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Abstract 

Conventional approaches to programming produce centralized programs that run on a single 
computer. However, an unconventional approach can take advantage of low-cost communication 
and small, inexpensive computers. A distributed program provides service through programs 
executing at several nodes of a distributed system. Distributed programs can offer two important 
advantages over centralized programs: high availability and scalability. In a highly-available 
system, it is very likely that a randomly-chosen transaction will complete successfully. A scalable 
system's capacity can be increased or decreased to match changes in the demands placed on the 
system. 

When a node is unavailable because of maintenance or a crash, transactions may fail unless copies 
of the node's information are stored at other nodes. Thus, high availability requires replication 
of data. Both the maintenance of a highly-available system and scalability require the ability to 
modify and extend a system while it is running, called dynamic reconfiguration or simply 
reconfiguration. 

This thesis considers the problem of building scalable and highly-available distributed programs 
without using special processors with redundant hardware and software. It describes a design and 
implementation of an example distributed program, an electronic mail repository. The thesis 
focuses on how to design and implement replication and reconfiguration for the distributed mail 
repository, considering these questions in the context of the programming language Argus, which 
was designed to support distributed programming. 

The thesis makes three distinct contributions. First, it presents the replication techniques chosen 
for the distributed repository and a discussion of their implementation in Argus. Second, it 
describes a new method for designing and implementing reconfigurable distributed systems. The 
new method allows replacement of software components while preserving their state, but requires 
no changes to the underlying system or language. This contrasts with previous work on guardian 
replacement in Argus. Third, the thesis evaluates the utility of Argus for applications involving 
replication and reconfiguration. 

Thesis Supervisor: Barbara H. Liskov 
Title: Nippon Electric Company Professor of Software Science and Engineering 

Keywords: data replication, software reconfiguration, availability, re
liability, scalable systeIP.s, distributed programs, electronic 
mail repositories, programming languages 

2 



Acknowledgments 

I thank my advisor, Barbara Liskov, for her excellent comments and precise editing. The style 

and content of this thesis have been improved enormously by her suggestions. I can only hope 

that my thinking and analytical abilities have been improved as much. 

Thanks to Boaz Ben-Zvi, Toby Bloom, Craig Chambers, Janice Chung, Dave Clark, Ken 

Goldman, Dave Gifford, Paul Johnson, Elliot Kolodner, Rivka Ladin, Mark Lambert, Gary 

Leavens, Jim O'Toole, Sharon Perl, Jim Restivo, Jerry Saltzer, Bob Scheifler, Rob Seliger, Mark 

Tuttle, Mike Vermeulen, Ed Walker, and Bill Weihl for many helpful discussions and valiant 

readings of countless drafts of this thesis. Bob and Paul earn special thanks for having created 

and maintained the Argus implementation I used for this thesis, and for answering a steady 

stream of questions. Mark Lambert gets a medal for his role in defining and implementing 

PCMail and for persisting in helping me to debug the communication between our 

implementations of DMSP. 

Prof. Gruia-Catalin Roman deserves a large amount of the credit (or blame) for me being in 

graduate school, so it seems appropriate that he share the credit (or blame) for this thesis. 

Thanks to friends who exerted a strong influence in keeping me sane: Hing Trin (who is just 

plain wonderful), Tangi Anderson, Craig Chambers (life at MIT has been much duller since he 

went to Stanford), Virginia Cox, Mark Derthick, Ed Frankenberry, Arnold Juster, Jon 

McCombie, Lynette McMahon, John Morrison, John Norwood, Ellen Pint, Gabe Spalding (who 

heroically tried to talk me out of going to graduate school), and Edward Zamboni. 

All of the members of my family have been supportive of my work at MIT: thanks to Father, 

Mother, Michael and Jane, Malcom, and Jonathan. I couldn't wish for a family that I would 

respect, admire, or love more. 

Most of all, thanks to a truly supportive, helpful, and generally fantastic person, unquestionably 
~ ' , 

my "better half": Hang Tran. Anh thu'o'ng em nhi~u lam, y'know? 

3 





Table of Contents 

-
Chapter One: Introduction 

Chapter Two: PCMail - the Centralized Mail Repository 

2.1 Repository vs. Transport Models 
2.2 The Repository, Agents, and DMSP 
2.3 Repository and External Mail Systems 
2.4 Rationale for PCMail 
2.5 Naming 
2.6 DMSP 
2.7 Rationale for a Distributed Repository 

Chapter Three: The Distributed Repository 

3.1 The Programming Language Argus 
3.1.1 Guardians 
3.1.2 Actions 
3.1.3 Atomic Objects 

3.2 The Environment of the Repository 
3.3 Building a Distributed Mail Repository 

3.3.1 Design Goals 
3.3.2 Tradeoffs 

3.4 The Design of the Repository 
3.4.1 Mailsite 
3.4.2 Frontend 
3.4.3 Alien 
3 .4 .4 Registry 

3.5 Scenarios 
3.5.1 Sending Mail 
3.5.2 Synchronizing Mail State 
3.5.3 Delivering External Mail 

3.6 Action Structure 
3.7 Summary 

Chapter Four: Replication 

4.1 Replication of Services and Replication of State 
4.2 Requirements 

4.2.1 Consistency 
4.2.2 Partitions 
4.2.3 Performance 
4.2.4 Implementability 

4.3 Choosing a Replication Algorithm 
4.3.1 Weighted Voting 
4.3.2 Replicated Tables 

5 

8 

12 

12 
13 
14 
14 
15 
16 
17 

20 

20 
21 
22 
22 
23 
24 
24 
25 
27 
28 
29 
29 
30 
31 
32 
33 
34 
35 
36 

37 

37 
38 
39 
39 
41 
41 
42 
42 
43 



4.4 Implementing Replication 
4.4.1 Replicated Operation Protocol 
4.4.2 Replicating Mailboxes 
4.4.3 Finding a Replicated Registry 
4.4.4 Version-lists 

4.5 Summary and Discussion 
4.5.1 Deadlock 
4.5.2 Cluster-Based Replication and Guardian-Based Replication 
4.5.3 Another Replication Scheme 

Chapter Five: Reconfiguration 

5.1 Bloom's Work 
5.2 A New Method 
5.3 The Replacement Mechanism 

5.3.1 Exclusive Access 
5.3.2 State Objects 
5.3.3 Replacing Handler Objects 

5.4 An Example Replacement 
5.5 Changing a Guardian's Interface 
5.6 Another Example 
5.7 Discussion and Related Work 

Chapter Six: Conclusions 

6.1 Evaluating Argus 
6.1.1 Argus Advantages 
6.1.2 Argus Disadvantages 
6.1.3 Discussion 

6.2 Related Work 
6.2.1 Grapevine 
6.2.2 CES 

6.3 Future Work 

Appendix A: DMSP Specification 

A.I General Protocol Transactions 
A.2 User Protocol Transactions 

6.3.1 Agent protocol transactions 
A.3 Mailbox Protocol Transactions 
A.4 Message Protocol Transactions 

Appendix B: Specifications of Guardians 

B.1 Specification of Alien Mailer 
B.2 Specification of Mailsite 
B.3 Specification of Registry 

Appendix C: Semi_ Version_Table Implementation 

6 

47 
48 
50 
51 
51 
54 
55 
56 
57 

58 

59 
59 
60 
61 
63 
64 
66 
67 
69 

· 71 

74 

75 
75 
76 
78 
78 
79 
79 
80 

82 

82 
83 
83 
84 
84 

86 

86 
87 
90 

g3 



Table of Figures 

Figure 1-1: High Availability and Scalability Require Replication and Reconfiguration 10 
Figure 2-1: A User, an Agent, and the Repository 13 
Figure 2-2: Two Users, Each With Two Mailboxes 16 
Figure 3-1: The Guardians of a Distributed Repository 28 
Figure 4-1: A Table Mapping Integers to Strings 43 
Figure 4-2: Three Copies of a Table, One Unavailable 44 
Figure 4-3: An Empty Table 45 
Figure 4-4: A Table with One Entry 45 
Figure 4-6: A Table with Two Entries 46 
Figure 4-6: A Table with Gaps, After a Deletion 46 
Figure 4-7: Tables to be Replicated 47 
Figure 4-8: Specification of Semi_ Version_Table 49 
Figure 4-9: Implementations of Replicated Tables 50 
Figure 4-10: Two Copies of Data Reachable by Two Paths 51 
Figure 4-11: Two Copies of Data Reachable by Two Paths, After a Write 52 
Figure 4-12: Two Copies of Data With No Sharing 52 
Figure 4-13: Two Copies of Data Using Version-Lists 53 
Figure 4-14: Two Copies of Data Using Version-Lists, After a Write 53 
Figure 6-1: The normal guardian implementation 62 
Figure 6-2: The guardian implementation during replacement 63 
Figure 6-3: Old State, State Object, and New State 66 
Figure 6-4: A Cluster to Hide Two Interfaces 70 

7 



Chapter One 

Introduction 

Paradise is exactly like 
where you are right now, 
only much, inuch better. 
-Laurie Anderson 

The truth is rarely pure, 
and never simple. 
-Oscar Wilde 

For some time, the cost of computers and communications has been decreasing, while their speed 

and capacity have been increasing. Whereas conventional approaches to programming produce 

centralized programs that run on a single computer, an unconventional approach can take 

advantage of low-cost communication and small, inexpensive computers. A distributed system is 

a collection of computers connected to a communications network, able to send information over 

geographic distances (a few meters to thousands of kilometers). In a distributed system, the 

processing elements ( called nodes) are far apart compared to the processing elements of 

multicomputers or multiprocessor8. Thus, communication between nodes of a distributed system 

is expensive compared to the cost of local computation. A distributed program provides service 

through programs executing at several nodes of a distributed system. 

Distributed programs can be useful solutions for certain application areas. This thesis considers 

applications that do not have hard real-time deadlines, but require continuous availability of 

consistent data. For example, a reservation system for a world-wide airline is an example of a 

candidate application for a distributed program. Users can tolerate delays of several seconds, but 

the system is always in service. Loss of service, whether due to maintenance or equipment failure, 

causes a loss of revenues and may completely paralyze operations dependent on the system [ 17]. 

Ideally, distributed programs can offer two important advantages over centralized programs: high 

availability and scalability. Availability is typically defined in terms of the probability ?success 

that a randomly-chosen transaction will complete successfully. High availability correspondingly 
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means that this probability 1s very close to one. My arbitrarily-chosen definition of high 

availability is 

P > 0.997 auccua -

This probability corresponds to less than five minutes unavailable out of each 24 hours, assuming 

a uniform distrit,ution of failures. High availability is possible in a distributed system because 

the system contains multiple processors. If one node of a distributed system fails, some good 

nodes are still available; the tasks of the failed node may be divided up between the remaining 

nodes, so that the system continues to function, though perhaps at reduced capacity. 

Scalability means that the system's capacity can be increased or decreased to match changes in 

the demands placed on the system. Scalability is possible in a distributed system because the 

system's capacity may be increased by adding nodes, or decreased by removing nodes. These 

changes of scale can take place over a greater range and with greater ease than is possible for a 

single machine. 

This thesis addresses the problem of building scalable and highly-available distributed programs 

without using special processors with redundant hardware and software. Since many 

organizations have invested a great deal in various sorts of conventional computer hardware and 

networks, it is not realistic to demand a large investment in new hardware and networks to 

achieve high availability and scalability. Instead, it should be possible to take a collection of 

conventional machines and a conventional communications network, and use them to construct a 

highly-available distributed program. 

To achieve high availability, a distributed program must tolerate node failures, or cra8he8, and 

tolerate maintenance. The program must also tolerate communication failures, or partition8. 

The problems of partitions are discussed in more detail in Chapter 4. When a node is unavailable 

because of maintenance or a crash, the system may be unavailable unless copies of the node's 

information are stored at other nodes. Thus, high availability requires replication of data. In 

addition, both maintenance of a highly-available system and scalability require the ability to 

modify and extend a system while it is running, called dynamic reconfiguration [25] or simply 

reconfiguration. So high availability and scalability require replication and reconfiguration (see 

figure 1-1). 

Since there is no general agreement on a method for constructing distributed programs, I have 

chosen to examine the issues involved in the design and implementation of a particular 

application. The experience and insights from this application may contribute to a future method 
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Availability 

t 
Tolerate Crashes Tolerate Maintenance 

REPLICATION 

Scalability 

DYNAMIC 
RECONFIGURATION 

Figure 1-1:High Availability and Scalability Require 
Replication and Reconfiguration 

for constructing distributed programs. 

The example application is a repository for electronic mail. A mail1 repository is essentially an 

electronic mail system without a friendly user interface. Personal computers (PCs) provide the -

user interface and editing capabilities required to view and compose messages. These PCs 

communicate with the repository over a high-speed network to send, receive, store, and retrieve 

messages. 

The example application is related to ongoing work in distributeq systems at MIT, particularly in 

the Argus group and at Project Athena. Argus is a language for building distributed 

programs [28]. Project Athena is a large distributed system being built to provide computing 

power for undergraduate education at MIT, as an educational experiment [2]. 

A centralized repository has been built and is in use. This thesis is concerned with a distributed 

version of this repository. In designing and implementing the system, there were several goals: 

1. to present the same interface to PCs as the centralized repository; 

2. to provide high availability in spite of reconfiguration and hardware failures; 

3. to test the programming language Argus in an application designed to support a large 

1Throughout this thesis, the term •mail• refers to electronic mail, or electronic meaaage8. 
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user community, with tight constraints on availability; 

4. to evaluat~ Argus for its utility in constructing highly-available and scalable 
distributed programs; and 

5. to serve as a prototype for a distributed repository that could provide mail service to 
MIT's Prcject Athena. 

The remainder of the thesis describes the background for the construction of a distributed mail 

repository, the problems of design and implementation, conclusions to be drawn, and directions 

for future work. 

The next chapter summarizes the features of PCMail, the existing centralized mail repository. 

Chapter 3 introduces the relevant features of the programming language Argus, discusses the 

tradeoffs that were made in constructing a distributed repository, and describes the operation of 

the repository in simplified terms (ignoring replication and reconfiguration). 

Chapter 4 presents the choice and implementation of replication techniques for a highly available 

distributed program. Only a few replication techniques can meet the constraints of the 

application. In addition, almost all previous work on replication has considered replication of 

files or simple objects. The mail repository requires replication of relatively complex objects (for 

example, tables that point to other tables, which in turn refer to the object of interest). 

Straightforward replication methods would lead to an expensive replicated call for each object 

reference; I describe a technique for compressing several such calls into a single remote call. 

Performance constraints require that the calls making up a replicated call be performed 

concurrently; I present techniques for avoiding deadlock among concurrent transactions. 

Chapter 5 presents a new method for designing and implementing reconfigurable systems. The 

new techniques allow replacement of software components while preserving their state, but require 

no changes to the Argus system or language. This contrasts with previous work on guardian 

replacement in Argus. 

Chapter 6 concludes the thesis by discussing lessons learned from the implementation, evaluating 

the ways in which Argus helped and hindered the construction of the system, and pointing out 

directions for future research. 
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Chapter Two 

PCMail - the Centralized Mail Repository 

Not of the letter, but of the spirit: 
for the letter killeth, but the spirit giveth life. 
-II Corinthians 8:6 

Oui, cela etait autrefois ainsi, 
mais nous avons change tout cela. 

(Yes, it used to be that way, 
but we have changed all that) 

-Moliere 

This chapter briefly describes the rationale for a mail repository and the structure of a centralTzed 

implementation. First, I distinguish between the repository model and transport model of mail 

service, describe the division of the overall mail system into the repository and agents, and 

differentiate the repository from external mail systems. Then, I describe the structure of the 

repository and its communications protocols, and outline the rationale for a distributed 

implementation of a repository. 

The presentation in this chapter 1s based on an existing centralized mail repository, called 

PCMail [7]. PCMail is not a contribution of this thesis; rather; PCMail provides a background 

and motivation for this thesis. 

2.1 Repository vs. Transport Models 

In a repository model of mail service, a central server holds a user's messages until the user 

explicitly deletes those messages. Messages read by the user are copies that do not affect the 

status of the repository. In a transport model of mail service, a central server only holds a user's 

messages until the user has had an opportunity to copy those messages into the user's personal 

computer (PC). After being read, the messages are no longer stored at the server - they have 

been "transportedN to the user's PC. Grapevine [5] is an example of a mail system that was built 

as a mail transport service; the Grapevine servers delete a user's messages after they have been 
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sent to a user's PC and acknowledged. 

In a transport nmdel, a retained message is stored only on the PC; in a repository model, it is 

also stored on the server. Thus, a repository service typically requires more storage at the server 

than a transport_service. However, a repository service is typically more reliable and flexible than 

a transport service. A repository is more reliable because a catastrophe on a PC, such as a disk 

crash or the loss of a floppy disk, does not result in the loss of mail on the repository; and a 

repositQry is more flexible because a user can read mail from several different PCs without 

spreading the actual messages over those machines, thereby fragmenting the user's mail state. 

PCMail is based on a repository model of mail service. 

2.2 The Repository, Agents, and DMSP 

PCMail is divided into two pieces: the repository and the agents (see Figure 2-1). 

User 

t 
Agent 

t-t Network 
-1----i=====+ 

Repository 
system 

/ 
/--------------

•outside 
World· 

(External Mail 
\ Systems) 

\ ______ _ 
Figure 2-1:A User, an Agent, and the Repository 

The repository holds all of the messages that have been delivered to a user but not yet discarded. 

The repository also holds any information required to deliver messages correctly. The 

information kept at the repository for a user is called that user's global mail state. 

Agents2 are perscnal computers that provide a user-friendly interface to the repository, allowing 

users to read and send mail. An agent may store information on its disk(s) to improve 

performance or to allow operation of the agent while not connected to the repository. Each 

agent's stored information serves as a cache, and is called its local mail state. 

2The PCMail documentation uses the term client instead of agent. I prefer agent, since otherwise it is ea.sy to get 
confused between a client of the system (a user) and a client of a server (an a.gent). Also, the term agent more clearly 
expresses the use of a personal computer a.s an a.gent of a. user, communicating with the repository. 
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The protocol for communication between an agent and the repository is called the Distributed 

Mail System Protocol (DMSP) [7]. DMSP was defined as the interface between an agent and a 

centralized repository. If the distributed repository is to have the same interface to agents as the 

centralized repository, it must use DMSP without changes. Section 2.6 describes DMSP in more 

detail, and appe.11.dix A contains a complete specification of the protocol. 

2.3 Repository and External Mail Systems 

The repository is not only a system for sending mail among- repository users, but also" a system 

for sending and receiving mail between repository users and users of other mail systems. These 

other mail systems are collectively referred to as external mail systems. External mail systems 

communicate with the repository by means of a standard protocol, the Simple Mail Transfer 

Protocol (SMTP) [36]. SMTP is not used within the repository at all; it is used only as an 

interface to other mail systems. SMTP does not place any more constraints on the repository's 

operation than DMSP does, so I will not describe it further. 

2.4 Rationale for PCMail 

The design of PCMail is driven by three observations: 

1. Personal computers are portable. This means that they are not always attached to a 
network, but still must be usable when not attached. For example, some personal 
computers could be used to read and compose mail while the user is travelling. 

2. Personal computers are poor in resources. They rarely have more than one megabyte 
of memory and a few hundred kilobytes to a few megabytes of ma.ss storage. In 
addition, they may have access only to relatively low-speed communications (such as a 
300-baud modem link as opposed to a IO-megabit Ethernet connection). 

3. Personal computers are relatively inexpensive. It is plausible that a person could own 
and use more than one (for example, have one at home and one in the office). Also, 
students may use different personal computers at different times. 

Each of these observations leads to a feature of the design of PCMail. The local mail state allows 

operation when not connected to the repository (for example, when travelling) and helps to 

improve the response time of the system if the link to the repository is slow. 

