
i4'1J ,,IUlUIJiJJUl!;ez!lllll !.~~~•Pr lll . •-n~tll'il~~,,:JJJ$iS.Ci .J.$.. JU]. l]QJC!lUl••·1tl!i!'.fli!ll$Jllll.■•M&411'®iff ~t~

I
I

MIT/LCS/TR-184.

Remote Pipe and ProeedUNIJ for

Efficient Distributed Commualcatlon

'
David K. Gifford and Nathan Gl8'B&f

This research was supported by the Defeme Advaaced Research Projects
Agency of the Department of Defense and wu moaiiored by the Offle, of

\

Naval Research under contract number N0001..._K-tll5.

October 1986, revised July 1987
© 1986, H)87 Musachuaet.ta Imtit.ute of Technology

Table of Contents
1. The Channel Model for Distributed Communication 2
2. Relation to Previous Work 3
3. Semantics 6

3.1. Remote Interfaces are Typed 7
3.2. Channels are Represented by Local Procedures 9
3.3. Calls on a Channel by a Single Process are Ordered 11
3.4. Channel Groups Provide Inter-channel Timing Invariants 12
3.5. Failures Complicate Channel Semantics 14

4. Pragmatics 16
4.1. Connections are Used to Detect Crashes 16
4.2. Channel Failure Detection and Recovery 18
4.3. Sequence Vectors Implement Channel Timing 19
4.4. Normal Call Processing 20
4.5. The Performance of the Model Implementation can be Improved 21

5. Practical Experience and Conclusions 22
5.1. Performance Bounds and Results 22
5.2. The Elements of the Model have been Proven Practical 26
5.3. Advantages of the Channel Model 27

6. Appendix: Explicitly Serviced Pipes 29
7. References 30

Remote Pipes and Procedures for

Efficient Distributed Communication

David K. Gifford and Nathan Glasser

A new communication model for distributed systems is described that combines the

advantages of remote procedure call with the efficient transfer of bulk data. Three

ideas form the basis of this model. First, remote procedures are first-class values which

can be freely exchanged among nodes, thus enabling a greater variety of protocols to be

directly implemented in a remote procedure call framework. Second, a new type of

abstract object, called a pipe, allows bulk data and incremental results to be efficiently

transported in a type safe manner. Unlike procedure calls, pipe calls do not return

values and do not block a caller. Data sent down a pipe is received by the pipe's sink

node in the order they are sent. Third, the relative sequencing of pipes and procedures

can be controlled by combining them into channel groups. Calls on the members of a

channel group are guaranteed to be processed in order. Application experience with this

model, which we call the Channel Model, is reported. Derived performance bounds and
r

experimental measurements demonstrate k pipe calls can perform min(l + -, k) times
p

faster than k procedure calls, where r is the total round-trip remote communication

time and p is the procedure execution time.

Keywords: Bulk Data Transfer, Channel Model, Communication Model, Distributed

Communication, Pipe, Remote Procedure, Remote Procedure Call

1

1. The Channel Model for Distributed Communication

We present a new communication model for distributed systems called the Channel

Model that combines the advantages of bulk data transport and remote procedure call

in a single simple framework.

Remote procedure call is now a widely-accepted standard method for communication in

distributed computer systems [White76, Gifford81, Nelson81, Liskov83, Birrell84]. This

popularity can be attributed to three advantages provided by remote procedure call.

First, remote procedure call employs a widely-accepted, used, and understood

abstraction, the procedure call, as the sole mechanism for access to remote services.

Second, remote procedure call allows remote interfaces to be specified as a set of named

operations with certain type signatures. Such specifications enable remote interfaces to

be precisely documented, and distributed programs to be statically checked for type

errors. Third, since interfaces can be precisely specified, the communication code for an

application can be automatically generated, by either a compiler or a specialized stub

generator.

The wider use of remote procedure call systems has led to an understanding of their

disadvantages, as well as their advantages. Based on our recent application experience

[Gifford85], we have have discovered three major problem areas in standard remote

procedure call systems: protocol flexibility, incremental results, and bulk data transport.

1. Protocol Flexibility Certain communication protocols are impossible to
implement if a remote procedure call system does not allow the exchange of
remote procedure values between nodes. For example, imagine that a client
node wishes to provide a server node with a procedure for use in certain
circumstances, and the server node then wishes to pass this procedure on to
another server. Unless remote procedures are first-class objects that can be
passed from node to node this protocol cannot be expressed in a remote
procedure call framework. A first-class object is a value that can be freely
stored in memory and passed as a parameter to both local and remote
procedures.

2. Incremental Results Consider a server, computing a result on behalf of a
client, that wishes to communicate incremental results as they are computed
to the client. In present remote procedure call systems the client would ask
the server to compute the first incremental result, then the second, and so
forth until all of the results have been computed. This approach forces a
single computation to be decomposed into a series of distinct remote
procedure calls. This decomposition reduces the server's performance since

2

it is inactive between client procedure calls unless the server creates a
sophisticated process structure upon the client's first incremental result
request. However, sophisticated process structures are undesirable because
they substantially complicate a program.

3. Bulk Data Transport Remote procedure call mechanisms are optimized for
both low call-return latency and the transmission of limited amounts of data

(usually less than 103 bytes). These optimizations for the normal case
seriously affect the ability of remote procedure call mechanisms to transport
large amounts of data effidently. Since in contemporary systems only one
remote procedure call at a given time can be in transit between a single
process client and a server, the communication bandwidth between them is

limited. For example, if we assume that a program transmits 103 bytes per
remote procedure call and the network has a 50 millisecond round trip
latency, the maximum bandwidth that can be achieved is 20 KBytes/second.
Furthermore, to achieve even this performance, the client must combine
data values as they are produced into 103 byte blocks before a remote
procedure call is made. If a remote procedure call was made whenever data
were available to be sent, e.g. for each character to be displayed on a remote
screen, communication performance could drop to 20 bytes/second.

As a direct result of our experience with these limitations we have developed a new

communication model called the Channel Model. The Channel Model extends remote

procedure call in three directions and address the three disadvantages discussed above.

First, we permit remote procedures to be first-class values which can be freely passed

between nodes. Second, we introduce a new abstraction called a pipe that efficiently

transports bulk data and incremental results. Third, we introduce channel groups

which control the relative sequencing of calls on pipes and procedures. These three

ideas work together to create a framework that can be used by a variety of applications.

The remainder of this paper is organized into six sections: Previous Work (Section 2),

Semantics (Section 3), Pragmatics (Section 4), and Practical Experience and Conclusions

(Section 5).

2. Relation to Previous Work

The primary contribution of the present work is the integration of both low-latency and

high-throughput communication into a single simple framework for distributed

communication via a new technique for sequencing calls. Special purpose protocols have

been developed previously that combine low-latency and high-throughput

3

communication, but these protocols have been highly specific to a particular

application. For example:

• The R * System [Lindsay84] uses a bulk data transfer protocol that is built
on a request-response communication model. In R* bulk data transport is
explicitly programmed at the application level by packing result data into
answer buffers. The R* communication model includes the idea of blocking
and non-blocking sends.

• The CMU Distributed Log Server [Daniels86] extends remote procedure call
with special purpose asynchronous messages. The asynchronous messages
transmit streams of data in order to achieve adequate performance.

• The RPC2 System [Satya86] extends remote procedure call by allowing
application specific protocols to be included as side-effects of remote
procedure calls. For example, a file transfer side-effect invokes a file
transfer protocol. A special purpose file transfer protocol is used by RPC2
because remote procedure call was not efficient enough for bulk data
transport. RPC2 has addressed the limitations of remote procedure call by
allowing each application to develop its own special purpose network
optimizations.

