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a diagrammatic representation with a corresponding textual representation. The diagram­
matic representation explicitly shows the parallelism available in the procedures defined and 
is similar to the flow graphs used to depict signal processing algorithms by researchers in 
that field. V-PICT is strongly typed, but type declarations are only required for proce­
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The compiler is able to generate efficient code because the problem domain is limited; 
the compiler can support signal optimization techniques that a general-purpose compiler 
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independence. The compiler for V-PICT first parses either diagrams or text into dataflow 
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techniques such as stream optimization are discussed. The second stage of the compiler is 
machine dependent, and attempts to generate the most efficient code for the target machine. 
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Chapter 1 

Introduction 

1.1 Background Information 

Signal and image processing applications utilize algorithms that often contain a great deal 

of inherent parallelism. Unfortunately, there are few methods of implementing such al­

gorithms efficiently without worrying about very low-level implementation details. Many 

such applications, such as those in the SKETCH [33] system, are implemented on special 

purpose hardware or written in low-level languages such as C or assembly language. Using 

these powerful languages the programmer can write very efficient procedures; however, the 

amount of detail that the programmer must specify often obscures the actual algorithms 

that are being written. The resulting programs are very difficult to write and debug, and 

are very machine dependent. 

Because most high speed signal processing has been done on special purpose hardware, 

an abstract signal processing language has never become widely used. Almost every time 

a machine is designed to process signals efficiently, a new language is designed to program 

that machine. An abstract signal processing language should be machine independent; one 

should be able to compile an application written in the language for many different com­

puters without having to make significant changes to the program. Although the language 

itself should be general purpose, one should be able to compile programs to take advantage 

of special purpose hard ware. The language should have the power to exploit any parallelism 

present in the algorithms, and it should have the ability to express algorithms while hiding 

the implementation details. 
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There have been many attempts at defining a high-level signal processing language, 

such as SIPROL [9], SRL [15], and others described in "Signal Processing Tools" [10] and 

"Automatic Generation of Time-efficient Digital Signal Processing Software" [21]. So far, 

no language of this class has achieved widespread use. Unfortunately, each of the previous 

high-level signal processing languages has drawbacks that prevent it from becoming widely 

used. 

The SIPROL language, and the KBSP [8], ISP [13] and Sketch [33] environments all 

support the use of the object-oriented programming paradigm in signal processing. Al­

though each of these systems is being used in the research group in which it was developed, 

the programs lack portability because there is a very limited number of machines for which 

these systems are available. 

SIPROL is based on Pascal, so it inherits some of Pascal's limitations: the inability to 

perform separate compilation, and the over-specification of variable types. A system used 

for the research or development of algorithms must support this development in a more user­

friendly manner. A signal processing language should allow some amount of polymorphism, 

and its compiler should allow incremental compilation. 

In KBSP, ISP and Sketch, where Lisp-based languages are used, type declarations are not 

required, so the compiler does not have enough information to perform many optimizations. 

The major problem with these systems is that the compilers are not sophisticated enough 

to generate procedures that run very efficiently. These systems may have the performance 

necessary for algorithm development, but one will grow frustrated quickly when trying to 

run a large test. Signal processing researchers will not move from a low-level language to an 

abstract one unless the abstract language yields comparable performance. Sketch allows the 

researcher to achieve this performance by writing parts of the applications in C, but using 

C offsets some of the transparency and portability gains of a high-level language like Lisp. 

Even if these languages satisfy the performance criteria of researchers, there is little chance 

that the programs may be transported without change to an application environment, where 

much higher performance is required. 

"On-line Simulation of Block-diagram Systems" [7] and "High-speed Block-diagram Lan­

guages for Microprocessors and Minicomputers in Instrumentation, Control, and Simula­

tion" [16] both describe attempts at a diagrammatic representation for signal processing 
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algorithms. There is also some precedent for general diagrammatic languages, as in "De­

pendence Graphs and Compiler Optimization" [17]. None of these diagrammatic languages 

has appealed to a large programming community - these languages have only been used in 

the small groups in which they were developed. A diagrammatic representation has greater 

difficulty denoting constructs such as conditional and loop expressions than a textual lan­

guage. For signal processing applications diagrammatic languages are natural because the 

algorithms themselves are often described by diagrams; these diagrams are often easier to 

understand than the corresponding mathematical expressions. Consequently, signal pro­

cessing has a head start as far as defining diagrammatic languages, since the diagrammatic 

representation has been evolving for many years. 

BDC [35] lacks a type system, so many optimizations cannot be performed, although 

current research will probably alleviate this problem. In a computation intensive applica­

tion such as signal processing, this inability to optimize is devastating. Terepin describes 

a graphical notation for data flow in [26], but the notation essentially describes register 

transfers in a special purpose processor, so the notation achieves neither abstractness nor 

machine-independence. 

1.2 Group 21 

This thesis is a result of work done in Group 21, Machine Intelligence Technology, at Lincoln 

Laboratory. One project in Group 21 characterizes acoustic signals of aircraft using signal 

processing algorithms. Other projects in Group 21 extract features from images acquired 

by video, laser-radar and doppler-laser sensors in order to identify the objects in the scene. 

Currently, Group 21's applications are implemented using Common-Lisp or C. In the 

SKETCH [33] system, a signal processing environment developed by Group 21, applications 

are programmed in a combination of LISP and C. LISP is used to provide a high-level 

programming interface, while C is used to implement procedures that need high efficiency. 

Thus C is used to write most of the actual image processing procedures. 

Group 21 is developing a parallel processor, the MX-1 [31], to aid the research in image 

processing and understanding. One of the goals of this project is to enable the researchers 

to write the image processing algorithms in a high-level language, Dotlisp [18]. By running 
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a variant of Lisp on a parallel processor, Group 21 hopes to reduce the run time of signal 

processing experiments enough that complete applications may be written in the high-level 

language. 

1.3 Research Goal 

The goal of this thesis is to develop a high-level graphical and textual language for signal 

processing applications. This language should be powerful enough to express any signal 

processing algorithm efficiently on a general purpose parallel processor. In the future, this 

language could be generalized to handle other applications that have synchronous dataflow 

characteristics. A language such as this which takes a diagrammatic input would be a 

natural extension to a system like SKETCH which is already visually oriented. 

Although this language is very abstract, it is possible to generate efficient machine code 

because the compiler will be operating in a limited application domain. Signal processing 

algorithms have many common characteristics that can be encoded into the abstractions of 

this language. One of these characteristics is the inherent parallelism in signal processing 

applications; often the same computation is repeated independently on each point of an 

image or a discrete-time signal. Another characteristic is that different algorithms often need 

to window or reshape data. The high-level language should allow the user to reshape the 

data as needed, without introducing any great inefficiency into the final program. Finally, 

the language needs abstractions to support the different ways of combining an arbitrary set 

of inputs into a set of outputs. 

The language proposed, the Digital Signal Processing Pictorial Language (V-PICT), 

will be incorporated into an interactive algorithm development environment. At the most 

abstract level, the user will enter algorithms as flow graphs or block diagrams. The worksta­

tion will take the explicit data and control flow information and determine implementation 

information, and then generate object code to implement the algorithm. Each graphical 

input will correspond to a regular programming language construct that will specify pre­

cisely how the data will be shaped and how the program will operate on the data. The 

compiler will use this information to generate code for the target machine, thus being able 

to optimize enough to produce code comparable to that written by a person. Most of these 
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optimizations will be common to all the target machines, so that a majority of the compiler 

can be common to all machines; only the very back-end of the compiler will have to be 

specifically designed for each target machine. Once the algorithm as been implemented, 

one should be able to compile it for many different machines, including special purpose 

DSP processors. If desired, one should be able to generate specifications for integrated 

circuits from the 1J-PICT definitions. 1J-PICT will be abstract enough to be used at the 

algorithm development stage, while being able to generate efficient code for machines with 

less friendly user interfaces, such as special purpose DSP processors. 

1.4 Organization 

This chapter provided a brief history of the work that has been done on special purpose high­

level languages for signal processing. The next chapter will describe the requirements that 

a signal processing high-level language (HLL) must satisfy, and the third chapter will define 

the DSP language, V-PICT, which satisfies these requirements. Chapter Four describes a 

compiler for 1J-PICT, to show the feasibility of implementing an HLL for signal processing. 

Concluding remarks are made in Chapter Five. Some representative 1J-PICT programming 

examples are shown in Appendix A. 
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Chapter 2 

Signal Processing Language 

Criteria 

2.1 Deriving Required Abstractions 

A useful signal processing language must clearly and concisely support the constructs and 

algorithms used in signal processing applications. In order to determine the necessary ab­

stractions, a study was made of the applications described in "Silhouette Feature Extraction 

in Laser-Radar Range Imagery" [29,34], parts one and two, written by Group 21. Other 

researchers have also studied signal processing applications to determine the basis needed 

in a high-level language for signal processing; two of these studies are presented in "Signal 

Processing Primitives for LISP" [32] and "Image Algebra Techniques for Parallel Image 

Processing" [24]. 

2.1.1 Silhouette Feature Extraction 

One of the applications studied to gather the required abstractions for signal processing is 

described in "Silhouette Feature Extraction in Laser-Radar Range Imagery: II. Intensity­

Cued Region-Based Approach" [34]. This application is a system for the analysis of object 

silhouettes extracted from laser-radar range and intensity images. The interesting portion 

of this application is the actual extraction of regions from range and intensity images. This 

application runs on the SKETCH [33] system, and was written in a mixture of C and Lisp. 

17 



The images used in this application are obtained by laser radar: a CO2 infrared laser 

that creates pixel-registered intensity and range images. The range images have six meter 

accuracy; both types of images are 128 x 60 pixels, but are scaled before processing to 

128 x 128 pixels, because the pixel height of the laser radar images is twice that of the pixel 

width. The goal in this application is to determine regions in the image that represent the 

silhouette of the object to be identified. The final result is a set of polygon descriptions 

that approximate the boundaries of these regions. 

The first step is to clean the image to remove errors: to detect and replace missing values 

in the range image. The range image is cleaned using the mathematical morphology [25] 

algorithm described in the paper "Silhouette Understanding System" [30]. Mathematical 

morphology is a non-linear method for operating on signals that preserves local features 

in the signals. One may remove high-frequency noise from a signal by low-pass filtering 

the signal using the convolution operation, but low-pass filtering blurs the edges of sharp 

features in the signal - mathematical morphology provides a methodology for filling holes 

while minimally altering outlines. Missing values (MV's) are either dropouts or outliers. 

A dropout is a pixel that has a value between O and 4 (where pixels are 8-bit unsigned 

integers), corresponding to points within 4 range units of the sensor. An outlier is a range 

pixel p of value r that has no neighboring pixel of value r' in the 5 x 5 region (ignoring 

dropouts) surrounding p such that Ir - r'I < 10. The detection and replacement of MV's 

must preserve the continuity of the image. These MV's are removed by performing a 2-

step shrink, where any MV which has at least L non-missing 3 x 3 neighbors is replaced 

by the average of a pair of points in that neighborhood. Then to counteract the extra 

replacement of MV's from the image background, a 3-step expand is performed, where any 

non-missing pixel that has at least L missing M x M neighbors is converted back to an 

MV. The shrink-expand process is repeated until the image stabilizes ( or until a maximum 

number of iterations has been performed). 

