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Abstract 

The VIM computer system, an experimental project under development in the Computation 
Structures Group at MIT, is intended to examine the efficient implementation of functional 
languages using the princip~ of data flow computation. In this thesis, we examine how to 
incorporate backup and recovery mechanisms into this system to guarantee that no online 
information is lost because of hardware malfunction. Our solution, which takes advantage of VIM's 
powerful applicative base language and its uniform treatment of data and files, integrates the 
operation of the backup and recovery system within the interpreter itself, resulting in a system that 
can ensure a high degree of data security without ex~ive performance degradation. Unlike 
schemes found in other systems to guarantee data security, operation of the backup facility requires 
no user intervention. 

To present our algorithms rigorously, we first develop a formal operational model of system 
behaviour. This set-theoretic model views VIM as a state trapsition system with the interpreter 
serving as a state transition function. The specification language is a superset of the applicative 
language, VIMV AL. We enhance this model to include a concept of system failure and augment to 
the basic components in the system a backup state with the base language instructions now 
operating· on both the VIM as well as the backup state. A formal proof demonstrating the 
correctness of our algorithms is also given. Issues concerning the implementation of .these 
algorithms are also addressed in the thesis. 
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2 GOALS OF THE THESIS §1.1 

found in our system provides a framewoi:k QO which a highly secure system can be designed. 

Unlike its more conventional counterparts, the backup and recovery utilities we present are 

simple and efficient and do not require any ,.ttF·~ce to perform their task. We model the 

presence of failures and the actions undertaken by the backup and recovery mechanisms by 

defming a formal operational semantics of system beh'ajour. This formal model is used to give a 

precise description ofthebehavidur of the backup and reawery system. We demonstrate, using 

this formal model, that the backup algorithms developed p~y records the relevant portions 

of the system state and'that the recovery system does-~y·restore the.proper system state as 

well. 

1.2 Motivation 

The prot>lem of ~tc;eing • secwity il ,certainly not a new one. Virtually every 

major computer systelJl develo~~lude$ some.tYJ)I ~[pro)edionaechanism tosafoguard:the 

.. information. entrusted to it.. It. is. the~fore. · natu~ :for tu reada' te.qttemti0tt why the ·studf of 

data security for. tlle VIM _system is. ai problem ·wtlr'dtr pf ,i~.. .lbere :are two main 

reasons why '\VC have not cbe$ea to-simpJy.usebaeimp;• ~ algoriduns de.eloped.for 

other systems for. VIM. First, l¥ld fo,-iosr,. baetupJabd.,1dicaaf • svstems in «l>Rv«tdonal 

systems. are not able to 1)4Dvidc full,1dala.fllC\lffW,MJiaout ~tiemmivety,aomplex·~d 

inefficient In gene,al tl\e.itJlPMmentadoat of,lhea-lditidelJlre'inot·iablle fl>,provided\Ht ·data 

security witb04,1t incQrring $1Aiikant ~ m ~--; ·ln:afldition,to dritmajor 

drawback, these schemes are based on a computational model which is much different from that 

found in VIM. The implementation strategy that we present in this dYesl!s 1gWttanteet faff data 

security ~d exploi~ the ~~~res of VJM • ~-,, k •~r-.dij'fetat·&om other 

data seQlrity ~ ~ b .,both ~~ -~~sr,Sllsnsc\Some of the more 
interesting aspects of VIM pert.inpn~ ~--~ •ue of data,~ lfldlcd helow: 

. • VIM is based on a dJ11811lic dala flow ardlitectUlll'. 

In a data flow computer system, all instructions in ,.the prog~, are viewed as potentially 
, - ' , ' ' - . .. -',: , ', -. . / ' . ·, ; ' - . ; . ' ~ ' . ' . 

executable. with the only constraint ~ing that they must hav,e received all "!!C~ry operam:.ts 
' ' ' • -· - • - ' ' ' ; ~ ,,:· ~ > ' ; I ,,· • i ~ t I ' >- ; ! ~ I ; ' ,' : -· : • • , ; t 

and control signals. This execution model allows f9r.~ gr~t 1deaJ},>f~cu.rr:cqcy t9 be rcaljz.e~. 

Thus. our data security mecha~ism. ~usl 'be d~isn~d;k>.,be -~~,' i,~,i~ hig~ly co~cu~ent 
. ' ," ; ; : : ~ ' ~- -· ' ' 

environment. 



§1.2 ,MOTIVATION 3 

• VIM interprets an applicative base language, -namely. the• lanauage of ,dynamic data 
flow graphs. 

A dynamic data flow graph i, a directed, acyclic grBt)h where nodes represeftt instructions and arcs 

define data dependencies eetween thelJe i~ ~graph; w dynamic if the execution of a 

function activation is explicidy, ,initiated by SOMe· applto,,enttM., 1 lrt · but' system. each l\inction 

activation has its own graph,created by dle'4f/lP/y in8trutliott; Tfle.tiase~angu&ge instruction set is 

very powerful, containing instructions for function application and reUlrtt/~ct\Jte fflation and 

manipulation as well as instructions to. handle st?,~e ~~Ille:~~, J{p ~ take advantage of 

this feature in the design of oµr data ~urity mechaQ~m b.t ;~~tjp& tile ~m,antics of these 
' • 0 • ,: _.. > • ' ~. ~ ' • ~,, • , 

instructions to support the backup and recovery p~ures. 

• There is no distinction between.ft/es and data iJi, VIM. 
' ' . ,· . ' ... . : . 

Unlike conventional systems, the units of storage alkx:atlon tn VIM''are the infonnation uriits on 

which the primitive operations of VIMoperaw i.e. tnstrltctions, scllfjr \tatti~ arrays, ~d rec6tds. 
· This feature will allow US to design bdup al~1 thlt';ca1fht'iutiy . cbgniwit or how 

infonnation is being created and rtlanipufated in ~sys111r1-

• The unit of transfer between dtslc and main 'meDlOl'y is ~ small fixed-si~e unit ~f 
infonnatioa calWd,a ahlutlt. · ' · · · · 

The small unit of information transfer will allow extensive concurrency of operation to be 

·- achieved byexptolting the 1data:dl'iven·e1ecution·rmllel1t6•~•.-h1gh1evetiof mfbrmation 

· traffic between disk; and .... rnemoi,. The' u~'lt'Jf" ~: as':the 1ttnit 6f tnlrisfet jj&ses 
interesting. Pft)blemsfbr ibe, backup, system·· wh'ert inftwrn.ttm tt'e&ts ~~ <X>Pi~ ·trom·m~mory 

to a more stable storage medium. W• :d..,_ this s_.ri\ tti6ih!ik 

l.3 Background. 

While hardware is generally reliable for the most·part: catlSttt>phes do indeed occur and it 

is necessary that the computer sxstem designer be sensitive.to Ulls~;ility..,(d~ .. we would like . . . ' ' . . . . .(,'' . ' ·. )- \:-.,~,: ' '. . ' .. '' 

to provide a guarantee to the users of our system that all ac~~pJ_e qi\lij ,wjll survive _the effects. of 
; ; • ·, . . 1 '"' 'I" ,·.' • ' ' • 1 . . ' 

any hardware malfunclion. The approach .that i~ J•~opJ~dt.~Q,,erf'i-;1wi,,tna~urallY,, be_ .st~~>ngly 

influenced by efficiency const~aints. In mostconvc11tk>.nal ~IJ1P4}~l:~YS~~,s lhat cto not P~.<?vide 

extra hardware support to ac;hicve this aim, the cost of realizing (11114,ata-scc~ritY.~tJally inyqlvcs 
, . . , , .)('. . !.'•. ,. ; . r 

LCXl much overhead and reduced performance Lo be a realistic gp.d. In tflc~ sy~tpms. users arc 
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forewarned that some of the informarion they have·-~'to'the'system may not survive a 

hardware failure. Consequently, these users must take explicit action to preserve data they deem 

important by perioqk:ally-"baok4ng UJ>I' -ir ~offl0a;ffl6fe'ffliable.storage medium. 