• The X Window System [Scheifler86] uses a special purpose graphics protocol
that combines synchronous calls with asynchronous operations.
Asynchronous graphics calls were introduced by the X Window System in
order to achieve high throughput operation for display operations.

These special purpose systems demonstrate a common need for a communication model

that combines low-latency remote procedure call with a general purpose

high-throughput data transport mechanism. The Channel Model is designed to address

precisely this need.

The Channel Model can properly be viewed as a new type of sequencing algorithm that

permits previous work in remote procedure call protocols to be combined with previous

work in asynchronous calls. This previous work is related to the Channel Model in the

following respects:

• First-Class Remote Procedures The idea of transmitting remote procedure
values is discussed by Nelson [Nelson81], and is also present in ARGUS
[Liskov83] as handlers. However, neither of these proposals allow remote
procedures to be created in nested scopes, limiting the generality of remote
procedures.

• Asynchronous calls The notion of a pipe is similar to Nelson's immediate

4

return procedures [Nelson81], and the unidirectional messages of
Matchmaker [Jones85]. Nelson, however, rejected immediate return
procedures for his communication model because they were inconsistent with
procedure call semantics. Our solution to the consistency problem is the
creation of a new type of abstract object with well defined properties. In
both Nelson's work and Matchmaker, unidirectional message sends are not
appropriate for bulk data transport because they are not buffered to
improve throughput. Mach [Young87], the operating system underlying
Matchmaker, limits efficient bulk transmission of data to data structures
that are passed by reference. Thus, Mach cannot transport incremental
results efficiently. UNIX pipes [Ritchie? 4] transport untyped byte-streams,
while in our model pipes transport typed values. Because UNIX pipes are
not typed stub modules [Nelson81] can not be generated automatically for
UNIX pipes.

• Explicit Process Creation Conventional Fork and Join constructs can be
used to program asynchronous calls within a conventional remote procedure
call package [Birrell84]. This approach has three disadvantages when
compared with the Channel Model: it has a higher overhead per
asynchronous call; it does not provide any sequencing semantics for a series
of forked calls; and calls are not buffered to improve bulk data throughput.

Spector's Remote Reference/Remote Operation Model [Spector82] provides a taxonomy

of remote procedure call types, including synchronous and asynchronous calls. Spector

points out that asynchronous calls may require flow control. In our framework, flow

control ensures that asynchronous calls on pipes are optimized for high throughput. An

implementation of the Channel Model can implement flow control on top of raw

datagrams, or it can use a transport protocol that includes flow control such as VMTP

[Cheriton87].

The ability to sequence procedure and pipe calls with channel groups is unique to the

Channel Model. Channel groups are useful because they permit the essential sequencing

semantics of certain calls to be preserved, while allowing other calls to run in parallel.

Sequencing constraints can be statically specified in interfaces and then enforced using

the Channel Model or constraints can be specified dynamically at run-time.

The Channel Model does not directly include a facility for sending a single call to

multiple sinks (sometimes called multicasting). Such a facility is provided by the

MultiRPC facility of RPC2 [Satya86], and the parallel procedure call facility of P ARPC

[Martin87]. In order to send requests to multiple sinks in parallel within the Channel

Model pipes can be used or procedure calls can be forked.

5

3. Semantics

We discuss in this section

• typed remote interfaces,

• the use and creation of remote pipes and procedures,

• channel call ordering,

• how channel groups provide inter-channel synchronization,

• and failure semantics.

For the purpose of our discussion, we will define a node to be a virtual computer with a

private address space. A physical computer can implement one or more nodes; the

precise size and scope of a node depends on application requirements. We will assume

that all of the nodes in a system are interconnected by a network.

Both remote procedures and pipes provide a communication path to a remote node, and

thus we call them channels. A channel represents the ability to perform a specific

remote operation at a remote node. Channels are first-class values. In particular,

channels can be passed freely to remote procedures or pipes as parameters, or returned

as the result of a remote procedure. Connections are implicitly established as necessary

when channels are used as described in Section 4.

A node that exports a set of channels is called a service node, while a node that imports

a set of channels is called a client node. A given node can be a service and a client

simultaneously, with respect to different sets of channels.

It is not always the case that a client calls a service; when a service and client are

working together on a task sometimes it is most natural for a service to call a client.

For example, a client might provide a service with a pipe which allows the service to

send a large file to the client. Consequently, we introduce terminology to describe the

dynamic relationship between two nodes. We will call the node that processes calls

made on a channel the channel's sink node, and we call the node that makes calls on a

channel the source node. Note that a given node can be both a source and a sink.

Remote procedures and pipes are defined as follows:

• Procedures A remote procedure value is a capability to call a procedure on
a remote node. A remote procedure call blocks the caller until the remote

6

procedure has finished execution and a response has been received from the
sink node. Since a remote procedure call blocks a client, remote procedure
calls are optimized for minimum latency. In the event a remote procedure
call fails, a distinguished error value is returned as the value of the call. The
precise types of failures that can result are described below.

• Pipes A pipe value is a capability to transfer bulk data to another node. A
pipe is used as is a remote procedure. However, unlike a remote procedure
call, a pipe call does not block the caller and does not return a result. Since
a pipe is designed for bulk data transport, it is optimized for maximum
throughput. A pipe call does not block its caller, therefore a pipe call
implicitly initiates concurrent activity at the pipe's sink node. The caller
continues execution as soon as the call to the sink is queued for transmission.
The pipe's sink node receives the data values sent down a pipe by a given
process in the order the pipe calls are made. By II receive II we mean that the
sink accepts the data in order, and performs some computation on the data.
This computation could process the data to completion or simply schedule
the data for later processing. The failure of a pipe call to complete can be
detected as described below.

Figures 1 and 2 respectively show the processing of remote procedure and pipe calls.

Figure 1 shows that a remote procedure call blocks the source process until the result of

the procedure call is received and decoded by the source. As suggested by the figure,

we assume that typed values can be converted to byte strings and back again via encode

and decode operations [Herlihy82]. Figure 2 shows that during a pipe call the calling

process continues while the pipe rnll executes asynchronously at the sink.

We designed the Channel Model to adapt readily to a wide range of programmmg

languages. Specific versions of encode and decode must be designed to work with each

programming language to properly handle the language's type space and exception

handling discipline. For pedagogical purposes, we will write our examples in Modula-II

[Wirth85]. Modula-II does not provide full closures, and thus the dynamic creation of

procedures is limited in Modula-II. Section 5 discusses a C implementation of remote

pipes and procedures.

3.1. Remote Interfaces are Typed

A remote inter face is a set of type definitions used to describe a collection of channels

that is exported as a unit by a service. We will use a collection of Modula-II type

definitions to describe a remote interface, with the language extended to include types

for remote pipes and procedures.

7

<l!IIIUJIJ Plktl!lilJU 11'4#.UltltUMMMUIQ J 1 ... JBlll44X#tQJtl1PI.JlLJS.JQQ.&L$£JJY'.UdfJL4tt J IP@! JU1Hl kl.$.!.! 14WJJl!Jlt1

SOUR.CE

I
CALL

I

SINK

L - - 1 - - 7
I

J r - -
r - - ..J

A REMOTE PR.OCEDUJlB CA.LL

nouu 1

U'eGII& UQUEST

~DELAY

DBCODBUQUBST

DIICUTBPl&OOBDUB.E

BNC09a U:SUI,T

N&T ... DBLA.Y

DB091111.M1111LT

SOURCE SDQt

I
CALL 1 L

- -,
..._ _ --

1 I
I
! •'

~ .. JJtJXJJJJJUL!Ukil!LSXWKlU !Ji&JJ.$., •
:.,-,,..,

., •• ,ff UQUDT

ifD8 .. D&.AY
~:"';:.'