Next, range segments, corresponding to the range values of different objects in the image, 

are determined from the intensity image and the cleaned range image. Intensity-cued range 

segmentation is performed as follows. A histogram of the intensity-range image pair is 

computed by forming an array B such that each point B[i,r] is 1 if and only if there is a 

pixel in the range image with value r whose corresponding intensity image pixel has value 

i. N range segments are defined by taking the top n range values that have a value of 1 in 
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the intensity-range histogram B, starting with the highest intensity value. These n range 

values denote n range segments. Note that these segments of the image are not necessarily 

contiguous; there may be holes in the segment, or the pixels may be sparsely distributed 

through the segment. 

One of the range segments, or regions, is chosen to be the target region. The least-squares 

line approximating the major axis of the segment is computed for each range segment. The 

landscape in an image usually consists of narrow horizontal bands; any region that has large 

vertical spread is probably an object, not background, so the segment with the greatest 

standard deviation of the range points from the segment's major axis is considered to be 

the target range. The target region is defined to be the set of all range pixels that are 

within some error value of the target range. 

The binary target image is formed from the range image by setting all pixels in the 

target interval to true and setting all other pixels to false. The target image is cleaned 

using binary mathematical morphology. The effects of this cleaning are to fill the holes in 

the target region, to reconnect appendages to the body of the target region and to remove 

ground clutter from the target region. 

Finally, this cleaned binary image is passed on to the rest of the system for polygonal 

approximation of the region boundaries, feature extraction from the polygons, and then 

object identification. 

2.2 Modern Language Criteria 

The signal processing language must satisfy the same criteria as any other modern high-level 

languages. One of the few studies which explicitly mentions this is The Representation of 

Discrete-Time Signals and Systems in Programs [14]. 

The details of the program should not obscure the algorithm being implemented. This 

is the principle of perspecuity, which is realized through procedural and data abstraction. 

2.2.1 Procedural Abstraction 

The language must support procedural abstraction so that programs may be developed 

hierarchically. Whether the programmer prefers top-down or bottom-up development is 
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unimportant, the language should support either methodology. The programmer should 

be able to compile each procedure individually. When a procedure is defined to be substi­

tutable, the compiler should be able to recompile all procedures which call this procedure 

whenever it is recompiled. 

2.2.2 Data Abstraction 

The language must support data abstraction also. Data representation information should 

be hidden by the language, while methods are provided for the creation and manipulation 

of the data structures. 

In the case of signals, there should be a uniform reference mechanism for access to 

signal elements. This mechanism should gracefully extend to multidimensional signals, so 

that signal processing algorithms that do not depend on the dimensionality of the signal 

may be implemented to operate on signals of any rank. 

Signal data structures should be immutable, because the abstractions they model are 

immutable. There should be no history-dependent method for testing the equality of two 

signals. Signals are equal if and only if they have the same domains and the elements of 

the signals are equal. 

The object-oriented paradigm would allow user-definition of data types that satisfy 

these criteria. For example the sine curves could be a class of signal, described by three 

parameters: length, frequency, and phase. One then instantiates a signal by specifying the 

signal class and the appropriate parameters. Other parameters that could be specified are 

whether to compute the whole signal, to delay evaluation of individual points, or to delay 

evaluation of the whole signal. 

V-PICT supports the signal abstraction, but there are currently no facilities for user 

definition of new object types. A more robust type system is needed for that approach, so 

that efficient code may be generated. 

2.2.3 Type System 

The signal processing language should be strongly typed, so that the compiler can optimize 

the object code generated from the diagrammatic algorithm description. Strong typing 
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also prevents the programmer from getting type errors at run time. With strong typing 

these errors can be rectified at compile time. The compiler can mark these errors at the 

point where they occur, rather than having error messages pop up at run time far from the 

location of the actual mistake. This also prevents the use of programs that have type errors 

in untested execution paths through the program. 

However, putting type declarations throughout the diagram is not only unpleasant but 

unnecessary. By including a type-inference system [20] one can allow the compiler to infer 

the types of intermediate results from the types of the inputs and outputs of a procedure. 

The algorithm developer only has to declare the types of the procedure's in puts and outputs 

when defining the procedure. Moreover, the language should support polymorphism as 

described in [4,5], so that the programmer can develop a single procedure that will work on 

objects of many types. 

2.3 Language Requirements for Signal Processing 

2.3.1 Diagrammatic Representation 

A graphical language is well suited for signal processing because one thinks of each function 

operating on a stream of data and returning another stream. This flow of streams, or signals, 

can be denoted by arcs in the graph, while nodes denote the functions being applied to the 

streams. Nate that there is no implication of precedence in signals; the stream of data 

representing a signal must be thought of as pairs of indices and data values that may 

be generated in an arbitrary order. One should be able to draw diagrammatic programs 

that closely mimic the flow graphs, such as those in Digital Signal Processing [23], used to 

describe signal processing algorithms. 

The semantics of the language can be dataftow-like, as in Id-Nouveau [22]. Dataflow is 

a functional language paradigm that permits fine-grained parallelism. The smallest unit of 

computation is a dataflow instruction. Each procedure is composed of a graph of dataflow 

instructions wired together. Computation proceeds as data values flow through the graph 

on tokens. Dataflow instructions are strict, no instruction may produce an output without 

having values for all of its inputs (see also Section 2.4.1). An instruction is said to be 

triggered when all of its inputs have tokens. At any particular time, all triggered instructions 
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may fire, or perform their computation, and generate new data tokens. Thus a procedure's 

available parallelism at any point in the computation is equal to the number of instructions 

that are triggered at that time. 

X: Signal Y: Signal 

Scale -1 
z 

a : Integer 

Figure 2-1: A first order IIR filter section. 

Figure 2-1 shows the flow graph for an infinite impulse response (IIR) filter; each arc 

denotes the path of a signal or data value. If all arcs of a graph were drawn the same 

way, then it would be somewhat ambiguous which arcs represent signals and which arcs 

represent scalars. If the arc labeled a, representing the coefficient for the delayed feedback, 

were drawn the same as the arc for the output signal, Y, then there would be confusion as 

to the type of data traveling along each arc. To avoid confusion, narrow arcs should be 

drawn to represent the path of scalar values, and wide arcs should be drawn to represent 

the path of signal values. 

2.3.2 Application Specific Optimization 

In order to generate efficient code, the compiler must be able to optimize the output code. 

The compiler should incorporate optimizations specific to signal processing applications. 

One such optimization is stream optimization, where the optimizer attempts to reduce the 
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amount of temporary storage allocation. 

2.3.3 Modeling Signals and Images 

A signal is a function that maps from a domain to a range, nn --+ n, where the domain 

usually represents time or distance, and the range represents some physical quantity that is 

being measured by imperfect and often imprecise instruments. For example, an LP record is 

the recording of an acoustic signal. It maps continuous time values to continuous amplitude 

values; when the record is played back one hears the sound that was recorded. A compact 

disc (CD) is a digital recording of a discrete-time signal formed by sampling a continuous­

time acoustical signal. One may reconstruct a continuous-time signal by low pass filtering 

the discrete-time signal. If CD's were perfect: the samples had infinite resolution and the 

recording was infinitely long, then the acoustic signal could be reproduced exactly. Sadly, 

one must take reality into account - the amplitude samples are quantized: only a finite 

number of bits of resolution are available, and the length of the recording is finite - so 

the digital recording yields only an approximation of the original sound. Fortunately, this 

approximation is better than most analog (or continuous-time, continuous-range) record­

ings, and so is still of great value. These discrete-time, or more generally discrete-domain, 

digital signals are what V-PICT was developed to model and manipulate. Both research 

and applications use these digital signals to represent sound and images. 

In this thesis, signal denotes a data type of 'D- PICT that represents digital signals. A 

signal can be one-dimensional, as in a discrete-time acoustic signal, or two-dimensional, e.g. 

an image, or more generally n-dimensional. One would like to model signals as potentially 

infinite streams of data points: an arbitrary function from a domain to a range. The word 

stream in computer science evokes notions of sequentiality, delayed evaluation, and other 

forms of procrastination, so the term will not be used here, although in a sense a 1J-PICT 

signal is isomorphic to the concept of a stream that may be infinite or self-referential. Thus 

a signal conceptualizes a function: zn --+ T, where T denotes any type. One can also think 

of a signal as an array, where the dimensions of the array represent the domain, zn, and the 

element-type of the array represents the signal's range. Although in reality the dimensions 

of an array are finite, one should not think about the actual dimensions of the signal being 

processed unless they are important to the algorithm. The Fast Fourier Transform, for 
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example, depends on the number of points in the signal being a power of two. One should 

think of the signal as infinite in extent unless the signal's boundaries are of interest. 

The fact that signals may be actually be finite in length and that one may access the 

signal elements in an arbitrary order prevents the use of a functional stream processing 

language. In a stream processing language there is a notion of precedence which implies 

an ordering of the signal element accesses and definitions. This implicit ordering is fine 

for many applications, but for algorithms which access the signal elements in an arbitrary 

order this is unacceptable. 

Mathematically, signals are immutable; one can create new signals by operating on old 

ones, but one cannot change the values of a signal once it is defined. The immutability of 

signals allows signal processing programs to be modeled in a purely functional manner, that 

is, without side-effects. The use of a functional language allows the compiler to generate 

code for parallel machines with little interaction from the user. 

2.3.4 Desired Signal Operations 

Primitive Signal Operations These operations perform signal allocation, and the defi­

nition and reference of signal elements. It is understood that most users of V-PICT 

will use higher-order operators to create and manipulate signals. 

Pointwise Operations The pointwise operations include the standard unary and binary 

arithmetic operators such as addition and subtraction. Addition of two signals, A and 

B, means the creation of a new signal, whose domain is the intersection of the domains 

of the signals A and B, and whose elements are the sums of the corresponding elements 

of A and B. Other pointwise operations allow the programmer to create a new signal 

by mapping a function over the elements of a signal. 

Signal Combination Operations The union operator takes two signals and produces a 

new signal by taking the union of the sets of index-value pairs of each signal. The 

intersection of the domains of the input signals should be the empty set in order for 

this operation to be well-defined. 

One will have to be able to create new signals whose domains are the intersection 

or cartesian product of the input signals' domains. The new signal elements will 
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be formed by applying some function to the data value and index of each point in 

the domain of the newly defined domain. One can actually implement the pointwise 

operations mentioned above by applying the appropriate arithmetic operation to the 

data values of each input signal over the intersection of the signals' domains. 

Reshape Operations Often signal processing algorithms require the signal to be reshaped 

before being operated on by a procedure. For example when computing the Fast­

Fourier Transform (FFT) [23] of a signal in a straightforward recursive implementation 

of the FFT, one must perform the FFT on the even-numbered data values and also 

on the odd-numbered data-values, and then combine these two smaller FFT's into 

the final FFT. Taking only the even-numbered points of a signal is an example of 

reshaping the signal. Other reshaping operators take the rows or columns of a two­

dimensional signal, shift the origin of a signal or up-sample or down-sample a signal 

by some amount. 