Since a personal computer may not be able to store the user's entire global mail state, there must 
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be a. shorthand way of representing the global mail state. In PCMail, each message has a 

deBcriptor, which is a short ( about 100 bytes) summary of information about the message. 

Usually an agent will be able to store all of the descriptors for a mailbox, even if it cannot store 

all of the messages in that mailbox. Based on the information in the descriptors, the user can 

choose which messages to fetch into the local mail state if they will not all fit. 

Synchronization is performed between an agent and the repository so that a user can see a 

consistent view in spite of using several PCs. 

2.5 Naming 

Each user has a unique user _id. A user can have any number of mailboxes. Each mailbox has 

exactly one box_name, which is unique among the mailboxes of its user, and zero or more 

addresses, each of which is unique within the entire repository. An address points to a single 

mailbox - addresses are not used for mailing lists. Mail delivery is based on addresses; mail 

retrieval is based on box_names. A user's agents each have exactly one agent_id, which is unique 

among the user's agents. The messages in a mailbox each have exactly one msg_id, which is 

unique in that mailbox. 

Mail sent to an address is delivered to the mailbox with that address. A mailbox with more than 

one address receives mail sent to any of its addresses, and a mailbox with no address cannot 

receive mail (such a mailbox may be useful as an archive for old mail, to organize messages 

already received). 

Figure 2-2 shows two users, "Bert• and "Ernie," each with two mailboxes. Bert has a mailbox 

named "main" and one named "junk". Ernie also has one named "main•, and one named 

"more-mail". If someone sends mail to "Bert", then it goes to Bert's "main" mailbox, because 

that's where the address "Bert" points to. Similarly, mail to •Ernie" goes to Ernie's •main• 

mailbox. Ernie's "main" mailbox also receives mail sent to the addresses "net-help" and "bert

stuff". The addresses of mailboxes are not necessarily related to their names or their owners. 

"Bert" goes to Bert and •Ernie" to Ernie only because of a sensible administrator who set up 

addresses that way. Note; too, that Ernie's "more-mail" mailbox has no addresses, and cannot 

receive incoming mail. Ernie might use it to save previously-received mail. 

A user _id and box_ name together uniquely identify a single mailbox in the repository. Similarly, 
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User_id: Bert 

Bo:x:_name: main 

Address(es): Bert 

junk 

bert-junk 

Ernie 

ma.in 

Ernie 
net-]lelp 
bert-stuff 

more-ma.il 

Figure 2-2:Two Users, Each With T~o Mailboxes 

a user_id, box_name, and msg_id together uniquely identify a single message in the repository. 

When a user logs in to retrieve mail, that user's user_id is implicitly used as the user_id for all 

subsequent operations. 

The repository stores information about changes for each [agent_id, box_name] pair of a user. 

For a given user_id, a [agent_id, box_name] pair identify the messages that have changed since 

the agent last examined the mailbox. A message can change only by 

• arriving for the first time, 

• having one or more flags change state, or 

• being expunged (permanently removed). 

2.6 DMSP 

The Distributed Mail System Protocol (DMSP) [7] allows an agent to 

• login and logout, 

• fetch the descriptors that have changed smce this agent last connected to the 
repository, 

• fetch a specified range of descriptors by their msg_ids, 

• fetch a particular message's text by its msg_id, 

• set one of several flags on a message identified by msg_id 
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• expunge the messages that are flagged as O deleted N , 

• send a me~ge, 

• create, delete, and list mailboxes, 

• create, del~e, and list addresses for a particular mailbox, 

• create, delete, and list agents usable by this particular user, 

Appendix A provides a full definition of DMSP. Although not explicitly defined by the protocol, 

the following assumptions about reasonable mail semantics are built into the protocol and the 

existing centralized implementation: 

• Messages that have arrived in a user's mailbox persist until deleted and expunged. 

• Messages that have been expunged do not reappear. 

• Users, agents, and mailboxes do not appear or disappear except when created or 
destroyed, respectively. 

• The msg_id-to-message binding is immutable: a msg_id 1s never reused, and always 
refers to the same message. 

• Within a mailbox, the msg_id's form a total ordering, m order of message arrival. 
There are no gaps in the sequence of assigned msg_id's. 

• The effects of all write operations, such as setting flags on messages, are apparent 
immediately (on next read). 

• Concurrent operations on a single user's mailbox are not allowed. 

I make these assumptions explicit since they are a part of the interface that a distributed 

repository must present to agents, and they complicate the task of implementing a distributed 

repository. The syntax and semantics of DMSP define the interface that a distributed repository 

must present to agents. The system's behavior must not change radically, even if such changes 

would make the distributed repository more straightforward or more efficient. 

2. 7 Rationale for a Distributed Repository 

The PCMail architecture has been realized in a system built at the MIT Laboratory for Computer 

Science. The repository is implemented in C and runs under 4.2 Berkeley Unix on a single 

VAX-11/750. Users with IBM PC/AT computers can connect to the repository machine in order 

to access mail. While this system is effective for the current user community, there are limits to 

17 



its usefulness for a large community. It is not possible for more than a few dozen users to be 

connected at any one time, and mail service is unavailable whenever the single repository machine 

crashes or is taken down for maintenance. 

When the dem~ds of the community overwhelm a single machine, the community will require 

either a larger machine or multiple machines. At some point, a single large machine is simply a 

bad choice: it still represents a single point of failure (to an ever-larger number of users), and may 

be more expensive than multiple smaller machines [11]. 

Consider a situation in which the user community has grown to the point where two or more 

machines must be used. One way to use two or more machines is to run a centralized repository 

on each machine. With centralized repositories, the large community must be partitioned into 

several groups, each group using a different repository. However, this is a poor organization for a 

multiple-computer application. While failure of a single machine does not deny service to the 

whole community, any individual user is still served by only a single machine and sees no 

improvement in availability over the old repository. Further, the static allocation of users to 

particular machines means that some repository machines may be overloaded while others are 

lightly loaded. With a collection of centralized repositories, there is no way to reassign users 

dynamically to other machines. Finally, the partitioning of users is typically reflected in the 

addressing structure (with users addressed as, 0 user@machine8" rather than simply •user"), 

making the system look even less like a single large repository.3 The capacity of computers forces 

the name space to be partitioned at a finer grain than might be otherwise desirable. 

The problems of centralized repositories are avoided if the rnail repository is a distributed 

program, instead of a collection of single-machine programs. Copies of respository information 

can be kept on more than one node so that the information can be read and written in spite of 

hardware failures and maintenance. Machines can be treated as a pool of processors, each having 

roughly equal access to resources. When a machine fails, a user's agent can connect to another 

machine; this may even be accomplished quickly enough that a user doesn't notice. Further, 

users need not be assigned to already-overloaded repositories in order to access information stored 

there. Finally, the repository provides a single large name space that supports a large user 

community. The division of the large name space into smaller, realizable name spaces 1s an 

3Ma.ny organizations with multiple computers supporting a large user community manage to a.void this naming problem 
by building a small distributed database to do it. Ea.ch ma.chine has a local data.base for finding the ma.chine assoca.ted 
with a particular user, a.nd a.II ma.chines have identical copies of the data.base. This is essentially an ad hoc replication 
technique, serving the same function as replication of registries in the distributed repository (see chapter 4). 
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Chapter Three 

The Distributed Repository 

Nothing must pass this line 
Unless it is well-defined 
You just haw. to be resigned 
You 're crasli,ng by design. 
-Pete Townshend 

So near, and yet so far. 
-Alfred, Lord Tennyson 

This chapter presents a simplified view of the design and implementation of the distributed 

repository. The distributed repository is described as a distributed implementation of the 

centralized repository outlined in chapter 2. In this chapter I simply assume that components 

rarely fail; chapters 4 and 5 describe the replication and reconfiguration techniques that support 

this assumption. 

I first describe the programming language Argus and the features it provides for building 

distributed programs. Then, I briefly sketch an architecture for a large distributed system like 

MIT's Project Athena and consider its implications for a distributed repository. Having 

presented the language to be used and the environment for the repository, I present the goals for 

the system and the tradeoffs chosen to achieve a good overall system. I present the overall 

architecture and data structures of the distributed repository, and give some examples of how the 

components of the system interact. 

3.1 The Programming Language Argus 

Argus is an integrated programming language and system designed and implemented by Barbara 

Liskov's group at the MIT Laboratory for Computer Science. Argus is intended to support 

distributed programs that need reliable, consistent storage but that do not have severe real-time 

constraints. The distributed repository is an example of such a distributed program, so the 
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features of Argus should help in the construction of the distributed repository. Argus is fully 

described in [28, 29]; this section presents the features of Argus important to the distributed 

repository. 

The key constructs of Argus are guardians and actions. Atomicity of actions 1s ensured by 

shared atomic objects. The following sections describe these in more detail. 

3.1.1 Guardians 

A guardian encapsulates a resource such as a hardware devi~e or a database. Guardians are the 

unit of failure; they either function correctly or fail completely (in the latter case they crash). 

Guardians provide handlers, which are objects like procedures that can access the resource 

encapsulated by the guardian. Handlers are invoked by remote procedure call, and arguments 

and results of handler calls are transmitted by value [18]. Like other objects, guardians have 

state; a guardian's state consists of a volatile state ( cheap but lost in a crash) and a stable state 

( expensive but survives crashes). The guardian's stable state survives crashes with an arbitrarily 

high degree of certainty [26]. After a crash, a guardian recreates its volatile state from its stable 

state by executing recovery code defined by the guardian's implementor. A guardian executes on 

only a single node, but a node may be able to support more than one guardian executing at a 

time. 

A guardian type provides one or more creators. A creator is a special kind of procedure that 

creates a new instance of a guardian and initializes its stable state. A guardian is an active 

object: unlike other objects, a guardian has multiple internal processes. Some of these processes 

are created to service calls to the guardian's handlers (a new process for each incoming call), while 

others may be created by the guardian to perform background tasks independent of the handler 

workload. 

All Argus objects are local to a single guardian, except for guardians, nodes, creators, and 

handlers. Transmission of a local object to another guardian is performed by sending an abstract 

value that represents the object. Thus, the recipient of a transmitted object can mutate it 

without affecting the copy held by the the sender. Guardians and handlers are transmitted by 

reference: all •copies• of the guardian or handler refer to the same object. A change to the 

guardian (for example, mutating its state or destroying the guardian) can affect all of the clients 

of the guardian or handler. 
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Guardians have separate address spaces: it is impossible for a guardian to have a reference to an 

object local to another guardian. Guardians are relatively large and expensive objects, so they 
-

are used to encapsulate collections of objects rather than single objects. A reference to an object 

at another guardian must consist of a reference to the remote guardian and some tag to 

distinguish amoRg the objects at that guardian. Thus, data structures that are intended to span 

guardians may be more complicated than data structures contained entirely within a single 

guardian. 

3.1.2 Actions 

Actions help to mask the effects of concurrency and failures. Actions can help in this way 

because their execution is atomic. Atomicity is composed of two properties, indivisibility and 

recoverability. 

Actions are indivisible, meaning that the execution of one action never appears to overlap or 

contain the execution of another. Since Argus actually permits concurrent execution of actwns, 

such executions are serializable: that is, the concurrent execution of a set of actions is equivalent 

to some serial execution of the actions [14]. 

Actions are also recoverable, meaning that the overall effect of the action is all-or-nothing: either 

all of an action's effects take place, or none do. Actions either commit or abort. When an action 

commits, its changes are made permanent, and become accessible to other actions; when an action 

aborts, all its changes are undone. 

Actions in the Argus system can be nested: an action may have subactions, which may perform 

some computation and commit or abort without committing or aborting the parent action. An 

abort by a parent action undoes all the changes performed by any subactions, even those that 

committed. A guardian's stable state is only modified when a topaction (a top-level action - the 

root of a tree of nested actions) commits [34]. 

3.1.3 Atomic Objects 

In Argus, atomicity is provided by the objects shared by actions. Immutable objects are always 

atomic (no action can see changes made by another action since the object never changes). To 

provide atomicity for mutable objects, each such shared object must provide its own concurrency 

control (by locking) and recovery (by some scheme of keeping versions). In addition, each such 

object must allow for resilience through logging data to stable storage. Providing appropriate 
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locking and recovery for objects is expensive, so Argus distinguishes between atomic obiects and 

non-atomic objects. Actions are guaranteed to be atomic only when all the objects shared by 

those actions are atomic objects. Argus provides several built-in atomic types. These provide 

atomicity through a read/write locking scheme and versions. 

In read/write locking, several actions can concurrently read an object's value, but an action 

intending to modify the object must ensure that it has exclusive access to the object. An action 

modifying an atomic object actually modifies a copy of the object's state, called the current 

version. If the modifying action commits, the current version becomes the object's new state; if 

the modifying action aborts, the current version is discarded._~and the old state (the base version) 

remains the state of the object. Actions hold locks until commit or abort (strict two-phase 

locking) to avoid cascading aborts, where the abort of an action forces the abort of other actions. 

A subaction's locks are not released if the subaction commits: instead, the locks are inherited by 

the parent action [34]. 

The operations of some abstract objects allow more concurrency than can be achieved with simple 

read/write locking. For example, a mailbox might allow one action to deliver a new message 

while an old message is being read by another action, rather than requiring the delivering action 

to obtain a write lock on the mailbox. Since read/write locking disallows this kind of 

concurrency, the built-in atomic types can limit the performance of the system. To circumvent 

this problem, Argus allows the construction of user-defined atomic types that allow greater 

concurrency than the built-in atomic types. [44] 

3.2 The Environment of the Repository 

The distributed repository is planned for a distributed system similar to MIT's Project Athena. 

The network architecture is composed of a spine network and numerous local clusters. Each 

local cluster consists of client workstations and servers, connected by some local-area network. 

Each local cluster is then connected to the spine. The spine carries only inter-cluster traffic: there 

are no clients or servers connected directly to the spine. The entire system is fairly compact, 

since MIT does not have a large campus. The cost of a remote call using the local-area 

network(s) is high compared to the cost of a local call on the same machine, but the difference 

between an intra-cluster call and an inter-cluster call is comparatively small. Thus, there is no 

important sense in which one remote machine is •closer" than another. 

23 



Many of the workstations will be in public areas, available to all who wish to use them. In 

particular, students will often use different workstations at different times. Students with 
-

personal computers will either hook them directly to available ports in local clusters or call up 

available workstations by phone lines. 

3.3 Building a Distributed Mail Repository 

Argus is the main tool for building a distributed repository, and Project Athena forms an 

environment for the operation of such a repository. I nQW consider the design goals for a 

distributed mail repository and discuss choices to be made in designing and implementing the 

repository. 

3.3.1 Design Goals 

The set of services to be provided by the mail repository is specified by the protocols that it must 

support: DMSP [7] for communicating with agents, and SMTP [36] for exchanging mail with 

external mail systems. There are a number of higher-level goals to be considered in the design 

and implementation of these services. This section describes the design goals for the distributed

repository. 

First, a mail transaction is defined as one of the following: 

• a single synchronization of mail state, 

• a single mail message fetched, or 

• a single mail message sent. 

The repository must be highly available, meaning that a given mail transaction has a very high 

probability of being able to run to completion in spite of failures within the repository (Psuccesa is 

close to 1). 

The repository must be scalable, meaning that it can gracefully grow or shrink by adding or 

removing hardware and software resources. The repository should serve communities of up to 

about 20,000 users - large enough to support the entire MIT community 4. 

4MIT bas roughly 9000 students, 1000 faculty, 2000 professional and research staff, and 5000 support and supervisory 
staff. 
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The repository must be efficient: its functionality and speed must be comparable to the 

centralized repository implementation (PCMail) to attract users. In addition, it must not require 

excessive processor power or storage, or it will not be attractive to support the system for large 

communities of users. 

The repository should present a conaiatent view of mail state to its users. Users should not be 

aware of whether the repository is implemented as a centralized or distributed system, except for 

the higher availability of a distributed system. Therefore, the repository should not allow 

anomalies to arise from crashes or network partitions. This contrasts with a system like 

Grapevine [5, 40]. In Grapevine, updates are made at a single location and propagated through 

the system. This means that it is possible for the same name to be added (with two different 

bindings) at two different sites. The addition of both names succeeds, but subsequently one will 

overwrite the other (based on a total ordering of creation times in the system). This may come as 

a surprise to the •loser,• especially if that person is unaware of Grapevine's implementation as a 

distributed system. 

The repository should continue to operate reliably in spite of node crashes and communication 

failures. In particular, the repository should neither lose a message once the message has been 

accepted for delivery, nor lose a message from a user's mailbox after it has been delivered. An 

acknowledgement of a (DMSP or SMTP) request must mean that the appropriate changes have 

been incorporated into the repository's stable state. This reliability must be provided in the face 

of anticipated hardware or software changes (maintenance), and unanticipated hardware failures 

( crashes). The repository is not intended to tolerate unanticipated software failures, design 

failures, or operation failures (for example, software errors or errors by the managers and 

operators of the system). 

3.3.2 Tradeoffs 

Having enumerated the design goals for the distributed repository, I now consider what 

compromises are necessary. 

To achieve high availability, the components of the system must be replicated, so that the failure 

of a single node does not make a needed component unavailable. In addition, the components 

must be constructed so that they can be replaced without making the system unavailable. 

Replication can improve the reliability of the system, since the permanent loss of a replica does 

not necessarily mean that the data is permanently lost. Unfortunately, replication reduces the 
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scalability and efficiency of the system because users require more resources than they do in a 

non-replicated system. In particular, replication of large data structures like users' mailboxes 

may be uneconomical. 

To achieve scalability, the system must be constructed from modular components that can be 

created, destroyed, and rearranged to meet changing needs and hardware configurations. To 

avoid running out of space or time at a node, no physical data structure can be allowed to grow 

as fast. as the user community; it must be possible to partition all such data structures into 

smaller entities that can be distributed across nodes. Since systems can shrink as well as grow, it 

is clear that the data structures and algorithms required to support a large community must not 

have excessive overhead when used to support a small user community. Given components 

designed for scalability, replication may be somewhat easier since there are identifiable modules 

that may be replicated. Efficiency may be degraded if there are too many modules or they are 

scattered too far apart, causing common computations to require many expensive remote calls. 

Efficiency requires minimizing the amounts of storage, computation, and communication 

required. The tradeoff between space and time is well known: a function can usually be made 

faster at the expense of storage, and vice versa. Since communication between nodes is expensive 

compared to computation ( even on a local-area network), efficiency is improved by caching. A 

cache stores the results of expensive operations in order to save the cost of recomputing those 

results. Common operations should be optimized at the expense of less common operations. 

Full consistency, so that the distributed system behaves exactly like a centralized system, may 

require that the system be unavailable rather than give out inconsistent information. A 

distributed system that presents functionality exactly equivalent to a centralized system may not 

be more available than the centralized system, and may even be less available, since it is exposed 

to more possibilities for hardware failure. The challenge in designing the mail system is to trade 

off consistency for performance: to weaken the user view as little as possible in order to gain as 

much availability and efficiency as necessary [30]. 

For reliability, Argus (see section 3.1) provides stable storage and atomic actions that allow a 

distributed program to function reliably in spite of node crashes and communication failures. 