,Paooa>UJtB

\Ve introduce the types PIPE and PROC in our interface language to describe pipes and

remote procedures, respectively. A channel's type further describes the channel's input

values and the channel's result values. Note that only procedures have result values.

For example a pipe value might have type

PIPE PutChar(CHAR);

indicating that the pipe is a character pipe, while a remote procedure might have type

PROCEDURE GetChar(): CHAR;

indicating that the remote procedure does not take an argument and it returns a

character.

The following 1s an example of a remote interface that defines three channels. Note

that two of the channels are pipes, while one is a remote procedure.

REMOTE INTERFACE Terminal;
TYPE Color= (red, blue, green);
PIPE PutChar(c: CHAR);

(* Displays a character on the terminal*)
PIPE SetColor(c: Color);

(* Sets the display color for subsequent characters*)
PROCEDURE GetChar(): CHAR;

(* Returns the next character. Blocks if a character is
not available*)

END Terminal.

Interfaces are used to document a service, as well as to allow an implementation of the

Channel Model to encode and decode messages of appropriate types. For example, a

remote interface, by virtue of its type declarations, contains enough information to

permit a stub generator [Nelson81] to automatically generate code to implement the

details of a communications protocol. Once an interface is specified, an application

programmer can deal with pipes and procedures and not be concerned with the way

information is encoded and transmitted over a wire.

Figure 3 shows how the interface above might be used to define a communications

protocol. An automatic stub generator transforms the interface into two stubs, a server

stub and a client stub. As shown in Figure 3, the server stub includes the operation

Export. The server calls Export to register local procedures that implement the

interface described by Terminal for use by client programs. Export converts these

8

x := Import("alpha");
x.PutChar(" a");

x.SetColor(blue); -
c := x.GetChar();

CLIENT

Terminal
INTERFACE

DESCRIPTION

I

STUB
COMPILER

I I

i _J - - l
PutChar PutChar
SetColor SetColor
GetChar GetChar z
Import i:?'j Export

t-3
:a
0
pj

CLIENT :,::: SERVER
STUB STUB

Export(myPut,
mySetColor,
myGetChar);

SERVER

CLIENT NODE SERVER NODE" ALPHA"

REMOTE INTEFACES AND BINDING

FIGURE 3

local procedures into channel values for use by remote clients. In order to use these

operations, a client program calls the Import operation in the client stub to obtain a

specific instance of Terminal.

The general problem of providing clients with instances of service interfaces is known as

binding, and we will assume that an implementation of the Channel Model will use a

conventional binding technique. For example, the Import and Export scheme shown

in Figure 3 is used by the Cedar Remote Procedure Call System [Birrell84]. Another

technique is to use a distributed database system to record offered services. For

example, the Courier remote procedure call system [Xerox81] in the Xerox Star System

uses the Clearinghouse distributed database system [White82] for client-server binding.

Binding allows a node to bootstrap itself into a distributed environment. Note that

binding establishes initial contact with a set of servers, and this set of initial servers can

easily provide a client with a rich set of channels which can be used to contact other

nodes that were not provided via the binding mechanism.

3.2. Channels are Represented by Local Procedures

Remote procedures and pipes are used in the same manner as local procedure values. In

order to allow the introduction of procedures and pipes without changing Modula-II, we

will represent channels with local procedures. Thus, a local procedure must be

converted to a channel value for export, and a channel value must be converted to a

local procedure on import. If a given channel is first imported as a local procedure, and

then that local procedure is exported as a channel, the channel value exported must be

the same as the original channel value imported to ensure that extra overhead is not

introduced.

The channel type declarations used in programs are automatically produced by the stub

generation program from the user's original remote interface definition. For example,

the Terminal remote interface would result in the following client stub definitions

module:

g

DEFINITION MODULE TerminalClient;
TYPE Color= (red, blue, green);
Terminal= RECORD

PutChar: PROCEDURE (CHAR),
SetColor: PROCEDURE (Color),
GetChar: PROCEDURE(): CHAR

END;
PROCEDURE Import(server: ARRAY OF CHAR): Terminal;

END TerminalClient.

As this definition module suggests, remote procedures are used just like local

procedures:

new-char term. GetChar () ;

Remote procedures are created by providing a local procedure to Export that will

receive calls made on the channel.

A pipe value is used in precisely the same way as a procedure value is used except that

pipes do not return result values. The following expressions send the values 11 0 11 and

"k" down PutChar:

term.PutChar("o");
term.PutChar("k");

The values 11 0 11 and "k" are guaranteed to be received by the sink of PutChar in order

(because the two pipe calls shown above are performed by the same process). No

reception order is defined for pipe calls made by separate processes.

A pipe is created through the provision of a local procedure called a pipe sink

procedure, that will process data received over the pipe. As data arrive through a pipe

its corresponding sink procedure is applied to each datum in the order the data are

received. A pipe's sink procedure must return before it will be applied to the next

datum sent down the pipe from the same source process. When a node desires to export

a pipe it provides a pipe sink procedure, and this sink procedure is converted into a

pipe value by the sink's stub.

When a channel is created by a sink for export it normally will exist until the sink

crashes or until the channel is explicitly deleted. Channels that are destroyed by sink

crashes are known as dynamic channels. Channels which can survive sink crashes are

called stable channels. Stable channels are useful for stable services that are registered

with a clearinghouse. The state of a stable channel and its associated procedure must

be recorded in stable storage to permit recovery of the channel upon sink restart. The

details of how stable channels are created will depend on the host language

environment.

We now have enough mechanism to introduce a simple file transfer protocol based on

channels. Recall that channels can take channels as arguments and return channels as

values. Therefore, a simplified file transfer interface could be represented as the two

procedures SendFile and GetFile:

REMOTE INTERFACE Ftp;
PROCEDURE SendFile(name: ARRAY OF CHAR): PIPE (CHAR);

(* Returns a pipe to receive the contents of name*)
PROCEDURE GetFile(name: ARRAY OF CHAR, put-here: PIPE(CHAR));

(* The contents of name are sent down the pipe put-here*)
END Ftp.

GetFile is passed the name of the file to retrieve and a pipe called put-here to

receive the file. The symmetric operation SendFile returns a pipe to receive the new

contents of the file called name. The file is then transmitted down the returned pipe,

with the end of a file marked by a special character. For example:

ftp := FTPClient.Import("zermatt");
ellen := ftp.SendFile("/usr/cassatt/ellen.imp");
ellen("h");
ellen("i");
ell en (EDF) ;

3.3. Calls on a Channel by a Single Process are Ordered

Our communication model guarantees that if a process makes two separate calls on the

same channel, then the calls will be processed at the sink in the order they were made

by the process. "Processed" means that the second call is not executed at the sink until

the procedure invoked by the first call has returned.

The ordering of channel calls not specified by the above invariant is undefined. Thus, a

single channel can be invoked simultaneously by different source processes and the

corresponding calls will run in parallel at the sink. We assume that each procedure

employs monitors [Redell80], or a similar mechanism, to ensure its proper operation in

the presence of concurrent invocations.

11

Since pipe calls do not return values and are processed asynchronously, a Synchronize

operation is provided. When a source process applies a Synchronize operation to a

pipe, the pipe's sink is forced to process all outstanding data sent down the channel

from the source process, after which the synchronize operation returns. If the pipe has

broken for some reason (e.g. the sink node has crashed) then synchronize will return a

distinguished error value and reset the pipe so that it can be used again. Errors are

described in detail in Section 2.5.