Reduction Operations Often one wants to generate a single value from a signal, such 

as the sum, product, maximum or minimum of the values of a signal. Analogous 

operations for binary signals are Some, where true is returned if any of the values of 

the signal is true, and Every, where true is returned only if every value of the signal 

is true. 

Another type of reduction operator is an accumulation. In the case of the intensity­

range histogram defined in the application above, the value returned from the opera­

tion is actually an array of values. In V-PICT a value of this sort is an accumulator. 

An accumulator has dimensions, d, an initial value, iv, and an accumulator function, 

f. When an accumulator is instantiated, each of its points has the value iv. Any 

subsequent write of a value w to location j of an accumulator A causes the location j 

to take the value f(A[j] ,w). 

2.4 The Signal Abstraction 

The high-level signal processing language must support operations on signals efficiently. 

The language must have a datatype that embodies the signal abstraction and on which 

efficient operations may be performed. 
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The language must allow allow support for more complex issues that deal with the 

finiteness ofreal computers - what to do with missing values, arithmetic overflows ( truncate 

them, make missing-value, or signal an error), and how to handle the boundaries during 

operations on arrays. Also, the language needs to be able to handle extremely large signals 

- ones that will not not fit in memory all at once - caching parts of the signals will be 

necessary. 

2.4.1 The Signal Datatype 

A signal is a non-strict, immutable datatype consisting of at least a domain and a set of 

pairs of element values and their indices. Signal descriptors should contain the following 

information about signals: 

• Element Type The type of the signal's elements. 

• Dimensions The actual boundaries of the domain of the signal. 

• Rank The number of dimensions of the domain of the signal. A signal's rank may be 

deduced from it's dimensions. 

• Default-Value If a signal has a default value, then it has an infinite domain. 

• Sampling Information This would contain the sampling rate of the signal. 

Strictness A function f is strict in its ith argument if f always diverges, or yields bottom 

(..l), when its ith argument diverges. For example, f is strict in its first argument if 

and only if 

J(..i,v) ⇒ ..l 

for all v. A function is said to be strict when it is strict in all of its arguments. 

An intuitive notion of strictness is that a function is strict if and only if it always 

requires the value of each its arguments (see also "Strictness Analysis - A Practical 

Approach" [6]). 

Using this in tui ti ve notion of strictness, signals are non-strict because one does not al ways 

need every signal element in order to instantiate the signal. Let the function ID _signal be 
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the constructor of one-dimensional signals. lD...,c;ignal lS of type 

((pair(Z x Z) x T x • • • x T)-+sig(T,1)); it takes a domain (an upper and lower bound) 

and n signal elements, and returns a one-dimensional signal with element-type T. If the 

domain diverges, then signal diverges: 

Therefore, signal is strict in its first argument. However, signal will return a valid signal 

if the domain is defined even if some or all of the elements are undefined: 

signal((l, n ), v1 , ... l_, ... vn) = a-signal. 

Therefore, signal is non-strict in the rest of its arguments. The signal data structure is 

strict in its domain but non-strict in its elements, so signals are non-strict data structures. 

One can operate on a partially defined signal: 

fetch(signal((l,n),v1,••·vn),i) = { J_ 

Vi 

if Vi ⇒ J_ 

otherwise 

Although fetch is strict in both its arguments, sand i, nearly all of the elements of s could 

be undefined and fetch would still return a value; the only requirement is that s, i and 

the ith element of s are all defined. The non-strict signal data structure is similar to the 

non-strict cons described in Dataftow Architectures [2]. 

Although signals are non-strict, the implementation does not have to be lazy. An eager 

evaluator computes all expressions as soon as the expression's subexpressions have been 

evaluated; a lazy evaluator does not perform a computation unless its result is needed by 

another expression. Lazy evaluation is also described as demand-driven, as opposed to data­

driven, or eager evaluation. Even an efficient lazy implementation [11] is less efficient than 

an eager one because a lazy implementation requires a closure to be stored in each array 

slot. When the value of a particular slot of a lazy array is required, then that slot's closure is 

evaluated, and the result of the evaluation is returned as the slot's value. If memoization [1] 

is being performed, then the closure in the slot is replaced by the result; consequently, the 

evaluation of a slot's value need only be performed once. In signal processing, one usually 

operates on the complete signal; there is no unnecessary computation to be avoided in 

computing a signal, so there is no motivation for a lazy implementation. One should use 
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iterative expressions to compute the signal contents and let resource management techniques 

such as Loop Bounding [3] control the amount of available parallelism. If memory cannot 

hold the complete signal or if there is a high probability that a significant portion of the 

signal will never be referenced, then a partially lazy implementation would be valuable. 

Signal Domains 

The domain of a signal is the index space over which the elements of the signal are defined. 

A signal is essentially a function from the domain to the value space. A signal Y( t) can be 

represented by the set of pairs: 

{(t, Y(t)) I \It E Domain}. 

For example, in Figure 2-2, the signal Y(t) is composed of the pairs: 

II\ 

y 
' 

I - --0 1 2 3 4 5 6 7 8 t 

y 
range 

Figure 2-2: An Example Signal 
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index y 

0 10 

1 9 

2 5 

3 4 

4 5 

5 8 

6 12 

7 6 

8 3 

The signal's domain can be made infinite by specifying what value to return when the 

specified index is outside of the signals explicit domain. The signal Y's explicit domain is 

{iliEZ A 0~i~8} 

and its implicit domain is all other integers, because it has a default value of 0. 

A continuous-domain signal can have vectors of real numbers ( elements of RN) as its 

indices; however, D-PICT constrains the indices of signals to be vectors of integers ( ele­

ments of zN). A one-dimensional signal will have integers as its indices because vectors of 

length one, the degenerate case for vectors, are just scalar objects of the element type of 

the vector. 

Signal Implementation 

Signals are conceptually equivalent to a set of pairs, where each pair consists of an element 

value (from the signal range) and an index (from the signal domain). However, to implement 

the algorithms as efficiently as possible, the information will be stored in a different form. 

A useful representation for a signal is: 

deftype signal (rank, element-type) = 
struct{ 

bounds 
origin 
step 
data 

tuple( vector(integer), vector(integer)), 
vector(integer), 
vector(integer), 
array( rank, element-type), 

29 



default-value: element-type 
} 

where bounds are the virtual boundaries of the signal, step specifies that only every stepth 

element of the array is considered, and origin is where point O of the image maps onto 

the array. A signal is an example of the use of dependent types (for a discussion of 

types see "On Understanding Types, Data Abstraction and Polymorphism" [5]). The num­

ber of elements in the vector(integer) depends on the rank of the signal, the type 

of default-value depends on the element-type of the signal, and the type of the data 

array depends on both the signal rank and element-type. Using this representation, a 

two-dimensional signal: 

signal[x,y] 

translates to: 

If ((signal.lower-x <= x) and (x <= signal.upper-x) 
and 

(signal.lower-y <= y) and (y <= signal.upper-y)) 
Then (signal.data)[ (x *signal.step-size+ signal.origin-x), 

(y *signal.step-size+ signal.origin-y)] 
Else signal.default-value; 

This representation allow efficient reshaping of signals. One creates a new signal de­

scriptor in which the origin is shifted in order to perform a translation; in which the step 

size is increased, to perform down-sampling; or in which the bounds are changed, to window 

the signal. No copying of the data array needs to be done for these operations. 

2.4.2 Primitive Signal Operations 

General signal operations must be built up from primitive signal operations. The primitive 

operations, Empty-Signal, Signal-Ref, Signal-Set, Signal-Bounds and Signal-Default 

allow the creation and manipulation of signal descriptors. 

The operation Empty-Signal ( (1, h) , d ) creates a signal with bounds (1, h), default­

value d, and rank r = length( l). The signal's domain is the set of all vectors of length 

r where each element, ei, of the vectors in the domain are in the range li S ei S hi. 
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The default value of the signal is the value that the signal takes outside of the explicitly 

specified domain. If d is specified, then the signal has an infinite domain. The values of 

the signal inside the domain must be defined before they can be referenced by the program. 

Any references to unspecified values of the signal will be deferred until those values are 

specified. The operation Signal-Bounds returns the domain of the signal, and the operation 

Signal-Default returns the default value of the signal. 

The operation Signal-Ref(s, i) returns the value of signal sat index i. If the value 

has not yet been written, the Signal-Ref instruction is deferred until the value is written. 

If the the index i is outside the explicit domain of the signal, and the signal has a default 

value, then that value is returned, otherwise an error is signalled. Of course, if the value is 

never written, then the Signal-Ref is deferred forever (and the expression yields _i). 

The operation Signal-Set(s, i, v) sets the value of signals at index i to the value 

v. If the index is outside the explicit domain of the signal, or if the value of the signal at 

index i has already been defined, then an error is signalled. 

2.4.3 Composite Signal Operations 

In the signal processing language, one must be able to specify operations on signals. Proce­

dures that operate on signals as a whole resemble database operations. These operations, 

as described in Algebra and Databases [19], are 

• Selection 

• Union 

• Join 

• Projection 

One may think of complex signal operations as applying a database transformation to the 

signal domains and specifying a function to combine the signal elements at each point in 

the resulting domain in order to create a new signal or scalar value. 
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Union 

The union operation takes two signals and creates a new signal by taking the union of the 

sets of pairs of each signal. 

where s1 = {(i,d(i)) Ii E Ii} and s2 = {(i,d(i)) Ii E I2}, defines the new signal s3, such 

that s 3 = {(i,d(i)) Ii E (Ii U [z)}. The input signals must have disjoint explicit domains in 

order for the union to be well-defined. Also, if both signals have default values, then they 

must have the same default value or an error is signalled. 

Selection 

The selection operation takes a set of indices and returns the index-value pairs from the 

signal such that each pair returned has one of the specified indices. If the set of indices has 

cardinality one, then selection is the signal-ref operation. 

where s1 = { (i, d( i))} and p 

{(i,d(i)) I p(i)}. 

Join 

select(s1,P) ⇒ s2 

>-.index.boolean, produces the signal s2 such that s2 

The join database operation (inner-join) provides an extremely flexible method for signal 

combination. The join operation produces a new signal whose domain is the specified inner­

join of the input signals' domains and whose element values are computed by applying a 

function to the n-tuples of the input signals' element values at each point in the new 

domain. The general join operation takes a combining function and n signals and domain 

specifications. Each domain specification is a list of d integers, where d is the rank of the 

associated signal's domain. The integer j; in the ith position of the domain specification 

indicates to map the ith dimension of the input signal's domain to the jth dimension of 

the join operation's domain. If the domains of more than one signal are mapped to the 

same dimension of the join operation's domain, then that dimension of the join's domain is 

defined to be the intersection of the specified dimensions of the input signals' domains. The 
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result of the join is a signal whose domain is equal to the domain of the inner-join operation 

performed, and whose elements are computed by applying the combining function to the 

appropriate elements of the input signals. Consider the signals X and Y shown in the 

following tables: 

index X 

(1,1) a index y 

(1,2) b (2,1) e 

(2,1) C (2,2) f 

(2,2) d 

The domain of signal Xis the set {(l,1),(1,2),(2,l),(2,2)}, and the domain of Y is the 

set {(2, 1), (2, 2)}. If all of the input signals have infinite implicit domains, then the join 

domain should be the smallest n-cube that encloses the explicit domain of all of the input 

signals. If any signal's implicit domain is finite, then the join operation's domain is bounded 

by that signal's explicit domain. 

