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We introduce the technique of decomposing an undirected graph by finding a max
imal set of edge-disjoint cycles. We give a parallel algorithm to find this decomposi
tion in O(log n) time on ( m + n) / log n processors. We then use this decomposition 
to give the first efficient parallel algorithm for finding an approximation to a min
imum cycle cover. Our algorithm finds a cycle cover whose size is within a factor 
of 0( 1 + ~1nn) of the minimum sized cover using O(log2 n) time on ( m + n) / log n 
processors. We also generalize these algorithms to weighted graphs with running 
times that are a factor of O(log C) slower than their unweighted counterparts, where 
C is the largest weight in the graph. Finally, we show how to use scaling to develop 
parallel algorithms for the assignment problem in which the number of processors 
used is independent of the magnitude of the edge costs. This leads to algorithms 
for the assignment problem that do less work than any known RNC algorithms for 
this problem. 

Portions of this thesis are joint work with Philip Klein. 
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Chapter 1 

Introduction 

Many graph-theoretic problems that are "easy" to solve sequentially turn out to be 

much more difficult to solve in parallel. For example, most linear-time sequential 

graph algorithms rely on decomposing a graph with a breadth-first search or a 

depth-first search. However, no fast and efficient parallel algorithm is known for 

either of these problems, i.e. no polylogarithmic-time algorithm is known that has 

a processor-time product even close to linear in the number of nodes and edges in 

the input graph. Thus, in order to design fast and efficient parallel algorithms for 

graph theoretic problems, we must consider new, or at least different, types of graph 

decompositions and algorithmic techniques. Examples of such decompositions that 

have proven fruitful include ear decompositions (35, 36], and Euler tours (44, 8, 34, 

18]; examples of useful general techniques include divide and conquer [32, 28] and 

dynamic programming [1]. The novel use of these decomposition and algorithmic 

techniques has led to efficient parallel algorithms for a variety of problems, and in 

some cases to improved sequential algorithms as well. In this thesis we introduce a 

new technique of decomposing a graph into a maximal set of edge-disjoint cycles and 

show how an old algorithmic technique, scaling, can be used to achieve improved 

parallel algorithms for the assignment problem. 

In Chapter 2, we introduce the technique of decomposing a graph by finding 

a maximal set of edge-disjoint cycles. Given a graph, we would like to identify a 

collection of edge-disjoint cycles whose removal renders the graph acyclic. We give 

a parallel algorithm that solves this problem for n-node, m-edge undirected graphs 

in O (log n) time using ( m + n )/ log n processors of a concurrent-read concurrent-

11 



12 CHAPTER 1. INTRODUCTION 

write parallel random access machine (CRCW PRAM) [31). Since the problem 

requires n( n + m) operations in the worst case, our algorithm is optimal in its use 

of parallelism. 

This technique is related to the Euler tour technique. In 1736, Euler posed 

the first graph theoretic problem, known as the Konigsberg Bridge Problem. This 

problem can be phrased in graph-theoretic terms as: given an undirected graph 

G, find a cycle that covers every edge in the graph exactly once. A cycle of this 

form is called an Eulerian cycle and a graph that contains such a cycle is called 

an Eulerian graph. Euler showed that a graph is Eulerian if and only if the graph 

is connected and every node in the graph has even degree. Moreover, there is a 

linear-time sequential algorithm which, given an Eulerian graph, finds an Eulerian 

cycle. Awerbach, Israeli, and Shiloach [8) have given a parallel algorithm to solve 

this problem in O(log n) time using n + m processors, for graphs with n nodes and 

m edges. 

As this technique has proven useful for Eulerian graphs, there has been work on 

approximating Eulerian tours in non-Eulerian graphs. The standard technique is to 

convert a non-Eulerian graph into an Eulerian graph by adding a new node v', and 

an edge between every odd degree node and v'. However, this technique does not 

always prove to be useful algorithmically. Finding a maximal set of edge-disjoint 

cycles can be viewed as an alternative method of approximating an Eulerian tour, 

as it defines a maximal Eulerian subgraph. 

We also introduce a generalization of our algorithm that handles integer-weighted 

undirected graphs as well. We think of the edge weights as edge multiplicities and 

find a set of cycles with multiplicities, whose removal renders the graph acyclic. The 

algorithm takes O(log n log C) time on ( m + n )/ log n processors of a CRCW PRAM, 

where C is the largest edge weight in the graph. We hope that this generalization 

will be of use in solving network optimization problems, as the weights allow us to 

model the notions of flow and capacity. 

In Chapter 3, we demonstrate the utility of this technique by using it to find a 

cycle cover of a biconnected graph. A cycle cover is a set of cycles such that every 

edge in the graph appears in at least one cycle. In applications such as the analysis 

of irrigation systems by the Hardy Cross method [13) and the analysis of electrical 
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circuits, it is important to find a small cycle cover. Finding a minimum cover-one 

using the fewest possible edges-is conjectured to be NP-complete [25]. We give 

the first efficient parallel approximation algorithm for this problem, as we can find 

an 0(1 + n~°.!nn) approximation to the minimum cycle cover in 0(log2 n) time on 

( m + n) flog n processors. We also generalize this algorithm to multigraphs using 

0 (log2 n log C) time on ( m + n) / log n processors. 

Additionally, our techniques yield a useful sequential algorithm. The sequential 

algorithm that finds the smallest cycle cover is that of Alon and Tarsi [6]; their 

algorithm guarantees a constant factor approximation. However, their algorithm 

requires 0( m + n 2 ) time. Thus by sacrificing an 0( 1 + n~°.!:) factor in the size of 

the cover, we obtain a faster algorithm, one that runs in 0( m + n log n) time . Note 

that for non-sparse graphs ( m > n log n), our techniques yield a cover whose size is 

within a constant factor of optimal. Further, for all classes of graphs, our algorithm 

is faster than any of the previous algorithms for finding a cycle cover (6, 25, 26]. 

In Chapter 4, we demonstrate how scaling can be used to substantially reduce 

the amount of work needed to find a minimum perfect matching in a bipartite graph. 

Karp, Upfal, and Wigderson [30], and Mulmuley, Vazirani, and Vazirani [38], have 

recently developed randomized NC (RNC) 1 parallel algorithms for the minimum 

perfect matching problem, assuming that the input is given in unary. For both of 

these algorithms, the number of processors needed is proportional to the magnitude 

of the largest edge cost. We show how to convert these algorithms into algorithms 

that use a number of processors that is independent of the magnitude of the largest 

edge cost, provided that the graph is bipartite. As a tradeoff, we get an increase in 

the time spent that is proportional to the logarithm of the magnitude of the largest 

number. If C = n( nl+~), we get algorithms that do less work, where work is the 

product of the number of processors used and the time spent. Assuming similarity2, 

our algorithms are in RNC. 

