
An Incremental Type Inference System

for the Programming Language Id

MIT / LCS / TR-488

November 1990

Shail Aditya Gupta

Originally published as Master's thesis, Dept. of Electrical Engineering and

Computer Science, Massachusetts Institute of Technology, September 1990.

This report describes research done at the Laboratory of Computer Science of the

Massachusetts Institute of Technology. Funding for the Laboratory is provided in

part by the Advanced Research Projects Agency of the Department of Defense

under O�ce of Naval Research contract N00014-84-K-0099.

tt MASSACHUSETTS
LABORATORY FOR INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

An Incremental Type Inference System

for the Programming Language Id

Shail Aditya Gupta

MIT / LCS / TR-488
November 1990

c Shail Aditya 1990

The author hereby grants to MIT permission to reproduce and to
distribute copies of this technical report in whole or in part.

This report describes research done at the Laboratory of Computer Science of the Massachusetts
Institute of Technology. Funding for the Laboratory is provided in part by the Advanced
Research Projects Agency of the Department of Defense under O�ce of Naval Research contract
N00014-84-K-0099.

An Incremental Type Inference System

for the Programming Language Id

Shail Aditya Gupta

Technical Report MIT / LCS / TR-488
November 1990

MIT Laboratory for Computer Science

545 Technology Square

Cambridge MA 02139

Abstract

Modern computing environments strive to be robust and reliable, and at the same time, aim
at providing enough exibility to an interactive user to edit, debug, and test programs easily
and e�ciently. Strongly typed languages satisfactorily meet the former goal by guaranteeing
that \type-consistent" programs will not incur run-time type-errors. But most programming
environments for such languages have to sacri�ce the exibility of interactive and incremental
program development in order to achieve this consistency over the whole program. The problem
is further complicated by the presence of polymorphism in many of these languages, where the
de�nition of \type-consistency" is one of inclusion, rather than equality.

In this thesis, we address the latter goal of providing an interactive and incremental program
development environment in context of Id, which is a polymorphic, strongly typed, incremen-
tally compiled, parallel programming language, developed at the Laboratory for Computer
Science, MIT. Id's typing mechanism is based on the Hindley/Milner type inference system.
We describe modi�cations and extensions to its inference algorithm to allow the building and
testing of programs in an incremental, de�nition by de�nition basis, and in arbitrary order. We
also prove the correctness (soundness and completeness) of our incremental typing scheme with
respect to the original type system.

We also examine the problem of systematically identifying overloaded identi�ers in a program
using type information, and translating them into e�cient actual code. Finally, we describe
the problems encountered while typing non-functional, polymorphic objects in our type system
and discuss some possible solutions.

Key Words and Phrases: Hindley/Milner Type System, Id, Incremental Compilation, In-
cremental Type Inference, I-Structures, Overloading, Polymorphism, Polymorphic References,
Static Semantics, Type Checking, Type Inference.

3

Acknowledgements

I am most grateful to my thesis advisor, Rishiyur S. Nikhil, for his clear guidance and encour-

agement. He was always ready to listen to my ideas and make sense out of them and help me

understand them better. He pulled me through three attempts at the proof of the correctness

theorem, the �rst two ending in dismal failures, with patience, a clear sense of direction, and

an unshaken con�dence in my abilities; I can't thank him enough for that. His sharp wit and

sense of humor provided an exhilarating atmosphere to work in.

I am also grateful to Arvind, the leader of the Computation Structures Group, for his

amazing grasp of the high-level ideas and showing his interest in me when I �rst came to MIT

in 1987 as a fresh graduate. I am priviledged to be a part of his group, which is truely one of

the most talented group of individuals I have ever met.

I thank the members of my OQE Committee consisting of Albert Meyer, Fernando Corbato,

and Robert Kennedy, for their constructive criticism of my thesis presentation. Their concerns

and suggestions have helped me organize this thesis in a better way.

I heartily thank all the members of the Computation Structures Group, both past and

present, for their continuing help and support, making it all feel like a big family. I must

especially mention James Hicks, who helped me with the Id Compiler and patiently resolved

my innumerable queries; Andy Boughton, who kept all the machines alive and without whom

this thesis would currently be in the bit-bucket; and Paul Johnson, Suresh Jagannathan, Madhu

Sharma, and Zena Ariola, for their delightful friendship and support.

I also thank all my friends at MIT, and from IIT, Delhi, for their enjoyable company and

memorable experiences, creating welcome diversions from work and making these past few years

one of the most pleasurable moments of my life.

Finally, I am grateful beyond words for the love and a�ection bestowed upon me from my

family. The encouragement and moral support I received from my parents, brothers, and sisters

is beyond measure. They instilled hope, con�dence, and perseverance in me that helped me

endure through di�cult times.

0Funding for this work has been provided in part by the Advanced Research Projects Agency of the Depart-
ment of Defence under the O�ce of Naval Research contract N00014-84-K-0099.

4

To my parents,

Vidyaratna and Kusum.

5

6

Contents

1 Introduction 13
1.1 Thesis Outline : 15

2 Basic Type Inferencing 17
2.1 Type Inferencing : 18
2.2 Polymorphism : 20

2.2.1 Kinds of Polymorphism : 22
2.2.2 Higher-Order Functions : 23

2.3 Hindley/Milner Type Inference System : 25
2.3.1 A Mini-Language : 26
2.3.2 Some Notations and De�nitions : 27
2.3.3 Operational Semantics of the Mini-Language : : : : : : : : : : : : : : : : 30
2.3.4 Denotational Model of the Mini-Language : : : : : : : : : : : : : : : : : : 34
2.3.5 The Type Inference Algorithm : 38

2.4 Id Kernel Language : 40
2.4.1 Mini-Language vs Id Kernel Language : 41
2.4.2 Translation of Id Kernel Language into Mini-Language : : : : : : : : : : : 42
2.4.3 A Translation Example : 44
2.4.4 An Inference Example : 46

2.5 Discussion : 49

3 Incremental Type Inference 51

3.1 Incremental Analysis : 53
3.1.1 Incremental Mini-Language : 54
3.1.2 Incremental Book-Keeping : 55
3.1.3 Overall Plan for Incremental Analysis : 58

3.2 The Incremental Type Inference System : 60
3.2.1 Components of the Basic System : 60
3.2.2 Mechanism of the Basic System : 64
3.2.3 An Example : 67

3.3 Proving Correctness of the Incremental System : : : : : : : : : : : : : : : : : : : 69
3.3.1 Overall Plan of Proof : 69
3.3.2 Properties of the Assumptions : 71

3.4 Completeness of Algorithm W1 : 78
3.4.1 Completeness of SCC Computation : 78
3.4.2 Completeness of Type Computation : 80

3.5 Soundness of Algorithm W1 : 84

7

3.5.1 Soundness of SCC Computation : 85
3.5.2 Soundness of Type Computation : 87

3.6 The Correctness Theorem : 91
3.7 Extending the System : 92

3.7.1 Handling Incomplete Programs : 92
3.7.2 Handling Incremental Editing of Programs : : : : : : : : : : : : : : : : : 94
3.7.3 Comparison of Extensions : 99

3.8 Complexity of the Incremental System : 101
3.8.1 Complexity of the SCC Computation : 101
3.8.2 Complexity of the Type Computation : 102
3.8.3 Comments on Complexity : 106

3.9 Discussion : 107
3.9.1 Recompilation vs Retyping : 107
3.9.2 Optimizations : 108
3.9.3 General Comments : 110
3.9.4 Related Work : 112
3.9.5 Current Status : 113

4 Overloading 115
4.1 Issues in Overloading : 116

4.1.1 Overloaded Identi�ers and Resolution Choices : : : : : : : : : : : : : : : : 116
4.1.2 Propagation of Overloading Information : : : : : : : : : : : : : : : : : : : 118
4.1.3 Conditional Instances and Recursion : 119
4.1.4 Ad hoc vs Parametric Polymorphism : 120
4.1.5 Discussion : 123

4.2 Overloading Resolution : 124
4.2.1 User's View of Overloading : 124
4.2.2 Compiler's View of Overloading : 127
4.2.3 Rewrite Rules for Overloading Resolution : : : : : : : : : : : : : : : : : : 130
4.2.4 Properties of the Rewrite System : 133

4.3 Overloading Translation : 136
4.3.1 Parameterization : 136
4.3.2 Specialization : 143
4.3.3 Alternate Translation Strategies : 148

4.4 Comparison with the Proposal of Wadler and Blott : : : : : : : : : : : : : : : : : 149

5 Typing Non-Functional Constructs 153
5.1 Non-Functional Constructs in Id : 154
5.2 Issues in Typing Non-Functional Objects : 157

5.2.1 Store and Store Typings : 157
5.2.2 Approximating the Store Typing : 158

5.3 Our Approach in Id : 162
5.3.1 Typing Open Structures : 162
5.3.2 Closing Open Structures : 164
5.3.3 Comments : 165

8

6 Conclusion 167
6.1 Summary : 167
6.2 Future Work : 168

6.2.1 Extensions to the Language and the Type System : : : : : : : : : : : : : 168
6.2.2 The Incremental System : 168
6.2.3 Overloading Analysis : 169
6.2.4 Non-Functional Type Inference : 170

6.3 Concluding Remarks : 170

9

10

List of Figures

2.1 A code comparison of a squaring function written in PASCAL and in Id. : : : : : 19
2.2 A Code Comparison of a length function for Lists. : : : : : : : : : : : : : : : : : 21
2.3 Dynamic Inference Rules. : 31
2.4 Static Inference Rules DM 0. : 32
2.5 Original Damas-Milner Inference Rules DM . : 33
2.6 Pseudo-code for the inference algorithm W . : 39
2.7 Syntax of Id Kernel Language. : 43
2.8 Translating a program in Id Kernel to that in Mini-Language. : : : : : : : : : : : 45
2.9 List length function and its translation into the Mini-language. : : : : : : : : : : 46
2.10 Inference tree for the list length example. : 47
2.11 Syntactic abbreviations for the inference tree. : 48

3.1 A general framework for Properties and Assumptions. : : : : : : : : : : : : : : : 56
3.2 Overall Plan for Incremental Property Maintenance. : : : : : : : : : : : : : : : : 59
3.3 Compilation Properties used in Algorithm W1. : : : : : : : : : : : : : : : : : : : 62
3.4 Upper Bound Type Assumptions (M) used in Algorithm W1. : : : : : : : : : : : 64
3.5 The Incremental Algorithm W1. : 65
3.6 Pseudo-code for the Inference Algorithm W 0. : 66
3.7 An Example to show Incremental Type Inference. : : : : : : : : : : : : : : : : : : 68
3.8 The Overall Plan of Correctness Proof of Incremental System. : : : : : : : : : : : 70
3.9 The Strongly Connected Components of x at various incremental stages. : : : : : 79
3.10 Proving the Soundness of SCC Computation. : 85
3.11 The Inductive Step in the Soundness Proof of Type Computation. : : : : : : : : 90
3.12 Additional Assumptions to detect Constraint Relaxation during Editing. : : : : : 97
3.13 A Comparison of the Incremental System with its Extensions. : : : : : : : : : : : 100
3.14 Example program to illustrate the high number of Recompilations. : : : : : : : : 105
3.15 The Updated Incremental Algorithm W2. : 109

4.1 Translation of Overloading into Parameterization. : : : : : : : : : : : : : : : : : : 122
4.2 Extended Syntax of Type Expressions in Id. : 125
4.3 Overloading Resolution and Propagation Algorithm. : : : : : : : : : : : : : : : : 128
4.4 Meta-Inference rules to generate Rewrite Rules for Overloading Resolution. : : : 131
4.5 Conuence Properties of our Rewrite System. : 134
4.6 An Example of Overloading Resolution and Parameterized Translation. : : : : : 138
4.7 Parameterized Translation of Bindings. : 139
4.8 Parameterized Translation of Expressions. : 140
4.9 Inference rules to generate Parameterized Overloading Translation. : : : : : : : : 142
4.10 Meta-Inference rules to generate Specialization Rewrite Rules. : : : : : : : : : : : 145

11

4.11 Specialization Translation Algorithm. : 146
4.12 An Example of Overloading Resolution and Specialized Translation. : : : : : : : 147

12

Chapter 1

Introduction

In recent years, a desire for robust, reliable, and e�cient software systems, that are also easy

to develop and maintain, has led to some rethinking in the programming language research

community. E�orts have been underway to design and implement programming languages that

guarantee reliability and robustness of program code, and at the same time, do not compromise

e�ciency of execution. Strongly typed1 languages o�er a nice high-level programming paradigm

which allows procedure and data abstraction, modularization, and means to guarantee code

reliability: \type-consistent" programs written in such languages are guaranteed not to incur

any run-time type-errors. Additional features, such as type polymorphism2 and static type

inferencing3 , further add to the expressibility of these languages and their ease of programming.

On the other hand, other research e�orts have concentrated on techniques to provide interac-

tive, user-friendly programming environments that support incremental program development

and maintenance. Incremental and interactive compilation, version control, and support for

editing, testing, and debugging programs fall under this category. But there is an apparent con-

ict between the incrementality o�ered by these environments and the need to maintain consis-

tent compile-time information over the entire program by strongly typed languages. Therefore,

most programming environments for such languages are biased towards one or the other goal.

Highly exible and interactive environments (e.g., LISP) either do not enforce type-consistency

over complete programs, or enforce it dynamically and pay a run-time price, while environments

for statically typed languages (e.g., PASCAL) generally impose restrictions on user interaction

and do not support incremental development and maintenance of their programs.

1Languages in which all expressions are guaranteed to be type consistent.
2Permitting the use of the same program code under multiple type contexts.
3Inferring the type of every fragment of a program at compile time with very little or no help from the

programmer.

13

Some recent e�orts in the context of strongly typed functional languages such as ML [24, 25,

41, 42] and Miranda4 [60, 61] have tried to come up with a workable solution for the interactive

user, but their approach is not entirely satisfactory. ML, in most of its implementations [2, 3,

51, 24, 10], has an interactive session to which de�nitions can be incrementally added, but it

still requires a complete program to be speci�ed bottom-up before any of its parts can be tested.

Miranda, on the other hand, only permits complete �les (also called scripts) to be interactively

manipulated, though de�nitions within the �les are allowed to be in arbitrary order. It is clear

that there is still a need for integrated, interactive computing environments that combine the

exibillity and incrementality required for smooth program development and maintenance with

the reliability and robustness o�ered by strongly typed languages.

Id is a high-level language proposed by the Computation Structures Group at the Laboratory

for Computer Science, MIT, for �ne-grain dataow parallel computation [48, 49]. It has a large

purely functional subset with a few non-functional and non-deterministic extensions catering

to areas where functional languages are either inadequate or are ine�cient. It is strongly typed

and employs the Hindley/Milner polymorphic type system [26, 40] to perform type inferencing.

It supports higher-order functions, algebraic types, abstract data types, and overloading of

identi�ers, and in some of these respects it is similar to one or more of its contemporaries in

the realm of functional langauges, namely, ML, Hope [14], Miranda, Haskell [27] etc. But the

programming environment for Id is di�erent from that of these other languages in the following

important ways.

1. The Id compiler [59] is incremental in nature. Each top-level phrase, which may be a

constant binding, a function, a type de�nition, or a type annotation, is treated as a single

individual compilation unit.

2. The compiler accepts input interactively from an editor or in batch-mode from a �le. In

either case, the top-level de�nitions do not have to be processed in any particular order.

The user may edit and compile de�nitions interactively in arbitrary order.

3. The compiler is smoothly integrated with the editor and an emulator for the Tagged-

token Dataow Architecture [5, 7] into \Id-World" [50], a friendly, interactive, parallel

programming environment. Each top-level compilation unit may be compiled, loaded, and

linked with other similar units and then executed via commands given to the interactive

4\Miranda" is a trademark of Research Software Ltd.

14

emulator.

4. The compiler incrementally generates enough persistent global information in order to

maintain consistency across compilations of several pieces of the same program.

5. It is even possible to test and debug incomplete Id programs some of whose parts may

not yet be de�ned. Unknown de�nitions, if invoked, simply cause a run-time trap.

The purpose of this research is to design and develop a typing mechanism for Id based on the

Hindley/Milner type system that �ts its incremental programming environment. In particular,

we have the following design goals in mind.

1. The type system should enforce a strongly typed, polymorphic, and high-level program-

ming paradigm, without requiring the users to provide explicit type declarations in their

programs.

2. The typing mechanism must maintain type-consistency among all the top-level compila-

tion units and be able to generate and maintain this information incrementally, in view

of the overall incremental design philosophy.

3. The type system is required to provide support for resolving and compiling overloaded

identi�er de�nitions and blend it with its existing system of polymorphism (a la Wadler

and Blott [63]).

4. The type system must also provide support for sound type inference of polymorphic,

non-functional, referential data-structures (a la Tofte [57]).

1.1 Thesis Outline

The outline of this thesis is as follows.

In chapter 2 we carefully examine the problem of polymorphic type inference for a functional

language in the light of the Hindley/Milner type system [16, 20] and establish facts and notation

used in the rest of the thesis. We describe the basic Hindley/Milner type inference system

using an abstract syntax. This forms the basis for extension and reasoning for the subsequent

chapters. We also describe the relationship between the abstract syntax and the actual syntax

of Id as a means of providing readable examples throughout the rest of the thesis.

15

Chapter 3 describes our approach to incremental type inferencing and the algorithm that

maintains type consistency over the whole program. First, we describe a general book-keeping

mechanism to record, maintain, and verify interesting compilation properties in an incremental

fashion. Our scheme is oriented towards de�nition level incrementality{individual, top-level

de�nitions can be independently edited, compiled and �nally loaded into the run-time system,

while interprocedural consistency is maintained using the properties recorded by the compiler.

Then, we describe an application of the general mechanism, speci�cally to maintain type

information incrementally. We show the necessary modi�cations and extensions to the basic

Hindley/Milner type inferencing algorithm described in chapter 2 for this purpose. We also

provide a correctness proof of our algorithm for well-typed programs, which establishes an

exact correspondence between the types inferred by our algorithm and those inferred by the

basic system. This is the major result of this thesis and to the author's knowledge, this is the

�rst time such a proof has appeared in the literature.

In chapter 4, we discuss the issues involved in overloading of identi�ers. The original pro-

posal as adopted in the language Haskell [27] de�nes type classes and translates overloading

into parameterized function calls. Our system5 is a slight simpli�cation of that proposal. Every

operator has its own class which makes it easier to allow either parameterization or specializa-

tion on demand in order to make the program more e�cient. We also discuss the extensions

necessary to incorporate overloading into our basic type inferencing system.

In chapter 5, we extend the basic type inferencing mechanism for functional programs to

incorporate non-functional language constructs. Speci�cally, the problem is to correctly type-

check a polymorphic reference to a shared assignable location. The problem has been examined

before in context of ML in [24] and semantically analysed recently by Tofte in [57]. Our proposal,

developed independently, is a slight extension of the latter. We not only type-check polymorphic

references, but also allow the programmer to delineate functional and non-functional boundaries

in the program, so that the compiler is able to perform functional optimizations in most parts

of the program.

Finally, in chapter 6, we present a summary of the results and conclude with future directions

for research.

5A preliminary version of the system described in this thesis was presented by Nikhil in [47] for internal
circulation.

16

Chapter 2

Basic Type Inferencing

The classical notion of Type is that of a set containing semantically similar values. A Type

error is, to a �rst approximation, a situation where a given object is not found to be in its

expected set of semantic values, or in other words, the object fails to have the expected type.

The goal of type checking is to ensure that such unexpected surprises do not crop up while

executing a program. For example, consider the following LISP program to �nd the sum of all

the elements of a given list:

(defun reduce (l)

(if (null l)

0

(+ (first l) (reduce (rest l)))))

The reduce function expects a list of numbers as input and adds them up. What will

happen if it is not supplied with a list of numbers?

(reduce '(1 2 3)) =) 6

(reduce '("1" "2" "3")) =) error!

The second case above fails to execute and produces a runtime type error because the \+"

operator expected a number but was supplied a string instead. The error could have been caught

during compilation of the second form because it was already known that reduce expects a list

of numbers and not a list of strings1.

The design of a programming language can go a long way towards achieving this goal

of detecting runtime type errors. Languages in which the type of every expression can be

determined by static program analysis are called Statically Typed languages. This may be

1It may be argued that LISP, in fact, provides type-checking, although at runtime. But we will assume that
this is only a mechanism for trapping unnoticed errors. The goal of type-checking should be to forewarn the user
of any possibility of running into such errors at runtime.

17

too strong a condition to impose, so many languages are Strongly Typed, which means that

every expression in that language is type consistent even though its actual type cannot be found

out by static analysis.

Id is a strongly typed programming language. Furthermore, it supports type inferencing

and polymorphism. We motivate these features below and present a basic type inferencing

system for Id. An excellent introduction and survey of these concepts is found in [17].

We assume no previous knowledge on the part of the reader regarding the basic concepts of

type inferencing, polymorphism, Hindley/Milner type system, its associated theoretical basis or

the Id language. The informed reader is free to skip the introductory sections 2.1 and 2.2, refer

back to section 2.3 for notations, de�nitions and results that have appeared in literature before,

and skim through sections 2.4 and 2.5 for a discussion of Id syntax and the Hindley/Milner

type system in general.

2.1 Type Inferencing

The process of Type Inferencing involves automatically inferring the type of every subex-

pression in a given program without explicit type declarations from the programmer. Type

checking, on the other hand, refers to the task of simply checking that the type of an expression

in its declaration is consistent with its use. Since Id supports type inferencing, we do not make

a distinction between these terms later in the thesis and will always mean \type inferencing"

when referring to either term. But for now, we highlight their di�erences and the advantage in

doing type inferencing rather than type checking by means of an example.

As an aside, we will not attempt to give a complete description of Id language syntax and

semantics, though we do present the abstract syntax of the Id Kernel language at the end of

this chapter. For a concrete treatment of the Id syntax, the reader is referred to [46, 48]. A

preliminary discussion of Id dynamic semantics is found in [8], while a more recent and revised

version appears in [4]. We will present examples from Id, explaining their semantics informally.

For the most part, the meaning should be fairly clear and we will rely on the reader's intuition

in this matter.

Consider the two programs in �gure 2.1. In (a) it shows a PASCAL function to compute the

square of an integer and in (b) a similar function written in Id. The �gure also shows how these

de�nitions may be used subsequently in the same program. A function declaration in Id takes

18

program example1(input,output);

var

x,xsq:integer;

function square(x:integer):integer;

begin

square = x * x;

end;

begin

...

xsq := square(x);

...

end.

def square x = x * x;

...

xsq = square x;

(a): PASCAL code. (b): Id code.

Figure 2.1: A code comparison of a squaring function written in PASCAL and in Id.

the form of an equation preceded by a def keyword. The left hand side of the equation speci�es

the function identi�er and formal parameters, while the right hand side speci�es the body of

the function written as an Id expression, computing the value of the function. A simple variable

binding is expressed as an equation as well. Function application in Id is by juxtaposition (as

in square x) and it associates to the left.

The interesting di�erence between the two programs is the necessary presence of type dec-

larations in one and their absence in the other. While the programmer has to supply full type

declarations for every identi�er appearing in the PASCAL program, the same information can

be inferred from context in the Id program. The compiler knows the type of the binary operator

* and it can infer that the type of its operand x as well as its result must be integer, hence the

function squaremust take an integer and produce an integer2. This is precisely the information

explicitly declared in the PASCAL program.

The inference mechanism is governed by the uni�cation algorithm of Robinson [54]. The

known type of an identi�er or an operator is uni�ed with the type expected in the context

where it is used. This may either result in a failure if the types do not match, which means

we have detected a type violation, or it may produce a unifying substitution, which re�nes the

type of the context. Thus, we can infer the unknown types in the context.

The obvious advantage of type inferencing is freeing the programmer from writing redundant

type declarations at the cost of increasing the task of the compiler slightly. We may also envision

2We assume for the moment that arithmetic operators operate on integers only. Later, in chapter 4, we will
address the issue of overloading these operators for integers as well as reals. In PASCAL, the issue may be
resolved by inferring the right operator from context using the explicit type declarations.

19

an intermediate situation where the programmer supplies only a few type annotations in the

program that help the compiler in type inferencing, provide self documentation and increase

understanding. The issue of how much type inferencing a compiler can do becomes more subtle

when we have polymorphism, as discussed below, but the design of the language can still

guarantee that the compiler will be able to succesfully infer the types of the expressions within

reasonable resource limits. The design of the type inference system for Id was motivated with

this view in mind.

2.2 Polymorphism

Consider the PASCAL function length listint in �gure 2.2 (a) to count the number of ele-

ments in a list of records containing integers. Since this function explicitly declares the types,

it may be used only on lists of records containing integers. If the complete program uses lists

of various kinds, then one may think of writing one such function for each type of list used.

Obviously, this seems to be quite wasteful and unnecessary because the function itself does not

care about the type of the elements of the list that it is provided with (namely, integers). It

simply counts the number of elements in it. It should be possible to write simply one such

function and use it for all types of lists.

Now consider the LISP and the Id version3 of the same function as shown in (b) and (c)

respectively. LISP is a dynamically typed language, which means that expressions are checked

for type compatibility only at run time and di�erent invocations of the same program fragment

can contain di�erent types as long as it is type consistent for each invocation. So the same

function lisp length su�ces for all types of lists. Of course, there is no guarantee that the

program will not generate any runtime type errors. If lisp length was given an array as an

argument in an invocation, the error will not be detected until run time when lisp length

tries to take the cdr of its argument.

While strongly typed languages like PASCAL provide more reliability in their programs

avoiding runtime type errors, they appear to overly constrain their type so that it is impossible

to share the code even in places where apparently there is no type conict. It is possible to relax

this constraint and still maintain strong typing by recognizing the safe sharing of a function

3The Id de�nition uses pattern matching to deal with various cases of the input argument, executing the
clause corresponding to the matched case on a given input. A \colon" (:) represents the in�x \cons" operator
for lists. An underscore () matches any input.

20

program example2(input,output);

type

LISTINT = record

x:integer;

next:"LISTINT;
end;

...

function length listint(l:"LISTINT):integer;
begin

if (l = nil)

then length listint := 0

else length listint := 1 + length listint(l".next);
end;

(a): PASCAL code.

(defun lisp length (l)

(if (null l)

0

(+ 1 (lisp length (cdr l)))))

def id length nil = 0

| id length (:l) = 1 + id length l;

(b): LISP code. (c): Id code.

Figure 2.2: A Code Comparison of a length function for Lists.

over objects of several di�erent types. Such functions are called Polymorphic in nature as

against Monomorphic functions that allow objects of only one type. Languages that allow

polymorphic functions are said to exhibit Polymorphism . Note that LISP is automatically

polymorphic since it is dynamically typed.

Coming back to the Id example in �gure 2.2 (c), we can see that a smart compiler can realize

that the id length function imposes no restriction on the type of elements in the incoming list

and hence will record its type as a function from \list of anything to integers". In Id syntax,

this may be written as a type annotation as follows:

typeof id length = (list *0) -> I;

Here *0 stands for a \type variable" which represents any type and I stands for integers.

We will look at more examples later.

Now the same function can be used in di�erent contexts to determine the length of di�erent

types of lists. Note that, if the function had used the elements of the list in some way as

to restrict their type, (for example, summing them up to restrict them to integers) it will be

noticeable in the type inferencing and the compiler will then restrict the type of the function

21

appropriately. We will soon see mechanisms that allow us to do such inferencing. Thus, we

see that polymorphism and static type inferencing are useful features that help to combine

the reliability obtained from strong typing with ease and e�ciency of coding seen in untyped

languages.

2.2.1 Kinds of Polymorphism

Cardelli and Wegner describe various kinds of polymorphism in [17]. We have already seen

Parametric Polymorphism exhibited by id length, which essentially means that the polymor-

phic functions have an explicit or implicit type parameter which determines the type of the

argument for each application of that function. In Id, we take this approach using static type

inferencing to provide the implicit type parameters.

We also deal with overloading or ad hoc Polymorphism. An identi�er is said to be overloaded

when it is used to represent di�erent functions in di�erent type contexts. Here only the name

of the identi�er is shared. For example, we may wish to overload usual arithmetic operators

+;�; �; = etc. with both integer and oating point meaning. Usually, integers and oating point

numbers have di�erent machine representations and arithmetic operators. But the programmer

need not be burdened with using di�erent symbols, say, for integer addition and oating point

addition. Thus, a smart compiler will be able to translate the same code in di�erent ways

according to the type context4:

typeof a = I;

typeof b = I;

c = a + b =) c = intplus a b

typeof a = F;

typeof b = F;

c = a + b =) c = floatplus a b

We will investigate mechanisms to do this in Id in chapter 4.

Object oriented languages allow Inclusion Polymorphism, i.e., objects in those languages

may be viewed as belonging to many di�erent classes that may include one another, thereby

possessing a hierarchy of types by inheritance. As an example, we could declare integers to be

a subclass of rationals (pairs of integers in their lowest factor form) which in turn is a subclass

of reals. Each class speci�es its own set of permitted operations5 which get superseded by

4Here I and F represent the types integers and oats, and intplus and floatplus are functions to perform
integer and oating point addition respectively.

5Also called Methods in the literature.

22

operations of the subclass. If an operation is not found in a particular class, it is looked up in

its superclass. Thus, addition, subtraction and multiplication among integers may be specially

treated and compiled into (presumably more e�cient) integer operations, but division may be

handled by the class of rationals. Similarly, the square root operation may be handled only at

the level of reals. Once we have this machinery going, it makes sense to divide integers and

expect to get back a rational. Similarly we can ask for, say, the square root of 2, and the

appropriate operation in the superclass of reals will be invoked to compute it.

In Id, we do not have inheritance and type classes6; parametric polymorphism is the default

while it is also possible to explicitly declare some identi�ers as overloaded.

2.2.2 Higher-Order Functions

Another concept that allows further code sharing and imparts a good structure to the program is

that of higher-order functions. We allow functions that manipulate functions as their arguments

and compute them as result values. Giving this \�rst class" status to functions, we can write

generalized functions that are useful to a large class of applications and specialize them later as

necessary during use. A higher-order style of programming imparts a nice and clean structure

to programs and hides details and clutter to bring out just the basic mathematical properties

that the functions possess.

The mapcar function in LISP is a good example of a higher-order function. Consider its

de�nition below in Id along with its inferred type.

def mapcar f nil = nil

| mapcar f (x:xs) = (f x):(mapcar f xs);

typeof mapcar = (*0 -> *1) -> (list *0) -> (list *1);

mapcar expects a function that operates on the elements of a given list and produces a list

of those transformed elements. The only restriction on the input list is that it should contain

elements consistent with the expected argument type of the function. The \->" in the type

signature is the function type constructor and associates to the right. The scope of the type

variables *0 and *1 is the complete type signature. Thus the signature of mapcar says that it

expects �rst argument to be a mapping function from some type *0 to another type *1 and

the second argument to be a list of elements of the �rst type, and it returns a list of elements

6At least not at the moment. But Id is an experimental language and it may be possible later to add inclusion
polymorphism to its already rich repertoire of types.

23

of the second type as the result. The type variables with the same number constrain those

objects to possess the same type. Even though the type of the actual function and that of the

list supplied to mapcar may not be known during compilation (which, in fact, accounts for its

polymorphism), we can still check for type consistency between these two wherever mapcar is

used. Thus, we can maintain strong typing while allowing polymorphism.

The mapcar function can be used with di�erent functions in di�erent contexts as shown

below:

def cube x = x"3;
typeof cube = I -> I;

mapcar cube (1:2:3:nil) =) 1:8:27:nil

def zero? x = if x==0 then true else false;

typeof zero? = I -> B;

mapcar zero? (0:3:1:0:nil) =) true:false:false:true:nil

With cube, it produces a list of integers and with zero? a list of boolean values. Note that

the in�x list cons operator \:" associates to the right. The lists to the right of the arrow (=))

are the results of the computation shown at the left.

While polymorphic, higher-order functions are useful and compact, they pose some theoret-

ical problems for type inferencing. Such functions, in their full generality, are usually modelled

using second-order typed Lambda Calculus [13, 23, 53]. The question of decidability of type

inference in this model is still open. Some recent work in this �eld attempts to identify subsets

of the full polymorphic model where this question can still be answered [30].

There are two ways out of this problem. We can restrict the polymorphism of arguments and

results of functions in certain ways so that we are still able to decidably infer their type using

known algorithms. The most popular approach, taken by many modern languages such as ML

[24, 25, 41, 42], Miranda [60, 61], Hope [14], Haskell [27] and Id, is to use a special polymorphic

type inference system now commonly referred to as the Hindley/Milner type system [20, 26, 40].

Other, more recent e�orts to strengthen this inference system have met with only partial success

[30, 32, 43].

The other way out is to help the type inference system by giving explicit type declarations in

the program while still retaining polymorphic functions as �rst class objects. It is a non-trivial

problem to �gure out just where such type declarations need to be inserted. Moreover, it is not

clear that the additional expressive power gained by this approach would outweigh the loss in

ease of programming and the increase in complexity of the compiler. There are experimental

24

systems based on this approach [22] and only future research may shed further light on the

advantages of one over the other.

In Id, we take the former position adopting the Hindley/Milner type inference mechanism,

largely due to the fact that these type systems have been tested in several languages with

success and have proved to be a good mix of polymorphism with type inferencing, keeping the

clarity and ease of programming intact even in large programs. We will now describe this type

system in detail.

2.3 Hindley/Milner Type Inference System

For the purpose of our discussion, we �rst de�ne an abstract, functional mini-language, which

is a slight extension of Lambda Calculus and forms the core of the languages mentioned above.

We only extend it with a let construct, and arithmetic and logical constants. The latter are

included only to show meaningful examples without obscuring the clarity. This language will

form the basis of all our discussions on types later on and we will make extensions to it where

necessary.

We also present some basic notation that will be used throughout the rest of this thesis. We

try to adopt a notation similar to one that has appeared in literature before, extending it where

necessary. Then we present the Hindley/Milner type inference system as a set of inference rules

and show its semantic soundness and other properties. Finally, we discuss an algorithm which

uses these rules to derive a type for every expression in the given program and show its semantic

properties.

The basic inferencing mechanism was �rst devised by Hindley [26], which was later indepen-

dently rediscovered and extended by Milner [40] to allow polymorphic functions. The theoretical

basis was �rmly established in Denotational Semantics by Damas [20, 19] and in Operational

Semantics by Tofte [57]. Since then, several expositions have appeared in the literature, either

in context of the languages that use this system or those that extend the richness or power of

the system in some way (typing polymorphic references, type-containment, type-coercion etc.).

Our notation is the same as used by Tofte in [57] and the description is primarily derived from

the work of Damas [20], Tofte [57], and Cl�ement et al.[18].

25

2.3.1 A Mini-Language

Expressions

We start with a set of basic constants and identi�ers in the language as shown below. The

meta-variables on the left range over the sets on the right.

c 2 Constants = ftrue; false; 1; 2; : : :g (2.1)

x 2 Identi�ers (2.2)

Using these we de�ne the set of expressions admissible in the abstract language:

e 2 Expressions ::= c

j x

j �x: e1

j e1 e2

j let x = e1 in e2

(2.3)

The only di�erence in this de�nition from the usual extended Lambda Calculus syntax is

the introduction of a let expression, and that really makes all the di�erence for polymorphism

in this system.

Type Expressions

We start as usual with a set of type constants or nullary type constructors and an in�nite set

of type variables as shown below.

� 2 Type-Constructors = fint ; bool; : : :g (2.4)

�,� 2 Type-Variables = ft; t0; t1; t2; : : :g (2.5)

Using these, we de�ne the type expressions of the language:

� 2 Types ::= �

j �

j �1 ! �2

(2.6)

� 2 Type-Schemes ::= �

j 8�: �1

(2.7)

26

The function type constructor (!), associates to the right. Also note that Types are not

quanti�ed, while the Type-Schemes are universally quanti�ed at the outermost. A type scheme

8�1:8�2: � � �8�n:� is also written as 8�1�2 � � ��n: � .

2.3.2 Some Notations and De�nitions

First, we de�ne some general set notation to help us later.

Notation 2.1 If A and B are sets, then,

1. powerset(A) is de�ned to be the set of all subsets of A.