As shown here, once application of Synchronize is to ensure that output is complete:

term.PutChar("n")
term.PutChar("o")
code := Synchronize(term.PutChar);

3.4. Channel Groups Provide Inter-channel Timing Invariants

In our present model the ordering of calls on separate channels is undefined. However

at times it is desirable to provide a timing invariant across channels. Consider our

example Terminal defined above, and the characters that would be displayed by the

following statements:

term.PutChar("a");
term.SetColor(blue);
term.PutChar("b");

Since SetColor and PutChar are separate pipes, there is no sequencing invariant

defined between them. Thus the character b may or may not be displayed in blue,

depending on the order in which the pipe calls SetColor and PutChar are processed

by their sink node. In this example, we want to specify that calls on SetColor and

PutCharacter must be performed in the order in which the calls were made.

When timing invariants must be preserved between a set of channels, the channels can

be collected into a channel group. A channel group is a collection of pipes and

procedures that share the same sink node and that observe a sequential ordering

constraint with respect to a source process. This ordering constraint guarantees that

calls made by a single process on the members of a channel group are processed in the

order they were made.

In order to construct channel group values we introduce Group. Group takes a record

of channel values as input and returns a new record of channels that are in the same

12

group. Group relationships that existed in the input channels will be present in the

output channels. If all of the channels that are passed to Group do not have the same

sink node then Group will return a distinguished error value. Note that the channels

returned by Group are copies, and thus the original input record to Group will still

refer to a set of ungrouped channels after Group returns. The channel copies returned

by Group will each include a new unique sequence stamp that has been added by

Group. The sequence stamp added to each channel identifies each channel's

membership in the newly created group. In addition to the sequence stamps obtained

by group membership, each channel is assigned a unique sequence stamp upon creation.

We can now solve our earlier problem of synchronizing SetColor and PutChar calls.

For example, the statements

seqTerm := Group(term);
seqTerm.SetColor(red);
seqTerm.PutChar("a");
seqTerm.PutChar("b");

can be used to create a new sequenced terminal value seqTerm and to display the

characters II ab II in red.

A channel can be a member of more than one group at once, which allows a wide

variety of sequencing semantics to be directly expressed using channel groups. For

example, consider the following remote interface:

REMOTE INTERFACE ColorDisplay;
TYPE Color= (red, blue, green);
PIPE SetFont(font: ARRAY OF CHAR);

(* Sets the font*)
PIPE SetColor(c: Color);

(* Sets the color*)
PIPE PutChar(c: CHAR);

(* Displays a character on the screen*)
END ColorDisplay.

In order to ensure that characters appear in the proper color and font a ColorDisplay

server can create two channel groups: {SetFont, PutChar} and {SetColor,

PutChar }. Note that SetFont and SetColor do not need to be sequenced with

respect to one another. Utilizing two channel groups instead of a single channel group

to sequence ColorDisplay allows SetFont and SetColor to execute in parallel.

A programmer can specify sequencing constraints in interfaces instead of calling Group

13

directly. The stub compiler will translate these specifications into server stub calls on

Group. For example, the desired groups of ColorDisplay could be specified as:

REMOTE INTERFACE SeqColorDisplay;
TYPE Color= (red, blue, green);
PIPE SetFont(font: ARRAY OF CHAR);

(* Sets the font*)
PIPE SetColor(c: Color);

(* Sets the color*)
PIPE PutChar(c: CHAR);

(* Displays a character on the screen*)
SEQUENCE SetFont, PutChar;
SEQUENCE SetColor, PutChar;

END ColorDisplay.

The channel timing invariant provided by the Channel Model can now be succinctly

stated:

Channel Timing Invariant lf a process makes two separate calls on channels that

(1) are at the same sink node, and (2) have a sequence stamp in common, then the calls

will be processed at the sink in the order they were made by the process. "Processed"

means that the second call is not executed until the procedure invoked by the first call

has returned.

The channel timing invariant implies the invariant for calls on a single channel (because

a channel will always be at the same sink node as itself and will have a sequence stamp

in common with itself). The channel timing invariant embodies all of the ordering

semantics provided by the Channel Model. The ordering of channel calls not covered

explicitly by the channel timing invariant is undefined.

3.5. Failures Complicate Channel Semantics

Our communication model guarantees that a channel call will be performed precisely

once in the absence of failures. In the presence of failures the semantics of remote

operations are more complicated. Many kinds of distributed system failures (e.g. node

crashes, network partitions) can cause a source node to wait for a reply which will never

arrive. In such cases it is impossible to tell if the corresponding remote operation was

ever attempted or completed.

In the presence of failures at-most-once semantics can be provided for remote calls.

14

At-most-once semantics guarantees that a remote operation either will be performed

exactly once, or will have been performed at most once if a failure has occurred. A

failed procedure call returns a distinguished crash value as its result. A failed pipe call

causes a distinguished crash value to be returned as the result of the next procedure call

on the same group. When a failure occurs it is impossible to determine whether a

remote operation was never started, completed, or only partially completed. Thus

at-most-once semantics present a serious challenge to the application programmer who

wishes to cope gracefully with failure.

One technique used in several practical systems accepts the limitations of at-most-once

semantics and insists that procedure calls that mutate stable storage be idempotent.

With this restriction a remote procedure call that returns crash can be repeated safely

until the call completes without failing.

Exactly-once semantics is an alternative to at-most-once semantics. Exactly-once

semantics guarantees that a remote operation will be performed exactly once or not at

all. Exactly-once semantics protects the actions of a remote operation with a

transaction. If a remote operation returns crash, the operations corresponding

transaction is aborted. The transaction abort will undo the effects of the failed remote

operation, and the failed operation will appear to never have happened. The failed

operation can then be retried (if desired) with a new transaction.

Exactly-once semantics can be achieved through the combination of communication

with transactions in one of two ways. One approach, as suggested by ARGUS's design

[Liskov83], is to integrate transactions into the communication model such that each

remote operation has an implicit associated transaction. A second approach is to keep

the communication model and transactions separate by explicitly specifying transactions

where they are required [Brown85].

In addition to success and crash, a third result can be optionally returned from a remote

call. If desired, a ping message can proceed a call to ensure that the remote node is

available. If the node does not reply to the ping message within a certain amount of

time then unavailable can be returned as the result of the call. In this case the remote

call was not attempted, and no compensation needs to be performed.

In summary, the channel errors that can occur are as follows follows:

l. Crash Communication with the remote node was lost during a call, and it
is unknown if the operation was performed once, performed partially, or not
performed at all.

15

2. Unavailable The sink does not respond to ping messages and thus the
requested operation was not attempted.

3. Destroyed The channel that was called has been destroyed by its sink node.
The operation was not attempted.

Channel errors are always reported to the source node. If a procedure call returns in an

error, the error is returned as a distinguished value of the call. If a pipe call results in

an error, the error is returned upon the next procedure call to a channel in the same

group, or upon the next synchrouize operation on a pipe in the group, whichever comes

first. When a pipe call results in an error, any subsequent calls on pipes in the same

group are discarded until the error is reported. Any calls made before the call that

resulted in an error will have been performed exactly once.

4. Pragmatics

We discuss in this section five pragmatic aspects of the Channel Model:

• how connections are used to detect node crashes,

• failure recovery,

• how sequence numbers can be used to implement the channel timing
invariant,

• normal call processing,

• and performance elaborations.

For the purpose of this section, we assume that the message system may lose, reorder,

and duplicate messages. However, we also assume that messages that are delivered are

delivered without error. This ideal can be achieved, with any desired level of reliability,

by using larger and larger error detecting codes and discarding messages with detected

errors.