We achieve these results by using scaling, which reduces the problem of finding 

1 NC is the class of algorithms that, on input of size n, use n ki processors and O(logk, n) time, 
for some constants k1 and k2. RNC algorithms a.re NC algorithms that allow ea.ch processor to 
generate an O(log n) bit random number at ea.ch step in the computation. 

2The similarity assumption is the assumption that log n = O(log C) where C is the largest edge 
cost. See [17] for details. 
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a matching in a graph with large edge costs to the problem of finding a sequence 

of matchings in a sequence of graphs, each of which has small edge costs. Scaling 

was first introduced by Edmonds and Karp [15] and has recently been a part of 

efficient sequential algorithms for shortest paths [3, 17], maximum flow [17, 4, 5], 

minimum-cost flow [15, 23, 2, 39, 19], and matching [19, 4]. In parallel computation 

scaling has received somewhat less attention [19, 21]. Our algorithm combines ideas 

involving scaling and dual variables from the sequential algorithms of Gabow [17] 

and Gabow and Tarjan [19], with the parallel matching algorithms of Mulmuley, 

Vazirani, and Vazirani [38] and Karp, Upfal, and Wigderson [30]. 



Chapter 2 

Finding a Maximal Set of Edge 
Disjoint Cycles 

In this chapter, we introduce a new graph decomposition technique, that of decom

posing a graph into a maximal set of edge-disjoint cycles. Alternatively, this can 

be viewed as a set of cycles whose removal from a graph renders the graph acyclic. 

In Section 2.1, we discuss the concepts of a cycle space and a cycle basis, and show 

their relationship to a spanning forest of a graph. In Section 2.2, we use these con

cepts to give a parallel algorithm that finds a maximal set of edge-disjoint cycles 

in O(logn) time on (m + n)/logn processors. Finally, in Section 2.3, we use the 

algorithm of Section 2.2 as a subroutine in an algorithm that finds a maximal set of 

edge-disjoint cycles in O(log n log C) time on a multigraph, where C is the largest 

edge multiplicity. 

This chapter is joint work with Philip Klein. 

2 .1 Preliminaries 

Let G = (V, E) be an n-node, m-edge undirected graph with node set V and edge set 

E = { e1, ... , em}. A maximal set of edge-disjoint cycles of G = (V, E) is a set of cy-

cles C1, ... ,Ck s.t. Ci~ E, Ci nCi = 0 for i /; j, and the graph G' = (V,E - UiCi) 

is acyclic. Let {O, l}E denote them-dimensional vector space over GF(2). Each sub

graph Hof G corresponds to a vector µ(H) = (µ 1(H), ... ,µm(H)), where µi(H) = 1 

if edge ei appears in H, and µi(H) = 0 otherwise. Further, for any edge e, let µ(e) 

15 



16 CHAPTER 2. FINDING A MAXIMAL SET OF EDGE DISJOINT CYCLES 

be the vector corresponding to the subgraph containing only edge e. An even-degree 

subgmph of G is a subgraph in which every node has even degree. Every connected 

component of an even-degree subgraph is Eulerian; hence, the edges of such a sub

graph can be decomposed into cycles. Furthermore, the following fact is well-known: 

Fact 2.1.1 Let C(G) = {µ1, ... ,µ1} be the vectors corresponding to {H1, ... , Hi}, 

the set of all even degree subgraphs of G. Then C( G) is a vector subspace of {O, l}E. 

We will call this vector subspace the cycle space of G and denote it by C(G). Further, 

we will use the following simple corollary of Fact 2.1.1: 

Fact 2.1.2 For two even-degree subgraphs H 1 and H 2 of G, the elementwise mod 

2 sum of the vectors µ(H1 ) and µ(H2 ) is again a vector µ(H) corresponding to an 

even-degree subgraph H. 

Note that this cycle space can contain as many as 2m vectors, and is, in this form, 

impractical algorithmically. 

Thus, we will focus on finding a cycle basis of the cycle space C(G), i.e. a set 

of linearly independent vectors that span the cycle space. Clearly, the number of 

vectors in any basis is equal to the dimension of the space, and hence is independent 

of the choice of the basis. In fact, the size of a cycle basis can be well characterized: 

Lemma 2 .1.3 ( [9]) Let G be a graph with p connected components. The cardinality 

of any cycle basis of G is exactly m - n + p. 

We proceed to characterize an easily found basis. 

Let F be a spanning forest of G. Let F be a rooted version of F; that is, F is 

obtained from F by choosing a root within each tree of F. For each node v, there 

is a unique simple path P( v) from v to the root of the tree containing v. For two 

nodes v and w belonging to the same tree, the lowest common ancestor of v and w, 

denoted lca(v,w), is the first node common to P(v) and P(w). 

An edge e = ( v, w) of G not appearing in F is called a cycle-edge ( with respect 

to F) because FU { e} contains a unique simple cycle, denoted C( e ). In particular, 

the cycle C( e) consists of e, together with the paths from v and w to their lowest 
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common ancestor in fr. Using the GF(2) vector notation, we can write the cycle 

C( e) as 

µ(C(e)) = µ(e) + µ(P(v)) + µ(P(w)), (2.1) 

because the portions of P( v) and P( w) from lea( v, w) to the root coincide and cancel 

each other. w~ can now characterize a particular basis 8: 

Lemma 2.1.4 Let graph G have spanning forest F. Then B = {µ(C(e))le ¢ F} is 

a cycle basis of G. 

Proof: Let e1 , ••. ek be the cycle-edges of G with respect to F. Then each vector 

µ(C(ei)) in B contains exactly one cycle-edge ei; further, each cycle-edge appears 

in exactly one vector in B. Thus, this collection of vectors is linearly independent, 

and its cardinality is m - (n - p), since any spanning forest contains n - p edges. 

Thus, by Lemma 2.1.3, B is a cycle basis. ■ 

2.2 An Algorithm for Graphs 

We will use the cycle basis B as a building block for a simple algorithm for finding 

a maximal set of edge-disjoint cycles. First, we find a rooted spanning forest, F, of 

G. Second, we let B = {µ1 .. . µk} be the cycle basis defined in Lemma 2.1.4 and 

compute the subgraph H defined by 

µ(H) = L µi. (2.2) 
µiEf3 

Finally, we decompose H into a set of edge-disjoint cycles. The algorithm appears 

in Figure 2.1. 

To show that this is indeed a maximal set of edge-disjoint cycles, we will prove 

the following lemma: 

Lemma 2.2.1 Let H be defined by µ(H) = LµieBµi. Then His a maximal set of 

edge-disjoint cycles. 
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Input: Undirected graph G. 
Output: H, a maximal set of edge-disjoint cycles of G. 
1 Choose a rooted spanning forest F of G. 

2 Determine the subgraph Hof G by (2.2). 

3 Decompose H into edge-disjoint cycles. 

Figure 2.1: Algorithm Maximal Cycles 

Proof: By repeated application of Fact 2.1.2, H is an even degree subgraph, and 

hence, can be decomposed into edge-disjoint cycles. Now we show that it is maximal. 