2. A+ B is the disjoint union of A and B.

3. A nB is the set di�erence A� B.

4. A� B is the cartesian product of A and B.

5. A ! B is a set of functions from A to B. The precise interpretation of (!) depends

on the characteristics of the sets A and B. For example, if A and B are simple syntactic

sets, then A! B merely denotes the set of all total functions from A to B; if A and B are

scott-domains, then A ! B denotes the set of continuous functions from A to B, and so

on.

6. A
�n
��! B is the set of �nite maps7 from A to B.

Notation 2.2 If f and g are functions (maps) then,

1. Dom(f) is the Domain of f .

2. Ran(f) is the Range of f .

3. f 2 A ! B means that f is a function from A to B as determined by the interpretation

of the set A! B.

4. f 2 A
�n
��! B means that f can be written as fa1 7! b1; : : : ; ai 7! bi; : : : ; an 7! bng where

ai 2 A and bi 2 B.

5. fg represents the empty map.

6. f � g (read f composed with g) is the composite map de�ned by (f � g)(a) = f(g(a)).

7. f + g (read f modi�ed by g) is the map with domain Dom(f) [Dom(g) de�ned by

(f + g)(a) = if a 2 Dom(g) then g(a) else f(a).

8. If f and g have disjoint domains then f j g (read f simultaneously composed with

g) is the map with domain Dom(f)[Dom(g) formed by the concatenation of the two maps.

7A �nite map is a function with a �nite domain.

27

This serves in place of either f or g and emphasizes the disjointness of their respective

domains.

9. fnA is the map f with its domain restricted to Dom(f) nA.

10. f #A is the map f with its domain restricted to A.

We can relate the identi�ers of the language to the types assigned to them in a type envi-

ronment, which is a �nite map from identi�ers to type-schemes.

TE 2 Type-Environments = Identi�ers
�n
��! Type-Schemes (2:8)

Next, we de�ne some notation and operations on type expressions which would be useful

later.

De�nition 2.3 Given a type scheme � = 8�1 � � ��n: � ,

1. �1; : : : ; �n are bound in �.

2. A type variable � is free in � if it is not bound and it occurs in � .

3. A type variable � is free in a type environment TE, if it is free in some type scheme from

its range Ran(TE).

In short, the quanti�ed type variables are bound and the others are free in a type scheme,

just as one might expect. Using the above de�nition, we can de�ne the following functions for

computing free and bound variables of types, type schemes and type environments:

De�nition 2.4 The function FV 2 Types! powerset(Type-Variables) computes the free type

variables of a type expression as follows:

1. FV(�) is the set of all the type variables in type � , all of which are free.

2. By extension, FV(�) and FV(TE) denote the set of free type variables in � and TE

respectively as de�ned above in de�nition 2.3.

De�nition 2.5 The function BV 2 Type-Schemes ! powerset(Type-Variables) gives the set

of bound variables of the type scheme �.

If FV(�) = � then � is called a ground type or monotype. Similarly , if FV(�) = � and

FV(TE) = �, then � and TE are said to be closed, respectively. When it is clear by context

that we are talking about only free type variables of an object, we may also use the symbol

tyvars(�) instead of FV(�).

28

Now we de�ne the important concept of substituting free and bound type variables in type

and type schemes with other types.

De�nition 2.6 A Substitution S 2 Type-Variables ! Types is a map from type variables

to types. Moreover,

1. By extension, a substitution S is applied to a type � yielding � 0, written as � 0 = S� , by

applying it to all the (free) type variables FV(�). The type � 0 is called a substitution

instance or sometimes simply an instance of type � .

2. Similarly, for a type scheme � = 8�1 � � ��n: � , a substitution �0 = S� is applied only

to its free type variables FV(�) renaming all its bound type variables. More formally, we

de�ne �0 = 8�1 � � ��n: �
0 where �1 � � ��n are new type variables, � 0 = (S0 j f�i 7! �ig)� and

S0 = S #tyvars(�). As before, �
0 is called a substitution instance of �.

3. A substitution to a type environment TE is applied to the free variables of each type scheme

� in its range.

Using notation 2.2, a �nite substitution is also written as S = f�1 7! �1; : : : ; �n 7! �ng.

We may also abbreviate it as S = f�i 7! �ig. Composition of Substitutions (S2 � S1)� means

S2(S1�) where the parentheses can be dropped by assuming that substitutions associate to the

right.

Note that substitutions are de�ned for free type variables only. Substitutions for the bound

variables in a type scheme are done di�erently and are called Instantiations8.

De�nition 2.7 Given a type scheme � = 8�1 � � ��n: � with BV(�) = f�1; : : : ; �ng,

1. A type � 0 is said to be a generic instance (also called an Instantiation) of �, written as

� � � 0, if there exists a �nite substitution S = f�i 7! �ig with Dom(S) � BV(�) such that

� 0 = S� .

2. A type scheme �0 = 8�1 � � ��m:�
0 is said to be a generic instance of �, written as � � �0,

when any of the following equivalent conditions hold,

� For all types �1, �0 � �1 implies � � �1.

� � � � 0 and no �j is free in �.

� � � � 0 and FV(�) � FV(�0).

8We di�er slightly from the terminology used in [20] where these are called Instantiations and Generic
Instantiations.

29

3. Similarly, by extension, instantiation of a type environment TE yields a generic instance

TE 0, written as TE � TE 0, obtained by pointwise instantiation of the type-schemes in its

range.

Note here that Instantiations act only on bound variables of type schemes since the domain

of the substitution S used in showing � � � is limited to BV(�). Thus substitution instances

are created via substitutions and generic instances are created via instantiations.

We may sometimes write � � � to mean � � � where � could also be just a type without

any bound variables. In fact, it can be easily seen from the above de�nitions that for types �

and � 0, � � � 0 implies � = � 0.

Finally, we admit quanti�cation of the free type variables in a type and converting it to a

type scheme as an inverse operation of instantiation.

De�nition 2.8 Generalization or Closing a type � under a type environment TE is de�ned

as follows:

close(TE ; �) =

8><
>:
8�1 � � ��n: � (FV(�) n FV(TE)) = f�1; : : : ; �ng

� (FV(�) n FV(TE)) = �

When FV(TE) = �, we may also write simply close(�) instead of close(TE ; �).

This is the operation that introduces polymorphism in the system. Note that we are not

allowed to quantify over free variables of a type that may already exist freely in the type

environment. This is an important point that makes this system sound.

2.3.3 Operational Semantics of the Mini-Language

Now we are ready to present the operational semantics of the mini-language. Both dynamic and

static semantics are presented as a set of inference rules [52] operating on the expressions of the

mini-language. The static semantic rules constitute the basic Hindley/Milner type inference

rules, from which valid assertions about the type of the expressions can be inferred.

Dynamic Semantics

Dynamic operational semantics tells us how to evaluate the expressions of the language. For

this, we need to de�ne the objects created and manipulated during the course of evaluation.

30

IDENTIFIER:
x 2 Dom(E)

E ` x �! E(x)

ABSTRACTION:
E ` �x: e1 �! [x; e1; E]

APPLICATION:

E ` e1 �! [x0; e0; E0]
E ` e2 �! v2

E0 + fx0 7! v2g ` e0 �! v

E ` e1 e2 �! v

LET:
E ` e1 �! v1 E + fx 7! v1g ` e2 �! v

E ` let x = e1 in e2 �! v

Figure 2.3: Dynamic Inference Rules.

These are de�ned below:

c 2 Constants = ftrue ; false; 1; 2; : : :g (2.9)

v 2 Values = Constants + Closures (2.10)

[x; e; E] 2 Closures = Identi�ers � Expressions � Environments (2.11)

E 2 Environments = Identi�ers
�n
��! Values (2.12)

We assume an environmental model of evaluation. The inference rules appear in �gure 2.3.

The rules consist of two parts. In each rule, establishing all the premises above the line allows

us to conclude all the conclusions below the line. Each premise or conclusion is an evaluation

of the following form9:

E ` e �! v

which is read as \starting with environment E, the expression e evaluates to value v".

The inference rules are easy to understand. Constants represent themselves and hence are

excluded; identi�ers are looked up in the environment for their value; lambda abstractions form

closures with formal parameter x and body e over the lexical environment E which provides the

values to the free variables of the body; applications (by juxtaposition) are the usual function

applications; and �nally, the let construct behaves exactly like an immediate application of an

abstraction.
9We may extend this later with the notion of a store to incorporate imperative constructs in the mini-language.

31

TAUT:
(x 7! �) 2 TE � � �

TE ` x : �

ABS:
TE + fx 7! � 0g ` e1 : �

TE ` �x: e1 : �
0 ! �

APP:
TE ` e1 : �

0 ! � TE ` e2 : �
0

TE ` e1 e2 : �

LET:
TE ` e1 : �

0 TE + fx 7! close(TE ; � 0)g ` e2 : �

TE ` let x = e1 in e2 : �

Figure 2.4: Static Inference Rules DM 0.

Note that there are no special constructs to deal with conditional expressions or recursive

and mutually recursive functions. This is because it is easy to model them using prede�ned

primitive functions. Conditionals expressions of the type \if e1 then e2 else e3" can be

written as \cond e1 e2 e3" using a prede�ned primitive ternary operator cond which returns

the second or the third argument accordingly as the �rst argument evaluates to true or false.

Similarly, recursive functions are represented as functionals applied to a prede�ned �xpoint

operator �x = �f: (�x: f(xx))(�x: f(xx)). Of course, in a real implementation, for e�ciency

reasons, we may recognize and treat conditionals and recursion specially and the cond and �x

operators may not �gure in explicitly at all. Similarly, we will also assume a repertoire of the

usual arithmetic functions +;�; �;�; <;�; >;�;=; 6= etc. prede�ned in our initial environment.

Static Semantics

Static operational semantics provides a mapping from the expressions of the language to the

type expressions under a set of assumptions regarding the types of the free identi�ers of the

program. This set of assumptions is the type environment, which is a �nite map from identi�ers

to type schemes (see equation 2.8).

The inference rules of the Hindley/Milner type system appear in �gure 2.4. Again, in each

rule, establishing all the premises above the line allows us to conclude all the conclusions below

the line. Each premise or conclusion is an elaboration or typing of the following form:

TE ` e : �

32

TAUT:
(x 7! �) 2 TE

TE ` x : �

INST:
TE ` e : � � � �0

TE ` e : �0

GEN:
TE ` e : � � =2 FV(TE)

TE ` e : 8�: �

ABS:
TE + fx 7! � 0g ` e1 : �

TE ` �x: e1 : �
0 ! �

APP:
TE ` e1 : �

0 ! � TE ` e2 : �
0

TE ` e1 e2 : �

LET:
TE ` e1 : �

0 TE + fx 7! �0g ` e2 : �

TE ` let x = e1 in e2 : �

Figure 2.5: Original Damas-Milner Inference Rules DM .

which is read as \assuming the type environment TE , the expression e elaborates to the type

�".

Readers familiar with the original Damas-Milner (DM) inference system as described in [20]

(refer to �gure 2.5) will recognize the following di�erences in the system presented here (DM 0):

1. There are no separate rules for generalization of types or instantiation of type schemes.

The former is done in by the close operation in the LET rule and the latter is done at

the time of typing identi�ers from the environment (TAUT rule).

2. There is only one rule applying to any syntactic construct. So, this system is in fact

deterministic, while the Damas-Milner system was not.

3. The instantiation to types rather than type schemes in the TAUT rule makes the result

of a typing to be a type instead of a type scheme. But it can be shown that these two

systems admit exactly the same expressions and are thus equivalent in this sense.

The equivalence of DM and DM 0 is captured in the following theorem proved in [18].

33

Theorem 2.1 The system DM 0 is equivalent to system DM in the following sense:

TE
DM 0

` e : � =) TE
DM

` e : �

8TE ; e 9� TE
DM

` e : � =) TE
DM 0

` e : � ^ close(TE ; �) � �

This means that every typing derivable in this DM 0 system is also derivable in the original

DM system and conversely, every typing derivable in the DM system is an instantiation of the

closed version of some typing derivable in this system.

Finally, we note the following lemmas which are proved in [57] for the DM 0 system. Their

corresponding versions for the DM system are proved in [20].

Lemma 2.2 If � � � 0 then for all substitutions S, S� � S� 0.

Lemma 2.3 If S is a substitution then,

TE ` e : � =) S(TE) ` e : S�

Another lemma from [20] relates typings with instantiated environments.

Lemma 2.4 If � � �0 then,

TE + fx 7! �0g ` e : �0 =) TE + fx 7! �g ` e : �0

This last lemma can easily be extended inductively (pointwise) for the case when TE � TE 0.

2.3.4 Denotational Model of the Mini-Language

Domains, Functions, and Types

A word about a denotational model of the above mini-language is appropriate here. The model

that we present here is that of untyped Lambda Calculus. This is the position taken in the orig-

inal paper by Milner [40]. For the most part, the dynamic semantics is fairly intuitive; constants

represent themselves as elements of a Scott Domain [55, 56] and lambda abstractions create

domains containing continuous functions over these domains. The syntactic categories we intro-

duced in section 2.3.3 can thus be easily understood in terms of these domains. Environments

would then become partial functions from identi�ers to elements of these domains.

Using the same terminology to refer to the above mentioned semantic constructs, we write:

E j= e �! v

34

read as, \given environment E, expression e denotes the domain value v under this model".

Note that the \let x = e0 in e1" expression has exactly the same semantics as (�x: e1)e0.

We will not spend any time in the details of writing down the denotational evaluation

function for the dynamic semantics since our main goal is type checking or static semantics.

Later in this section, we will discuss a little more about the semantic model of the language, in

order to relate it to the operational inference rules seen above. The literature is �lled with the

discussion of semantics of Lambda Calculus, both operational and denotational. A complete

theoretical treatment can be found in [12]. A very good discussion on Scott domains and

denotational semantics can be found in [56].

The semantics of the type expressions is also fairly simple. The nullary type constructors

(�) represent the type of basic Scott domains as described above that contain those constants.

�0 ! �1 is the type of the domain containing continuous functions from the domain with type �0

to the domain with type �1. Again, type environments become partial functions from identi�ers

to elements of this type structure. So we write,

TE j= e : �

read as, \given a type environment TE , the value denoted by the expression e has the type �

under this model".

Polymorphism and Quanti�cation

The above strategy is su�cient to ascribe meaning to the type of monomorphic objects (objects

with ground types), for example, all the prede�ned binary arithmetic operators would have the

type int ! int ! int10.

Polymorphic objects are typed by type schemes. A type scheme can be viewed as a concise

statement of the di�erent ground types a polymorphic object is capable of possessing. More

theoretically, their type is a semantic quanti�cation over the types of these Scott domains. For

example, consider the identity function de�ned below:

let identity = �x: x in e

We treat this function as polymorphic, accepting an object of any kind and returning the

same object. Thus, to type this identity function, we can view it as possessing a family of types,

one for each type of monomorphic object that it can accept. In other words, a typing of this

10As mentioned earlier, we will deal with the overloading of these operators for real arguments in chapter 4.

35

function exists for every type domain � ! � . This can be written in a type scheme as shown

below:

identity : 8�: �! �

Similarly, the primitive conditional operator cond will be typed as:

cond : 8�: bool ! �! �! �

In general we write,

TE j= v : � i� 8� � �: (TE j= v : �)

Note that the � relation between � and � is syntactic and not semantic.

We have seen that the quanti�cation in a type scheme is only at the outermost level. This

means that we do not allow arbitrary polymorphic arguments and results of functions, restricting

ourselves to a proper subset of the general class of semantically meaningful expressions. This is

done speci�cally to obtain a subset of expressions for which the question of typability is known

to be decidable. In spite of this restriction, we are able to express most of the polymorphism

inherent in functions like identity within this subset.

One apparently important function that can not be type checked in this system is the uni-

versal �xpoint operator, �x = �f: (�x: f(xx))(�x: f(xx)). Our system is not powerful enough

to type it as a polymorphic function. This is because self application requires more than just

outermost quanti�cation. But we can get around this problem by pre-de�ning a polymorphic

operator in the initial environment with the following type:

�x : 8�: (�! �)! �

This e�ectively asserts that there exists a typing for a �xpoint operator in every domain of

interest. This type speci�cation is su�cient to guarantee correct typings for recursive and

mutually recursive functions.

Soundness of Inference

Soundness of a type inference system implies that expressions that are inferred to be type-

correct, do not lead to a run-time type error on evaluation, or denotationally speaking, they do

not denote a type error. Further, the values they denote or evaluate to, have the correspond-

ing inferred types. This is a fundamental property necessary for any inference mechanism to

36

establish its validity with respect to the associated operational or denotational computation

model.

In his original paper [40], Milner showed the semantic soundness of well-typed expressions.

In the framework of Damas-Milner system DM as described in [20, 19], Damas proved the

soundness of his system using Denotational Semantics. Due to theorem 2.1, that system and

the system presented here are equivalent. Therefore, intuitively it should be clear that the

soundness theorem extends to this system as well. Indeed, Tofte in [57] showed a similar

consistency result for our system in an Operational Semantics setting. So, henceforth we shall

assume that the semantic properties proved for one system naturally extend to the other and

we may only state the results for one of them. Since DM infers type schemes in its typings

while DM 0 infers types, it should be clear by context which one is being referred to, if at all we

need to di�erentiate between the two.

Theorem 2.5 (Soundness of Inference) For an expression e,

TE ` e : � =) TE j= e : �

Typed Lambda Calculus Model

As an aside, we would like to point out that the model presented above is not the only one

possible. In fact, the second-order typed Lambda Calculus provides a much cleaner and easier to

understand framework for a more general and richer class of functions [13, 23, 53]. Historically,

though, only recently has there been an attempt to understand the various levels of type

inference possible in that model, so as to keep it decidable [30]. It is possible to �t this system

in that model by restricting the polymorphism of its typed terms to outermost quanti�cation

only. The model easily extends to addition of primitive value and type constants as well as

more kinds of type constructors rather than just having the function type constructor and the

universal quanti�cation.

In that model, the notion of type becomes more complicated and general than simply a set

of domain values. Every identi�er is assumed to possess a type, which is explicitly quanti�able

by lambda abstractions over types to achieve polymorphism. The meaning of untyped syntactic

terms is taken to be an erasure of type information from the corresponding typed terms and

the purpose of type inferencing is to reconstruct that type information11.

11It is for this reason that the term Type Reconstruction is also used in the literature instead of Type Inferencing
.

37

To give an example, the identity function for a type � would look like:

identity� = �x : �: x

identity� : � ! �

and its polymorphic version looks like:

identity = �t: �x : t: x

identity : 8�: �! �

identity� = identity �

Note that the type obtained for the polymorphic identity is the same as before. We will not

present this model here since our purpose is served by working with operational static semantics

(symbol pushing) only and it does not matter what model is used as long as we are con�dent

that the syntactic inference system has sound theoretical basis. The interested reader is refered

to [13] for further discussion in this regard.

2.3.5 The Type Inference Algorithm

Given a set of inference rules, it is possible to implement them in various direct or indirect ways,

addressing issues such as e�ciency and correctness. We were concerned about the determinacy

of our inference system primarily to obtain a direct algorithm for it. Even though all the

semantic features of Hindley/Milner inference system are captured in its inference rules, for

pragmatic reasons and for the sake of completeness, we still present the inference algorithm

most widely used in the literature to implement these rules.

Our inference algorithm uses the Uni�cation algorithm of Robinson [54] which we state

below as a theorem.

Theorem 2.6 (Robinson) There is an algorithm U which, given a pair of types, either returns

a substitution S or fails. Further,

1. If U(�; � 0) succeeds and returns a substitution S, then S uni�es � and � 0, i.e., S� = S� 0.

2. If R uni�es � and � 0, then U(�; � 0) succeeds and returns S such that there exists another

substitution T satisfying R = T � S. Moreover, S involves only variables in � and � 0.

The inference algorithm W appears in �gure 2.6. It is essentially a case statement based

directly on the deterministic inference rules of �gure 2.4. It accepts a type environment and

38

Def W(TE,e) =
case e of

x) if x =2 Dom(TE) then fail.
else let

8�1 � � ��n: � = TE(x).
�1; : : : ; �n be new type variables.

in

(ID,f�i 7! �ig�).
endif.

�x: e1) let

� be a new type variable.
(S1; �1) = W (TE + fx 7! �g; e1).

in

(S1; S1� ! �1).
e1 e2) let

(S1; �1) = W (TE ; e1).
(S2; �2) = W (S1(TE); e2).
� be a new type variable.
S3 = U (S2�1; �2 ! �). (may fail)

in

(S3S2S1; S3�).
let x = e1 in e2)

let

(S1; �1) = W (TE ; e1).
� = close(S1(TE); �1).
(S2; �2) = W (S1(TE) + fx 7! �g; e2).

in

(S2S1; �2).
endcase.

Figure 2.6: Pseudo-code for the inference algorithm W .

39

an expression, and returns a substitution S and a type � , if succesful. The algorithm is sound,

i.e., it never computes a wrong derivation. This fact is captured in the following theorem.

Theorem 2.7 (Soundness of W) If the call W (TE ; e) succeeds returning (S; �), then there

is a derivation of the typing S(TE) ` e : � .

In fact, W computes the most general type or the principal type as de�ned below.

De�nition 2.9 Given a type environment TE and expression e, � is called a principal type

of e under TE i�,

1. TE ` e : � .

2. For any other � 0 such that TE ` e : � 0, we have close(TE ; �) � � 0.

close(TE ; �) is also called the principal type scheme of e under TE.

The fact that W computes the principal types, is captured in the following theorem.

Theorem 2.8 (Completeness of W) Given a type environment TE and expression e, let

TE 0 = S0(TE) be a substitution instance of TE such that TE 0 ` e : � 0. Then,

1. W (TE ; e) succeeds.

2. If W (TE ; e) = (S; �) then there exists a substitution R such that TE 0 = (R � S)(TE) and

R(close(S(TE); �))� � 0.

Basically, this says that all typings of an expression can be obtained as instantiations of the

closed version of the type returned by W in the �nal type environment.

The proof of these results appears in [57]. The corresponding results for the DM system are

proved in [19]. This completes our discussion of the Hindley/Milner type inference system.

2.4 Id Kernel Language

In this section, we present the kernel language for Id. We will discuss how it �ts with our

mini-language described above and show how to perform basic type inferencing for programs

written in it.

Id is an evolving language [45, 46, 48]. But most of its important syntactic features can

be expressed in a small subset of the full language. [8] discusses standard techniques for such

\kernelization"; converting for -loops to while-loops and while-loops to tail-recursive procedure

40

calls, in�x operators to function applications, n-tuple manipulations (making and selection) into

family of primitive functions, removing n-tuples from function arguments and block bindings

etc. Literature has standard techniques to translate pattern matching into nested conditionals

[10, 11, 15] as well. Thus, our task of static type analysis is greatly simpli�ed after these

transformations12.

The kernel language description has been revised extensively by Ariola and Arvind in [4].

There the reader will �nd precise operational dynamic semantics and proofs of conuence etc.

We will not go into those details since we are concerned with static semantics only, but we will

draw from their description of the Id kernel syntax. We also draw heavily from the description

of I-structures by Arvind et al. in [9] which are assignable data structures used to extend

the functional programming paradigm to provide e�cient synchronisation and storage without

losing useful properties such as conuence. We will explore the issue of polymorphic type

inferencing in presence of such assignable structures in chapter 5.

2.4.1 Mini-Language vs Id Kernel Language

The kernel language P-TAC as shown in [4] and [9] is reproduced here in �gure 2.7. The start

symbol is Program. The superscripts on constants and identi�ers denote their syntactic arity.

We will restrict ourselves to the functional subset of P-TAC which simply amounts to ignoring

the I-structure manipulation functions, namely, allocate, I select, and I set. But it still

has far too many details for our purpose. That is why the mini-language was introduced. Since

we already know how to do type inference for expressions in the mini-language, we will only

describe a translation from the functional subset of the Id kernel language to the mini-language

described above for the purpose of type inference.

Before we show the translation, a word about the mini-language itself is appropriate. It

is easy to simulate tuples and lists in the mini-language. Tuples are essentially elements of a

product type domain (A � B) and lists and other such recursive type structures are usually

modelled using disjoint union domains (A+B). We state without proof that these domains can

be modelled using the function type constructor (!) only. These domain constructions identify

simple syntactic transformations necessary to represent everything in terms of the function

type constructor. Thus, we will freely use these constructs as part of our mini-language where

12Some of these transformations are not performed in the actual implementation for reasons of e�ciency, but
that is not our concern here. Our goal here is to simplify the syntax to the level of the mini-language presented
above, so that we can reason about it.

41

necessary.

2.4.2 Translation of Id Kernel Language into Mini-Language

Instead of specifying a formal translation from the Id kernel to our mini-language, we will only

provide guidelines for such a translation, relying largely on the reader's intuition. The following

features of the Id kernel motivate the translation guidelines.

1. A program is a list of user-de�ned procedures and a main expression. The de�nitions may

be recursive and mutually recursive and in arbitrary order.

2. The de�nitions may have an arbitrary arity.

3. There are nullary as well as higher arity constants.

4. A block is similar to a let construct, only that it allows several bindings to be established

at once that may be recursive or mutually recursive.

Note that the mini-language requires that there be only one non-recursive binding in a let con-

struct and that all the identi�ers used in an expression be either pre-de�ned in the environment

or must have been de�ned in a binding enclosing that expression13. The mini-language also

requires that the recursive and mutually recursive functions be expressed using the prede�ned

�xpoint operator �x shown in section 2.3. Our translation must take care of these syntactic

constraints without losing generality.

The various nullary constants can be directly incorporated into the class of constants in the

mini-language. The other higher arity constants can be pre-de�ned in the environment.

The translation of multi-arity functions into nested �-expressions is straightforward using

\currying" as shown below. This transformation does not a�ect the static semantics of the

program.

def f x1 x2 � � � xn = e =) f = �x1: �x2: � � � �xn: e

We translate the recursive functions into an application of �x to their corresponding non-

recursive functionals where the function identi�er is abstracted out as a parameter. Mutually

recursive functions are treated the same way to obtain a joint �xpoint in a tuple as shown

13The let and the �-abstraction constructs are the only means of binding (or de�ning) identi�ers to values.
The binding of x in \�x: e" is visible inside e and that in \let x = e1 in e2" is visible only inside e2.

42

Program ::= De�nition ; � � � ; De�nition ; Main

De�nition ::= Def ProcId Identi�er � � �Identi�er| {z }
n

= Expression (n > 0)

ProcId ::= Identi�er
Main ::= Block

Expression ::= SimpleExpr
j Constantn SimpleExpr � � �SimpleExpr| {z }

n

(n > 0)

j Block
SimpleExpr ::= Constant0 j Identi�er j ProcId

Constant0 ::= 0 j 1 j � � � j true j false j nil j � � �

Constant1 ::= mk closure j hd j tl j nil? j � � �
Constant2 ::= + j - j � � � j < j = j � � � j allocate j I select j

cons j apply j � � �
Constant3 ::= cond j � � �

Block ::= f Statement ;
� � �
Statement

In

SimpleExpr g
Statement ::= Binding j Command
Binding ::= Identi�er = Expression
Command ::= null j I set SimpleExpr SimpleExpr SimpleExpr

Figure 2.7: Syntax of Id Kernel Language.

43

below:

f1 = e1; f2 = e2; � � � ; fn = en =) f1; f2; : : : ; fn = �x �f1; f2; : : : ; fn: e1; e2; : : : ; en

The only task left now is to show how to partition all the bindings into groups of mutually

recursive ones and then to generate nested let bindings acceptable to our mini-language syntax.

This can be accomplished using the standard graph algorithm for �nding the strongly connected

components in a directed graph [1]. Each binding is assumed to be a node in the graph. There

is an edge from binding fi = ei to binding fj = ej in the graph whenever there is a call to fj

inside ei, or in other words, the de�nition of fi uses fj . This information is easily generated by

the compiler at the scope-analysis phase. This graph is called the Static Call Graph.

The algorithm for �nding the strongly connected components partitions the set of nodes into

groups so that every pair of nodes from a group is inside some cycle; in other words, the function

bindings corresponding to the nodes of a group are all mutually recursive. Considering each

group as one supernode (using the �xpoint tuple binding transformation as described above),

the graph becomes a directed acyclic graph (DAG) which can then be topologically sorted [1]

bottom up. This numbers the set of nodes so that the nodes being used by other nodes appear

earlier in the numbering than those using them. This ordered list of bindings (corresponding

to each node in the above numbering) is then directly used to generate a series of nested let

bindings in the mini-language syntax.

It is a simple matter to see that the same steps can also be applied to the internal blocks

as well as to the main expression of the Id kernel program (which is simply a block). Thus, at

each block level all the bindings are collected and transformed into nested let statements using

the above procedure. Finally, embedding the translated main expression inside the innermost

top-level let binding yields a giant mini-language expression corresponding to the original Id

kernel program.

2.4.3 A Translation Example

The above procedure is illustrated in �gure 2.8 with a somewhat contrived example. Here,

we wish to compute parities (odd or even) of a list of numbers (refer to �gure 2.8 (a)). The

function parities uses mapcar given earlier to map find parity over the given list. The parity

is computed by a pair of mutually recursive functions odd parity? and even parity? using a

test for evenness (even?). The above set of functions could be used as shown in the example

44

def parities l = mapcar find parity l;

def find parity n = if odd parity? n then "ODD" else "EVEN";

def odd parity? 0 = false

|..odd parity? n =

if even? n then (odd parity? (n/2)) else (even parity? ((n-1)/2));

def even parity? 0 = true

|..even parity? n =

if even? n then (even parity? (n/2)) else (odd parity? ((n-1)/2));

def even? n = (floor (n/2)) * 2 == n;

parities (2:5:nil) =) "ODD":"EVEN":nil

(a): Id code.

(b): Static Call Graph.

let even? = �n.(== (* (floor (/ n 2)) 2) n)
in let odd parity?,even parity? =

�x �o; e.
�n. (cond (== n 0) false (cond (even? n) (o (/ n 2)) (e (/ (- n 1) 2)),

�n. (cond (== n 0) true (cond (even? n) (e (/ n 2)) (o (/ (- n 1) 2))

in let find parity = �n. (cond (odd parity? n "ODD" "EVEN")

in let mapcar =

�x �m: �f: �l.
(cond (== l nil) nil

(let x,xs = hd l,tl l in (cons (f x) (m f xs))))

in let parities = �l. (mapcar find parity l)
in parities (cons 2 (cons 5 nil))

(c): Mini-Language Code.

Figure 2.8: Translating a program in Id Kernel to that in Mini-Language.

45

- - --/ - -
() (

_par (G:0~)

' - - '-- -- - - -
2 3 4

(
even? 1

'--
) - --

def id length nil = 0

| id length (:l) = 1 + id length l;

id length (true:nil), id length (2:nil)

let id length =

�x �f.
(�x.
(cond (== x nil)

0

(let l = tl x
in

(+ 1 (f l)))))

in

(make 2 tuple

(id length (cons true nil))

(id length (cons 2 nil)))

(a): Id code. (b): Mini-Language code.

Figure 2.9: List length function and its translation into the Mini-language.

query. The static call graph appears in (b). The graph contains a node for each top-level

de�nition and edges to reect the calling dependency. The graph has been partitioned into its

strongly connected components (enclosed within dashed lines) and the components have been

assigned a topologically sorted order. Finally, in (c) we use this sorted ordering to generate the

translation into the mini-language.

We will come back to this process of �nding the strong components and then topological

sorting bindings at the top-level in the next chapter when we consider an incremental compi-

lation environment. There we will show how to generate the call graph incrementally, since we

will have only one top-level de�nition binding to process at a time.

2.4.4 An Inference Example

Now we will present a simpler example and show the mechanism of inference in detail. Our

program will be in standard Id syntax, while its inference will be in the form of a derivation

tree on the mini-language syntax. With the above discussion on translation in mind, we can

do so freely.

Consider the id length function in �gure 2.2 (c), which is reproduced in �gure 2.9 for

convenience along with its translation into the mini-language. Primitive functions have been

used freely to enhance clarity.

The inference tree appears in �gure 2.10. The syntactic terms, the type environment, and

the type expressions have been abbreviated appropriately for clarity and their expansions appear

in �gure 2.11.

46

Figure 2.10: Inference tree for the list length example.

47

TE4 f-- cons : int -+ (list int) -+ (list int) TE4 f-- 2 : int

TE4 f-- cons 2 : (list int) -+ (list int) TE4 f-- nil : (list int)

TE4 f-- id_length: (list int) -+ int TE4 f-- e20 nil : (list int)

TE4 f-- cons : bool -+ (list bool) -+ (list bool) TE4 f-- true : bool

TE4 f-- cons true : (list bool) -+ (list bool) TE4 f-- nil : (list bool)

TE4 f-- id_length : (list bool) -+ int TE4 f-- e19 nil : (list bool)

TE4 f-- make_2_tuple : int -+ int -+ (int, int) TE4 f-- id_length e18 : int

TE4 f-- make_2_tuple e16 : int -+ (int, int) TE4 f-- id_length e11 : int

TE3 f-- + : int -+ int-+ int TE3 f-- 1 : int

TE3 f-- + 1 : int -+ int

TE3 f-- f : (list t) -+ int TE3 f-- 1 : (list t)

TE3 f-- f 1 : int

TE2 f-- t1: (list t)-+ (list t) TE2 f-- x: (list t) !
TE2 f-- tl x : (list t) TE2 + {l f-> (list t)} f- e12 e13 : int

TE2 f-- eq : (list t) -+ (list t) -+ bool TE2 f-- x : (list t)

TE2 f-- eq x: (list t)-+ bool TE2 f-- nil: (list t)

TE2 f-- cond : bool -+ int -+ int -+ int TE2 f-- e11 nil : bool

TE2 f-- cond e10 : int -+ int -+ int TE2 f-- 0 : int

TE2 f-- e7 0 : int -+ int

TE 1 + {x f-> (list t)} f- e5 e6 : int

TE + {J f---> ri} f- >..x. e4 : r1

TE f-- fix: (r1 -+ r1) -+ r1 TE f-- >..J. e3: r1-+ r1

TE2 f-- let 1 = e8 in e9 : int

TE f-- fix e2: r1 TE+{id_length f-> Vt.(list t)-+ int} f- e14 e15: int, int

TE f-- let id_length = e0 in e1 : int, int

Figure 2.11: Syntactic abbreviations for the inference tree.

48

eo
let id_length = @ in

~2

fix >i.J
/4

AX
/e4 make_2_ tuple @ e

I~
id_length @

)20\ @

/45~ Iv e8 e9
@ let 1 = @ in @

l' \ // /•,~,,
/ ~10 tl X @ @

cond /e!\ / \ /\
@ nil + 1 / 1

I\

id_length @

/49\
@ nil

/\
cons true

@ nil

I\
cons 2

-- X

The meaning of subexpressions (bottom-up)

eo fix e2 eg e12 e13

e2 >i.J. es TEs TE2 + {l f-+ (list t)}

es AX. e4 e12 + 1

T1 (list t) ----; int e13 fl

TE1 TE+ {ff--+ ri} e1 e14 e15

e4 e5 e6 TE4 TE+ {id_length f-+ Vt. (list t) ----; int}

TE2 TE1 + {x f-+ (list t)} e14 make_2_tuple e16

e5 e7 0 e15 id_length e17

e6 let 1 es in e9 e16 id_length e1s

e7 cond e10 e17 e19 nil

e10 eunil e19 cons true

eu eq X e1s e20nil

es tl X e20 cons 2

The tree should be read bottom-up which actually corresponds to a top-down inference

strategy. The type of the whole program has been inferred as (int ; int) at the bottom-most

inference for the outermost let construct. The initial type environment TE contains type bind-

ings for all the primitive functions. Note the instantiations of polymorphic primitive functions

like cons, nil, cond, and the �x operator. Also note that the LET rule of inference does not

allow closure on the free type variable t inside the de�nition of id length, while it permits it

for the outermost let construct. There, it is no longer free and can be safely closed, giving rise

to the polymorphism exhibited by id length in its two applications.

2.5 Discussion

Restricting quanti�cation in a type scheme to only the outermost level is indeed a restriction on

the class of well-typed programs accepted by this type system. Type systems for Second-order

Lambda Calculus accept a strict superset of this class. The quanti�cations, in that case, may

be anywhere in the type expression, not just at the outermost. To give an example, consider

the following program fragment which fails to type-check in this system14:

(�f: if (f 1) = 1 then (f true) else (f false))(�x: x)

Here, the argument of the �rst lambda-abstraction is expected to be a polymorphic function,

so that its type would have an embedded quanti�er and this would not be allowed in this system.