4.1. Connections are Used to Detect Crashes

Our crash detection and recovery algorithm is based upon connections. Connections

provide a simple mechanism for detecting node crashes. A connection is a unique

identifier that is shared between a source process and a sink which identifies the

incarnation of the source and the sink. In order to implement crash detection, a node

16

discards its connection state when it crashes. Thus, the connection state of a node can

be stored in volatile memory.

Before a source process makes its first call to a remote sink, it must establish a

connection with a two packet interchange. The source node first sends the sink the

name of the process making the call, the source node identifier, and a proposed

connection identifier (one packet). Then the sink acknowledges receipt of the

connection identifier and other information (one packet). Each source process keeps

track of its outgoing remote connections in a table indexed by remote node identifier.

Each sink node keeps track of its incoming remote connections in a table indexed by

connection identifier.

Connection state can be garbage collected by both sources and sinks. A source can

discard its connection state with a sink when no calls are in progress with the sink by

simply forgetting the corresponding connection identifier. The source will have to

reestablish a connection before making its next call to the sink. A sink can discard

source connection identifiers if no calls are in progress with the corresponding source

process. As outlined below, the next time the source makes a call to the sink, the

source will discover that the connection has been garbage collected and then create a

new connection.

If a sink receives a call message with an unknown connection identifier, the sink sends

back a distinguished unknown connection message to the source. The sink includes the

unique identifier of the call message, the source process identifier, and the unknown

connection identifier in the message.

A source will find itself in one of three states upon receipt of an unknown connection

message:

• The first case is that the call message received by the sink was sent before
the last source crash. In this case, the source process identifier is unknown
to the source, and the unknown connection message is ignored.

• The second case is that the unknown connection message is in response to
the first transmission of a call message and at the time the call was made
the source process had no other outstanding calls to the sink. In this case a
new connection is established with the sink and the call is retransmitted
with the new connection identifier. Subsequent calls will use the new
connection identifier.

• If neither the first or the second case apply, then the source must assume

17

that the sink has crashed and recovered since the last successful call. Once
the crashed failure is returned as the result of a procedure call, a new
connection with the sink is established which will enable future calls to be
processed.

4.2. Channel Failure Detection and Recovery

We guarantee that as soon as a failure occurs on a channel, no further operations on

channels in the same group will be performed until the calling process is notified of the

error. Here we examine how this guarantee can be implemented. There are two types

of failures that we will consider in our discussion: the failure that results when a

destroyed channel is called (a destroyed failure), and the failure that results when a sink

crash occurs during the processing of a call (a crash failure).

Procedure call failures are directly reported to the call site by a distinguished return

value. Thus, a failure during a procedure call will not cause future operations on the

same group to be ignored because the failure is immediately reported.

Pipe call failures cannot be immediately reported to the call site because the calling

process does not block and wait for a return value. Therefore, if a pipe call fails, all

subsequent pipe calls to channels in the same group will be ignored until a procedure in

the same group as the failed pipe call is called. The pipe failure will be immediately

returned as a distinguished return value from the procedure call, and then subsequent

pipe and procedure calls on the group can be processed. Note that synchronize is a

special form of procedure call, and thus synchronize can be used to poll for pipe

failures.

In the case of a pipe destroyed failure, the sink must ignore future pipe calls on

channels in the same group until a procedure call on the same group is made. The sink

can of course advise the source of the pipe error, but the source will not be able to

report the error to the calling process until it makes a call on a procedure in the same

group as the failed pipe.

In the case of a pipe crash failure the source must ignore future pipe calls on channels

in the same group until a procedure call on the same group is made. If the pipe calls

were not ignored, then it would be possible for the sink to recover and process

subsequent pipe calls before the pipe failure was reported.

18

4.3. Sequence Vectors Implement Channel Timing

A mechanism that utilizes vectors of sequence numbers can be used to implement the

sequencing semantics for groups. Recall that in the Channel Model a client can

dynamically create groups in order to force the sequential processing of calls made on

independent channels. A channel value starts with a single sequencing stamp that is

unique to the channel, and copies of the channel value can be freely made that include

additional sequencing stamps to denote group memberships. Two channel calls will be

processed in order if, and only if, the channel values share a sequencing stamp. We call

this sequencing property the channel timing invariant.

One way to implement the channel timing invariant is to generate sequence numbers for

each sequence stamp on a per-process basis. Using this method, when a call is made on

a channel a new sequence number is obtained for each of the channel value's sequence

stamps. This set of sequence stamps and sequence numbers is sent in the call message

to the sink, along with the process identifier of the calling process. In order to

guarantee the channel timing invariant, the sink will only process a call when all of the

call's sequence numbers are one greater than the sequence numbers for already

processed calls from the process identified in the call message. By "one greater" we

mean that for each sequence stamp in the call message, the sequence number associated

with the stamp is one greater than the sink's copy of the sequence number for the

corresponding stamp. For a given stamp, if the sequence number is 1 and the sink has

no previous record of this stamp, the sink initializes its sequence number for the stamp

to be 0. At the end of a call, the sink increments the sequence numbers of the stamps

sent with the call.

For example, consider the following sequence of channel calls made by a single process.

Each call is shown with the list of sequence stamp and sequence number pairs included

in the call message:

Put("a");
PutSeq("b");
ColorSeq(blue);
Put("c");

PutSeq("d");

< [1,
< [1,

< [3'
< [1,
< [1,

#1]>
#2].
#1].
#3]>
#4].

[2, #1]>
[2, #2]>

[2' #3]>

From the stamps sent in each call messages shown above, we can determine the

sequencing semantics of the channel calls. ColorSeq and Put do not share a sequence

stamp, therefore their processing is unordered. PutSeq refers to the same underlying

19

channel as Put (identified by sequence stamp 1), and thus calls on these two channels

will be ordered. In addition, PutSeq has been extended with the sequence stamp 2

which is used to group PutSeq and ColorSeq to guarantee that calls on these two

channels will be ordered.

In sum, to implement the normal sequencmg of calls, the following state must be

maintained by a source and a sink:

• The source must keep for each outgoing connection a sequence stamp to
sequence number table. When a local process makes a call, appropriate
entries in the outgoing sequence table are incremented, and the new sequence
numbers are sent with the call to the sink. The first time a sequence stamp
is used by a local process, an entry is placed in the process' table with
sequence number 1.

• The sink must keep a sequence stamp to sequence number table for each
incoming connection. Each request received is checked against the
corresponding connection's table, and if the sequence stamps do not match,
the request is rejected. After a request is processed, appropriate entries in
the connection's table are incremented. When a sink establishes a new
connection it creates a fresh table with no sequence stamp entries. If a
sequence stamp is not in a table, an entry with a sequence number of 1 will
be automatically generated.

It is possible for either a source or a sink node to discard sequence number tables by

garbage collecting the corresponding connection. The rules for garbage collecting

connections were outlined in the last section.

4.4. Normal Call Processing

Here, we recap the information that is sent in every call message. A call message

includes: (1) the sink node address (for the communication system); (2) the connection

identifier (to identify the source node and calling process); (3) a unique call identifier,

that is different for each retransmission of the call (to determine if a new connection

can be opened if the call fails); (4) a sequence vector (to sequence the call), (5) the

identifier of the channel being called, and (6) a byte string that represents the data for

the channel.

A call message is retransmitted until a corresponding return message is received. A

return message includes: (1) the source node address (for the communication system),

(2) the connection identifier (to identify the calling process); (3) the unique call

20

identifier (to identify the call); and (4) a byte string that represents the result data.