Let e1 , ... ek be the cycle-edges of G with respect to F. Then, by equation 2.1 and 

the definition of B, 

µ(H) = E µi = E µ(C(e)) (2.3) 
µiEB eEF 

where the sum is elementwise mod 2. Since each edge e not in F occurs exactly 

once in the sum, e is in the subgraph H. Thus H contains all non-forest edges and 

possibly some forest edges. All edges not in H must be in F, so G - H ~ F, and 

thus G - H is acyclic. ■ 

Now, we focus on the time it takes to implement algorithm Maximal Cycles. 

Step 1 can be implemented in O(log n) time using (m + n)/ log n processors by the 

spanning tree algorithm of Jung [29]. Step 3 can be implemented in O(log n) time 

using ( n + m) / log n processors by the list-ranking algorithm of Cole and Vishkin 

[11] or that of Anderson and Miller [7]. A naive implementation of step 2 consists 

of summing at most m - n + 1 vectors of length m. This approach takes O(log n) 

time but requires about m2 processors. We describe an alternate approach that 

takes advantage of the structure of the problem to achieve O(log n) time using only 

( n + m) / log n processors. 

Recall that our goal is to achieve a characterization of which edges are in 

µ(H) = LµieB µi. First observe that every edge of G that is not in the forest 

F is automatically in the subgraph H. Thus, we need only determine which edges 

of Fare contained in H. We use equation 2.1 to rewrite equation 2.3 as 

µ(H) = E [µ(e) + µ(P(v)) + µ(P(w))]. (2.4) 
e=(v,w)EF 

Now focus on µi(H), the ith component of µ(H). Because addition over GF(2) 
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A 

F 

Figure 2.2: To obtain Fsplit, split into two every edge not in the forest F. (The 
shaded edges are a spanning tree rooted at r.) 

is equivalent to logical exclusive-or, we can express equation 2.4 as 

µi(H)=l{:} E9 µi(e)EBµi(P(v))EBµi(P(w)). (2.5) 
e=(v,w)flF 

Let (x, y) be an edge of F corresponding to µi(H) with y the parent of x. For 

any e = (v,w) ¢ F, µi(e) = 0, and µi(P(v)) = 1 only if vis a descendant of x. 

Let 

#d(x) = l{(v,w) : (v,w) ¢ F}I. (2.6) 
u a descendant of x 

We can use equation 2.6 to rewrite equation 2.5 as 

(x,y) EH{:} #d(x) = 1 mod 2. (2.7) 

In order to compute H, therefore, it suffices to compute #d( x) for each node x of 

G. 

We compute #d( x) by the following procedure. Let Fsplit be the rooted forest 

obtained from F and G by splitting in two each edge not in F, as illustrated in 

Figure 2.2. More formally, Fsplit is obtained from F by adding two new nodes ai 

and bi and two new edges (ai,x) and (bi,Y) for each edge ei = (x,y) E G - F. We 

refer to the original nodes of G as old nodes and the new nodes obtained by splitting 

edges as new nodes. We then use parallel tree evaluation [37, 44, 11], to compute, 
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Input: Undirected graph G with spanning forest F. 
Output: H, an even degree subgraph of G, such that G - His acyclic. 

1 Let Fsplit be obtained from G by splitting in two each edge not in P 
2 For each node x E G, use parallel tree evaluation to compute #n(x), the 

number of descendant new nodes of x in Fsplit• 

3 Let H = {(v,w): (v,w) (/. F} U {(x,y): #n(x) = 1 mod 2} 

Figure 2.3: Computing the subgraph H 

for each node x, #n(x), the number of descendants of x that are new nodes. This 

implementation of Step 2 appears in Figure 2.3. 

The following lemma justifies this procedure: 

Lemma 2.2.2 Let #n(x) be the number of descendant new nodes of x in Fsplit, 

and let #d(x) be defined by equation 2.6. Then #n(x) = #d(x), where #d(x) is 

computed in G. Further, #n( x) can be computed in O(log n) time on ( m + n) / log n 

processors. 

Proof: In the rooted forest Fsplit, each of the new nodes a; and bi is a leaf. 

It is easy to see that the number of new nodes connected to an old node v is 

I {( v, w) : ( v, w) (/. F} 1- Hence for each node x of G, the number of descendants of 

x in Fsplit that are new nodes is exactly #d(x). Thus to compute #d(x), it suffices 

to compute #n(x) in Faplit• Further, observe that the number of nodes in Fsplit, 

including new nodes, is at most n + 2m. Thus, using parallel tree evaluation, we 

can compute #n(x) for all old nodes x of G simultaneously, in O(logn) time using 

( m + n) / log n processors. 

Combining all the above results, we get the following theorem: 

Theorem 2.2.3 Algorithm Maximal Cycles, with Step 2 implemented as in Figure 

2. 3 finds a maximal set of edge-disjoint cycles in an undirected graph in O(log n) 

time on ( n + m) / log n processors. 

Proof: Immediate from Lemmas 2.2.1 and 2.2.2 and the fact that computing #n(x) 

is the dominant step in computing subgraph H. ■ 
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2.3 An Algorithm for Multigraphs 

In order to model the notions of flow and capacity that arise in network optimiza

tion problems, we consider multigraphs, graphs in which there may be many edges 

connecting a given pair of nodes. A multigraph can be succinctly represented as 

G = (V,E,m), where G' = (V,E) is an ordinary (simple) graph, and m: E---+ z+ 
assigns a non-negative multiplicity to each edge in E. Thus for each edge e = (x,y) 

of the simple graph G', there are m( e) edges with the same endpoints x and y in 

the multigraph G. Since the multiplicity of an edge changes over the course of the 

algorithm, we will use m0 ( e) to denote the multiplicity of edge e in the input graph, 

and m( e) to denote the current multiplicity of edge e. Let M be the maximum 

multiplicity of any edge in the multigraph G. 

We shall give a parallel algorithm to find a maximal collection of edge-disjoint 

cycles in a multigraph G, where no cycle is permitted to contain more than one edge 

with the same endpoints. Observe that if M is very large, we might have to remove 

an enormous number of cycles from Gin order to render G acyclic. Therefore, the 

output of the algorithm shall consist of a collection of pairs of the form ( C, m ), where 

C is a cycle and m is taken to be the multiplicity of the cycle. Such a collection 

is a solution to the maximal edge-disjoint cycles problem for G if the following two 

conditions are satisfied: 

M.1: For every edge e of G', the sum of the multiplicities of cycles C in which e 

occurs is at most the original multiplicity of e in G. 

M.2: The set of edges e for which the above inequality is strict form an acyclic 

subgraph of G'. 

Our parallel algorithm to find such a solution takes O(log n log M) time using 

( m + n) / log n processors. 