But, if the application argument is statically known to be a polymorphic function, we can indeed

take advantage of this system by declaring it in a let construct as follows:

let id = �x: x
in

if (id 1) = 1

then (id true)

else (id false)

As we have seen earlier, the polymorphism is initiated by a let declaration for an identi�er.

Then, wherever that identi�er is used in the body of the let declaration, we can treat it as

polymorphic in the sense described above. So, the above program fragment type-checks, because

the use of id in the predicate instantiates it to the type int ! int , while its use in the arms of

the conditional instantiate it to the type bool ! bool .

Indeed, this may seem to be a spurious kind of polymorphism. The astute reader can see

that this is exactly equivalent to the situation where we interpret the let construct as a macro

14\if e1 then e2 else e3" is used instead of \cond e1 e2 e3" to enhance readability.

49

and perform textual substitution of the declared identi�er with its binding everywhere within

the body and then proceed to type check with only ground types. So, the above example would

macro-expand to:

if ((�x: x) 1) = 1

then ((�x: x) true)

else ((�x: x) false)

Here, each identity function can be individually monomorphically typed to the desired type

as before.

So there is no active or dynamic polymorphism in this system in the sense of Girard-Reynolds

second-order polymorphic Lambda Calculus [13, 23, 53] and indeed the class of programs ac-

cepted by this system is exactly the same as that of simply typed �rst-order Lambda Calculus.

But this system o�ers it in a package that gives the appearance of (static) polymorphism.

The down side of this succinct representation of polymorphic programs is that the worst-

case running complexity of this type inferencing mechanism is provably exponential. There are

very recent results in the literature to show that the Hindley/Milner type inference system is

DEXPTIME-complete [31, 38]. This gives a tight bound over the previous lower bound result

of PSPACE-hard by Mitchell [29]. These results are contrary to the common folklore that

this system is fairly e�cient in practice, and came as a surprise to the programming language

community.

The point is that this system has much more to o�er to a compiler writer than simply

an exponential time type inferencing mechanism for a restricted subset of polymorphic typed

Lambda Calculus. The system allows the programmer to dissociate the declaration from its

usage in a polymorphic setting in a general, safe, and systematic manner, leading the way to

resolving important pragmatic issues of incremental compilation and type-checking, separate

compilation, and modularization. It is for these pragmatic reasons that this system is now

one of the most widely used type inferencing mechanisms for modern programming languages.

Once the proper mechanisms get established, other advantages crop up too, as they �t well

in the same philosophy. This includes the treatment of overloaded operators and polymorphic

references. We will see these extensions in later chapters.

50

Chapter 3

Incremental Type Inference

A reasonably rich type system equipped with features like polymorphism and type inference

as we saw in the last chapter o�ers much more programming convenience over PASCAL-like

languages. Still, this leaves a lot to be said for our goal of a exible program environment

that integrates these features seamlessly with incremental program development, testing, and

editing, requiring minimal e�ort on part of the user or the system while maintaining overall

consistency and correctness of the program being developed.

System designers have approached this problem in various ways. Some systems support

separate compilation of physical partitions (such as �les) of a large program that allows them to

maintain consistency among the various components automatically, given some inter-partition

dependency information; the UNIX1 make facility [21] is an example. But then, it is the

user's responsibility to setup the inter-dependence explicitly and the system has no automatic

knowledge of the actual dependency among the partitions. The partitioning itself is arti�cial

and has no default logical relationship with the actual code dependencies in the program.

It is the user's responsibility again to group the logically related procedures into the same

physical �le partition in order to use this facility meaningfully. Furthermore, the violation of

the dependencies is based, pessimistically, on the date/time of their creation, instead of some

syntactic or semantic consistency check involving the partitions. Thus, even a simple operation

such as reading a �le and writing it back may cause a violation of its dependencies and trigger

a recompilation of the entire application.

Some programming environments such as that for Miranda2 [60, 61] ensure that each physi-

cal �le partition (called a Miranda-script) also represents an independent logical partition of the

1\UNIX" is a trademark of Bell Laboratories.
2\Miranda" is the trademark of Research Software Ltd.

51

complete system by requiring the user to explicitly declare its logical interface: the names and

types of objects and procedures to be exported or imported etc. Other structured programming

languages like ML or CLU provide independent language constructs for logical partitioning of

large programs into modules [37, 25] or clusters [36] respectively. But such partitioning is

not geared towards fast, interactive and incremental program development. Such partitioning

helps in overall structuring of a large system and individual maintainence of each of its logical

components but is still too coarse (usually consisting of several de�nitions per module) for the

purpose of interactive and incremental manipulation of individual de�nitions contained within.

Also, these systems cannot handle debugging and testing of incomplete programs; all imported

objects in an interface speci�cation are expected to be present before anything in that logical

partition can be executed, again imposing unnecessary ordering requirements on the interactive

user during the program development phase.

As far as we are concerned, an incremental compilation system should allow the user to

partition his/her program into several, small and independent compilation units that may be

provided in arbitrary order, while it automatically generates inter-unit dependency information

and maintains consistency among them. The information should be inferred from the program

text and may be continually updated as the user develops or edits the program. The size of the

compilation unit is a key factor in the exibility o�ered by such a system.

LISP programming environments have turned out to be good role models for the desired

programming ease. The unit of compilation in these systems is a single top-level de�nition; a

higher-order, function oriented3 style of programming keeps their size small and easily manipu-

lable. These systems allow the user to furnish a sequence of de�nitions constituting the program,

one by one and in arbitrary order resolving global references to other de�nitions automatically

by dynamic linking. They allow editing and testing parts of an incomplete program or debug

those parts that are incorrect, without worrying about the status of the rest of the program.

Such situations are common during program development and debugging/testing. Higher level

partitioning into modules and clusters or physical partitioning into �les is still possible and is

orthogonal to the issue of providing this de�nition level incrementality. Contrast this with a

PASCAL-like programming environment where a complete, correctly compiled program has to

be provided before any of its components can be exercised and even a small amount of editing

in some part calls for a recompilation of the whole program.

3This may or may not be functional which generally implies being side-e�ect free.

52

In a dynamically typed system such as LISP, providing this exibility is not too di�cult since

most of the inter-procedural consistency checking is postponed until the run time, which is also

the earliest possible time when we detect a type-error. But for a compiler of a strongly typed

language aiming at static type analysis, as we have in Id, it is clear that this incrementality

means extra work in maintaining interprocedural consistency which gets further complicated

due to type inference, polymorphism and higher-order functions.

It is our intention in this thesis to incorporate LISP-like programming incrementality within

the framework of Hindley/Milner static type inference mechanism. Nikhil [44] raised this prob-

lem in the context of ML programming environment and outlined a scheme for incremental

polymorphic type inference that we have concretized and implemented here for the program-

ming environment of Id. In particular, we will show how to modify the Hindley/Milner type

system to work in an incremental fashion, while still retaining its nice properties of soundness

and completeness. Our unit of compilation is a single top-level de�nition just as in LISP4. A

complete Id program is a sequence of user de�ned functions followed by a main expression to

evaluate (refer to section 2.4). The sequence of de�nitions, input through the editor, are al-

lowed to be incrementally compiled and loaded into the system. The run time environment then

simply becomes an interactive extension of the editor-compiler giving the exibility of an inter-

pretive environment with the execution speed of compiled code to form an edit-compile-execute

loop.

The rest of the chapter is organized as follows. First in section 3.1, we describe a general

framework for incremental compiler analysis. In section 3.2, we describe the basic mechanism

of our incremental Hindley/Milner type inference system. A proof of the correctness of this

system is developed in sections 3.3 through 3.6. Extensions to the basic system and a discussion

of its complexity appear in sections 3.7 and 3.8 respectively. Finally in section 3.9, we discuss

some optimizations and general features our system, describe related work in this �eld, and

report the current status of our implemention.

3.1 Incremental Analysis

Before we describe the incremental type inference algorithm, it is useful to introduce a general

notion of incremental book-keeping and analysis of compile-time properties that we will use

4There are other systems such as GLIDE by Toyn et al.[58] that carry the same incremental philosophy to an
even �ner grain: for each subexpression. We will describe such related work at the end of this chapter.

53

throughout the rest of this chapter.

Equation 2.3 expresses a complete program as a giant expression with top-level de�nitions

appearing in nested let expressions. In section 2.4 we went into some detail of translating

the Id-kernel language into this mini-language. However, in an incremental system with the

grain of incrementality being a single de�nition, this translation is not always possible at the

top-level. The user may supply one or few de�nitions at a time in some arbitrary order and

refer to de�nitions that are as yet unde�ned. We need to get a good handle on maintaining

partial information for the compilation properties of the top-level de�nitions. So, we extend

the grammar of our mini-language in order to model this scenario more closely.

3.1.1 Incremental Mini-Language

We introduce the notion of top-level, independent bindings as a unit of compilation. A complete

program now is a set of such bindings. As before, we will freely (and informally) use tuple

expressions and tuple bindings in this extended mini-language as well5. The extended mini-

language appears below.

e 2 Expressions ::= c

j x

j �x: e1

j e1 e2

j let x = e1 in e2

(3.1)

B 2 Bindings ::= x = e (3.2)

P 2 Programs ::= B1; B2; � � � ; Bn; it = e (3.3)

The expression syntax remains the same, but a program, instead of being a giant nested

expression rearranged according to our static call graph transformation (section 2.4.2), now

consists of an explicit sequence of top-level bindings followed by an expression query. This means

that top-level mutually recursive de�nitions are no longer grouped together in an application

of the �xpoint operator to a functional as was done in section 2.4.2. Our incremental algorithm

will take care of that. This setup resembles the organisation of a program in the Id kernel

language (�gure 2.7). The di�erence is that the �nal query is expressed here as a special

5As stated in section 2.4, this does not a�ect the Soundness and Completeness properties of our type inference
system (theorems 2.5, 2.7 and 2.8) because tuples can always be simulated by the function type constructor (!)
alone.

54

binding to a prede�ned variable \it"6 which is also evaluated after being compiled within the

current environment. The RHS of each top-level binding is, as before, completely translated

into an expression in the mini-language, which means that mutually recursive internal bindings

are still converted into an application of the �xpoint operator to a functional constructed out

of those bindings.

3.1.2 Incremental Book-Keeping

The basic idea in incremental compilation is to be able to compute some desired compile-time

properties for an aggregate of identi�ers in an incremental fashion. This aggregate forms the

identi�er namespace that we operate in. For our purposes, this is the set of all top-level

identi�ers.

The union of all the property mappings of namespace identi�ers to their property-values

constitutes a compilation environment. The goal is to incrementally accumulate information

into the compilation environment about all the desired properties of all the relevent identi�ers

by successive re�nements without having to look at everything at the same time.

We distinguish between two kinds of properties. Some local properties may be computed

independently and locally within a single unit of incremental compilation, as in the case of

�nding the free identi�ers used in the body of a top-level de�nition. Others are global properties

that might require information on the same or other properties of other identi�ers in order to be

computed. The type of top-level identi�ers is an example of such a property. Obviously, it is the

latter that make incremental book-keeping non-trivial because of the non-local interdependence

among the identi�ers. We introduce a general book-keeping mechanism to keep track of all such

interdependences7 .

First, we formally de�ne what constitutes a property.

De�nition 3.1 A property P = (D;v) is characterized by a domain of values D and a binary

predicate test v. Given two values, v1; v2 2 D for a property P = (D;v), v1 v v2 holds if and

only if v1 is consistent with v2 according to the property we want to characterize.

The domain of values is simply a syntactic set of values with some structural relationship

de�ned among its elements through the predicate relation (see �gure 3.1 (a)). The predicate

6This is adapted from the ML interactive runtime environment where the last expression evaluated is referred
to as \it".

7A variation of the mechanism described here was �rst implemented (without formal characterization) as part
of the Id Compiler by Traub [59].

55

(a): A Property Domain D.

CHECK: C : D � D �! fpass; failg

(b): Assumptions and Assumption Checks.

Figure 3.1: A general framework for Properties and Assumptions.

56

Domain Relation: Binary Predicate C

Assumer

p

0---~0
Vy

Assumee

Assumed Value

actually de�nes the structure of the domain according to whatever notion of consistency we

want to impart to the desired property. For example, the compilation property denoting the

syntactic arity of function de�nitions is de�ned to be consistent if each function identi�er is

used with the same arity throughout the program. Thus, the property will be characterized

by the domain of natural numbers along with the predicate test for equality. The domain also

contains a special element \?" (read \bottom") that corresponds to the default property value

assigned to as yet unde�ned or unknown identi�ers in the namespace.

The test of consistency is useful, for instance, in comparing the values of some global prop-

erty of a particular object before and after a certain event. For example, we can compare the

type of a function before and after its free identi�ers get de�ned; the test in this case would

be a subsumption (instantiation) test between the involved type-schemes. Also note that the

test is irrelevent for local properties because by de�nition, no external event can a�ect a local

property of an identi�er. Once computed, the value of a local property remains the same unless

it is re-computed. In such cases we will ostensibly record the test to be that of equality8.

The interdependences among the global properties of identi�ers at various times during

incremental compilation is maintained via sets of assumptions (see �gure 3.1 (b)).

De�nition 3.2 An assumption (x; y; vy) 2 AP made by an assumer identi�er x is a record

of an acceptable value vy 2 D of some property P = (D;v) of another assumee identi�er y.

Associated with an assumption set, is a binary predicate assumption check C, that veri�es a

subsequent actual value v0y of the assumee identi�er against its previously assumed value vy for

consistency/compatibility. This check may use the property predicate v for this purpose.

A set of assumptions for a given property P = (D;v) can be represented in any one of the

following three isomorphic forms each of which identi�es the relationship among the assumer

identi�er, the assumee identi�er, and the assumed property value.

� As a set of triples of assumer, assumee, and the assumed value:

AP 2 powerset(Identi�er-Namespace � Identi�er-Namespace � D)

� As a map from assumer to a set of assumee and assumed value pairs:

AP 2 Identi�er-Namespace
�n
��! powerset(Identi�er-Namespace �D)

8Usually the meaning of a test for equality is clear from the property domain; in case of structured objects
we usually opt for structural equality rather than pointer equality.

57

� As a map from assumer to another map from assumee to its assumed value:

AP 2 Identi�er-Namespace
�n
��! (Identi�er-Namespace

�n
��! D)

The assumption check C is always a binary predicate denoted by C 2 (D�D)! fpass; failg.

We separate the assumption check C from the property predicate v because several assumption

domains may be associated with the same property using di�erent assumption compatibility

checks that are all derivatives of the same property predicate test. We will see examples of this

later on.

By de�nition, each property generates a property environment as a map from the identi�er

namespace to the property domain, which becomes a part of the overall compilation envi-

ronment. The sets of assumptions associated with each property make up the book-keeping

overhead of the compilation environment.

3.1.3 Overall Plan for Incremental Analysis

The overall scheme for incremental property computation and maintenance appears in �g-

ure 3.2. We undertake the following steps.

1. First, we initialize the compilation environment for the incremental computation and

accumulation of each of the desired compilation properties.

2. Next, for each new or edited binding, we compute its properties and collect the appropriate

property assumptions. While computing properties for a top-level binding, the identi�er

on the LHS is taken to be the assumer and it can make assumptions about the various

properties of the free identi�ers in the RHS.

3. After editing and compiling some de�nitions we may wish to evaluate a given expression

query. Before we do that, all the assumptions for each of the top-level identi�ers are

checked for consistency against their latest property values using the associated assump-

tion checks. Success in the test indicates an agreement between the expected and the

actual property value and the compilation is considered successful. A failure indicates a

non-trivial discrepency between the compilation environment existing at the time when

the assumer was compiled and the latest environment. This calls for an error message to

be agged or a recompilation9 of the assumer within the latest environment.

9We use the term recompilation somewhat loosely here. Usually it refers to a re-analysis of the involved
de�nition. We will characterize what constitutes a recompilation more concretely in section 3.9.

58

Figure 3.2: Overall Plan for Incremental Property Maintenance.

59

Initialize Property Environments

Process-binding(Gurrent-Env, Binding) ----• {Assumptions, New-Env)

i

NO

New/Edited Binding

_J
Check All Assumptions _J

NO

Recompile

--►• Control Flow

Run Program! -► Data Flow

4. Finally, when all the collected assumptions have passed their checks successfully, then

we allow the evaluation of the expression query to proceed. The incremental property

maintenance system guarentees that all the desired compilation properties have been

computed correctly, i.e., the property values for each of the top-level identi�ers are exactly

same as if the complete program had been compiled all together.

The above operational description of the incremental book-keeping mechanism is necessarily

quite high-level. The success or failure of this mechanism in computing the desired properties

correctly and e�ciently depends upon several factors such as the semantic characteristics of

each property domain and how it relates to other domains, the internal structure of the prop-

erty domain governed by the binary relation, the computation algorithm for the property, the

kinds of assumptions collected and the assumption checks performed for each domain, and the

incremental compilation environment history and its maintainence. We show the correctness of

this incremental system in computing the types of identi�ers within the well de�ned framework

of Hindley/Milner type inference system.

3.2 The Incremental Type Inference System

Our goal is to design an incremental type inference system that guarantees that the types of all

top-level identi�ers in a given program are computed correctly. Here correctness implies that

the incremental system infers exactly the same type-schemes for each of the top-level identi�ers

in a given Id program as the simplistic complete program approach described in section 2.4,

using the basic type inference system of the last chapter.

We will present our system in several layers. First, we present a basic incremental type

inference system and subsequently show its correctness. We will make several simplifying as-

sumptions and ignore complexity considerations in the basic system in order to show its cor-

rectness easily. In later sections, we will relax these restrictions and describe optimizations that

maintain correctness.

3.2.1 Components of the Basic System

We make the following assumptions in our basic system.

Assumption 1 The unit of compilation is a single top-level de�nition (single top-level binding

in the mini-language). We also assume that each binding is processed in its own separate

60

invocation of the compiler10.

To achieve correctness in the sense mentioned above, we must be able to reject the programs

that generate a type error when typed under the complete program system and also compute

the same types for each top-level identi�er when given a complete and type-correct program.

Note that we can only make a correspondence claim for complete and type-correct programs:

complete because that is the only way to verify the computed types against the simplistic

complete program approach, and type-correct because we are not guaranteed to �nd the same

type-errors since the two systems may have di�erent ordering of top-level bindings11. Thus in

showing this correspondence, we make the following additional assumptions.

Assumption 2 We assume that all nodes in the complete static call graph are type-checked at

least once in the incremental system.

This means that eventually the incremental system gets to look at all the information

necessary (the complete program) even though it looks at it incrementally. This constraint is

easily met by explicitly detecting the end of a complete program. We will incorporate such

a test later in section 3.7. For the basic system, it is the user's responsibility to supply the

complete program.

Assumption 3 We assume that the top-level de�nitions are not edited between the individual

invocations of the compiler on each one of them.

This only means that the top-level de�nitions already supplied are not allowed to change

interactively. This restriction will be relaxed later on as well.

Compilation Properties

We maintain the following compilation properties in our system.

1. Global property Type = (Type-Schemes;�) (see �gure 3.3 (a)). This property records

the type12 of all the identi�ers. The domain is structured using the instantiation relation

10A group of bindings can be handled easily by invoking the compiler on each binding one by one.
11In fact, it is possible to run into di�erent type-errors with the same program if the order of de�nitions is

altered. This is because that the place where a type-error is detected depends on the exact sequence of uni�cations
performed during type-checking.

12Note that the word type is used here as the name of a compiler property which, in fact, corresponds to the
property domain of Type-Schemes.

61

(a): Type Property Domain.

(b): SCC Property Domain.

Figure 3.3: Compilation Properties used in Algorithm W1.

62

Domain Relation: Instantiation >-

Domain Relation: Subset C

� (de�nition 2.7). The \bottom" element of the domain is the most general type-scheme

8�:�. The main goal of our type inference system is to compute this property incremen-

tally for all the top-level identi�ers. The mechanism of computation of this property for

the complete program was described in su�cient detail in the last chapter. As de�ned by

equation 2.8, we denote the mapping of identi�ers to their types in a Type-Environment

(TE).

2. Global property Strongly-Connected-Components = (powerset(Identi�ers);�) (see �g-

ure 3.3 (b)). This is the second global property that we need to compute. The strongly

connected component (SCC) of an identi�er is the set of all identi�ers in the static call

graph that are mutually recursive with the given identi�er. The domain of this property

is the powerset (set of all subsets) of the set of all top-level identi�ers. Therefore, it is

appropriately structured using the subset relation for sets of symbols (identi�ers). We

denote the mapping of the identi�ers to their recursive sets in a SCC-Environment (SE).

SE 2 SCC-Environments = Identi�ers
�n
��! powerset(Identi�ers) (3:4)

There are other properties that are useful in computing the above properties and we may

record them in the compilation environment as well. Such properties will be computed and

recorded in compiler phases preceding the type inferencing stage. In particular, we need to

compute the set of free identi�ers (FId) occuring in each top-level binding in the scope-analysis

phase of the compiler. This is a local property and is necessary in order to reconstruct the static

call graph and subsequently its strongly connected components. We will not worry about such

outside properties and focus our attention only to those computed during the type inferencing

phase as enumerated above.

Property Assumptions

We maintain a set of type assumptions (M) to record the actual type instance of each use

of a free generic identi�er in a top-level de�nition (see �gure 3.4). The �nal type-scheme of

the assumee identi�er is expected to be at least as polymorphic as to be able to generate all

these type instances. In some sense, these type instances describe an upper boundary within

the type-scheme domain that the �nal type-scheme of the assumee identi�er must be able to

instantiate. So, we record this boundary13 to verify it later against the actual type scheme of

13It is possible to record a single type-scheme instead, which acts as the greatest lower bound (glb) of this

63

Figure 3.4: Upper Bound Type Assumptions (M) used in Algorithm W1.

the assumee identi�er using the subsumption test on types. If the �nal assumee type scheme

fails to instantiate any of these upper bounds, we can conclude that the upper bounds for

the assumer were collected under overly relaxed (polymorphic) or substantially di�erent type

environment and the assumer identi�er should be recompiled.

M 2 Upper-bd-type-assumptions = Identi�ers
�n
��! Types

CHECK: 8(y 7! �y) 2M; TE(y) � �y

(3:5)

3.2.2 Mechanism of the Basic System

Following the outline of the last section (refer �gure 3.2), now we describe how the properties

de�ned above are initialized and computed.

Initialization

Our identi�er namespace consists of the set X = fx1; x2; : : : ; xng [fitg of identi�ers bound in

the LHS of the top-level bindings in a complete program as de�ned by equation 3.3. The initial

compilation environment (TE0, SE0) assigns the bottom elements of the respective property

upper boundary, but we chose not to do so for simplicity.

64

Types

0-►0

71 y 72 y

Upper Bound Type Assumptions {M} = {x,y,7;)

Assumption Checks: TE(y) t 7;

3
7 y •••

Def W1(TEi�1,SEi�1,Bx) =
Let Bx be the binding `x = ex'.
Construct the current call graph Gi using the free identi�ers (FId) property.
SCCi

x = fz1; : : : ; x; : : : ; zng be the current strongly connected component of x in Gi.

SCC Environment: SE i = SE i�1 nSCCi
x
+fzk 7! SCCi

xg 8zk 2 SCCi
x.

for each top-level identi�er zk 2 SCCi
x do

Let ek be the RHS expressions associated with zk.
Let �k1; : : : ; �kn be new type variables.
New-TE i

k = TE i�1 nSCCi
x
+fz1 7! �k1; : : : ; zn 7! �kng.

W 0(New-TE i
k; ek) = (Sik; �

i
zk
; Ai

k).
endfor.

Ui = Unify-Columns

0
BBBB@

Si1(�11) � � � Si1(�1k) � � � Si1(�1n)
...

...
...

Sin(�n1) � � � Sin(�nk) � � � Sin(�nn)
� iz1 � � � � izk � � � � izn

1
CCCCA

Type Environment: TE i = TE i�1 nSCCi
x
+fzk 7! close(Ui�

i
zk
)g 8zk 2 SCCi

x.

Upper-bd Type Assumptions: Mzk = UiA
i
knSCCi

x
8zk 2 SCCi

x.

Return (TE i; SE i).

Figure 3.5: The Incremental Algorithm W1.

domains to all the identi�ers in the namespace.

TE0 = TE lib [fxi 7! 8�:�g 8xi 2 X: (3.6)

SE0 = fxi 7! �g 8xi 2 X: (3.7)

TE0 also includes a standard library type environment TE lib that maps all the standard

library function identi�ers, prede�ned operators etc. to their appropriate type schemes. There

are no free type variables in this environment by assumption.

The Incremental Type Inference Algorithm W1

The algorithm W1 that processes each top-level binding by accumulating its incremental prop-

erties and generating the assumptions is shown in �gure 3.5.

There are a few points to note.

1. For each binding Bx, its current static call graph Gi is constructed out of the currently

available nodes. Such a graph is, in fact, a subset of the complete static call graph

65

Def W 0(TE,e) =
case e of

x) let

8�1 � � ��n: � = TE(x).
�1; : : : ; �n be new type variables.
� 0 = f�i 7! �ig� .

in

(ID,� 0,f(x 7! � 0)g).
�x: e1) let

� be a new type variable.
TE 0 = TE + fx 7! �g.
(S1; �1; A1) = W 0(TE 0; e1).

in

(S1; S1� ! �1; A1nfxg).
e1 e2) let

(S1; �1; A1) = W 0(TE ; e1).
(S2; �2; A2) = W 0(S1(TE); e2).
� be a new type variable.
S3 = U (S2�1; �2 ! �). (may fail)

in

(S3S2S1; S3�; S3(S2A1 [A2)).
let x = e1 in e2)

let

(S1; �1; A1) = W 0(TE ; e1).
TE 0 = S1(TE) + fx 7! close(S1(TE); �1)g.
(S2; �2; A2) = W 0(TE 0; e2).

in

(S2S1; �2; S2A1 [A2nfxg).
endcase.

Figure 3.6: Pseudo-code for the Inference Algorithm W 0.

66

Gt described in section 2.4.2 and includes all and only those nodes that are currently

reachable from the node corresponding to Bx.

2. For the current binding \x = ex", SCC
i
x is the set of all (already de�ned) top-level

identi�ers that are mutually recursive with x. In our basic system, we treat all the bindings

in a SCC as a single supernode of the static call graph and type all of them together. This

is similar in principle to their treatment in section 2.4.2 where the bindings of a SCC are

physically grouped together in a single expression. Since our system is incremental, this

may require keeping track of the actual code of each de�nition as it is compiled. This

information is not too di�cult to maintain in an integrated editor-compiler environment

like we have for Id.

3. We type-check the set of bindings for each zk 2 SCCi
x in two phases. First, we compute

the type of the RHS expression ek for each binding zk = ek independent of the types

of other top-level identi�ers of SCCi
x. We also collect type assumptions from the RHS

expression ek with zk being the assumer. Then in the second phase, we unify the de�ned

type � izk so obtained for each of the bindings with the type of zk as used while typing the

other bindings. We do this operation as one giant uni�cation of all the terms correspond-

ing to the same top-level identi�er. This operation e�ectively simulates the task of the

�xpoint operator used in translation of Id kernel in section 2.4.2. The upper bound type

assumptions are also appropriately adjusted to account for this uni�cation.

4. The algorithm W 0 used internally to actually compute the type of each top-level RHS ex-

pression is shown in �gure 3.6. It recursively collects all type instances generated for each

use of a freely occuring identi�er into a set of type assumptions for the current assumer.

We will show some assertions about these collected assumptions in the next section. The

free identi�ers of the RHS of a top-level binding are either other user-de�ned top-level

identi�ers or pre-de�ned library identi�ers. In either case, type assumptions correspond-

ing to identi�ers outside SCCi
x (generic identi�ers) are recorded as upper bound type

assumptions. Apart from this extra book-keeping, the algorithm is exactly the same as

the standard type inference algorithm W of �gure 2.6. Consequently, the theorems of

soundness and completeness of W (theorems 2.7 and 2.8) are also valid for W 0.

3.2.3 An Example

67

Environment Snapshot 1:

Type Environment : TE0 = TE lib + ff 7! 8�:�; g 7! 8�:�g

SCC Environment : SE0 = ff 7! �; g 7! �g

def f x = (x+1):(g x);

Environment Snapshot 2:

Type Environment : TE1 = TE lib + ff 7! N -> (list N); g 7! 8�:�g
SCC Environment : SE0 = ff 7! ffg; g 7! �g
Assumptions : Mf = f(:) 7! N -> (list N) -> (list N);

: (+) 7! N -> N -> N; g 7! N -> (list N)g

def g x = x:nil;

Environment Snapshot 3:

Type Environment : TE2 = TE lib + ff 7! N -> (list N); g 7! *0 -> (list *0)g

SCC Environment : SE0 = ff 7! ffg; g 7! fggg
Assumptions : Mf = f(:) 7! N -> (list N) -> (list N);

: (+) 7! N -> N -> N; g 7! N -> (list N)g

: Mg = fnil 7! (list *0);
: (:) 7! *0 -> (list *0) -> (list *0)g

Figure 3.7: An Example to show Incremental Type Inference.

68

We now show an example of our incremental analysis.

Figure 3.7 shows a small Id program consisting of two function de�nitions f and g. We take

snapshots of the compilation environment at each de�nition boundary. The initial environment

is empty. When function f is compiled, its type and the SCC properties are computed and get

recorded in the environment. All the assumptions made by f about its free identi�ers are also

recorded. When function g is compiled, similar book-keeping takes place. Note that the assumed

type (N -> (list N)) for g recorded in f's assumption set Mf , passes the instantiation check

because the de�ned type of g turns out to be (*0 -> (list *0)), which can instantiate the

assumed type. So, the system ends up with correct types for both the functions, even though

g was used inside f before it was ever de�ned.

3.3 Proving Correctness of the Incremental System

3.3.1 Overall Plan of Proof

Figure 3.8 gives the overall plan that we will follow in showing the correspondence between our

incremental strategy and the complete program approach of section 2.4. We start with an Id

kernel program as a set of top-level identi�er de�nitions followed by a �nal expression query.

In principle, we �rst need to transform this program to our mini-language syntax because our

inference rules and the algorithm are geared towards that. For our purposes, we will assume

that this transformation is already performed and we are supplied a sequence of mini-language

bindings14.

The di�erence between the incremental system and the complete program system lies in the

way we organize type inferencing on each of these bindings. The incremental system compiles

each individual top-level binding in succession in separate calls to W1 as described in the

last section, whereas the complete program system reorders them into one giant expression

as described in section 2.4.2 and calls the algorithm W on it. Thus, the incremental system

corresponds to an interactive user session, while the complete program system more resembles

batch-mode compilation.

In �gure 3.8, we have marked the state of the type environment at various intermediate

stages of the two systems. This gives us an idea about the actual type environments under

which the various bindings get type-checked in the two systems15. We are interested in the

14The actual Id Compiler does its type inferencing on the Id syntax tree directly.
15The actual type-checking environments could be very di�erent from each other even for the same bindings.

69

Type-checking an Id Kernel Program: De�nition ; � � � ; De�nition ; Main.
(Translate Id Kernel Program to Mini-Language)

Incremental System Complete Program System

TE0 = TE lib + fxi 7! 8�:�g :
B1

TE1 :
B2

...
TEn�1 :

Bn

TEn :
it = emain
...

TE i :
Bx

...
TE f :

TE t
x1

= TE lib :

let x1 = e1 in

TE t
x2

= TE t
x3

:

let x2; x3 = e23 in
...

TE t
xn

:
let xn = en in

TE t
emain

:
emain:

TE t = TE t
emain

+ fit 7! �emain
g.

A Session in the Incremental System and its Corresponding Complete Program.

Proof Strategy

SCC Environment Type Environment

Completeness: 8i: SE i � SE t Lemma 3.6. Completeness: 8i: TE i � TE t Lemma 3.8.
Soundness: SE t � SEf Lemma 3.9. Soundness: TE t � TEf Lemma 3.11.

Figure 3.8: The Overall Plan of Correctness Proof of Incremental System.

70

�nal type environments derived in the two cases. For the complete program case, the �nal

type environment TE t is obtained by extending the type environment TE t
emain

(under which

the �nal expression query is typed) with the type-scheme �emain
= close(�emain

) of the �nal

expression query itself. We compare this with the �nal type environment TEf computed by

the incremental compilation scheme when all the assumption checks (including those of the

special binding \it = emain") have been passed. Our goal is to show that TE t = TEf .

We show this correspondence in two steps. First in section 3.4, we show that starting

with a most general type environment (equation 3.6), the type environment in the incremental

compilation scheme gets increasingly more re�ned as each new top-level de�nition is type-

checked (lemma 3.7). We also show that at each step the existing type environment is more

general (in the sense of the � predicate on type-schemes) than the �nal type environment TE t

of the complete program case (lemma 3.8). In a way, this is a statement of completeness of the

algorithm W1, i.e., any typing derivable when the complete program is available, is an instance

of the typing derivable at any point during the above compilation scheme and hence is also

derivable. Since the type property directly uses the strongly connected component property, we

have to make similar completeness arguments about the SCC environments �rst (lemmas 3.5

and 3.6).

As the second step, in section 3.5, we show that the �nal type environment TEf obtained

after passing all the assumption checks is less general than (or at least as re�ned as) the �nal

environment TE t in the complete program case (lemma 3.11). Thus, any typing derivable from

TEf , is also derivable using TE t in the complete program case. This veri�es the soundness of

algorithm W1 that its �nal type environment cannot derive any extraneous typings. As in the

�rst case, we have to support this with a similar argument for the SCC environments as well

(lemma 3.9).

Combining these two steps in section 3.6, we conclude that �nal type environments in the

two cases are exactly the same and therefore derive exactly the same typings (theorem 3.12).

3.3.2 Properties of the Assumptions

Before we go into the details of proving algorithm W1 correct, let us �rst examine the charac-

teristics and signi�cance of the upper bound type assumptions (M) we collect for each of the

This is because the bindings actually get rearranged in topological order in the complete program system,
thereby �xing a particular type environment for each de�nition, while in the incremental system, the bindings
are processed in texual order interspersed with random requests for recompilation of some of the earlier bindings.

71

generic top-level identi�ers via algorithm W 0. By de�nition, these assumptions record all the

generic type instances created from the top-level type-schemes within the call to W 0. They

serve as an exact type speci�cation of the interface between the current top-level de�nition and

other de�nitions.

Below, we de�ne these assumption sets in a general setting and then examine their properties

in the context of algorithm W 0, which will help us later in the correctness proofs.

Notation 3.3 Given a typing TE ` e : � and its associated derivation tree, we write ATE ` e :

� , or simply A ` e : � (when TE is clear by context), as another typing representing the same

derivation tree that explicitly records all type instances of its free (external) identi�ers. ATE is

the set of assumptions constructed inductively as below16.

Case 1: | e) x | De�ne ATE = f(x 7! �)g.

Case 2: | e) �x:e1 | If inductively, ATE0

` e1 : �1 represents the typing for the body e1

where TE 0 = TE + fx 7! �2g, then de�ne ATE = ATE0

nfxg.

Case 3: | e) e1 e2 | If inductively, ATE
1 ` e1 : �2 ! �1 and ATE

2 ` e2 : �2, then de�ne

ATE = ATE
1 [ATE

2 .

Case 4: | e) let x = e1 in e2 | If inductively, ATE
1 ` e1 : �1 and ATE0

2 ` e2 : �2 where

TE 0 = TE + fx 7! close(TE ; �1)g, then de�ne ATE = ATE
1 [ATE0

2 nfxg.

Informally, the typing ATE ` e : � simply collects the actual type instances assigned to each

occurrence of an external identi�er inside the derivation tree of the typing TE ` e : � into the

assumption set ATE. ATE is a special multi-set mapping in the sense that several type instance

may be recorded for the same identi�er x corresponding to its various occurrences within e, and

also because it always refers to a particular derivation tree expansion of the typing TE ` e : � ,

recording a speci�c set of type instances used within it.

Note that ATE is not a type environment in itself, but it serves as a cumulative record

of the use of the free identi�ers (FId) of the expression e during the derivation of the typing

TE ` e : � . Note that the notation respects the scoping rules for free identi�ers of an expression;

the identi�ers bound locally via a let or a �-construct are free internally but bound in the

whole expression, therefore, the assumptions collected for these identi�ers are discarded as soon

as they become bound.