If the domain specification for each signal is the same, then join computes the inter­

section of the domains of the input signals. The expression Join(foo,X,(0,1),Y,(0,l)) 

represents the intersection of X and Y using the function f oo to combine the elements of 

the two signals. The resulting signal has the same rank as the input signals. The following 

table contains the signal resulting from this intersection. 

index XUY 

(2,1) foo( c,e) 

(2,2) foo( d,f) 

If none of the integers in the input signals' domain specifications are the same, then 

the join operation computes the cartesian product of the input signals' domains. The 

expression Join(Joo,X,(0,1),Y,(2,3)) denotes a cartesian product of the signals X and Y 

using the function Joo to combine the elements of the signals. The resulting signal is of 

rank four and is shown in the following table. 
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index XxY 

(1,1,2,1) foo(a,e) 

(1,1,2,2) foo(a,f) 

(1,2,2,1) foo(b,e) 

(1,2,2,2) foo(b,f) 

(2,1,2,1) foo( c,e) 

(2,1,2,2) foo( c,f) 

(2,2,2,1) foo( d,e) 

(2,2,2,2) foo( d,f) 

Finally, the join operator allows more complicated combination of signals that are neither 

the intersection nor the cartesian product of the input signals' domains, 

e.g. J oin(foo, X, (1, 2), Y, (0, 1)): 

index Join(!, X, (1, 2), Y, (0, 1)) 

(2,1,1) foo(a,e) 

(2,1,2) foo(b,e) 

(2,2,1) foo( c,f) 

(2,2,2) foo( d,f) 

Of course, finding an application for this feature may be difficult, but it is comforting to 

know that the more useful operations, intersection and cartesian-product, are based on 

semantically sound primitives. 

Projection 

The projection operation maps one space onto another, reducing the rank of the input space. 

A useful variation of the database version of this operation allows one to generate a single 

value or array of values by folding together or reducing the elements of a signal. Thus, a 

project operation can compute a summation or histogram of the signal elements. D-PICT 

does not allow the general version of projection that can reduce the domain of a signal 

arbitrarily; a projection of a signal can only produce a single value: a sum or histogram. 

A histogram is a strict data structure; one cannot access any elements of a histogram until 

all writes to any element of the histogram have been completed. 
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Database operators do not allow transitive closure operations, but these operations are 

useful for higher-level signal operations such as region-labeling and polygonal-approximation. 

The altered project operation, allowing histogram computation, can be used to generate 

transitive-closures as well. The accumulator structure created would be a digraph instead 

of an array. 

2.4.4 Reshape Operations 

Although one may reshape a signal by operating on its data array, the cost in terms of new 

signal allocation is prohibitive in any real system. These operations can be performed by 

operating on the signal descriptors; in most cases this precludes the necessity to copy the 

data array of a signal's representation. 

Windowing may be performed by creating a new signal descriptor which has the same 

data array but has a new domain. The descriptor contains the new bounds, and has its 

origin defined to map from the virtual origin of the window to the actual origin of the signal 

to be windowed. 

A signal is shifted by creating a new signal descriptor whose origin has the amount of 

the shift in each dimension added to that dimension of the origin. 

Operations such as convolution map a window across a signal; creating a new signal 

structure for each window would consume tremendous resources; however, common subex­

pression elimination and fetch elimination optimizations should cause the bounds and origins 

of the windows to be present only in loop variables, not in heap storage. 

The signal data structure contains a step descriptor which is useful for down-sampling 

a signal. By specifying a step of n, where n f:- 1, one can down-sample the signal by n. 

This means that only every nth element of the signal will be present in the down-sampled 

signal. The bounds of the signal must also be adjusted accordingly. Up-sampling requires 

generating a new signal with m - 1 zeros between each element of the up-sampled signal, 

for an up-sampling ratio of m. If the signal descriptor contains sampling-rate information, 

then this information must also be adjusted when one performs up or down-sampling. 
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2.4.5 Pointwise Operations 

The standard binary operators are built on top of the join operations. A simple intersection 

of the input signal domains is performed, and the elements from each signal are combined 

with the appropriate binary operator to form the new signal. For example, signal addition 

is performed by taking the intersection of the input signals and adding the pairs of signal 

elements to compute the elements of the output signal. 

2.4.6 Reduction Operators 

The reduction operators are implemented by performing a projection on the signal, using 

the specified procedure to compute the scalar or histogram result. In this way, one may find 

the maximum value of a signal by projecting the signal, using the max function to combine 

signal elements. 
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Chapter 3 

V-PICT 

The Digital Signal Processing Pictorial Language, 'D-PICT, is a diagrammatic language for 

implementing signal processing algorithms. Diagrams, or networks, describe functions that 

implement the desired algorithms. A network is composed of operators and arcs. V-PICT 

operators behave functionally; the output of an operator depends solely on the inputs to the 

operator. The arcs in a network replace variables; each arc represents a data path. Signals 

are immutable objects represented by arrays. 

This chapter describes the operators of 'D-PICT. Each operator has an entry with the 

following form: 

Operator-name args 

0 p era tor-Signature 
Signal ♦ 

Each entry of this form describes a 'D-PICT operator whose name is Operator-name. 

In the textual representation, Operator-name would be written in the function posi­

tion, and the args would be written in the args position. In the diagrammatic repre­

sentation, one would instantiate the operator named Operator-name, and would wire 

the desired arcs to the input ports of the operator. The results of the operations are 

available at the output ports. Operator-Signature describes the type of the opera­

tor. Normally this is a procedural type expression, (t 1 X · · · X tm)----+(ti X · · · X t~), 

denoting a function. 'D-PICT procedures and operators may operate on cartesian 
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products of values, denoted by ( t1 x • • • tm), and may also return a cartesian product. 

The operator shown in this entry is El ts, which is described in Section 3.6. 

3.1 D-PICT Types 

Although V-PICT is a strongly typed language, one would like to avoid interspersing type 

declarations throughout the definition of an application. One only has to declare the type 

of a procedure once, the first time it is instantiated or edited. One never has to declare the 

types of temporary variables ( of course this only applies to the written from of V-PICT, 

because there are no intermediate variables as separate entities in the diagrammatic form). 

In order to meet this goal, 1J-PICT has a type inference system that requires only the input 

and output ports of a network to have type declarations. 1J-PICT uses a unifying type 

inference system a la Milner[20] to determine the type of each node in a network. V-PICT 

also allows polymorphic procedures; types that are unknown at compile time are denoted 

by type variables of the form * or *n. 

3.1.1 Primitive Types 

Void 

The void type represents an undefined value, and is denoted by l... Void is not a value that 

one can use in a program; it represents the value of a signal element before a legal value 

has been stored. Void also represents the type of an expression that returns no value. 

Numbers 

1J-PICT has integers, floats, and numbers, which may be either integers or floating point 

numbers. 

6847: Z 

6.341 : F 

% An Integer 

% A Float 

Amplitude : N % Amplitude may be either an Integer or a Float. 
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Booleans 

There are two boolean values: 

Characters 

Strings 

Symbols 

true: B 

false : B % Boolean literals. 

Condition : B % Condition is a Boolean variable. 

\1: Char % A Character 

Letter : Char % Letter is a Character variable. 

"Signal Processing" 

Name: S 

S % A String 

% Name is a String. 

All symbols have type "symbol" and are written as quoted identifiers. 

3.1.2 Composite Types 

V-PICT's composite types are parameterized over all the V-PICT types. These are the 

tuple, procedure, signal, vector and array types. 

Tuples 

Tuples are heterogeneous conglomerations of objects. The tuple type is represented by 

the expression Tuple ( * 1 x ... *n) . Tuples are strict immutable objects. A tuple lit­

eral is written as (a,b,c). Tuples are distinct from the cartesian products that V-PICT 

procedures take as inputs and return as outputs. 

39 



Procedures 

The types of procedures are represented by t0 -+t1 for some argument type to and result 

type t 1 . Note that both to and t 1 may be cartesian products, so that the procedure takes 

more than one argument or returns more than one value. 

not B-+B % Function from booleans to booleans. 

+ · N X N-+N % Binary arithmetic operator. 

Index Type 

An index, index(rank), denotes either an integer, for a one-dimensional signal, or a vector 

of integers, for a multiple-dimensional signal. This type allows dimensional extensibility: 

a procedure that does not depend on the rank of the signals on which it operates is not 

constrained by the type of the indices. 

index= z I tuple(ZxZ) I tuple(zxzxz) I•·· 

1 : index ( 1) % A one-dimensional index. 

(2, 4) : index(2) % A two-dimensional index. 

The type index(!) is equivalent to the integer type, and the type index(2) 1s equiv­

alent to the type of a 2-tuple of integers: tuple(Z x Z), and index(3) is equivalent to 

tuple (Z x Z x Z), and so on. 

Signals 

The signal datatype was motivated by the goals of 1J-PICT. The language was designed 

to manipulate signals, and so this type must be very adaptable. Signal types have two 

parameters: element-type and rank, and are written sig(element-type, rank). The 

element-type is the type of the data elements of the signal. The rank denotes the number 

of dimensions of the signal; an acoustic signal has rank one, and an image has rank two. 

The indices of a signal are of type index(rank) (either integers or tuples of integers). The 

bounds of a signal consists of a lower bound and an upper bound. The lower bound is an 

index defining the lower left corner of the n-dimensional domain of the signal. The upper 
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bound defines the upper right corner of the signal domain. If the signal is one-dimensional, 

then the bounds will be a tuple of two integers. The rank and element-type, but not the 

actual domain, of a signal must be specified at compile time. 

speech : sig( N, 1) % A speech signal is one-dimensional. 

image : sig( N, 2) % An image is a two-dimensional signal. 

Signals of different rank are distinct types; for example, speech and image are of different 

types because speech is one-dimensional and image is two-dimensional. 

D-PICT signals are immutable structures that represent discrete-domain signals. A 

signal has three slots: data, bounds and default. Data is an array that holds the element­

values of the signal. Bounds describes the domain of the array. Bounds is a pair of indices 

representing opposite corners of the domain. Default is the signal's default value; if the 

signal has a default value, then its implicit domain is infinite, but its explicit domain is still 

described by Bounds. 

Signals are non-strict data-structures, in that one can return a signal value that does not 

have all of its elements determined. In order to maintain the correctness of the computation, 

one must not be able to access a signal element before it has been defined. Therefore D­

PICT will use an array construct similar to ID I-Structures [22], where the array can be 

returned as soon as it is allocated, but any read on an array element is deferred until a write 

has been performed on that element. I-Structures are immutable; each location can only 

be written once. I-Structure semantics guarantee that no matter when a read is performed, 

the correct value will be returned, and the non-strictness of the data structure allows more 

space-efficient procedures to be written than with strict, immutable (purely functional) data 

structures. 