Infonnation which is not lAUI~ OfHt} ~ MICI is:,~:a caslt lt is usually not 

l)OS.iible in most systems to~ thiJ,lostQ8l.a ~- ....... ifllitlie·gampmatici>ns·whiob initially 

produced it since there is 110-m~to m.QtWfilr:d,o cnaaart· ~ ·of information 

occurrins in the sy~ 

We shall say that the informatfon· held by ·a computer system is fully secure from Jos., or 

corruption if the system contains m~anisms ~hich"ensu~ the.pr~~ati~n of all data d~ite 
;:'.. .'./•.,:, . ,.$·' .:·,:--r~ i1~J nu;.i:_ J] :):~.? r: .:;.: ~ ', 1

• 

the presence of unreliable underlying hardware components. These mechanisms may be 

incorporated as backup and recoverysof\wate uttlitiwnr1\1iifikit'.bltbrin ofrepli~ storage 

elements_ or miy ~-~-~~~d, ~ SQtne ~~,:'#;~•":.~ ~; .. 9£4&~.~ty 

P,rovided by.,~ co~P;µter~~.m ,W}>n~ ~"t,e:.9'i~:~~~d~fiQ~ ~.~liable.-~ra of 

the system can_ oonfulc;ml¥: ~~ ~~~:~~L~;~Wfi.~;1~rJltat;4ata ~~Yr does 
not necessarily imply reliability si~;~,~~ ~.~ ~,~1--- .~Ali tQithe 

external wort~. , ,A sys~, ~-h~h ~ -~~~i~ ~H!, ~ ~~~~~ mr~r. ~tpc;s its users 
that no failure in the system will cause any accessible in~tor.1-bil•'tYCftlthough users 

may be prevented from accesung it for a time if a ~lure takos place. 
... ;,.·; •~•; : 7_;;[:''f'' 

.. The ~tt:11,Uo ,,v~ -~:<:aa~ def,a;~tJau----ille~t-Jlidle availability of 

the sy~., In, app~ -.--~~•s•-.ll.ril ia~-that no1single 

f harciwa.t;e f~re ~«;Ii - WSWl\. l-~~' fo,,~~•-lrtMttk>ihof,-.~ f The basic 

approach to masking ~,pf'~.!Pili«....., ••••done1'1tieheibarn&re 
level itself. by incorporating sufficient redundancy into the system·{26i In this thesis, we shall 

not be concerned with availability. Radler. we shall be focusing out attention-GfttftM;,w,t,iefffof 

,. enltanciqa Y(M to provtcieJW,~~~>lJOfJll9PB~ 
•· •-• ;, C ' •; ',• • ' • 

For systems which need not mask. failures. 'the -~d~rd app~h used to guarantee data 

security h~ 'beerr to prdvide liaclup Md reco~erj soft~arcj utlfttletfo/ the: system. n1e backup 

utt1ity serves l(J safegunrcf 1nforrnatit>11' bt{sclm~·stoAfge ;~ictthai1l~1
i1~mune to. the effects of 

hardware . fallure. The recovery U(iliry' is invoked 'w~~n. k h~~~~ie Jfattiire; occurs and u~ the 
irtfotrt1alion pteservedby tbe'btdu~facifity to r(~rfcM;yitcffi1to·a"kiic ~hich existed before 

< ' • • • • ~ .' < • ' '. ' • ' • '. 'i . ' '' i· ; ; - . . : ' ' ' 

the faih1rc. The degree of datd security 'ptt>viclccf bY'the 'systciit'ts·'diti'1jtc'ct hy the (.'OSl of the 
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backup and recovery process., Most· current systemS ,ha""-hae to'-sa<?rit'ice the goal of providing 

full data security .because of the high overhead tllawoutttbeinvooe(fih supporting thejbackup 

and recovery .systam. In these systems,; tlM state· ffJBtGNd ·by; the,~very utility may not be the 

· one which existed-immediately .prior to the failu-. Motet>Vet!,~itiis ~uaHy dte case that thete is 

no means of recoveria, thi.1 desired state: from the one p,oduced :by dte recovery' procedure. 

Thus. information las.1 is a pmsibility whicb users-Of.the -,.CRi MUSf accept. · 

1.4 Previous Works 

In this section, we: wiefty describe. some-·previous' ~ftbrts in the·· design of highly secure 

systems undertaken for both centralized ~d d~b~~,5¥~ .~.,tJU ~ 59I~ proposed for 
, . . .; ". \ ' ; ; . , ',. , ~-' -~. ·-' , : . 

providing fault-tolerance for a class of {Jata flow ~it(1ct1,u,s •.. Wed>e>int out ~~, .ma.ior 
' . ·' . ',. . : . • . . , -~ . ''· ~ ;, 1-. ' - . : ._, ; ·.; ·' . j' . J-. > , - ' 

deficiencies and assumptions made in these pl'OJ)9':'ls t,tt~t,)~e ~e~. n<>t suita_ple. for 

implementati~n in our system. - · 

l~4.l Data Security In Centralized Systems 

t~ conventional single-processor machines;tf>:~ simplest ~d pe~aps m0$t di.~ect-~~ of 

recording state· infonnation · for recovery_ pu~-- is . to, .~~It a ~~lcpoint ·4~,:ibiqg. all 
·'. ; ~ , '. ,' ;- ~·,. ': , :' ••• ~ •• f , •• /'T...:- ;(;~ ~--:..:·.,. 1i~.t ~- '-..; ,_ 'i.,~ •,,. ,·.< 

aspects of the system state. The checkpoint state is COQst.n,t~d by ~~ing, the ~e of the 
, ) • • j _,. • • ; , • : • ,' f. f '• C !>," ; -} / f ~ ••. > 1 ~;_•_ ' : . >: ; '. ; ' . • ,• •. 

system at some point onto a reliable storage mediun_t suGh 8',qtj)e. Tlt~,JilQSt,obvio\lS dr,aw,back 
• , , ~ f• .·- , : -_-"[{; -,·_,'-)1 r-;;,; · .:·..,·: :· ;_, <; t· ·~-, ,: · ,· ~ 

of this scheme is the potentially large amount of data, wh~h must ~ ~in~ -- an o~tim,es 
, • . . : ,• " •: • ' ,., .. __ ;; l:_;·,,,,:,,'.,_. '.) ~~~ .-: .. ,d l f! .;, ~,-; ·. : '; .. · 

.unnecessary and expensive strategy si~ce most of thtoJ>j~ ~ ~~ sy~m ;-r?~~d pro~bltnot 
have· been modified .betwee,n succegive. ch.eckpo~~,·, .Te> ~I~'!,~}~~ ,p,~b,lem. ~,tuit. 

. many timesharing sy~iems'.perfonn ~ acti~ty ~ferred,.to --~ -i~crem~~tal dumping to k~p Ute 
• . i ', ·-· : ; .,; ' • .... ~ 

backup system abreast of any modifications to the file hierarchy between su~ive checkpoints. 

In the event of a major mishap that necessitates the reconstructkx\,Rf.1JIJ°- ~.h~hy.,.,~e 

system can be reloaded from the last checkpoint and appfOP_rja~I)'. µlQdiijed by_usin1 ~~ current 
• • ' • ' ",' j-; ;._~ ·, • ;' -. ;'' :-:'~}'.:tf ,).,-r- ;, :·,,,.: ~✓ •~·! ;.!.: ·: . ·, < 

incremental dumps to restore the system to a more rece.nt Qte. ,, All iJJ~q:.l)l~"tal dump., ¥C 
_, .. ,·_ .. , ,. _ - .. ·;. ,, . .: :L'.:.f~i-'. ,;i, ., .:-•:,,)> .. {I'.• -.J ~- ·.. '•_., ,, , 

copied onto magnetic tape. In ord~r that t!te r~very ph~ of~!~ _restqration may_ p~~d 
. . .. ' - . ; . : ', ... · *''". -. ,,." . , ' 

. faster. incremental dumps ~re periodically C?nsolidat.~~ ~- rcmore ,Q,~~1t~~ copies of files .. This 
, consolidation proccs.5 is known as secondary dumpi,,g. ', . . . 