16Unless it is necessary to specify the assumer explicitly, we treat a set of assumptions as a mapping from the
assumee to the assumed value. The identi�er on LHS of the current top-level binding is implicitly taken to be
the assumer.

72

Now we de�ne operations on these assumption sets and show some of their properties.

De�nition 3.4 Let A be a set of assumptions collected for the typing TE ` e : � as de�ned

above. Then, for a speci�c occurrence of a free identi�er x within e, de�ne A(x) = �x if and

only if (x 7! �x) 2 A and this is the assumption corresponding to the speci�ed occurrence of x

as recorded in A ` e : � .

It is usually clear by context which occurrence of x is being referred to in A(x)17 because it

makes sense to use an assumption set A only as prescribed by the derivation tree of A ` e : � .

De�nition 3.5 Given an assumption set A collected for a typing TE ` e : � and another type

environment TE 0, we de�ne TE 0 � A if and only if Dom(A) � Dom(TE 0) and 8(x 7! �x) 2 A

with TE 0(x) = �x, we have �x � �x. Note that TE � A by construction.

The above de�nition provides a meaningful way to compare an assumption set with type

environments other than that for which it was originally collected. The following two lemmas

follow directly from this de�nition.

Lemma 3.1 Given an assumption set A collected for the typing TE ` e : � and another type

environment TE 0 satisfying TE 0 � A according to de�nition 3.5, then TE 0 ` e : � is also a

valid typing.

Proof: By de�nition, A records the actual type instances of all the free identi�ers used within

the derivation tree of the typing TE ` e : � . So, any type environment capable of generating

those external type instances is an acceptable candidate for preserving the derivation tree.

In other words, any type environment TE 0 satisfying TE 0 � A will be able to regenerate

the same derivation tree and hence produce a valid typing. 2

Note that in the above lemma, the original type environment TE may be incomparable to

the given environment TE 0, but as long as they can instantiate the same assumption set, both

are able to generate the same typing. This further corroborates the notion that the assumption

sets can be used as a minimal description of a typing with respect to the types of the free

identi�ers used in it.

Lemma 3.2 Given an assumption set A collected for a typing TE ` e : � and another type

environment TE 0, if TE 0 � A then for all substitutions S, S(TE 0) � S(A).

17Remember, A is a multi-set and can have multiple assumptions for x corresponding to its various occurrences
within e.

73

Proof: It follows trivially from de�nition 3.5 above and by pointwise extension of lemma 2.2.

2

We may note that the range of an assumption set is a set of types, and in general, may

contain several type variables all of which are free. In order to reason about substitutions as

applied to assumption sets, we partition these type variables into the following categories.

Notation 3.6 The set of all type variables in Ran(ATE) denoted by tyvars(ATE) is partitioned

into three categories.

1. First, there may be some type variables that occur free in TE as well. These are represented

by,

freevars(ATE) = tyvars(ATE) \ tyvars(TE)

2. There may be some type variables that are closed over by the generalization operation

(de�nition 2.8) of the LET rule while typing some let-construct within the expression e.

By de�nition of generalization, these have to be disjoint from the free type variables of TE

and become bound in that branch of the derivation tree. These type variables are represented

by genvars(ATE).

3. All other type variables that are neither free in TE nor appear bound in any branch of the

derivation tree are simply fresh type variables used in the derivation tree that have not yet

been closed over and are denoted by othervars(ATE).

By de�nition, we have,

tyvars(ATE) = freevars(ATE) [genvars(ATE) [othervars(ATE)

In order to make the partitioning clear, consider the following simple example in mini-

language. The expression e in equation 3.8 has a typing 3.9 while we collect the assumptions

as shown in equation 3.10. We have superscripted all identi�ers with their types for clarity.

e ::= let f (list �);� = nil(list �); y� in nil(list �); (3.8)

TE + fy 7! �g ` e : (list �) (3.9)

A = fnil 7! (list �); y 7! �; nil 7! (list �)g (3.10)

Among the type variables of the assumption set A, � is a free variable since it occurs free

in the supplied type environment as well, � is a generic variable since it is closed over in the

74

let-binding of f (assuming that � is not free in TE as well), and � belongs to neither of the

above two categories. Also note that there are two assumptions for nil corresponding to its

two occurrences within e as expected.

The following lemma forms the backbone of the assumption based reasoning in the subse-

quent proofs for correctness of our incremental system.

Lemma 3.3 Let ATE ` e : � be a typing corresponding to TE ` e : � de�ned via notation 3.3.

Then for any substitution S that does not involve genvars(A) in its domain or range, S(ATE) `

e : S� is also a valid typing corresponding to S(TE) ` e : S� .

Proof: Using lemma 2.3 we obtain,

TE ` e : �

=) S(TE) ` e : S� (3.11)

We only have to show that the assumption set AS(TE) corresponding to typing 3.11

is the same as S(ATE). We will prove this inductively by traversing the derivation tree

of typing 3.11 and verifying that the assumption set AS(TE) generated at each step (via

notation 3.3) satis�es the condition AS(TE) = S(ATE).

Case 1: | e) x | Typing 3.11 directly generates an assumption set AS(TE) = fx 7! S�g

which is the same as S(ATE).

Case 2: | e) �x:e1 | If inductively, AS(TE0) = S(ATE0

) for the antecedent S(TE 0) ` e1 :

S�1 where TE
0 = TE + fx 7! �2g, then AS(TE) = AS(TE0)nfxg = S(ATE0

)nfxg = S(ATE)

using notation 3.3.

Case 3: | e) e1 e2 | If inductively, A
S(TE)
1 = S(ATE

1) and A
S(TE)
2 = S(ATE

2) for the

antecedents S(TE) ` e1 : S(�2 ! �1) and S(TE) ` e2 : S�2 respectively, then AS(TE) =

A
S(TE)
1 [A

S(TE)
2 = S(ATE

1)[S(ATE
2) = S(ATE) using notation 3.3.

Case 4: | e) let x = e1 in e2 | We expand the immediate antecedents of typing 3.11

for this case18.

TE 0 ` e1 : S0�1 TE 0 + fx 7! close(TE 0; S0�1)g ` e2 : S�2

TE 0 ` let x = e1 in e2 : S�2
(3.12)

18For a proof of how these antecedents were arrived at, see [57], pages 18{20.

75

where,

TE 0 = S(TE) = S0(TE)

and S0 = S #tyvars(TE)

=) S(close(TE ; �1)) = close(TE 0; S0�1)

We are given that the substitution S does not involve any generic type variables that

are closed over in any branch of the derivation tree. In other words, S may involve

only those type variables that are not allowed to be closed over as far as this typing is

concerned. So we must have,

S(close(TE ; �1)) = close(S(TE); S�1)

Thus, we can replace S0 with S in typing 3.12 and use the inductive assumption for the

two antecedents, yielding the desired result AS(TE) = S(ATE) via notation 3.3.

2

The above lemma provides a way to use the assumption sets to obtain new correct typings

from old typings for the same expression. We can compare this with the lemma 2.3 which

establishes the substitution transformation using the type environments.

Now we come back to the algorithm W 0 (refer �gure 3.6) and show that the assumptions

collected there actually correspond to the typing generated by the algorithm. The proof of this

lemma is very similar to that of the soundness theorem 2.7.

Lemma 3.4 If assumption set A is collected in the call W 0(TE ; e) = (S; �; A) then A ` e : �

is a valid typing that corresponds to the typing S(TE) ` e : � generated through the soundness

theorem 2.7.

Proof: We prove this by structural induction on the expression e.

Case 1: | e) x|From �gure 3.6,W 0(TE ; x) = (ID; � 0; f(x 7! � 0)g). Clearly, f(x 7! � 0)g `

x : � 0 is a valid typing corresponding to ID(TE) ` x : � 0 directly from its de�nition in

notation 3.3.

Case 2: | e) �x:e1 | From �gure 3.6, the internal recursive call to W 0 for the body e1

76

yields (S1; �1; A1). So, inductively we obtain the following valid typing,

A1 ` e1 : �1

where S1(TE) + fx 7! S1�g ` e1 : �1

Using notation 3.3 for the above typing, we arrive at the following,

A1nfxg ` �x:e1 : S1� ! �1 (3.13)

where S1(TE) ` �x:e1 : S1� ! �1

As we can see from �gure 3.6, A1nfxg is exactly the assumption set returned from

W 0, so that typing 3.13 is what we want.

Case 3: | e) e1 e2 | Again, the internal recursive calls to W 0 inductively yield the

following,

A1 ` e1 : �1 (3.14)

where S1(TE) ` e1 : �1

and A2 ` e2 : �2 (3.15)

where S2S1(TE) ` e2 : �2

The substitution S2 does not involve any type variable from genvars(A1) (see nota-

tion 3.6) because its type variables can only come from either the free type variables of

TE , or absolutely fresh type variables generated while typing e2. Similarly, the substitu-

tion S3 = U(S2�1; �2 ! �) does not involve any type variables from either genvars(A1)

or genvars(A2). Therefore, lemma 3.3 can be applied to the typings 3.14 and 3.15 giving,

S3S2(A1) ` e1 : S3S2�1

=) S3S2(A1) ` e1 : S3�2 ! S3� (3.16)

and S3(A2) ` e2 : S3�2 (3.17)

Using notation 3.3 and the typings 3.16 and 3.17 we obtain the following valid typing,

S3S2(A1) [S3(A2) ` e1 e2 : S3�

where S3S2S1(TE) ` e1 e2 : S3�

which exactly corrresponds to the assumption set returned from the outer call toW 0.

Case 4: | e) let x = e1 in e2 | Just like in the last case, the internal recursive calls to

77

W 0 inductively yield the following,

A1 ` e1 : �1 (3.18)

where S1(TE) ` e1 : �1

and A2 ` e2 : �2 (3.19)

where S2S1(TE) + fx 7! �g ` e2 : �2

and � = close(S2S1(TE); S2�1) As in lemma 3.3.

We always allocate fresh type variables in generating instances of previously closed

type-schemes, including the type-scheme generated from the current let-binding. There-

fore, the type variables of S2 are either from these fresh type variables or from the free

type variables of TE , neither of which can appear in genvars(A1). So just like the pre-

vious case, we can apply S2 to typing 3.18 using lemma 3.3 and then combine it with

typing 3.19 using notation 3.3 to obtain the following valid typing,

S2(A1) [A2nfxg ` let x = e1 in e2 : �2

where S2S1(TE) ` let x = e1 in e2 : �2

which exactly corresponds to the assumption set returned from the outer call to W 0.

2

The above lemma validates the assumptions collected by algorithm W 0 in the sense that

the collected assumptions denote a valid typing. The fact that these assumptions describe a

minimum speci�cation of the interface between the binding currently being processed and the

external environment (lemma 3.1), and that we can manipulate them as pseudo-type environ-

ments (lemma 3.3), permits us to use them as the basis of our incremental book-keeping.

3.4 Completeness of Algorithm W1

Following the plan for the proof of correctness of our incremental system (section 3.3.1), we

�rst show some simple results about the strongly connected components of top-level identi�ers.

3.4.1 Completeness of SCC Computation

Lemma 3.5 Starting from SE0 (equation 3.7), if SE i and SEj (j > i) are the SCC environ-

ments obtained after the i-th and the j-th call to W1 then 8x 2 X, SE i(x) � SE j(x) (as an

abbreviation, we write SE i � SE j for this condition).

78

Figure 3.9: The Strongly Connected Components of x at various incremental stages.

Proof: We prove this by induction on i (refer �gure 3.9).

Base Step: It is clear from equation 3.7 that SE0 � SE j for every j > 0 since � is a subset

of any set.

Inductive Step: Assume that SE i�1 � SE j for every j > (i� 1).

Looking at the algorithmW1 (�gure 3.5), we see that SE i is the same as SE i�1 except

for the identi�ers in SCCi
x, where it is updated to the freshly computed component

SCCi
x. From assumption 3, no edge or node gets removed from the call graph once it

is added. If the current binding Bx has already appeared earlier, then there are no new

additions to the call graph either, and SCCi
x = SCCi�1

x . Therefore, SE i = SE i�1 � SE j

for every j > i using the inductive assumption.

If the binding Bx is being processed for the �rst time, then all its calling dependency

edges and some of its free identi�ers may have to be added to the call graph. In this

case, SCCi
x may di�er from SCCi�1

x . Now, for every new element y 2 SCCi
x (if any)

which is not present in SCCi�1
x , there is an edge path from x to y and vice-versa19 since

y is now in the SCC of x. This path never gets destroyed in subsequent calls to W1 by

the above observation, so y will remain in the SCC of x forever. Therefore we conclude

that SCCi
x � SCCj

x, and consequently SE i � SE j for every j > i.

2

19This path appears in bold in �gure 3.9.

79

- - -- -/
.........

/ ' ' '\ -......
'\ \ .. \

scci-1 J I

-....;;; 2 -
I

scci I z

scci /

'
z

......... sect / - - _z - -

Lemma 3.6 De�ne SE t to be the SCC environment for the complete program case so that

8x 2 X, SE t(x) is the set of all top-level identi�er that are mutually recursive with x in the

whole program. Then for every i � 0, SE i � SE t.

Proof: The proof is exactly similar to the one above; again hinging on the fact that once

added, no edge gets removed from the call graph and that the call graph existing at each

incremental stage is always a subgraph of the call graph of the whole program. Therefore, the

strongly connected components of top-level identi�ers when the whole program is available

are always a superset of the corresponding components at any intermediate stages. 2

In short, the above two lemmas state that in our incremental compilation scheme, the

strongly connected components of the top-level identi�ers start from an empty set and steadily

increase in size while never exceeding their maximum possible value obtained in presence of the

full program. We will show in section 3.5 that we stop further computation only when we have

reached this maximum value.

3.4.2 Completeness of Type Computation

The above pair of lemmas embody a simple pattern that is at the heart of the incremental

property computation. Starting with no information, we can re�ne our knowledge about inter-

esting global properties as we are given more details about the program. Now, we apply the

same principle to the type property.

Lemma 3.7 Starting from TE0 (equation 3.6), if TE i and TE j (j > i) are the type environ-

ments obtained after the i-th and the j-th call to W1 then TE i � TE j.

Proof: We prove this by induction on i.

Base Step: It is clear from equation 3.6 that TE0 � TE j for every j > 0 since 8�:� � � for

any �.

Inductive Step: Assume that TE i�1 � TE j for every j > (i � 1). Let x be the identi�er

being typed at the i-th call.

Looking at algorithm W1 (�gure 3.5), we see that TE i�1 is the same as TE i ex-

cept for the identi�ers zk 2 SCCi
x, where it has been updated to the new type schemes

�izk = close(Ui�
i
zk
). So the inductive assumption carries over to TE i for all other iden-

ti�ers except these. For any identi�er zk 2 SCCi
x, let TE j (j > i) be some later type

80

environment in which the type-scheme for zk is updated again to �jzk = close(Uj�
j
zk
)20.

We need to show that �izk � �jzk for each zk 2 SCCi
x, so that we can combine this in-

formation with the inductive assumption and arrive at TE i � TE j for every such j > i.

For convenience, we denote the number of elements in sets SCCi
x and SCCj

x by n and

m respectively.

In order to prove that �izk � �jzk for each zk 2 SCCi
x, we need to construct an

alternate typing for each zk in terms of the types obtained at the j-th call, and then use

the completeness theorems 2.6 and 2.8 over the types computed at the i-th call to give

the above instantiation relationship.

The following typings are obtained through the internal calls to W 0 and the Uj

uni�cation at the j-th call to W1. For every zk 2 SCCj
x we have,

New-TE j
k = TE j�1 nSCCj

x
+fz1 7! �k1; : : : ; zm 7! �kmg

W 0(New-TE j
k; ek) = (Sjk; �

j
zk
; Aj

k)

=) S
j

k(New-TE
j

k) ` ek : �
j
zk

Using theorem 2.7.

=) UjS
j
k(New-TE

j
k) ` ek : Uj� jzk Using lemma 2.3.

which when expanded yields the following typing for each RHS expression ek corre-

sponding to each top-level identi�er zk 2 SCCj
x.

TE j�1 nSCCj
x
+fz1 7! Uj�

j
z1
; : : : ; zm 7! Uj�

j
zm
g ` ek : Uj�

j
zk

(3:20)

Note that by construction, there are no free type variables in the environment TE j�1,

and the Uj substitution ultimately reduces each term Sjk(�k1); : : : ; S
j
k(�km) for each 1 �

k � m to the same term Uj�
j
zk

by uni�cation.

We compare the type environment in the typing 3.20 above with the environments

New-TE i
k setup during the i-th call for each k (1 � k � n).

New-TE i
k = TE i�1 nSCCi

x
+fz1 7! �k1; : : : ; zn 7! �kng

Let Sj�ik = f�k1 7! Uj�
j
z1
; : : : ; �kn 7! Uj�

j
zn
g

=) Sj�ik (New-TE i
k) = TE i�1 nSCCi

x
+fz1 7! Uj�

j
z1
; : : : ; zn 7! Uj�

j
zn
g

=) Sj�ik (New-TE i
k) ` ek : Uj� jzk (3.21)

The last typing 3.21 is obtained by comparing its environment with that in typ-

ing 3.20. We use the inductive assumption to get TE i�1 � TEj�1 and lemma 3.5

20That would be the case when some identi�er x0 (possibly x again) gets type-checked at the j-th call and
zk 2 SCC

j

x0
.

81

to ensure that SCCi
x � SCCj

x so that lemma 2.4 can be used for the identi�ers in

SCCj
x � SCCi

x. This equation speci�es an alternate typing for each zk 2 SCCi
x which

we now show to be an instance of the type-scheme computed at the i-th call.

For each of the internal calls to W 0 during the i-th call to W1, we can use the com-

pleteness theorem 2.8 over its corresponding alternate typing 3.21 to give the following,

9Rk: (Rk � S
i
k)(New-TE

i
k) = Sj�ik (New-TE i

k) (1 � k � n): (3.22)

Rkclose(S
i
k(New-TE

i
k); �

i
zk
) � Uj�

j
zk

8zk 2 SCCi
x: (3.23)

In equation 3.22 above, the domains of each of the Rk substitutions (1 � k � n)

are completely disjoint because none of the internal calls to W 0 share any non-generic

type variables. Furthermore for each k, Dom(Rk) � tyvars(Sik(New-TE
i
k)), so that it

involves only the free type variables of � izk . Therefore, for each type � izk (zk 2 SCCi
x),

the instance relationship of 3.23 can be explicitly written as a substitution equation

(Rk j Ik)� izk = Uj�
j
zk

where Ik is the instantiation substitution operating only on the

generic type variables of � izk .

Finally, we combine all these disjoint substitutions into one giant substitution Uj�i

that uni�es the column terms of the uni�cation matrix in the second phase of the i-th

call into the types obtained in the j-th call.

Uj�i = R1 j I1 j � � � j Rn j In

=) Uj�i�
i
zk

= Uj�
j
zk

8zk 2 SCCi
x:

Now by the completeness theorem of uni�cation (theorem 2.6) Ui is the most general

uni�er for its nodes21, and all other uni�ers are substitution instances of Ui. I.e.,

9R: R � Ui = Uj�i

=) (R � Ui)� izk = Uj�i�
i
zk

8zk 2 SCCi
x:

=) (R � Ui)� izk = Uj�
j
zk

8zk 2 SCCi
x:

=) close(Ui�
i
zk
) = �izk � close(Uj�

j
zk
) = �jzk 8zk 2 SCCi

x:

The last equation is what we wanted to prove.

2

21Theorem 2.6 deals with the uni�cation of a pair of type terms whereas here we have several groups of terms
to be uni�ed under the same unifying substitution. But it is easy to construct a pair of giant tuple-type terms
from the given set of terms whose uni�cation yields the same substitution Ui. So the completeness result is valid
for this case also.

82

Lemma 3.8 If TE t is the �nal type environment in the complete program case with the type-

scheme obtained for the �nal program query being assigned to the special variable \it", then

for every i � 0, TE i � TE t.

Proof: The basic strategy of the proof is same as in proving the last lemma. We construct an

alternate typing for each zk 2 SCCi
x at the i-th call in terms of the types obtained in the

complete program system and then use the completeness theorems to show that �izk � �tzk

for each zk 2 SCCi
x. Since only the identi�ers from SCCi

x get updated at the i-th call,

we combine this with the inductive assumption to obtain the desired result just like in the

previous lemma.

Base Step: From equation 3.6, TE0 � TE t since 8�:� � � for any �.

Inductive Step: Assume that TE i�1 � TE t. As before, let x be the identi�er being typed

at the i-th call. Also, let the number of elements in sets SCCi
x and SCCt

x be denoted

by n and m respectively, where SCCt
x stands for the strongly connected component of

x in the complete call graph.

In the complete program system, the algorithmW is called over the complete program

expression as described in section 2.4.2 with the initial library environment TE lib. The

type-scheme �tx for x appearing in the �nal type environment TE t is actually computed

during an internal recursive call toW when its corresponding let-binding is being typed.

In the general case, x appears together with the identi�ers in its strongly connected

component SCCt
x in a let-binding,

let z1; : : : ; x; : : : ; zm = �x �z1 � � �x � � �zm:(ez1 ; : : : ; ex; : : : ; ezm) in e (3:24)

We traverse the derivation tree generated by the overall program typing down to the

branch where the inner tuple of the RHS expressions (ez1 ; : : : ; ex; : : : ; ezm) is being typed

to obtain the following typing for each RHS expression ek corresponding to each top-level

identi�er zk 2 SCCt
x.

TEprev + fz1 7! � tz1 ; : : : ; zm 7! � tzmg ` ek : �
t
zk

(3:25)

The type environment TEprev comes from previously typed let-bindings in addition to

the initial library environment TE lib. The �nal type-schemes �tzk for each zk 2 SCCt
x are

83

obtained by completely closing their corresponding types obtained in typing 3.25 above.

TE t(zk) = �tzk = close(� tzk) 8zk 2 SCCt
x:

Typing 3.25 is similar to typing 3.20 of the last lemma. As before, we can setup

conversion substitutions St�ik for the environments New-TE i
k created during the i-th call

that produce an alternate typing for each zk 2 SCCi
x in the same spirit as typing 3.21.

We only note that TEprev is a subset map of TE t so the inductive assumption on TE i�1

yields TE i�1 � TEprev
22 and lemma 3.6 ensures that SCCi

x � SCCt
x as required in the

proof. We omit the details.

So just as in the previous lemma, we obtain,

close(Ui�
i
zk
) = �izk � close(� tzk) = �tzk 8zk 2 SCCi

x:

2

The above two lemmas together show that starting with the most general type-scheme 8�:�,

the type-schemes of the top-level identi�ers get increasingly more re�ned, and that at each stage

they are complete with respect to the actual type-schemes.

3.5 Soundness of Algorithm W1

As a second step in the proof of correctness of algorithm W1, we now show that the process

of incrementally re�ning the compilation environment eventually terminates and when it does,

it exactly corresponds to the compilation environment obtained when the complete program is

available.

As noted in section 3.1.3, we stop further compilation only when all the assumption checks

collected during various calls to W1 are passed successfully by the existing property-values in

the current compilation environment. The assumption checks play an important role here in

guaranteeing that only a sound compilation environment is acceptable, otherwise the process

of incremental re�nement continues. Termination is shown by proving that the assumptions

checks are eventually passed by some environment.

22Technically, the domain of TE i�1 will have to be restricted to that of TEprev in order to compare the two,
but we will ignore this for clarity.

84

(a): Form of Final Call Graph. (b): Set of Identi�ers in an SCC.

Figure 3.10: Proving the Soundness of SCC Computation.

3.5.1 Soundness of SCC Computation

First, we prove that the SCC environment is computed correctly. Since no property assumptions

are collected for the SCC property, no assumption checks are necessary and no requests for

recompilations are possible. So we only have to show that each top-level identi�er x is assigned

its �nal strongly connected component SCCt
x automatically after some number of calls to W1

without any assumption checks or recompilations.

Lemma 3.9 In the sequence of SCC environments SE0; : : : ; SE i; : : : generated from the various

calls to W1, there exists an environment SEf (and every environment after that) such that

SEf (x) = SE t(x) for each x 2 X.

Proof: We prove this by structural induction on the call graph of the whole program Gt (refer

�gure 3.10 (a)).

Case 1: Consider a leaf of the call graph Gt which is a single identi�er x.

The complete SCC for x, SCCt
x = fxg, is computed the very �rst time x is type-

checked, say at the i-th call. Due to assumption 2, this happens at least once. Once

computed, it never changes from that value since it can only monotonically increase in

size (lemma 3.5) but has already reached its maximum (lemma 3.6). So we can designate

SEf to be any SCC environment with f � i since SE i(x) = fxg = SE t(x) trivially.

85

~/0
0-0 \
\ / 0

I O \. i
0 0-0

0 / /
-0

\

-- - - -- - -' - ' " wO \
' \ \

I I
Yp" I

' ◄.... /
' - sect /

- X - / - - - --

Case 2: Consider a leaf of the call graph Gt which is a group of mutually recursive identi�ers.

Suppose an identi�er x from this group is type-checked at some i-th call, updating the

SCC of all zk 2 SCCi
x to SCC

i
x in the environment SE i.

From lemma 3.6, SCCi
x � SCCt

x. If SCCi
x = SCCt

x then our job is already done

and we can designate SEf to be any SCC environment with f � i.

If SCCi
x 6= SCCt

x then let y represent one of the identi�ers in SCCt
x that are not

present in SCCi
x (refer �gure 3.10 (b)). There must be at least one such y 2 (SCCt

x �

SCCi
x) that has not been compiled even once when SCCi

x is computed, so that the

edges coming out of the node y are not yet visible in the intermediate call graph Gi.

Otherwise, each such y will have to be present in SCCi
x contradicting our assumption

that SCCi
x 6= SCCt

x.

Now using assumption 2, every node in Gt must be type-checked at least once, so let

w 2 (SCCt
x � SCCi

x) be the last of all such nodes appearing at some j-th call (j > i).

At that time, all nodes in SCCt
x as well as all their edges are visible in the call graph

Gj . Hence SCCj
w, the SCC of w at the j-th call, must contain all these identi�ers, i.e.,

SCCj
w = SCCt

x = SCCt
w. Moreover, the SCC property for all zk 2 SCCj

w gets updated

to SCCj
w = SCCt

x in the latest environment SEj . Thus, the �nal SCC are computed at

the j-th call and we can designate SEf to be any SCC environment with f � j.

Case 3: Consider an internal node of the call graph Gt which is a single identi�er x. Let

Poly tx denote the set of all identi�ers that x directly calls in Gt, and m be the number

of elements in Poly tx.

Just like in case 1, the complete SCC for x, SCCt
x = fxg, is computed the very

�rst time it is type-checked, say at the i-th call. By inductive assumption, for each

zk 2 Poly tx there exists an SCC environment SEfk such that SEfk(zk) = SE t(zk). So we

can designate SEf to be any SCC environment with f � max (i; f1; : : : ; fm).

Case 4: We can easily compose the cases 2 and 3 above and designate SEf to be any SCC

environment that is computed after all the nodes in the group of mutually recursive

identi�ers have become visible and all the nodes that any of them calls have also been

assigned their �nal SCC values.

2

86

The above proof relies heavily on assumption 2 and the fact that we update the SCC value of

all the identi�ers zk 2 SCCi
x together during the i-th call toW1. We will later examine another

strategy where the assumption 2 is explicitly enforced by means of an end-of-program test

and is no longer the user's responsibility. Alternate strategies are also possible that update the

properties of only the current binding being type-checked but ensure that the latest information

is always propagated to other the nodes in the same SCC. Detailed analysis of these strategies

is beyond the scope of this thesis.

Note that operationally there is no way to distinguish among the various cases of the above

lemma in the incremental system. Many identi�ers, out of a set of mutually recursive ones, may

start out being singleton, until some other identi�er becomes visible that links them all together.

The incremental system does not examine or update the SCC properties of the complete call

graph at once23. Nevertheless, the lemma guarantees that by simply ensuring that all the

identi�ers in the call graph Gt have been compiled at least once, all of them will eventually

compute their complete SCC correctly. In fact, the �nal SCC will be computed as soon as all

the identi�ers have been compiled at least once, as shown in the next lemma.

Lemma 3.10 If SEn is the SCC environment obtained after the n-th call to W1 when all the

identi�ers x 2 X have been compiled at least once, then SEn = SE t.

Proof: It can be easily seen that in each case of lemma 3.9, we can choose SEf to be SEn as

de�ned above. 2

The above lemma ensures that if we have type-checked each top-level de�nition in our

program once then we already have the desired �nal SCC environment without the need to

recompile any of the de�nitions.

3.5.2 Soundness of Type Computation

Now, we show the correctness of the type environment computation. Here we will use the upper

bound assumption checks to show that the type environment that passes all these checks is cor-

rect with respect to the complete program. We will use the lemmas established in section 3.3.2

in the proof.

23Indeed, if we were given the complete call graph together, there would be no need to have an incremental
system.

87

Lemma 3.11 In the sequence of type environments TE0; : : : ;TE i; : : : generated from the var-

ious calls to W1, there exists an environment TEf (and every environment after that) that

passes all the upper bound type assumptions (M) for all the top-level identi�ers, i.e.,

8x 2 X; 8(z 7! � iz) 2Mx; TEf (z) � � iz

and moreover, TE t � TEf .

Proof: Our proof strategy is the reverse of that in lemma 3.8. We will construct an alternate

typing for the top-level identi�ers in each SCC of the complete call graph in terms of the

types obtained in the incremental algorithm. We will show that this can be done whenever

all the collected upper bound assumptions pass their checks.

As mentioned in the proof of lemma 3.8, the type-schemes of the top-level identi�ers

in the complete program case are computed in a recursive call to W while typing a giant

let-binding (equation 3.24) associated with all zk 2 SCCt
x. We assume that the number of

identi�ers in SCCt
x is n.

W (TEprev; (�x �z1; : : : ; zn:e1; : : : ; en)) = (Stz1 ���zn ; (�
t
z1
; : : : ; � tzn)) (3:26)

where the type environment TEprev is a subset of environment TE t and it comes from

previously typed let-bindings in addition to the initial library environment TE lib.

Now we construct an alternate typing for the same expression using the type assumptions

collected in the incremental system. For simplicity, we will only consider those iterations

of W1 where SE i = SE t
24. In general at the i-th call to W1, the following typing can be

generated for each zk 2 SCCi
x = SCCt

x (1 � k � n) (refer to algorithm W1 in �gure 3.5).

W 0(New-TE i
k ; ek) = (Sik; �

i
zk
; Ai

k)

=) Ai
k ` ek : �

i
zk

Using lemma 3.4.

=) Ui(Ai
k) ` ek : Ui� izk Using lemma 3.3. (3.27)

In equation 3.27, Ui only involves type variables present in the uni�cation matrix. All

the type variables from terms of the form Sik(�k1); : : : ; S
i
k(�kn) occur free in the environment

Sik(New-TE
i
k) and hence in the corresponding assumption set Ai

k for each 1 � k � n. Other

24From the last lemma, this holds true for any iteration i after all the top-level bindings have been type-checked
at least once. Moreover for each top-level identi�er, this holds at least for the iteration in which its �nal SCC is
computed.

88

type variables of Ui come from the terms � izk (1 � k � n) and are fresh variables that have

not yet been closed over. Thus, no type variable involved in Ui can be a generic variable of

any Ai
k and lemma 3.3 is applicable.

We can combine all the typings in equation 3.27 using the assumption notation 3.3 into

a single alternate typing for the giant expression of equation 3.26.

n[
k=1

UiA
i
knSCCt

x
` �x �z1; : : : ; zn:e1; : : : ; en : Ui�

i
z1
; : : : ; Ui�

i
zn

(3:28)

We discard all the assumptions corresponding to identi�ers in SCCt
x in accordance with

notation 3.3 since these identi�ers are now bound in the above expression. Note that the

set of assumptions in the LHS of the above typing 3.28 is exactly the set of upper bound

type assumptions that we record in algorithm W1.

Now we are ready to show a structural induction on the call graph of the whole program

Gt.

Case 1: Consider a leaf of the call graph Gt which in the general case, is a group of mutually

recursive identi�ers with their strongly connected component denoted by SCCt
x. Let the

identi�ers of this group be type-checked at the i-th call.

Since this group is a leaf of the call graph, there are no upper bound type assumptions

to check. Moreover, TEprev of equation 3.26 will trivially satisfy the typing 3.28 because

no external identi�er is used for this leaf case. Thus, using the completeness theorem 2.8

for algorithm W with alternate typing 3.28 we get,

9R; Rclose(� tzk) � close(Ui�
i
zk
) 8zk 2 SCCt

x:

=) TE t(zk) = close(� tzk) � TE i(zk) = close(� izk) 8zk 2 SCCt
x:

So we can designate TEf to be any type environment with f � i in order to satisfy

the statement of the lemma.

Case 2: Consider an internal node of the call graph Gt which in the general case is a group

of mutually recursive identi�ers with their strongly connected component denoted by

SCCt
x. Let Poly

t
x denote the set of all identi�ers that any zk 2 SCCt

x directly calls in

Gt, and m be the number of elements in Poly tx (see �gure 3.11).

Now, suppose the identi�ers of SCCt
x are last type-checked at the i-th call. By induc-

tive assumption, for each zk 2 Poly tx there exists a type environment TEfk that passes

the assumption checks for all identi�ers occuring in the subgraph below zk. More-

89

x

z

z
1

k+1
z

k

z m

y

SCC

Poly

t

x

t

x

Figure 3.11: The Inductive Step in the Soundness Proof of Type Computation.

over, TEprev(y) � TEfk(y) for each such identi�er y in the subgraph. Let us denote

f 0 = max (f1; : : : ; fk; : : : ; fm). Then by completeness lemma 3.7, TEfk � TEf 0 for each

(1 � k � m), and TEf 0 satis�es the inductive assumption for the complete subgraph

below the current node SCCt
x by transitivity. Now there are two cases to consider.

SubCase 2.1: If i > f 0 then it means that the current node SCCt
x is being type-checked

in bottom-up order after all its children have been type-checked. Using lemma 3.7

we have TEf 0 � TE i, and by construction, TE i satis�es all the assumptions of

typing 3.28. Therefore,

TEprev � TEf 0 � TE i �
n[

k=1

UiA
i
knSCCt

x

so that TEprev will again satisfy the typing 3.28 and the completeness theorem can

be used just as in the case 1 above. This implies that we can designate TEf to be

any environment with f � i.

SubCase 2.2: If i < f 0 then it means that the current node SCCt
x was type-checked some

time earlier than one of its children was type-checked. Now the assumptions play an

important part. One possibility is that the environment TEf 0 still satis�es all the

assumptions collected for the earlier i-th call and we have,

TEprev � TEf 0 �
n[

k=1

UiA
i
knSCCt

x

90

The �rst instantiation relation comes from the inductive assumption as above and

the second one derives from TEf 0 passing all its assumption checks. This will yield

TE t #SCCt
x
� TE i #SCCt

x
using the completeness theorem for equation 3.26 with the

alternate typing 3.28 as before. Since we assumed that the identi�ers from SCCt
x

were last type-checked in the i-th call, their types will be unchanged in the f 0-th

call and we have TE t � TEf 0 for all the identi�ers in the subgraph starting at the

current node. Thus, we can designate TEf to be any environment with f � f 0. Note

that in this case we save recompilation of the current node even though some of its

children were type-checked later than the node itself.

The other possibility is that the environment TEf 0 fails some of the assumption

checks associated with the current node. In that case, we ag a recompilation of the

current node at some later j-th call with j > f 0 which reduces to the �rst subcase.

Thus, in each case we are able to designate an environment TEf that passes all assump-

tion checks and satis�es TE t � TEf . 2

We have shown above that the criterion for ensuring that correct type-schemes are computed

for each of the top-level identi�ers is to pass the upper bound type assumption checks in addition

to the condition that each de�nition of the program is compiled at least once. We combine this

criterion with the completeness lemmas of the last section to obtain the main result of this

thesis in the next section.

3.6 The Correctness Theorem

With the soundness and completeness lemmas in hand, we are now ready to show the correctness

theorem for our incremental system.