Reliability helps achieve consistency, availability, scalability, and manageability by providing a 

simpler model on which all of those can build. However, the mechanisms provided by Argus to 

achieve reliability involve a certain amount of overhead that reduces the efficiency of the system. 
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The remainder of this chapter and chapters 4 and 5 describe the system and its actual tradeoffs 

in full. First, I summarize the major tradeoffs involved. In the distributed repository, multiple 

guardians are used for availability and scalability. Use of multiple guardians means that 

expensive remote calls are necessary. To maximize efficiency, the repository is designed to require 

only one remote. call for each user request wherever possible. If more than one remote call is 

required for a request, the multiple calls are performed concurrently if possible to increase 

efficiency. The built-in actions and atomic types of Argus 3:re used in the implementation for a 

more reliable and simpler system. The system's workload is made of short actions to increase 

concurrency, and some user-defined atomic types are also used to gain further concurrency. The 

distributed repository has a weaker view of consistency than ·the centralized repository, especially 

in the presence of partitions: this weaker view allows the distributed repository the flexibility to 

behave either exactly like the centralized repository or in a somewhat inconsistent way for higher 

availability. This inconsistency appears only during a partition of the underlying network, and 

only for users who move from one side of the partition to the other. To such users, the system 

will seem to be unreliable since previous work has been N lost N • 

The next section discusses the functions of the repository and how these are divided into different 

guardian types. It also explains the interaction of the components, demonstrating the choices and 

tradeoffs made. 

3.4 The Design of the Repository 

The repository stores messages, provides a DMSP interface for agents, provides an SMTP 

interface for external mail systems, and names objects (messages, mailboxes, agents, addresses). 

The repository design uses Argus guardians to modularize the repository's functions, one type of 

guardian for each of these services. This modularization improves scalability at the cost of 

efficiency. Scalability is improved because guardians can be created or destroyed independently 

of each other. Unfortunately, some efficiency is lost since guardians must communicate by 

remote procedure call protocols, even if they are executing on the same node. Whenever possible, 

information is cached to avoid unnecessary remote calls. 

Each of the repository functions is realized as a separate type of guardian: 

• a mailsite stores messages; 

• a frontend presents a DMSP interface to agents; 
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• an alien presents an SMTP interface to other mail systems; and 

• a registry provides naming. 

See figure 3-1. 

Agents 
speaking<-> 
DMSP 

Registry 

--->□<--

Frontend 

RPC ~RPC 
--->L__J<--

Mailsite Alien 

•outside world• 
<-> speaking SMTP, 

etc. 

Figure 3-1:The Guardians of a Distributed Repository 

To accomodate heavy usage efficiently, a distributed repository for a large community may 

include more than one of each of these guardians. However, this use of multiple guardians is not 

a replication of resources for availability. In this chapter, I assume that guardians do not crash; 

Chapter 4 relaxes that assumption. In this chapter, I use multiple guardians only to divide up 

work for greater efficiency. The remainder of this section considers each of these guardian types 

in more detail. 

3.4.1 Mailsite 

A mailsite actually stores messages in mailboxes for users. A mailsite contains a number of 

mailboxes, each of which is identified by a unique box_id. Each of these mailboxes may contain 

messages, identified by msg_id. The msg_id of a newly-arrived message is assigned by the 

mailbox, to ensure that it is the next msg_id in sequence. 

Each mailbox keeps track of messages that have changed since each agent last examined the 

mailbox. This information is used to synchronize the mail state at an agent with the mail state 

at the repository. Each mailbox contains a collection of update vectors, one for each agent_id. 

An update vector is an ordered list of msg_ids; these msg_ids correspond to the messages in the 

given mailbox that have changed state since the last time the agent reset the update vector. 

Recall that a message can change only by arriving for the first time, having one or more flags 

change state, or being expunged. 
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When a message arrives for the first time, the msg_id is added to the update vector of every 

agent belonging to the user. When a flag is changed or the message is expunged, the msg_id is 

added to the update vector of every agent except the agent making the change. 

The state of a ~ailsite is stable. There may be one or more mailsites in the system, and each 

mailsite may hold an arbitrary collection of mailboxes. There is no requirement that all of a 

user's mailboxes be at the same mailsite. 

3.4.2 Frontend 

A frontend listens on a well-known port for DMSP connections from agents, forking a process to 

service each new connection5. For each DMSP command sent by an agent, the frontend 

interprets the command and calls other guardians as needed to perform the DMSP action 

requested. The frontend is an interface between the non-atomic world of network protocols and 

the atomic world of Argus remote procedure calls. Each DMSP operation is processed as a 

separate topaction, and that topaction must commit or abort before any status information is 

sent back to the agent. A frontend caches information about a user's global mail state and 

registry information to speed up DMSP operations. For example, a frontend may cache 

information about which registry contains which names, or it may cache new messages from a 

user's mailbox on the assumption that the agent will ask for them. However, no harm is done if 

this cached information is not needed or if the frontend crashes and loses the information. Thus, 

all of the cached information is volatile. Unlike the other guardian types, a frontend has no 

stable state, and may be created or destroyed easily since there is no stable state to initialize or 

preserve. 

A frontend provides no creators or handlers other than a simple creator that creates a new 

frontend. 

3.4.3 Alien 

An alien mailer (hereafter, "alien N) listens on a well-known port for SMTP connections from 

external mail systems, forking a process to service each new connection. The alien interprets the 

5For those unfamiliar with well-known ports and connections, the principle is much the same as used in Citizen's Band 
(CB) radio. In CB, parties talk on a specific initial channel long enough to agree on which other channel to use for their 
conversation, then switch to that channel. Correspondingly, the frontend has a process which listens on a fixed, agreed-on 
port long enough to establish an agreement with the caller as to the new port to use for the connection. Then the 
frontend forks a process to service the requests coming from the new connection. 
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addresses provided with a message and constructs a message object from the information sent on 

the SMTP connection. Since the repository is a final destination for mail, not an internet router, 

the alien does not accept mail for users not listed in the registry. Like the frontend, the alien is 

an interface between the non-atomic world of network protocols and the atomic world of Argus 

remote procedure calls. Unlike the frontend, incoming commands are not processed immediately; 

instead, after the addressees of a message have been looked up in the registry, the message 1s 

placed in a stable queue to be delivered by a delivery proce~ that runs periodically. Successful 

delivery of a message removes it from the stable queue. In addition to this incoming SMTP 

service, an alien also provides an outgoing SMTP service when a user of the repository sends a 

message to a user outside the repository. Again, this service consists of simply placing the 

message m a stable queue from which messages are delivered periodically. To avoid the 

complications of routing internet mail, the current implementation of an alien provides outgoing 

SMTP service by simply delivering outgoing messages to the local Unix sendmail daemon, which 

then forwards the messages to their final destinations. 

3.4.4 Registry 

A registry provides a mechanism for naming users, mailboxes, and agents. It is used by frontends 

and aliens to find the appropriate mailsites for incoming mail; frontends also use the registry to 

find mailboxes from which mail should be fetched. For a large community, the database required 

for naming will be quite large. Keeping all of the naming information in a single registry 

guardian may lead to performance problems. Thus, it must be possible to divide registry data 

among two or more guardians. A registry guardian will contain a portion of the database (its 

local database) and a registry_guardian_table mapping other p·ortions of the database to other 

guardians. The registry _guardian_ tables are identical across all registries: all registries agree on 

which registries contain which names. When asked for information about a name in its local 

database, a registry guardian will return the requested information; when asked for information 

about a name outside its local database, it will look in its registry _guardian_ table and return the 

appropriate guardian, so that the client can call there instead. Clients of the registry -

frontends and aliens - can cache the registry _guardian_table as a hint, and update it when a 

request to a registry fails because it doesn't hold the information for that name. 

The database is divided into local databases using a scheme that requires only a small amount of 

information for the registry guardian table. Since the user _ids of the system have a natural 

ordering (they are character strings), the database is divided into ranges of user_ids. For each 
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range, only the endpoints of the range need to be stored in the registry guardian table. To 

change the division of data between registries, a transaction must be executed that updates the 

tables at all of the registries. Alternately, the necessary information could be propagated lazily 

between nodes. Such redivisions of the data should occur very infrequently. 

Using the registry _guardian_tables, the names in the system are divided among registries without 

affecting the naming structure. This division is superior to the scheme for names used in 

Grapevine (RNames). Grapevine RNames have two parts: the second part explicitly names a 

Grapevine registry and the first part is the name within that registry. For example, a Grapevine 

RName like •}.1l)ay.lcs• indicates that the •Ics• registry contains the name •}.1l)ay•. This is a 

simpler scheme as far as the system is concerned, but is a poor choice for the users of the system. 

Grapevine RNames force users to be concerned with the internal structure of the system and force 

a user's name to change when moved from one registry to another. 

The repository's scheme of dividing registry information does not allow individual reassignment 

of a name to a particular registry; for example, it is impossible to move a particular user's names 

into a particular registry guardian that is •closer• to that user's location. However, recall from 

section 3.2 that the notion of •closer• has little relevance for a system like Project Athena, and 

that most students will have no particular fixed location for receiving mail. Thus, the 

repository's method for dividing registry information should be effective. 

A registry contains a table mapping user_ids to various information for a user and a table 

mapping addresses to mailboxes. The information for a user includes a list of agent_ids and a 

list of box_names, and each such box_name also maps to a mailbox_interface. Clients treat a 

mailbox interface as if it were a container for the messages in the mailbox, but messages are 

actually stored at mailsite guardians. The implementation of a mailbox_interface object turns 

operations on the •mailbox• into remote operations on the mailsite that stores the actual mail 

state. This hiding of the mailsite is important for replication, to be discussed in chapter 4. 

3.5 Scenarios 

This section outlines how the distributed repository services requests from agents. The scenarios 

are intended to give a flavor of how the repository works, and provide examples to clarify later 

discussions of replication and reconfiguration. 
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There are three basic scenarios that occur most often in the repository. These are: 

• sending mail - an agent presents the repository with a message to be delivered. 
Some or air of the addressees may be outside the repository. 

• Bynchronizing mail Btate - an agent synchronizes its state with the global mail state, 
fetching changed descriptors and new messages, altering states of flags and update 
vectors to reflect the synchronization. This is how a user reads new mail from the 
repository. 

• delivering external mail - an external mail system contacts the repository with a 
message to be delivered to one or more repository addresses. 

The following sections discuss the repository's behavior for each of these scenarios. 

3.5.1 Sending Mail 

1. An agent connected to a frontend (already logged in} sends a DMSP SEND-MESSAGE 

command, including the text of the message in network standard format. The 
standard format is described in RFC-822 [8]. 

2. The frontend receives the command and message. 

3. The frontend checks the •From:• field of the message against the identity of the 
authenticated user. If the •From:• field is incorrect, the frontend sends a FAILURE 
message to the agent. 

4. The frontend parses the recipients from the •To:• field of the message. 

5. As a single topaction, the frontend does the following for each recipient of the 
message: 

• The frontend checks whether the address is a local repository address or an 
external address. An external address is syntactically distinct from a repository 
address. The current repository treats all addresses containing '@' (as in 
"mday@xx.lcs.mit.edu") as external addresses, and treats all other addresses as 
local addresses. 

• If the recipient is a repository address, the frontend looks up the destination 
mailbox at the appropriate registry and puts the message in the mailbox. 
Delivery of a message to a mailbox changes the update vectors of that mailbox, 
as described in section 3.4.1. If any failure occurs in this process (for example, 
the address doesn't exist, or the mailbox is inaccessible} the frontend aborts the 
topaction and sends a failure message to the agent. 

• Otherwise (when the recipient is an external address), the frontend sends a copy 
of the message to an alien, where it is queued up to be sent out. 

Aborting the topaction on failure of delivery is a safe course of action because the 
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agent should still have a copy of the message to be sent until it receives an OK from 
the frontend. 

6. If the topaction committed, the frontend sends an OK message to the agent. 

3.6.2 Synchroni•ing Mail State 

1. An agent connected to a frontend (already logged in) sends a DMSP 
LIST-MAILBOXES command. 

2. The frontend starts a topaction and asks a registry for a list of mailboxes. Then it 
gets information from each of these mailboxes ( actually querying the appropriate 
mailsite) about 

• the next available message identifier in that mailbox, 

• the number of messages in the mailbox, and 

• the number of unseen messages in the mailbox. 

After committing the topaction, the frontend assembles the received information to 
send back a DMSP MAILBOX-LIST reply. If the topaction aborted, a FAILURE reply 
is sent. 

3. The agent corrects its local mailbox list to match the new information. 

4. The agent fetches a collection of changed descriptors: 

a. The agent sends a DMSP FETCH-N-CHANGED-DESCS command, specifying a 
mailbox and an upper bound ub on the number of changed descriptors to send. 

b. The frontend starts a topaction and fetches the first ub changed descriptors from 
the mailbox in increasing msg_id order ( or all the changed descriptors, if there 
are fewer than ub). After committing the topaction, the frontend returns a 
DMSP DESCRIPTOR-LIST reply containing this information. If the topaction 
aborted, a FAILURE reply is sent. 

c. The agent updates its local descriptor list to match the new information, and 
sends a DMSP RESET-N-DESCS command to inform the repository that it 
successfully received the last set of changed descriptors. 

d. The frontend starts a topaction and resets n descriptors of the mailbox, so that 
the same agent issuing a DMSP FETCH-N-CHANGED-DESCS would not get the 
same descriptors. It then commits the topaction and sends an OK reply. If the 
topaction aborted, a FAILURE reply is sent instead. 

5. Steps 4.a-4.d may be repeated for all of the mailboxes owned by the user. The process 
of fetching descriptors may be interleaved with the process of fetching messages, 
described by steps 6.a-6.d. 
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6. To fetch the text of a message (new or old): 

a. The agent sends a DMSP FETCH-MESSAGE command, specifying the mailbox 
and tlie message identifier within that mailbox. 

b. The frontend starts a topaction and fetches the message from the mailbox. 
Afte~ committing the topaction, the frontend sends a DMSP MESSAGE reply 
containing the text of the message. If the message does not exist or has been 
expunged, or the topaction aborted, the frontend responds with a FAILURE 
reply. 

c. If the message's flags indicate the message is N unseen•, the agent will typically 
issue a SET-MESSAGE-FLAG command to indicate that it has been •seen•. 

d. The frontend will carry out such a command by starting a topaction and setting 
the specified flag on the message in the mailbox. If the topaction commits, the 
frontend responds with an OK; if the topaction aborts, the frontend responds 
with a FAILURE message. 

3.5.3 Delivering External Mail 

1. An external mail system opens an SMTP [36] connection to an alien. 

2. The alien behaves like any other SMTP server. The external mail system SMTP 
provides a list of destination addresses, and the alien checks each at a registry. The 
alien refuses mail for any address not listed at some registry of the repository. 

3. When the message has been received by the repository, the alien starts a topaction 
and puts the message in a stable queue. Then it commits the topaction and sends a 
positive acknowledgement to the external mail system. 

4. Periodically, the alien starts a single top action and tries to· deliver all of the messages 
in the stable queue. For each, it looks up the address at a registry to find the 
mailbox, then stores the message there. Storing the message in the destination 
mailbox changes the update vectors at the destination mailbox as described in section 
3.4.1. If a problem occurs in delivery, the undelivered message is put into another 
queue. The alien will try to deliver a message a reasonable number of times and will 
then return it to the address shown in the message's •From:• field. If the message 
can't be delivered to this address, the alien will send it to a • dead-letter office• inside 
the repository that is read by system maintainers. 
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3.6 Action Structure 

All of the topactions in the system originate m a frontend or an alien, which also serve as 

interfaces to the world outside the repository. 

There is no explicit •commit• or "abort• in the interface of the repository, so actions are not 

visible to a user. DMSP was originally defined without any notion of grouping a sequence of 

commands into an atomic action. While an Argus implementation could provide such features, it 

would be a poor approach to the problem since users could then hold locks for an arbitrary length 

of time. The design of the current system ensures that locks ..are held only long enough to provide 

an answer to a single user request. Since the system's work load is composed of these short 

actions, there is no need to invent special rules for breaking locks when they have been held too 

long [15, 41]. 

The use of transactions considerably simplifies the implementation of the repository. For 

example, a failure in the delivery of a message to a repository address aborts the topaction 

performing the delivery; a message cannot be delivered to the mailboxes of some recipients but 

not others. The user can correct the problem causing the failure and resubmit the message to be 

delivered. 

The typical request/response structure, apparent from the scenarios, is that a request is decoded 

outside the action system, and then a topaction is started. All remote calls necessary for the 

request take place within this topaction. After the topaction commits, an OK or the requested 

data is sent. If something goes wrong or the topaction aborts,_ a FAILURE message is sent. A 

positive acknowledgment sent to an agent or an external mail system means that the request has 

actually been successfully and permanently completed, so the repository cannot send an OK within 

the topaction in case the topaction subsequently aborts. 

If a topaction commits and the frontend crashes before it can send an OK to the agent, the agent 

will probably retry the request. This can be undesirable, since it may mean that a message is 

delivered more than once. It is possible to eliminate the problem of retrying, but it would require 

extensive modification of DMSP. The problem of retrying occurs only very rarely, and in 

electronic mail it is preferable to deliver too many messages than to lose a message, so the 

repository simply delivers multiple messages in such a case. 
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3.7 Summary 

The distributed ""t"epository 1s composed of a collection of guardians of four different types: 

frontends, registries, mailsites, and aliens. Frontends and aliens serve as interfaces between the 

repository and the outside world, while registries and mailsites store mot1t of the state information 

of the repository. This chapter presented the reasons for the division of the repository into these 

guardian types and illustrated their interactions for typical agent requests. The next chapters 

consider how these guardians can be replicated for higher availability and how the distributed 

repository can be reconfigured by altering the number or kind of guardians it contains. 
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Chapter Four 

Replication 

We 8hall not flag or fail. 
-Win8ton Churchill 

It '8 no big di8grace 
There '8 no lo88 of grace 
The trouble i8, there '8 alway8 
Someone there to take your place. 
-The Bangle8 

The mail repository outlined in Chapter 3 operates in much the same way as a centralized 

repository, except that the modularization of functions into guardians allows more flexibility in 

distributing the system. With four separate types of guardians, there 1s a spectrum of 

distribution possibilities, ranging from all four guardians running on a single node at one 

extreme, to each guardian running on a separate node at the other extreme. 

If all of the guardians are running on a single node, the functionality provided is equivalent to a 

centralized repository. As components are distributed, the overall availability of the system 

declines, since failure of any single node may render the system unavailable. However, if the 

repository's information is replicated so that copies are stored on more than one node, the 

information can remain accessible even if some nodes in the system fail. 

4.1 Replication of Services and Replication of State 

There are two different classes of replication techniques, both of which appear in the distributed 

repository. The simpler form of replication involves guardians that provide a stateless service. 

For example, a PC can connect to a frontend and use it to carry out commands in the system. If 

that frontend fails, the PC establishes a connection to another frontend and continues. There is 

no state in the frontend that must be maintained across connections. Similarly, an alien receives 

mail from external mail systems and sends to external mail systems. It does not provide any way 
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for clients to check the status of their mail. Abstractly, it is a stateless pipe for delivering 

messages, even though its implementation involves stable queues of messages. If an alien fails, its 

client can try t; deliver the message to another alien. Since they provide stateless services, 

frontends and aliens can be replicated as necessary in order to provide more external interfaces 

for the system. _ 

The more difficult form of replication is replication of state information. Both registries and 

mailsites contain mutable state, and this state must have some consistent abstract interpretation 

across the multiple physical copies. Registries contain the bindings for various names in the 

system, such as the names of users, mailboxes, and agents. ~ince the registry information stored 

per user is fairly small, it is reasonable to replicate all registry information. Replication of 

registry information is then a public benefit - it benefits not only the user(s) whose information 

is replicated, but also others who are trying to locate the user(s). 

Mailsites contain mailboxes, simple containers of messages. A user's mailboxes tend to be much 

larger than the information kept in a registry for that user. Rather than replicating entire 

mailsites (in the way that an entire registry can be replicated), only a few mailboxes will be 

replicated. Replication of a mailbox represents a mostly private benefit to the owner of the 

mailbox. 