Using incrementat and secondary dumps to ttoord·ink>nmition :ibout the system State is 

the hasic itpproa,:h used by the Multics or,crating system {27): to' rtmvidc secure· ~Nice ·to its 
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users. A modification to the ~kup and recovery. protocol employed by Multics was sugested 

by Benjamin [6) for the ~ta Network Computer. J~;of usill& magnetic tape as the rrledium 

to store backup copies. it wasadyoaited,that the aillllll)Ut2'SJB1Ulbe:integmted wittrilra network 

of autonomous systems. wi~ each. sy~ being,allowccl ~ to dle,storage.devicesohhe other 

processing elements. The backl.lP facility mamtaias a oonsment i11111e-of the file stotase at a 

remote site within the .network. The motivation i,rrhavjag saa .a taaemp •system is the greater 

ease in managing the backup system that results when we do not have to deal with sequential 

access tape storage. The problem in using such a system. however, coriies 1ftom 1the decrease in 

availability that may occur due to:the extra ~-~•iation)lines etc. 

Perhaps the most serious objection to the solution adopted by Multics is the cost involved 
. : .. ~ ~ ! ·- ,·:; .: '-~ -· ' ' - ' . ) -: , 

in periodically scanning the file hierarchy to find-those tiles which have been created or_up~ted 

since the last incremental dump. The cost of' peifo~blg i chec°tpo~t i~ Multics -~~ 
0' ...,\.: .I' . .;/ ·:: ,~: ,: : } , ' ~ __ , - : : 1 ~ • ·"; 

linearly as the size of the system increases. To achieve the same degree of data security in a 

heavily used system where files are constantly ~< ~~i~ ,9~~ 81 1iQ 1a. Ugpdy 

used one, it is necessary that the backup system be invoked RlOl'e frequently. 'Ibis, in tum, 
· · , ,. .. · ,. , _ ·.·;·.fh ··: .,· .-. _,,.;_··-:t·~-s)_2::\, · ... :; · ·· . r·· 

implies degraded service to the user community. The basic reason wlzy Multics (and other 

conventional centralized systems) are not able to provide full ~· ~h,' ~fficiently ~ppeat'S to 

be the inability on the part of th~ backup system'tri'fmmedi~ly d~~ when cbta'h~ ;been 
-. _ _ .·· .. ,.- - . .:.: .L ::-·r'. ';•_:t~;.·· ~.J -._·.;. ,, . • ~ -· ~ -· ,·- :: 

· created or altered and to reflect this fact onto the 1-:kup image of the system state. Beawse the 

. mechanism by Which data ~ created and' ~pdatecf~' ~ refu~~Jl~ 0

dle 'file system with which 
• _ ;. -i. ,t·, ; ,! •: .n~? 1.'t'.'°''i/ .,\ .. ,_, _ .. --~ ~.!·, ·, -~~(:'.>r •';-- · ' 

· the backup system interacts, the incremental'dunipirig i,rocm is costly '1'd jnefficient The end 
.. ' ''- . .' -; -· ,,.:~· . ~.-_,;,,_~_._r;~-- .'j·ii-::~:~;:.;'~)-~i~:. ··<-•i)"/,,::;-:· r .. ··;. 1:_1:..~i. '. 'f! , 

'-result JS a computer system which cannot guarantee full data security without incurring exc~ive 
• ;~ ' ' • ,·~ •· !' • ~ 1 ~-•Cr,. • 

overhead. 

· · 1.4.2 Distributed Systems 
, _ · t • , . - · . • .. ~ r ·' , - •,, ·,. . ,,i 

Unlike single-processor machines or multi-prdcessor machines under centralized control, it 
. _ . , . ., . ,_ ~· . ,'£~ . i.1 rr,· ·/.·" ·~:(t .0 :\,1,.,;~ · ;.>-:-•j>:, .. - , , , · ~· · 
is difficult to· perf'orm global checkpoints in· multi-processor systems under distributed control 

- . . .. •. /~L 1;_,:; "/.1~rtc1 r1: ,t~ : '-'·· ;··'.,-' 1· -,,: .. . : ;, 
· because of the lack of any system wide ·synchronizatton capability. Hence. although distributed 

. systems may have the potential or pro~idfng a more ~~~r~ COOl~U;i:ng'~~;ironme~tas; resul~ of 
~- ,\. '"!}\\ ,,·:.•.1' ·· .. >=_,. In fi) :·: -::J.~ 1' ~1 ·. ,; . 

the redundancy present in their architecture (29). exf)k>i'ting su~h redundancy to achieve this end 

becomes much more diffl(;ult. A ~pic~I mod~I ch,Qmctcrianga_diurib11tcd syslem wowd be one 

where both, the data as wen as the qx.lc of a pn,>eQti.-; is ~ln:ru'.l oNcr scva.-n1l physit.-.,:11 nodc,dn-mc 
"i 
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system. Communication between processes in such a model is usually· through some form of 

remote procedure ca11 l2S)or m-. pb&Sing-medtanism (llJ.· 18,JlJi' Failure in these systems 

can -cause ~ to·tleadtfjCk{lj:after the recowry;p11ue·0GOmpfetes. To- avoid deadlock 

.J)l'OOlems arisiq. from the Bl'l!ll' IICOWl'f of a PfOtllla 1that is • tttemtiet of a collection of 

communicating ,prooessas, tacal- daributed systems: or --lieMM ·an,>u~ts usually have' the 

ability to sctkicalited chac:kpoiata,fereach-Proctf!IWA' -Suclh•dlcd~rta~'tefetori~tfto as rectnery 
poittLs. .Jf a faiklt!e ofa:paessJtdctected. ltis~ •Wbfm)yirol¥·8aekthe faited'l)rocess 

to its most recent. ~ry .pt'int.ri but to aJto: Nllti all. c>dWN· ~- that had· e,khanged 

•information with 1he miJea:p&ugea lince th& tiMdiof! OW. ,taJt;-;ft:M"Y 1point in order to, avoid 

. ' deadlocks from omumna when ,.,.tion -it-WntiriuedI'•' ff flMMei.~" points are not set 
J>topedy, it is-quite likoly;t(J:tlave a.domino dM'~~wlteretfjt,ilJ.•ptetesses'lnitiate··ret()yery 

actiofts .dlatJead. tllem to diemadiat re:overyfdlJli~ whtHO set JmWery points 

and finding a canmtentaet :of SIICh poilats ts a fl0\l..t1d¥W1m,ei11li'[31J~-dffen' ~y 
reduetaithe overall ~ofdle.syslllln. · 

Borg -etalfij and ,-;gaui,tS}·Preseatsthemel-1br enlM'htg-'M~rity of.data in a 

distribllted m~bwd-s,a•. ·The baltc adtla-11t:1M11t·~· tn~eit-maintaihlng an 
i, inactive backup procm on;a ,ditfCftbt. _p1001810f-tlrtfadl::aotM1ptooeS\S irl the·systetn·: ·If a 

: . · failure of a-primary ·Proces&OCQml. ·lbe backup..pmc•rfll•t>+er"•xetutlen. ltt:Bc,fg's dteme, 

:. mes.,aaea eicllanscd between twt>.,-caa1s· are also•lll~~ 911 beekup ,l'tdlSes 

• ·well hl_.additial.-,botD,the wctupJUld NC10?1uy··pri)11■ •~ipftiodiallly,syncflftllited. 

, Whea a failure tXCUn on a. p-.,,..process., 1-..., ._..,.~m tfle ate 'tllafl!he 

.. failed ,primary hacl at the1•8Jlldll'QJlliaaoft ~;ltfe a.klP ciR tatdt up to the-stilterlhe 

primuy had just befontdae failure rbyi~W •••~ wMdt· were aettt txHt. 