Note that lemmas 3.6 and 3.8 ensure that the stongly connected components and the type-

schemes derived at each stage are complete, while lemmas 3.10 and 3.11 provide a su�cient

criterion for them to be sound. So we express this criterion as a termination strategy for our

incremental system.

Termination Strategy 1 Assuming that all the top-level de�nitions in the given program are

compiled at least once, the incremental compilation system terminates when all the upper bound

type assumptions (M) for each of the top-level identi�ers pass their check in the latest compila-

tion environment.

91

The correctness theorem follows.

Theorem 3.12 Given a complete and type-correct program, when the incremental system ter-

minates, it has computed exactly the same type and SCC environments as computed in a system

that type-checks the complete program as a whole.

Proof: The incremental system starts in an empty compilation environment (TE0 and SE0) as

given by equations 3.6 and 3.7. So the completeness lemmas 3.6 and 3.8 are applicable. The

termination strategy ensures that the system terminates in an environment (TEf and SEf)

that satis�es the soundness lemmas 3.9 and 3.11. Combining the result of these lemmas we

straightaway obtain that SEf = SE t and TEf = TE t. 2

3.7 Extending the System

In order to compare our system with the one that compiles a whole program at a time, we

assumed in section 3.2 that we are given a complete and type-correct program that does not

undergo any editing. In an actual incremental system with an integrated editor-compiler nei-

ther of these assumptions is true. New functions and procedures may be added to the program

in arbitrary order and old ones may be edited at the same time. Now we will examine how

the incremental system maintains consistency in the compilation environment under these cir-

cumstances. In particular, we will see how to extend our system by adding more property

assumptions and checks to handle these changes while maintaining the soundness and com-

pleteness of type inference as shown in the previous sections.

3.7.1 Handling Incomplete Programs

Assumption 2 guarantees that we always handle a complete program. Relaxing this constraint,

we now allow incremental extensions to an otherwise type-correct program. Note that this does

not violate assumption 3, since changes to previously compiled de�nitions are not yet allowed.

Complete Programs

Lemma 3.10 indicates that in an incomplete program with new de�nitions being added to it,

we only need to check for the event that all the required de�nitions have been seen, in order to

guarantee correct SCC computation for each of the identi�ers. In order to specify such a test,

we need to consider what constitutes a complete program more closely.

92

De�nition 3.7 Given an query binding \it = emain" to be evaluated, a Complete Program

is a minimal set of de�nitions that are self contained with respect to this query. It is a minimal

subgraph rooted at the above query, from the call graph of the universe of de�nitions, that does

not have any dependency edges going out of it.

It may at �rst seem awkward to de�ne a complete program in terms of the requirements

of a query instead of a system of �le or a group of libraries etc., but it is precisely that kind

of arti�cial de�nition that we were trying to avoid in the beginning of this chapter in our

incremental system. The above de�nition is much more exible and captures the intrinsic

requirement of the �nal result that we wish to compute.

Strictly speaking, the above de�nition speci�es a link-time completeness of the program

which may or may not be essential to ful�ll at compile-time. What we mean is that, for

instance, this de�nition requires that we provide actual module de�nitions along with the

current program for each module that it uses. But we can \prune" these module dependency

edges from the current program by abstracting just the module interface information (and

not its complete de�nition) and explicitly declaring it in the current program. This module

interface speci�cation will ensure elegent modular decomposition of a complete program within

the framework of our de�nition and is, in fact, a customary practice in all languages that o�er

modular design.

New Strategy for Incomplete Programs

Coming back to the question of how to handle incomplete programs, we can use the de�nition

of a complete program as given above to clearly specify the set of identi�ers we are interested in.

We have to make sure that all these identi�ers have appeared for compilation earlier. Observe

that a required identi�er that has not yet been compiled, must appear in the call graph of the

complete program as a singleton leaf with no dependency edges going out of it. The converse

may not be true; not all leaves with no dependency edges going out of them may still be

unde�ned, so we only need to check whether a given leaf identi�er has been compiled before or

not. This can be done simply by keeping a boolean ag with each identi�er that it has been

seen. Or within the current framework of compilation properties, we can test if the SCC of the

given identi�er in the current SCC environment is non-null25.

25From equation 3.7, every identi�er initially has a null SCC, but the �rst time it appears for compilation, it
will at least have itself in its SCC.

93

Thus, we modify the termination strategy described in section 3.6 to work in this extended

system as follows.

Termination Strategy 2 Each time we wish to test for termination of the incremental sys-

tem, we execute the following steps.

1. Build a static call graph with the query binding \it = emain" as the root.

2. Check if any leaf identi�er from the above call graph has not yet appeared for compilation.

3. Check if the upper bound type assumptions (M) for all identi�ers in the call graph are

satis�ed in the latest type environment.

4. If both the above mentioned tests have been cleared, then the incremental system termi-

nates.

Note that if any of the upper bound type asumption checks fail then the system ags

the appropriate de�nitions for recompilation and continues. Similarly, if we �nd an unde�ned

identi�er in step 2, we ag a message that the program is incomplete and take appropriate

action. The most obvious action would be to abandon computation of the expression query and

ask the user to supply the required de�nition. But a particular implementation may choose to

continue while warning the user about possible abnormal termination if that de�nition is really

required in the dynamic sequence of execution. This is useful, for example, in developing large

systems where the user may want to exercise localized parts of the system using appropriate

test data without bothering about the whole system. See [44] for description of such a strategy.

The completeness lemmas of section 3.4 are not a�ected by this extension of handling an

incomplete program because none of the de�nitions is ever removed from the program{we are

only allowed to add more, and secondly no de�nition can be edited so that the assumption 3 is

still valid. The soundness lemmas of section 3.5 are also all satis�ed using an updated su�ciency

criterion that includes the test for the end of the program in addition to the usual upper bound

type assumption checks. Thus, the correctness theorem 3.12 will still hold under this extension

using the modi�ed termination strategy and the de�nition of a complete program as described

above.

3.7.2 Handling Incremental Editing of Programs

Now we relax the assumption 3 and allow incremental editing of the program while we make

calls to W1 to type-check each de�nition. The de�nition of a complete program as given above

94

still holds but we need to reexamine the correctness lemmas in this light.

We will not attempt to formally prove the correctness of type inference in presence of editing.

Instead, we will informally describe how editing a�ects the compilation environment by means

of examples and what additional book-keeping will be necessary to take care of those e�ects.

Some Editing Examples

It is easy to see that lemmas 3.5 and 3.7 will not hold when editing and recompilation are

allowed. This is because editing may actually reduce the SCC and relax the type constraints

previously enforced on a de�nition identi�er. Consider the example below,

def f x = (x+1):nil; % N -> (list N)

def g y = hd (f y); % N -> N

The system records upper bound type assumptions of g as Mg = ff 7! (N -> (list N))g

for later veri�cation. Now if we edit the function f so as to relax its type,

def f x = x:nil; % *0 -> (list *0)

then, the type of g that was initially constrained by the type of f to (N -> N), can now

be relaxed to (*0 -> *0). Observe that the upper bound assumptions Mg will still pass their

checks because the new type of f can still instantiate its previous use. If those were the only

checks performed then no retyping will occur and g will end up with an incomplete (overly

constrained) type.

A similar example is shown below for the case where editing causes a change in the strongly

connected components. Consider the following de�nitions,

def fst (x,y) = x; % (*0,*1) -> *0

def h x = if true then

x

else fst (t x x); % *0 -> *0

def t x y = h x,h y; % *0 -> *0 -> (*0,*0)

Since h and t are mutually recursive, the type of the two arguments of t are constrained to

be the same. Now, if we edit the de�nition for h to be the simple identity function,

def h x = x; % *0 -> *0

then the constraint on the arguments of t is no longer present since h can now be instantiated

di�erently. The system has no way to detect this and ag recompilation of t.

95

It is the user's responsibility to recompile a de�nition after editing it but it is the compiler's

responsibility to propagate those changes throughout the rest of the program and warn the user

accordingly while maintaining soundness and completeness of the derived types. The problem

in the �rst example above is that the upper bound type assumption checks help in maintaining

soundness but not completeness. An upper bound type assumption (f 7! �f) 2 Mg fails its

check only if the latest type-scheme for f is more constrained than it was assumed to be during

the compilation of g, so that we are able to catch that unsound typing and take appropriate

action. But if the latest type-scheme for f happens to be less constrained than before then

it goes unnoticed. In the second example, the type of h does not change even after editing,

but its SCC has become smaller. That a�ects the type of t because its SCC also reduces

implicitly. Without recording such implicit dependency for previous members of a SCC that

has subsequently changed, it is impossible to compute complete types for them.

Additional Book-keeping and New Strategy for Editing

We can detect these constraint relaxations by using some additional property assumptions and

checks as de�ned below. We can collect these extra assumptions along with the upper bound

type assumptions collected already in algorithm W1.

1. We record the actual type-schemes of free generic identi�ers used within a top-level de�-

nition in an assumption set (N). The situation is pictorially depicted in �gure 3.12 (a) in

terms of the subsumption relationship of the type domain. If the �nal type-scheme (�0g)

of the assumee identi�er turns out to be more polymorphic than the type (�g) assumed

for it earlier (depicted as being lower in the type domain hierarchy), then we can deduce

that the assumee type constraint for that compilation has been relaxed and recompilation

is necessary in order to propagate its e�ect to the assumer. The actual type instance

used by the assumer, �g, may get relaxed to � 0g as well. This means that the assumer will

acquire a more general type than before, as in the �rst example above. These assumptions

record a lower boundary limit for the assumee type-schemes, just like the upper bound

type asumptions (M) record the upper boundary limit. Again, the veri�cation check is

96

f g

τ g

σ g

τ g

σ g

Old Type Instance

New Type Instance

Old Type Scheme

New Type Scheme

(Old Upper Bound)

(New Upper Bound)

(Old Lower Bound)

(New Lower Bound)

Assumer Assumee

(a): Using the Lower Bound Assumptions (N) to detect Type Constraint Relaxation.

Old SCC

New

SCC

Edited Node
Assumer Node

Assumee Node

(b): Using the SCC Assumptions (Q) to detect Reduced SCCs.

Figure 3.12: Additional Assumptions to detect Constraint Relaxation during Editing.

97

0

I

I

I

, ,

\
\

\

'

,, ,,

' '

., ,,
.,

., .,

',,

0

0-------------

0 . . .
I

.

0-------------

0

\
\

the same subsumption test, but now in the reverse direction.

N 2 Lower-bd-type-assumptions = Identi�ers
�n
��! Type-Schemes

COLLECT: Nx = fz 7! TE(z)g; 8z 2 (FId(ex)� SCCx)

CHECK: 8(z 7! �z) 2 N; �z � TE(z)

(3:29)

2. We also record the SCC property of each identi�er used directly by another identi�er

from within its own SCC in an assumption set (Q) (see �gure 3.12 (b)). The veri�cation

check in this case is a test of (set) equality. This ensures that if the SCC of one of the

identi�ers changes, then all identi�ers that were excluded from its old SCC during this

change will fail this check and will be agged for recompilation. So in our second example,

the assumed SCC of h, fh,tg, will not match its latest SCC, fhg, and the assumer t will

be recompiled in order to revise its SCC properties to its correct value, ftg.

Q 2 SCC-assumptions = Identi�ers
�n
��! powerset(Identi�ers)

COLLECT: Qx = fz 7! SCCxg; 8z 2 (FId(ex) \ SCCx)

CHECK: 8(z 7! SCCz) 2 Q; SCCz = SE(z)

(3:30)

Our new termination strategy is now only slightly more complex.

Termination Strategy 3 When we wish to test for termination of the extended incremental

system, we execute the following steps.

1. Build a static call graph with the query binding \it = emain" as the root.

2. Check if any leaf identi�er from the above call graph has not yet appeared for compilation.

3. Check if the upper bound type assumptions (M), the lower bound type assumptions (N),

and the SCC assumptions (Q) for each identi�ers in the call graph are all satis�ed in the

latest compilation environment.

4. If all the above mentioned tests have been cleared, then the incremental system terminates.

Modi�cations to Correctness Proof

We hypothesize that the correctness theorem 3.12 will still be valid under this editing extension

with the modi�ed termination strategy above. Here, we need to establish a correspondence

between the �nal strongly connected components and the type-schemes of identi�ers obtained

with the above termination strategy and those obtained had the �nal edited program been

given together as a complete program in the �rst place. Note that the �nal edited program

98

must be type-correct in order to make this correspondence meaningful. A detailed analysis of

the necessary modi�cations to the various lemmas of section 3.4 and 3.5 is beyond the scope of

this thesis. We simply present an informal argument below.

The correspondence can be shown by considering the tail-end of the sequence of compilation

environments under which each individual de�nition from the �nal edited program will get

type-checked. The only di�erence is that the initial compilation environment for this tail-end

sequence may be an arbitrary environment and not as given by equations 3.6 and 3.7. So, the

type-schemes and SCCs of some de�nitions may have to be re�ned, while those for others may

have to be relaxed. Technically speaking, both completness and soundness lemmas will have to

be modi�ed to deal with the state of individual identi�ers placed in an arbitrary compilation

environment, instead of treating all the given identi�ers in a similar fashion.

Informally, we can see that the end of complete program test and the upper bound type

assumption checks help to maintain soundness{they force the user to supply and compile all

the required de�nitions at least once and ag for recompilation when there is a possibility of

unsound inference due to re�nement of previously assumed properties. While the SCC assump-

tions and the lower bound type assumption checks help to maintain completeness{they ag for

recompilation when there is a possibility of incomplete inference due to constraint relaxation of

previously assumed properties. Thus, starting in an arbitrary compilation environment, each

of these checks will cause the corresponding properties of each of the identi�ers to be pushed

towards the direction of soundness and completeness, which in the terminal state will exactly

match those obtained while typing the whole program together.

Also note that the user is free to edit the de�nitions in entirety, so that an edited de�nition

may have a completely di�erent type from its earlier version. But the trouble is that the old

type will still be present among the cached assumptions of other dependent de�nitions that

were compiled in the earlier environment. In such cases, both lower and upper bound type

assumptions involving the edited de�nition will fail for the dependent de�nitions, forcing the

user to reexamine all of them. This implies that it may be a good strategy to edit the de�nitions

in bottom-up topological order in order to minimize the recompilation e�ort.

3.7.3 Comparison of Extensions

Finally, we present an overall comparison of the original incremental system with its two ex-

tensions in �gure 3.13.

99

The Incremental System and its Extensions

The Basic System Incomplete Program Extn. Editing Extn.

Assumptions

1. A complete program is
given.

1. No editing allowed. None.

2. No editing allowed.

De�nition of a Complete Program

The given program. Nodes in the call graph of the
expression query.

Nodes in the call graph of the
expression query.

Property Assumptions Collected

1. Upper bound type as-
sumptions (M).

1. Upper bound type as-
sumptions (M).

1. Upper bound type as-
sumptions (M).
2. Lower bound type as-
sumptions (N).
3. SCC assumptions (Q).

Termination Strategy

1. Each de�nition from the
given program has been com-
piled at least once.

1. Each singleton leaf identi-
�er in the query's call graph
has been compiled before.

1. Each singleton leaf identi-
�er in the query's call graph
has been compiled before.

2. Assumptions M pass their
checks.

2. Assumptions M pass their
checks.

2. Assumptions M, N, and Q
pass their checks.

The Correctness Theorem
(W.r.t the Type and SCC Properties derived in the Non-Incremental System)

On termination, the prop-
erties for each identi�er in
the given program are ex-
actly the same.

On termination, the prop-
erties for each node in the
query's call graph are exactly
the same.

On termination, the prop-
erties for each node in the
query's call graph from the
�nal edited program are ex-
actly the same.

(Not Shown)

Figure 3.13: A Comparison of the Incremental System with its Extensions.

100

3.8 Complexity of the Incremental System

In this section we will compare the complexity of our incremental system with that of the

complete program system. We make this comparison for each of the properties computed in

our incremental system. As described in the last section, the book-keeping is more complex

when editing is permitted on the program, so we analyze these two situations separately.

Analysis of the incremental system without editing will characterize the reduced cost of type-

checking an incremental addition to the program as against retyping the whole program. We

will also delineate the book-keeping overheads involved in this task. Analysis of the incremental

system with editing will tell us about the additional overhead for permitting editing. Here, we

will attempt to bound the cost per editing change.

3.8.1 Complexity of the SCC Computation

In the complete program case, it may be the user's responsibility to properly group all de�nitions

into mutually recursive groups and to reorder them bottom up. Or else, the compiler can do

that once in the beginning using the SCC algorithm described in [1], which also identi�es the

correct topological ordering of the de�nitions. This can be done in time and space which is

linear in the size of the complete static call graph (O(n + e), where n is the total number of

nodes in the complete static call graph and e is the number of edges).

In the case of the incremental system without editing, there are no book-keeping overheads

for SCC computation since there are no SCC assumptions to keep track of and no recompilations

agged thereof. The space requirement is the same O(n + e), since we only need the \free-

identi�ers" (FId) local property for each de�nition and always compute the latest static call

graph afresh. As for the time complexity, the call graph is computed each time a de�nition is

compiled or recompiled. So the SCC cost of an incremental addition to the program is the cost

of computing the static call graph of the program. Note that it is su�cient to compute only

the call graph rooted at the given node at each stage which may be appreciably smaller. In

that case, the amount of work involved depends heavily on the topology of the call graph as

well as on the actual order in which the nodes are presented.

The recompilations performed due to the failure of upper bound type assumptions also

recompute the SCC property of the nodes involved. This is again proportional to the size of

the static call graph. We will attribute this cost to the type computation.

101

When editing is allowed, there is a topology dependent space overhead for keeping the

SCC assumptions. Note that the assumptions for an assumer identi�er consist of the strongly

connected components of its free identi�ers that are in its own SCC. This could be as large as

O(n3), as in the case of a completely connected graph. It could also be zero, as in the case of

an acyclic graph. In most real situations, the size of the SCCs is bounded by a small constant,

so that this overhead is only O(n) and the overall space complexity is still O(n + e). As for

the time complexity, failed SCC assumptions for a node leads to the recompilation of all nodes

that were previously in its SCC but now have been excluded from it. Thus, the SCC cost of

editing a node is bounded by the cost of recompiling all nodes in its old SCC.

An interesting observation is that recompilation of nodes that failed their SCC assumptions

resets the SCC property of all the identi�ers in their own SCC and hence might alleviate other

SCC assumption failures. But this might trigger other lower bound type assumption failures,

due to constraint relaxation as described in the last section. We will attribute that cost to the

type computation.

It is clear from the above discussion that the space and time overhead in our system for

the SCC computation is topology dependent. It is also dependent on the order of compilation

of de�nitions and closely interacts with cost of type computation. A more detailed analysis is

beyond the scope of this thesis.

3.8.2 Complexity of the Type Computation

The complexity of the type computation is the most crucial aspect of our incremental system.

We identify four distinct levels of computational complexity.

1. We mentioned in section 2.5 that the Milner's type inference algorithm has an intrinsic

exponential complexity. This is not only because of the potentially exponential size of

the �nal type of a given program (see examples in [29]) but also due to the intrinsic

complexity of simply determining whether the program is type correct or not. This

complexity is completely independent of whether we compute the type incrementally or

not, so we will disregard this aspect in further discussion.

2. The basic computation vehicle is the uni�cation algorithm. There are many algorithms for

uni�cation in the literature (see [35] for a survey), with computational complexity varying

from linear to exponential in the size of the expressions being uni�ed. Our implementation

102

leans more towards pragmatic simplicity than asymptotic e�ciency, and is a variation of

Huet's algorithm [28] based on the almost linear Union-Find algorithm [1]. Again, the

choice of an implementation is independent of our incremental book-keeping mechanism

so we will not discuss this aspect any further.

3. The essential di�erence between the type computation done in the complete program

system from that in our incremental system is the number of times uni�cation has to

be performed which amounts to estimating the number of recompilations that may be

necessary in our system. We will focus our analysis on this aspect.

4. Finally, the cost of computing, maintaining, and using the book-keeping information is

an added overhead in the computational complexity of our system, which we will also

characterize.

During our analysis, we will measure the space overhead by the number of extra type

expressions we have to carry as compilation properties and assumptions. We will measure the

time overhead by the extra work necessary in each call to algorithmW1 in order to construct and

use these type expressions, the overhead of checking the assumptions time and again, and most

importantly, the number of recompilations performed due to the failures of these assumptions.

Space Overhead in Type Computation

It is clear that the space overhead is proportional to the number of occurrences of top-level

identi�ers in the given program. The assumptions collected from algorithm W 0 simply record

the type expressions associated with each such occurrence in every top-level de�nition. The

upper bound type assumptions record one type expression for each occurrence of a generic free

identi�er, which in the case of an acyclic call graph amounts to recording all occurrences. If m is

the total number of occurrences of top-level identi�ers in the program and n is the total number

of top-level identi�er de�nitions, then the space overhead in computing the assumptions and

storing the upper bound type assumptions is bounded by O(m+n) for the incremental system

without editing.

For the case when editing is allowed, we also collect lower bound type assumptions, exactly

one type-scheme per free, generic identi�er in every top-level de�nition, so the total overhead

is bounded by the number of edges e in the static call graph. Note that this number may

be substantially smaller than m because an identi�er occurring several times within the same

103

de�nition will be counted only once in the static call graph. So the overhead is still bounded

by O(m+ n)26.

Time Overhead in Type Computation

In the complete program system, the algorithm W recursively descends through the expression

structure of the given program in topological order, typing all bindings of an SCC together.

Each top-level binding is type-checked exactly once.

In the incremental system a similar recursive descent is made internally for each top-level

de�nition in the call to W 0. Collecting assumptions at each stage does not involve any extra

computation. Since we treat each SCC as a supernode, each call to W1 type-checks all nodes

in the current SCC together and matches the cost of type-checking a complete SCC in the

complete program system. But allowing the de�nitions to be supplied incrementally and in

arbitrary order opens up the possibility of recompilations due to failed assumption checks,

editing, and newly supplied bindings. The overhead of each such request for recompilation of a

de�nition is the cost of retyping its complete SCC. Below, we analyze the total cost of making

an incremental change to the program including the cost of recompilations caused by it.

When either incremental additions are being made to the program or some previously

supplied de�nition is being edited, the SCCs of the involved de�nition nodes may change

substantially. There, we may justi�ably (re)type the complete SCC for each user initiated

(re)compilation. But such changes potentially a�ect all the topologically preceeding de�nitions

in the call graph. Recompilations of those de�nitions is the extra price paid by the user for

incremental exibility, because it could be avoided if the de�nitions were given in the right

toplogical order. Our mechanism of maintaining upper and lower bound assumptions attempts

to reduce this set of a�ected de�nitions. When the de�nition of an identi�er appearing later

in the incremental sequence of compilations falls within the assumed bounds, no recompilation

is agged. Even when these assumptions fail, we can localize the retyping to just the assumer

identi�er and its SCC instead of the whole program. But in the worst case each such recompi-

lation can give rise to more failures in the topologically preceeding SCCs and we may end up

recompiling the whole program.

As an example, consider the set of de�nitions in �gure 3.14 (a). The call graph in this case

26Note that for most cases (connected graphs that are not trees), we have n � e � m, so that the total space
complexity can be bounded by O(m).

104

(a) (b): Static Call Graph. (c)

Figure 3.14: Example program to illustrate the high number of Recompilations.

is a simple chain as shown in (b). The upper bound type assumptions of the identi�er h fails its

checks as soon as m is de�ned. A subsequent recompilation of h propagates the type information

of m onto h and causes the failure of assumption checks of g and so on. Thus each one of f,

g, and h needs to be recompiled once (but in the reverse order) in order for its type to reect

the latest type information due to m. This example shows that the number of recompilations

could be linear in the size of the program. Note that a simple strategy such as compiling the

whole set of de�nitions twice does not help since the order of recompilation is important. In

fact, that strategy will perform a quadratic number of recompilations in this example since on

the second round of compilations the de�nitions of f and g will still not see the latest updated

type of h, and g will fail its assumption checks nevertheless.

It is further possible to amortize the cost of retyping an SCC over several assumption failures

by adopting a lazy recompilation policy (as against an eager one). The idea is as follows: a

recompilation is agged when some signi�cant change is detected in the program, therefore

it may help to postpone the recompilations as late as possible so as to let all the changes

accumulate. To see an example of this, consider the program in �gure 3.14 (c) which has the

same call graph as in (b). Now the upper bound type assumptions of f fail as soon as g is

introduced. If we choose to eagerly recompile all de�nitions as soon as their recompilation

is agged, we will end up compiling f d times where d is the DAG-height27 of the call graph,

because its type gets a�ected by each of the subsequent de�nitions. Similarly g will be compiled

d � 1 times and so on. In call graphs that have large depth, so that d = O(n), we will end

27Collapsing each SCC into a single node, the static call graph becomes a directed acyclic graph (DAG).
DAG-height refers to the longest path from the root of this DAG to some leaf node.

105

def f x = g x; 0 I def f x = g x;

+
def g x = h x; 0 g def g x = (h x):nil;

+
def h x = m x; 0 h def h X = (m x):nil;

+
def m x = x:nil; 0 m def m x = x:nil;

up doing O(n2) recompilations in total with this eager strategy. Whereas if we postponed all

the recompilations till the end, a single sweep of recompilations in the reverse order will settle

all the types to their correct values. When editing is allowed, the number of recompilations is

again dependent on the DAG-height and the strategy used. The only di�erence is that some

de�nitions may need to relax their types while others may need to re�ne them.

Thus, it is clear that the total time and space overhead for the type computation depends

on the topology as well as the strategy of recompilation. For most real situations, where the

size of the SCCs can be bounded by a small constant, the worst case overhead for type-checking

a given program in the incremental system is still proportional to the size of the program, but

on an average may turn out to be much more localized if we delay the recompilations as much

as possible and do them in the right order. A more detailed analysis is beyond the scope of this

thesis.

3.8.3 Comments on Complexity

Note that the overhead for computing the SCCs is proportional to the size of the static call

graph, while that for the type computation is proportional to the size of the actual program.

As mentioned earlier, the size of the static call graph may be much smaller than the size of the

program. Moreover for the type computation, the actual overhead is weighted by the size of

the type expressions which could themselves be exponentially large, so we usually ignore the

overhead due to the SCC computation even though it may be quadratic in the size of the call

graph.

Even though the worst case complexity of our system is no better than recompiling the

whole program again, judging by our experience with its implementation, it is substantially

smaller than that on an average. The overhead of incremental book-keeping is usually more

than o�set by avoiding the recompilation of unrelated or una�ected nodes. Further reserach is

necessary in this direction to quantify the average complexity of this system over a variety of

programs.

Polymorphism is the other aspect from which our system derives bene�t. Note that the

assumptions about the upper and lower bounds of the types of top-level identi�ers provide a

spring like resilience to the type system. As long as the actual polymorphic type of a top-

level assumee identi�er used by an assumer identi�er conforms to these limits recorded in the

assumptions of the assumer, the assumer need not be recompiled. If there was no polymorphism

106

in the type system then there would not be separate upper and lower type limits. There would

only be a single monomorphic assumed type tested for equality against the current type of the

assumee and the slightest change in its type would force a recompilation of the assumer.

3.9 Discussion

3.9.1 Recompilation vs Retyping

We have been vague in our terminology for the compiler action when some property assumptions

fail their checks, using the terms recompilation and retyping somewhat loosely and interchange-

ably. Now we will make a distinction between the two.

Arbitrary editing may involve not only correcting erring de�nitions but possibly rede�ning

some de�nitions altogether. We need to distinguish these cases of true recompilation of def-

initions where no previous property of the rede�ned top-level identi�er can be allowed to be

retained by the compiler, from the cases of recompilation issued by the incremental type system

itself when some assumer identi�er fails the assumption checks. The latter is a request to simply

recompute the global properties of an unchanged assumer de�nition in order to incorporate the

e�ects of the changes in the properties of its neighboring nodes. None of the local compilation

properties change for that de�nition and can be retained from the previous compilation. We

will call this recomputation as retyping as against the former situation which we will continue

to call recompilation.

Note that retyping is properly subsumed by recompilation so an implementation may choose

to process all requests for retyping as requests for recompilation. But the distinction is necessary

for the bene�t of an implementation that signi�cantly improves performance by retaining all

the unchanged properties of the top-level identi�ers and does retyping on the y when some

assumptions fail.

The other signi�cant di�erence between retyping and recompilation is that recompilation is

usually user initiated while retyping is always requested by the inference system itself. Doing

retyping is safe when it is guaranteed that the given program has not changed textually. This

is true for the case when no editing is allowed as well as in the general case after the compiler

has been invoked on a given set of de�nitions28. Then, all internal requests for retyping,

initiated due to the failure of some assumptions, can be processed automatically within the

28Unless we have a compiler that corrects programs!

107

compiler followed by a retry for the failed checks. If during the process of retyping a type-error

is encountered, the compiler can then abort the process and request a recompilation because

some user editing is necessary.

3.9.2 Optimizations

It is possible to further reduce the cost of an incremental change to the program, if it does

not a�ect the properties of other nodes. In our current scheme, whenever a node is agged for

recompilation, we recompile all the de�nitions in its latest SCC. This is necessary when the new

SCC of the node is di�erent from its old one. But this may be wasteful if the editing changes

do not a�ect the SCC or the type properties of the node. Indeed, the only computation really

necessary in such cases is the compilation of the edited node itself.

Even when the type of the edited node is di�erent but its SCC is the same, it may not

be necessary to recompile all the other de�nitions in its SCC. This is because type-checking a

given de�nition does not use any information about other de�nitions in its SCC (apart from

the fact that they are all in the same SCC) until the latter part of algorithm W1 when we unify

all the assumed types of the de�nitions with their computed types in a uni�cation matrix (see

�gure 3.5). Therefore, if we save the types of SCC identi�ers assumed while typing a given

de�nition, we can use them directly in the latter part of the W1 algorithm when some other

identi�er from the same SCC is being recompiled.

We show the updated algorithm W2 in �gure 3.15, where we have also incorporated the

collection of the SCC and the lower bound type assumptions introduced in section 3.7. The

algorithm now works in two phases.

The �rst phase computes the SCC of the given de�nition and compares it with its earlier

value. If the SCC has changed then we proceed as before, compiling each of the de�nitions

belonging to the new SCC afresh and accumulating their properties. We also record the locally

inferred type of each identi�er and its local type assumptions about other identi�ers in its SCC

for future use. If the SCC has not changed from its earlier value, then it implies that only the

current binding needs to be compiled and we can use previously saved local properties of the

other identi�ers of that SCC in the second phase, instead of computing all of them afresh.

The second phase, as before, constructs a uni�cation matrix using the freshly computed

or previously saved local properties of all the identi�ers of the SCC and updates their type

properties. It also records the upper and the lower bound type assumptions for the identi�ers

108

Def W2(TEi�1,SEi�1,Bx) =

PHASE I:

Let Bx be the binding `x = ex'.
Construct the current call graph Gi using the free identi�ers (FId) property.
SCCi

x = fz1; : : : ; x; : : : ; zng be the current strongly connected component of x in Gi.

if SCCi
x 6= SE i�1(x) then

SCC Environment: SE i = SE i�1 nSCCi
x
+fzk 7! SCCi

xg 8zk 2 SCCi
x.

for each top-level identi�er zk 2 SCCi
x do

Let ek be the RHS expressions associated with zk.
Let �k1; : : : ; �kn be new type variables.
New-TE i

k = TE i�1 nSCCi
x
+fz1 7! �k1; : : : ; zn 7! �kng.

W 0(New-TE i
k; ek) = (Sik; �

i
zk
; Ai

k).

Local Assumptions: Alocal
k = fz1 7! Sik�k1; : : : ; zn 7! Sik�kng.

endfor.

Local Assumption Environment: AE i = AE i�1 nSCCi
x
+fzk 7! Alocal

k g 8zk 2 SCCi
x.

Local Types Environment: WE i = WE i�1 nSCCi
x
+fzk 7! � izkg 8zk 2 SCCi

x.
else

Let �1; : : : ; �n be new type variables.
New-TE i

x = TE i�1 nSCCi
x
+fz1 7! �1; : : : ; zn 7! �ng.

W 0(New-TE i
x; ex) = (Six; �

i
x; A

i
x).

Local Assumptions: Alocal
x = fz1 7! Six�1; : : : ; zn 7! Six�ng.

Local Assumption Environment: AE i = AE i�1 nfxg +fx 7! Alocal
x g.

Local Type Enironment: WE i = WE i�1 nfxg +fx 7! � ixg.
endif.

PHASE II:

Ui = Unify-Columns

0
BBBB@

AE i(z1)(z1) � � � AE i(z1)(zk) � � � AE i(z1)(zn)
...

...
...

AE i(zn)(z1) � � � AE i(zn)(zk) � � � AE i(zn)(zn)
WE i(z1) � � � WE i(zk) � � � WE i(zn)

1
CCCCA

Type Environment: TE i = TE i�1 nSCCi
x
+fzk 7! close(UiWE i(zk))g 8zk 2 SCCi

x.

if only x was type-checked in PHASE I then
Upper Bound Type Assumptions: Mx = UiA

i
xnSCCi

x
.

Lower Bound Type Assumptions: Nx = fzp 7! TE i�1(zp)g 8zp 2 (FId(ex)� SCCi
x).

else

Upper Bound Type Assumptions: Mzk = UiA
i
knSCCi

x
8zk 2 SCCi

x.

Lower Bound Type Assumptions: Nzk = fzp 7! TE i�1(zp)g 8zp 2 (FId(ek)� SCCi
x).

8zk 2 SCCi
x.

endif.

Return (TE i; SE i).

Figure 3.15: The Updated Incremental Algorithm W2.

109

compiled in the �rst phase.

The local properties we need to save in the �rst phase essentially correspond to all the type

information necessary to reproduce the uni�cation matrix in the second phase. These properties

are local because they are independently computed for each identi�er in a SCC and do not use

any information about other identi�ers from the same SCC. We need to maintain the following

two local properties.

1. Local property Local Type = (Types;=). For each identi�er x, we record its local type

� ix computed in the call to W 0. We save this property in a map from identi�ers to types

called Local-Type-Environment WE .

WE 2 Local-Type-Environments = Identi�ers
�n
��! Types (3:31)

2. Local property Local Assumptions = (Local-Type-Environments;=). For each identi�er

x, its local assumption set Alocal
x is a map from the identi�ers in its SCC to their types as

inferred from the call to W 0. This is later used in the second phase for uni�cation with

similar local assumptions and actual inferred type of other identi�ers in the same SCC.

We collect this property in Local-Assumption-Environment AE .

AE 2 Local-Assumption-Environments = Identi�ers
�n
��! Local-Type-Environments

(3:32)

Our incremental algorithm is now complete. It type-checks a set of de�nitions incrementally,

allowing intermediate editing. It also attempts to minimize the overhead of recompilations by

saving as much local information as possible while making sure that the types inferred are both

sound and complete.

3.9.3 General Comments

While developing algorithms W1 and W2, we took some basic design decisions. Now we will

discuss them with a general perspective.

The following points emerge by examining the two incremental algorithms.

1. Types and strongly connected components are closely related properties. This is a mani-

festation of the Hindley/Milner polymorphic type inference system which we described in

detail in the last chapter. Therefore, we have to deal with both properties simultaneously

in any implementation of this type system.

110

2. Even though the physical unit of compilation is a single top-level de�nition, our algorithms

use a single SCC as a logical unit for type-checking. Again, this is a characteristic of the

Hindley/Milner type system. We have to deal with de�nitions that are within an SCC

di�erently from those that are outside it. Moreover, the de�nitions within an SCC are

a tightly knit unit because their types are closely dependent upon each other. So it is

logical to treat them as a unit.

3. With the above logical division in mind, we maintain the consistency of the compilation

environment within a SCC unit using the SCC assumptions and outside it using the type

assumptions. This is to obtain maximum advantage out of the polymorphism of the

system. We do not care about changes in the SCCs of two de�nitions as long as they

satisfy the type asumptions and are in di�erent SCCs.

4. The compilation property domains D are entirely syntactic entities. They have a syntactic

structure generated according to the associated predicate v. For incremental property

computation, it is necessary that these domains have a syntactic \bottom" element with

respect to the predicate relation. This element denotes \no information" and has to be

consistent with all the other elements of the domain. In practice, this element becomes the

initial value of that property which then subsequently gets re�ned to one of the elements

of the domain. For example, 8�:� is the bottom element of the type property and the

null set � is the bottom element of the SCC property. Also, the incremental property

computation needs to be a syntactically monotonic operation over the domain. Otherwise,

our mechanism of computing repeated re�nements of a property starting from the bottom

element of the domain will not be correct.