Define m(C), the multiplicity of cycle C, to be mineec{m(e)}, and define the 

maximum cycle multiplicity of a multigraph to be the maximum multiplicity of any 

cycle in G, i.e. maxcec m(C), where C is the set of all cycles in G'. Our general 

approach will be to remove cycles of high multiplicity. Our algorithm ensures that 

the maximum cycle multiplicity is a non-increasing function of time. More specifi-
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Input: Multigraph C = (V, E, mo). 
Output: S, a maximal set of edge-disjoint cycles. 
1 Let ~ +- 2flog(M+1)l. Let S +- 0. Let m +- mo. 

2 While~> 1 

3 Let ct::. be the graph induced on the edges of C' with m( e) ~ ~/2. 
4 Let F be a spanning forest of ct::. in which appear all edges of multiplicity 

at least ~-
5 Using F, find a maximal set of edge-disjoint cycles in ct::., ignoring multi-

plicities. 
6 For each cycle C found in step 5, 
7 Assign multiplicity b./2 to C, and add it to S. 
8 For each edge e EC, let m(e) +- m(e) - ~/2. 
9 Let~+- b./2. 

10 Output the set S of cycles with multiplicities. 

Figure 2.4: Algorithm Maximal Capacitated Cycles 

cally, we will show that a routine similar to Maximal Cycles, applied to the proper 

graph, will decrease the maximum cycle multiplicity by a factor of 2. Assuming all 

initial multiplicities are integer-valued, only log M iterations are needed. 

The algorithm maintains a variable~ such that D. is a strict upper bound on the 

maximum cycle multiplicity. In one iteration of the algorithm we consider only the 

edges of multiplicity at least ~/2. Furthermore, we force all edges of multiplicity 

at least ~ to be in the spanning tree. Once we have ensured that we satisfy these 

constraints, we find a maximal set of edge-disjoint cycles in the resulting graph, 

assign each of these cycles a multiplicity of ~/2, and then remove these cycles 

from C, adding them to S. The algorithm, Maximal Capacitated Cycles, appears 

in Figure 2.4. When an iteration terminates, S contains a collection of cycles with 

multiplicities. To show this collection is maximal, we first prove the following lemma: 

Lemma 2.3.1 At each iteration in algorithm Maximal Capacitated Cycles, step 4 
succeeds, and the maximum cycle multiplicity is less than ~-

Proof: The proof is by induction on the number of iterations. The basis is trivial 

because initially ~ exceeds every edge-multiplicity. Suppose that after i iterations, 

the lemma holds, and the loop has not terminated. We will prove the lemma holds 

after the i + 1st iteration. Since there is no cycle of multiplicity ~, the edges of 
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multiplicity at least t::. form an acyclic subgraph of G. Hence a spanning forest F 

containing every such edge can be constructed in Step 4. Consider the non-tree edges 

with multiplicity at least t::../2. Since they are not in the forest, these edges each 

have multiplicity less than t::.. In steps 5 through 8, we reduce the multiplicity of 

each of these edges by t::../2. Hence after step 8, every non-tree edge has multiplicity 

less than t::../2. Thus, the edges of multiplicity greater than or equal to t::../2 form 

an acyclic subgraph, and after t::. is halved in step 9, the lemma still holds. ■ 

Given this lemma, we can prove the following theorem: 

Theorem 2.3.2 Algorithm Maximal Capacitated Cycles finds a maximal set of cy

cles in an n-node undirected multigraph G in O(log n log M) time on ( m + n) / log n 

processors. 

Proof: First we show that when the algorithm terminates, S is a maximal set of 

edge-disjoint cycles. It is easy to see that condition M.1 is maintained throughout 

the algorithm. Thus, when the algorithm terminates, for each edge e, the current 

value of m(e) is mo(e)- E{c:eeC} m(C), where m(C) is the multiplicity of cycle C 

in S, and m( e) 2: 0. Furthermore, since t::. ~ 1, by Lemma 2.3.1 there are no cycles 

of multiplicity greater than or equal to one and the graph of edges with m(e) > 0 is 

acyclic. Thus we have satisfied condition M.2. 

Now we show that we can achieve the stated resource bounds. Since t::. is initially 

no bigger than 2(M + 1), and never decreases below 1, there are only O(logM) 

iterations. We claim that each iteration can be carried out in O(log n) time on 

n + m processors. It is easy to see that each step, except for steps 4 and 5, takes 

constant time on n + m processors and hence takes O(log n) time on ( n + m )/ log n 

processors. By looking at the spanning tree algorithm of [29], it is easy to see that 

given an acyclic set of edges that have to be in the spanning tree, the problem 

only becomes easier, thus steps 4 and 5 can be done in the same time as algorithm 

Maximal Cycles. ■ 

We conclude with three observations. First, assuming similarity, i.e. M = 0( nk) 

for some constant k [17], this algorithm runs in O(log2 n) time on (m+n)/logn 

processors. Second, observe that when we removed a cycle we always assigned it 

a multiplicity of t::../2. However, we could in general assign it a higher multiplicity, 
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namely that of the minimum-multiplicity edge in it. Since this could only serve to 

reduce the maximum cycle multiplicity at an even faster rate, the bounds above 

still hold. Finally, while this algorithm has been presented as an algorithm on 

multigraphs, it could also be viewed as an algorithm that works on graphs with 

weights or capacities on the edges, where the weights or capacities correspond to 

the edge multiplicities. 



Chapter 3 

Approximating the Minimum 
Cycle Cover 

In this chapter, we develop algorithms for approximating the minimum cycle cover. 

A cycle cover of a graph is a set of cycles in which each edge of the graph is in 

at least one cycle. The minimum cycle cover is a cover that uses the fewest edges 

possible. We give a series of parallel algorithms, each of which finds a smaller cover 

than the previous one. In Section 3.1, after giving the history of the problem, we 

give a simple algorithm that finds a cover of size O(m + n2 ). In Section 3.2, we give 

a more involved algorithm that finds a cover of size O(mlogn), and in Section 3.3, 

we improve the size of the cover to be O(m + nlogn). We conclude by observing 

that these techniques also yield an efficient sequential algorithm. 

3.1 Preliminaries, Background, and a First Algorithm 

Let C = {C1, .. ,,Ck} be a set of simple cycles in the undirected graph G = (V,E), 

and let E(C) be the set of edges contained in C. More generally, we denote the set 

of edges in some subgraph S by E(S). We say that C is a cycle cover of the graph 

G = (V, E) if E(C) = E, i.e. every edge is in at least one cycle in the set C. We 

define the size of a cycle cover to be the total number of edges in the cycles that 

constitute that cover, i.e. ICI = ~c.ec IE(Ci)I. The minimum cycle cover is the 

cycle cover for which ICI is minimized. 

Sequential algorithms for finding a cycle cover have been developed with two 

25 
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goals in mind. The first goal is to find a cover of small size, and the second is to 

get an algorithm that runs quickly. The first algorithm for this problem, by Itai 

and Rodeh [26], finds a cover of size O(m + nlogn) in O(n3 ) time. Subsequently, 

Itai, Lipton, Papadimitriou and Rodeh [25] showed that every graph has a cover 

of size min{3m-6,m + 6n - 7} and that this cover can be found in O(n2 ) time. 