Barigazzi uses a similar approach in his system._ ~wever. i.nstead ofh::1rins m~es 54=nt 

from the primary to th~ backup process. an exp!icit_ ~~i~,~~f r~i~i:i~j~II, ~~~~~~d for 
every primary. Setting a recovery point for a process also requires establishing recovery points 

for all proce~ that communicated with this procea since thq,)il#,,~~ J><>int •~:.SFL 

Recovery in this scheme involves rescuing all processes to their. hnt recovery point While both 
' •'' : r. .. . - . • i~{; ~,.: •. / ;.; ;: ;(. :,. r:),_:\:? i~i." - . " 

these· schemes provide full data security. they do so at the oost of higl,1_ ov~_rheµctin O)Ujntaining 
, ·, : ; J: " · ... ·.' · .;.:.-</ ,:.;, · ,,.._ -,~, .;_;1 ~!·:~t"L·_;;.?" ;, ;; . _.i_, · .. : 

up-to-date multiple copies of the primary _ p~ _ on disJ~int P,~rs. In a<;ldition~ both 
. . •. . • 1_;. ", -~~)~.f"""•/ . ! ,~: n _dP;1• 1t, . .: , ~·• ; , ... : · • 

proposals assume the tmnsmis..liion of meS&.1gcs to -be ~ relatively ir1.cxpensi\'c ppcration. qn 
' • • <" ' , -~ ~ : • 1 ) ~ •,l• ' :, . •' I l '! ; s' ) ; i . . >. ' . C ! 

~L'-isumption whkh is ccrclinly argmtblc. 
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In addition to general distributed systems; there · bas been much interest of late in 

distributed transaction systems for which a hiah dqJree of data security is essential. A 

sophisticated approach to handling data security, for transaaion based applications can be found 

in the Argus system. The A,ps integrated pf01fammffll: lanauage ·and distributed system being 

developed at MIT (231 is a comprehensive auemptto ptOVidcJiaguistic support for ensuring data 

security and consistency within a dl$tributed fX)fllptltiftl!ellvirmnment The language provides 

constructs to encapsulate vjtal data objects which are- tll-. auaraateed to survive crmhes of the 

host processor with high probability. In addition9 a~ is provided.to express atomicity 

of p~ acuvity. WheA a hardware failure occurs. caeh~ng,atomic action is forced to 

abort. A two phase oommit protocol is . used to• c~, that ajJ tramractions preserve the 

consistency of the active data. To guaJ'Blllee data secwity,,objects. are dmtnguished • being 

either stable or w,fsu/e. All &&able objocts ,are written oa1D.i>1e storqcnkmcesc whenever a 

transaction completes. The. intearitY of stable :Objed:s'is.c then,rore. pmerved,·even though 

crashes of the host node may talce place. Volatile da&a is ,,-unad to be lost upon failure. 

Perhaps the greatest point of contrast be~:tlle,Arpts implementatien of data security 

anc:l that which we want ,to: prov:ide in ow- .sysrmn is'. the.~· in Arsus that the user 

prespecify thQSe objects which are to surrivo crasltm. Our pl i1 to ensure that measures taken 

to provide data security are transparent to·the:111Ct;m.tinguisue primitives are.provided to 

specify the ~ be wislles to survive failure and no upticit,,cxmstructs arc provided to control 

backup operations. While the gap between dM 1>f08,..nmilig;modeJ,and the backup facility is 

-not !K> severe in Argus as in Mu.ltiot. die· fact that the:~;J)IStem is, based on an updatable 

memory execution model makes the task Gf ensuring ·a ~nt state a oomplk:at-1 one 

involving expensive protQa)ls audl as ·two-phase .-.it. and sophisticated. algorithms to 

maintain a correct and up-to-date backup image. Moreover. the application domain for which 

Argus is best suited is a relatively restrictive one and the oomp~~ity of the system is probably not 

·warranted for most non-transaction ba.,ed computations. 

1.4.3 Fault Tolerant Systems 

There have been several proposals put forth for the design of fault-tolerant data flow 

computers which attempt to achieve data security (as well as availability) by incorpomting low 

level fault masking capability into the system. We outline several ot these proposals here to 

present an alternative approach to solving the problem of providing data security for a computer 

system. 
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An error recovery system in the context of a fault-tolerant data flow·tnachine based on the 

Dennis~MiSWtas architecture'(9)1was-described•t,y -~; inf24];;, .'fhie lbodel advocated was 

b$ed on providing tripJe fflGdular;•redunancy.~!fMR1):ft'>r, ttlefflt>tyi>and the 'futicdoriat-units. 

Each instruction cdl acts as a va&er and. r«eive&,tlffd Mui~ fat1i'aeh q>enincf pnetating cirror 

packeu if discrepancies arc found. In adEMdUn,·;~ failiiNI 1l1e mihdletf 'by·'.alfowing the 

network. to be recoofipt!ed. The scheme· invol• -.mitt;loftlieid, in t&ms of increased 

. packet traffic.and extra hardware. ad is depetlcleftV,• tbe4ide t,f5~edglhent signals to 

allow reconfiguration 11:>:tateplaoe. A fiwlMolmMdei1p·fot abde'<i~fa1tbw:arehittct'are was 
also proposed by Leuag (2lf.: , In llis, plOJ)OCdr a-0,m1tlc•l'ddl!ll11iney'techrtlque- was employed 

whereby redundant Uflits-are used to•detect'and ...... !taalta,,·wfdfltf'Ricted corriputatfons 

reexecuted when necesa,y. 

Hughes (19) suggests that; a dleokpoinma , . ......, lsuftaMy · · modifietf fi:>t data flow 

oomputation.may, be.an ~ lllldlanlsntifi>ti...,..,._lg fttor~teceYelo/ln a ·tfatil ffow 

machine. Basically, eadl cd~r.;~;Wbi.Oll-,is1dtelltpMWtid • IMtke& When~fthe 

backup system initiat,es adMkpoint. allf aMt•cdl<tJOt ~,~~ 'are •ved:' On 

recovery, all active ceUs that \!ere checkpointed ;u-e ~~ , Wh,~ ~inple ~. iq1plement, ,;_ <· . . ~;-• - ; ~~ .- ;f•.p: ,_,-ff.~. ·;)Vi. d{J( •. L,. ·, ,,; 

. recovery, in. this scheme requi~ ~e ~i~!!ializa~,, ~(L!!.1~. ~?:r,e,j 1~~,, wpich ,~ ,an, .~en 

unnecessary step. In addition. the memory of~~~.~ W~,!Je.~~ine.<;f.at ~,cti~~ppint 
' - . ,. . .' • :i • : . '.: ~ .,, - ' ' ~· .,_ , . ~ 

to determine which ite~ have not yet ~? ~pi~;~~is i!.;~~~~-~ ~~~ful, ini~t. m,s~~ 
Finally. this proposal assumes that all infonnation is resident in memory whenev~r the 

checkpoint .process is. iinoked; by contr11t,·iruhe i;sllntMIMIIWev&aiJeHlala wiff \be spread 

across the memmy.hierarclly Mtweendiskattd 11'1aWlfOM!ciuff8g~•ecution. ,. · ·•· ··· 
l • ;f·. '" ;'_} :· I ~ j; 

All three of the proposals cited here are based on ~ architectural model much diffe~nt 
' . ·' ~ ,- ',:: ·_-; , ·. ~( .:, ,;; f~,:~15'./J;, (,:·~ .. ·,:-.~ ''; ";(\:., '- .. :·::'-<\ 

_ .~mm the dynamic data flow m?<iel des!gn~. fO.~, VI~ .• , -'.~?repv~r•.-1 th~ycreq~ire special 

· architectural erichancements to mask hardware faults. VJM is not intended_ fof appliqtiqps 
''<.t' • ,t 

which have high availability requirements and. thus. there is no need for fault-masking strategies 

to be incorporated into lhe system. · COftsequendy.-tlle,app~··to achieving data security 

taken by these schemes will. not be directly .,.1k.'able 4n sat48fyHtg lhe n?EfUirements we have ~t 

forlh tor our system. 
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1.5 Thesis Outline 

In the next chapter. we present a detailed model of the VIM Computer System. We 

describe in detail the applicative base langµage bein& used alllidle dynamic data flow execution 

model employed. In addition. a fonnal semant,ies of. S¥Sfam behavioor is also developed to 

rigorously define its operation. The manner in: 'Yhiclt. usm oomnmnicate with, the qstem and 

the means by which looa·lived · ~ are defined are ,aJso ,-sented. To simplify the 

presentation. we assume ,a $)'stem supportin& C.lftly a aingle:ar./ .Because of the applicative 

programming.model use4 in VIM, thia·simJ>lification doe&,aot.mvatidate;as applicability to a 

multi-user system. We 49 not consider ~oate ,~---, in dill' model This 

restriction also simp~es .the alloritb-. Th• complicatioas invohedcin incorporatins non­

determinacy into the model is a topic which we discuss in Chapter Su. 