5. The incremental book-keeping mechanism we described in section 3.1.2 is general enough

to capture almost all interesting incremental compilation properties. Indeed, this system,

�rst implemented by Traub [59], forms the backbone of all the incremental book-keeping

done inside the Id Compiler developed at the Laboratory for Computer Science, MIT.

But this system only speci�es a basic mechanism for incremental property maintenance.

It does not guarantee correctness for an arbitrary property. As we saw in earlier sections,

soundness and completeness of incremental property inference is closely tied to the pecu-

liarities of the property domain, the actual strategy used in computing and verifying the

property, and the inter-relationship among the various properties being collected.

111

3.9.4 Related Work

Our work has grown out of the ideas presented by Nikhil in [44]. Subsequently, Toyn et al.[58]

used some of those ideas in their GLIDE system. Even though their incremental type inference

system is based on the same principles as ours, it is very di�erent in detail.

The GLIDE system maintains much more �ne-grain type information than our de�nition

based book-keeping. They record type constraints for every identi�er or literal in the form

of its expected and inferred type. (Re)typing a de�nition modi�es the set of type constraints

maintained within the system and a (re)uni�cation of the latest constraints determines the

type of all identi�ers. Keeping this �ne-grain information allows them to reuse a lot of type

information from within a de�nition during retyping instead of computing it afresh as in our

system. But they do not take advantage of polymorphism of the type system in identifying

the set of type constraints that need to be revised due to a change in the type of an identi�er.

Their consistency checks are based on syntactic sharing of type variables rather than upper and

lower bounds in a structured type domain.

Another important feature of the GLIDE system is that they have an automatic loading

mechanism that automatically compiles, loads, and links a de�nition only when it is actually

needed in a computation. Thus all type-checking occurs on the y at run-time, and it is

important to resolve all type inconsistencies immediately so that the computation may proceed

further. Therefore, they need to reuse as much type information as possible in order to cut down

the retyping cost. This is completely in contrast with our approach of compile-time, static type-

checking, where the user picks the order of (re)compilation of de�nitions and the system only

informs what de�nitions need to be recompiled. In this way, our system can tolerate temporary

type inconsistencies among de�nitions and reduce the number of recompilations by intelligent

scheduling29, while still guaranteeing the correctness of inferred types before run-time.

There are few other programming environments in the literature that have attempted to

incorporate incrementality. In [39], Meertens describes an incremental polymorphic type infer-

ence scheme for the language B. Even though the language speci�c issues are quite di�erent,

his system incrementally maintains �ne-grain type constraints like those in the GLIDE system.

The AIMLESS system developed at the Australian National University as part of the pro-

gramming environment of ANU ML [51] takes a completely di�erent approach. Here, the user

is allowed to edit de�nitions in an editor bu�er and then compile and use them in a ML script

29The reader is referred back to section 3.8.2 where we discuss eager vs lazy recompilation strategies.

112

that represents an interactive user session. The system records and maintains all dynamic in-

formation regarding the session. To edit a previously compiled de�nition, all phrases upto that

de�nition, from most recent to the least recent, are moved from the script to the bu�er and

all their bindings and e�ects are undone. After the editing, they are moved back to the script,

being recompiled in the process, and any discrepencies found are reported. It is possible to

minimize the recompilation cost by saving some previous information.

The POPLOG [62] system is an umbrella for a variety of languages, including ML, Pro-

log, and LISP and it permits incremental compilation of functions. However, it requires type

information to be presented in the right order and is therefore is not as exible as our system.

3.9.5 Current Status

Finally, we want to state that the incremental type system presented in this chapter has been

implemented as a module of the Id Compiler developed at Laboratory for Computer Science,

MIT, and has been successfully running for the past two years. The implementation has helped

in our understanding of pragmatic issues such as the incremental e�ciency and the book-keeping

overhead, as well as subtle theoretic issues in proving the correctness of the algorithm.

Technically, the current implementation is a slight variation of the algorithm W1 presented

in this chapter. It does not record the lower bound type assumptions (N), though it records the

SCC assumptions (Q). Optimizations discussed in section 3.9.2 are also not implemented yet.

The system does not perform any automatic retyping and has a lazy recompilation strategy{it

checks the property assumptions for consistency only when an expression query is supplied and

ags the appropriate de�nitions to be (re)compiled at that time. Our exible implementation

allows us to experiment with these ideas freely.

We plan to strengthen the system with the proposed extensions and optimizations. Our

experience till now regarding the e�ciency of the book-keeping mechanism and the exibility

o�ered by the de�nition level incrementality has been extremely favorable.

113

114

Chapter 4

Overloading

Overloading of identi�ers, also known as ad hoc polymorphism, has appeared in conventional

programming languages since their inception. In fact, in many situations it is so smoothly

incorporated into the language syntax that it is hard to percieve the implicit sharing of names

among various functions. As a working de�nition, we will say that an identi�er is overloaded

when it is used to represent di�erent and possibly unrelated functions in di�erent type contexts.

An example of such seamless interlinking between the overloading of identi�ers and the

language syntax can be seen in the way many conventional languages deal with arithmetic

operators. Fortran and C use the same arithmetic operator symbols (+,-,*,/ etc.) to do integer

as well as oating point arithmetic. In Basic and some versions of Fortran, their interpretation

extends even to vectors and matrices. The underlying functions (program code) that implement

these operators are very di�erent in each type context, but in order to reduce syntactic clutter

and enhance readability, the language syntax names them all with the usual names of arithmetic

operators. Such sharing of names is usually limited to a small set of pre-concieved identi�ers

and is, therefore, non-extensible. In most cases, the individual compilers recognize this sharing

and generate the appropriate code in an ad hoc fashion. Only recently has there been some

attempt to systematize the mechanism involved in this name sharing and to extend it to allow

explicit user-de�ned overloading of identi�ers in context of strongly typed, functional languages

[27, 63].

In Id, we take a position close to that proposed by Wadler and Blott in [63]. In this chapter,

we describe our proposal for explicit, user-de�ned overloading of identi�ers and a systematic

mechanism for the compiler to resolve and then translate such programs into appropriate code.

A preliminary version of this proposal was described by Nikhil in [47] for internal circulation.

115

This chapeter is organized as follows. In section 4.1, we discuss the desirable features of

an overloading scheme and its relationship to parametric polymorphism. In section 4.2, we

characterize a way to explicitly declare overloaded identi�ers and their instances and our strat-

egy to resolve them during compilation. Subsequently in section 4.3, we show two mechanisms

of translation, parameterization and specialization and debate the advantages of one over the

other. Finally in section 4.4, we investigate the relationship between our proposal and that of

Wadler and Blott in [63].

4.1 Issues in Overloading

There are several issues to consider in a possible scheme for overloading. The following discus-

sion is geared towards the static, compile-time type analysis that we have chosen to follow. So

even though we mention various issues and discuss their implications, we choose to emphasize

those that either support or �t well into our approach.

4.1.1 Overloaded Identi�ers and Resolution Choices

The most important aspect of overloading resolution is indicating what identi�ers are overloaded

and what are their possible resolution instances. Various schemes di�er in various ways; whether

there is a �xed, built-in set of overloaded identi�ers with resolution choices speci�ed by the

language, or by a standard library; whether general, user-de�ned extensions are permitted;

whether there is a �nite number of choices or in�nitely many; whether the resolution choices

are speci�ed/resolved at compile-time or run-time etc. The following features are desirable:

1. The set of overloaded identi�ers should be user-declarable and extensible.

2. The set of resolution instances for an overloaded identi�er should also be user-declarable

and extensible.

3. The overloaded identi�ers and their instances should be speci�ed1 and resolved at compile-

time.

4. The process of resolving an overloaded identi�er into one of the possible instances should

be independent of the order of speci�cation of instances and their position in the program.

To this end, only non-overlapping instances may be permitted. Or, in other words, there

1Possibly in a library of standard declarations to be used as a prelude to the programs.

116

should not be any common contexts in which two or more instances are simultaneously

applicable.

5. The process of resolution should always terminate. A possible measure to ensure this is

to allow only a �nite number of di�erent instances for any given overloaded identi�er.

As an example, we can declare that \+" is overloaded and has two resolution instances,

iplus and fplus, the primitive addition operations for integers and oating point numbers

respectively2.

overload (+) :: I -> I -> I = iplus;

overload (+) :: F -> F -> F = fplus;

Then the following overloading resolutions and type inferences can be made:

... x + 2 ... =) ... (iplus x 2) ...

... y + 3.14 ... =) ... (fplus y 3.14) ...

... (a + 2) + 3.14 ... =) TYPE ERROR: No resolution instance for + exists

with type I -> F -> *0

Note that in the last example a type error was inferred because we have not declared any

resolution instance for \+" to handle mixed types. Admitting only �nite number of (compile-

time speci�ed) instances permits the compiler to enumerate and match the choices against

the furnished context and then decide if it has found a valid resolution (i.e.meaning) for the

overloaded identi�er. Countably in�nite number of choices are also acceptable as long as there

is a tractable decision procedure to resolve among them and show validity of the resolution for

the given type context.

Such a decision procedure also helps to distinguish decidedly improper uses of the overloaded

identi�er from the ones that lack su�cient contextual information. Otherwise, this decision has

to be postponed until run-time when it can use the most recent list of instances for the actual

objects involved. For example, if we declare equality (==) to be universally applicable to all

types (either by making it fully polymorphic or by supplying a default resolution instance for

every type), then applying it to functions or abstract data types will not generate a type error,

as we may want it to. Indeed, in Miranda where equality has polymorphic status, an equality

test over functions is caught only at run-time, and that over abstract objects is not caught at

all and degenerates to an equality test over their representations3.

2We will present the actual Id syntax for explicit declaration of overloaded identi�ers and their instances in
a later section. Till then, we request the reader to bear with us. The syntax,
overload overloaded-identi�er :: type context = instance-identi�er;
declares the given instance identi�er as an instance of the overloaded identi�er for the speci�ed type context.
3This may be regarded as a breach of the abstraction.

117

As a matter of clean semantics, we may wish to keep the various instances mutually non-

overlapping. This in turn implies that the compiler is free to match the choices in any order and

the user is free to declare them in any order without a�ecting the overall result of resolution.

This property is particularly useful in an incremental compilation environment like ours.

Finally, di�erent languages may permit the de�nition of resolution instances at di�erent

times. As in Fortran, C, or Pascal, it may occur at language design time only. In some

cases, we may restrict it to only pre-de�ned operators and identi�ers declared in a separate

library or a standard prelude. Or, we may give the user full freedom to declare overloaded

identi�ers and their instances in their programs. In Id, we follow a mixed approach: while

the usual arithmetic and relational operators etc. are declared in a standard basic library, the

user has complete control over declaring his/her new overloaded identi�ers, their instances or

even extending the set of instances of the pre-de�ned ones. Thus, it is conceivable to have the

following declaration as part of the math library, to be used for complex algebra,

def cmplxadd (x1,x2) (y1,y2) = x1+y1,x2+y2;

overload (+) :: (F,F) -> (F,F) -> (F,F) = cmplxadd;

In a language with module structure, we may, in fact, like to package up this de�nition in

a module which can then be \used" by various applications. This is desirable, since we do not,

in general, want to de�ne addition on pairs of oating point numbers. This should be allowed

only in context of complex numbers as declared here.

4.1.2 Propagation of Overloading Information

Consider the following function:

def double x = x + x;

...(double 2)...

...(double 2.718)...

What is the type of double? Is it (I -> I) as an integer function, or (F -> F) denoting a

oating point function, or some generalization of both? Further, when does the type of double

get completely known, at the time of its de�nition, or its use in a particular context, or at run

time? In a polymorphic language like ours, we would like to declare only one such function

and apply it to both integers and oating point numbers in di�erent contexts as shown in the

example above. In fact, keeping in mind that the identi�er \+" is overloaded, we may wish to

say that double is automatically overloaded with implicit instance declarations corresponding

118

to every instance of \+". In other words, double is overloaded over any type that admits the

addition operation. In ML, such an assertion is possible only for the equality operator (==)

which is treated specially. Thus it is possible to de�ne a generic list-membership function in

ML, similar to the one shown below.

def member x nil = false

|..member x (y:ys) = (x==y) or member x ys;

typeof member = *0(==) -> (list *0(==)) -> B;

The *0(==) denotes a type variable that is allowed to range only over types that admit

equality and is called an eq-type variable in ML. We would, of course, like a solution that is

universal.

Another problem with this implicit propagation of overloading is that the number of possible

instances can grow very rapidly. For example we may de�ne,

def doublepair x y = double x, double y;

Now, there are four possible instances for doublepair4, taking arguments of type integer

and integer, integer and oat, oat and integer, and oat and oat, respectively. We would like

to handle this explosive situation appropriately in our overloading scheme.

4.1.3 Conditional Instances and Recursion

Combining the two concepts presented above, namely, declaring new resolution instances and

propagating unresolved overloading information to other identi�ers, poses a new challange to

an overloading scheme. To see this, consider the following example of vector addition5:

def vadd X Y =

f l,u = bounds X;

in

farray (l,u)

4Assuming that \+" (and hence double) has integer and oating point instances only.
5The syntax is called an \array comprehension":

a = farray bounds

| [subscript] = value || generator

...

| [subscript] = value || generatorg

Essentially, this declares a one dimensional array with the speci�ed bounds expressed as a tuple, and a sequence
of �lling clauses that �ll the speci�ed value at the speci�ed subscript. The value and the subscript expression are
evaluated at each of the values generated by a generator, which could be a nested combination of list producing
expressions �lterable through predicates. See [48] for details.

119

| [i] = X[i]+Y[i] || i <- l to ugg;

overload (+) :: (Vector *0) -> (Vector *0) -> (Vector *0) = vadd;

The challange here is to allow vadd as a resolution instance of \+". The idea is to be able

to say that if X and Y are vectors, then X+Y is their vector addition de�ned by vadd. Now, note

that the addition of the components X[i]+Y[i] within the de�nition is not fully resolved. It

really depends on the type of the components of vectors X and Y. For example, if X and Y are

integer arrays then X[i]+Y[i] should simply resolve to (iplus X[i] Y[i]), and if they are

arrays of oating point numbers then the addition should resolve to (fplus X[i] Y[i]) etc.

In general, vadd is implicitly overloaded over vectors of any type whose components admit the

addition operation. The declaration of vadd as an instance of \+" creates a recursive instance

resolution problem: when components of X and Y are themselves vectors, we need to use the

de�nition of vadd as a resolution instance of \+" in order to de�ne vadd itself! Fortunately,

a nice solution is possible by adding extra parameters to vadd and we will discuss this in the

next section. For now, we only observe that the solution must be able to admit an in�nity of

overloadings for \+" through vadd { one each for vectors of integers, vectors of oats, vectors

of vectors of integers, vectors of vectors of oats, and so on.

4.1.4 Ad hoc vs Parametric Polymorphism

The essential idea behind overloading is that it is a syntactic sharing of names. It does not inter-

fere with the semantics of the language. So, for languages that do not emphasize the concepts

of polymorphism and code sharing, we do not even think of overloading as a means of poly-

morphism. But a basic insight is that syntactic overloading can be traded o� for semantically

more polymorphic, higher-order, parametric polymorphism. Instead of attempting to replace

syntactically overloaded programming constructs by their resolved instances in order to impart

them a semantic meaning, we can choose to provide a parametric, semantic interpretation to

the overloaded construct directly.

Consider the earlier example of double. Instead of treating it as implicitly overloaded, we

may interpret it to possess an extra parameter supplying the appropriate addition operation.

The intended interpretation is shown in �gure 4.1, example (a), as a new transformed de�nition

on the right. Now there is exactly one interpretation of double. It is now a parameterized

function with an extra argument (+). An actual resolved instance of \+" is passed to it as

shown in any particular application.

120

Parameterization also takes care of the exponentially large number of possible instances

by constructing only one function which is passed suitable arguments in various situations

to behave like di�erent instances. Translation of doublepair in example (b) illustrates this.

Finally, it o�ers a clean solution to the recursive overloading problem as well (see example

(c) for vadd). It converts the syntactic problem of choosing one of in�nitely many di�erent

resolution instances into that of composing the right application from the same parameterized

instance recursively.

It may appear from the above discussion that we have already found a plausible scheme

for implementing overloading of identi�ers. It is conceivable that a smart compiler will be able

to generate the parameterized forms by looking at the type of the variables involved and the

declaration of the various instances. Indeed, this is precisely the approach taken by Wadler and

Blott in [63]. There the authors o�er a general mechanism to systematically convert overloaded

expressions into parameterized functions applying them to suitably resolved arguments.

It is possible to split this process into two parts. First, we may simply type-check the whole

program and resolve all uses of overloaded identi�ers to their appropriate instances as far as

possible. Then, in the second step, we may translate the program using our preferred strategy

that suitably deals with resolved and unresolved contexts. Thus, we can make the following

observations at this point,

1. Overloading relieves the user from having to deal with some complex parameterizations

in a particular implementation.

2. It is possible for the compiler to automatically infer the parameterizations using local

type context information.

3. Overloading only speci�es certain analysis and translation requirements for the compiler.

A particular implementation may choose to satisfy them with more e�cient compilation

strategies than simple parameterization.

The last point needs some elaboration. Notice that the extra parameter (+) in vadd' is com-

pletely arbitrary. It has no knowledge that it is to be used for the instances of the overloaded

addition operation only. Even though the compiler has this information, it simply discards

it and any subsequent application of vadd' is no di�erent from a general procedure call. An

optimizing compiler can do better. Keeping in mind that (+) can only range over the useful

instances of the addition operation (which is often a very small set in a given program), the

121

Source Code Transformed Code

Example (a): double

def double x = x + x; def double' (+) x = (+) x x;

...(double 2)...

...(double 2.718)...

...(double' iplus 2)...

...(double' fplus 2.718)...

Example (b): doublepair

def doublepair x y = double x, double y; def doublepair' (+)1 (+)2 x y =

double' (+)1 x, double' (+)2 y;

...(doublepair 2 2)...

...(doublepair 2.718 2)...

...(doublepair' iplus iplus 2 2)...

...(doublepair' fplus iplus 2.718 2)...

Example (c): vadd

def vadd X Y = ...X[i]+Y[i]...; def vadd' (+) X Y =

...((+) X[i] Y[i])...;

typeof X = (Vector I);

...X + Y...

typeof X = (Vector I);

...(vadd' iplus X Y)...

typeof XX = (Vector (Vector F));

...XX + YY...

typeof X = (Vector (Vector F));

...(vadd' (vadd' fplus) XX YY)...

typeof XXX =

(Vector (Vector (Vector I)));

...XXX + YYY...

typeof XXX =

(Vector (Vector (Vector I)));

...(vadd' (vadd' (vadd' iplus))

XXX YYY)...

Figure 4.1: Translation of Overloading into Parameterization.

122

compiler may choose to generate a specialized version of vadd for each such used instance. The

specialized versions will have inline instructions to do the relevent operation, consequently be-

ing far more e�cient than parameter passing and general procedure calls. To take an example,

in a matrix algebra library, it may su�ce to generate a version of vadd for vectors and matrices

of integers and oats each. The specialized versions for vectors may have inline instructions to

do integer and oating point addition of the components and may be called ivadd and fvadd

respectively. These versions will be much more e�cient than their parameterized counterparts

(vadd' iplus) and (vadd' fplus).

It may be noted that all possible instances need not be specialized (of course, there may be

in�nitely many of them!). Obviously, it is non-trivial to decide which ones should be specialized.

A compiler can perform price/performance analysis to decide this. There are opportunities

for making several trade-o�s here: compiling time vs execution time (e�ciency of compiled

code), added compiler complexity (for extra specialization analysis) vs simplistic translation

mechanism, space (keeping several special versions) vs time (overhead in parameter passing

and general procedure call).

4.1.5 Discussion

We may note in passing that di�erent languages take di�erent approaches when it comes to

overloading. While conventional languages like Fortran and C allow only �xed, built-in interpre-

tations of the overloaded symbols, Miranda does not allow overloading of arithmetic operators

and treats equality to be fully polymorphic. Standard ML allows overloaded arithmetic op-

erators in directly resolvable contexts such as (2*2) and (2.72*2.72) but cannot indirectly

propagate it inside unresolved functions such as the function double above. As for the equal-

ity operator (==), ML treats it specially and overloads it with every type that admits equality.

This gives it a limited, but extensible polymorphic avor at the cost of some extra bookkeeping.

Finally, Haskell directly supports the complete proposal of Wadler and Blott with type classes

and parametric translation.

Our approach in Id is to investigate both parameterization and specialization schemes. The

parameterization scheme is attractive since it is universal and systematic. The specialization

scheme is attractive because of sheer run-time e�ciency; the user need not pay any run-time

price for the extra comfort of overloading. We describe our proposal below in two parts: �rst

we establish a framework in which the compiler collects all the relevent information from the

123

program and resolves the overloaded identi�ers, then in the second step it uses this information

to generate either parameterized or specialized code.

4.2 Overloading Resolution

First, we present the user's view of our overloading mechanism. We describe the type expression

terms that can be constructed in Id and show the language constructs that the user may use

to declare explicitly overloaded identi�ers and their instances. Then we describe a mechanism

of instance resolution using a set of operational reduction rules. This information is saved in

the compiler for the later phase of actual code generation.

4.2.1 User's View of Overloading

We extend the notion of type of an identi�er to include some information that it may be

overloaded. We call this extra information a type predicate. In general, the complete type

of an identi�er has two parts, a standard type expression as derived by the Hindley/Milner

type inference system (henceforth called the Hindley/Milner type or HMT for short), and a

pre�x type predicate, which is a boolean conjunction of zero or more predicate clauses. Each

clause is a predicate function of some number of HMT agruments. A BNF grammar appears

in �gure 4.2.

A complete type expression is said to be overloaded if its type predicate pre�x is non-null,

i.e., it contains at least one predicate clause, otherwise it is non-overloaded. A null type

predicate (also called a trivial type predicate) will be represented by \�" where explicit rep-

resentation is desired. A non-trivial type predicate derived for a program expression speci�es

exactly what identi�ers were found to be overloaded and under what type context. The pred-

icate function in each clause identi�es the overloaded identi�er and the context information is

manifest in its argument type expressions.

As discussed above in section 4.1, the identi�ers may be explicitly or implicitly overloaded.

Explicit Overloading

It is often the case that the types of the intended instances of an overloaded identi�er form

a general pattern. For example, the Hindley/Milner type of iplus (I -> I -> I) and fplus

(F -> F -> F) both fall into the general pattern of (*0 -> *0 -> *0). Thus, it helps the type

124

Type ::= Type-predicate . HMT

HMT ::= Type-variable
j HMT ; � � � ;HMT| {z }

n

(n > 1)

j HMT -> HMT
j Type-Constructorn HMT � � �HMT| {z }

n

(n � 0)

j (HMT)

Type-variable ::= *0 j *1 j *2 j � � �

Type-constructor0 ::= I j F j B j C j S j Sym j � � �
Type-constructor1 ::= 1d array j 2d array j � � � j list j � � �

Type-predicate ::= Predicate-clause ^ � � � ^ Predicate-clause| {z }
n

(n � 0)

Predicate-clause ::= (Identi�er? HMT � � �HMT| {z }
n

) (n > 0)

Figure 4.2: Extended Syntax of Type Expressions in Id.

checker to restrict the type of all instances of an identi�er to be a substitution instance of a

general template6. In this way, arbitrary instance declarations can be caught as type errors.

Of course, the template can be made as general as desired. Keeping this in view, we de�ne the

following Id syntax to declare overloaded identi�ers and their instances:

overload Overloaded-identi�er = HMT-template ;

instance Overloaded-identi�er = Instance-identi�er ;

For example, the declaration for \+" can be made as follows:

overload (+) = *0 -> *0 -> *0 ;

The type checker then infers the type of \+" as:

typeof (+) = (+? *0) . *0 -> *0 -> *0 ;

Now the type of the instances of (+) must be substitution instances of the template

(*0 -> *0 -> *0). The (non-trivial) predicate (+? *0) represents the fact that (+) was

inferred to be overloaded and it requires one HMT-expression to specify the complete type

6Ideally, we would like to restrict the type of the overloaded identi�er to precisely represent the set of declared
instances, but there is no way to express this bounded quanti�cation in our type system.

125

context for its resolution into an instance. This, of course, is the type of the objects that an

instance operates upon7. So the following instance declarations are possible:

typeof iplus = � . I -> I -> I;

instance (+) = iplus; % Substitution: f*0 7! Ig

typeof fplus = � . F -> F -> F;

instance (+) = fplus; % Substitution: f*0 7! Fg

typeof cmplxadd = � . (F,F) -> (F,F) -> (F,F);

instance (+) = cmplxadd; % Substitution: f*0 7! (F,F)g

Since these instances are not overloaded by themselves, their predicates are trivially null.

Note that we only need to know the type of the instance at the time of its declaration. Its

complete de�nition may appear somewhere else, and as long as its type is consistent with this

declared signature, everything is �ne. We also require that the instance types be mutually

disjoint, which is indeed the case here. Both these characteristics are a direct consequence of

the incremental nature of our type inference mechanism.

We will see in the next section how these substitutions are recorded and the later used for

instance resolution.

Implicit Overloading

The implicit propagation of overloading information can also be easily represented using type

predicates. Going back to our earlier examples,

def double x = x + x;

typeof double = (double? *0) . *0 -> *0;

def doublepair x y = double x, double y;

typeof doublepair = (doublepair? *0 *1) . *0 -> *1 -> (*0,*1);

Inferring the implicit overloading of double, we establish a type predicate (double? *0)

by its name. Additional information is recorded internally to reect that this overloading was

caused by the presence of \+" inside its de�nition that went unresolved. Note that all the

necessary type context information is collected in terms of the arguments to the type predicate

function. Thus, doublepair requires two arguments to capture the entire context of both

occurances of double which are independent of each other. Again, additional information is

recorded to denote that doublepair is overloaded due to the two independent occurences of

double inside its de�nition (remember, double is overloaded now, just like \+").

7Note that the scope of the type variable *0" is the complete type signature. So, all the type information in
a substitution instance of (*0 -> *0 -> *0) is caught by simply recording the substitution of *0" inside the
predicate (+? *0).

126

Recursive overloading proceeds in a similar fashion,

def vadd X Y = ...X[i]+Y[i]...;

typeof vadd = (vadd? *1) . (Vector *1) -> (Vector *1) -> (Vector *1);

instance (+) = vadd; % Substitution: f*0 7! (Vector *1)g

The substitution shows the mapping from the HMT template of (+) to the Hindley/Milner

type of vadd. In addition, the predicate (vadd? *1) denotes that vadd itself is overloaded and

that this fact should be taken into account while resolving instances of the addition operation.

We have only shown how the overloading information is visible to the user. In the next

section we describe the internal representations of the compiler and how it manipulates them

to make the desired inferences.

4.2.2 Compiler's View of Overloading

We have introduced two new constructs, overload and instance. Along with that, we have to

process implicit and recursive overloading too. We now give a two step, high level description

of the extended type checking and overloading resolution algorithm.

The �rst step is to execute the type inference algorithm of chapter 3 to determine the

Hindley/Milner types of all expressions in the given program. The only addition is that the

type of an explicitly overloaded identi�er is taken to be its HMT template.

The next step is to recursively traverse the given program bottom up assigning type pred-

icates to all identi�ers. This is the major overloading resolution step and is depicted algo-

rithmically in �gure 4.3. We process one de�nitional binding at a time, where a de�nitional

binding is either a function de�nition or a top-level constant de�nition or one of overload or

instance declarations. The syntax followed is a subset of the complete Id language syntax and

is similar to that of Id Kernel language (�gure 2.7) without performing some of its simplifying

transformations8.

There are certain characteristic properties of our resolution algorithm; we list them below.

1. Literals, e.g., 1, 2.718, "abracadabra", 'atom etc. can not be overloaded9.

8There are some di�erences from (�gure 2.7); we have not lifted out the internal function de�nitions, neither
do we need to atten all subexpressions, and we have expanded the top-level Main block into a sequence of top-
level constant de�nition bindings. Finally, new de�nitional bindings corresponding to overload and instance

are also handled.
9These literals constitute the base types in our typed semantic domain. Without them, the type structure

would be quite uninteresting and overloading them will make the job of the type inference system almost impos-
sible. So we give them �xed interpretation and never overload them.

127

Def Overloading-Resolution(binding)
case binding of

`overload Identi�er = HMTo')
Mark Identi�er as explicitly overloaded.
Generate its predicate function.

`instance Overloaded-identi�er = Instance-identi�er')
If Overloaded-identi�er is not marked overloaded then error.
else

Let typeof Overloaded-identi�er = Predicateo . HMTo.
Let typeof Instance-identi�er = Predicatei . HMTi.
S = Unify(HMTo,HMTi). (may fail)
Instance-clause = S(Predicateo).
if Instance-clause overlaps with a previously generated instance clause then error.
else

Generate Explicit Overloading Rewrite Rule for Instance-identi�er.
endif.

endif.

`def Function-identi�er parameters = body')
Recursively process all de�nitional bindings inside the body in topological order.
Collect all overloading predicates from the body instantiated with their type context.
Resolve the predicates using the current set of Rewrite Rules.
if there are no unresolved predicates left then
Mark Function-identi�er as non-overloaded.

else if there is an unresolved predicate (Identi�er? t1 � � � tn)
such that some ti is not a type variable then error.

else

Mark Function-identi�er as implicitly overloaded.
Generate Implicit Overloading Rewrite Rule for Function-identi�er.

endif.
endif.

`Constant-LHS = body')
Recursively process all de�nitional bindings inside the body in topological order.
Collect all overloading predicates from the body instantiated with their type context.
Resolve the predicates using the current set of Rewrite Rules.
if there is any unresolved predicate then error.

endcase.

Figure 4.3: Overloading Resolution and Propagation Algorithm.

128

2. The meaning of an overloaded identi�er is determined by its declared instances and the

context of its use that selects one of those instances. The compiler machinery to do these

resolutions consists of a set of rewrite rules, one for each implicitly overloaded identi�er or

a declared instance of an explicitly overloaded identi�er. These rules are then applied to

the type context where the overloaded identi�er is used in order to generate its appropriate

instance. The details of this rewrite mechanism will be presented shortly.

3. An identi�er can be declared to be explicitly overloaded at the top-level or inside the

scope of any block expression. The overload declaration de�nes that identi�er for all

syntactic purposes. The compiler notes this fact by generating its predicate function and

its arity. The scope of overloading is exactly the same as the scope of visibility of that

identi�er10.

4. An instance declaration is processed within the scope of the overload declaration of the

corresponding overloaded identi�er and the de�nitional binding of the instance identi�er.

The compiler action is �rst, to generate a type context for the overloaded identi�er using

the type signature of the instance identi�er, and then to validate that instance (check for

overlap with previous instances) and generate the appropriate rules for its resolution. At

the moment, we ag an error if we �nd a previous overlapping instance. We will re�ne

this behaviour later on.

5. Only function identi�ers are allowed to be implicitly overloaded. To be precise, a function

identi�er is implicitly overloaded if there is some use of an overloaded identi�er within its

body that remains unresolved. So, we collect all unresolved uses of overloaded identi�ers in

a block expression and attribute it to to its nearest enclosing function de�nition identi�er.

When there is no such enclosing function de�nition, as in the case of top-level constants, we

raise an error condition. The reason for not allowing top-level constants to be implicitly

overloaded is essentially pragmatic. As stated earlier, overloading can be viewed as a

possible parameterization of semantic meaning of the overloaded identi�er with contextual

information. Thus, an overloaded constant behaves like a function, i.e., it has to be re-

evaluated in every context in which the overloading gets resolved. This defeats the very

purpose of having a constant, which is supposed to be evaluated only once11. We will

10The scope-analysis phase assigns unique names to all identi�ers and e�ectively attens the block structure,
so overloading declarations inside a block are exactly equivalent to those at the top-level.

11Explicit overloading does not present this problem since each instance is actually a constant, so resolution

129

review this point at a later stage.

6. We allow a function identi�er to be implicitly overloaded only if no contextual information

is available to resolve its overloading predicates. We raise an error condition if some

overloading predicate has partial contextual information but can not be resolved because

there is no declared instance to handle it. This does not a�ect our resolution mechanism

and is done essentially for pragmatic reasons.

4.2.3 Rewrite Rules for Overloading Resolution

Now we present the compiler machinery to actually keep track of the overload and instance

declarations and to do instance resolution. We describe this in terms of a rewrite rule operational

semantics. This, combined with the high level overloading processing algorithm described above,

forms the complete overloading resolution mechanism of the compiler. Readers unfamiliar with

the notation of Term Rewriting Systems should refer to [33, 34] for an excellent treatment.

Our term rewriting system consists of the type predicate terms as speci�ed syntactically

in �gure 4.2 and rewrite rules over them. More formally, our rewrite system is a pair (�; R)

where,

� �, also called the signature, is the set of function symbols in the system. It is exactly the

union of the set of overloading predicate functions in the predicate clauses (+?, double?,

: : :) and the set of type constructors in our type system (I, B, ->, list, 2 tuple, : : :). It

also records the arity of each symbol.

� � also implicitly contains in�nitely many variables which is precisely the set of all type

variables in our case.

� R, the set of rewrite rules, consist of a left hand side (LHS) which is always a single

predicate clause, and a right hand side (RHS) which is a collection of zero or more

predicate clauses.

The predicate functions and their rewrite rules are accumulated by the compiler as it pro-

cesses the explicitly and implicitly overloaded identi�ers. Since this process is necessarily incre-

mental, we will always view the rewrite system current at the time of a particular compilation

to be the complete set of rewrite rules accumulated till that time. Any forward references can

is only a matter of choosing among constants.

130

OVERLOAD:
overload x = �

` x : (x? �1 � � ��n):� (�i 2 FV(�))

INSTANCE:

instance xo = xi
TE ` xo : �o:�o
TE ` xi : �i:�i
S = U(�o; �i)

Rule: S�o
x0
i��! S�i

IMPL-FUNCTION:

def f x1 � � �xn = block
�b is the set of all overloading predicate clauses in block

�b �!! �u (�u in normal form)

Rule: (f? �1 � � ��n) ��! �u (�i 2 FV(�u))

Figure 4.4: Meta-Inference rules to generate Rewrite Rules for Overloading Resolution.

be detected and agged by the independent incremental compilation mechanism described in

chapter 3.

The �gure 4.4 shows the meta-inference rules used by the compiler to generate the rewrite

rules of this system. We discuss them below. The meta-variable � varies over the set of type

predicates. A type substitution when applied to a predicate performs the substitution over each

type expression in each clause of the predicate.

An overload declaration speci�es a HMT template that all its instances will share. We

want to express restrictions on the template in order to help the type inference process as

much as possible, because this template is the only visible type signature for that overloaded

identi�er. Note that a trivial template of the form (*0) has much less information than the

template (*0 -> *0 -> *0), which denotes a curried function of two arguments of the same

type giving the result of the same type. The compiler also generates a new predicate function

(the overloaded identi�er su�xed with a \?") to be added to the current rewrite system. It

assigns the arity of the predicate function to be the number of distinct type variables appearing

in the HMT template. The distinct type variables represent the various independent ways in

which that identi�er can be overloaded. We capture these degrees of freedom by supplying an

equal number of parameters to the predicate function, one for each type variable in the HMT

template. For example, the following declarations,

131

overload (+) = *0 -> *0 -> *0;

overload (*) = *0 -> *1 -> *2;

generate the predicate clauses (+? *0) and (*? *0 *1 *2). The latter form for *" gives

the exibility of expressing multiplication of unlike types, e.g., vectors with matrices to give

vectors.

An instance declaration produces a rewrite rule for the overloaded identi�er. The type

context of the resolution is obtained by unifying a copy of the HMT template of the overloaded

identi�er with that of the instance identi�er. The generated rule rewrites the instantiated

predicate of the overloaded identi�er into that of the instance identi�er12. As an example, the

following declarations,

typeof iplus = � . I -> I -> I;

instance (+) = iplus;

typeof vadd = (vadd? *1) . (Vector *1) -> (Vector *1) -> (Vector *1);

instance (+) = vadd;

give rise to the rewrite rules,

(+? I)
iplus
��! �

(+? (Vector *1))
vadd
��! (vadd? *1)

respectively.

