. Carpenter. "Performance Measurement Instrumentation for 

Multiprocessor Computers", Technical Report NBSIR 87-3627, Institute 

for Computer Sciences and Technology, National Bureau of Standards, 

August 1987. 

94 



[CHL90] David Chaiken, Beng-Hong Lim, and Dan Nussbaum. "ASIM Users Man

ual", Alewife Systems Memo #13, MIT Laboratory for Computer Sci

ence, August 1990. 

[Chaiken90] David Chaiken. "Cache Coherence Protocols for Large-Scale Multipro

cessors", MIT Laboratory for Computer Science MIT /LCS/TR-489, 

September 1990. 

[Colbrook90] A. Colbrook, C. Smythe. "Efficient implementations of search trees on 

parallel distributed memory architectures", IEE Proceedings, Vol. 137, 

Pt. E, No.5, pages 394-400 (Sept. 1990). 

[Colbrook91] A. Colbrook, E. A. Brewer, C. N. Dellarocas and W. E. Weihl. "An 

Algorithm for Concurrent Search Trees", To be published in Proceedings 

of the 1991 International Conference on Parallel Processing. 

[Covington88] R. C. Covington, S. Madala, V. Mehta, and J. B. Sinclair. "The Rice 

Parallel Processing Testbed", Proceedings of the 1988 ACM SIGMET

RICS Conference on Measurement and Modelling of Computer Systems, 

ACM, May 1988. 

[Davis90] 

[Delagi87] 

[Delagi90] 

[Dubois86] 

[Eggers89] 

H. Davis, S. R. Goldschmidt and J. Hennessy. "Tango: A Multiprocessor 

Simulation and Tracing System", Computer Systems Laboratory Tech

nical Report CSL-TR-90-439. Stanford University. July 1990. 

Bruce A. Delagi, N akul Sarai ya, Sayuri Nishimura, and Greg Byrd. 

"An Instrumented Architectural Simulation System" Knowledge Systems 

Laboratory Technical Report No. KSL 86-36. Stanford University. Jan

uary 1987. 

Bruce Delagi. Private Communication. 

M. Dubois, F.A. Briggs, I. Patil and M. Balakrishnan. "Trace-Driven 

Simulations of Parallel and Distributed Algorithms in Multiprocessors", 

Proceedings of the International Concefernce on Parallel Processing, 

pages 909-917, August 1986. 

S. J. Eggers. "Simulation Analysis of Data Sharing in Shared-Memory 

Multiprocessors", Technical Report UCB/CSD 89/501, University of 

California, Berkeley, 1989. 

95 



[Eggers90) 

[Elshoff91] 

S. J. Eggers, D.R. Keppel, E. J. Koldinger, and H. M. Levy. "Techniques 

for Efficient Inline Tracing on a Shared-Memory Multiprocessor", Pro

ceedings of the 1990 ACM SIGMETRICS Conference on Measurement 

and Modeling of Computer Systems., ACM, May 1990. 

I. J.P. Elshoff. Aspen. Ph.D. dissertation to appear early 1991, Computer 

Science Department, University of Arizona. 

[Gait86] J. Gait. "A Probe Effect in Concurrent Programs", Software - Practice 

and Experience, 16(3), pages 225-233 (March 1986). 

[Goodman83) J. R. Goodman. "Using Cache Memory to Reduce Processor-Memory 

Traffic", Proceedings of the 10th International Symposium on Computer 

Architecture, June 1983, Stockholm, Sweden, pages 124-131. 

[Kuck84] 

[Lawrie75] 

[Malony89] 

D.J. Kuck et. al. "The effects of program restructuring, algorithm change, 

and architecture choice on program performance", Proceedings of the 

Parallel Processing Conference, August 1984. 

D. H. Lawrie. "Access and Alignment of Data in an Array Processor", 

IEEE Transactions on Computers, C-24 (12), pages 1145-1155, December 

1975. 

A. D. Malony, D. A. Reed, R. A. Aydt, J. W. Arendt, D. Grabas and 

B. K. Totty. "An integrated performance data collection, analysis, and 

visualization system.", Technical Report TTRll, University of Illinois at 

Urbana-Champaign, March 1989. 

[Mathieson88] I. Mathieson and R. Francis. "A Dynamic Trace-Driven Simulator for 

Evaluating Parallelism", Proceedings of the 21st Hawaii International 

Conference on System Sciences - Volume 1 ( Architecture Track), pages 

158-166, January 1988. 

[MCS90] John M. Mellor-Crummey and Michael L. Scott. "Algorithms for Scalable 

Synchronization on Shared-Memory Multiprocessors", TR90-114, De

partment of Computer Science, Rice University, May 1990. Also Techni

cal Report 342, Computer Science Department, University of Rochester, 

April 1990. 

[Nussbaum91] Dan Nussbaum. Private Communication 

96 



[Patel81] 

[Pfister85] 

[Rizzo89] 

[Seitz84] 

[Smith81] 

[Stunkel89] 

[VAX82] 

[Wagar86] 

Janak H. Patel. "Performance of Processor-Memory Interconnections for 

Multiprocessors", IEEE Transactions on Computers, C-30 (10), pages 

771-780, October 1981. 