The third chapter in ·the thesis presenm ~ pneral.strategy.i>r the backup and, recovery 

system. W& defiqe the, ~ which .the bactup: _.,., ,will useJ in determining what 

infonnauon should, be.~· on .the ,backup . .,_e -~·· We· . .alll) present the 

architectural enhancotnents ~ to suppott1ho: ba,;ku.p-'flkXJYeqraatitiea. 

In the fourth chapter, we give a more detailed· description of ~e backup and recovery 
. ' ' . ,, • . I C • , ... ~· '> 

algorithms. The alterations necessary to the interpreter are discussed. We also formalize the role 
'. • ' , • ' ' • • : • '• ' • • , / ; ) , , ' ; _v I : , t.; • I ' • ' ~ ' ' , • ~ 

of the backup and recovery system in the context of the abstract model given in Chapter Two 
' ' . . '' (. J"i'.. ,' '' .. '.~: ·:. ; ~- . 'I' ,'' ' , • • ; i . 

and present the changes necessary·to the base language ins~ctions to support our algorithms. 
_;_ ,_ .: ', 

The ti(Ul chapter dacri- low level details .. in the. transfer of, information between the 

backup storage medium· aQd .the VJM. s,stem. We, •disauls· how ,tilt guarantee the. atomicity of 

information transfer so that a consistent image of the system state is maintained on the backup 

storage medium. We al&> mention.how storage m~nagement :i~ haridl~d' on the backup store as 
. . . 

welJ as describing how to minimize the copying of information from system memory onto 

· backup memory. 

The final chapter presents a summary of the thesis and discu~ some topics for further 

research. W c pay particular attention ao the changes wbich may. need to, be made to the backup 

and recovery algorithms if our model of system behaviour is augmented to altow non­

dcterm inatc computation. 
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The VIM Computer System i~ an e~perimen~('prri~ ii:t .d1e ··computation Structures 
' . .. .· -.-.,c .:] .-Sj .; ',.if•.•1~ 1 ~i.( q-_ +·;:. '. ;- ' ,,_;.~.. .. 

Group intended for the irivestlgatiori' of a novel dat4 tlow architecture for the efficient support of 
~. ·.:' '· • • - \<_, ~~I . ·;·: > -~'~::~-~'! f ·{i,;i >:,i"'~!L ;i:,''; ·:,. ,:·, ',.)_.·,· l' •• 

futttdonal languages. In this chapter, we discus., the desian of the system an.d p~nt an 
- _, ,· .- -. , . . ·-·. t-_: , -. ,:~;;-,:--,:.) jr .. '.i~fI:•1.:,l;::~:. ~1"", . ~/ /:, · 

Operational -setnailtics for . its applicative . b~ larigtlage. , The !11ain. programm~g language 
,. • • • • '< _-,. , ~-, , ~- •• , ,. :._-J-:, ·! ··•fL ~ --~;: 1rri (t::t:).· :_,._,.-~1~- ·- : · \:-.¼_-._, - ·i, 

- ' supported by VIM is 'VIMV AL. a majorextension of.the applicative l~guage VAL [l). VIMV AL 
• . · . . · ')- . · i ,-·. : •• : ?.-, ,,._ ti~-';.·\ ,·,_f ·,'/ i 1 . ;' ,, , . ' - I.'..,· , -

programs are translated into the bue 1anguage data. flew/ graph representation which is then 

.executed by .tlle VIM In~~ ,f.Jaep;~icale,,1ridl.,V1M1tuolJlb1a:iSheJZ,pil)gram.. The 

Shell provicies a ~werfulin~ to the ,y"4rn •t ~rs to btiijd and manipulate VIM 

!IIViT()IIIM(IIS.· tpomai,nJ"Mjijt,y for GQaJUueti09 kllll,liJttcl«IWt.UftlL•;Wedilr:uss each;of,tbese 

. ~ponei»s. ,VIttiVJ..!...•the,~rpn:tQr,-4 Ule,'Slwg~~ 

2.1 The Applicat.ive Lanp., VIMV AL 

In. i this seQion. we. PfW!ll an, i'1formal overview· of tbe·:· VIM bigtwevel applications 

. languap, VIMVAL VIM\l,U. di&rs·&rm VN..i, ittpredc.oS1901'iUUh11Amcdons•mtitfeaUkf as 

first.-cla$s obj~•froe use-:Qf m:ursion and muiuatinicursion;is:aUowedrmpolymorphin is 

~PPP~ th~h a Mibter,,ttyJ,, type inferenea m,ecmanim lfeli,aan ... prc,pam IDc:a suu.ttured 

and hierarchical manneuJu-.lJfte;.useofai~-dll«I'~. 

In addition to various scalar types such as integers. reals,~~ aq4.~~Jl$!.y.:1~V:AL 
. ,.,.'",_ .. : ... ·.-' . . 

also contains struc11:1re types such as amys and reconls. Users can expreu histocy ,sensitive 
, . , , , _. ,.:,"; •',f'_-~ ; . .':;\, ,,, / ~;-1,·~ •~:;:,,,;< i ,;~~t '.',_; . ·' ~ 

computation through the use· of streams (30). A stream is a potentially. infinite sequence _ of 
• • • , , • • • •. , ~ :; ; } _ • l ; 0·' • ·; ;'°;.,, ,.. .\ ·• •,J::~ .,..1 ;, '/ f',/, : ". : , ' f''; I' , ' - . ' 

homogeneous Values which may be of any type (induding stream) that allows users to write 

' hiswry· sensidve tod~ (such as· the modeling of a. convent~f ~~ory cell) Within· a fun~tional 
, ; - +•, , ••• :· •• ~ i,•·~·•· .• : r~r '.:·· . -.-'. ,, , ! 

framework. Thtre are· three opemdons on streams:'·llrit which. returns the fi,rst element of a 
' . ~ ·_ ,- ~-' .~;::··i ~~•>·'-;.· .. ;..-. ',;;i~,''. j ii_:. <,. ~ 'i 

··. sttearri. rest which given a stream returns the stream· without its. first clement. and affix which 

affixes an el~ment to the head of a stream. We ~afl di~uss 'the I impl;~e~tation of streams' in 

greater detail in the next section. 