Implicit overloading of function identi�ers is handled by the last rule in �gure 4.4. During the

initial type checking phase, the type of an overloaded identi�er (its HMT template) gets suitably

instantiated to reect the type context in which it is being used. In the second pass, its type

predicate is uni�ed with this type context and resolved. This involves repeated rewriting of the

instantiated type predicate using the existing set of rewrite rules until it can not be rewritten

any more (it reaches a normal form). We will show in the next section that this rewriting

always terminates (under certain restrictions) and produces the same answer irrespective of the

order in which the rewrite rules are applied. In literature, these properties are called Strong

Normalization and Conuence respectively. These are strong properties of the rewrite system

and ensure correct compiler behaviour even in the face of random accumulation of rewrite rules

as in our incremental compiler.

The normal form either consists of the trivial null predicate \�", in which case the identi�er

in question has been completely resolved, or there are unresolved predicates left over. Predicates

12We also record an appropriate translation identi�er over the rewrite rule to help us in translation. We will
describe this in more detail in the next section.

132

may not get fully resolved either because the appropriate instances that cover the type context

at hand are not available (as in attempting to resolve \2+x" without the instance declaration

of iplus), or it could simply be that su�cient information is not present in the type context (as

in attempting to resolve \x+x" in the declaration of double). We have chosen to interpret the

former situation as an error in the resolution algorithm of �gure 4.3 for essentially pragmatic

reasons.

Finally, all unresolved predicates are collected up to the nearest enclosing function de�nition

and we generate a rewrite rule to denote this implicit overloading as shown in �gure 4.4. The

predicate function goes by the name of the function identi�er and its arity is the number

of distinct type variables present in the unresolved predicates, just as in the case of explicit

overloading declarations.

4.2.4 Properties of the Rewrite System

Conuence

A sub-expression which is a potential candidate for rewriting in a rewrite system is called a

redex . An important observation about our rewrite system is that only predicate clauses are

allowed to be a redex; arbitrary type expressions can only be manipulated as subterms of a

redex clause. This stems directly from the fact that our rewrite rules deal only with predicate

clauses as a whole, there are no rules to allow independent manipulation of a type expression

embedded in a predicate clause.

The second important observation is that the predicate clauses are completely at structures.

We do not allow nesting of one clause inside the other, we can only have a group of clauses at the

top level in a predicate. This is a direct consequence of the syntax of the predicate clauses. The

arguments to a predicate function can only be pure Hindley/Milner type expressions, never a

predicate clause. Note, that the type expressions themselves can be nested within one another,

but due to our �rst observation above they are of no particular signi�cance for rewriting.

The third important observation is that we carefully avoid overlapping instances every time

we generate a rewrite rule. This is true of instance declarations where we explicitly check for

an overlap, and implicit overloading never generates more than one rule anyway. Thus, atmost

one rewrite rule can apply at a given predicate clause. This allows us to conclude that redexes

in a predicate are completely independent and do not interefere with each other. Moreover,

133

Figure 4.5: Conuence Properties of our Rewrite System.

from our second observation, one redex can not even manipulate another one (duplicate it or

remove it) since it does not have a handle on any predicate clause except its own and possibly

some brand new ones from its right hand side.

The following property of strong conuence falls out of the above discussion, which we state

as a theorem.

Theorem 4.1 (Strong Conuence) The system of rewrite rules as generated by the compiler

for a given program is strongly conuent, i.e., if �0 �! �1 and �0 �! �2 are two single step

reductions of the same predicate �0 in this system, then there exists a predicate �3 such that

�1 �! �3 and �2 �! �3 in a single step each.

Proof: Let c1 and c2 be the two redex clauses of �0 that are reduced in the reductions �0 �! �1

and �0 �! �2 respectively (refer �gure 4.5 (a)). By the above observations, these are

completely disjoint and at the same level in �0 (by the second observation, there is only one

level). Thus, c2 is present and can still be reduced in �1; similarly c1 is present and can still

be reduced in �2, both giving rise to the same predicate which we call �3. 2

A more useful property is that of Conuence. It is the property of a rewrite system, where

if �0 �!! �1 and �0 �!! �2 in zero or more steps then there exists another term �3 such that

�1 �!! �3 and �2 �!! �3 in zero or more steps (refer �gure 4.5 (b)). We leave it as a simple

exercise for the reader to verify that strong conuence implies conuence.

134

PO PO

1 ~ I \
Pl P2 Pl P2

~ / \ I
P3 P3

(a): Strong Confluence (b): Confluence

Strong Normalization

It would be nice to show that the rewrite system generated above always terminates. That

way, the compiler is not in danger of running away with a non-terminating reduction sequence.

Unfortunately, as the system stands, there is nothing to prevent the user from generating

pathological instances that may give rise to cycles in rewriting. Consider, for example, the

following program segment,

overload (+) = *0 -> *0 -> *0;

def vadd X Y = f typeof X = (Vector *0);

in X + Yg;
instance (+) = vadd;

The type of vadd is inferred to be,

typeof vadd = (vadd? *0) . (Vector *0) -> (Vector *0) -> (Vector *0);

accordingly, the rewrite rules of the implicit overloading of vadd and the instance decla-

ration become,

(vadd? *0) �! (+? (Vector *0))

(+? (Vector *1)) �! (vadd? *1)

which clearly indicate a non-terminating cycle of reductions.

Note that each individual declaration from among the above segment does not pose a prob-

lem. It is the combination that creates a cycle. The above declarations indicate a particularly

problematic aspect of the rewrite system: since the compiler is incremental, the above decla-

rations could appear separately anywhere in the program (even in separate �les!), so it is a

non-trivial task to detect such cycles. Even if we require that all instance declarations and

de�nitions should appear together, it takes a fair amount of compiler analysis to �gure out that

a cycle of reductions is possible with the given set of declarations.

There are some trivial cases where it is straightforward to detect a cycle. For example, the

declarations,

overload (+) = *0 -> *0 -> *0;

instance (+) = (+);

will generate the trivial cyclic rewrite rule,

(+? *0) �! (+? *0)

135

Instead of trying to make the compiler ultra-smart, our current approach is to push the

responsibility to the user. Since the user already has the responsibility of declaring explicit

instances for the explicitly overloaded identi�ers, we expect him/her to be extra cautious and

knowledgeable about its consequences. In almost every case, a simple strategy can avoid the

cycles; the declared instances, if themselves overloaded, should at least simplify the type context

in which they apply. The notion of a simpler type context can be viewed in terms of substitution

instances of chapter 2. Informally, if �1 and �2 are two type expressions, we say that �1 is simpler

than �2 if we can embed �1 inside �2. In other words, we should be able to �nd a non-trivial

type expression �3 and a substitution S over the domain FV(�3) and containing �1 in its range,

such that �2 = S(�3). For example, (+? (Vector *0)) has a more complex type context than

(+? *0) and so the usual pair of rewrite rules for vadd that map the former to the latter via

(vadd? *0) will not lead to a cycle.

The above informal description of restricting conditions that guarantee termination is notice-

ably sketchy. Further research in this direction may shed more light on formal and algorithmic

ways to detect and guarantee strong normalization properties for the bene�t of the compiler.

4.3 Overloading Translation

In the last section, we saw a way of determining whether an identi�er was overloaded or not and

to what extent it could be resolved using the given type context. In this section we use that

analysis to generate appropriate code for the resolved and unresolved overloaded identi�ers.

An overloaded identi�er is a syntactically shared name, so this process can also be viewed as

imparting semantic meaning to the syntactic occurrences of the overloaded identi�er within the

program.

The overload and instance declarations are merely directives to the compiler and do not

give rise to any executable code. But we need to generate translated code for each applicative

occurrence of an overloaded identi�er in an expression and the implicitly overloaded function

de�nitions.

4.3.1 Parameterization

In section 4.1.4 (�gure 4.1), we gave examples of transforming occurrences of overloaded iden-

ti�ers into suitably parameterized procedure calls. Now we will describe the mechanism to

136

systematically generate that translation using our rewrite rules.

Parameterized Translation Mechanism

We note from the last section that none of the rewrite rules interfere with each other. Thus

starting with a reducible type predicate, not only do we reach the same normalized form after

an arbitrary sequence of reduction steps (the conuence property), but we always perform the

same set of reductions, albeit in an undetermined order. Various reduction sequences can di�er

only in the order of reducing the available independent redexes at any point. We can record the

actual reduction performed at each step and represent them in a resolution tree for the original

type predicate. This resolution tree serves as a guideline for the parameterized translation.

We will demonstrate the translation mechanism via our earlier example of doublepair,

which appears in �gure 4.6 (a) along with the usual overloading declarations. The relevent

rewrite rules generated are shown in (b) and the resolution tree generated for the application

(doublepair a b) is shown in (c).

Intuitively, each reduction in the resolution tree that corresponds to an instance declaration

contributes its associated instance identi�er to the translation. This is the identi�er recorded

over the INSTANCE rewrite rule in �gure 4.4. Thus, iplus and fplus are recorded over

their respective rewrite rules in �gure 4.6 (b). The instance declaration for vadd causes its

corresponding translation instance vadd' to be recorded over the rewrite rule, since vadd is

implicitly overloaded. All these recorded instance identi�ers appear as annotations for their

corresponding reduction steps in the resolution tree (see �gure 4.6 (c)).

The overall translation is obtained by collecting all the annotations in an in-order traversal

of the resolution tree. In this way, a subtree corresponding to an explicitly overloaded identi�er

translates into a single expression (a partial application) that is its implementation. A subtree

corresponding to an implicitly overloaded identi�er translates into a sequence of parametric

arguments that need to be applied to its translation instance. This process of generating para-

metric arguments and partial applications continues until we reach the leaves of the resolution

tree. A null (\�") leaf indicates that the translation in that branch is complete. A non-null

leaf represents an unresolved predicate and has to be translated into a new parameter for the

overall expression.

137

overload (+) = *0 -> *0 -> *0;

instance (+) = iplus;
(+? I)

iplus
��! �

instance (+) = fplus;
(+? F)

fplus
��! �

def vadd X Y = ...X[i]+Y[i]...; (vadd? *0) ��! (+? *0)

instance (+) = vadd;
(+? (Vector *1))

vadd0
��! (vadd? *1)

def double x = x + x; (double? *2) ��! (+? *2)

def doublepair x y = double x, double y; (doublepair? *3 *4) ��!

(double? *3)(double? *4)

typeof a = I;

typeof b = (Vector (Vector F));

...(doublepair a b)... : : :(doublepair? I (Vector (Vector F))) : : :

(a): Overloaded Source Program. (b): Rewrite Rules.

(c): Predicate Resolution Tree.

Figure 4.6: An Example of Overloading Resolution and Parameterized Translation.

138

(+? I)

/{iplus)

(doublepair? I (Vector (Vector F)))

(double? !)(double? (Vector (Vector F)))

(+? (Vector (Vector F)))

+ (vadd'

(vadd? (Vector F))

(+? (Vector F))

(vadd'
----+ (vadd? F)

Overall Translation: {iplus) (vadd' (vadd' /plus))

t /plus))

(+? F)

Def Translate-binding(TE,binding)
case binding of

`overload Identi�er = HMTo') Do nothing.

`instance Overloaded-identi�er = Instance-identi�er')
if Instance-identi�er is not overloaded then

Record Instance-identi�er over the instance rewrite rule.
else if Instance-identi�er is implicitly overloaded then

Let Instance-identi�er0 be the translation instance of Instance-identi�er.
Record Instance-identi�er0 over the instance rewrite rule.

endif.
endif.

`def Function-identi�er parameters = body')
if Function-identi�er is implicitly overloaded then

Let � = c1 ^ � � � ^ cn be the unresolved type predicate of Function-identi�er.
Let Function-identi�er0; v1; : : : ; vn be new identi�ers.
Record Function-identi�er0 to be the translation instance of Function-identi�er.
new-body = Translate-expression(TE + fci 7! vig,body);
Return `def Function-identi�er0 v1 � � � vn parameters = new-body'.

else

new-body = Translate-expression(TE,body);
Return `def Function-identi�er parameters = new-body'.

endif.

`Constant-LHS = body')
new-body = Translate-expression(TE,body);
Return `Constant-LHS = new-body'.

endcase.

Figure 4.7: Parameterized Translation of Bindings.

139

Def Translate-expression(TE,expression)
case expression of

` Identi�er') if Identi�er is implicitly overloaded then

Let �i = (Identi�er? �1 � � � �n) be the type predicate of Identi�er.
Let Identi�er0 be the translation instance of Identi�er.
TE ` �i) e1 � � �ek.
Return ` Identi�er0 e1 � � � ek'.

else if Identi�er is explicitly overloaded then

Let �i = (Identi�er? �1 � � � �n) be the type predicate of Identi�er.
TE ` �i) ei.
Return `ei'.

else Return ` Identi�er'.
endif.

endif.

`expression1 � � � expressioni � � � expressionn')
ei = Translate-expression(TE,expressioni). (1 � i � n)
Return `e1 � � � ei � � � en'.

`f binding1; � � � bindingi; � � � bindingn in expression g')
bi = Translate-binding(TE,bindingi). (1 � i � n)
eb = Translate-expression(TE,expression).
Return `f b1; � � � bn in eb g'.

endcase.

Figure 4.8: Parameterized Translation of Expressions.

140

Parameterization Algorithm

The semi-formal algorithm for parameterized translation appears in �gures 4.7 and 4.8. This is a

pair of mutually recursive procedures, Translate-binding and Translate-expression that traverse

the program in a top-down fashion. As before, the syntax followed is a subset of the complete

Id language syntax with the usual extensions for overloading and partial kernelization13. Both

these procedures accept a translation environment (TE)14 as the �rst argument, which

is a mapping from unresolved predicates to new parameterized arguments. The procedure

Translate-binding processes de�nitional bindings, extending the translation environment with

new parameter argument mappings for each implicitly overloaded functional binding that it

encounters. The procedure Translate-expression processes an expression, replacing every over-

loaded identi�er with a properly parenthesized partial application of instance identi�ers gen-

erated from its resolution tree, the unresolved predicates being translated using the current

translation environment.

The key points to observe are the following:

1. There is a distinct di�erence between the processing mechanisms of implicit and explicit

overloading. This distinction arises due to a basic di�erence between the way we assign

semantic meaning to implicitly and explicitly overloaded identi�ers in a program. An

explicitly overloaded identi�er is a purely syntactic entity deriving its complete semantic

interpretation from its instances, while an implicitly overloaded identi�er already has a

partially speci�ed function template into which extra parametric arguments need to be

inserted in order to complete its semantic meaning. Thus, during translation, an explicitly

overloaded identi�er gets completely replaced by a single partial application generated

through the resolution tree, while an implicitly overloaded identi�er translates into its

parameterized version with only its parametric arguments being generated through the

resolution tree.

2. As shown in �gure 4.4, we need to record an appropriate translation (an instance identi�er)

over each rewrite rule generated via an explicit instance declaration. If the given instance

identi�er is non-overloaded, then it is recorded directly. Otherwise, if it is implicitly

13For convenience, we treat the prede�ned Constant classes of various arities and the class ProcId of (�gure 2.7)
to be included in the class Identi�er.

14Not to be confused with type environment of our type inferencing algorithm, which is also abbreviated as
TE.

141

UNRESOLVED:
(co 7! v) 2 TE

TE ` co) v

EXPLICIT:

co is a clause of an explicitly overloaded identi�er

co
x0
��! c1 ^ � � � ^ ci ^ � � � ^ ck

TE ` ci) ei (1 � i � k)

TE ` co) (x e1 � � �ek)

IMPLICIT:

co is a clause of an implicitly overloaded identi�er
co ��! c1 ^ � � � ^ ci ^ � � � ^ ck

TE ` ci) ei (1 � i � k)

TE ` co) e1 � � �ek

Figure 4.9: Inference rules to generate Parameterized Overloading Translation.

overloaded, then the identi�er corresponding to its parameterized translation is recorded.

In the pathological situation when the instance identi�er is itself explicitly overloaded, we

record nothing and simply let its own instance declarations record the translations.

3. The only places that appear to handle parameterization are those that handle implicitly

overloaded function identi�ers. This happens in Translate-binding while extending the

translation environment with new argument variables corresponding to the unresolved

predicates, and in Translate-expression while adding extra parameters to an application

of an implicitly overloaded identi�er. This is as expected. These are the only places that

introduce extra overhead in the translated code and deserve our attention for optimization

via specialization. We will come back to them in the next section.

4. The actual generation of the parameters and the partial applications from the type pred-

icates is shown as an inference relation using the current translation environment. The

inference rules for that are shown in �gure 4.9. These follows the intuition of resolution

tree based translation described above. The inference relation has the familiar form:

TE ` �) e

which is read as `under the translation environment TE , the type predicate � generates

the expression e'.

142

4.3.2 Specialization

We argued in section 4.1.4 that specialization is essential in order to achieve e�cient trans-

lation of overloaded expressions. Now we show how to incorporate the generation of e�cient

specialized versions of implicitly overloaded function de�nitions into our translation scheme.

Note that this is only an alternative translation step to the parameterization scheme described

above. All our previous discussion of overloading resolution applies here equally well.

The basic idea behind specialization is that instead of translating an expression containing

an implicitly overloaded function identi�er into its parameterized instance supplied with suitable

arguments, we choose to generate a completely new copy of the function using its de�nition

template from the original program. The copy has the appropriate contextual information

\built-in" so that no parameters are necessary. For example, we may specialize the de�nition

of vadd for 1-dimensional integer and oating point arrays as shown below. The translated

parameterized version is also shown for comparison.

def vadd0 (+) X Y = ...((+) X[i] Y[i])...;

def ivadd X Y = ...X[i] +i Y[i]...;

def fvadd X Y = ...X[i] +f Y[i]...;

where +i and +f represent machine instructions for integer and oating point addition respec-

tively. Using (ivadd A B) instead of (vadd0 iplus A B) will be much more e�cient because

�rst, there is no parameter passing overhead and second, the inline instruction +i adds its

arguments directly while (+) is compiled as a general procedure call within the body of vadd0.

Specialization Translation Mechanism

To generate these specializations automatically, the compiler �rst needs to decide that a special-

ization is desired in a particular situation. This could either be indicated by the user through

special annotations in the code or the compiler may decide that by itself. Such a decision will

necessarily involve a non-trivial analysis of economic constraints, such as the cost of storing the

de�nition template, cost of instantiating the template for a given situation, degree of e�ciency

achieved in the generated code, and the size of the compiled code etc. We will not go into these

aspects and instead con�ne ourselves to the actual process of generating the specializations.

The only important point to note is that if the compiler decides to specialize an implicitly

overloaded function de�nition, it needs to store the complete de�nition in a template for future

use.

143

The �rst step in overloading translation with specialization is to �gure out what special-

ization is needed by looking at the type context. It makes sense to specialize only the fully

resolved type contexts (where there are no unresolved type predicates) because the unresolved

predicates will still require parameterization for their complete translation. The type context

is available on the type predicate of the given overloaded function identi�er. We resolve the

predicate as before by repeated rewrite reductions using the existing set of rewrite rules and

see if it resolves completely. If it does, then we have a possible candidate for specialization. If

the economic analysis is favorable, we can generate a specialized version using the de�nitional

template of that identi�er, �lling it with appropriate instances generated via the rewrite rules.

It is clear that the same instances recorded over the rewrite rules that we used as parameter

arguments will now be used to �ll the template inline.

The second step is to record this specialization for future use. We do this by generating a

specialization rewrite rule for the identi�er in question with the given context (see �gure 4.10

meta-rule SPL-INSTANCE1). Since we only specialize when the context is fully resolved, the

generated rule always has a null RHS. In terms of the resolution tree, this rule represents

pruning a reduction branch: we are allowed to short-circuit the resolution to null whenever

we encounter this identi�er in the same context. If this identi�er also appears in the RHS of

some other instance rewrite rule (it has been declared as an instance of some other overloaded

identi�er), then we need to generate another similar instance rewrite rule for its resolution in

this special context (meta-rule SPL-INSTANCE2). These two rewrite rule generating steps can

be added to our list of meta-inference rules of �gure 4.4.

Note that these specialization rewrite rules will necessarily overlap with previously existing

rewrite rules. This will a�ect the nice conuence property we maintained till now. Indeed,

now it is possible to either take a one step specialization reduction generating the specialized

translation or continue with the usual sequence of reductions aimed at parameterized transla-

tion. This is precisely the freedom of choice we wanted in the compiler. But it is worth noting

that although we have lost the property of Strong Conuence (it is no longer possible to bring

together two divergent one step reductions to the same term in a single step), we still retain

Conuence, because this choice is only a short-cut to the �nal normalized predicate, \�". We

will leave it as an exercise for the reader to formally verify this. Of course, the translation in

the two cases will be very di�erent and is certainly not unique depending on the reduction path

chosen. The compiler decides the appropriate reduction path and generates the translation ac-

144

SPL-INSTANCE1:

Predicate �x = (x? �1 � � ��n) occurs in a type context
for an implicitly overloaded identi�er x

�x �!! �

Rule: �x
x�1 ����n��! �

SPL-INSTANCE2:

x is an implicitly overloaded identi�er
x already has a specialization for some type context

Rule: (x? �1 � � ��n)
x�1 ����n��! �

x appears in RHS of another instance rewrite rule

Rule: �
x0
��! (x? �1 � � ��n)

S = f�1 7! �1; : : : ; �n 7! �ng

Rule: S�
x�1 ����n��! �

Figure 4.10: Meta-Inference rules to generate Specialization Rewrite Rules.

cordingly. The added rules for specialization behave exactly like the rules introduced by explicit

instance declarations, so the inference set in �gure 4.9 is su�cient to derive a translation in

this new setting.

Specialization Algorithm

In order to formalize the specialization process, we update our earlier parameterized transla-

tion algorithm. Procedure Translate-binding of �gure 4.7 is virtually unchanged except that

we also record a de�nitional template for the implicitly overloaded function identi�ers. We

still generate a parameterized version so that we may have a choice later on. The only sig-

ni�cant change required to incorporate our specialized translation scheme is in the procedure

Translate-expression of �gure 4.8 and we show its updated version in �gure 4.11. Whenever

we have to translate an implicitly overloaded identi�er, the algorithm �rst decides whether it

wants to do parameterization or specialization and then proceeds accordingly. Note that it is

even possible to mix the two; we may parameterize for most part and prune some branches of

the resolution tree for some commonly occuring cases, short-circuiting them for specialization.

Such a decision can be made while traversing and translating the resolution tree and is not

shown in �gure 4.11.

145

Def Translate-expression2(TE,expression)
case expression of

` Identi�er')
if Identi�er is implicitly overloaded then

Let �i = (Identi�er? �1 � � � �n) be the type predicate of Identi�er.
�i �!! �u where �u is in normal form.

if �u = � and Specialization is desirable then
Let Identi�er�1����n be a new identi�er.
Instantiate the template of Identi�er using translations from the resolution tree of �i.
Generate the specialized instance Identi�er�1����n with the above instantiated template.
Generate and record the appropriate rewrite rules for Identi�er�1 ����n .
Return ` Identi�er�1����n '.

else

Let Identi�er0 be the parameterized translation instance of Identi�er.
TE ` �i) e1 � � � ek.
Return ` Identi�er0 e1 � � � ek'.

endif.
else if Identi�er is explicitly overloaded then

Let �i = (Identi�er? �1 � � � �n) be the type predicate of Identi�er.
TE ` �i) ei.
Return `ei'.

else Return ` Identi�er'.
endif.

endif.

`expression1 � � � expressioni � � � expressionn')
ei = Translate-expression(TE,expressioni). (1 � i � n)
Return `e1 � � � ei � � � en'.

`f binding1; � � � bindingi; � � � bindingn in expression g')
bi = Translate-binding(TE,bindingi). (1 � i � n)
eb = Translate-expression(TE,expression).
Return `f b1; � � � bn in eb g'.

endcase.

Figure 4.11: Specialization Translation Algorithm.

146

def vadd X Y = ...X[i]+Y[i]...; (vadd? *0) ��! (+? *0)

(vadd? F)
fvadd
��! �

instance (+) = vadd;
(+? (Vector *1))

vadd0
��! (vadd? *1)

(+? (Vector F))
fvadd
��! �

typeof a = I;

typeof b = (Vector (Vector F));

...(doublepair a b)... : : :(doublepair? I (Vector (Vector F))) : : :

(a): Overloaded Source Program. (b): Rewrite Rules.

(c): Predicate Resolution Tree.

Figure 4.12: An Example of Overloading Resolution and Specialized Translation.

147

(+? I)

/{iplus)

(doublepair? I (Vector (Vector F)))

(double? !)(double? (Vector (Vector F)))

(+? (Vector (Vector F)))

,+ (vadd'

(vadd? (Vector F))

(+? (Vector F))

Overall Translation: {iplus) (vadd' fvadd)

fvadd) _____.

Specialization Example

An example is appropriate at this point. We revisit the example of �gure 4.6 in �gure 4.12, this

time deciding to specialize the resolution of the predicate (+? (Vector F)) to generate fvadd

as shown earlier. Note how the resolution tree gets pruned at that predicate and the additional

rewrite rules generated involving fvadd. The overall translation has a simpler structure and

will be more e�cient.

The translation in �gure 4.12 also illustrates how we can mix specialization and parameter-

ization schemes together. The compiler may decide to specialize only some of the resolutions

and parameterize the others depending upon the economics of the situation at hand.

Overloaded Constants Revisited

We argued in section 4.2.2 that it is undesirable to have implicitly overloaded top-level constants,

and we agged an error if we could not resolve all the type predicates in their body. With the

above discussion in mind, we can relax that constraint slightly and say that implicit overloading

of top-level constants is acceptable as long as they occur only in fully resolved type contexts so

that a specialized version can be generated. We will have to store a de�nitional template for

such constants as well. We will still ag an error if such constants occur in an unresolved or

partially resolved context because we do not want to parameterize them for pragmatic reasons.

The steps involved in their translation are exactly similar to those for function identi�ers above

and we do not show them separately.

4.3.3 Alternate Translation Strategies

So far, we have been quite ambitious in dealing with overloaded identi�ers: we described a

general parameterization mechanism and a specialization strategy that helps to improve the

e�ciency of the generated code. But these strategies are fairly costly and complex to implement.

Parameterization pays a run-time penalty, while specialization requires a lot of compiler analysis

and overhead in maintaining de�nition templates and multiple specialized versions.

It is possible to take a much more restricted view of overloading that eases the burden on

the compiler and at the same time does not incur any run-time cost. In this scheme we do not

allow implicit overloading at all. Only pre-de�ned operators are allowed to be overloaded with

all their instances appearing in standard libraries. All overloading clauses within user-de�ned

148

functions must be completely resolved, either via their inferred type contexts, or through explicit

type annotations supplied by the user. In this way, each user-de�ned function has exactly one

semantic interpretation that is as e�cient as non-overloaded program code.

This strategy still does better than the ad hoc schemes adopted in the conventional languages

because the compiler writer can control what pre-de�ned identi�ers will be overloaded and

include their instances in the standard libraries. The users may also be given some exibility

by allowing the scope of resolution of their de�nitions to be the whole program. In this way,

an apparently overloaded de�nition can be resolved to its unique semantic interpretation by

looking at the context of its use elsewhere.

A detailed description of this strategy is beyond the scope of this thesis, but we should

mention that due to its e�ciency, this scheme is used in the current version of Id [48] as a

preliminary solution until the more general schemes described earlier are implemented.

4.4 Comparison with the Proposal of Wadler and Blott

Our overloading scheme is based on the proposal by Wadler and Blott described in [63] and used

in the language Haskell [27]. In this section we will compare the mechanisms for overloading

resolution and translation in the two systems, their expressive power, and the di�erent objectives

they achieve.

Both systems have the notion of a predicated type, which is the standard Hindley/Milner

Type augmented with a set of overloading predicate clauses. The system of Wadler and Blott is

geared towards a direct parameterized translation of overloaded expressions using their typing

derived in the Hindley/Milner type system. They modify and extend the usual set of type

inference rules (refer to �gure 2.5 in section 2.3.3) with rules for overload, instance, and

predicate resolution, in order to express typing of expressions and the resolution and param-

eterized translation of overloading predicates, all in a single step. They derive typings of the

form,

TE ` e : � n �e

which is read as \assuming the type environment TE , the expression e has a well-typing � with

a translation �e". Here, the type environment TE also records the translation associated with

each identi�er along with its type-scheme.

On the other hand, we have chosen to completely separate the typing of expressions from

149

the issue of overloading resolution and translation. First, the usual Hindley/Milner types are

derived for each expression in the program using the declared type template for overloaded

identi�ers. Then, in another pass, we employ our rewrite rule mechanism to resolve over-

loaded expressions and translate them into appropriate code. This enables us to experiment

with various resolution and translation policies without a�ecting the type system. Expressing

our rewrite rules as a general Term Rewriting System also allows us to reason about their

other useful properties such as conuence and strong normalization, independent of the typing

mechanism.

Apart from di�erences in the mechanisms, our system is an overall simpli�cation of the

system proposed by Wadler and Blott. An important aspect of their system is the notion of a

\class" with a set of operations (also called a method dictionary in [63]) de�ned for it. Each

instance of that class de�nes its own method dictionary that can be passed around as an object

and identi�es the actual functions that implement the methods of that class. For example15,

class Num a where

(+), (*) :: a -> a -> a

negate :: a -> a

zero, one :: a

instance Num Int where

(+) = addInt

(*) = mulInt

negate = negInt

zero = 0

one = 1

declares a class Num with �ve operations and its instantiation for integers. This is interpreted

by the compiler as,

data NumD a = NumDict (a -> a -> a) (a -> a -> a) (a -> a) a a

add (NumDict addop mulop negop zeroop oneop) = addop

mul (NumDict addop mulop negop zeroop oneop) = mulop

neg (NumDict addop mulop negop zeroop oneop) = negop

zero (NumDict addop mulop negop zeroop oneop) = zeroop

one (NumDict addop mulop negop zeroop oneop) = oneop

numDInt :: NumD Int

numDInt = NumDict addInt mulInt negInt 0 1

which declares a method dictionary type NumD for the class Num along with method names to

choose the appropriate method when given a dictionary. The interpretation of the instance

15These examples are in Haskell. The syntax is mostly self explanatory. Early alphabets like a, b, etc. denote
type variables, data is an algebraic type declaration, and function de�nitions appear as equations. For details,
the reader is referred to [63, 27].

150

declaration is to de�ne a dictionary object numDInt that carries the method implementing

de�nitions for that instance.

Our scheme can be viewed as a special case of their scheme where each class is allowed to

have only one operation and the class name is the same as the operation name. In this way,

we do not have to introduce any new notion of class. Secondly, we o�er a simple mechanism

for specialization of implicitly overloaded user-de�ned functions that seamlessly integrates with

the parameterized translation mechanism to generate more e�cient code.

One advantage of their scheme is that in some cases, their type predicates may have fewer

clauses and hence give rise to fewer parameters than in our scheme, if we choose to parameterize.

The following example shows this.

def vip A B =

f sum = zero;

(l,u) = bounds A

in

ffor i <- l to u do

sum = sum + (A[i] * B[i])

finally sum gg;

Our type system will translate this as follows,

typeof vip = (+? *0)^(*? *0)^(zero? *0) . (array *0) -> (array *0) -> *0;

def vip' (+) (*) zero A B =

f sum = zero;

(l,u) = bounds A

in

ffor i <- l to u do

sum = (+) sum ((*) A[i] B[i])

finally sum gg;

whereas their system simply passes a single method dictionary and uses its methods instead,

typeof vip = (Num? *0) . (array *0) -> (array *0) -> *0;

def vip' numD A B =

f sum = zero numD;

(l,u) = bounds A

in

ffor i <- l to u do

sum = add numD sum (mul numD A[i] B[i])

finally sum gg;

Their system also opens up interesting possibilities for inheritance and sharing of methods

among classes giving them a somewhat object-oriented avor. We will not go into any more

details of their system and only mention that practical experience with Haskell should provide

more data as to the usefulness of classes and the e�ciency of the generated code.

151

152

Chapter 5

Typing Non-Functional Constructs

So far, we were working with a completely functional language; there was no notion of a

store in the dynamic semantics (refer section 2.3.3), and no expressions involving locations or

assignments to locations; we only had environments and value bindings to variables. In this

chapter we will discuss the typing issues involved in extending our language with imperative or

non-functional constructs such as pointers, assignments, and updatable data-structures.

The primary motivation behind incorporating non-functional constructs in the language is

to facilitate the use of a wide variety of conventional techniques and algorithms based on such

constructs within the framework of our polymorphic type system as described in chapter 2.

Another pragmatic concern is that very often it is possible to achieve much higher execution

e�ciency for the same algorithm by using imperative constructs. This is usually the case while

manipulating large data-structures (e.g., arrays) where an in-place update is much more e�cient

than copying the whole data-structure in order to modify a small portion of it.

The problem of type-checking non-functional constructs has been studied in depth for the

ML language by Tofte [57] and our discussion is based on that research. We will not go into the

details of how to extend the Hindley/Milner type system to incorporate these constructs since

that has been excellently dealt with in Tofte's thesis. Our approach will be to �rst describe

the non-functional constructs in Id via examples. Then, we will discuss some theoretical and

pragmatic issues involved in their polymorphic typing, taking examples from both Id and ML.

We will briey describe the solution presented by Tofte, his description of the solution by Damas

in [19] and subsequent re�nements by David MacQueen as implemented in Standard ML of New

Jersey [2, 3]. Finally, we will present the approach taken in Id, which is a re�nement of these

earlier works.

153

5.1 Non-Functional Constructs in Id

Id has two classes of non-functional objects, I-Structures and mutex objects [9, 48]. We will

not concern ourselves with the run-time dynamic semantics of these objects except for the fact

that they behave like storage locations, in that they can be allocated without specifying their

contents, be assigned to, or be queried for their contents1. For type-checking purposes, they are

similar to the \ref" construct of ML which generates a storage location pointing to an object

that can later be dereferenced for its value or assigned a new value.

We will informally describe the use of some non-functional constructs in Id and the asso-

ciated requirements they place on the type-checker2. Consider the following Id example called

wavefront3 taken from [9],

f A = I matrix ((1,m),(1,n));

fFor i <- 1 to m do

A[i,1] = 1 g;
fFor j <- 2 to n do

A[1,j] = 1 g;
fFor i <- 2 to m do

fFor j <- 2 to n do

A[i,j] = A[i-1,j] + A[i-1,j-1] + A[i,j-1] gg
in

A g

The function I matrix allocates and returns a fresh, uninitialzed I-structure matrix with

type (I Matrix *0), given its 2-dimensional bounds. Note that the type of the elements of

the matrix is not known at this point. This type has to be obtained via the assignment

operation occuring elsewhere in the program. Moreover, the type-checker must make sure that

all locations of the matrix are �lled with elements of the same type, since arrays are meant to be

homogeneous. The problem is non-trivial since allocation of an array can be widely separated

from its assignment in the program text.

It is possible to write the above example functionally using special array speci�cation syntax

called array comprehensions4. Here, we simply specify an array of values all together. There is

1The reader should note here that the dynamic semantics of I-structures and mutex objects is very di�erent
from conventional storage locations. But here, we are interested only in their static semantics.

2All our examples deal with I-structure objects, similar examples can be constructed involving mutex objects.
3The function I matrix dynamically allocates an uninitialized I-structure matrix. This is subsequently �lled

in three independent regions. The left and the upper boundary are initialized to 1 and the computation of the
remaining elements depend upon their neighbors to the left and above. Given the parallel semantics of Id, all
loop iterations execute in parallel, �lling the matrix from the top left corner to the bottom right in a wave-like
fashion, hence the name wavefront.

4The footnote on page 119 explains the syntax of array comprehensions. Non-strict semantics of Id allows
the use of an array before it is fully speci�ed.

154

no notion of assignable locations, the value of the array at each index is speci�ed at the time

of creation once and for all.

f A = fmatrix ((1,m),(1,n))

| [i,1] = 1 || i <- 1 to m

| [1,j] = 1 || j <- 2 to n

| [i,j] = A[i-1,j] + A[i-1,j-1] + A[i,j-1]

|| i <- 2 to m & j <- 2 to n g;
in

A g

It is meaningless to assign a value to a location of a functional array just as it is meaningless

to assign a value to the integer 1. The type-checker is able to detect such errors, since functional

arrays have a di�erent type from non-functional arrays which are assignable. Even though we

keep the two kinds of arrays separate, for the sake of simplicity and e�ciency, we may want to

implement the functional arrays using assignable I-structure arrays. We will come back to this

point in section 5.3.