This chapter discusses the techniques used to replicate registry information and mailbox 

information. The first part of the chapter describes the requirements for replication of registry 

and mailbox information. Then follows a presentation of two published methods that best meet 

the requirements of the repository. Finally, one of the replicatioa schemes is chosen to be used in 

the repository, and its implementation is described. Since an Argus remote call is very expensive 

compared to local computation, the discussion emphasizes the aspects of the implementation that 

reduce the amount of time spent on remote calls. 

4.2 Requirements 

An algorithm for replicating objects must 

• maintain consistency; 

• tolerate partitions, 

• perform well, and 
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• be reasonable to implement in Argus. 

4,2,1 Consistency 

All replication algorithms are intended to preserve some sort of consistency of the replicated data 

in spite of failures and concurrency. Our standard of consistency will be one-copy serializability: 

multiple concurrent transactions executing on replicated data must be equivalent to some serial 

execution of those transactions on a single copy of that data [8J. 

Some system implementors have argued that the transaction mechanisms required for one-copy 

serializability are too expensive, and have sacrificed one-copy serializability to increase 

performance [5]. However, Argus provides a computational model that already includes an 

efficient implementation of transactions and stable storage, so it seems sensible to start with an 

implementation that provides one-copy serializability, weakening this standard if necessary for 

performance. 

4.2.2 Partitions 

In any distributed system, there are two kinds of failures: crashes and partitions. Recall that in 

Argus, a crash means that the guardian simply ceases to function. In a partition, a guardian 

continues to function, but communications have failed so that it is isolated from some other 

guardians. In the "Athena-like" network (see section 3.2), the failure of gateways or repeaters 

may occasionally isolate local clusters from the spine network, producing a partition. Based on 

experience with existing networks, it is reasonable to assume that such partitions will occur 

infrequently and will be repaired quickly. 

If the communication links to a node have failed, other nodes cannot get a response from it; thus, 

that node appears to have crashed. It is impossible to distinguish reliably between a situation in 

which one or more nodes have crashed and a situation in which those nodes are operational but 

are isolated by communication failures. It is possible to increase the connectivity of 

communications so that partitions are very unlikely. However, it is good engineering practice to 

tolerate partitions if they should occur, rather than simply asserting that they will never occur. 

As discussed in Chapter 2, a user of the repository has certain "common-sense" expectations for 

the repository's behavior. Messages that have arrived in a mailbox must persist until deleted and 

expunged, expunged messages must not reappear, and users, mailboxes, and agents must not 

appear or disappear except when created or deleted, respectively. 
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There are several ways in which partitions can violate common-sense expectations of what is to 

occur. The first group of problems arises from a partition separating the frontend from 

registries. If the frontend cannot contact any appropriate registry at all, the agent cannot find 

any other resources (personal mailboxes, other users' mailboxes, lists of agents, lists of addresses, 

and other information). To reduce the likelihood of this sort of failure, registries must be 

replicated. Then a problem arises if the frontend cannot contact •enough• registries (where 

"enough• is determined by the replication protocol being us,ed): the user may be able to access 

information stored in the accessible registries, but that information may not be accurate. Because 

registry information is fundamental to the integrity of the repository, operations can only be 

carried out if they can access "enough• registries. 

The second group of partition problems arise when the partition separates the frontend from 

mailsites. If the frontend cannot contact the user's mailsite, the user cannot read new mail or 

delete mail held by the system. However, the mail that is cached at the user's agent PC is still 

available for reading and deleting. Changes made to the agent's local mail state can be reflected 

in the global mail state as soon as a connection can be established to the user's mailsite. If the 

frontend cannot contact other users' mailsites (to deliver mail), then mail will be queued up for 

those mailsites. For those users who must have more reliable access to their mail, mailboxes can 

be replicated on several mailsites. Then, if the frontend cannot contact •enough• mailsites 

( again, "enough• depends on the replication protocol used), the user can read information stored 

in the accessible mailsites, but it might not be accurate. Thus, new messages might not appear, 

or old deleted messages might reappear. These problems are acceptable if accompanied by a 

warning about the possible inconsistencies. 

Since the system's users are mobile (they can move from one side of a partition to another), they 

can see different views during a partition. The repository must avoid any situation in which 

message 32 exists on one side of the partition but not on the other. Any such situation that 

arises without a warning to users will be seen as evidence of unreliability or erratic behavior. 

Tolerating a partition therefore means the following: 

• The system's service may be degraded, but the repository will continue to provide as 
much service as possible to as many users as possible (the repository does not simply 
shut down during a partition). 

• During a partition, users are presented with warnings before seeing data that may be 
inconsistent. Such warnings must not depend on detecting the partition (recall that it 
is impossible to reliably distinguish between partitions and crashes). 
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• Operation during a partition does not lead to inconsistencies after the partition ends. 

This definition of tolerating a partition allows a reasonable compromise between availability and 

consistency. Replication for availability never violates the logically centralized model of the 

repository without providing a warning. The repository appears to continue operation normally 

if the partition does not affect the user of interest. The repository gives warnings if the mailbox 

information being presented might be inconsistent, and it N goes down• if it is not possible to use 

registry information consistently. In an agent-frontend protocol without provision for warnings, 

such as DMSP, service may be denied whenever a warning would be provided, or service may be 

allowed to continue. Denial of service matches the beh~vior of the centralized repository; 

allowing some inconsistency allows higher availability. The administrators of a distributed 

repository may choose which model of service to offer. 

4.2.3 Performance 

If replication is to be useful in the repository, it must not cost much in terms of performance- In 

the current Argus implementation, a remote call between guardians on the same node is only 

slightly faster than a remote call between guardians on different nodes. Recall from section 3.2 

that there is no real notion of one remote machine being •closer• than another. All remote calls 

can be considered to have comparable costs, and optimizations for calling •nearby• guardians can 

be ignored. 

4.2.4 Implementability 

Some algorithms are straightforward to implement, while others are quite complex and obscure. 

Similarly, some algorithms have a simple interface to the underlying transaction system, while 

others must interact extensively with the underlying system in order to keep track of various 

system resources and states. Since Argus provides an underlying transaction system based on 

locks, with little accessibility to the implementation of that system, simple schemes that do not 

require interaction with the transaction system will be much more easily implemented than 

complex schemes that require such interactions. 
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4.3 Choosing a Replication Algorithm 

In this section, I -examine published algorithms for replication of data. I quickly discard any that 

do not tolerate partitions and any that would be difficult or impossible to implement in Argus. 

The well-known algorithms that I do not consider further include Primary Copy [1], Available 

Copies [4], the ISIS replication strategy [24], regeneration [37], early quorum consensus 

algorithms [23, 43], True-Copy Token [33], the algorithms for distributed INGRES [42], Missing 

Writes [10], and Virtual Partitions [12]. 

General Quorum Consensus [19, 20] is probably implementJ1,ble in Argus with a great deal of 

work and ingenuity, and can tolerate partitions. However, GQC uses timestamps and logs 

instead of locks and versions, and a straightforward implementation in Argus would probably be 

unacceptably slow. Integrating concurrency control for performance (as discussed in [19]) would 

require a language other than Argus. 

LOCUS version vectors [35] can re-establish consistency after a partition is repaired, but ca@ot 

provide a warning of possible inconsistency during a partition. Thus, a version vector scheme 

does not allow administrators of the distributed repository to faithfully emulate a centralized 

repository at the expense of availability. Instead, version vectors permit behavior that is

impossible with a centralized repository. If the distributed repository did not need to emulate a 

centralized repository, version vectors might be of interest. 

Clearly the most interesting replication algorithms are the ones that do the right job and can be 

implemented in Argus. The algorithms considered are Gifford's Weighted Voting algorithm [16], 

and the Daniels and Spector algorithm for replicated directories [9]. 

4.3.1 Weighted Voting 

Gifford's weighted voting [16] provides a general method of building replicated file suites. A 

certain number of votes are divided among the physical copies of a replicated file, and operations 

on the file are required to acquire a specified quorum of these votes. Each physical copy of a file 

contains three things: the state of that data file, the version number of that state, and the 

number of votes for that copy of the file. There are valid reasons for weighting individual copies 

differently, by assigning them more or less votes; this flexibility is an important advantage of 

voting. However, I assume for simplicity that every physical copy of a file has a single vote. 

The version numbers are used to determine which copy contains the result of the most recent 
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write. A read operation must read at least r copies, where r is the size of the read quorum; the 

most recent state of the file is in the copy or copies with the highest version number. A write 

operation must first read the version numbers (from at least r copies), increment the highest 

version number to produce a new version number, and write the new state and new version 

number out to a.t least w copies, where w is the size of the write quorum. 

With read quorum rand write quorum w, Gifford's algorithm requires 

r+w > n 

where n is the total number of copies. This condition ensures that every read quorum intersects 

every write quorum, so that each read sees at least one copy of the most recent write, and that 

writes are ordered consistently. 

4.3.2 Replicated Tables 

With Gifford's weighted voting, each copy of a replicated object has a single version number. 

The version number can become a concurrency bottleneck, since all reads and writes of the object 

affect or are affected by that version number, even if the operations refer to distinct elements of a 

structured object (for example, different entries of a directory). By using more version numbers 

(one on each entry), we can increase the concurrency available. In the examples of this section, 

diagrams like Figure 4-1 will be used. 

Version 

7 Foo I 3 

I 95 Ba.r I 2 

Figure 4-1: A Table Mapping Integers to Strings 

These example tables map from an integer key to a string, and each entry has a version number. 

Figure 4-1 shows a table with two entries, one mapping 7 to •Foo• and the other mapping 95 to 

"Bar•. The first has a version number of 3 and the second has a version number of 2. 

Because of failures at sites, not all replicas will have the same state. Existence of an entry can be 

ambiguous in a directory that allows both creation and deletion of entries. Thus, deleted entries 
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must stay in the table to show that they have been deleted. To see this, consider Figure 4-2, 

which shows three replicas of a directory. 

This configuration: 

IB Fool 6 '?'? 

(Unavailable) 

Could be 

IB Fool 6 

or 

IB Fool 6 IB Fool 6 

Figure 4-2: Three Copies of a Table, One Unavailable 

In Figure 4-2, majority voting is in effect, with r = 2 and w = 2, and two replicas are available. 

One replica contains a mapping of 8 to •Foo•, and one is empty. If a client wants to know the 

mapping of 8, what is the correct answer? It could be that the unknown copy is also empty, and 

the copy containing a mapping was not modified when the entry was deleted; but it could be that 

the unknown copy has the mapping for 8, and that the empty copy was not modified on the last 

update. Since one copy is inaccessible, it is not possible to determine if the entry exists or has 

been deleted. 

This situation could be resolved if entries were retained for deleted mappings. Then, if the 

mapping for 8 had been deleted, it would be kept in the table and marked as •deleted", with a 

higher version number than the earlier data. In other words, deletion would be treated as simply 

a mutation of the data. However, in a directory with a high turnover of entries (such as in an 

academic environment with students graduating), the overhead of keeping these deleted entries 

may be unacceptable, particularly if each deleted entry takes up storage at several replicas. A 

deleted entry may be physically removed from the tables only if all replicas show the entry to be 
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deleted. 

Daniels and Spector [9] describe a variant of Gifford's algorithm for replicated directories that 

can reduce the overhead of deleted entries. The keys of the directory must form a total order, 

and there is a g_ap between each pair of keys representing all of the absent keys that could fall 

between the pair of keys. A gap is present and used for the algorithm even when no key can fall 

between the pair of keys. Figure 4-3 shows an empty table (mapping integer keys to strings), 

containing a single gap with version number 0. 

Version 

0 

Figure 4-3: An Empty Table 

In figure 4-4, an entry mapping 3 to •Foo• has been added to the table. 

Version 

0 

I 3 Foo I 1 

0 

Figure 4-4: A Table with One Entry 

Similarly, in figure 4-5, an entry mapping 5 to "Bar• has been added. The gap version numbers 

are crucial to the scheme, and are incremented when a gap •overwrites• an existing data item.6 

Figure 4-6 shows the effect of deleting 3 from the table shown in figure 4-5. This deletion creates 

61f the second entry mapped 4 to •Bar•, there would be no need for a gap between the entries. There is no integer 
between 3 and 4, so there is no need to represent such possible entries. However, the algorithms are kept simpler by 
simply having a gap between every pair of keys, regardless of whether or not a key could actually fall in that gap. 
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Version 

0 

I 3 Foo I 1 

0 

I s Bar I 1 

0 

Figure 4-5: A Table with Two Entries 

a gap with a version number of 2 (one higher than that for the entry being deleted). Although 

the table could be left this way, it is more efficient to merge the gaps as shown in the figure. The 

three adjacent gaps are consolidated into a single gap with a version number that is the 

maximum of the version numbers of the consolidated gaps. 

Version 

0 
Version 

2 

0 2 

I s Bar I 1 I s Bar I 1 

0 0 

Figure 4-6: A Table with Gaps, After a Deletion 

Because the empty mapping carries a version number, a client can resolve ambiguities about 

creation and deletion by comparing the version number of the gap and the mapping: whichever 
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has the larger version number is correct. 

The Daniels anci Spector algorithm has a higher initial storage overhead than the Gifford 

algorithm. However, in the absence of a garbage-collection strategy for deleted entries, a table 

implemented w~th Gifford's algorithm will continue to grow as entries are deleted. Thus, a 

Gifford table uses an ever-larger proportion of its total storage for deleted-entry overhead. A 

Daniels and Spector table uses a constant proportion of its total storage for deleted-entry 

overhead. The replicated tables in the repository were implemented using the Daniels and 

Spector algorithm so as to avoid the difficulties of integrating a suitable garbage collection 

mechanism. 

4.4 Implementing Replication 

Recall that both registries and mailboxes can be replicated in the repository. Replication of 

mailboxes is both simpler and less important to the operation of the repository, so this section 

focuses on replication of registries. 

The data stored in each registry replica is organized in the same way as data stored at a single.. 

non-replicated registry, except that two tables are different. A registry_ user _list maps a user _id 

to an agent_list and a mailbox_list, information that can be used to find mailbox_interfaces for 

the user's mailboxes. A registry_address_list maps an address to a mailbox_interface, for 

delivering mail to that mailbox. The replicated tables are summarized in figure 4-7. 

registry_ user _list: user _id - agent _list x mailbox _list 

registry_ address _list: address - mailbox_interface 

Figure 4-7: Tables to be Replicated 

The data maintained by_ each registry guardian consists of a collection of related objects. 

Answering a request for information is not simply a matter of reading a single value: to answer a 

request, a registry may have to look in some tables to find the appropriate information. The 

significance of the data structures shown in Figure 4-7 is that they serve as "gateways" into the 
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databases maintained by the registry guardians. Each read or write of shared information must 

pass through one of these tables. If each piece of data is accessible from only one entry of one 

top-level table, then the version number of the top-level table entry can also serve as the version 

number of all the information below it. Section 4.4.4 considers how to handle mutable data that 

is accessible by -two or more paths; for the moment, assume that there is no sharing between 

different entries of the tables, so that only a single version number need be considered for any 

operation. 

A parameterized type called a semi_ version_table is used to support the implementation of the 

Daniels and Spector algorithm for these replicated tables. Its specification is shown in Figure 4-8. 

A semi_ version_ table is parameterized by two types: 

semi_version_table[Key, Data: type] 

It maps elements of type Key to elements of type Data. The type Key must have operations to 

establish an ordering and also to test for equality of elements. The semi_version_table manages 

the gaps and version numbers of the table. An operation on a semi_ version_table always returns 

a version number, either as part of a normal return or as part of an exception. Operations that 

mutate the semi_version_table must provide a new version number, which must be larger than 

the existing version number for the entry or gap; otherwise, the operation will signal an 

exception. A semi_version_table is a user-defined atomic type; its implementation is similar to 

the map implementation described by Weihl [44], and appears in Appendix C. 

Figure 4-9 shows how both of the replicated tables are defined in terms of semi_ version_ table. 

4.4.1 Replicated Operation Protocol 

A single "registry" as used by a registry client 1s actually an object ( called a multi _registry) 

containing references to several registry replicas. The implementation of multi_registry contains 

code to carry out the replicated operations on each replica and interact correctly with the 

replicas. This section outlines the protocol carried out by the implementation of multi_registry. 

To read an item (for example, to look up an address for mail delivery), a frontend calls an 

appropriate multi_registry operation (for example, lookup_address). The operation does a set of 

concurrent calls to the loolcup_address handlers of the replicas contained in the multi_registry 

object, one call per replica. When sufficient calls have returned values or signalled, the 

multi_registry compares the version numbers included in the results or exceptions and determines 

the correct result or exception to signal. 
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semi_version_table = cluster[KEYTYPE, DATATYPE: type] 
is new, store, fetch, delete, 

member, equal, transmit 
where KEYTYPE has equal: proctype(KEYTYPE, KEYTYPE) returns(bool), 

lt: proctype(KEYTYPE, KEYTYPE) returns(bool) 

new = proc(j returns(semi_version_table) 
% returns a new, empty table. 
end new 

store= proc(t: semi_version_table, key: KEYTYPE, 
data: DATATYPE, vers:version) 

signals( not_ stored( version)) 
% if vers is less than or equal to the currently-stored version number for key, 
% signals not_stored and returns the currently-stored version number. 
% Otherwise, associates the given data with the given key, overwriting any 
% previous association for key and storing vers as the new version number. 
end store 

fetch= proc(t: semi_version_table, key: KEYTYPE) 
returns(DATA TYPE, version) signals( not _in_ table( version)) 

% if key is in the table, returns the associated data and version number. 
% Otherwise, signals not_in_table and returns the version 
% number of the gap containing key. 
end fetch 

delete= proc(t: semi_version_table, key: KEYTYPE, vers: version) 
signals( not_ deleted( version)) 

% if vers is less than or equal to the currently-stored version number Cor 
% key, signals not_deleted and returns the currently-stored version 
% number. Otherwise, removes the key from the table, writing vers into the 
% resulting gap. 
end delete 

member= proc(t: semi_version_table, key: KEYTYPE) 
returns(bool, version) 

% returns true iff key is in table 
end member 

equal= proc(tl, t2:semi_version_table) returns{bool) 
where DATATYPE has equal:proctype(DATATYPE, DATATYPE) 

returns(bool) 
% returns true iff tl is the same object as t2 
end equal 

end semi version table - -
Figure 4--8:Specification of Semi_ Version_Table 
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registry_user_list = semi_version_table[user_id, ab_list] 

registry _address_list = semi_version_table[address, mailbox_interface] 

( ab _list = struct[agents:agent_list, boxes:mailbox_list] ) 

Figure 4-0: Implementations of Replicated Tables 

To change or delete an item (for example, to remove a user), a frontend again calls an 

appropriate multi_registry operation, for example delete_ user. The multi_registry first 

concurrently calls each of the replicas to get a version number for the data of interest, in this case 

calling user_ version. The multi_registry selects the largest version number returned or signalled 

and increments it by 1 to produce a new version number. It then calls all of the replicas 

concurrently with the new version number to be used in changing or deleting the information. 

Note that version number information is completely hidden from the frontend. This means that 

a multi_registry can present the same interface as a non-replicated registry, and a frontend need 

not cache version numbers. Also note that the writes and deletes do not obtain a write lock on 

the item to be written before reading it. This point will be discussed further in Section 4.5.1. 

4.4.2 Replicating Mailboxes 

Replication of a mailbox involves a mechanism similar to the one used for registry replication. 

The mailbox's mailbox_interface object is stored at a registry and used by a frontend. The 

mailbox interface for a normal mailbox contains a box_id and references to the mailsite storing 

that mailbox. A box_id effectively serves as a remote reference to the mailbox stored at the 

mailsite. Operations on a mailbox_interface are turned into handler calls to the mailsite, sending 

the box_id as one of the arguments to each call. A replicated mailbox contains references to 

several mailsites, instead of just one. The operations on the mailbox_interface are turned into 

concurrent handler calls to the mailsites, and the result of the operation is determined by 

weighted voting [16]. The mailsite's information is stored in a semi_version_table that maps 

box ids to mailboxes and version numbers. For non-replicated mailboxes, the version numbers 

are meaningless and ignored by the caller. 