This result relies on a result of Jaeger [27] that shows that every biconnected graph 

has a nowhere zero fl.ow modulo 8, and results of Tarjan [43] and Shiloach [42] that 

find edge-disjoint branchings. They also conjecture that finding the minimum cycle 

cover is NP-complete. Alon and Tarsi [6] have developed an algorithm that finds 

a smaller cover, one of size at most min{!m, m + in - i}, and runs in O(m + n2
) 

time. This result relies on a proof by Seymour [41] that every biconnected graph 

has a nowhere zero fl.ow modulo 6. Alon and Tarsi also note that a certain graph 

called the Peterson graph [26, 25] has 15 edges and no cycle cover of size less than 

21. This graph can be generalized to show that there exists an infinite family of 

graphs of m edges that have a minimum cycle cover of size at least }m. 

In this section, we consider the problem of finding a cycle cover in parallel. We 

first note that all the sequential algorithms mentioned above rely on edge-disjoint 

branchings and nowhere zero flows. All algorithms known to us for these problems 

require the computation of 11( n) maximum flows on graphs with polynomial bounded 

capacities. Even if this sequence of computations could be efficiently parallelized, 

the best known NC algorithm for computing one maximum fl.ow in a graph with 

polynomial bounded capacities uses many processors and randomness [30]. 

Thus, we focus on a different strategy that is based on using the algorithm 

Maximal Cycles as a subroutine. First observe that the output of this algorithm is 

a set of cycles C such that m - n + 1 ~ IE(C)I ~ m. Thus, we already know how 

to find a set of cycles that cover all but n - 1 or fewer of the edges. We could then 

cover each of the remaining edges with a cycle using (m + n)/logn processors per 

edge in O (log n) time, yielding a cycle cover of size m + n( n - 1) using O (log n) 

time on n( m + n) processors. This gives the fastest parallel algorithm to find any 

type of non-trivial cycle cover. However, the size of the cover and the number of 

processors used are too large to be of practical interest; we will focus on finding a 

cover of smaller size. 
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Input: Biconnected graph G = (V, E). 
Output: C, a cycle cover of size O(mlogn). 
1 Initialize C to empty. 

2 While E(C) -::J= E 

3 Let Ge= (V,E(C)). 
4 Find F, a spanning forest of Ge. 
5 Find T, a spanning tree of G containing all edges in F. 
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6 Find !:,.C ={Ci, ... ,C.,.J, a maximal set of edge-disjoint cycles in G covering 
all edges not in T. 

7 Add the cycles in !:,.C to C. 

Figure 3.1: Algorithm Cycle Cover 

3.2 Finding a Cover of Size O(m log n) 

In this section we will use the algorithm Maximal Cycles to develop an algorithm 

that finds a cycle cover of size O(mlogn). As in algorithm Maximal Capacitated 

Cycles, we will utilize our freedom to choose which edges to put in the spanning tree. 

Our algorithm will proceed in iterations; in each iteration we will use the algorithm 

Maximal Cycles to choose a set of cycles to add to our collection C. In general, 

during iteration i we will prefer to put in the spanning tree edges that were put into 

C in some iteration previous to i. Thus, we will force as many uncovered edges as 

possible to be non-tree edges. This means that they will be included in some cycle 

during iteration i and hence added to C. 

To achieve this, we will first find a spanning forest of the graph induced by 

E(C), the edges already covered. Next, we extend this to a spanning tree of G. 

Given this tree, we use the algorithm Maximal Cycles to find a maximal set of 

edge-disjoint cycles in G, which we then add to C. The algorithm appears in Figure 

3.1. Informally, this strategy achieves our goal of putting as few uncovered edges as 

possible in the spanning tree; we will now proceed to show this more rigorously. 

The key to the analysis of the algorithm is to show that the number of iterations 

is O(log n ). At the beginning of each iteration, we have a graph G in which a set 

E(C) of edges are covered. We would like to be able to show that in each iteration, 

a constant fraction of the uncovered edges become covered. As we will show, if all 

nodes have degree three or more, this is true. However, if a graph has nodes of 
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degree two, it is not necessarily the case that a constant fraction of the uncovered 

edges become covered. However, by defining progress in terms of an auxiliary graph 

in which every node has degree three or more, we obtain the desired result. 

We derive an auxiliary graph H = H(G, E(C)) from G and the covered edges 

such that each iteration reduces the number of edges of H by a constant fraction. 

To obtain H from G, first contract all the covered edges E(C), then splice out all 

nodes of degree two. (To "splice out" a node of degree two is to contract one of its 

incident edges.) 

Lemma 3.2.1 Let C be the cycle cover at the beginning of some iteration of algo

rithm Cycle Cover, and let LlC be the collection of edge-disjoint cycles found in step 

6. Then either H(G,E(C U LlC)) has at most two-thirds the edges of H(G,E(C)), 

or the algorithm terminates immediately. 

Proof: Let TH be the spanning tree of H = H(G, E(C)) obtained from the spanning 

tree T of G by contraction: contract each edge of T that was contracted in obtaining 

H from G. Every non-tree edge in H with respect to TH is a non-tree edge in G 

with respect to T, so the edges covered by the cycle collection LlC found in step 6 

include all non-tree edges of H. There are two cases to consider: 

Case 1: (H has at least one edge.) Let nH be the number of nodes in H. Since 

every node of H has degree at least three, H has at least ~nH edges. The number 

of tree-edges in H is nH - 1, hence the number of nontree edges of H is more 

than one-third the number of edges of H. Thus the graph H' obtained from H by 

contracting non tree edges has fewer than two-thirds the edges of H. But the graph 

H(G,E(C U LlC)) is obtainable from H' by contractions, and so has no more edges 

than H'. 

Case 2; (H has no edges) Since contraction preserves connectivity H must consist 

of a single isolated node. Then the graph G', obtained from G by contracting edges 

covered by C, is biconnected with degree at most two, and hence is a simple cycle 

( or a single isolated node). In this case, we claim that the collection LlC of step 

6 covers all as-yet-uncovered edges of G, and hence that the algorithm terminates. 

To prove the claim, simply contract the edges of LlC that are already in C. The 

resulting cycle collection LlC' is a subgraph of G'; since G' consists of a simple cycle, 
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AC' must include every edge of G'. ■ 

Given this lemma, we can prove the following theorem: 

Theorem 3.2.2 Algorithm Cycle Cover finds a cycle cover of size 0( m log n) in 

0 (log2 n) time using ( m + n) / log n processors. 

Proof: Each iteration of the while loop finds a cycle cover of size at most m. 