We show another example to illustrate that a non-functional implementation may consid-

erably improve the e�ciency of an otherwise functional operation. Consider the problem of

appending two lists; a recursive, functional version is shown below.

def append nil l2 = l2

| append (x:xs) l2 = x:(append xs l2);

The above function recursively calls itself while traversing down the �rst list, implicitly

recording each of its elements in a separate activation. At the end of the list, it pops the stack

of activations one by one, cons-ing the elements over the second list. This is a very expensive

implementation as it requires as many procedure invocations as the length of the �rst list.

A tail-recursive version shown below, is more e�cient but still allocates too many cons-cells,

because it has to reverse the �rst list before cons-ing up its elements onto the second list, so

that its elements are added in the right order.

def append l1 l2 = loop (reverse l1) l2;

def loop nil l = l

| loop (x:xs) l = loop xs (x:l);

Instead of these functional solutions, below we show an implementation using a technique

in Id known as \open lists"5. The idea here is to be able to grow a list at its end rather than

at its front. There is no functional way to do this. Using open lists, we can e�ciently copy the

5Refer [6, 48] for details and more examples of this technique.

155

�rst list as we traverse it down in a loop and stick the second list at its end in order to close it

and make it into a valid functional list6. Only as many cons-cells are allocated in the process

as necessary in copying the �rst list.

Def append l1 l2 =

f header = OLcons ;

current cell = header;

last cell = fwhile not (nil? l1) do

next cell = OLcons ;

element = head l1;

assign next cell (OLcons element);

assign current cell (OLcons next cell);

next l1 = tail l1;

next current cell = next cell

Finally current cell g;
assign last cell (OLcons l2);

result = tail header;

in result g;

The function OLcons allocates a fresh I-structure cons-cell which initially has the type

(list *0). Again, the type of the list element to be stored in the cons-cell is not known at

the time of this allocation. This is determined implicitly via the assign operation over that

cons-cell. Moreover, the type-checker must make sure that lists constructed in this manner are

homogeneous and further assign operations on its cons-cells are disallowed because we intend

the append operation to return functional lists.

It should be clear that in general, such storage allocating functions destroy the referential

transparency of the program and hence render it non-functional. A simple example is shown

below.

e1 = (i array (0,1)),(i array (0,1))

is not equivalent to

e2 = f a = i array (0,1)

in

a,a g

The expression e1 allocates two separate arrays, returning a pointer to each in a tuple,

whereas e2 attempts to eliminate the common subexpression (i array (0,1)) and allocates

6This example uses assignable I-structure cons-cells created via the allocator function OLcons. The special
identi�er \ " (underscore) indicates that the particular �eld of the allocated cons-cell is initially empty. The
binary operation assign is the equivalent of the assignment operation in this case. It stores the speci�ed values
from its second argument pattern into the cons-cell given by the �rst argument. Assignment into a particular
slot of the cell may be avoided by using the special identi�er \ " in the pattern speci�cation. The next-i�ed
identi�er bindings within the body of the loop specify the values of those identi�ers for the next iteration of the
loop.

156

only one array, returning a tuple of pointers that are aliased to the same array. Such a trans-

formation does not a�ect the meaning of functional programs (say, if numbers were present

instead of I-structure arrays), because functional programs are referentially transparent. But

the above pair of expressions have di�erent meanings as shown by their use in the following

simple context.

def context (x,y) = f x[1] = 1

in

y[1] g;

context e1 =) Unde�ned!
context e2 =) 1

Referencial transparency is a very useful property for compiler optimizations, so we would

like to preserve it for the rest of the program even if some parts of it are non-functional.

Therefore our goal is two-fold,

1. Non-functional constructs are desirable because there may be some algorithms that are

inherently non-functional or their functional versions do much worse in execution speed

as the append example shows. Therefore, we must provide sound type inference rules for

them in our language.

2. We should be able to restrict the scope of visibility of these constructs to clearly demar-

cated non-functional regions, so that functional optimizations can proceed unhindered in

the rest of the program.

5.2 Issues in Typing Non-Functional Objects

In this section, we will discuss the issues involved in inferring sound typings for non-functional

constructs such as I-structures in Id or the ref construct in ML. We will informally describe

some extensions to the Hindley/Milner type system that are proposed in the literature in order

to take care of these constructs.

5.2.1 Store and Store Typings

The basic conceptual shift in going from a functional view of the world to an imperative one

is to expand the notion of expressions manipulating values to that of expressions manipulating

values and objects. Values stand only for the mathematical entities they denote, while there

157

is a well de�ned notion of an instance of an object separate from its contents or value. This

corresponds to a location in the run-time store where this object may be found. This gives rise

to a sharp di�erence between the functional typing mechanism where we assign a type to every

value (or an expression that evaluates to a value), and the imperative world where we have to

assign a type to an object (or an expression that evaluates to an object) which may not yet

have a value associated with it. The problem in having objects with unknown or updatable

values is that we must make sure that values (or other objects) that ever get stored into that

object must all be of the same type. Otherwise, we may easily generate unsound typings and

run into run-time type errors. The following example from Tofte's thesis [57] chapter 3, page

31, illustrates this problem.

let r = ref (�x.x)
in (r := �x.x+1; (!r) true)

ref creates an assignable storage location that is initialized to the identity function, but is

later overwritten with the successor function. Therefore its later use (\!" is the dereferencing

operator) in an application to the boolean true is a type error. But this may go undetected

if we assign the type 8�:� ! (� ref) to ref and allow generalization of the type (� ! �) ref

assigned to r in the usual manner in a let-binding.

The problem is that the location created by the use of ref is a single object and can have

at most one type. Assigning types to address locations in the store is what Tofte calls a Store

Typing. And, he goes on to show that generalization over type variables that are free in the

current store typing gives rise to unsound type inference and should not be permitted.

5.2.2 Approximating the Store Typing

The di�culty in preventing such generalizations is that the store and the store typing come

into existence only at run-time. So we need a conservative approximation of the store typing

for the purpose of static type analysis in order to �gure out what type variables may be free in

the store typing.

The type checker must also know when new type variables are introduced in the store typing

(and possibly, when some type variables may be removed from it). This means that there has to

be some indication that evaluating a particular expression will cause allocation of new objects,

possibly with free type variables embedded in their type, and therefore may involve adding

new type variables to the store typing. For example, the evaluation of ref itself does not

158

expand the store, it is the evaluation of its application to another expression that creates a new

reference and has to be recorded in the store typing. Again, we will have to make a conservative

approximation of the actual run-time behaviour of the expression.

Di�erent authors have taken di�erent positions in this matter. We will outline three schemes

by means of examples and describe our position in the next section.

Approximation I

Tofte [57] makes a broad syntactic classi�cation of expressions into two categories, applications

and let-expressions termed as expansive, and identi�ers and �-abstractions termed as non-

expansive. The idea is that only expansive expressions can ever lead to allocation of an object,

which in turn implies an expansion of the store typing. Moreover, he classi�es the type variables

into two categories as well, imperative (meta-variable u) and applicative (meta-variable t)

type variables. Storage allocating functions bind and return imperative type variables, while the

usual functional de�nitions use applicative type variables. Thus, the built-in storage allocator

in ML ref has a type 8u:u! (u ref). Using the above extension to the Hindley/Milner typing

framework, Tofte derives typings of the usual form,

TE ` e : �

The key idea is that while typing an expression \let x = e1 in e2" using the LET-rule, the

imperative type variables in the type of e1 that would otherwise be closed, are not allowed to be

generalized if expression e1 is expansive. This is the conservative guess Tofte makes in order to

recognize a type variable entering the store typing. Thus, if expression e1 is the identi�er ref or

a �-abstraction with imperative type variables in its type signature (possibly due to occurrences

of ref inside it), it can still be generalized since those expressions are taken to be non-expansive,

but an application of ref to another expression or its use in another let-expression can not be

generalized since it is deemed expansive.

Coming back to the problematic example above, the type of the let-bound identi�er r will

be inferred as (u! u) ref and will not be generalized since the application ref (�x.x) in the

binding is rightly believed to be expansive. Therefore, the �rst statement will unify the type

of the location r to be (int ! int) ref and the system will detect the type error in the second

expression while applying the contents of r to a bool .

159

Approximation II

Damas, in his thesis [19], takes a slightly di�erent position7. He generates typings of the form,

TE ` e : � �� (5:1)

where, � is a type-scheme and � is the set of types of all objects to which new references

may be created as a side e�ect of evaluating e. This is his approximation for the set of types

that may occur in the store typing. We will call this set the immediate store types. In

addition, each function type-scheme carries a list of types �0, that denotes an upper bound for

the types of objects to which new references will be created as a side e�ect of applying that

function. We will call these types future store types. At each application of such a function,

fresh instances of its future store types are added to the set of immediate store types signifying

the fact that new objects are allocated in the store when this function is invoked, expanding

the corresponding store typing. �-abstractions simply convert the immediate store types of its

body into future store types, again denoting the fact that the de�nition itself does not create

any new objects but its application will. Finally, generalization over type variables occurring in

the immediate store types is prohibited, which guarantees the soundness of the type inference

system.

One immediate consequence of this simple two-level partitioning is that all embedded future

store types in curried �-abstractions are pushed up to the �rst �-abstraction. Thus, the very

�rst application will cause all of them to be added to the set of immediate store types, even if

the actual allocation of the storage object does not occur until further applications. We will

come back to this point later.

In Damas' system, ref is typed as,

TE ` ref : (8�:�! � ref � f�g) � fg (5:2)

The immediate store types are empty, denoting the fact that merely mentioning ref does not

allocate any new references, but the future store types are non-empty signifying that each

application of ref will indeed cause expansion of the store and the store typing.

Damas' system makes �ner distinctions among expressions in deciding which expressions

allocate objects and when that allocation occurs, than Tofte's system which uses a simple

7Our account of Damas' solution is based on its lucid exposition by Tofte in [57], chapter 6.

160

syntactic classi�cation to achieve that. So it should not surprise us if Damas' system admits

programs that Tofte's system rejects. The following example shows this.

let f = let x = 1

in

�y.!(ref y)

in

f 1, f true

Tofte's system does not generalize over the inferred type (u ! u) for f because the inner

let-expression is deemed to be expansive. While in Damas' system, the �-abstraction returned

by the inner let-expression does not have any immediate store types but has a non-empty future

store type list. This rightly permits multiple instantiations in the following tuple expression,

creating two di�erent reference locations that store 1 and true respectively.

Approximation III

Even though Damas' system attempts to predict and propagate information about the point

of allocation of store objects that may be hidden under �-abstrations, it performs poorly with

curried function de�nitions. It knows only about a single level of �-nesting that hides future

store types from immediate store types. It does not distinguish between curried functions where

the store object is created after the very �rst application or in subsequent applications. The

somewhat contrived Id example shown below makes this distinction clear.

def store a i v = f a[i] = v;

in

v g;

def f1 = f a = i array (1,1);

in

store a g; % N -> *0 -> *0

def f2 i = f a = i array (1,1);

in

store a i g; % N -> *0 -> *0

def f3 i v = f a = i array (1,1);

in

store a i v g; % N -> *0 -> *0

The de�nitions f1, f2, and f3, all have the same type. The di�erence lies in the time of

allocation of their I-structure array cells. In case of f1, this allocation has already occurred

at the time of de�nition of f1 and the corresponding type variable *0 has already entered the

store typing. Therefore, f1 can subsequently be used only in one way. In case of f2 and f3,

161

the allocation occurs after one and two applications respectively, and till that happens, each

of them can be instantiated over di�erent types without the danger of unsound type inference

since each instantiation will eventually generate a new fresh array cell.

Following an idea due to David MacQueen that is currently used in Standard ML of New

Jersey [2, 3], we may add this exibility to Damas' system as follows. Each type variable inside

a type expression is associated with a natural number called its rank. This identi�es the depth

of �-nesting of the given type variable after which it will enter the set of immediate store types.

This is exactly the number of �-abstractions suspending the creation of a storage object in

the associated expression. For each application to the current expression, the rank of its type

variables is reduced by 1 and those with rank equal to the current level of �-nesting are added

to the set of immediate store types. This gives a much more �ne-grain control over what type

variables may enter the store typing and at what time. In this scheme, an applicative type

variable will have the rank of in�nity.

This system e�ectively generalizes the concept of future store types of Damas' system to

arbitrary levels of �-nestings. Unfortunately, very little documentation is available about its

implementation, and to our knowledge, an in-depth theoretical analysis has not been carried

out yet.

5.3 Our Approach in Id

5.3.1 Typing Open Structures

Id, with non-functional arrays and open lists (and indeed other open constructs such as algebraic

types and tuples as proposed in its latest extension in [48]) has exactly the same avor of typing

complexity as ML's ref construct. The currently implemented mechanism in the Id Compiler

was developed independently by the author under the guidance of Prof. R.S. Nikhil and was

later found to be similar to Damas' system described in the last section.

One major di�erence between our system and Damas' system is that we infer types for

expressions while he infers type-schemes as given by typing 5.18. This permits him to pass

around a function type-scheme with non-empty future store types, without pushing any of them

to immediate ones. The instantiation of the type scheme and the expansion of the immediate

store types occur together when this function is used in an application. The typing 5.2 for the

8Refer back to �gures 2.4 and 2.5 in section 2.3.3 for a comparison of the two inference systems.

162

ref identi�er is an example of such inference. But in our system, a type-scheme is instantiated

as soon as it is referred, even as in a simple variable expression (see �gure 2.4). So the future

store types are made immediate much earlier. For example, using Damas' notation for our

scheme, each occurrence of ref will be typed as,

TE ` ref : (�! � ref) � f�g (5:3)

which instantiates its type-scheme and pushes its future store types to immediate ones pro-

hibiting further generalizations over �. Indeed, this is even weaker than Tofte's scheme where

such generalizations are permitted because variables are treated as non-expansive. Thus, the

following example that simply renames the storage allocating function i array is rejected by

our system even though both Tofte's and Damas' system accept it.

f allocator = i array ;

in

allocator bounds, allocator bounds g

The astute reader will note that such programs can be made to type-check within our scheme

by using the original allocator function at all places.

Our current system is clearly not very satisfactory and we plan to re�ne it in the direction of

the solution o�ered by David MacQueen by taking into account the current level of �-nesting.

This will not only take care of the above problem but also improve over the schemes of Tofte

and Damas. Even though this system appears to be substantially more complicated than simple

syntactic divisions made by Tofte, there are non-trivial, interesting examples where this system

wins over the other two. The following example shows this:

def make i array bounds f =

f a = i array bounds;

(l,u) = bounds

in

ffor i <- l to u do

a[i] = f i

finally a gg;
� � �
memoize mybounds = make i array mybounds;

� � �
squares = memoize mybounds square;

� � �
evens? = memoize mybounds even?;

make i array is a library function that memoizes the function f within the given bounds.

In an application program, we may deal with di�erent arrays with the same bounds, so it is

163

logical to specialize the memoizing function once (memoize mybounds) instead of carrying the

bounds all over the program. The problem here is that we have to associate the allocation of

a fresh array with each application of memoize mybounds and not with the initial application

of make i array. This is possible only if we record and propagate the fact that the array

allocation inside make i array is under 2 levels of �-nesting and will not take place until after

two applications. Neither Tofte's nor Damas' system is capable of doing this.

5.3.2 Closing Open Structures

Another important concern is e�cient implementation of functional data-structures. We gave

examples of array comprehensions earlier. These generate functional arrays whose allocation

and value is speci�ed together. Clearly, the compiler will have to deal with them independently

because of their more lenient typing mechanism. Each such construct adds to the syntactic

complexity of the language and it would be nice if we can express them in terms of a small

kernel language consisting of low level constructs. We will now examine some issues arising out

of non-functional implementations of such functional constructs. In the following discussion,

open objects refer to any kind of assignable data-structures and functions (with arbitrary, but

�nite �-nesting) that manipulate them.

In Id, array comprehensions are desugared into I-structure array allocations and loops

that �ll them according to the comprehension clauses. A similar strategy is adopted for list

comprehensions9 and other list manipulating functions (such as append shown in section 5.1), all

of which are implemented using open lists. The important point here is that, once constructed,

these arrays and lists are guaranteed to be used only functionally. Therefore, we should be able

to close the type of these open data-structures in order to regain the polymorphism lost due to

their non-functional implementation. In Tofte's terminology, we wish to convert an imperative

type variable into an applicative one whenever it is safe to do so.

The following example shows what we mean. The function make array returns a functional

array. We intend to implement it using a slight variation of our make i array function above.

def make array bounds f =

f (l,u) = bounds

in

farray bounds

9List Comprehensions are similar to array comprehensions in structure and mechanism but generate lists
instead. See [46, 48] for details.

164

| [i] = f i || i <- l to u gg;

is implemented as

def make array bounds f =

f (l,u) = bounds;

in

f a = i array bounds;

ffor i <- l to u do

a[i] = f i g;
in

(read only a) gg;

read only is a special type coercion operator that has the e�ect of converting an I-structure

array to a functional array. In particular, it accomplishes two important tasks. First, it actu-

ally coerces the type (I array *0) to (Array *0). This enables the type-checker to identify

subsequent assignments to that array as type-errors since only I-structure arrays are deemed

assignable. Second, it lifts the polymorphic typing restrictions on the type variables of such

structures rendering them truely functional. In other words, it substitutes applicative type

variables for imperative ones in the types of these structures. Of course, this must be done with

care so as not to generate unsound typings involving non-functional constructs, which we set

out to correct in the �rst place.

Both the above mentioned tasks are compile-time (speci�cally, type-checking time) opera-

tions and do not a�ect the compiled code. In the particular example shown above, the coercion

is safe since we do not allow assignments to functional arrays and nobody has a handle on the

I-structure alias of the array after the coercion is done. This last condition is our guarantee for

generating only sound typings involving the closed array, because the array cannot be assigned

to anymore. In compiler generated desugaring, we may be able to ensure that the I-structure

array does not escape the block of code in which it is allocated and hence can be safely coerced

to a functional array outside it, but in general, enforcing this condition may require a lot of

compiler analysis.

5.3.3 Comments

Finally, we would like to point out that incremental typing of non-functional constructs using

our incremental book-keeping mechanism described in chapter 3 is only slightly more complex.

In particular, we will have to maintain a few more compilation properties, such as which type

variables are imperative, and what is their rank, etc. We even allow globally open data-

structures{they will be treated as global constants, possibly containing imperative type variables

165

with rank 0. This is more general than the position taken in Standard ML of New Jersey, where

top-level reference data-structures are forced to be grounded (no type variables allowed) as soon

as they are allocated. A more detailed description of this scheme is beyond the scope of this

thesis.

166

Chapter 6

Conclusion

In this thesis, we described the mechanism of type inference in the programming language Id,

as well as its other features that have a direct bearing upon the type system. We summarize

our results below.

6.1 Summary

We used the Hindley/Milner type inference mechanism as a basis for the type system in Id. First,

we described a deterministic set of type inference rules and the standard inference algorithm

available in the literature that infers sound and complete types for complete programs. We

also showed a translation of the Id Kernel language to the abstract mini-language used in the

algorithm.

Then, we described our main research contribution, an incremental type inference mech-

anism for Id. First, we established a general framework for incremental computation and

maintenance of compile-time properties in the light of frequent additions or editing of the pro-

gram. Then, we gave a detailed account of how to extend the Hindley/Milner type inference

algorithm to work in this incremental framework and demonstrated a proof of its soundness

and completeness with respect to the original type system. We evaluated the performance of

this system and then discussed optimizations to improve upon it.

We also described other features of the language Id that are important from a type inference

perspective. We presented a systematic scheme to permit overloading of identi�ers in the

language, describing rules for their type inference and then discussing several mechanisms for

their translation into actual code. We compared and evaluated two strategies in particular,

parameterization and specialization. Finally, we touched upon the type inferencing issues for

167

polymorphic non-functional constructs of Id. We outlined three schemes, each giving more

exibility and polymorphism to non-functional constructs than the previous one, while still

maintaining the soundness of type inference.

6.2 Future Work

At several places in the thesis we hinted at the possibility of future research work. We summarize

these areas below.

6.2.1 Extensions to the Language and the Type System

The Hindley/Milner type system has been extremely successful and popular type inference

system for modern languages, and therefore it was our natural choice while designing the type

system for Id. But recently, there have been further advancements that strengthen this system

non-trivially by permitting a limited amount of polymorphism even for �-bound variables [30].

It may be worthwhile to examine and evaluate the bene�ts of upgrading the type system to

this level.

On another dimension, we would like to suggest extensions to the already rich repertoire of

types and data-structures in Id. One possible direction for extension is to introduce modules,

functors, and structures in Id like those in ML [37]. Id already has abstract data types and an

associated notion of information hiding, but structures and parameterized modules (functors)

are more powerful features geared towards programming in the large and disciplined code

sharing.

Another area worth exploring is to introduce inclusion polymorphism, subtyping and in-

heritence among objects and object-classes, in the language as a step towards object-oriented

languages. A lot of activity has been going on in this area recently and we are watching the

�eld in anticipation. This will de�nitely be a big change in the typing philosophy and will

necessitate a reexamination of the basic type system as well as its incremental variants.

6.2.2 The Incremental System

We presented a general framework of incremental property maintenance in section 3.1.2. It is

possible and probably desirable to do a theoretical characterization of the incremental properties

that can be maintained in our system, the syntactic structure of the property domains, and

168

showing that our incremental scheme will work for any property that can be computed by a

monotonic function over these domains.

The correspondence theorem 3.12 shown in section 3.6 is valid only for the incremental

system where no editing was allowed. For the editing case, we only presented what extra

properties we may have to maintain. A likely direction of reserach would be to concretize the

requirements and the e�ect of editing more carefully and modify the proof of soundness of the

incremental type inference to account for it.

In section 3.8 we analyzed the worst-case complexity of our incremental system. In our

experience, the incremental system performed very well on an average and it was our feeling

that the worst-overhead cases are not very common and easily avoided. In particular, we felt

that the size of the strongly connected components of identi�ers is usually very small and the

number of recompilations can be kept within limits by intelligent scheduling. A more detailed

empirical evaluation with real compilation data is necessary in order to substantiate these

hypotheses.

6.2.3 Overloading Analysis

We mentioned at the end of section 4.2 that the compiler needs to be smart in order to detect

and prevent circular instance declarations. Preventing cycles in our set of instance rewrite rules

will guarantee termination of the overloading resolution process and make the compiler more

robust. We would like to incorporate such criteria into our compiler.

A major topic that we side-stepped in overloading translation is the compiler analysis re-

quired to decide which translation strategy to use. Various economic factors need to be consid-

ered before a compiler can decide whether to parameterize or to specialize or to generate some

mixture of the two. The compiler can utilize hints from the user as well as generate its own

estimate of the cost of either of these strategies. It is also possible to employ general techniques

for partial evaluation to automatically convert parameterized code into specialized one. We

have not presented any scheme for this analysis and this clearly presents possibilities for further

reserach.

We also need to explore less ambitious schemes that have low run-time and compile-time

overhead costs, and weigh them against the costs and the bene�ts of implementing the complete

proposal. We are currently investigating one such scheme in Id, where we allow overloading of

only prede�ned identi�ers and generate code with no run-time overheads.

169

6.2.4 Non-Functional Type Inference

Our current implementation for typing non-functional constructs in Id is sound but is very

weak. One of our immediate concerns is to extend it to incorporate David MacQueen's idea of

typing on the basis of the depth of �-nesting. We also plan to generalize the concept of open

structures, as de�ned in section 5.3.2, to tuples and algebraic types.

Another important task is to clearly demarcate the functional and the non-functional regions

in the program and have a type-safe interface between the two. To go a step further, an

important topic for research would be to analyze when is it safe to close an open structure so

that it can be passed from a non-functional region to a functional region of the program. This

analysis is important because closed structures possess more polymorphism and permit many

compiler optimizations that can not be performed on open structures. This analysis will be

useful in verifying annotations supplied by the user as well as validating e�cient non-functional

implementations of functional data-structures.

6.3 Concluding Remarks

Finally, we would like to point out that our work on incremental type inferencing has grown

out of a need for a rich type system for interactive program development environments such as

that for Id [50]. A rich type system is a valuable tool in developing large, robust, and reliable

software. But in association with interactive environments, it requires careful engineering, so

as not to inhibit their interactive and incremental nature.

The Hindley/Milner type inference system is a rich, polymorphic, and tractable system that

o�ers a reasonably unrestricted programming style without compromising e�ciency or robust-

ness. Our incremental scheme further adapts this system for the interactive environment of Id

and �ts into a general framework for incremental information management that is interesting

in its own right. Our work provides a sound theoretical basis to incremental type management

along with its e�cient implementation.

170

Bibliography

[1] Alfred V. Aho, John E. Hopcroft, and Je�rey D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, 1974.

[2] Andrew W. Appel and David B. MacQueen. A Standard ML Compiler. Distributed along
with the Standard ML of New Jersey Compiler, 1989.

[3] Andrew W. Appel and David B. MacQueen. Standard ML Reference Manual. Princeton
University and AT&T Bell Laboratories, Preliminary edition, 1989. Distributed along with
the Standard ML of New Jersey Compiler.

[4] Zena M. Ariola and Arvind. P-TAC: A Parallel Intermediate Language. In Proceedings
of the Conference on Functional Programming Languages and Computer Architectures,
London, UK, pages 230{242, September 1989. Also: CSG Memo 295, MIT Laboratory for
Computer Science 545 Technology Square, Cambridge, MA 02139, USA.

[5] Arvind and David E. Culler. Dataow Architectures. In Annual Reviews in Computer
Science, volume 1, pages 225{253. Annual Reviews Inc., Palo Alto, CA, 1986.

[6] Arvind, Steve Heller, and Rishiyur S. Nikhil. Programming Generality and Parallel Com-
puters. In Fourth International Symposium on Biological and Arti�cial Intelligence Sys-
tems, Trento, Italy, September 1988. Also: CSG Memo 287, MIT Laboratory for Computer
Science, 545 Technology Square, Cambridge, MA 02139.

[7] Arvind and Rishiyur S. Nikhil. Executing a Program on the MIT Tagged-Token Dataow
Architecture. Technical Report CSG Memo 271, MIT Laboratory for Computer Science,
545 Technology Square, Cambridge, MA 02139, June 1988. An earlier version appeared
in Proceedings of the PARLE Conference, Eindhoven, The Netherlands, Springer-Verlag
LNCS Volume 259, June 15-19, 1987.

[8] Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali. Id Nouveau Reference Manual, Part
II: Operational Semantics. Technical report, Computation Structures Group, MIT Labo-
ratory for Computer Science, 545 Technology Square, Cambridge, MA 02139, April 1987.

[9] Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali. I-Structures: Data Structures for Par-
allel Computing. ACM Transactions on Programming Languages and Systems, 11(4):598{
632, 1989.

[10] Lennart Augustsson. A Compiler for Lazy ML. In Proceedings of the 1984 ACM Confer-
ence on Lisp and Functional Programming, Austin, Texas, pages 218{227, August 1984.

171

[11] Lennart Augustsson. Compiling Pattern Matching. In Proceedings of the 1985 Workshop
on Implementations of Functional Languages, Goteborg, Sweden. Chalmers University of
Technology, February 1985.

[12] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland,
Amsterdam, 1984.

[13] Kim B. Bruce, Albert R. Meyer, and John C. Mitchell. The Semantics of Second-Order
Lambda Calculus. Information and Computation, 85:76{134, 1990.

[14] Rod M. Burstall, David B. MacQueen, and Don Sanella. Hope: an Experimental Applica-
tive Language. In Proceedings of the Lisp Conference, Stanford, pages 136{143. ACM,
August 1980.

[15] L. Cardelli. Compiling a Functional Language. In Proceedings of the ACM Symposium on
LISP and Functional Programming, pages 208{217, August 1984.

[16] L. Cardelli. Basic Polymorphic Typechecking. Science of Computer Programming,
8(2):147{172, 1987.

[17] L. Cardelli and P. Wegner. On Understanding Types, Data Abstraction and Polymor-
phism. Computing Surveys, 17(4), December 1985.

[18] D. Cl�ement, J. Despeyroux, T. Despeyroux, and G. Kahn. A Simple Applicative Language:
Mini-ML. In Proceedings of the ACM Symposium on LISP and Functional Programming,
pages 13{27, August 1986.

[19] L. Damas. Type Assignment in Programming Languages. PhD thesis, University of Edin-
burgh, Department of Computer Science, 1985.

[20] L. Damas and R. Milner. Principle Type Schemes for Functional Programs. In Proceedings
of the 9th ACM Symposium on Principles of Programming Languages, pages 207{212, 1982.

[21] S. I. Feldman. Make { A Program for Maintaining Computer Programs. In Unix Program-
mer's Manual Supplementary Documents Volume 1. 4.3 Berkeley Software Distribution,
April 1986.

[22] David K. Gi�ord, Pierre Jouvelot, John M. Lucassen, and Mark A. Sheldon. FX-87 Ref-
erence Manual. Technical Report MIT/LCS/TR-407, MIT Laboratory for Computer Sci-
ence, September 1987.

[23] J. Y. Girard. Interpr�etation fonctionelle et �elimination des coupures de l'arithm�etique
d'ordre sup�erieur. These D'Etat, Universit�e de Paris VII, 1972.

[24] Michael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. Edinburgh LCF,
volume 78 of Lecture Notes in Computer Science, chapter 2. Springer-Verlag, 1979.

[25] Robert Harper, Robin Milner, and Mads Tofte. The De�nition of Standard ML Version
2. Technical Report ECS-LFCS-88-62, Laboratory for Foundations of Computer Science,
Department of Computer Science, University of Edinburgh, August 1988. (also published
as CSR-274-88).

[26] R. Hindley. The Principle Type Scheme of an Object in Combinatory Logic. Transactions
of the American Mathematical Society, 146:29{60, December 1969.

172

[27] P. Hudak and P. Wadler (editors). Report on the programming language Haskell, a non-
strict purely functional language (Version 1.0). Technical Report YALEU/DCS/RR777,
Yale University, Department of Computer Science, April 1990.

[28] G. Huet. Resolution d'equations dans les langages d'ordre 1,2,...,!. PhD thesis, Universit�e
de Paris VII, 1976.

[29] Paris C. Kanellakis and John C. Mitchell. Polymorphic Uni�cation and ML Typing. In
Proceedings of the 16th ACM Symposium on Principles of Programming Languages, pages
105{115, January 1989.

[30] A.J. Kfoury and J. Tiuryn. Type Reconstruction in Finite Rank Fragments of the Second-
Order �-Calculus. Technical Report 89-011, Boston University, October 1989.

[31] A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. An Analysis of ML Typability. Technical Report
89-009, Boston University, October 1989.

[32] A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. Type-checking in the presence of polymorphic
recursion. Technical report, Boston University, 1989.

[33] J.W. Klop. Term Rewriting Systems. Technical report, Center for Mathematics and
Computer Science, Amsterdam, The Netherlands, September 1985.

[34] J.W. Klop. Term Rewriting Systems: A Tutorial. Technical report, Center for Mathe-
matics and Computer Science, Amsterdam, The Netherlands, 1987. Also published in the
Bulletin of the European Association for Theoretical Computer Science, 32, 1987.

[35] Kevin Knight. Uni�cation: A Multidisciplinary Survey. ACM Computing Surveys, 21(1),
March 1989.

[36] Barbara Liskov and John Guttag. Abstraction and Speci�cation in Program Development.
MIT Press, 1986.

[37] David MacQueen. Modules for Standard ML. In Proceedings of the ACM Symposium on
LISP and Functional Programming, pages 198{207, August 1984.

[38] Harry G. Mairson. Deciding ML Typability is Complete for Deterministic Exponential
Time. In Proceedings of the 17th ACM Symposium on Principles of Programming Lan-
guages, pages 382{401, January 1990.

[39] Lambert Meertens. Incremental Polymorphic Type Checking in B. In Proceedings of the
10th ACM Symposium on Principles of Programming Languages, January 1983.

[40] Robin Milner. A Theory of Type Polymorphism in Programming. Journal of Computer
and System Sciences, 17:348{375, 1978.

[41] Robin Milner. A Proposal for Standard ML. In Proceedings of the ACM Symposium on
Lisp and Functional Programming, pages 184{197, August 1984.

[42] Robin Milner. The Standard ML Core Language. Polymorphism, II(2), October 1985.

[43] A. Mycroft. Polymorphic Type Schemes and Recursive De�nitions. In International Sym-
posium on Programming, volume 167 of Lecture Notes in Computer Science, pages 217{228.
Springer-Verlag, 1984.

173

[44] Rishiyur S. Nikhil. Practical Polymorphism. In Proceedings of the Conference on Func-
tional Programming Languages and Computer Architectures, Nancy, FRANCE, volume
201 of Lecture notes in Computer Science. Springer-Verlag, September 1985.

[45] Rishiyur S. Nikhil. Id Nouveau Reference Manual, Part I: Syntax. Technical report,
Computation Structures Group, MIT Laboratory for Computer Science, 545 Technology
Square, Cambridge, MA 02139, April 1987.

[46] Rishiyur S. Nikhil. Id (Version 88.1) Reference Manual. Technical Report CSG Memo 284,
MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139,
August 1988.

[47] Rishiyur S. Nikhil. Overloading. For internal circulation in the Computation Structures
Group, MIT Laboratory for Computer Science, Cambridge, MA 02139, May 1988.

[48] Rishiyur S. Nikhil. Id Version 90.0 Reference Manual. Technical Report CSG Memo 284-1,
MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139,
July 1990.

[49] Rishiyur S. Nikhil and Arvind. Programming in Id: A Parallel Programming Language.
Book in preparation, 1990.

[50] Rishiyur S. Nikhil, P. R. Fenstermacher, J. E. Hicks, and R. P. Johnson. Id World Reference
Manual. Computation Structures Group, MIT Laboratory for Computer Science, 545
Technology Square, Cambridge, MA 02139, revised edition, November 1989.

[51] J. Ophel. AIMLESS: A Programming Environment for ML. Technical Report TR-CS-88-
20, Australian National University, 1988.

[52] G. D. Plotkin. A Structural Approach to Operational Semantics. Technical Report DAIMI
FN-19, Computer Science Department, Aarhus University, Aarhus, Denmark, September
1981.

[53] J. C. Reynolds. Towards a Theory of Type Structure. In Paris Colloquium on Program-
ming, volume 19 of Lecture Notes in Computer Science, pages 408{425. Springer-Verlag,
1974.

[54] J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle. Journal of
the ACM, 12(1):23{41, 1965.

[55] D. Scott. Data types as lattices. Siam Journal of Computing, 5(3):522{587, 1976.

[56] J. E. Stoy. Denotational Semantics. MIT Press, Cambridge, MA, 1977.

[57] Mads Tofte. Operational Semantics and Polymorphic Type Inference. PhD thesis, Univer-
sity of Edinburgh, Department of Computer Science, 1988. Also published as ECS-LFCS-
88-54.

[58] Ian Toyn, Alan Dix, and Colin Runciman. Performance Polymorphism. In Functional Pro-
gramming Languages and Computer Architecture, volume 274 of Lecture Notes in Computer
Science, pages 325{346. Springer-Verlag, 1987. Proceedings of the FPCA Conference held
in Portland, Oregon, 1987.

174

[59] Kenneth R. Traub. A Compiler for the MIT Tagged-Token Dataow Architecture. Tech-
nical Report LCS TR-370, MIT Laboratory for Computer Science, 545 Technology Square,
Cambridge, MA 02139, August 1986.

[60] David A. Turner. Miranda: A non-strict functional language with polymorphic types. In
Proceedings of the Conference on Functional Programming Languages and Computer Ar-
chitectures, Nancy, FRANCE, volume 201 of Lecture Notes in Computer Science. Springer-
Verlag, September 1985.

[61] David A. Turner. An Overview of Miranda. SIGPLAN Notices, 21(12):158{166, December
1986.

[62] Kevin S. Van Horn. Functional Language Implementations Survey, March 1990. Message
on the Functional Programming Mailing List.

[63] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad hoc. In
Proceedings of the 16th ACM Symposium on Principles of Programming Languages, Austin,
Texas, pages 60{76, January 1989.

175