G. F. Pfister et. al. "The IBM Research Parallel Processor Architecture 

(RP3): Introduction and Architecture", Proceedings of the 1985 Inter

national Conference on Parallel Processing, pages 764-771. 

Luigi Rizzo. "Simulation and performance evaluation of parallel software 

on multiprocessor systems", Microprocessors and Microsystems, Vol.13 

No.I, Jan/Feb.1989, pages 39-46. 

Charles L. Seitz. "Concurrent VLSI Architectures", IEEE Transactions 

on Computers, C-33 (12), December 1984. 

B. Smith. "A Pipelined, Shared Resource MIMD Computer", Proceedings 

of the 1978 International Conference on Parallel Processing, Belaire MI, 

pages 6-8. 

Craig B. Stunkel and W. Kent Fuchs. "TRAPEDS: Producing Traces for 

Multicomputers Via Execution Driven Simulation", Proceedings of ACM 

Sigmetrics 1989, May 1989, pages 70-78. 

VAX-11 Architecture Reference Manual. Digital Equipment Corporation, 

Bedford, MA, 1982. 

Bruce Wagar. "Hyperquicksort: A Fast Sorting Algorithm for Hyper

cubes", Proceedings of the Second Conference on Hypercube Multiproces

sors, pages 292-299, SIAM, 1987. 

[\Veinberger84] P. J. Weinberger. "Cheap Dynamic Instruction Counting", AT&T Bell 

Laboratories Technical Journal, vol. 63, no. 8, October 1984. 

97 



Unclassified 
SECURITY CLASSIFICATION OF THIS PAGE 

REPORT DOCUMENTATION PAGE 
la. REPORT SECURITY CLASSIFlcATION 1 b. RESTRICTIVE MARKINGS 

Unclassified 
2a. SECURITY CLASSIFICATION AUTHORITY 3 . DISTRl,BUTION / AVAILABILITY OF REPORT 

Approved for public release; distribution 
2b. DECLASSIFICATION I DOWNGRADING SCHEDULE is unlimited. 

4. PERFORMING ORGANIZATION REPORT NUMBER($) 5. MONITORING ORGANIZATION REPORT NUMBER($) 

MIT/LCS/TR 505 N00014-89-J-1988 -

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION 
(If applicable) 

Office of Naval Research/Dept. of Navy MIT Lab for Computer Science 

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) 

545 Technology Square Information Systems Program 

Cambridge, MA 02139 Arlington, VA 22217 

8a. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 
ORGANIZATION (If applicable) 
DARPA/DOD 

Be. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS 

1400 Wilson Blvd. 
PROGRAM PROJECT TASK WORK UNIT 
ELEMENT NO. NO. NO. ACCESSION NO. 

Arlington, VA 22217 

11. TITLE (Include Security Classification) 

A High-Performance Retargetable Simulator for Parallel Arc.hicectur2s 

12. PERSONAL AUTHOR(S) 
Chrysanthos Nicholas Dellarocas 

13a. TYPE OF REPORT 113b. TIME COVERED 14. ~~~~ o1 ~fllORT (Yea,, Month, Day) 115. Pftfl- COUNT 
Technical FROM TO 

16. SUPPLEMENTARY NOTATION 

17. COSA Tl CODES 18. SUBJECT TERMS (Continue on reverlf if nece~ry a"fJ ider_f_i:p; 1jY block numberfig 
FIELD GROUP SUB-GROUP 

MIMD computers, Parallel a gorit sm, ara e programm1 , 
Performance evaluation, Simulation 

19. ABSTRACT (Continue on reverle if necessary and identify by block number) 

In this thesis, we describe Proteus, a high-performance simulation-based system for the eval-
uation of parallel algorithms and system software. Proteus is built around a retargetable parallel 
architecture simulator and a flexible data collection and display component. The simulator uses 
a combination of simulation and direct execution to achieve high performance, while retaining 
simulation accuracy. Proteus can be configured to simulate a wide range of shared-memory and 
message-passing MIMD architectures and the level of simulaton detail can be chosen by the 
user. Detailed memory, cache and network simulation is supported. Parallel programs can be 
written using a programming model based on C and a set of runtime system calls for thread 
and memory management. The system allows nonintrusive monitoring of arbitrary information 
about an execution, and provides flexible graphical utilities for displaying recorded data. 

To validate the accuracy of the system, a number of published experiments were reproduced 
on Proteus. In all cases the results obtained by simulation are very close to those published, a fact 
that provides support for the reliability of the system. Performance measurements demonstrate 
that the simulator is one to two orders of magnitude faster than other similar multiprocessor 
simulators. 

·--- ----- --

20. DISTRIBUTION/ AVAIL.ABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION 

~ UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 DTIC USERS Unclassified 
22a. NAME OF RESPONSIBLE INDIVIDUAL 

Carol Nicolora 
DD FORM 1473, 84 MAR 

22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL 

(617) 
83 APR ed1t1on may be used until exhausted. 

All other editions are obsolete. 

253-5894 

SECURITY CLASSIFICATION OF THIS PAGE 

•us. G.,_t Printing Offim: 1986-.507-047 
Unclassified 