By Lemma 3.2.1, there are O(log n) iterations and each iteration is the algorithm 

Maximal Cycles with some restrictions place on the choice of the spanning tree. ■ 

We note that in practice, we would change Step 7 to include a cycle AC only if 

it contained some edge that was not already in C. This could be checked in O(log n) 

time on (m + n)/logn processors using pointer jumping [10]. Also, we could replace 

Steps 3, 4, and 5 with the computation of a minimum spanning tree of G with the 

edges in E(C) weighted with O and the rest of the edges weighted with 1. 

3.3 Finding a Cover of Size O(m + nlogn) 

In this section, we show how to decrease the size of the cycle cover from 0( m log n) 

to 0( m + n log n) using no additional resources. Observe that the first iteration of 

the algorithm finds a cover of size no less than m - n + 1. Thus the number of 

edges not in C is at most n - 1. Assume that we can form a biconnected graph B 

that contains all the uncovered edges, and has at most 2n edges. We can run the 

algorithm Cycle Cover on B and obtain a cover of size 0( n log n ). Then we can 

combine this cover with the set of cycles obtained from the first iteration of the 

algorithm on G, and obtain a cycle cover of size O(m+nlogn), using no additional 

resources. It is known how to find such a graph B in linear-time sequentially [25), 

but this requires using depth-first search. We present a parallel algorithm that does 

not use depth-first search and finds a graph Bin O(log n) time using ( m + n )/ log n 

processors. 

First, for each node v, we compute level( v ), its distance from the root in some 

rooted spanning tree T. Then, for each non-tree edge (v,w), we compute lca(v,w). 

Finally, we choose the edges of B by including the spanning tree T, and, for each 

each node v, the edge (v,w), where w is the node that minimizes level(lca(v,w)). 
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Input: A biconnected graph G and a rooted spanning tree i'. 
Output: A biconnected graph B = (V,EB) s.t. T ~Band IEBI ~ 2n. 

1 Vv E V, compute level( v ), the distance from v to the root of T. 
2 V(v,w) i T, compute lca(v,w). 

3 Vv EV, let N(v) be the non-tree neighbor w minimizing level(lca(v,w)). 

4 LetEB=TU{(v,N(v)): vEV}. 

Figure 3.2: Algorithm Sparse Biconnected Subgraph 

This algorithm, Sparse Biconnected Subgraph, appears in Figure 3.2. 

Lemma 3.3.1 Given a biconnected graph G and a spanning tree T, algorithm 

Sparse Biconnected Subgraph computes a biconnected graph B = (V, EB) s.t. T ~ B 

and IEBI ~ 2n - 1. 

Proof: Since EB contains the n - 1 tree edges and at most one additional edge per 

node, IEBI ~ 2n - 1. Further, since B contains a spanning tree, B is connected. 

Now we will argue that B is biconnected. Assume that B is not biconnected. This 

implies that there exists a node v' that is an articulation point of B, i.e. there 

is no edge from a descendant of v' to an ancestor of v' ( descendant and ancestor 

are defined with respect to T). This implies that for each descendant x of v' in 

G, the y that minimizes level(lca(x, y)) is also a descendant of v'. But if the y 

that minimizes level (lea( x, y)) is a descendant of x, then all y such that ( x, y) is an 

edge must also be descendants of v'. This implies that v' is an articulation point 

of G, which contradicts the assumption that G is biconnected. Thus, B must be 

biconnected. ■ 

Combining Lemma 3.3.1 with Theorem 3.2.2 we get the main result of this 

section. 

Theorem 3.3.2 Combining algorithms Cycle Cover and Sparse Biconnected Sub

graph yields an algorithm that finds a cycle cover of size O ( m + n log n) using 

O(log2 n) time on ( m + n) / log n processors . 

Proof: The bound follows from the previous results and the results of [40] that 

show how to compute lea and level in the stated time bounds. ■ 

Our parallel algorithm translates into an efficient sequential algorithm. 
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Theorem 3.3.3 A sequential implementation of algorithms Cycle Cover and Sparse 

Biconnected Subgraph finds a cycle cover of size 0( m + n log n) in sequential time 

0(m + nlog n). 

Proof: The first maximal set of edge-disjoint cycles can be computed in 0(m + n) 

time by algorithm Maximal Cycles. We then find a sparse biconnected subgraph 

in 0 ( n + m) time. Finally we run algorithm Cycle Cover on the sparse graph in 

0(nlogn) time. ■ 

The cover we find is within a factor of 0(1 + n~°.fnn) of optimal. Thus for graphs 

with m > n log n, the size of the cover is within constant factor of optimal, and the 

algorithm is faster than any of the previous algorithms. 

We conclude by observing the algorithm generalizes to multigraphs in the natural 

way, by replacing the algorithm of Section 2.2 with the algorithm of Section 2.3, as 

is summarized in the following theorem: 

Theorem 3.3.4 Let G = (V,E,c) be a multigraph with maximum edge multiplic

ity C. Then, algorithm Cycle Cover with algorithm Maximal Cycles replaced by 

Maximal Capacitated Cycles finds a cycle cover of size 0( mC log n) and runs in 

0(log2 nlogC) time on (m + n)/logn processors. 

Proof: The running time follows from Theorems 3.2.2 and 2.3.2. The size of the 

cycle cover is 0( mC log n) because there are at most mC edges in the graph and 

0(log n) iterations of Maximal Capacitated Cycles. ■ 

Note that we did not use a reduction to a sparse biconnected graph, as it is not 

clear, in this case, what exactly a sparse biconnected multigraph is. 



Chapter 4 

Finding an Assignment while 
Doing Less Work 

In this chapter, we show how to use scaling to reduce the total amount of work 

needed to find a minimum perfect matching in a bipartite graph. Our techniques 

convert algorithms that use a number of processors dependent on the magnitude of 

the largest cost in the graph into algorithms that use a number of processors that 

is independent of the edge costs. 

4.1 Preliminaries 

Let G = (V, E, c) be a graph with node set V, edge set E, and an integral cost c( v, w) 

associated with each edge ( v, w ). The edges of a graph may be either undirected or 

directed. In the former case, we will denote an edge between node v and node w 

by (v,w), while in the latter case, we will denote an edge from node v to node w 

as [v, w]. A graph is bipartite if the nodes can be divided into two sets Vi and V2 

such that V = Vi U V2, Vin Vi = 0, and all edges have one endpoint in Vi and one 

endpoint in Vi. 
A matching on a graph is a set M of edges, such that each node is incident to 

no more than one edge from M. A perfect matching is a matching in which every 

node is incident to exactly one matched edge. If the edges have costs, the cost 

of a matching is the sum of the costs of the edges in the matching. A minimum 

perfect matching (MPM) is the perfect matching with the smallest possible cost. In 
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a bipartite graph, an MPM is also called an assignment. It will be convenient to 

associate an integer-valued dual variable d( v) with each node v. This allows us to 

define c( v, w ), the reduced cost of edge ( v, w ), with respect to dual variables d by 

c(v,w) = c(v,w) - d(v)- d(w). Let M be a matching. We say that a set of dual 

variables is tight if 

( v, w) E M => c( v, w) ~ o 

(v,w)¢M => c(v,w);?:0. 