50 



4A.3 Finding a Replicated Registry 

The object representing a replicated mailbox can be stored in a replicated registry, but a 

replicated registry stored in a replicated registry could lead to bootstrapping problems - how to 

find a registry without first finding a registry. There are two techniques used in the repository. 

Replicated registries can be stored in the Argus catalog, and every registry replica must be stored 

in the catalog individually. If no replicated registry can be found in the catalog, the replicated 

registry type provides a find operation that looks up the ,single registries in the catalog and 

dynamically creates a new replicated registry from them. 

4.4.4 Version-lists 

Section 4.4 assumed that the distributed respository's data is divided between two tables, so that 

any item of data can be reached through one and only one of these tables. In such a divided 

system, the version number associated with the top-level table entry may be used as the version 

number for any subsidiary item of data. 

In the actual data structures of the distributed repository, there are objects that are accessible 

from both the registry _user_list and the registry _address_list. A given mailbox's 

mailbox_interface, which contains a mutable list of the addresses pointing to the mailbox 

represented, is such an object. The sharing of these objects is both convenient and efficient for 

certain operations (primarily when deleting a mailbox, so that the addresses of the mailbox can 

be easily removed). 

Whenever there is (atomic) mutable data that can be reached by two different paths, the version 

number at the top of one path is not enough information to know if the local copy is the most 

recent. 

User A 
v:3 \ 

\ 
MBox 

Addr X 
/ v:7 

I 

User A 
v:3 \ 

\ I 
MBox 

Addr X 
/ v:7 

Figure 4-10: Two Copies of Data Reachable by Two Paths 

In figure 4-10, mailbox interface "MBox• 1s accessible by two paths. One path is through the 
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registry _user_list, •User A• with version number 3. The other path is through the 

registry _address_list, • Addr X• with version number 7. Assume there are three replicas (Left, 

Right, and Unshown) and the data is write-two, read-two. An action writes the Left and 

Unshown copies of the mailbox, mutating •Nffiox" to substituting •NewNffiox" and incrementing 

the version number of • User A• ( see figure 4-11). 

User A 
v:4 \ 

\ 
NewMBox 

Addr X 
/ v:7 

I 

User A 
v:3 \ 

_-\ I 
MBox 

Addr X 
/ v:7 

Figure 4-11: Two Copies of Data Reachable by Two Paths, After a Write 

When a subsequent action reads the Left an°d Right copies using the •User A• path, it gets the 

correct result of NewNffiox. However, if an action reads using the • Addr X• path, it finds that 

both entries have the same version number but different data. 

This problem arises because we updated the version number of the path rather than the version 

number of the data. If there is no sharing of data between paths (as for example in Figure 4-12) 

then all changes to 

User A 
v:4 \ 

\ 
NewMBox 

User A 
v:3 \ 

\ 
MBox 

Figure 4-12: Two Copies of Data With No Sharing 

all data can be treated as changes in the top-level path and its version number. To solve this 

problem, a version number is attached to the shared data as well as the top-level table. Instead 

of returning a single version number to be compared with the version numbers from other 

replicas, the lookup operation returns a sequence of version numbers, with the first version 

number from the top-level table. This sequence is called a version-list. The correct result of a 
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call using local lookups and version-lists is the result with the largest version-list ( as described 

below). Hnot all of the version-lists are equal, the index at which the version-lists diverge is the 

first data structure that must be updated with the correct values when performing a write. 

User A Addr X User A Addr X 
v:3 \ I v:7 v:3 \ I v:7 

\ I \ I 
MBox MBox 
v:1 v:1 

Figure 4-13: Two Copies of Data Using Version-Lists 

Figure 4-13 shows the effect of this modification on the example of Figure 4-10. Here, a lookup 

using the •User A• path gives a version-list of [3, 1] and a lookup using the •Addr X• path gives 

a version-list of [7, 1]. 

User A Addr X User A Addr X 
v:3 \ I v:7 v:3 \ I v:7 

\ I \ I 
NewMBox MBox 

v:2 v:1 

Figure 4-14: Two Copies of Data Using Version-Lists, After a Write 

Figure 4-14 shows the effect of version-lists on a write. The new data written (NewMBox) has a 

new version number. Now, even a lookup using the •Addr X• path will give the correct result, 

since the new data (on the left) has a version-list of [7, 2] and the old data (on the right) has a 

version-list of [7, 1]. Comparing elements left-to-right, [7, 2] is larger than [7, 1]; therefore the 

left-hand replica has the correct data. 

A version number within a version-list indicates a particular state of a corresponding table entry. 

The comparison of version-lists element-by-element is essentially the comparison of corresponding 

tables. As soon as one copy is more up-to-date than another, the subsequent information of the 
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out-of-date copy is uninteresting. The end of a version-list comes either at the entry of interest 

or at a point where an intermediate table did not contain the entry needed. Thus, a version-list 

that is shorter than another but has all the same version numbers (so that it is a prefix of the 

longer list) suggests that there is an error somewhere. Identical version numbers should indicate 

identical states, so that it would not be possible for one to have an entry while the other does not. 

The following are the formal rules for comparing version-lists: 

1. Two version-lists are incompatible if one is shorter than the other and the shorter is a 
prefix of the longer. 

2. Two version-lists are equal if they are the same length and contain the exact same 
numbers. 

3. Two version-lists that are neither equal nor incompatible are compared from element
by-element, from the first element to the ih element, where s is the length of the 
shorter list. As soon as one list has an element that is greater than the corresponding 
element of the other list, the former is larger than the latter. 

The techniques used for dealing with information reachable from two replicated data structures 

are useful, but not vital, in the repository. However, they may be important for future 

distributed programs that have more complex sharing of replicated data than the distributed 

repository, so this section has described the techniques in more detail. One motivation for 

version-lists is that they effectively compress several replicated lookups into a single call. Such 

compression is worthwhile in the current Argus implementation, since the extra cost of processing 

version-lists is small compared to the cost of replicated calls. 

4.5 Summary and Discussion 

The distributed repository requires replication techniques that maintain consistency, perform well, 

tolerate partitions, and can be implemented in Argus. A large number of published algorithms 

fail to meet one of these criteria. Two algorithms - Gifford's Weighted Voting [16] and Daniels 

and Spector's Replicated Directories [9] - meet all of the criteria. The Daniels and Spector 

scheme is the basis for replication in the distributed repository, since it avoids the need for 

garbage collection to deal with deleted entries. 
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4.5.1 Deadlock 

A deadlock is a situation in which a collection of actions ceases to make progress because of a 

circular wait for locks in the system [22]. A two-action example of deadlock is when action A has 

locked a resource Rl that action B needs, while B has locked a resource R2 needed by A. Neither 

action can proceed until the other releases a locked resource, but neither can release a locked 

resource until it can proceed. 

Replication deadlock arises only m replicated systems, where concurrent actions may access 

different copies of a single resource in such a way as to cause deadlock. Replicating a system 

immediately introduces new opportunities for deadlock. Fol' example, consider actions A and B 

trying to access a single resource R that has three copies R
1

, Re, and R
9

. Any operation requires 

two copies of the three. Unfortunately, Re is not available - its node has crashed. Now, if 

action A locks R
1 

and action Blocks R
9

, there is a deadlock. 

Replication deadlock can be prevented by locking resources m a fixed order. To return to the 

two-action example given previously, a deadlock cannot arise if both actions A and B must Tock 

the copies R 
1

, Re' and R 
9 

in that order. Imposing a total ordering on resource locking ensures 

that no circular wait can arise. However, in the current Argus implementation, a single null 

remote call takes about 38 ms and forking concurrent actions takes roughly 0.9n ms, where n is 

the number of coarms forked [39]. Thus, executing a replicated call to 3 guardians concurrently 

requires about 41 ms, whereas executing those calls in sequence requires about 114 ms. If calls to 

replicas must be performed concurrently to achieve reasonable performance, as is the case in the 

distributed repository, there is no way to control the order of accesses to different replicas. 

Replication deadlock is most likely to occur on the heavily-used •top-level• directories, shown in 

figure 4-7. There are relatively few concurrent accesses to the same user, same address, or same 

mailbox. The semantics of the top-level directories allows concurrent operations on different 

elements. By locking objects in a manner that allows such concurrency, most of the replication 

deadlocks that could occur are eliminated. Thus, a user-defined atomic type is not only useful to 

obtain greater concurrency, but in fact is necessary to reduce the number of replication deadlocks. 

Because of replication deadlocks, writing operations do not obtain a write lock before reading the 

version number for an itein (as described in Section 4.4.1). Two writes or deletes can conflict, 

possibly leading to a deadlock, only if they involve the same key (user or address). Any two 

writes to the same key can suffer replication deadlock, and those deadlocks cannot be prevented 

without causing an unacceptable performance penalty. Obtaining write locks cannot prevent 
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replication deadlock; in fact, obtaining write locks in an unfortunate order may cause replication 

deadlock. 

Most of the activity in the mail repository is composed of short actions requiring relatively few 

resources. These short actions have few conflicts since users read only their own mailboxes, and 

submitting mail is decoupled from receiving or reading mail. For any conflicts that do occur, 

such as mail delivery deadlocking with mail reading at a replicated mailbox, high-level timers on 

operations time out any operation that may be involved in a deadlock. This seems to be the 

most reasonable solution to the problem, since complete prevention of deadlocks is incompatible 

with performance requirements. True deadlock detection (finding circular waits and breaking 

them) is not built into the Argus system, and Argus applications have no direct access to the lock 

and action information that would be needed to build deadlock detection. 

The avoidance and detection of deadlocks (by dynamically linking in a debugger) consumed a 

significant amount of development time for the distributed repository. A deadlock detection 

system in Argus would greatly improve the programmer's ability to debug systems. 

4.5.2 Cluster-Based Replication and Guardian-Based Replication 

Using the terminology from Herlihy's thesis [19], the implementation of a replicated object 

consists of a collection of data managers (DMs) that hold the state of the object, and a collection 

of transaction managers (TMs) that manage access to the DMs.7 To provide resilience and 

independent crashes, each of the DMs must be in a separate guardian. The TM can either be in a 

guardian called by the client accessing the replicated object (so that the replicated object is a 

guardian-based subsystem) or the TM can be a cluster contained in the client's code (so that the 

replicated object is a cluster-based subsystem). 

With a guardian-based subsystem, it is simple to replace the TMs. However, a guardian-based 

interface is much more expensive. The expense has two sources: one is that multiple guardians 

are required as TMs, and one is that extra remote calls are needed. 

A single guardian is not sufficient to act as a TM for a replicated object, since the availability of 

the TM must be at least as great as the availability of the DMs. Additional guardians are much 

7Herlihy now uses the term •rront-end" instead or TM and •repository• instead of DM. These aren't good terms for 
this thesis, for obvious reasons. Herlihy's change or terminology is intended to a.void confusion with a. conflicting technical 
use or the terms TM and DM in the genera.I data.base literature. Readers familiar with those definitions of TM and DM 
should be a.ware that TM and DM have a different meaning here. 
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more expensive for the whole distributed system than some additional code in the client. Argus 

thus discourages the construction of guardian-based subsystems. 

An operation on a replicated object always involves two sets of calls: one call from the client to 

the TM, and a c_ollection of concurrent calls from the TM to the DMs. Since a local call is much 

cheaper than a remote call, performance is far better if the client-to-TM call is a local call rather 

than a remote call. 

Based on these performance considerations, a cluster-based replication scheme is the only viable 

approach to replicated objects in an Argus implementatioa of the repository. As previously 

described, replicated registries and replicated mailboxes are implemented by putting the 

additional data and code needed into the multi_registry and mailbox_interface objects used by 

clients. 

4.6.3 Another Replication Scheme 

The key reason for using the Daniels and Spector scheme was that it avoided the need to do some 

form of garbage collection of deleted entries that would be needed with Gifford's algorithm. In 

retrospect, it seems that it might be straightforward to use Gifford's algorithm and a highly

available server [31] for garbage collection in the system. If partitions were a particular problem, 

the replication algorithm might be modified along the lines of the recently-published Views 

algorithm of El Abbadi and Toueg [13]. 
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Chapter Five 

Reconfiguration 

Good old Watson! You are the one fixed point 
in a changing universe! 
-Sir Arthur Conan Doyle 

How can I be sure 
In a world that's constantly changing'/ 
-The Rascals 

A configuration of an Argus distributed program describes 

• the number and kinds of nodes in use, 

• the relationship between guardians and nodes (which guardians are running on which 
nodes), and 

• inter-guardian communication patterns. 

Conventional programming methods produce applications with static configurations. The 

configuration is fixed when the executable program is constructed, and cannot be changed 

without reconstructing the program. In such applications, changing resources used by the 

program requires • taking the system down• and rebuilding it with the appropriate changes. 

Long-lived systems must be altered to meet changing requirements, to tune performance, or to 

correct faults. When the system is intended to be highly available as well as long-lived, it is 

important to be able to change components of the system without stopping all of the system from 

runnmg. Such a system has a dynamic configuration, and the techniques for changing its 

configuration are termed dynamic reconfiguration. 

This chapter discusses the dynamic reconfiguration techniques used for the distributed repository. 

First, I review Bloom's work on dynamic replacement of guardians [6]. Then, I introduce a new 

method for building and changing reconfigurable systems, and contrast it with Bloom's work. 

Then, I consider the implementation of this method in Argus. 
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5.1 Bloom's Work 

Bloom [6] studied the problem of dynamic replacement of modules in Argus. Her goal was to 

determine what kinds of replacement would be meaningful, and how to carry out all of those 

replacements. Bloom emphasized methods that would not restrict replacements unnecessarily. 

The guardian was chosen as the smallest unit of replacement because first, a guardian has a well

defined state to be moved to the replacement guardian, &nd second, replacement of smaller 

modules might require replacement of the guardian anyway. 

Bloom also supported replacement of multi-guardian subsystems, such as the replicated objects 

discussed in section 4.5.2. Bloom defined a formal model that specified when a replacement is 

legal. The model was intended to assist programmers in determining whether a replacement was 

correct and was not used by the replacement mechanism to check a replacement. The actual 

mechanism proposed ensured full type-checking of replacements, and ensured that no information 

was lost from the stable state of the guardian(s) being replaced. However, the replacelI_!ent 

mechanism required a number of special features from other parts of the Argus system. An 

Argus guardian is either •up•, providing services to any client, or •crashed,• providing no 

services at all. Bloom's replacement mechanism required a new state for guardians, so that 

guardians could be •removed from service•. When removed from service, a guardian appeared to 

have crashed to every entity except the replacement system. Bloom also assumed the existence of 

a service for rebinding handlers, so that messages intended for old handlers could be forwarded 

automatically to new handlers. These facilities do not exist in the current prototype 

implementation of Argus, and no work except Bloom's has required these facilities. Therefore, I 

looked for an approach to reconfiguration that would not require special facilities. 

5.2 A New Method 

Bloom's work was intended to be a general replacement method that could be used to replace 

arbitrary modules in running Argus applications. This chapter presents a new method that deals 

with replacement in systems that are designed for replacement, where the reponsibility for 

replacement rests entirely with application-level code. Use of this method requires the 

construction of replaceable guardians that provide a few specific facilities at the application level 

so that they may be replaced in a straightforward manner. In addition, any guardian 

communicating with replaceable guardians is built so that it is informed of replacements, or can 
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recover from a failure caused by a replacement. 

The new method-requires no modifications to the underlying Argus system. It talces advantage of 

a feature of the current implementation to help perform replacement. Although the new method 

is presented in ~e context of the distributed repository, it is general and can be applied to other 

distributed programs written in Argus. 

5.3 The Replacement Mechanism 

This section considers changes to the implementation of a guardian while the guardian provides 

the same interface. Section 5.5 deals with changing the interface of a guardian, which necessarily 

means changing the implementation. 

Creation and destruction of guardians are straightforward in Argus. Guardian types provide 

creator operations that create new instances of guardians, and guardians can destroy themselves 

by executing a terminate statement [29]. Since no guardian can actually destroy another, each 

guardian that can be destroyed must provide a handler (called finish by convention) that will 

execute a terminate statement after performing any necessary checking to ensure that it is safe 

to destroy the guardian. 

The current Argus implementation does not provide primitive operations for moving or replacing 

Argus guardians, so a mechanism for replacement must be invented. In performing a 

replacement, no information may be lost from the stable state of the guardian. Simply 

substituting a newly-created guardian for an existing guardian will lose all of the state of the 

existing guardian. 

A simple replacement mechanism involves adding another handler to the interface of every 

replaceable guardian. The handler (call it get_state) allows the caller to get the entire stable 

state of the guardian in some predefined, transmissible form (a state object). The new 

implementation of the guardian must have a creator (call it create_with_state) that takes the 

state object as an argument, and initializes the new guardian's stable state from the state object. 

Since guardians are linked .separately, it is possible to have two guardian images of the same type 

with different implementations.8 

8There are mechanisms defined for choosing between guardian images of the same type on the same node. However, 
they have not been implemented yet. Currently, replacement must be performed using at least two nodes. 
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Abstractly, replacement of a collection of guardians proceeds as follows: 

1. Get exclusive access to the guardians involved. 

2. Start a topaction. 

3. Replace a single guardian: 

a. Call get_state of the old guardian, which returns a state object representing the 
entire stable state of the guardian. 

b. Call create with state of the new guardian implementation, which creates a 
new guardian, initializing its state from the state object. 

c. Replace handlers so that calls to the old guardian now go to the new guardian. 

d. Destroy the old guardian. 

4. Repeat step 3 for each guardian to be replaced. 

5. Commit the topaction. 

Although this scenario is presented in terms of replacing a single guardian with another guardian, 

it is equally plausible to consider multi-guardian replacements: for example, replacing 3 guardians 

with two others. The key difference is that the creators of the two new guardians would each 

take 3 state objects as arguments, rather than one. 

There are several parts of the scenario that require further explanation: how to provide exclusive 

access to a guardian, how to implement state objects, and how to replace handlers. The following 

sections describe these issues. 

5.3.1 Exclusive Access 

There must be a locking mechanism to ensure that after a replacing action calls get_state, the old 

guardian does not allow the state to change until the replacing action commits or aborts. The 

simplest method for doing this is to disallow all incoming handler calls, so that their callers 

receive unavailable exceptions. However, it is unpleasant to write guardians where each handler 

first tests some global lock to determine if it should proceed. Additionally, every call to a 

replaceable guardian must pay the extra cost of checking the global lock. One solution is to 

modify the language to support some special per-guardian lock, but changes to the language are 

to be avoided, especially changes that may not be useful in other situations. 

Instead, there is a two-step process to gain exclusive access to a guardian. First, crash the 
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guardian; this ensures that it is not accessible to anyone. Then, replace the normal guardian code 

with special replacement code. The normal guardian code includes the handlers get_state and 

finish in its interface, but the handlers have trivial implementations: for example, they can 

signal an exception when called (see figure 5-1). Since the replacement handlers have only a 

trivial implementation in normal operation, a client cannot inadvertently destroy the guardian by 

calling finish. 

my_guard = guardian is ... 
handles do_work. get_state, finish, ... 

do work= handler(stuff:stufftype) signals(unavailable(string)) 
work() 
more_work () 
even more_work() 
end do work 

get_state = handler() returns(image) 
signals(cant_reconfigure(string)) 

signal cant_reconfigure(•No replacement code•) 
end get_state 

finish= handler() signals(cant_reconfigure(string)) 
signal cant_reconfigure(•No replacement code•) 
end finish 

end my_guard 

Figure 5-1:The normal guardian implementation 

The replacement code fully implements get _state and finish, but signals unavailable for all of 

the other handlers (see figure 5-2). Since the replacer provides the implementation of the 

replacement code, get_state and finish can be arbitrarily complex so as to provide checking and 

authorization of calls made to the handlers. This helps to ensure that even during a replacement, 

the guardian's state is not inadvertently released or destroyed. 