Because functions arc treated as first-:class objects. :lhey·may bet pamd as Qrguments to 

othl!r functions. rcturn1.'d as the result of a Junction ·acti.\·atiem1 and, may be buih into data 
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structures e.g., array[Function]. The body of a function is an expression whose type is the result 

type of the function. The fonn of an expression may contain conditional expressions, function 

in vocations, tagcase expressions. wbi;b d'ow one of•t series of expressions to be chosen based on 

the value of a tag, and let expressions which are viewed ~ Sl.lg~ng for lambda abstractions. 
l ' ,} J.-~ • ' 

Conventional iteration in VIMVAL is expressed using tail recursion. Variablc;s in VIMVAL are 
• • > ·', ' ,-·". • ' --! i - < \ 

considered as only identifiers for a value. Once an identifier~ ~efi.r;ied, it.cannot be chang-1-

VIMV AL is a single-assignment language. The treatment of varjables 8$ identifiers for values as 

opposed to placeholders for memory cells which may be Mbitqujlr,qiu~t~d as .found~ more 
, . . - . 

conventional constructive languages i.s a distinguishing characte~~ of VIMV AL 
• . • It , ·: • ., 

A module in VIMVAL is a function. which may be itwoked ·ftom other modules or by a user 

command to the -system. A m0dute • provides a medlalrisrtt· 1 tbt ·gtoopi11g related functions 

.together. These.functions may be invoked f-rom,withift: die modtrleor, if they are passed as a 

result of the module; by• funouons,extemat to ihe module. · The-body of a modutemay use names 

that are not bound by definitions in the module. These free names must be bound before the 

module can be run. Modules may be separately compiled witl{type consistency of" identifiers 

used across modules being checked by a linker; .1)1,e spedffeations an,-zeptional · in VIMV AL 

Omitting type definitions allows free names in modules to- be,bound iin possibly several contexts. 

each binding causing a different resolution of the typeS of lfte Bee variables. Users can, thus. 

expr9 useful polymorphic ~ctions using the type 'inferemte MtGl'laaism. For a· more detailed 

exposition on the. VIM VAL hmguap. the.reader mould see[UJ Met (28}. 

2.2 The VIM Interpreter 

The base language for the VIM system is the lanJuge of 9ynamic data flow graphs. 
'. 1 .. ' > ' ' 

Programs written in VIMVAL are translated into their data flo"1, graph representation. Base 
• ' < l , • 

language programs are evaluated by the VIM interpreter. A dyn~ic data tlQw sraph is a 
.. ' ,, ... ,· .... ;, . ' -

directed acyclic graph in which nodes represent base lang~ in~ctiQnS."14-arcs are u- to 
a ~ • • ' \ 

indicate data dependencies among instructions. There are two types of arcs io,the graph: value 
. . - ; ,,.. . ; - -

arcs and signal arcs. An arc (s. t) is a value arc if it carries the valµe produc~ by the execution of 

node s to node t. A signal arc is used for perfonning a control function sµch as selecting which 
• ~ I • 

arm of a conditional expression is to be evaluated. A node is said to be enabled if and onJy if it 

has received all necessary vnlm.-s and signals. Enabled instmctions c.tn be executed in any order 

ancl the interpreter is free to chcx>SC the execution of any cn:.tbfcd 1nstntction from any current 

fu1Ktion activation. 
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To illustrate the structure ofa VrM data flow graph, we show in Fig. 2 the base language 

representation of the VIMVAL function shown in Fig. 1. Instructions are drawn as boxes, with 

the opcode of the instructi9n ~led iQside the. box. Value arcs are drawn from the bottom of 

the instruction which produces the value to the appropriate operand slot in the target instruction. 

Thus, operand number one for an instruction will be sent along the leftmost value arc entering 

that instruction. Signal arcs are drawn entering into the side of instructions. Each instruction has 

an index in the activation used for addressing purposes. The behaviour of: the base language 

instructions are described in greater detail later in this chapter. 

Funct-ion/(x :hoelba; h, g: Function returns hit) 
if X = true 

then h(l) % h returns an i11teger. 
else g(2) % g ...iums aa- intager. 

endif 
endfua 

F1pn 1: A simple VJMV AL Prosf8111 

Any non-scalar value produced during the evahsation of-an activation is placed on the VIM 
._ .· '}, t 

heap. The objects which may be found on ttte-·· tJeav· ·· ind\d: function templates and data 
' 

structures such as arrays and records. As.,oclated widi every object is a unique idtntijier, u«t 

which distinguishes this object 1'°Qm every other pbjec(orr~heap. Thus, unlfittfJmple scalar 
·, ,· ·• ., •• •·• · • ... .• " i ·l 1 · 

values, data structures and function templates are not ttiffsmitted along value arcs in an 

activation. Rather, _the result of producing a complex° structum~t:Q:-f~ ~js;st~~. on the 

heap and to send. its uid to all target,.destinadoAs imwad, ---\£1M..-IR1f)ioys a---reference eount 

mechanism to manage the-~·-• "'11en.lhe~ e~_, po,~fe~~~~ QJl tl)e,heap f~ 

within any current activ~tjor. d)a,t ~~e can be; ~~d_Ji:~rq,~ J\f-ffP: ~ ~~ ~d. 
The VIM heap may be COJ)side~d to be a multi~~d, ~ir~~f;IW:,~l'J ~ere an arc (,s. t). 

connecting nodes s and t, in~l4=$ that t. is a ~~<>f.,S.;i,~Pts .Oil Ule _,b~p may be 

safely shared among objects. This feature is a result C?f:"1~-~~v~ na&µre .of Ute base 

language. An object on the heap consists of a unique identifier and a structure value. 

A distinctive feature of VIM base language programs is that no. arc in the graph is ever 

reused. This is a consequence of the graph being acyclic with tail recursion used to model 

iteration. This model of data now graphs rcqt!ircs that every new function application create a 
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d1 ; , . .,.,it~ '. 
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dl • • 

J. After actlYalion completn witlt r#lll'fll IWIIIJ K 
- ., ..• - . ·- .•·•· . ·~··-«-···~-«' -- ,., "" '":• ' . 

Fi611n J: Function application in VIM 

2.3 The VIM Shell 

Users communicate with the VIM system th~gh a sy~ Shell. The VIM shell is 
. .. ··-·- --~-......... ~-- ---·----~-- ,-··-·; 

responsible for accepting user commands. andt transl~ them irtto the appropriate base 
; '!__;'t'H" ! 

language representation and then invoking the interpreter to remte this base language program 

whenever necessary. A user sessio~ typically consists of the t15er axnmunicating with the Shell 

in an interactive mode, inputing Shell commands whose tefflts are subsequently output to the 

user. Every user executes in a unique enrironmeni~ A··viM envi~mdat relates symbolic names 
.--, ~j•L'-i •~,~-----~• .. ,w,•••"•-•• -4 •~J}'.,_.,~•Hf-,~,ir.~ti l 

to values.and acts~.a r.eposi&oryforall long-lived ehjeeta.-01,jccts referenced in an environment 
bni;rnrntr) z:.,,,: ·:~ :;di·· . .,:.; n,~;i: ,·::n,~·;,.t *.·- 1:: • ·fr~:-~ 

must be explicitly deleted by the user. The VIM environment plays the role of a directory 
• • • , .-,,,,_, .. _..,. ~• ·-• , . .._,,.,.,.--~•a•••••-••-•.,,,_,._,.._..,~_...,_...,_,,•• ~••~~ ___ ......,, . ._. ~ -••• •• ,-, 

structure in conventional systems. Users specify that a particular <name. WJlue> pair is to be 

pl~ccd in;his'enviroriment Olrb~gfi thc"BiNOc6fu'iitanif1Th~ ~~ ~~~d':' , ,. , , . 
- ·(':"i ;. ; :·:, . ._,,:, 'Jfl. . )i •. 

BIND name:= <expression> 
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binds the value of the expFession to the name specified: -This·bindingis then·pfacedin the user's 

environment In addition to the BIND command, there is a DELETE command which, when given 

a name, removes the <name, Value> binding from the user's environment The command: 

DFLEl'EN 

removes the bindiq. <N. Va/lie> from the current Cl)vifmtMnt. .Ulers must execute a DELETE 

command to have an entry in their VJM environment removed. 

The VIM shell ~. a BIND a,mmand into its base language,repre-,ntuion which can 

then be executed by the VIM Interpreter. The translation for the command BIND x : = / (z) is 

shown in Fig. 4. The APPLY instruction creates an activation of the function /with argument z. 

The result of this activation is sent to a~ instruction, JOMINATE, which informs the shell 

that the value which is to be bound to the nanib~, is avJlilable. The storage occupied by this top 
/ 

level activation can then be reclaimed by the systegr\fllll the RELEASE instruction. Thus, once 
.,/ -

the value which is to be bound to the symbolib,1iame is ~ the activation created by the shell 

can be removed from the system. 