4.5. The Performance of the Model Implementation can be Improved

The model implementation we have described is intended only to be suggestive; a

practical implementation of the Channel Model would reqmre performance

optimizations. Important optimizations include:

• Combine pipe calls Multiple pipe calls destined for the same sink node can
be buffered at a source and transmitted as a single message to reduce
message handling overhead and improve network throughput. The amount
of time a pipe call is buffered before it is sent presents a tradeoff between
low pipe latency and efficient bulk communication. A moving window flow
control algorithm can be employed [Postel79] to manage the transfer of
buffered pipe calls between a source and a sink.

• Combine pipe calls with procedure calls A procedure call message will
always be transmitted immediately. Therefore, any buffered pipe calls to
the same sink should be prepended to the procedure call message whenever
possible.

• Combine pipe returns Since returns from pipe calls are only used to
acknowledge the completion of processing, multiple pipe call returns can be
combined into a single message that acknowledges the processing of a set of
calls.

• Preallocate Processes Processes can be preallocate into a process pool at
node startup so that performance of a FORK operation for each incoming
remote call is not required. Eliminating FORK overhead is especially
important for a collection of pipe calls that arrive in a single message,
because the overhead per pipe call is limited to approximately the cost of a
procedure call, as opposed to a process creation. A process allocated from a
pool would return itself to the pool when the process had finished processing
its assigned call message.

• Explicitly Acknowledge Messages At times both call and return messages
should be explicitly acknowledged in order to improve performance. A call
message should be explicitly acknowledged by a sink when the sink has been
processing a call for a predetermined interval without producing a result.
This acknowledgment informs the source that the call has been successfully
received, and the source does not need to retransmit the call message. A
procedure return message from a sink should be explicitly acknowledged by
a source when the same source process does not make a subsequent
procedure call to the sink within a predetermined interval. This informs the

21

SOURCE

CALL 1 I_

CALL 2

0

0
0

,_

CALL NI_

- - 7
L- - -

- - 7
L- - -

0
0
0

- - 7
L- - -

SYNCHRONIZE
L_ -,

r - -J

SINK

0
0

0

ENCODE REQUEST

NETWORK DELAY

DECODE REQUEST

EXECUTE PROCEDURE

DECODE REQUEST

EXECUTE PROCEDURE

DECODE REQUEST

EXECUTE PROCEDURE

ACKNOWLEDGESYNCHRONnE

NETWORK DELAY

A SERIES OF PIPE CALLS FOLLOWED BY
A SYNCHRONIZE

FIGURE 4

sink that the return message has been received by the source, and that the
sink can discard the result contained in the return message.

• Factor Packages and Groups In order to save space, information that is
common to all of the channels in a package or group value need only be
represented once.

5. Practical Experience and Conclusions

We conclude with

• analytical performance bounds and empirical performance results,

• experience with an application of the Channel Model that has proven certain
of its elements practical,

• and discussion about general application of the model.

5.1. Performance Bounds and Results

We show here that k pipe calls can be at most k times as fast as k identical procedure

calls, and we compare this performance bound to empirical data gathered from an

implementation of the Channel Model. Experimental data confirms the analytical

model as long as the source does not generate data faster than they can be transmitted

to the sink. Performance is degraded from analytical predictions when the source is

generating data faster than they can be transmitted to the sink.

First we derive elementary performance bounds on the ratio of time spent processing k

procedure calls vs. k pipe calls followed by a synchronize. The time spent processing

a channel call can be broken down as follows:

• Procedures Referring back to Figure 1, if we let r be the time required for
remote communication (all encodes and decodes plus the round-trip network
latency), and p be the time required to execute the procedure at the sink,
then k procedure calls will take kp + kr units of time.

• Pipes Figure 4 shows a series of k pipe calls followed by a synchronize.
The total time required for this set of operations is kp + r. This assumes
that the time required for the sink encode is less than the time required to
execute the procedure and the sink decode. Our analysis is also valid with
the opposite assumption, except that costs must be reallocated top and r.

With these estimates of the cost of pipe and procedure calls we can estimate the time

22

ratio between k procedure calls and k pipe calls followed by a synchronize as:

kp+ kr
A(k,p,r) = --

kp + r

This equation for A(k,p,r) shows that for fixed r, as the procedure execution time

decreases, the performance ratio between pipes and procedures is bounded by

Iim A(k,p,r) = k
p-> 0

Furthermore, for fixed p and r, the performance ratio is bounded by

r
Iim A(k,p,r) = 1 + -

k->oo P

Combining these two independent bounds yields the single bound

r
A(k,p,r) < min (1 +-, k)

p

This performance bound cannot be realized when the source generates data faster than

they can be transmitted to the sink. This will occur when data are generated at a rate

that is greater than the bandwidth of the channel to the sink or when insufficient

buffering is provided at the source. In this case additional queuing delays will result

that add to the network delay time, and the performance ratio of pipes to procedures

will be reduced.

A series of experiments were run on an implementation of the Channel Model to

measure the relative performance of pipe and procedure calls. The implementation

tested uses TCP as its underlying transport layer, and limits all channels that are

exported as a service to be in a single group. Further details of the implementation are

given in [Glasser87].

The experiments we ran consisted of making 10, 50, 100, 500, and 1000 channel calls to

test the effect of varying k. For each number of calls 0, 100, and 1000 byte arguments

were used to test the effect of argument size. Each experiment that tested a

combination of number of calls, argument size, and pipe or procedure was repeated 10

times. Experimental values for 10, 50, 100, and 500 procedure call experiments were

computed from the corresponding 1000 procedure call experiment.

We first ran these experiments in a low network delay environment. Low-delay was

23

provided by runmng the tests on two Mircovax-II workstations on the same 10

MBit/second Ethernet network. In this environment, the average time to perform a 0

byte argument remote procedure call was 13.3 milliseconds, while the average time to

perform a 0 byte argument remote pipe call was 4.3 milliseconds.

As shown in the Table 5-1, the measured pipe to procedure performance ratio increases

with k as predicated by our simple model. The value for A(k,p,r) was computed by

assuming that for 1000 calls that the procedure time was p + r and the pipe time was p.

Pipes provide an observed performance improvement, even for only 10 calls, of at least

a factor of two.

Table 5-1: Low Latency Experiments

Low Latency Experiments
Single Ethernet

Bytes Number Procedure 90% Pipe 90% Pipe/
per of Calls Call Time Conf. Call Time Conf. Procedure
Call k (seconds) Interval (seconds) Interval Ratio A(k,p,r)

0 10 0.056 0.006 2.37 2.54
0 50 0.297 0.131 2.24 2.94
0 100 0.439 0.060 3.09 3.00
0 500 2.155 0.010 3.08 3.05
0 1000 13.277 0.034 4.341 0.008 3.06 3.05

100 10 0.062 0.003 2.28 3.23
100 50 0.255 0.004 2.77 4.02
100 100 0.437 0.006 3.23 4.15
100 500 1.178 0.013 4.11 4.26
100 1000 14.136 0.029 3.300 0.010 4.28 4.27

1000 10 0.088 0.005 2.06 2.19
1000 50 0.374 0.005 2.43 2.45
1000 100 0.777 0.065 2.34 2.49
1000 500 3.615 0.076 2.51 2.52
1000 1000 18.153 0.213 7.175 0.015 2.53 2.52

We repeated the same experiments in an environment with a high communication

channel latency by employing one node at MIT as the sink and a second node at a

distant Arpanet site as the source. The results are shown in Table 5-2. The average

time for a null procedure call was 649 milliseconds, which is far longer than the 13

24

milliseconds measured in the Ethernet case.