In the current implementation, the code is accessible via the underlying Unix operating system, 

whereas the stable state is managed by the Argus system. Probably any reasonable Argus 

implementation would have a similar separation between code and stable state. With this 
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my_guard = guardian is ... 
handles do_work, get_state, finish, ... 

do_work = handler(stuff:stufftype) signals(unavailable(string)) 
signa! unavailable(•Guardian being replaced•) 
end do work 

get_state = handler() returns(image) 
signals(cant_reconfigure(string)) 

so:state_object := cons_up_state() 
return(image$create[state_object](so)) 
end get_state 

finish= handler() signals(cant_reconfigure(string)) 
terminate 
end finish 

end my_guard 

Figure 6-2:The guardian implementation during replacement 

separation, the guardian's code can be replaced so long as the implementation of the stable state 

is not changed. 

5.3.2 State Objects 

The state object returned by get_state and accepted by create_with_state will be of type image. 

Image is an escape from type-checking for transmissible types. Any transmissible object Obj of 

type T can be translated into an image object Img by an image$create call: 

Img:image := image$create[T](Obj) 

and the resulting image object Img can be translated back to an object of type T by an 

image$force call: 

Obj:T := image$force[T](Img) 

The type image is used so that changes in the representation of the state object do not affect the 

interface of the guardian. Otherwise, a change in the representation of the guardian's internal 

state would change the interface of the guardian. However, using image means that some 

compile-time type-checking is lost; if there is a mismatch between the object returned by 
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get_state and the object expected by create_with_state, it will be detected only at run time 

(when create_with_state tries to force the state object to the type it is expecting}. 

There is a parallel between the transmission of state between guardians and the transmission of 

abstract values in handler calls. In Argus, abstract objects of abstract type are implemented by 

objects of a representation (rep} type within a guardian. Different guardians may have different 

implementations of the abstract type, so that transmitting the representation is not an 

appropriate way to send abstract values. Instead, an external representation, or xrep, is defined 

for the type. The xrep serves as a canonical form for transmitting abstract values, and each 

implementation of the abstract type provides procedures for translating between the xrep and 

that implementation's rep [18]. Similarly, the state object is a canonical form for the guardian's 

state. Each guardian being replaced must translate its state into this canonical form, and a 

guardian being created as a replacement must initialize itself from the canonical form. However, 

the new guardian's stable state can be represented quite differently from the old guardian's stable 

state. State objects are somewhat more flexible than xreps of transmissible types because state 

objects are transmitted as images. The canonical form of the state can change without affecting 

the interface of the guardian type. Both old and new guardians must agree on the actual type 

that was encoded into the state object of type image, but this agreement need not take place 

until replacement time, and a single guardian type can be replaced using a number of different 

types of state object. In contrast, a change to the xrep of a transmissible type produces a new 

type. 

5.3.3 Replacing Handler Objects 

After a replacement, calls to a handler of the old guardian should go to the corresponding handler 

of the new guardian. Bloom [6] assumed that existing handler objects would not change, and that 

clients of a replaced guardian need not be notified of the replacement. Instead, the Argus system 

would map calls on those objects to the new handlers. In contrast, the new method assumes that 

clients of a replaced guardian are prepared for replacement, and that the Argus system does not 

provide a service for rebinding handlers. These assumptions mean that the problem to be solved 

is different from handler rebinding: obsolete handlers must be found and replaced with the 

corresponding new handlers. The process of replacing handlers must be inexpensive, with low 

costs for communication, computation, and storage. In addition, the replacement process must be 

effective, able to replace all of the handlers that must be replaced. Finally, the replacement 

process must tolerate failures, so that it can work even when some guardians possessing an old 
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handler have crashed or are inaccessible. 

One simple method assumes that the action performing the replacement knows which client 

guardians may be using the old server guardian. Each of these client guardians provides a 

handler that takes references to the old and new server guardians as arguments. If the client is 

using or storing a reference to the old server, it instead stores a reference to the new server. 

However, this method breaks down if any of the client guardians have crashed or are inaccessible. 

A crashed or inaccessible guardian cannot respond to a handler call and cannot change its state 

by storing a new object. 

Rather than requiring that all clients be available when a replacement is performed, the new 

reconfiguration method stores guardians in the Argus catalog under fixed names. The Argus 

catalog permits a transmissible object to be stored with a user-specified string name. Catalog 

operations are parameterized by type. The new method uses the following catalog operations: 

insert= proc[T](name:string, object:T) signals(exists) 

replace = proc[T](name:string, object:T) signals(not_found) 

lookup = proc[T](name:string) returns(T) signals(not_found) 

Guardian User uses a guardian of type GTl. Initially, the guardian g of type GTI is stored in the 

catalog by the call 

catalog$insert[GTI](•gname•, g) 

This is typically performed by the creator that is called to create g. 

To find g, User performs 

catalog$lookup[GTI](•gname•) returns g 

In order to replace g with a guardian h, the replacer performs 

catalog$replace[an](•gname•, h) 

At some point, User will attempt a call to g, which will fail since the guardian no longer exists. 

This failure is critical, since it is at this point that User picks up the new guardian. On failure, 

User tries the catalog lookup again: 

catalog$lookup[GTI](•gname•) returns h 
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5.4 An Example Replacement 

Consider a simple mailsite storing a collection of mailboxes indexed by unique keys. Each 

mailbox contains text in a compressed form, and the collection of mailboxes is organized in a 

balanced tree. The system implementor decides to replace this mailsite with one that uses more 

space for faster access; the new mailsite uses a hash table and stores the messages as ASCII text, 

to save the cost of decoding the compressed form. The state object will be a linear list of key

mailbox pairs, with the messages in ASCII text; its type will be State_ Obj_ Type (See figure 5-3). 

Balanced tree 
of 

Linear Lists 
of 

Compressed Text 

Type='? 

Linear List 
of 

==> Linear Lists ==---=> 
of 

ASCII text 

Type= State_Obj_Type 
encoded as Image 

Hash Table 
of 

Hash Tables 
of 

ASCII text 

Type='?'?? 

Figure 6-3:Old State, State Object, and New State 

There must be a code image for the guardian being replaced that includes a get_state routine 

that will translate the old state into the state object. In addition, the create_with_state creator 

of the new guardian must correctly translate from the state object to the new guardian's state. 

The replacement proceeds as follows: 

1. Crash the old mailsite. 

2. Replace the old mailsite's code with the new code fully implementing only get_state 
and finish. 

3. Restart the mailsite. 

4. Begin a topaction. 

5. Call the old mailsite's get_ state handler to get the state object. 

a. Get state translates the mailsite's balanced tree of linear lists of compressed 
text into a linear list of linear lists of ASCII text, whose type is 
State_Obj_Type. 
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b. It takes the new list and calls image$create on it. 

c. It returns the resulting image object to the caller. 

6. Call the new mailsite's create_with_state, providing the state object just received. 

a. Create_with_state calls image$force on the state object, forcing it to 
State_Obj_Type. 

b. It translates this linear list of linear lists of ASCII text to a hash table of hash 
tables of ASCII text. 

c. It performs any other initialization necessary for the new guardian. 

7. Call the catalog to replace the old mailsite with the new one. 

8. Call the old mailsite's finish handler to destroy it. 

9. Commit the topaction. 

We will not lose the guardian's state or entry in the catalog if one of the steps goes wrong-for 

example, if a node crashes, or there is a programming error in create_with_state so that-the 

state object is forced incorrectly. The topaction is simply aborted if anything unexpected occurs. 

The old guardian and its catalog entry will not be destroyed unless the topaction commits. If we 

need to restore the old guardian to service, we can replace its code with the old code. 

5.5 Changing a Guardian's Interface 

If the old guardian provides handlers for get_state and finish, and the new guardian provides a 

create_ with_ state creator, replacement can proceed even if the new guardian provides an 

interface that is different from the old guardian. The problems with changing a server's interface 

arise in the clients. If a guardian is to be replaced by a guardian with a different interface, the 

new guardian is of a different type from the old guardian. In a strongly-typed language like 

Argus, this means that the new guardian cannot be treated as if it were of the same type as the 

old guardian. For example, consider a mailsite with the handlers read_mail, deliver _mail, 

create_user, and ping. Most of these handlers are actually called by only one client or type of 

client: 

• frontend fe calls read_mail and ping; 

• alien al calls deliver _mail and ping; and 

• registry reg calls create_ user and ping. 
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In this example, there is no way for a user to delete mail. ff we want to add a delete mail 

handler for the frontend /e to call, we may create a new mailsite which includes this new handler. 

For the frontend to use this new handler, it must be replaced with a new implementation of 

frontend. However, the alien and the registry must also be replaced, even though they don't use 

the new handler- Also, any frontend that chose not to use the new handler would still have to be 

replaced; otherwise it could not use the •old• handlers of the new guardian interface type. 

This illustrates the problems that arise when clients use guardian interface objects as their 

interfaces to guardian services, even though they actually need only a much narrower interface. 

Clients are thereby exposed to changes in the interface that sliould not affect them. 

Instead of using guardian interface objects, clients can use different interface objects. Each 

special interface object will be an immutable collection of named handlers, each handler 

potentially of a different type. In Argus, such a collection would be constructed as a struct of 

handlers [29]. For example, the mailsite would have three different interfaces: 

fe_interface = struct[read_mail: read_mail_type, 
ping: ping_type] 

alien_interface = struct[deliver_mail: deliver_mail_type, 
ping: ping_ type] 

reg_interface = struct[create_user: create_user_type 
ping: ping_ type] 

A mailsite would put each of these interfaces into the catalog when it is created, instead of simply 

putting the whole guardian interface into the catalog. Now, the addition of a delete mail 

handler only affects the frontend: 

new_fe_interface = struct[read_mail: read_mail_type, 
delete_ mail: delete_ mail_ type, 
ping: ping_type] 

The other interface objects can be replaced as above, since their type hasn't changed. 

This technique requires the server to identify all the subsets of its interface that will be used by 

clients. This is simple to do in the distributed repository, since the clients of all guardians are 

other components of the repository or else non-Argus components. 

It is not reasonable to require that all guardians of a particular type are replaced by guardians of 
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another type at the same time. With replication, it is possible that clients will have to deal with 

two or more different guardian types that implement copies of the same data structure or service. 

Assuming that the client involved actually uses the different interfaces, the multiple types can be 

hidden inside a cluster whose representation is a tagged, discriminated union ( a oneof) [29]. Such 

a cluster is much- like the mailsite_interface and multi_registry clusters described in Chapter 4. 

Instead of hiding the replication or existence of remote guardians, this sort of cluster hides the 

existence of multiple types of guardian. The find operation finds an operational frontend of 

either interface and sets the tag of the oneof. Operations on objects of the cluster type are then 

translated into appropriate handler calls, based on the tag of the oneof (see figure 5-4). 

As shown in Figure 5-4, the reconfiguration method uses a failure exception as an indicator that 

a guardian has been destroyed, assuming that any problems with an existing guardian will appear 

as unavailable exceptions. Certain programming errors in the encode/decode routines of abstract 

type implementations may also cause failure to be signalled. IT the caller catches the failure 

signal, the string returned with the exception may be used to determine whether to attempt a 

reconfiguration. Otherwise, the unhandled failure will simply cause the calling guardian to 

crash. 

5.6 Another Example 

Now these notions of replacement with a different interface can be applied to a replacement of 

the mailsite. This time, the transformation of state is ignored, although such a transformation 

could be carried out at the same time. A delete mail handler will be added to the mailsite. A 

frontend will be replaced so that it can use the new interface; however, since there is another 

mailsite in the system that cannot be replaced at the moment (for whatever reason), the new 

frontend must be able to use both types. 

1. Crash the old mailsite. 

2. Replace the old mailsite's code with the new code implementing only get_Btate and 
finish. 

3. Restart the mailsite. 

4. Begin a topaction. 

5. Call the old mailsite's get_state handler to get the state object. 
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frontend_clust = cluster is find, read mail 

rep= oneof[old:fe_interface, new:new_fe_interface] 

find= prDc(site:string) returns(cvt) signals(not_found) 
begin 

old:fe_interface 
old := catalog$lookup[fe_interface]~site) 

except when not_found: exit not old end 

old.ping() 
except when failure(•): exit not_old 

when unavailable(•):~ ok, just crashed 
end 

return(rep$make_old(old)) 
end 

except when not_old: 
new:new_fe_interface 

end find 

new:= catalog$lookup[new_fe_interface](s1te) 
except when not_found: signal not_found end 

new.ping() 
except when failure(•): signal not_found 

when unavailable(•): 
~ ok, just crashed 
end 

return(rep$make_new(new)) 
end 

read mail= proc(widget:cvt, number:msg_id) returns(message) 
signals(unavailable(string), failure(string)) 

tagcase widget 
tag old(fe:fe_interface): 

return(fe.read_mail(number)) 
resignal failure, unavailable 

tag new(fe:new_fe_interface): 
return(fe.read_mail(number)) 

resignal failure, unavailable 
end 

end read mail 
end frontend clust 

Figure 6-4:A Cluster to Hide Two Interfaces 
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6. Call the new mailsite's create_with_state, providing the state object just received. 

a. Create_with_state initializes the stable state from the state object. 

b. It then inserts a new _re _interface into the catalog, and replaces the 
alien_interface and reg_interface objects in the catalog. 

7. Call the old mailsite's finish handler to destroy it. 

8. Commit the topaction. 

9. Crash the old frontend. 

10. Replace the old frontend's code with new code implementing only finish. 

11. Restart the frontend. 

12. Begin a topaction. 

13. Call the new frontend's create. The new frontend created is able to deal with both 
the old interface (fe_interface) and the new interface (new_fe_interface). 

14. Call the old frontend's finish handler to destroy it. 

15. Commit the topaction. 

16. Whenever the frontend first tries to call the replaced mailsite, it will receive a failure 
exception. It can then execute a find operation, which will find the new mailsite 
(new_fe_interface) in the catalog. 

5.7 Discussion and Related Work 

I have presented a new method for reconfiguration of Argus distributed programs. The method 

depends on constructing replaceable guardians whose state can be fetched from them, on 

constructing clients of such replaceable guardians so the clients can tolerate reconfigurations, and 

on the ability to crash a guardian and replace its code without altering its stable state. The new 

reconfiguration technique is simple and effective. Since the changes are made in Argus 

application code, the Argus system need not be modified to support this style of reconfiguration. 

There are several elements ·in the reconfiguration method that can be considered abstractly. The 

first element is a fixed reference point, allowing an indirect reference to the objects that move. 

In the new technique, this fixed reference point is the Argus catalog. The catalog cannot be 

reconfigured by the techniques of this chapter, since a client of the catalog that cannot find the 
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catalog has nowhere else to check. 

The second element in the new reconfiguration method is the use of a canonical form for the 

representation of the state of a guardian. Rather than performing a transformation of old state 

to new state (like Bloom's transformation function [6]), I perform a transformation from the old 

state to an intermediate form and from the intermediate form to the new state. This gives a 

cleaner structure to the process of transformation and forms a useful parallel with the encoding 

and decoding of abstract data types. 

The third element is the replacement of handlers, which in this reconfiguration method takes the 

form of catalog lookups by client guardians. 

However, this implementation of reconfiguration is far from ideal. Constructing applications so 

as to be easily reconfigured is a reasonable approach, but it is difficult to express the necessary 

concepts in Argus. A better reconfiguration implementation would support the state 

transformations in the language (in much the same way that transmissible types are supported) 

and would allow rebinding of handlers within the system. Such rebinding would be supported by 

a name server performing functions similar to those performed by the catalog in the current 

implementation. The server would map a handler identifier to another handler identifier and a 

guardian. The run-time system would (at least conceptually) perform the mapping of handler id 

to handler on each call. [21] 

CONIC [25] is another language intended for programming distributed applications. CONIC was 

constructed specifically to explore issues of dynamic reconfigurati_on, and uses the interconnection 

of typed ports for remote communication instead of calling handler objects. CONIC has separate 

languages for programming and configuration, so that programs have no control over their 

configuration and no way to determine their configuration. This means that it is easier to 

configure programs, but it is impossible for programs to configure themselves. 

There are certain advantages to using typed ports for communication. Each outgoing port must 

be connected to some incoming port of another module, which means that modules are affected 

only by the portion of the interface that they use. No special interfaces or system-defined 

subsetting are required. However, the basic paradigm of passing handlers (in Argus) cannot be 

used, since ports cannot be passed. Instead, calls are forwarded from one module to another. For 

example, a frontend would probably not maintain a connection to every mailsite in the system. 

Instead, it would have a connection to the equivalent of the catalog, which could forward the call 
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as necessary. Since a frontend cannot dynamically establish more outgoing ports, it would be 

difficult for it to accommodate an increasing workload; either the catalog or its connection(s) to 

the catalog could easily become bottlenecks for the system. CONIC has no notion of stable 

storage or actions, so that it is not even clear when to perform a replacement or how to undo it if 

part of it fails. ,In general, simple reconfiguration is easier in CONIC; however, when issues of 

replication, concurrency, crashes, and large systems are considered, it is not clear that CONIC 

will work well. 
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Chapter Six 

Conclusions 

Causa finita est. 
(I'he case is concluded) 

-St. Augustine 

I am a Bear of Very Little Brain, 
and long words Bother me. 
-Winnie the Pooh 

This thesis has presented a design for a distributed mail repository using replication and 

reconfiguration to achieve scalability and high availability. The distributed repository \lSes 

registry, mailsite, frontend, and alien guardians to provide its services to agents and external mail 

systems. The guardians are designed to run on nodes of a large distributed system composed of 

many interconnected local area networks. 

The repository's naming information is partitioned between registry guardians by simply dividing 

the name space into ranges and assigning each range to a registry. Registry information is 

replicated by a voting technique using tables with version numbers for each entry [9]; the tables 

are implemented as user-defined atomic types to gain concurre~cy and avoid deadlocks. Each 

"replicated registry" used by a client is actually an object containing references to registries; the 

implementation of the object's type includes code to perform the replicated calls correctly. 

Individual mailboxes are replicated instead of entire mailsites, so that the expense of replicated 

mailboxes can be managed. As with replicated registries, each replicated mailbox is an object 

containing references to mailsites, with the implementation of the object's type including code to 

correctly perform replicated operations at the mailsites. 

The distributed repository can be reconfigured by using new techniques that operate at the Argus 

application level. By crashing guardians and replacing their code without changing their stable 

state, an administrator can gain exclusive access to guardians for replacement. Each replaceable 

guardian can return a state object representing a canonical form of its state, which can be used to 
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initialize a replacement guardian. 

This chapter evliluates the Argus programmmg language for its usefulness in building the 

distributed repository, compares the thesis to related work, and draws some final conclusions. 

6.1 Evaluating Argus 

A number of Argus concepts and constructs were helpful in the design and implementation of the 

distributed repository. Some parts of Argus caused problems,, and in some cases the language did 

not allow an effective expression of what was needed for the distributed repository. First, I 

consider the elements of Argus which were helpful: guardians, actions, user-defined atomic types, 

remote procedure call, strong typing checked at compile time, automatic storage allocation, and 

the Argus debugger. Then I discuss the drawbacks involved in using Argus: deadlocks, the 

awkwardness of retrying actions, problems of process scheduling, and the difficulty in expressing 

replication. 

6.1.1 Argus Advantages 

Guardians served to divide the system into components which could be independently created, 

destroyed, or replaced. Guardians also served as units of replication, since a guardian could crash 

without affecting another. 