We say that a set of dual variables is zero-tight if 

(v,w) EM => c(v,w) = 0 

(v,w) ¢ M => c(v,w) z 0. 

( 4.1) 

( 4.2) 

( 4.3) 

( 4.4) 

We define the work done by an algorithm as the product of the number of 

processors used and the time spent. 

The first algorithm for the assignment problem is Kuhn's Hungarian algorithm 

[33). Implemented with Fibonacci heaps [16), this algorithm runs in 0( nm+n2 log n) 

time, which remains the best known strongly polynomial algorithm for the assign

ment problem. Using ideas from this algorithm, the cardinality matching algorithm 

of Hop croft and Karp [24), and scaling, Gabow and Tarjan [19) have developed an al

gorithm that runs in O(y'nmlog(nC)) time. There are no known NC algorithms for 

the assignment problem; however, there are RNC algorithms under the assumption 

that the input is given in unary. The first RNC algorithm under this assumption 

was given by Karp, Upfal, and Wigderson [30]. An implementation of this algo

rithm by Galil and Pan [20) uses (n + C')M(n) processors and O(lognlog2(nC')) 

time where C' is an upper bound on the maximum cost of any matching, and M(n) 

is the minimum number of processors needed to multiply two n x n matrices. Cur

rently M(n) = O(n2·376 ) [12], and trivially, M(n) = n(n2). Subsequently, a faster 

algorithm was discovered by Mulmuley, Vazirani, and Vazirani [38], that finds an 

assignment in O(log2n) time using nmCM(n) processors, where C is the largest 

edge cost in the input graph. As neither one of these algorithms does less work 

than the other on all graphs, we will give our improvements relative to both of these 

algorithms. 
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Input: G = (V, E, w) and a perfect matching M ~ E. 
Output: Zero-tight dual variables. 
1 Let G' = (V', E', c') be the directed graph with 

2 

3 

4 

5 

•V' =VU {s} 
•E' = {[s,v] Iv E Vi} U {[v,w] I (v,w) (/. M} U {[w,v] I (v,w) EM} 

{ 

0 V = S 

•c'[v,w] = c(v,w) v :/-sand (v,w) (/. M 
-c(v,w) v :/-sand (v,w) EM. 

6( v) .- shortest path distance from s to v in G'. 

If v E Vi, o(v) f-- -o(v). 

{
O wEVi 

€(w) = c(v',w)- o(v')- o(w) w E Vi and (v',w) EM. 

Return c5 + f. 

Figure 4.1: Procedure Compute Zero-Tight Duals (V, E, w, M) 

4.2 Computing Zero-Tight Dual Variables 

In this section, we address the problem of finding zero-tight duals given a matching. 

This can be done by the following procedure. First we create a directed graph by 

directing all the unmatched edges from Vi to Vi and all the matched edges from Vi 
to Vi- We give the matched edges negative costs and the unmatched edges positive 

costs. Further, we add an extra nodes, with edges of cost O from s to every node 

in Vi. Now, we compute the shortest path distance from s to every node v, and let 

these distances be the dual variables. To convert these distances to zero-tight duals, 

we add, to each dual variable in V2, the reduced cost of its associated matched edge. 

The details appear in Figure 4.1. 

Lemma 4.2.1 The dual variables computed by procedure Compute Zero-Tight Du

als are zero-tight with respect to matching M in graph G'. 

Proof: First note that because M is a MPM, G' has no negative cycles, so the 

shortest path distances are well-defined. Now, we will show that the dual variables 

c5 computed in Steps 1, 2, and 3 are tight with respect to c. By the shortest path 
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inequality and step 3, 

( v, w) rt M ⇒ t5( w) ::; c( v, w) + (-t5( v )) ⇒ c( v, w) - t5( v) - t5( w) 2:: o. ( 4.5) 

Similarly, 

(v,w) EM ⇒ -t5(v)::; -c(v,w) + t5(w) ⇒ c(v,w)- t5(v)- t5(w)::; 0, (4.6) 

so equations 4.1 and 4.2 are satisfied. Now consider the reduced costs of the edges 

with respect to dual variables t5 + €. Because the €( w )'s are either the reduced costs 

of matched edges or O they are always non-positive. Thus, if ( v, w) rt M, its new 

reduced cost is 

> 

> 

c(v,w)- (t5(v) + €(v)) - (t5(w) + €(w)) 

c(v,w)- t5(v)- t5(w)- (€(v) + €(w)) 

c( V, W) - t5 ( V) - t5 ( W) 

0 

If (v,w) EM, then its new reduced cost is 

(because €( v) ::; 0 \:/i) 

by equation 4.5. 

c(v,w)- t5(v)- (t5(w)- (c(v,w)- t5(v)- t5(w))) = 0. 

Thus, the dual variables satisfy conditions 4.3 and 4.4, and are indeed zero-tight. ■ 

4.3 A Scaling Algorithm 

Now we give the complete algorithm that combines scaling, the procedure Compute 

Zero-Tight Duals, and a subroutine for computing an MPM. The algorithm proceeds 

in O(logn) iterations. At the beginning of each iteration, one bit is added to the 

costs and dual variables. Then a perfect matching and zero-tight dual variables are 

found on the graph with edges of reduced cost no greater than 2n. The new dual 

variables are added to the old ones and the iteration terminates. The key to the 

efficiency of this algorithm is step 4, where we ignore edges with reduced cost greater 

than 2n. It remains to be shown that this does not change the value of the MPM. 

The details of the algorithm appear in Figure 4.2. 
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Input: G = (V, E, eo) an undirected bipartite graph with bipartition Vi and V2 and 
cost eo(v,w) on edge (v,w). Assume that G contains a perfect matching. 
Output: A minimum perfect matching M. 

1 d( V) - { ½ V E Vi 
0 v E Vi-

2 

3 

4 
5 

6 
7 

8 

c(v, w) - 0 'f(v, w) EE. 
Let C = max(v,w)eE{lco( v, w )I}. 

For l = 1 to [1og2 C] 

d( v) _ { 2d( v) - 1 v E Vi 
2d( v) v E Vi-

c(v, w) - 2c(v,w) + (the Ith signed bit of c0(v,w)) 'f(v,w) EE. 
Let E' = {(v,w) I (v,w) EE and c(v,w) ~ 2n}. 
Compute M, a MPM in G' = (V,E',c). 
Ll - Compute Zero-Tight Duals (V, E', c, M). 
d(v) - d(v) + Ll(v) 'Iv EV. 

Output M, a minimum perfect matching. 

Figure 4.2: Algorithm Assignment (V, E, c0 ). Letting d be non-integral is simply 
for ease of presentation. Note that d immediately becomes integral in step 3 and 
remains integral throughout the remainder of the algorithm. 
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Lemma 4.3.1 The graph G = (V, E, w) formed in step 4 of algorithm Assign

ment always contains a MPM of total cost no more than 2n. Further, V( v, w) E E, 

c(v,w) 2:: 0. 