F z 

APPLY 

TERMINATE RB.EASE 

Fig,ue 4: The translation qf the BIND oommand 

There is no translation into a base lartgu<Jgc prog"?m nec~.ry f<>rdte Q~LETf: ce>mmund. This 

command is processed by the shell entirely - no assistance is required from the Interpreter to 

execute it 
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The TERMINATE·instrttction ·destribed above'fs·t1secl to synchronize the operation of the 

interpreter prognnr with the sheil: · l'f this synehronizatiol1 · mtdianistn · \itere removed and BIND 

commands were allo.ed to al'bitrailf ·over~p with' 'one anbtner;' 1r·ts· possible for in<:0rrect 

environments to be constructed. To see why, consider two BIND commands input in succession: 

BIND(x, f) and BINI)(x, G). It i~ clear W~tif tile ~nRS.~~:~roctly. x should 
• ' ' - , • - ' ~ _ _, - • : ~ • C • < 

finally get b,ouncl to the ~Jilt of ~v.µuaµng G. Jo1 .~~ • ~2~;~i~ talc" place, 

however, requires that the.~.m~p CQmmand ~;~~~f;~til ~ ti&;$t one~ 

As we shall see later. it}s possible .~ $il,1 exploit..a ~ ~J>~~~ »Y,~O~ the 

computation of FtQ be spll p~~d,i~ eyenifBl~O(~!')_ e~~~ .'f9is f~iu,-.e, known~•rly 

compl~ion._ is described in segjon 2.♦:-2, 

In the next section, we will present a formal operationafffl&tef for the VIM interpreter. 

base language and shell. This model, ~led,Ml,,wµl~H~~\y;~p91,a~ ;We ~i.ijaotbe 

considering, for example, internal representation of ~n~ffi',,S .,in.~emol'J.~ p~J)S: of 

structures to and from memory or scheduling algorithms. We make two simplifications of the 

actual system in our model. First, we cmume that all cbfflr,uf.addd in the ~m is 'tlhtrminate. 

A computation is determinate if its output is totally specified by ,Jbt; ;~ue of -its- ipputs; it's 

output does not depend on such factors as the relative arrival time of its inputs. Secondly, we 
. '. . ~ i . 

3$Ume that only a single environment exists in the system and, thus, there is no need for 

providing an explicit environment ume to. lhoee ~.lllhidlimanipalate ,enviroa1ments. 

In the following chapters, we shall refine this model tq ~be)he ~kup and ~very 
'. ., . ; ~ _; . : ' ' , . -

algorithms. 

2.4 A Formal Operational Model · Ml 

The VIM system contains three major components: an Interpreter, a system State and a 
~ , -'" ' 

Shell. The State ·embodies all current information in. the system z~·: 'henp. activations. enabled 

instructjons and envirqam~ Tho,,inie,preter --• .a lbale,:i..... .~iation or a 

Shell command and rcn"m' the valµe of lhut,commarul. :1 Thc,~aluc ,cwmOfl hr.the inteq,reter is 

bound to a symbolic namecin .thtl ~r cnvironmeat The;rwne odngi bound,•is determined by 

the current BJNP command being .Proq:ssed. A shell COllVOOtldds .translated intG its base 

language .represcn talion and is ~n e~ecuted .by tbf; inJefltt'®t::. . 'Ehis; tramlation is perfonned by 

the Shell. The shell as described above isa function m11pping fN>m,a SIIIJe.and a session to a new 

Swte. A session denotes the history of Shell t·ommands input to the system. The shell translates 
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shell commands, invokes the interpreter to execute ~:c<>mman.ds in the current state, and 

binds the result of these commands to names in the Uself eqvhpnm~ot. Itr.ewms the state which 

is produced after evaluating all shell commands in the 1~ The ~~ architectut~ of the 

VIM system is shown in Ftg. S. 

In the following discussion, sets are denoted by bold font. elements of sets are denoted by 

italicized letters and names are indicated by a scriputrinp of letail'S. Thus. Set is a set. Elt € Set 

and 'G9 is a tag. We present our semantic definitions· uimg~ViMVAL~tike syntax augmented with 

· operations for performing set abstraction, set metriberiltfp,-etc~·dri the domains defined below. 

Function . domains are specified using· arrow . (:.....) notalfori. . thus, . the domain equation, 

A = B -+ C defines A to be the set of all functions ·-wfth·· dottrldn 'B · arid range C. Tuples are 

enclosed using angle brackets. 

Formally, we define the VIM System to be a three-tuple: 

VIM= <Shell, lnterp, State> where 

State :=:: <Act X H X EIS X Ea,> 

Act = U A -+ Adiflty 

H = U8 -+ST 

U A = the set of unique identifiers used for activatioftl. 

UH = the set of unique identifiers used for structures. 

EIS = the set of enabled instructions. described later. 

Env = Name - (U U Scalar) 

Activity = N - lastruetioa, N being the set of qatu~ numbers. 

An element Act in the domain. of VIM activations. Act; ·is a ma,t)ing ftom unique identifiers to 

activities. An activity is a fundion mapping from natural nttmbefs to instructions and represents 

the code ofan activation. An activity am be thought,ofanarny·offflStructions. the /Ir element 

in the array specifying the /h instru(;tion. The VIM-'ttel~ H~ is modeled ns a function from 

unique identifiers to structure types. ST defined below .. The striJctufe ·of the heap is detennined 

from the mapping dcl1ncd by the heap function. Sc:Jl:ir vafucs· ate not represented on the heap. 
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Acti¥idoit 

',., 

value, 

~ 

Instructions 
. Interpreter Shell 

value Env News._ 

lnstNclioa 

Fi6111"1 S: The Abstract VIM System 

In the actual system, such values are transmitted directly along the :value arcs in the gnijlh. The 
- -.• ~-·. ; . ·, ,(' ·> ,:· ::~.:~:·f,-Tt. .-~ _(, ~ i",£_:,;· "t:L.! { •t; . . ~ .. -ld . 

Environment component in the StaJe is also ;i fuDGd<>Jl, ~~ ftt>m,,.;~, .1,1~e. wflicb is ,'PY 
.: -.. _, ·.• '., :( • - ·_ ,,, .. ·~-•·,,., ltj~,, '-~ .,,;-· (;j•-_. ,,._,. : '._,,,. ,,..1 -~ 

sequence of characters, to either a _unique ide_ntifi~_r ~fe~cj,~ a ~ture}>f1 the heap <?' a 
'< • -; • •• :' ,. •• ,, '•·' \.,• .,_: , 

scalar value. 

The data types supported by .the s,stennue given below: 

Name = Character•, the set of alt character seqtiences'. 

Integers = the set of all iotc&ecs u.{.u.ndq} 
Reals = the set of alT reals U { undej} 

· IJooluas :::, { rru« }1JJ$1!.· .· »llde}t, 
Character = the set of characters in the machine U { undej} 

Null = { nil. unde./} 
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ST= {ArrayU{unde/}}U {RecordU{unde/}} U {OneofU{URdej}} U {Function} 
U {ECQ} U {Clsr} U {Dests} 

Array= Z-+ (Uu u Scalars), Z being t.hesetofintegers. 

Record = N -+ (UH U Scalars U SUSP U Dest). N being the set of natural numbers. 

Oneof = N-+ (Uu U Scalars U SUSP), N being the set..ofnatural numbers. 

Function = N -+ Instruction, N being the set of natural.numbers. 

§2.4 

The set of structure types includes arrays. rec..-ds, and eneofs. ,:.Arrays are modeled as functions 

from integers to either unique identifie~ representing structures on the heap or scalar values. 