3.1.3 Vectors and Arrays 

D-PICT has vectors and arrays that resemble Lisp vectors and arrays. These are declared 

with vector(element-type) or array(element-type, rank). A vector is type-equivalent 

to a one-dimensional signal, and an array of rank n is type-equivalent to an n-dimensional 

signal, assuming that the element-types of each are also type-equivalent. 
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3.2 Type Declarations 

These wertiou a.re illclladed ht older to give a pictorial 1ep1----- for the type of aa 

arc la a aetwork. Tlaey do aot perform a.IQ" operulee ••1* •-•· Oaly th.e ua fmm 

a 'D-'PICT network'• iapa.t ,_. &ad to tile ub.nk'- Olltpld ,-. need to be aaaotefied 

with type declan.tiou; tile type infelenctt mo&lule d. dt.e ICGII .... wD1 determine tile type 

of all oUter arai. 

Each of the type decJaratiou ia IAOW1l ia tJae fuBowiag taWe. 



mteger float 

z F 

I I 
number boolean 

N B 

I I 
char stnng 

Char String 

I I 
symbol 1stuple 

Sy Tuple(*l,*2) 

I I 
proc signal 

*->* Sig(*,*l) 

I I 
vector i:LlTi:LY 

I 
V(*) Array(*,* 1) 

I 

There is no void type declaration because no arc may have type void. 

The tuple declaration takes n parameters t1 ... tn, and declares the type of its input 

and output to be tuple( t1, • • • tn). A tuple is an immutable structure with unnamed 

slots. It is similar to a vector, being implemented as an array, but a tuple does not have to 

be homogeneous; the type of each slot may be different. 

A proc declaration takes two parameters, argument type and return-type. 

The signal declaration takes two parameters, element-type and rank, and declares that 
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the value it receives is a signal with that element-type and rank. 

The array declaration takes two parameters, element-type and rank, and declares that 

the value it receives is an array with that element-type and rank. The compiler currently 

does not handle operations on arrays. 

The vector declaration takes one parameter, element-type, and declares that the value 

it receives is a vector of that element-type. This is just a specialization of the Array 

declaration; a vector's rank is always one. 

3.3 Primitive Operators 

3.3.1 Scalars 

Scalars may be numbers, symbols, booleans, characters, or strings. They are treated as 

immutable objects by V-PICT. 

Literal l 

typeof(l) 
~· Literal 

Literal is really a schema for introducing literal values into a network. The particular 

literal shown is for the integer O; the value of any literal will be displayed above the 

body of the operator. The value produced by literal is the value 1. 

3.3.2 Tuples 

Tuple Vo··· v(n-l) 

*o X · · · X *(n-1)--+tuple(*o X · · · X *(n-i)) V-1·} ♦ Tuple 
V-0 

Tuple 1s a data structure constructor: given n elements of type *o, ... , *(n-l); it 
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produces a tuple whose components are of type *o, ... , *(n-I)· Tuple creates a tuple 

of length n containing values Vo,··· v(n-l)· 

Tuple-Fetch t i 

tuple( *1 X · · · X *n ) X Z-+*i Tuple ♦ % ♦ Value 

0 

Tuple-Fetch returns the ith element of the tuple t. The number at the lower-left 

corner of the operator denotes which element of the tuple is being fetched. 

Untuple t 

tuple(*o X · · · X *(n-1))--+*o X · · · X *(n-1) {♦ V-1 
Tuple ♦ 

V-0 

Untuple takes a tuple t and returns each element oft on a separate port. 

3 .4 The Generic Opera tors 

The basic arithmetic operators are generic; they can be applied to numbers, signals of 

numbers or tuples of numbers. They are actually schema that expand into the code to 

perform the correct operations. Each operator is defined by a function f:(T1 X T2-T3 ). If 

the operation is applied to arguments of type T1 and T2, then the code to call the function 

f is generated. 

One may map a function f:((T1 X T2)-T3 ) across two signals using map_signal which 

is of type ((T1 X T2----*T3) X sig(T1,n) x sig(T2,n))-sig(T3 ,n) and which maps f across the 

two input signals to produce an output signal. 

One may also map the function f across two homogeneous tuples to generate a ho­

mogeneous tuple. Let n-tuple(T) denote a tuple of length n whose elements are all of 
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II Code generated: I Argument types: 

(fa b) : T3 a: T1, b: T2 
(map_signal fa b) : sig(T3,n) a: sig(T1,n), b: sig(T2,n) 
(map_n_tuple fa b): n-tuple(T3) a: n-tuple(T1), b : n-tuple(T2) 

Table 3.1: Instantiation of Generic Operators 

type T. Then the function map_n_tuple : ((T1 x T2-+T3 ) x n-Tuple(T1) X n-Tuple(T2)) 

-+n-Tuple(T3), where n is the length of the tuples, generates the new homogeneous tuple 

by mapping f across the input tuples. 

A generic use of function f:(T1 x T2 -+T3 ) will be instantiated by the compiler as follows: 

The generic operators in this section are instantiated as described in Table 3.1. The generic 

operator descriptions will therefore talk only about the function f which describes the 

operator's operation; the signature, or type, of these operators is the signature of the 

function J. The unary.lllap...signal and unaryJ11ap_n_tuple are used to implement the 

unary generic operators in a fashion similar to that of the binary generic operators. 

3.4.1 The Unary Operators 

- a 

Negate performs arithmetic negation. 

-, a 

Not performs boolean negation. 
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3.4.2 The Binary Operators 

Arithmetic Operators a b 

NXN----+N B,re :0 C 

Exp 

Each of the binary arithmetic operators has the same signature. The operator shown 

is exp, which raises a to the bth power. For each of these operators, a is the first 

operand, and b is the second. The other arithmetic operators: addition, subtraction, 

multiplication, and division, are shown in the following table. 

ad.ct sub 

·~0 + C 
B ♦ 

A~0 ♦ C 
B 

mul div 

·~0 X C s• A~0 / C 
B ♦ 
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Relational Operators a b 

NXN--+B A ♦0 
- C 

B ♦ 

The relational operators take two numbers as input and yield a boolean. The relational 

operators are shown in the following table. 

"''-i ne 

A:0 - C 
B ♦ 

A:@c 
B ♦ 

lt gt 

A:0 A:0 < C > C 
B ♦ B ♦ 

le 5"' 

A:@ A:cv ~ C ~ C 
B ♦ B ♦ 

Boolean Operators a b 

BXB--+B A ♦0C 
B ♦~ 

The boolean operators perform the standard logical operations from booleans to 

booleans. The boolean operators: and and or, are shown in the following table. 

and or 

A ♦0C 
B ♦~ 

A ♦"7\. ,.\J./ C 
B 
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Minimum and Maximum ab 

A ♦0C 
B ♦\!:Y" 

Maximum returns the input that is greater in value; minimum returns the input that is 

lesser in value. 

min 

A ♦0C 
B ♦\!:Y" 

3.5 Signal Operators 

3.5.1 Primitive Signal Operators 

Empty-Signal b 

tuple(index(rank), index(rank)) -+sig(..l, rank) 

max 

A ♦0C 
B ♦\..!_Y 

Default-Value=NIL 

Empty-Signal creates an empty signal with bounds b. The Empty-Signal has a single 

parameter describing the default value of the signal. If the default value is specified, 

then the element type of the signal is the same as the type of the default value. 

Signal-Bounds s 

sig(*, rank) -+ tuple(index(rank), index(rank)) 
Sig,,& ♦ _J-4 Hoomb 

Signal-Bounds returns a tuple containing the upper and lower bounds of the explicit 

domain of signal s. 
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Signal-Ref s j 

sig(*, rank) X index(rank)-+ * Signal~ 
Value 

Index 

Signal-ref returns the value of signals at point j. If s[j] has not been written yet, 

then the read is deferred until the write occurs. If the index j is not in the explicit 

domain of s, then the default value is returned. If the signal has no default value, 

then an error is signaled. 

Signal-Set s j v 

sig(*, rank) X index(rank) X *-+_l Signal~ 
Index 

Value 

Signal-set changes the j th value of signal from _l to v. If the value was not previously 

_l then an error results, thus if the j th element of the signals had already been written, 

an error would occur. 

Signal-Default s 

sig(*, rank)-+* a 
Signal D Default 

Sdefaul t returns the default value of the signals, the value of s outside of its explicit 

domain. 
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3.5.2 Signal Domain Operators 

The following operate on the domains of a signal, without changing the signal's values. 

Translate s j 

sig(*, rank) X index( rank)-+sig(*, rank) 
Sigln ~ S~Om 

Translate takes a signal s and creates a new signal that has the same values but 

whose domain is shifted in each dimension by the corresponding element of index j. 

Reflect s a 

sig(*, rank) X index(rank)-+sig(*, rank) 
Axf~~ 

Signal ~ Reflected 

Reflect creates a new signal whose values are the same as the input signal s, but 

whose domain is the domain of s reflected over each axis whose element of the index 

a is 1. 

Up-Sample s j v 

sig(*, rank) X index(rank) X *-+sig(*, rank) 
Signal Sig Out 

Value 

Up-Sample creates a new signal from s by adding points of value v between each ele­

ment of s. Each element of index j specifies the amount to up-sample each dimension 

of s. 
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Down-Sample s j 

sig(*, rank) X index--tsig(*, rank) ?AA. 
Signal ~ SigOut 

Down-Sample creates a new signal from s by deleting points from signal s. Each 

element of index j specifies the amount to down-sample each dimension of s. 

3.6 Signal Combination Operators 

The signal operators allow one to operate on the elements or domain of a signal. For 

most signal processing algorithms, operations similar to relational database operations are 

sufficient. These operations treat signals as streams of data points, where a data point is 

an index paired with a value. In this way one can take the union of two signals, one can 

join signals, one can project signals, and one can select elements from signals. Each of these 

operations has an analogue in signal processing operations. Unlike database operations, 

there is no notion of precedence in the processing of signals. 

3.6.1 Union 

Union s1 s2 

sig(*, n) X sig(*, n)--tsig(*, n) A ♦0 U B 

B ♦ 

Union creates a new signal that is the union of the two input signals. The input signals 

must have adjacent but distinct domains. The signals must have disjoint explicit 

domains; the union of two overlapping signals is not well-defined. If the signals have 

infinite implicit domains, then the two signals must have the same default value. 

Taking the union of two signals whose domains have different rank or whose domains 

do not have a common edge is also undefined. Domain rank must be known at compile 

time, but the actual boundaries do not have to be known until run time. Union is 

analogous to concatenating signals, extended to handle multiple dimensional signals. 
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3.6.2 Join 

The database join operators: join, intersection and cartesian product, are actually rep­

resented by pairs of operators in 1J-PICT. A join operation is formed by a join-driver 

operator, a join-output operator and the portion of network enclosed by these operators. 

The driver-collapse pair can be likened to parentheses that separate a subnetwork from the 

rest of a network. The join-driver specifies the input signals on which to operate and the 

domain of the join operation to be performed. The join-output operator specifies what sort 

of object to produce as the result of the join operation: a signal, a scalar (from a projection), 

or an accumulator. The driver-collapse pair essentially maps a subnetwork over each of the 

elements of the join of the input signals and collects the values into a result. 

Join Drivers 

The five join driver operators: Join, El ts, Intersect, Cart and Over-Domain, specify the 

domain of the join operation. These operators also specify what values are injected into the 

body of the join for each iteration. 