The atomic actions of Argus simplified many aspects of the repository. In fact, it is difficult to 

imagine building the repository without them, since there would have been so much additional 

complexity in the system. The effect of actions is largely invisible since they present the model a 

system designer wants: simple, clean semantics for failures and concurrency. By greatly reducing 

the number of states to be considered due to failures or concurrency, actions made the entire 

repository implementation conceptually simpler. The complexity of the distributed repository 

came almost entirely from the use of replication and reconfiguration; a straightforward 

distributed repository was simple to write and run in Argus. The nesting of actions was 

important for concurrent actions performed on copies of a replicated object, so that the replicated 

operation could commit at all copies or abort at all copies without committing or aborting the 

higher-level operation being performed. Nesting of actions was also important since it supported 

the Argus model of • at most once• remote procedure call. 
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The semi_ version_table was implemented as a user-defined atomic type. The ability to construct 

a user-defined atomic type was vital for avoiding replication deadlocks in the system. Experience 

with the construction of semi_version_table suggests that it is not especially difficult to build a 

user-defined atomic type if it is a modification of an existing user-defined atomic type. However, 

the testing and debugging of a user-defined atomic type is significantly more complex than the 

testing and debugging of a conventional, sequential type. Problems in the operation of an atomic 

type seemed to arise from unanticipated interleavings of even!,s. A tool that could systematically 

generate different interleavings of events from two or three processes would allow much better 

testing of user-defined atomic data types. 

Argus remote procedure calls were a very useful high-level model for designing and building the 

system. Instead of a concern with retrying packets, lost messages, sequencing, and so on, the 

repository designer needs to focus only on arguments provided, results returned, and the 

exceptions unavailable and failure. Abstractly, the repository uses replication to try to mask the 

effects of unavailable, and reconfiguration to mask the effects of one kind of failure. Only if 

many copies are unavailable does an operation signal unavailable; only if no replacement exists 

need an operation signal failure(•guardian does not exist•). 

The strong typing of Argus, compile-time type-checking, automatic storage management by 

garbage collection, abstract data types, and all of the other features inherited from CLU [27] 

made Argus programs easier to construct. 

Finally, the Argus debugger made an enormous difference in the construction of the distributed 

repository. The Argus debugger can be dynamically loaded into or unloaded from a running 

guardian. The debugger allows the examination and single-stepping of individual processes within 

a guardian, and uses type information stored outside the guardian to ensure that operation calls 

made from the debugger are type-safe [38]. 

6.1.2 Argus Disadvantages 

Deadlocks were a frequent problem in dealing with the distributed repository. A large number of 

the deadlocks in the system were replication deadlocks, and vanished with the implementation of 

semi version table. Another set of deadlocks were simple problems involving such statements as 

X := f(x, y) 

This statement means that x is first read, then written. If x is an atomic object, that means that 

an action first acquires a read lock on x, then a write lock. Two actions executing this statement 
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in parallel may each succeed in acquiring the read lock, and then deadlock since neither may 

acquire a write lock. Such deadlocks can be found by inspection and either preceded by an 

explicit lock acquisition or enclosed in a mutual exclusion construct. 

However, elimin_ating replication deadlocks and simple read-before-write deadlocks did not 

eliminate all of the deadlocks from the system. In spite of careful but informal attempts to 

ensure the absence of deadlocks, there were still occasional design errors that showed up as 

deadlocks. This seems to indicate a weakness in design methods rather than a weakness in Argus, 

but the language and its tools were not especially helpful in preventing or finding these problems. 

Only the existence of the Argus debugger allowed the detection and correction of these deadlocks, 

since debuggers could be loaded dynamically into guardians that seemed to be misbehaving to 

determine if the cause was a circular chain of locks. A faster method of indicating deadlock or a 

built-in deadlock resolution system would be useful for developing and debugging systems. 

Occasionally a topaction aborts due to a crash, or an unusual chain of exceptions. In such cases, 

one desirable solution is to retry the topaction involved. However, it is quite awkward to write 

code that allows retrying of actions. Typically the solution requires either a duplicate topaction 

in an exception handler, or requires that the topaction be enclosed in an infinite loop. If the 

topaction completes normally, execution breaks out of the loop; otherwise, the flow around the 

loop retries the topaction. It is even more awkward to write code that retries once and then does 

something else. Retrying of a topaction is not a natural paradigm in Argus. 

Some difficult-to-debug problems can arise with Argus processes. There 1s no preemption of 

processes and no associated priorities, so an infinite loop in one process may cause the entire 

guardian to halt, since the offending process never gives up the processor. There 1s no 

straightforward means of determining the status of a process created explicitly with fork, nor 

any way to determine how many processes are active servicing handler calls. A problem arose 

with an alien where a large number of incoming mail messages each caused a new process to be 

forked to handle the incoming message. These processes bogged down the guardian so much that 

the external mail system timed out on the delivery, and tried again later - with the same result. 

Since the guardian had no way of controlling its number of active processes, an overload caused it 

to fail catastrophically. If the Argus run-time system provided facilities for a guardian to limit 

its number of active processes, Argus programmers could construct guardians that would be 

unlikely to thrash or fail under high load. 

Expressing replication is generally quite clumsy in Argus. Good software engineering practice [32] 
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suggests that the replication technique should be encapsulated, so that the distributed repository 

could, for example, switch from the Daniels and Spector algorithm [9] to the Views algorithm [13] 

for replication. However, such an encapsulation is quite difficult. The replication algorithm is 

encapsulated in the interface object (Transaction Manager) of the replicated object, but typically 

the replication algorithm is spread throughout the various operations. There are many features 

common to the various procedures, but they all have slight differences dependent on whether they 

read or write replicated data, and what are their argumenta, results, and exceptions. Intricate 

Argus programming can reduce the amount of code involved by writing a limited sort of 

replication encapsulation. However, the resulting obscurity .of the replicator module is perhaps 

worse than having a lot of simpler code spread throughout -the implementation. Conceptually, 

replication is a •meta-activity•, where the programmer describes the replication technique and 

then provides various procedures or data structures to be automatically replicated. 

Unfortunately, the construction of an abstract •replicator• module seems impossible in Argus. 

6.1.3 Discussion 

Argus works well for the problems of constructing reliable distributed programs, which was the 

original intent of the language. The problems and complexity arise from the use of replication 

and reconfiguration: while the language was designed to allow such use, it was not designed 

specifically to support it. Since scalability and availability are two key reasons for a distributed 

implementation of a system, it is important for a useful distributed programming language to 

include support for replication and reconfiguration. Incorporating appropriate facilities for 

replication and reconfiguration into Argus would probably require fundamental changes to the 

language. It is important to determine what these changes are and how best to deal with 

replication and reconfiguration. 

6.2 Related Work 

It is worthwhile to compare the distributed mail repository with two pieces of related work. 

Grapevine is a distributed mail system that served as an inspiration for parts of the distributed 

repository, and CES was the first large application implemented in Argus. 
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6.2.1 Grapevine 

Grapevine [5, 40]_is a well-known distributed mail system developed at Xerox PARC. Grapevine 

provides a registry (naming) service and a mail (communication) service, each of which is a client 

of the other. A message can be delivered to one of a number of mailboxes, but is only delivered 

to one. Grapevine is -a transport service - messages are deleted from the system after an agent 

has picked them up. The registry is replicated, and updates are propagated in background, so 

that a change can be made at any replica and that change will gradually make its way through 

the system. Rather than being consistent, the Grapevine registry information is convergent: if 

updates are stopped, the system eventually reaches a consistent state. 

Grapevine is a well-engineered system; however, much of its design seems intended to avoid 

having to build a transaction system, with the attendant cost of distributed agreement. In some 

ways, the distributed mail repository is an exercise in building Grapevine with transactions. The 

distributed repository provides a repository service instead of a mail transport service; allows for 

replicated delivery of mail, where a message is actually stored in several mailbox replicas; and 

prevents anomalies such as adding the same name with two different bindings. 

The repository presents a user view that is simpler and more reliable than the corresponding user 

view of Grapevine. In part, this is because the distributed repository must provide the same 

interface as an existing centralized system, whereas Grapevine was defined as a distributed 

system. The transaction system built into Argus makes emulation of a centralized system a 

reasonable task. 

6.2.2 CES 

Seliger implemented a Collaborative Editing System (CES) in Argus as a multi-person 

collaborative editor that allowed different users to cooperate on the creation and modification of 

a document [41]. CES had a name server that corresponded roughly to the repository's 

registries. The CES name server was replicated for higher availability, using Gifford's weighted 

voting as the replica control scheme. However, CES considered autonomy of nodes to be more 

important than the availability of the system. Each author's text was stored on that author's 

node, and an author could withdraw from collaboration. When an author withdrew, that 

author's text was no longer accessible to the other authors. Replication of text for availability 

would reduce this autonomy, by putting copies of text at other nodes where the owning author 

might not have complete control. The distributed repository does not address issues of autonomy 

of the nodes, assuming that all of the nodes are conceptually part of a single large system. 
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CES was an application that was designed to fit its environment, like Grapevine. The distributed 

repository faced a different set of issues since it had to emulate an existing system. 

There was no notion of maintaining availability during a reconfiguration of CES. The 

configuration_ techniques that existed were largely static, focusing on building the system. 

Similarly, there was no attempt to make CES scalable like the distributed repository: there are no 

provisions for dividing the name server information into multiple name servers. 

The implementation of CES was inefficient beyond what might be expected for a prototype 

system. The distributed repository has focused on efficiency- throughout the design process, and 

Seliger's experience with CES suggested certain design choices that should be avoided. CES used 

very short topactions, essentially a topaction for each keystroke of an editor. Since each 

topaction also involved a write to stable storage (itself not an extremely fast operation), this 

meant that nearly every keystroke of the editor required a significant delay for the write to stable 

storage. In addition, the system created new guardians to service each new user and destroyed 

the guardians when the user logged out. In the distributed repository, actions are short but 

always involve a reasonable amount of computation and one or more remote calls, ensuring that 

stable storage is not a bottleneck in terms of response time. 

6.3 Future Work 

There are a number of areas that suggest themselves for future work. One is implementation of 

other replication techniques in Argus: for example, the Views algorithm [13] or Herlihy's General 

Quorum Consensus [19]. The distributed repository provides a framework for comparing the 

techniques in a real application. Unfortunately, as mentioned earlier, the replication technique is 

intertwined with all of the repository's operations, so that a change of replication technique would 

be complicated. 

Another possible direction for future work is the use of the presented replication and 

reconfiguration techniques in other applications. It seems likely that these techniques can be used 

to provide high availability and scalability of an airline reservation system or a banking system, 

but only the construction of such systems will provide solid evidence. 

Finally, future work might include developing new language concepts and constructs for dealing 

with replication and reconfiguration within the Argus language itself. It seems important to gain 
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Appendix A 

DMSP Specification 

Distributed Mail System l+otocol Specification v9.9 

DMSP uses the Unified Stream Protocol (USP). See USP documentation (RFC 272) for 

description of block transport and data types. The transport protocol used below USP is 

TCP/IP. 

Protocol transactions: •~ 11 is agent to repository, 11
~

11 is repository to agent. 

A.1 General Protocol Transactions 

Change a password 
~ SET _PAS SWORD [old:string, new:string] 
~ OK[] I FAILURE[reason:string] 

Start debugging facilities at repository 
~ START_DEBUG[] 
~ OK[] ~ F AILURE[reason:string] 

Stop debugging at repository 
~ END_DEBUG[] 
~OK[] 

Log an informational message at the repository 
~ LOG_MESSAGE[msg:string] 
~ OK[] I F AILURE[reason:string] 

Compare protocol versions with the repository 
~ SEND_ VERSION[version:cardinal] 
~ OK[] I F AILURE[reason:string] 

Send a message 
~ SEND _MESSAGE[contents:sequence[stringl] 
~ OK[] I F AILURE[reason:string] 
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A.2 User Protocol Transactions 

Start a connection to the repoBitory. 
If "create" iB true, then create the named agent. 
=} LOGIN[user:string, password:string, agent:string, create:boolean] 
F FAILURE[reaaon:string] I OK[] II FORCE_CLIENT_RESET[] 

End a connection to the repoBitory 
=} LOGOUT[] 
FOK[] 

Create a new uBer 
=} CREATE_USER[user:string] 
F F AILURE[reason:string] I OK[] 

Delete an exiBting uBer 
=} DELETE_USER[user:string] 
F F AILURE[reason:string] I OK[] 

8.3.1 Agent protocol transactions 

Create an agent for the logged-in UBer 
=} CREATE_AGENT[agent-name:string] 
F OK[] I F AILURE[reason:string] 

Delete an agent of the logged-in uBer 
=} DELETE_AGENT[agent-name:string] 
F OK[] I F AILURE[reason:string] 

Re.Bet the specified agent Bo that it haB not Been any changeB 
=} RESET_AGENT[agent-name:string] 
F OK[] I F AILURE[reason:string] 

List the agent_ids of the logged-in user 
=} LIST_AGENTS[] 
F AGENT _LIST[sequence[ 
record [ name:string, 
status: boolean]]] 
I F AILURE[reason:string] 
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A.3 Mailbox Protocol Transactions 

Create a mailboz for the logged-in user 
=-. CREATE _MAILBOX[ mailbox-name:string] 
{'= OK[] I F AILURE[reason:string] 

Delete a mailbox of the logged-in user 
=-. DELETE_ MAILBOX[ mailbox-name:string] 
~ OK[] I F AILURE[reason:string] 

Permanently destroy all messages marked as deleted in the specified mailbox 
=-. EXPUNGE_ MAILBOX[ mailbox-name:string] 
~ OK[] I FAILURE[reason:string] 

Reset the mailbox so that no agents appear to have read it 
=-. RESET _MAILBOX[mailbox-name:string] 
~ OK[] I F AILURE[reason:string] 

List all of the logged-in user's mailboxes 
=-. LIST_MAILBOXES[l 
~ MAILBOX_LIST[sequence[record[ 
name:string, 

next-avail-uid:long-cardinal, 
number-of-descs:long-cardinal, 
number-of-unseen-descs:long-cardinal]]] 

I F AILURE[reason:string] 

Create an address for an existing mailbox 
=-. CREATE_ ADDRESS [mailbox-name:string, address:string] 
~ OK[] I F AILURE[reason:string] 

Remove an address from a mailbox 
~ DELETE_ ADDRESS [ mailbox-name:string, address:string] 
~ OK[] I F AILURE[reason:string] 

List the addresses attached to a mailbox 
~ LIST_ ADDRESSES[ mailbox-name:string] 
~ ADDRESS _LIST[sequence[stringl] I 
FAIL URE [reason:string] 

A.4 Message Protocol Transactions 

Fetch flags of message 
~ FETCH_MSG_FLAGS[uid:long-cardinal] 
~ MESSAGE_FLAGS[flags:sequence[boolean]] I 
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EXPUNGED[uid:long-cardinal] I F AILURE[reason:string] 

Fetch several chOflged descriptors 
==1- FETCH_N_ CHANGED _DESCS[number-to-send:cardinal] 
F sequence[oneof[desc: record[uid:long-cardinal, 

flags:sequence[boolean], 
from:string, 
to:string, 
date:string, 
subject:string, 
chars:long-cardinal, 
lines:cardinal] 

expunged: record [ uid :long-cardinal]]] 
I F AILURE[reason:string] 

Fetch a particular descriptor by msg_id 
==1- FETCH_DESCRIPTOR[uid:long-cardinal] 
F DESCRIPTOR[ uid:long-cardinal, 

flags:sequence[boolean], 
from:string, 
to:string, 
date:string, 
subject:string, 
nbytes:long-cardinal, 
nlines:long-cardinal] I 

EXPUNGED[uid:long-cardinal] I F AILURE[reason:string] 

Fetch a particular message by msg_id 
==1- FETCH_ MESSAGE[uid:long-cardinal] 
F EXPUNGED[uid:long-cardinal] I FAILURE[reason:string] I 
F MESSAGE [ con tents:sequence [string]] 

Copy a message from one mailbox to another 
==1- COPY _MESSAGE[target-mailbox:string, source-uid:long-cardinal] 
F OK[] I F AILURE[reason:string] I EXPUNGED[uid:long-cardinal] 

Send a message to a printer 
==1- PRINT_MESSAGE[uid:long-cardinal, printer-name:string] 
{:= OK[] I F AILURE[reason:string] I EXPUNGED[uid:long-cardinal] 

Set one of the boolean flags on a message 
==1- SET _MESSAGE _FLAG[uid:long-cardinal, flag-number:cardinal, truth:boolean] 
F OK[] I F AILURE[reason:string] I EXPUNGED[uid:long-cardinal] 

Reset the changed descriptors for this agent 
==1- RESET_ N _ DESCS[number-to-reset:cardinal] 
FOK[] I FAILURE[reason:string] I EXPUNGED[uid:long-cardinal] 
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Appendix B 

Specifications of Guardians 

B.1 Specification of Alien Mailer 

alien_ mailer = guardian is create 
handles deliver 

background 
% The alien mailer periodically check8 for new incoming mail 
% and put8 it into the appropriate mailbox 

end 

deliver= handler(msg:message) returns(invalid_address_list) 
% Deliver takeB a meBBage and attempt8 to deliver it to 
% the appropriate addreBs(es). For internal mail, it send8 
% directly to the receiverB' mailboxeB; if an addre88 iB 
% intended for internal delivery but doe8 not exiBt, it i8 
% added to the invalid addre88 liBt that i8 returned. 
% 
% Me8Bage8 intended for external delivery are sent out of the syBtem; 
% any errorB at external mail systems are returned to the sender 
% as incoming meBaages later. 

end deliver 

end alien mailer 
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B.2 Specification of Mailsite 

mailsite = guardian is create 
handles create_ mailbox, 

delete_ mailbox, 
expunge_ mailbox, 
store_ message, 
fetch_message, 
fetch_ descriptor, 
create_ agent, 
delete_ agent, 
changed_ descriptors, 
reset_ updates, 
get_new _msg_id, 
next_message_ with_flag, 
set_flag 

create = creator() returns( mailsi te) 
% Creates a blank-slate mailsite and returns it to the caller. 

end create 

create_mailbox = handler(name:box_id, agents:list[agent_id]) 
signals( mailbox_ exists) 

% Creates a new mailbox with the specified id, using agents as 
% initial list of agents with access to mailbox. 
% If mailbox with given name already exists, signal mailbox_exists. 

end create mailbox 

delete_ mailbox = handler( name:box _ id) signals( no_ such_ mailbox) 
% Destroys the mailbox with the given id. If no such mailbox exists 
% at this mailsite, signals no_ such_ mailbox. 

end delete mailbox 

expunge_ mailbox = handler( name: box_ id) signals( no_ such_ mailbox) 
% If a mailbox with the given id doesn't exist at this mailsite, 
% signals no_ such_ mailbox. 
% Otherwise, destroys every message which is flagged as "deleted". 
% Once the expunge commits to the top, the messages are 
% permanently deleted. 

end expunge_ mailbox 

fetch_descriptor = handler(box:box_id, m:msg_id) returns(descriptor) 
signals(no _such_ mailbox, no_ such_ message, expunged) 

% If a mailbox with the given id doesn't exist at this mailsite, 
% signals no_ such_ mailbox. 
% If the mailbox exists but no message with the given id has ever been 
% entered into the mailbox, signals no_ such_ message. 
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% If the message has existed but has been expunged, signals expunged. 
% Otherwise, returns a descriptor for the message corresponding to 
% the box.=. id, msg _ id pair. 

end fetch_ descriptor 

create_agent-= handler(box:box_id, agent:agent_id) 
signals( no_ such_ mailbox, agent_ exists) 