As expected, in the high latency case the observed performance improvements are larger

because of the increase in r. However, because the source was generating data faster

than the Arpanet could absorb them, we did not expect the measured performance

ratios to be consistent with our simple performance model. Thus, estimates for A(k,p,r)

are not shown in Table 5-2.

One problem we encountered with our high latency experiments is that TCP does not

perform well under conditions of high latency, limited bandwidth, and packet loss. In

order to improve the performance of the experiments shown in Table 5-2 we adjusted

the maximum size of TCP's window size for flow control to be 1100 bytes. Using the

standard UNIX 4.2 TCP window size of 16 KBytes, 1000 pipe calls with 1000 byte

argument took 3504 seconds. If a rate based flow control algorithm were used instead

of TCP's window based approach, such window size adjustments would not be

necessary.

Table 5-2: High Latency Experiments

High Latency Experiments
Long-Haul Arpanet

Bytes Number Procedure 90% Pipe 90% Pipe/
per of Calls Call Time Conf. Call Time Conf. Procedure
Call k (seconds) Interval (seconds) Interval Ratio

0 10 3.532 0.167 1.84
0 50 4.770 0.406 6.81
0 100 8.887 0.970 7.31
0 500 15.009 1.640 21.63
0 1000 649.33 51.88 26.717 1.615 24.30

100 10 2.557 0.604 2.74
100 50 14.696 1.371 2.38
100 100 29.649 1.751 2.36
100 500 149.61 7.313 2.34
100 1000 700.82 49.98 305.56 18.60 2.29

1000 10 10.021 1.205 1.12
1000 50 49.477 3.484 1.14
1000 100 80.209 5.267 1.40
1000 500 416.40 23.59 1.35
1000 1000 1123.1 61.2 1414.3 245.5 0.80

25

r
In sum, k pipe calls can perform at most min(l + -, k) times better than k procedure

p

calls, where r is the remote communication time and p is procedure execution time.

This bound can be approached in practice when sufficient bandwidth is available.

Thus, pipes can provide a substantial performance advantage over procedures for many

applications.

5.2. The Elements of the Model have been Proven Practical

In order to gain experience with the Channel Model we have used it to implement a

distributed database system. The database system we implemented provides query

based access to the full-text of documents and newspaper articles, and is presently in

use by a community of users. The database system is divided into a user interface

portion called Walter that runs on a user's local node, and a confederation of remote

database servers which are accessed by Walter via the DARPA Internet. Walter

employs a query routing algorithm to determine which server contains the information

required for processing of a given user query.

The protocol that Walter uses to communicate with a database server is built using the

Channel Model. A stub generator automatically generates both source and sink node

stubs from an interface file. This interface file (rewritten from C into Modula-II) is

shown below:

REMOTE INTERFACE DataBase;
PIPE EstablishQuery(c: ARRAY OF CHAR);

(* establishes a new query*)
PROCEDURE CountMatchingRecords(): INT;

(* Returns the number of records that have matched so far*)
(* Number is positive if query processing is complete*)

PROCEDURE FetchSummary(r: Range, dest: PIPE[Summary]);
(* Causes summaries in ranger to be sent to dest *)

PROCEDURE FetchRecord(rec: INT, r: Range, dest: PIPE[Line]);
(* Causes lines in ranger of record rec to be sent

to dest *)
PIPE Abort() ;

(* Causes the server to abort the query and any data that it
is sending down a pipe*)

SEQUENCE EstablishQuery, CountMatchingRecords, FetchSummary,
FetchRecord;

(* Don't allow the query to change during requests*)
END DataBase.

26

When a user supplies a query the procedure EstablishQuery 1s called.

EstablishQuery initiates processing of a query at a server. The server procedure

FetchSummaries, which computes the summaries for a range of articles matching the

current query is then called. As the summaries are computed, they are sent down the

pipe supplied in the FetchSummaries call. The pipe sink procedure that receives the

summaries displays them as they arrive. All of the summaries generated by

FetchSummaries are guaranteed to arrive before FetchSummaries returns. In order

to view an entire database record, the server procedure FetchRecord is used in

precisely the same manner as FetchSummaries is used. If a user requests that a

request be aborted while data are arriving down a pipe the Abort pipe is called to

abort the FetchSummaries or FetchRecord operation in progress.

The use of pipes in this database application has provided two distinct advantages over

remote procedures. First, pipes permit both FetchSummaries and FetchRecord to

send variable amounts of bulk data to Walter simply. Second, since pipe calls do not

block, a server can continue computing after it has sent a datum. If a procedure

instead of a pipe were used to return data the server process would suspend processing

while waiting for a response from Walter. The concurrency provided by pipes has

proven to be important to Walter's performance in practice.

5.3. Advantages of the Channel Model

We have proposed three major ideas:

• Channel values Channels should be first-class values which can be freely
transmitted between nodes. If a communication model does not not permit
channel values to be transmitted between nodes, then its application will be
limited to a restricted set of protocols. An application of channel values is
the return of incremental results from a service to a client.

• Pipes A new abstraction called a pipe should be provided in the
communications model. A pipe permits bulk data and incremental results to
be transmitted in a type safe manner in a remote procedure call framework.
Existing remote procedure call models do not address the requirements of
bulk data transfer, or the need to return incremental results.

• Channel groups A new sequencing technique, the channel group, 1s
important in order to permit proper sequencing of channel calls. A channel
group is used to enforce serial sequencing on its members with respect to a
single source process.

27

As we have explained, these three ideas form the basis for the Channel Model. We

expect that this model will find a variety of applications in distributed systems.

Acknowledgments The ideas in this paper benefited from meetings with fell ow MIT

Common System Project members Toby Bloom, Dave Clark, Joel Erner, Barbara

Liskov, Bob Scheifler, Karen Sollins, and Bill Weihl. I am especially indebted to Bob

Scheifler for posing a question that resulted in the notion of a channel group. Andrew

Birrell, Barbara Liskov, John Lucassen, Bob Scheifler, Mark Sheldon, Bill Weihl, Heidi

Wyle, and Kendra Tanacea commented on drafts of the paper.

28

6. Appendix: Explicitly Serviced Pipes

An alternate model for the sink end of a pipe is to allow a program to create a pipe

that is explicitly serviced. This is accomplished by using the procedure Create to

create a pseudo-pipe sink procedure. However, unlike a pipe sink procedure, this

procedure is not called when data arrive down the pipe. Instead, data must be

explicitly taken from the pipe with the following procedures:

DEFINITIONS MODULE ExplicitPipe;
TYPE Pipe= PROCEDURE();
PROCEDURE Create(): Pipe;

(* Returns a new local procedure that can be used as
a pipe sink*)

PROCEDURE Value(p: Pipe): Any;
(* Returns the next value from p. Blocks if no value

is present until a value arrives. Successive applications of
Value will return the same value unless Accept has
been called *)

PROCEDURE Accept(p: Pipe);
(* Accepts the last datum read with Value, and permits

Value to get the next value from the pipe. Blocks its caller
if no data has arrived for the pipe. Once Accept discards the
present value, it does not block its caller waiting for the next
pipe value*)

PROCEDURE Ready(p: Pipe): BOOLEAN;
(* Returns TRUE if there is no data waiting in p, FALSE otherwise*)

END ExplicitPipe.

A simple example of how a pipe can be explicitly serviced follows:

my-pipe := Create();
ftp.GetFile("fred.txt", my-pipe);

(* pass the new pipe to remote source*)
c := Value(my-pipe);
Accept(my-pipe);

(* remote source will terminate with EDF*)
WHILE c#EOF DO

term.PutChar(c);
c := Value(my-pipe);
Accept(my-pipe);
END;

Accept defines the sequencing semantics of explicitly serviced pipes. Until Accept is

called to acknowledge receipt of a call, further calls on the same channel will not be

processed.