Join a1 u1 az u2 

sig(*o, n1) X index(n1) X sig(*2, n2) X index(n2) 

-+ *o X index(n1) X *2 X index(n2) 

Domain1 =(0 1) 
Domain2=(0 1) 

C]
. 
=+ VI 

Sig! ♦ ♦ I1 

Sig2 ♦ ♦ V2 
•• 12 . . 

Join is the general join iteration driver. The vectors u1 and u2 specify how to perform 

the inner-join on the domains of the input signals as described in Section 2.4.3. For 

each point in the domain of the join, a value from each signal and an index from each 

signal are produced. 

Elts sO 

sig(*o, n)-+*o X index(n) 
Signal ♦ 

A specialization of join that drives iteration over a single input signal. For each point 
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in the explicit domain of the input signal, El ts injects a value and an index into the 

body. 

Intersect s0 s1 

sig(*o, n) X sig(*2, n)-+ *o X index( n ) X *2 (j
. 
=+ Vl 

Sigl : ♦ I 

Sig2 -♦ 
: V2 

The Intersect operator is a specialization of join. Its domain is the intersection of 

the domains of the input signals. The input signals must have the same rank. For 

each point in the intersection of the domains of the input signals, a value from each 

signal and an index will be produced. 

Cart s0 s1 

sig(*o, no) X sig(*2, n2) 

-+*o X index( no ) X *2 X index( n1 ) 

The Cart operator is another specialization of join. Its domain is the cartesian product 

of the domains of the input signals. For each point in the cartesian product of the 

domains of the input signals, a value and index from each input signal will be produced. 

Over-Domain lb ub 

index( n ) X index( n )-+ index( n ) ♦ Index 

The Over-Domain operator specifies the domain bounded by lb and ub. For each 

point in this domain, an index will be injected into the join body. This operator is 

useful for creating signals from scratch. 
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Join Outputs 

These operators: Collapse, Accumulate and Project, specify what type of object to create 

as the result of the join operation. 

Collapse v j 

* X index( rank)-sig(*, rank) Value : 
Index 

♦ Signal 

The Collapse operator produces a signal with the same domain as that of the join 

operation. Each point at index i in the output signal is defined by the value v that was 

given to the collapse operator. The current compiler only allows the direct connection 

of the index input from an index output of the loop driver. For a cartesian product 

the indices must be concatenated. A future version of the compiler should be robust 

enough to handle operations on the indices presented to the collapse operator. 

Accumulate inc index 

* X index(rank)---* sig(*, rank) 

Accum-Fun=+ 
lnitial-Value=O 

Bounds=((O 255) (0 255)) 

Increment 
. : 

Accurn •• Index : 

The accumulate operator specifies that the join operation will create an accumulator 

( or histogram) as output. This operator has the following parameters: 

Accum-Fun This parameter specifies the function with which to accumulate the 

values. This function must be associative or the accumulated result could vary 

nondeterministically. 

Initial Value This parameter specifies the initial value of each element of the accu­

mulator. 

Bounds This parameter specifies the domain of the accumulator created. 

The accumulator is a join output operator that creates a signal with dimensions bds. 

Each element of the accumulator starts with the value Initial Value. For each point 
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in the domain of the join operation, the accumulator adds inc to the element specified 

by Index using the function Accum-Fun. 

Project v Initial value=O 
Project Function=F 

V 
♦ p. 

fOJeCt 

The Project operator specifies that the join operation domain will be projected on to 

a scalar value. This operator has the parameters 

Initial Value This is the starting value, of type *0 , of the projection output. 

Fold Function This function, of type *1 x *0 -+*0 , is used to project the iteration 

values. 

The Project operator produces a single value from the values supplied by the join 

drivers, folding the values together with the function Fold-Function, starting with 

the initial value Initial-Value. 
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3.6.3 Signal Projection Operators 

The next six operators are implemented using an El ts join driver followed by a Project 

join output operator. 

Arithmetic Projections s 

sig(N, rank)-.N 
Signal ♦ ♦ Sum 

Sum returns the sum of all of the elements of the signal, Product returns the product 

of all of the signal's elements. Maximize returns the maximum signal element, and 

Minimize returns the minimum signal element. 

sum pro uct 

Signal ♦ Signal ♦ ♦ Prod 

maximize mm1m1ze 

Max ♦ Min 

Boolean Projections s 

sig(B, rank)-.B ♦ Every 

Every returns true if and only if every element of signal s is true, and Some returns 

true if any element of s is true. 

some 
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3. 7 Function Application 

AD-PICT function is described by a network. D-PICT allows hierarchical development of 

networks. The net operator defines the invocation of a D-PICT network within a network 

definition. Each net is composed of the network, the net name, and the functional type of 

the net. Networks are kept in a Net Library once they have been defined. If a net returns 

multiple values, the procedure it defines returns a tuple of values; however, one may access 

each of these values on the output ports of a net instance operator in another network's 

definition. 

Net=Net 

type specified in net library. B ♦ o +c 
A ♦ 

lnline= T 

The net operator has the parameters: 

Net Name The name of the net to be instantiated. 

Inline Specify whether or not to compile the network inline. 

The D-PICT compiler looks up net in the net library, and determines the function 

type from there. If Inline is true, then the compiler finds the net's dataflow graph 

in the net library entry, and performs in-line substitution. When an instantiation of 

the Net operator is created, the editor instantiates a Net operator with the correct 

number of input and output ports. 

Input-Port 

* )♦ Input 

The Input-Port operator represents the value of one of the net's arguments. There 

will be one of these operators in a network for each argument of the procedure repre­

sented by the network. 
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Output-Port v 

* -+..l Output ♦) 

The Output-Port operator takes as input a value to return as a result of the compu­

tation of a net. If a net contains more than one output-port, then a tuple of values 

is returned. However, each of these values may be accessed on the output ports of a 

net schema instantiated in a D-PICT network. 

Function i1 · · · Zn 

type specified in pammeter. 

The Function schema has two parameters: 

Fun The name of the function to apply. 

Function=FOO 

IN-2 ♦ 

IN-1 ♦ 

IN-0 ♦ 

OUT-1 

OUT-0 

Type The type of the procedure. The network editor determines the number of 

inputs and outputs from this parameter. 

This schema denotes the application of a Lisp function in the network. If the Id 

compiler back end is being used, then this denotes an Id function application. 

3.8 Conditional Operators 

If val pred 

T 
* X B-+* X * In 

F 

The If operator is used to implement conditional expressions. This operator must be 

paired with the complementary operator, Fi. This operator does not actually produce 
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two values; the type (* x B)--+(* x *), merely denotes that the If operator has two 

outputs; only one of these outputs will produce a value, depending on the value of the 

pred input when the operator is triggered. 

Fi true-val false-val 

* X *--+* 

This operator is used to merge the output of a conditional subnetwork. Only the value 

corresponding to the triggered arm of the conditional will be output. Similarly to the 

If operator, Fi does not take two inputs; it is triggered whenever there is a value on 

either arm of the input. Because Fi must always be paired with If its behavior will 

always be deterministic. 
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Chapter 4 

The Compiler 

The D-PICT compiler is based on the ID Compiler for the MIT Tagged-Token Data-flow Ar­

chitecture (version II), as described in [28,27]. The Data-flow Compiler Substrate (DFCS), 

upon which the ID compiler is based, allows a compiler to be composed of a set of modules, 

each of which performs some stage of the compilation. DFCS also provides abstractions for 

creating and manipulating data-flow graphs. Another of its features is support for reading 

and writing data-flow graphs on input-output streams. DFCS was an invaluable tool for 

the development of the V-PICT compiler. 

With DFCS one can define several versions of a compiler, by using different sets of 

compiler modules. Thus one can define several V-PICT compilers: one to generate Lisp 

output, one to generate Dotlisp output, and one to generate Tagged-Token Data-flow Ar­

chitecture (TTDA) machine graphs. The front end of each compiler consists of the same 

modules, but each version of the compiler uses different modules for its back-end, so that 

the desired object format is generated. When one of the compilers is invoked, DFCS sets 

up a pipeline of the desired modules, and pushes the source language through the pipeline 

to create the object code. 

Although the ID compiler was indispensable for the development of a compiler for V­

PICT, it is really a side-light. The Id compiler ties the V-PICT system to a Lisp-based 

computer. In order to make V-PICT widely available, there would have to be compilers 

available for it that are written in a more accessible language such as C. The complete 

D-PICT system should be ported to a wide variety of machines, such as UNIX machines 
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with X WINDOWS and personal computers with graphics support. 

4.1 Compiler Organization 

The D-PICT compiler is composed of several modules, which will be briefly described here. 

Net-Parser The Net-Parser module type-checks a D-PICT network and then transforms 

it into a dataflow program graph. 

Instantiate-Generic-Operators This module finds all generic dataflow graph instruc­

tions that take signals or tuples as inputs and produce signals or tuples, and replaces 

these instructions with a piece of graph that takes apart the signal or tuple inputs, 

applies the instruction to each pair of data elements, and creates a new tuple or signal 

as output. 

Collect-Loops The Collect-Loops module parses a join construct from a program graph. 

A join is composed of some join drivers that control the domain of iteration and ac­

cess the signal data elements on which to operate, and some join output operators 

that define how to collect the resulting values. This module encapsulates the join 

operation in a Map instruction. The Map instruction has explicit information which 

allows stream optimization to be performed. 

Map-to-Loops The Map-to-Loops module transforms a Map instruction into a function 

call to one of the procedures, Map_n, where n denotes the rank of the iteration space. 

The Map_n procedure takes a signal domain, a map function, and a project function, 

and applies the map function to each index in the range of bounds. Then Map_n folds 

the results using the project function. 

Call-Substitution The Call-Substitution module1 finds all calls of substitutable, or 

inlinable, procedures in the graph. If these applications have all of the required argu­

ments, then these applications are open-coded in the graph. 

Fetch-Elimination This module1 finds all references, or Tuple-Fetch instructions, to 

slots of a structure that are wired directly to the output of the Make-Tuple instruction 

1 These modules are part of the ID compiler documented in Ken Traub's thesis[27]. 
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that creates the structure. If possible these references are rewired directly to the source 

of the value that is stored in the appropriate structure slot. If all of the references to 

a structure allocation are eliminated in this manner, then dead-code-elimination 

can completely remove that structure allocation code. 

Cse-and-Hoisting This module1 performs common subexpression elimination and code­

hoisting optimizations. These two optimizations were included in a single compiler 

module because they have synergistic effects. Code hoisting attempts to move code 

out of encapsulators, such as conditional and loop expressions. Then common 

subexpression elimination may find more optimizable code, which may trigger more 

of both kinds of optimization. 

Dead-Code-Elimination This module1 eliminates all instructions whose outputs are not 

wired to any other instruction and which do not perform side-effects. Function appli­

cations may not be eliminated, because they may fill structures as a side-effect. 

Inlinable-Definitions Inlinable-Definitions1 stores in the external symbol table the 

optimized program graphs of procedures that have been declared to be substitutable. 

Constant-Propagation Constant-Propagation1 finds all instructions with constant in­

puts, creates a new constant value by applying the instruction to its inputs, and 

replaces the instruction by this value. 