% If mailbox doesn't exist, signal no_ such_ mailbox. 
% If agent already exists, signal agent_exists. 
% Otherwise, create specified agent for specified box. 

end create_ agent 

delete_agent = handler(box:box_id, agent:agent_id) 
signals(no _such_mailbox, no _such_agent) 

% If mailbox doesn't exist, signal no_ such_ mailbox. 
% If agent doesn't exist, signal no_ such_ agent. 
% Otherwise, delete specified agent for specified box. 

end delete_ agent 

changed_ descriptors= handler(box:box_id, agent:agent_id, n:int) 
returns(list [descriptor]) 
signals( no_ such_ mailbox, 

no_such_agent, 
bounds) 

% If mailbox doesn 't exist, signal no_ such_ mailbox. 
% If agent doesn't exist, signal no_ such_ agent. 
% If n < 0 then signal bounds 
% Otherwise return list of descriptors of length n or list of all 
% descriptors, whichever is shorter. The candidate descriptors 
% are those which have changed since the last connection _by the 
% specified agent. 

end changed_ descriptors 

reset_ updates= handler(box:box_id, agent:agent_id, n:int) 
signals( no_ such_ mailbox, no_ such_ agent, bounds) 

% If mailbox doesn't exist, signal no_ such_ mailbox. 
% If agent doesn't exist, signal no_ such_ agent. 
% If n < 0 or n > number of descriptors then signal bounds 
% Otherwise reset update flags on first n descriptors 
% so that they do not appear "changed II for this agent. 
% The candidate descriptors 
% are those which have changed since the last connection by the 
% specified agent. 

end reset_ updates 

fetch_message = handler(box:box_id, m:msg_id) returns(message) 
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signals( no_ such_ mail box, no_ such_ message, expunged) 

% If a maubox with the given id doesn't exist at this mailsite, 
% signals no_ such_ mailbox. 
% If the mailbox exists but no message with the given id has ever been 
% entered into the mailbox, signals no such message. 
% If the message has existed but has b~n ex~nged, signals expunged. 
% Otherwise, returns the message corresponding to the box_ id, msg _ id 
% pair. 

end fetch_ message 

send_message = handler(msg:message) 
% Send msg based on its "To:" field{s). 

end send_ message 

messages_ with_flag = handler(box:box_id, flag_num:int) 
returns(list[msg _id]) 

signals( no_ such_ mailbox, 
no_ such_ flag) 

% If a mailbox with the given id doesn't exist at this mailsite, 
% signals no_ such_ mailbox. 
% If the flag_num given is not the index of a flag {currently 
% 1 <= flag_num <= 16 }, signals no_such_flag. 
% Otherwise, returns a list of the id's of messages in the specified 
% mailbox with the specified flag "true". 

end next_ message_ with_ flag 

set_flag = handler(box:box_id, msg:msg_id, flag_num:int, val:bool) 
signals( no_ such_ mailbox, 

no_ such_ message, 
no_ such_ flag, 
expunged) 

% If a mailbox with the given id doesn't exist at this mailsite, 
% signals no_such_mailbox. 
% If the flag_ num given is not the index of a flag {currently 
% 1 <= flag_num <= 16 ), signals no_such_flag. 
% If the mailbox exists but no message with the given id has ever been 
% entered into the mailbox, signals no_ such_ message. 
% If the message has existed but has been expunged, signals expunged. 
% Otherwise, sets the specified flag of the specified message in the 
% specified mailbox to the value given. 

end set_ flag 

end mailsite 
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B.3 Specification of Registry 

% Registry mantJ'!]eS everything pertaining to the mailsystem 's multi-user state 
% not directly connected to messages. It maintains the list of users, the 
% list of addresses, and the list of clients {different mail states of users). 
% It also provi"des the mapping from a user-friendly mailbox name to an internal 
% mailbox number which can be subsequently used to actually manipulate the 
% mailbox. Actual mailboxes reside at mailsites, not at registries. 
% 

registry = guardian is create, 
handles create_ user, 

delete_ user, 
create_ mailbox, 
delete_ mail box, 
validate_ user, 
list_ mailboxes, 
get_ mail box_ by_ name, 
get_ mailbox_ by_ address, 
create_ address, 
delete_ address, 
create_ agent, 
delete_ agent, 
list_ agents 

create = creator() returns( registry) 
% Normal creator, simply creates a blank-slate registry and 
% returns it to the caller. 
end create 

create_ user = handler(name:user _id) signals(user _ exists) 
% If the name is already known, signals user_ exists. 
% Otherwise, creates new user entry for given name. 
end create user 

delete_ user= handler(name:user _id) signals(no _such_ user) 
% Delete user deletes a name. If the name is not known, 
% the routine signals no_ such_ user. 
% Deleting the user removes all associated information, 
% so that no further deletion is required to get rid of it. 
end delete user 

create_mailbox = handler(u:user _id, b:box_name) 
signals( no_ such_ user, 

mailbox_ exists) 
% If u not found, signals no_such_user 
% If b is the name of an existing mailbox for this user, 
% signals mailbox_ exists. 
% Otherwise creates a mail box for user II u II with a box name of "b" . 
end create mailbox 
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delete_mailbox = handler(u:user _id, b:box_name) 
signals( no_ such_ user, 

no_ such_ mailbox) 
% If u not found, signals no_ such_ user 
% If b not found, signals no_ such_ mailbox 
% Otherwise, removes a mailbox named "b• for a user "u" 
end delete- mailbox 

list_ mailboxes = handler(u:user _id) returns(list[box_name]) 
signals( no_ such_ user) 

% If u not found, signals no_ such_ user. 
% Otherwise, returns a list of mailbox names for user u. 
end list mailboxes 

get_mailbox_ by _name= handler(u:user _id, b:box_name) returns(dist _mbox) 
signals (no_ such_ user, no_ such_ mailbox) 

% If u not found, signals no_ such_ user 
% If b not found, signals no_ such_ mailbox 
% Otherwise, maps a user_ id and box_ name to a dist mbox 
% (mailbox uid + mailsite list) 
end get_ mailbox_ by_ name 

get_mailbox_by _address= handler(addr:address) returns(dist_mbox) 
signals( no_ such_ address) 

% if addr not found, signals no_ such_ address 
% Otherwise, maps an address to a dist_ mbox ( used for delivering 
% mail). 
end get_ mailbox_ by_ address 

create_address = handler(addr:address, u:user _id, b:box_name) 
signals( address_ exists, 

no_ such_ mail box) 
% if addr already in use, signal address_ exists 
% if b not found, signal no_ such_ mailbox 
% Otherwise, adds addr as an address for a user's mailbox 
end create address 

delete_ address = handler( addr:address) 
signals( no_ such_ address) 

% If addr not found, signals no_ such_ address 
% Otherwise, removes an address from the system. This does not 
% delete any other addresses or destroy any mailboxes. 
end delete address 

create_agent = handler(u:user _id, agent:agent_id) 
signals (no_ such_ user, 

agent_ exists) 
% If u not found, signals no_ such_ user 
% If agent is already an agent of u, signals agent_ exists 
% Otherwise, adds agent to agent_ list of user u, creates 
% agent information at mailsite. 
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end create_ agent 

delete_agent _ handler(u:user _id, agent:agent_id) 
signals( no_ such_ user, 

no_ such_ agent) 
% if u not found, signals no_such_user 
% if agent-not found, signals no_ such_ agent 
% Otherwise, removes agent from agent_ list of user u, 
% removes any agent information from mailboxes at mailsite. 
end delete_ agent 

list_agents = handler(u:user _id) returns(list[agent_id]) 
signals( no_ such_ user) 

% If user u is not known at this registry, signals no_ such_ user. 
% Otherwise, returns a list of the names of all of u's agents. 
end list_ agents 

end registry 
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Appendix C 

Semi_Version_Table Implementation 

% An ordered atomic table abstraction with version numbers. 
% Based on semi_table, written by Craig Chambers 

semi_version_table = cluster[KEYTYPE, DATATYPE: type] 
is new, store, fetch, delete, 

member, gc, equal, transmit 

where KEYTYPE has equal: proctype(KEYTYPE, KEYTYPE) returns(bool), 
lt: proctype(KEYTYPE, KEYTYPE) returns(bool) 

OPS BEFORE GC = 25 - -
version = int 
rep = mutex[rec] 
rec = record[contents:datalist, 

gaps: gaplist, 

% upper limit for value of operations before gc 
limit: int, 

% number of potentially garbage-producing ops done 
operations: int] 

datalist = array[datathing] 
gaplist = array[gapthing] 

datathing = record[key: KEYTYPE, 
state: here_gone] 

gapthing = version 

here_gone = atomic_variant[here: info, 
gone: version] 

info= struct[data: DATATYPE, 
vers: version] 
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% Rep invariants: 
% r:rep, list:datalist = r.value.contents, gaps:gaplist = r.value.gaps 
% 
% datalist$size(list) 2: 0 
% gaplist$size(gaps) = datalist$size(list) + 1 
% 
% 
% 
% 

datalist$low(list) = 1 
gaplist$low(gaps) = 0 

% datalist$low(list) :'.S i < j :'.S datalist$high(list), 
% => 
% list[i] .key < list[j] .key 
% 
% 
% limit:int := r.value.limit, ops:int := r.value.operations 
% 
% limit > 0 

% Abstraction function: 
% 
% Abstract list is a list alternating between data items ( each with 
% a version number) and gaps (each with a version number). 
% 
% GapO Datal Gapl Data2 Gap2 Data3 Gap3 ... 
% 
% Given a rep object r with list= r.value.contents, gaps= r.value.gaps, 
% 
% Each concrete data item has a corresponding gap (with the same index). 
% The abstract list is given by dividing the list into alternating 
% data items and sequences of gone items. The abstract data 
% items and their version numbers are the same as the concrete data 
% items; each abstract gap is determined by 
% 1. the corresponding gap of the lower data item 
% 2. the gone items between the lower and higher items 
% 3. the corresponding gap for each of these gone items 
% (Exception: the gaps at the beginning and end of the list don't 
% have data items on both sides, obviously). 
% The abstract gap has a version number which is the maximum 
% of all the version numbers of the concrete gaps and gone items 
% making up the gap. 
% 
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% Implementation note: 
% 
% Since there-are multiple rep gaps in between rep data items, lookups 
% in that gap can return more than one version number. However, there 
% is no way for a caller to determine whether or not there is a data 
% item in the gap ( there are no operations describing the size of the 
% table or giving all of the elements), so it's OK: abstractly, it looks 
% as though there are two gaps with a data item in between, not two gaps. 
% 

% Implementation note: 
% 
% WARNING! The gc operation can mutate the arrays containing the 
% rep information so that an array index returned by find may not 
% be correct after a pause is executed. All operations should either 
% 1. Not depend on array positions after a pause, or 
% 2. Recalculate array position after a pause. 
% 

% Operations 

new = proc() returns( cvt) 
% create table 
return( rep$create( rec$ {contents: datalist$new(), 

gaps:gaplist$[0: 1], 

end new 

limit: OPS_BEFORE_GC, 
operations: 0})) 
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store= proc(t: cvt, key: KEYTYPE, data: DATATYPE, vers:version) 
signals( not_ stored( version)) 

% store element in table 

tv:rec 
interest:hei:e _gone 

% Seize table 
seize t do 

tv := t.value 
maybe _gc( tv) 

% add element to table 
pos:int := find(tv, key) 

except when not_found(ins:int, miss:version): 

% insert entry into table 
% if new version is lower than old, ignore and signal 
if vers < miss then signal not_ stored( miss) end 

% build object to insert 
memo:here_gone := here_gone$make_gone(l) 
here gone$change here(memo, info${ data:data, - -

vers:vers}) 
keyed:datathing := datathing${key:key, state:memo} 

% insert new entry in table 
array _insert[datathing](tv.contents, ins, keyed) 
array _insert[version](tv.gaps, ins, miss) 

% write to stable storage 
rep$changed( t) 
return 
end 

interest := tv .contents[pos] .state 

% routine continued on next page ... 
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% Wait for data to become available. 
while true do 

% Try to get write lock and update data 
tagtest interest 

wtag here( i :info): 
if i.vers < vers then 

here _gone$change _ here(interest, 
info${ data:data, 

vers:vers}) 
return 

else 
signal not stored(i.vers) 

end 

wtag gone(v:version): 
if v < vers then 

here _gone$change _ here( interest, 
info${ data:data, 

vers:vers}) 
return 

else 
signal not_stored(v) 

end 
end 

% Release mutex while waiting for lock 
pause 

end% while 
end% seize 

end store 
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fetch= proc(t: cvt, key: KEYTYPE) returns(DATATYPE, version) 
signals( not _in_ table( version)) 

% returns element of table 

tv:rec 
interest:here_gone 

% Seize table 
seize t do 

tv := t.value 

% find element of table 
pos:int := find(tv, key) 

except when not _found(ins:int, miss:version): 
% insert empty entry into table 

% build object to insert 
memo:here_gone := here_gone$make_gone(miss) 
keyed:datathing := datathing${key:key, state:memo} 

% insert new entry in table 
array _insert[datathing](tv.contents, ins, keyed) 
array _insert[gapthing](tv.gaps, ins, miss) 

% write to stable storage 
rep$changed( t) 
signal not _in_ table( miss) 
end 

interest := tv .contents[pos] .state 

% Wait for data to become available. 
while true do 

% Try to get read lock and update data 
tagtest interest 

tag here(i:info ): return(i.data, i.vers) 
tag gone(v:version): signal not_in_table(v) 
end 

% Release mutex while waiting for lock 
pause 

end% while 
end% seize 

end fetch 
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delete = proc(t: cvt, key: KEYTYPE, vers: version) 
signals( not_ deleted( version)) 

% delete element from table 

tv:rec 
interest:here_gone 

% Seize table 
seize t do 

tv := t.value 

% delete element from table 
pos:int := find(tv, key) 

except when not_found(ins:int, miss:version): 
% insert placeholder into table 

% if new version is lower than old, ignore and signal 
if vers < miss then signal not_deleted(miss) end 

% build object to insert 
memo:here gone := here gone$make gone(vers) - - -
keyed:datathing := datathing${key:key, state:memo} 

% insert new entry in table 
array _insert[datathing](tv.contents, ins, keyed) 
array _insert[gapthing]( tv .gaps, ins, miss) 

% write to stable storage 
rep$changed( t) 
return 
end 

interest := tv .contents[pos] .state 

% routine continued on next page ... 
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% Wait for data to become available 
while true do 

% Try to get write lock and remove data 
tagtest interest 

wtag here(i:info): 
· if i.vers < vers then 

here _gone$change _gone(interest, vers) 
return 

else 
signal not_ deleted( i. vers) 
end 

wtag gone(v:version): 
if v < vers then 

here _gone$change _gone(interest, vers) 
return 

else 

end 

signal not_deleted(v) 
end 

% Release mutex while waiting for lock 
pause 

end% while 
end% seize 

end delete 
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member= proc(t: cvt, key: KEYTYPE) returns(bool, version) 
% returns true iff key is in table 

tv:rec 
interest:here _gone 

% Seize table 
seize t do 

tv := t.value 

% find element in table 
pos:int := find(tv, key) 

except when not_found(ins:int, miss:version): 
% insert placeholder into table 

% build object to insert 
memo:here _gone := here _gone$make _gone( miss) 
keyed:datathing := datathing${key:key, state:memo} 

% insert new entry in table 
array _insert[ data thing]( tv .contents, ins, keyed) 
array _insert[gapthing] ( tv .gaps, ins, miss) 

% write to stable storage 
rep$changed( t) 
return(false, miss) 
end 

interest := tv .contents[pos] .state 

% Wait for data to become available 
% Note that we no longer have possession of the table, 
% just access to the object "interest•. 
while true do 

% Try to get read lock on data 
tagtest interest 

tag here(i:info ): return( true, i.vers) 
tag gone(v:version): return(false, v) 
end 

% Release mutex while waiting for lock 
pause 

end% while 
end% seize 

end member 
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gc = proc(t:cvt) signals(gc_failed(string)) 
% Garbage collect any aborted bindings 
% This operation should be called at guardian recovery. 
% Otherwise, the garbage should pretty much take 
% care of itself during normal operation. 

% Seize table 
seize t do 

tv:rec := t.value 
contents:datalist := tv .contents 
gaps:gaplist := tv.gaps 
internal_gc( contents, gaps) 

resignal gc _failed 
end 

end gc 

equal= proc(tl, t2:cvt) returns(bool) 
where DATATYPE has equal:proctype(DATATYPE, DATATYPE) 

returns(bool) 
% returns true iff tl is the same object as t2 
return(tl = t2) 
end equal 
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% Internal Routines 

find = proc(~ rec, key: KEYTYPE) returns(int) 
signals(not_found(int, version)) 

% returns position in array of element if found; 
% or signals not_found with the position to insert the element. 

contents:datalist := t.contents 
gaps:gaplist := t.gaps 

low:int := datalist$low( contents) 
high:int := datalist$high( contents) 
middle:int 

% Binary search 

while low < (high - 1) do 
middle := (low+high)/2 
if contents[middle].key = key then 

return( middle) 
elseif contents[middle].key < key then 

% middle is too low, raise search 
low := middle 

else 
% middle is too high, lower search 
high := middle 

end 
end 

% routine continued on next page ... 
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% Fallen through without finding item. 
% Either high = low or high = low + 1. 
% In all, t}iere are 5 cases to consider: 
% 
% 1) The item doesn't exist and is just below low 
% 2) low points to the item 
% 3) The item doesn't exist and should be in the gap between low & high 
% 4) high points to the item 
% 5) The item doesn't exist and should be in the gap just above high. 
% 
% Note that in case 1, low never moves from the bottom of the list; 
% similarly in case 5, high never moves from the top of the list. 

if key < contents[low] .key then 
signal not_found(low, gaps[low-1]) % case 1 
elseif key= contents[low].key then 

return(low) % case 2 
elseif key < contents[high] .key then 

signal not_found(high, gaps[high-1]) % case 3 
elseif key = contents[high] .key then 

return(high) % case 4 
else 

signal not_found((high + 1), gaps[(high)]) % case 5 
end 

except when bounds: 
% empty list 
signal not_found(low, gaps[low-1]) 
end 

end find 
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internal_gc = proc(contents:datalist, gaps:gaplist) 
signals(gc _failed( string)) 

% Must have already seized the mutex surrounding contents and gaps 
% Get external view of the array 
enter topaction 

% For each binding ... 
index:int := datalist$low(contents) 
newvers:int 
while true do 

% If aborted ... 
tagtest contents[index] .state 
wtag gone(v:version): 

% Get new (highest) version for gap -
% maximum of ... 
newvers := version$max( 

version$max( 
% the previous gap, ... 
gaps[index - 1], 
% the deleted object's version, ... 
v), 
% and the following gap. 
gaps[index]) 

% store new version in gap 
gaps[index - 1] := newvers 
% destroy garbage 
array_ delete[datathing]( contents, index) 
array_ delete[gapthing](gaps, index) 

others: 
% not an aborted binding, move on 
index := index + 1 
end 

end 
except when bounds: 

% all done 
end 

end % topaction 
except when unavailable(why:string): 

signal gc_failed(why) 
end 

end internal_gc 
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maybe gc = proc(r:rec) 
% Must already have possession of mutex surrounding r 
% Don't write changes to stable storage. 
r.operations := r.operations + 1 
if r .operations > r .limit then 

internal _gc( r .contents, r .gaps) 
r.operations := 0 
end 

end maybe_gc 

% Transmission Routines 

encode= proc(t: cvt) returns(rep) 
where KEYTYPE has transmit, 

DATATYPE has transmit 
return(t) 
end encode 

decode = proc( t: rep) returns( cvt) 
where KEYTYPE has transmit, 

DATATYPE has transmit 
return(t) 
end decode 

end semi version table 
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