We call pipes which are connected to a procedure procedure serviced, and pipes which

29

are polled explicitly serviced. We expect that both procedure serviced and explicitly

serviced pipes will find application.

7. References

[Bershad86] Bershad, B. et. al, A Remote Procedure Call Facility for Heterogenous

Computer Systems, Technical Report 86-09-10, Computer Science Department,

Univeristy of Washington, Septebmer, 1986.

[Birrell84] Birrell, A., and Nelson, B., Implementing Remote Procedure Calls, ACM

Trans. on Computer Systems 2, 1 (February 1984), pp. 39-59.

[Birrell85] Birrell, A., Secure Communication Using Remote Procedure Calls, ACM

Trans. on Computer Systems 3, 1 (February 1985), pp. 1-14.

[Brown85] Brown, M., et. al., The Alpine File System, ACM Trans. on Computer

Systems 3, 4 (November 1985), pp. 261-293.

[Cheriton87] Cheriton, D., VMTP: Versatile Message Transaction Protocol, Computer

Science Department, Stanford University, January 12, 1987.

[Gifford81] Gifford, D., Information Storage in a Decentralized Computer System,

Report CSL-81-8, Xerox Palo Alto Research Center, Palo Alto, CA.

[Gifford85] Gifford, D. et. al., An Architecture for Large Scale Information Systems,

Proc. of the Tenth ACM Symposium on Operating Systems Principles, ACM Ops. Sys.

Review 19, 5, pp. 161-170.

[Gifford86] Gifford, D., Remote Pipes and Procedures for Efficient Distributed

Communication, Report MIT/LCS/TR-384, MIT Laboratory for Computer Science,

October, 1986.

[Glasser87] Glasser, N., The Remote Channel System, M.S. Thesis, Department of

Electrical Engineering and Computer Science, MIT, Cambridge, MA, May 1987.

[Herlihy82] Herlihy, M., and Liskov, B., A Value Transmission Method for Abstract

Data Types, ACM Trans. on Programming Languages and Systems 4, 4 (October 1982),

pp. 527-551.

[Jones85] Jones, M., et. al., Matchmaker: An Interface Specification Language for

Distributed Processing, Proc. of the 12th Annual ACM Symp. on Prine. of Prag.

Languages, January 1985, pp. 225-235.

30

[Lindsay84] Lindsay, B. et al., Computation and Communication in R*: A Distributed

Database Manager, ACM Trans. on Comp. Sys. 2, 1 (February 1984), pp. 24-38.

[Liskov83] Liskov, B., and Scheifler, R., Guardians and Actions: Linguistic Support for

Robust, Distributed Programs, ACM Trans. on Prog. Lang. and Sys. 5, 3 (July 1983),

pp. 381-404.

[Martin87] Martin, B., P ARPC: A System for Parallel Procedure Calls, to appear, Proc.

1987 Int. Conf. on Parallel Processing.

[Needham78] Needham, R., and Schroeder, M., Using Encryption for Authentication in

Large Networks of Computers, Comm. ACM 21, 12 (December 1978), pp. 993-998.

[Nelson81] Nelson, B., Remote Procedure Call, Report CSL-81-9, Xerox Palo Alto

Research Center, May 1981.

[Postel79] Postel, J., Internetwork Protocols, IEEE Trans. on Comm. COM-28, 4, pp.

604-611.

[Redell80] Experience with Processes and Monitors m Mesa, Comm. ACM 23, 2

(February 1980), pp. 105-117.

[Ritchie74] Ritchie, D.M., and Thompson, K., The UNIX Time-Sharing System, Comm.

ACM 17, 7 (July 1974), pp. 365-375.

[Voydock83] Voydock, V., and Kent, S., Security Mechanisms in High-Level Network

Protocols, Comp. Surveys 15, 2 (June 1983), pp. 135-171.

[\Vhite76] White, J., A high-level framework for network-based resource sharing, Proc.

Nat. Comp. Conf. 1976, AFIPS Press, pp. 561-570.

[White82] White, J., and Dalal, Y., Higher-level Protocols Enhance Ethernet, Electronic

Design 30, 8 (April 1982), pp. ss33-ss41.

[Xerox81] Courier: The Remote Procedure Call Protocol, Xerox System Integration

Standard XSIS 038112, Xerox Corporation, Stamford, Connecticut, December 1981.

[Young87] Young, M., et. al, "The Duality of Memory and Communication in the

Implementation of a Multiprocessor Operating System", Proc. of the 11th ACM

Symposium on Operating System Principles, November 1987.

31

I

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1a. REPORT SECURITY CLASSIFICATION 1 b RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION I AVAILABILITY OF REPORT

2b. DECLASSIFICATION I l)OWNGRADING SCHEDULE
Approved for public release; distribution
is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

MIT /LCS /TR-38,!i N00014-83-K-0125

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL la. NAME OF MONITORING ORGANIZATION
MIT Laboratory for Computer (If applicable)

Office of :faval Research/Department of Navy
Science

6c. ADDRESS (City, StatE', and ZIP COCle) 7b. ADDRESS (City, State, and ZIP Code)

545 Technology Square Information Systems Program
Cambridge, (>1A 02139 Arlington, VA 22217

Ba. NAME OF FUNDING I SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

DARPA/DOD
Be. ADDRESS (City, State., and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

1400 Wilson Blvd. PROGRAM PROJECT TASK WORK UNIT
Arlin,;ton, VA 22217 ELEMENT NO. NO. NO ACCESSION NO.

11 TITLE (Include Security Classification)

Remote Pipes a.nd Procedures for Efficient Distributed Communication

12. PERSONAL AUTHOR(S)

Gifford a David
13a. TYPE OF REPORT 113b. TIME COVERED 114 DATE OF REPORT {Year, Month, Day) 11 5 PAGE COUNT

Technical FROM TO 1986 October 24
16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse ,f necessary and identify by block number)

FIELD GROUP SUB-GROUP remote-procedure call; flow control; bulk data ransfer
, _____

19. ABSTRACT {Continue on reverse ,t necessary and identify by block number)

The advantages of remote procedure call are combined with the efficient transfer of
bulk data and the ability to return incremental results in a new communication model for
distributed systems. Three ideas form the basis of this model. First, remote procedures
are first-class values which can be freely exchanged among nodes, thus enabling a greater
variety of protocols to be directly implemented in a remote procedure call framework,
Second, a new type of abstract object called a pipe allows bulk data and incremental
results to be efficiently transported in a type safe manner. Unlike procedure calls,
pipe calls do not return values and do not block a caller. Data sent down a pipe is
received by the pipe's sink node in strict FIFO order. Third, the relative sequencing
of pipes and procdures can be controlled by combining them into channel groups. A
channel group provides a FIFO sequencing invariant over a collection of channels. Ap-
plication experience with this model, which we call the · 11 Remote Pipe and Procedure Model";
is reported.

20 DISTRIBUTION I AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
Q tJNCLASSIFIED/UNLIMITED 0 SAME AS RPT 0 DTIC USERS Unclassified

:'2a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 122c. OFFICE SYMBOL

Jt1J'.' Litt 1 e 1
Publications Coordinator (617) 253-5894

00 FORM 1473, 84 M/\R 83 APR ed,t,on may be used until exhausted.
SECURITY CLASSIFICATION OF THIS PAGE

All other ed1t1ons are obsolete
.US. Gowm...,t Printing Offlco: 198fi-607-047

Unclassifiec.l