Transform-Make-Tuples This module transforms Make-Tuple instructions into a form 

for which the Lisp-Assembler is able to generate synchronization. Instead of creating 

an empty tuple and then performing tuple-store instructions, the compiler uses the 

strict vector instruction, which fills a vector with values once all of the instruction's 

inputs have been computed. 

Signals-and-Triggers This module1 adds signal and trigger arcs to the program graph 

for synchronization purposes so that resource managers will know when to deallocate 

the associated activation tag. 

Lisp-Assemble This module transforms dataflow graphs into Lisp code. Dependencies 

are sorted so that values are produced before any attempt is made to use them. 

Parallelism is achieved via DotLisp. 
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Generate-Machine-Graph In this module1 the machine-independent program graph is 

transformed into a machine graph, with instructions specific to the MIT Tagged-Token 

Dataflow Architecture. 

Peephole This module1 performs peephole optimizations on the machine graph. One of 

the most important optimizations is trigger elimination, reducing the overhead of 

synchronization when it is unnecessary. 

Fan-out TTDA limits the number of inputs to which any instruction output may be wired 

to two inputs. The Fan-out module1 adds identity instructions to fan the outputs of 

overloaded instructions to all of the desired instruction inputs. 

Stream-Assembler or File-Assembler Stream-Assembler1 writes the machine graph 

to an output stream, from which it is loaded into GITA, the Graph Interpreter 

for Tagged-Token Dataflow Architecture. The File-Assembler1 writes the machine 

graph to a file in one of the Compiler Input Output Base Language (CIOBL) formats. 

4.2 Program Graph 

A dataftow graph is composed of a collection of instructions. Each instruction has an opcode 

and a given number of inputs and outputs, and can be connected to other instructions in 

the dataflow graph by directed arcs. Arcs wire the output of one instruction to the inputs 

of an arbitrary number of instructions. Arcs can also be annotated to give more information 

about the tokens that will flow along them. 

A program graph is a type of dataflow graph whose instructions are fairly complex ( when 

compared to a machine graph). Instructions are not limited in the number of inputs or 

outputs, and instructions are not constrained to be strict; firing rules may allow instruction 

outputs to produce tokens even when some of the inputs have not received any tokens. 

The V-PICT compiler has several program graph instructions not present in the Id 

compiler. Naturally when TTDA machine graphs are generated from these program graphs 

all of the program graph instructions must be replaced by their TTDA equivalents. 

The first several modules of the D-PICT compiler use the type information gained 

by the type-inference system. The Net-Parser module annotates each arc with a type 

64 



declaration. This type information is preserved through all the modules in which it is 

used. However, in the modules after the Map-to-Loops module, the type annotations are 

gradually lost because the Id compiler does not presently use type information. Future 

versions of the compiler may use the type information to perform other optimizations. 

4.2.1 Signal Instructions 

All of the primitive signal operators are represented in the program graph by their own in­

structions. Most of these operators could have been represented by procedural applications, 

but having separate instructions for these operators makes graph transformation easier to 

perform. 

There are instructions for Empty-Signal, Signal-Ref, Signal-Set, Signal-Default, 

and Signal-Bounds, each of which has the same number of inputs and outputs as the 

operators of the same name. There are also instructions for the Reflect, Union, Up-Sample, 

Down-Sample and Translate operations. 

4.2.2 Join Operators 

The signal combination operators, denoted by join driver-output operator pairs, are rep­

resented in the program graph by similar instructions. The El ts, Intersect, Cart, Join 

and Over-Domain instructions correspond to the join driver operations. The join output 

instructions are composed of Project, Collapse and Accumulate. 

4.2.3 Map Instructions 

Once the network has been parsed into a dataflow graph, the join driver-output instruc­

tion pairs are transformed into a Map instruction. The map instruction is an encapsulator 

instruction similar to the Id loop program graph instruction. An encapsulator is an instruc­

tion that has inputs and outputs that connect to the rest of the dataflow graph, and also a 

graph encapsulated inside itself whose only inputs and outputs are connected to its internal 

outputs and inputs. 

The map instruction 1s shown in Figure 4-1. It is very complex compared to most 

program graph instructions. There will be a constant-signal input for each input to a 
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Constant Constant-Signals Domain 

Constant Elt Index 

Elt Index 

New-Signal 

P-Fun P-IV 

Project-V 

Project 

Figure 4-1: The Map Instruction 
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El ts, Intersect, Cart or Join instruction in the network being compiled. The domain of 

the map instruction is determined by taking the domain inputs for each constant signal, and 

the domains of each constant signal, and performing the inner-join of the domains specified 

by the domain inputs. For each point in the domain of the map instruction, the Value 

and Index outputs of the interior of the map instruction will produce tokens containing the 

value of each of the input signals at that point in the domain, and the index for each of the 

input signals at that point in the domain. 

If any inputs to the body of the map construct are constant over the domain of the map 

operation, then these will flow through the Constant inputs of the Map instruction. Each 

iteration of the Map body will receive a token for each of the constants. 

For each Collapse instruction in the program graph, there will be a new-signal output 

from the map instruction. All of the new signals produced by a single map instruction will 

have the same domain. Each new signal produced will have a value (Elt) and Index input 

in the interior of the map instruction. 

For each Project instruction in the program graph, there will be a project-function 

(P-Fun) and proj-initial-value (p-iv) input to the Map instruction, and a proj-value 

input in the body of the map instruction. The map instruction initializes each project 

iteration variable, pvar, to the appropriate proj-initial-value, and for each point in the 

domain sets the next value of pvar to the value of P-Fun( pvar, proj-value ) . Finally 

a value, Proj is produced from the map instruction. 

The Accumulator instructions are treated much the same as the Project instructions, 

except that there is one more input, Accumulator-Bounds (A-Bounds), for each signal­

accumulator instruction. The Accumulator-Bounds determines the dimensions of the ac­

cumulator signal, A, produced by the map instruction. The accumulator is initialized to 

be an array (signal) of dimensions Accumulator-Bounds where each element has the value 

a-iv. For each point in the domain of the map operation, the body produces a value to 

accumulate, accum-v, and the index, A-Bin, of the bin in which to accumulate the value; 

the bin A[accum-i] will take the value A-Fun( A[accum-i], accum-v ), where A-Fun is 

the accumulate function. 
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4.2.4 Encapsulating Join Operations 

The module Collect-Loops determines which instructions in a data-flow graph should be 

encapsulated in map instructions and performs the encapsulation. It also finds any inputs 

to these instructions that do not flow through join driver instructions (Elts, Intersection, 

Join, or Cart), and wires these arcs through the constant ports of a map instruction. 

In order to find the portion of the graph which is a map body, Collect-Loops determines 

the iteration depth of every instruction in the graph. An instruction's iteration depth is the 

maximum depth of any arc wired to the instruction's inputs. The outputs of a join driver 

instruction are one level deeper than the maximum input depth of that instruction, while 

the outputs of a join output instruction are one level less deep than the maximum input 

depth of the output instruction. 

All connected instructions whose iteration depths are equal are encapsulated inside a 

map instruction. This involves finding the join-drivers, join-outputs and loop-constants, 

and rewiring their inputs and outputs to a map encapsulator. Instructions at deeper levels 

of iteration are encapsulated in map instructions inside map instructions. 

Loop constants are arcs of iteration depth N that are wired to the inputs of instructions 

of iteration depth N + 1. These arcs are constant with respect to the domain of the N + 1 

depth map instruction. When the body is encapsulated in a map instruction, these arcs 

will be wired to the constant inputs of the map, and the constant output (from the interior 

surface of the map) will be wired to the instruction to which the arc was originally wired. 

Figure 4-2 shows an example network containing a join operation. Input arcs X and A 

and output arc Y all have iteration depth of 0. The El ts operator therefore has iteration 

depth of 1, so the input A to the multiplication operator has depth of 1 and finally the 

multiplication operator and the collapse operator have iteration depth of 1. Note that the 

B input to the multiplication operator is of depth zero, so this is a loop constant. Figure 4-3 

shows this network after conversion to a map-instruction. The Def instruction which wraps 

the data-flow graph for the procedure is not shown. 
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Figure 4-3: After conversion to map-instruction. 

4.3 Stream Optimizations 

Once the map constructs have been encapsulated in map instructions, one should be able 

to perform some amount of stream optimization. One would like to reduce the amount of 

temporary storage allocated. Stream optimization is an NP-complete problem in general, 

but the map encapsulator instructions explicitly yield information about usage that allows 

us to perform some relatively simple optimizations. 

4.3.1 Serial Stream Optimization 

Signals that are produced and then only used to produce other signals or reduced to produce 

a scalar value or histogram need never be placed in structure memory. In a case like this 

there will be a map instruction whose new-signal output is wired only to constant-signal 

inputs of other map instructions. A copy of the body of the first map instruction can be 

wired into the body of the second map instruction, as shown in Figure 4-4. This is an 

example of serial stream optimization, because the map instructions are wired in series. 

If the first map instruction feeds several other map instructions, then putting a copy 
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of the first map instruction's body into each of the receptor maps causes a tradeoff of the 

time consumed versus the space conserved. The compiler may use a heuristic based on the 

number of map inputs to which a new-signal output is wired whether or not to perform the 

serial stream optimization. 

4.3.2 Parallel Stream Optimization 

If the program graph contains two map instructions that take the same signals as inputs, 

and operate over the same domains, then these map instructions may be combined into a 

single map instruction that operates over the same signals and domain, but contains the 

bodies of both maps and produces the union of the outputs of these map encapsulators. This 

optimization is a parallel stream optimization, because the maps would normally operate on 

the signals simultaneously. By combining the maps, the compiler reduces the overhead used 

in iteration of the body over the domain. In addition, there may be common subexpressions 

within the new body that can be eliminated. The parallel stream optimization closely 

resembles common subexpression elimination, but must be performed by a separate module 

that has knowledge about signals and domains. 

This optimization depends somewhat on the target machine. In a machine where the 

granularity of parallelism is a loop expression, the loops formed from parallel map instruc­

tions would be kept separate so that there would be more parallelism available in the object 

code. 

4.3.3 Program Graph Optimizations 

The program graph is then pushed through optimization modules that perform the other 

optimizations: call substitution, fetch elimination, common subexpression elimination, code 

hoisting, and constant propagation. These optimization modules were all written by the 

members of the Computation Structures Group at MIT. These modules should come before 

the map instructions are converted to loop instructions, so that the program graph saved 

by the Inlinable Definitions module are partly optimized. 
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4.4 Conversion to Loop Instructions 

After any possible (by a conservative estimate) stream optimizations have been performed, 

the V-PICT program graph must be transformed into a graph acceptable to the Id compiler. 

This is so that optimization modules from the Id compiler can be used unchanged in this 

compiler. The module Map-to-Loops converts the map instructions to Id program graph 

constructs. 

The body of each map instruction is treated as another procedure. Since the Map 

body is completely encapsulated by the map instruction, no lambda-lifting [12] needs to be 

performed, and the body can be defined as a procedure at the top level. The code blocks 

formed from the map bodies are declared to be inlinable. 

After the procedures for the map bodies are compiled, the maps themselves are replaced 

by two function calls and some graph glue. An application to one of the ComputeJ)omainN 

procedures is inserted in the graph, where N is the number of constant signals wired to the 

map. This procedure application computes the domain of the map instruction. 