Proof: We will prove this by induction on the number of iterations of the loop in 

step 2. During the first iteration, all costs are either 0 or 1, so the lemma is true. 

Assume that it is true after step 4 on iteration l - 1. Then, by Lemma 4.2.1, the 

costs care zero-tight with respect to Ll. Because 

c(v,w)- Ll(v)- ~(w) 

= (c(v, w) - d(v) - d(w)) - Ll(v) - Ll(w) 

(c(v, w)- (d(v) + Ll(v))- (d(w) + Ll(w)) 

it is also true that c is zero-tight with respect to d + Ll. 

Thus, in the graph G = (V, E, c ), the reduced cost of M with respect to d + Ll 

is 0 and the reduced cost of every edge is non-negative. So at the start of iteration 

l, all the edges have non-negative reduced cost and the MPM has reduced cost 0. 

Now consider the effect of adding a new bit of cost and updating the dual variables 

in Step 3. Let the subscripts old and new refer to the old and new values of the 

variables. 

Cnew(v,w)- dnew(v)- dnew(w) 

= 2c0 1d( v, w) + (-1 or 0 or 1) - (2d0 1d( v) - 1) - 2d0 1d( w) 

= 2(c0 1d(v,w)- d0 1d(v)- d0 1d(w)) + (0 or 1 or 2) 

Letting c(v, w) be the reduced cost of edge (v, w) we conclude that 

2c0 1d( v, w) ~ Cnew( v, w) ::; 2c0 1d( v, w) + 2 V( v, w) E E. (4.7) 

Since we have just shown that all the old reduced costs are positive, it is clear 

that all the new reduced costs are also positive. Now consider the new cost of the 

matching from the previous iteration. Using the second inequality in equation 4.7, 

we see that 

L Cnew(v,w) ~ L 2co1d(v,w) + 2 ~ L 2 ~ 2n. 
(v,w)EM (v,w)EM (v,w)EM 
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Thus the condition is satisfied after Step 4 in iteration l, and the induction holds. 

■ 

From this lemma we conclude that no edge of reduced cost greater than 2n can 

be in the MPM, thus justifying their exclusion from the matching subroutine. This 

leads to our main result. 

Theorem 4.3.2 Let algorithm A be a mndomized pamllel algorithm for MPM that 

uses Cf(n,m) processors and O(logkn) time, where f(n,m) is a polynomial inn 

and m and k is a non-negative integer. Using algorithm Assignment we can convert 

algorithm A into an algorithm for MPM that uses nf( n, m) + M( n) processors and 

O((logkn + log2 n) log C) time. 

Proof: First we must verify that our algorithm actually finds a MPM. From Lemma 

4.3.1, we see that ignoring edges of reduced cost greater than 2n does not change 

the value of the MPM. Therefore, at each step we find a valid MPM with respect to 

the reduced costs. Because an MPM with respect to the reduced costs has the same 

value as an MPM with respect to the actual costs, in the last iteration we really are 

finding an MPM in the graph where the current edge costs are the same as the edge 

costs of the input graph, thus proving correctness. To derive the resource bounds, 

observe that whenever we find a MPM in step 5, C ~ 2n. Procedure Compute Zero

Tight Duals is dominated by the shortest path computation that takes O(log2 n) 

time on M(n) processors. All other steps in the algorithm can be implemented in 

constant time on 0( m + n) processors. Combining these observations with the fact 

that there are only log C iterations of the main loop, the theorem follows. ■ 

Corollary 4.3.3 

• Algorithm Assignment, combined with the matching algorithm of {30}, yields a 

mndomized parallel algorithm for computing an MPM using n 2M(n) proces

sors and O(log3 nlog C) time. 

• Algorithm Assignment, combined with the matching algorithm of {38}, yields 

a randomized parallel algorithm for computing an MPM using n2 mM( n) pro

cessors in O(log2n log C) time. 
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Proof: Immediate from Theorem 4.3.2 and the algorithms in [30], [20], and [38]. ■ 

Observe that our algorithm performs less work in the case that C = f!(nl+~) for 

some E > 0. Further, our algorithm outperforms the old algorithms by a factor of 

0( nl~c ), so as C gets larger, our algorithm becomes even more efficient than the 

previous algorithms. 

We can extend this algorithm for a minimum perfect matching to one that finds 

a minimum-cost (not necessarily perfect) matching. Let G = (V, E, c) be a graph 

in which we would like to find a minimum-cost matching. We employ the standard 

trick of using an augmented graph G' = (V, V x V,c') where c'(v,w) = c(v,w) if 

( v, w) E E and c'( v, w) = nC otherwise. It is easy to see that a minimum perfect 

matching in G' corresponds to a minimum-cost matching in G. 

Corollary 4.3.4 Given a graph G with maximum edge cost C, running algorithm 

Assignment on G' yields an algorithm that finds a minimum cost matching us

ing n 2 M(n) processors and O(log3nlog(nC)) time or n2 mM(n) processors and 

0 (log2 n log( nC)) time. 



Chapter 5 

Conclusions and Open 
Problems 

We have presented a new technique for decomposing undirected graphs and have 

given one application: finding an approximation to the minimum cycle cover. We 

suspect that this technique will be useful for solving other problems as well. For 

example, observe that the maximal edge-disjoint cycles problem is closely related to 

a problem that arises in finding a minimum-cost circulation in a network, namely, 

finding a maximal set of weighted cycles in a positively-weighted directed graph. 

In this case, the weight of an edge represents the capacity of that edge, and the 

weight of a cycle represents the flow on that cycle. A maximal set of weighted 

cycles corresponds directly to a set of capacitated cycles such that, after flow is 

pushed around these cycles, the graph of edges that still have positive capacity is 

acyclic. Goldberg and Tarjan [22] solve the minimum-cost circulation problem by 

repeatedly finding a maximal set of weighted cycles; they show how to solve the 

latter problem sequentially in O(mlogn) time. 

In view of the application to minimum-cost circulation, it is an important open 

problem to determine whether there is an efficient parallel algorithm for eliminating 

cycles in a weighted directed graph. At present, the most efficient parallel algorithm 

for this problem uses a reduction to weighted non-bipartite matching, which takes 

O(log2 n) time on nmM(n) processors, and uses randomization[38]. 

We have also given an algorithm for the assignment problem that performs less 

work than the previously known RNC algorithms. It has the appealing feature of 

40 



41 

having the number of processors be independent of the size of the edge costs. Actual 

parallel machines have a fixed number of processors. Therefore, this technique gives 

a way to solve assignment problems with arbitrarily large edge costs without having 

to resort to a machine with more processors. 

In contrast with previous algorithms, this algorithm only works for bipartite 

graphs. This is because the problem of finding tight dual variables in general graphs 

appears to be no easier than actually finding a matching, even sequentially [14]. 

However, finding dual variables is the only part of the algorithm that does not 

generalize to general graphs. 
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