From each map instruction, two new procedures are created. These two procedures are 

passed as arguments to a function which performs the actual iteration. 

The first procedure takes as arguments each of the constants, input signals, empty 

signals, accumulators, and indices used in the body of the map. Each constant arc in the 

body will be rewired to an argument output of the procedure's def instruction. The index 

output sources from signal-intersect, signal-cart, and signal-join iteration drivers will be 

replaced by instructions that make tuples of the correct indices; this index will also be 

used as the input to a signal-ref instruction that will access the value of the input signal 

at that point. The new-signal index and value inputs of iteration output operators will be 

wired to signal-set instructions that will actually perform the side-effect of filling the new 

signal. A similar transformation is performed on the accumulate value and index inputs of 

accumulator operators. The body procedure will return a tuple of the values that are to be 

folded. The following is the body procedure for the example in Figure 4-2. 

(defun scale-map-0 (constant-0 constant-signal-0 
new-signal-0 index-0) 

Ci-store (signal_data new-signal-0) 
(+ (signal_origin new-signal-0) 
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(* (signal_step new-signal-0) 
(- index-0 (signal_lb new-signal-0)))) 

(i-fetch (signal_data constant-signal-0) 
(+ (signal_origin constant-signal-0) 

(* (signal_step constant-signal-0) 
(- index-0 

(signal_lb constant-signal-0))))) 
constant-0)) 

(values :void)) 

This body procedure returns void because there are no projections. I-store takes an 

array, an index, and a value, and stores the value in the location of the array denoted by 

the index, and i-fetch takes an array and an index, and returns the element of the array 

denoted by the index. These procedures follow I-structure semantics. 

The second procedure, the project procedure, is much simpler. It takes two tuples as 

arguments, the first being the tuple of the previous partial sum and the second being a 

tuple of the values to be summed. There will be one element in the tuples for each Project 

operator in the net. This procedure will apply the appropriate project function to each 

pair of tuple elements to generate the element in the output tuple. The output of this 

procedure is a tuple of the new partial sums. Here is the project procedure for the example 

in Figure 4-2. 

(defun scale-project-0 (accum value) 
(values value)) 

Since no projections are performed m this example, this project procedure does not do 

anything. 

The actual iteration of the map body over the domain is produced by inserting into 

the program graph an application of one of the Map_R procedures, where R is the rank 

of the map instruction's domain. There is a Map_R defined for each rank up to R = 6, 

e.g. Map_1, Map...2, etc. . These functions take a domain and two procedures. The first 

procedure is actually a closure of the body procedure curried with the constants, constant 

signals, empty signals, and accumulators from the map instruction's inputs and outputs. 

The second procedure is the project procedure. The Map_R thus fills and accumulates 

new signals as a side effect of calling the body procedure on each index in the domain, and 

75 



performs the projection of values by calling the project function on the results of the first 

application. The only values returned by Map_R are the projected values. 

After the map instructions have been converted to loop instructions, call substitution, 

fetch elimination, common subexpression elimination, code hoisting, and constant propa­

gation should be performed again, to optimize the graph containing loop instructions. The 

call substitution optimization is vital to the map to loop conversion, since both the body 

and the projection portions of the join operation are encapsulated in inlinable procedure 

definitions. After the graph has been converted to a standard Id program graph, it is ready 

to be passed to the back end of the compiler. 

4.5 Compiler Back Ends 

4.5.1 TTDA Machine Code 

When TTDA machine graphs are being generated, the optimized graph is operated on by 

the rest of the Id compiler back end, which transforms the program graph to a machine 

graph, adds signals and triggers, limits the fan out of each instruction to two, and assembles 

the machine graph. 

4.5.2 Lisp Output 

When Lisp output is desired, the compiler replaces all make-tuple and tuple-store in­

structions with vector instructions. This is so that the compiler can tell when the cor­

responding tuple-fetch instructions have been triggered (after both the make-tuple and 

tuple-fetch instructions have fired). The compiler orders the instructions so that when exe­

cuted sequentially values will be computed before they are accessed. If an instruction output 

is used more than once, a local variable is allocated to store that value. Loop instructions 

are transformed into prog statements with loop initialization, test, and loop variable nex­

tification. The simple example shown in Figure 4-2 will be compiled to the following Lisp 

code: 

(defun scale (x675 a676) 
(let ((v692 :unbound) 

(empty-signal693 :unbound) 
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(loop695 :unbound) 
(loop696 :unbound) 
(loop697 :unbound)) 

(tagbody 
(setf v692 (signal_bounds x675) 

empty-signal693 (empty-signal v692 ())) 
(multiple-value-setq (loop695 loop696 loop697) 

(let ((loop-constant-a :unbound) 
(loop-constant-! :unbound) 
(loop-constant-2 :unbound) 
(loop-constant-3 :unbound) 
(loop-var-a :unbound) 
(loop-var-1 :unbound) 
(loop-var-2 :unbound) 
(i-store694 :unbound)) 

(tagbody 
(setf loop-constant-a (nth 1 v692) 

loop-constant-! empty-signal693 
loop-constant-2 x675 
loop-constant-3 a676 

next 

loop-var-a (nth a v692) 
loop-var-1 :void 
loop-var-2 ()) 

(unless(<= loop-var-a loop-constant-a) 
(go finally)) 

loop-body 
Ci-store (signal_data loop-constant-!) 

nextify 

(+ (signal_origin loop-constant-!) 
(* (signal_step loop-constant-!) 

(- loop-var-a 
(signal_lb loop-constant-!)))) 

(i-fetch (signal_data loop-constant-2) 
(+ (signal_origin loop-constant-2) 

(* (signal_step loop-constant-2) 
(- loop-var-a 

(signal_lb 
loop-constant-2))))) 

loop-constant-3)) 

(setf loop-var-a(+ loop-var-a 1) 
loop-var-1 :void 
loop-var-2 ()) 

(go next) 
finally 

(values loop-var-a loop-var-1 loop-var-2)))) 
(values empty-signal693)))) 
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The body and project procedures have been open coded into the scale procedure. This 

code is very low-level Lisp to illustrate that a back end for C could easily be created. 

The code generated by this module is totally sequential. For the MX-1 parallel processor 

DotLisp code will be generated so that medium-granularity parallelism may be achieved. 

The loop expressions will be rewritten to allow parts of the loop to operate on different 

processors. 

4.5.3 Specialized Object Code Generators 

Although a Lisp machine is a good development environment, one may want to run the 

D-PICT program on a special-purpose computer in order to have the program run very 

fast. One could have special back ends for the D-PICT compiler that produce code for 

dedicated DSP processors. One could even have a back end that interfaced with silicon 

compiler software to produce an integrated circuit that directly implemented the algorithm. 

In this way, D-PICT allows performance scalable from that necessary for algorithm and 

development to all levels of performance needed in the actual application. 
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Chapter 5 

Results 

5.1 Further Research 

Further research remains to be done on the type system. Strongly-typed languages prevent 

type errors from happening at run-time. The programmer can debug much more efficiently 

because these errors are found at compile time when the exact location of the mistake is 

easier to determine. A language that could catch static typing errors and not burden the 

programmer with type declarations would be very useful. V-PICT takes one step towards 

that goal, but its type system is not powerful enough yet. Another worthwhile goal would 

be to add user-defined data types to V-PICT. 

There needs to be more study of the error handling mechanisms for problems such 

as arithmetic overflow and underflow, and more work should be done on explicit storage 

management and stream optimization in the compiler. 

5.2 Conclusion 

The goal of this thesis was to show that a language such as V-PICT is desirable and 

feasible. Working with the V-PICT system has shown this to be true. Because the actual 

system was not the main thrust of the thesis, the construction of the user interface was not 

emphasized, and so the system is often difficult to use. 

If a novel language like V-PICT is ever to become widely used, it must not only be 
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demonstrated to be desirable and feasible, but there must also be implementations of it 

on many popular computers with output to many popular programming languages. The 

system currently runs on Texas Instruments' EXPLORER Lisp machines only, but in the 

future there will be 'D-PICT implementations on other machines as well. 

I believe that there is a need for an abstract signal processing language such as I have 

described. In order for signal processing work to be feasible on a general parallel processor, 

one must be able to program applications at the algorithmic level, without having to worry 

about the details of parallelizing the application. An abstract signal processing language 

will aid people developing signal processing applications, because they will be able to enter 

programs at the algorithmic level while still getting efficient code from the compiler. The 

high-level program should contain enough information so that programs compiled for a par­

allel processor will have a large amount of parallelism wherever it is available. In addition, 

the resulting signal processing programs will not be tied to a single machine or architecture, 

so they can be compiled to run on whatever machine the programmer is using, including 

machines with special purpose hardware intended for specific applications. 
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Appendix A 

V-PICT Network Examples 

A.1 First Order Filter 

Figures A-1, A-2 and A-3 show the network definitions for a first order infinite impulse 

response (IIR) filter section. This program is an example of a simple operation on a po­

tentially infinite input signal. For a measure of the perspecuity of D-PICT, compare the 

V-PICT network in Figure A-1 with the block diagram of a first order IIR filter section 

in 2-1. The two diagrams are almost identical, except that all V-PICT operators are con­

strained to take their inputs on the left and produce their outputs on the right. Most block 

diagram languages describe this kind of algorithm very well, while array based signal pro­

cessing languages usually have trouble, because there is inherent sequentiality due to the 

feed back loop in the algorithm. 

A.2 Convolution 

The definition of a two-dimensional convolution procedure is shown in Figure A-4. This def­

inition is suitable on relatively short signals, although in principle it would work on any size 

signal. Nate that there is little that needs to be changed to allow this procedure to operate 

on signals of other ranks. The input to the Reflect operator, and the Convolution-Bounds 

procedure are the only things which limit this to operation on two-dimensional signals. 
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A.3 Fast Fourier Transform 

Figures A-5, A-6 and A-7 show the networks for the implementation of a recursive imple­

mentation of the Fast Fourier Transform (FFT). The FFT can be reformed to be separable, 

and therefore expressible in an array based language, but most block-diagram languages 

have difficulty expressing the FFT because every element of the output depends on every 

element of the input signal. The FFT is not next-state-simulation realizable. Because V­

PICT allows recursion it can express the FFT very concisely, and the "butterfly" structure 

of the algorithm is readily apparent in the definition. 

A.4 Long Signal Filtering 

Figures A-8 - A-12 contain the networks for an implementation of a filter for an input 

sequence with infinite explicit domain. One cannot use a direct implementation of the con­

volution operation with infinite sequences because it would never terminate. In some cases 

a FIR filter may be used, but often the filter desired may be more efficiently implemented as 

an FFT-convolution. This algorithm has O(nlogn) behavior rather than the O(n2
) growth 

of the straight convolution. The input signal is broken into segments, as shown in Figure A-

9, and each of these segments are filtered separately. The filter, shown in Figure A-11, is 

implemented by applying FFT to both the segment and the system function, H, multiply­

ing the resulting frequency signals, and performing the inverse FFT to recover the filtered 

segment. All of the segments are then added together to create the output signal. This 

procedure shows the ability of D-PICT to resample signals, an ability lacking in most array 

based and block diagram signal processing languages. 
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