Records are modeled as functions from natural numbers to either unique identifers representing 

some structure on the heap. scalar values. suspensions. which we describe later. or destination 

lists. As we explain below, the return address of an activ.aµoa is packaged into a record and 

transmitted to that activation when it is mstantiated bythe APPLY ·instruction. The destination 

list represents the list of return addresses which are to receive the: res,ult of the activation. While 

components of record structures are add~ by their field·name in VIMVAL. the compiler 

translates these names to the omet of the addre5$ed component in the record. 

Note also that the set of functions is also included among the elements of the structure 
. . .. . .. . -.--- _, 

types in the system. This is consonant with our treatment of functions as first class citizens. An 
. -f 

element of type Function is a mapping from natural numbers ·10 instructions just as elements of 
• - • • • : '.,_ ', .:;-· c' ' ; ; ~ ' :·. ,' ; • : • 

the set of activations are. As we shall see below. the only difference between a function 
' ., 

definition and its corresponding activation is that the latter is sensitive to the effect of instruction 

execution since operands and signals are received by the instructions within an activation 

whereas a function is a pristine object like any~ V~-.tAIICtlmt. 

A function closure is a special ft!COl'd of •twe «>m,-.e-.: the first cemponent is the uid of 

the function template of the closure and the seco~d QJmpooent is the U$1 of free variable 
. ~ ; :•] i, ' . . . • I _ , ,'' . ' • -

definitions found in the function. The closure of a function completely defines the bindings of 

the free variables in the function and. thus. must be dc'ttn~ ~on: the func~ion can be applied. 

Free variables are acc~d by its index in the free variable li$l. The dct1nition of a closure is 

given fonnally as: 

Clsr = <U 11 X (N -+ (U 11 U Scalar))> 
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2.4.1 The Base Language Instructions 

A base language instruction i&an seven~tu,le·C0116iSlinlof'an opeade, three operand fields 

(not all need be uaed). an operand,count usedtt.o:ffldicate;lk:,w:many-·oper.at1ds must arrive, a 

signal .c;owit U$ed to indicate .bow may signais'fffllSf,t,etr&llilfedHmd the· desti11af.ion record 

CQntainin& the list of d~ for dlis instrucciolL l'be;tat,d'~-we wffl be a)ftSidffing 

in our opera\ional model :MILindude irecord-<ltMlllr.e·,~oos. function application 

in~ons. Md .operations: ca eariy oompletion eltm.ata tft•dmMes of inslntctions wiH be 

the on~ of greatest interest when,we presenu>1.u:.t,ac1tup anttNCOfti, algorithms. 

Instruction = OPS x (U8 u·Scalars)3 x N x N ·x bests 

A de$tination ·1- a type .whic;h is ~-~tonaL if tbtuault of 1he it1$tl'UOtion is to be 

sent automatically to the destination, true or false usedr'°'ca; SWll'CHJbst'luctioil to, ~I 

conditional evaluation. If the type of the destination is true, then the result is a signal which is 

sent to the destination mstfuctiori if and only it\th~ s\VITCI{: ~raior ~~al~a~ci ~ ~e. A similar 
' · _ ·: •• ' ,:·~ • '•, '·· _ :-,;_ .; ··: _ ,. ; _I i•"V' '~'i\: r \:,} :)l•·;~ 'j' ;: ~c.::' ' .. . •' :·• ·:., : 
descilptlon · appttes for a false' type destination; All destinations ot an· instruction must be within 

._ .1 . ; . > . ~ :· .··, ·'.··. ,· ;,. -. ,/":~.L. :"' ·.;J.'s..) .':;_:·';liti.i.,}··;(.(.- ·."':~~:·:.·: .' ;-•:,·: ... ,·:. 
the same activation. The second component or a destination is the instruction number to which 

'· ~ ,'., .-,,.., :· .. ;, •- ·:•·· d, ,', ·::) // ·---:q""·_; ·;":~-' •. ,.: :·\ ':·~ ;'.;\. '..R: 

. 'the sfgnalor result value shoutd be sent. If'the'destinatloii"JS to 'receive a signal, then dtis must 
' __ _·, --)'·- ,: : · /' · .n1r ·.··_-; ~'. .~-~~:,..:~"';.-~: \' . J :r: ··1;--:· ~ ·.·: ~i· 

be specified. Otherwise, the operand field to which the result is to be sent must be _provided. 

For convenience we shall refer to the elements of an instruction using ~-•~ notation. For 

example, the opcode of instruction / shall be denoted as I.opcode etc. 

Dests = ~(I)) . 
·o-= "{UtlC0N1, 'ttue, false} X N >< {op1, Op2, op,, stqnal} 

An enabled instruction is a two-tuple (u. ,) repraion-.-~ ,in•.s:>me activation which 

has received all nec~ry operands .and signals. Any enabled instruction can be executed by the 

interpreter. The applicative nature of the system guaraMets'thit~ ~a'riobr bf tht'program 

w:m be ~nnin$ ·~dk¥ Qt' tho: order in whidLa.blat! inilrucdobs~iin':)the p,dgram are 

executed. 

El= <UA X N>. 

EIS = ~(El) is the set of enabled instructions. 
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2.4.2 Early Completion Structures 

According to the model of operation presented above, an instructiPn is allowed to execute 

only when it receives all necessary operands and sipals~ In :the case when an, instruction is to 

operate on a data struature such as an array or m:ol1d,;this means that the emire:scructure must 

be fully constructed before tbs irastru.ctioa can execute. Jf die astructioh only needs to examine 

a certain portion of the SU"UOtvre. then the execution· model i11111teoeaarily, oonstrains parallelism 

in the program. To alleviate this proalem. there· is a. fac.ilit, ia VIM: know11 ,aa, emly cmnpl~ion. 

Early completion structures allow areater ooncurrency :9f openiuoa by; allowing a data structure 

to be constructed and used before all of its component, are available. , The q)lllpUer designer ,ean 
, ··. . ... ·-;l}"'.' ~h,.., l_ <' ,,._.. i· - , : 

use this facility, for example, to generate code which will cause the results of an activation to be 

an early completion structure to allow the ealling 'adMtiGn 'to·use- !bme of the results of the 

callee before aH of them are knowtt. 

An element of the set ECQ is an early completion e/em~(!p]. An early completion 
' '. ' . ·;. 

element is a two tuple, (u, ,), where u € UA and I €_ .N. '{be wty compl~ti<>n stnac~ is 
' , . . . '', i' \ \. .-... :. . . _,. ' 

essentially a queue containing target addresses Qf those instt:uctions. which r~qq,ir.e the vatu~ of 
. . • ·: - . : ! f ~ ~' - •• • ·, • ·., " ",: • • j ·. . ' . • ' 

this element in the structure. When the value is ,fit)atlx pr9d~. it wi~ i:epJace the ec-s~cture 
. , ' ; . ~ : ' .. ,,, . . - .. ' ' ,- . 

and will be sent to all targets. This process is illustrated, in F°~ ,6 .. 
' J • 1 ,t ~ • • 

ECE = <UA X N>. 

ECQ = ~(ECE) 

An element, (u, ,) € ECE denotes an instruction \\'.h,ich,h~ ~u~ted t,he vatue whicb is to 
' .,., . ,J ,. .. . < -''.~~~~' . ' '.-' . . 

replace this early completion structure. The uid u denotes a function activation, and I is the 

index in. this .activatk>n of tho ta11et .illstnJctton. 

2.4.3 UelaJed E,aluation lJsia& StrellllS 

The astutetader would haw noticed ,tJtac the;...., t)lpe,,,_.d m an earlier section is 

not defined in our fonnal model. We represent streams using the record and oneof types: 

Strcam[f] = oneof 
[empty: null 
non-empty : record 

(first: T 
rest : Stream[ f]]] 
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Figare 6: The Use of Early Completion Structures 

We have previously mentk>n~ that str~ID$ are.~n~'1\Y ~iµite •ructures. In a J)llrely 
j' • ' • • t. ; t •• RC ..t ,- •• , r • • ] 

data driven execution model. the production of a stream may far outstrip its consumption. To 

avoid wasteful computation. streams are produced in a de'"ff'tt/$',11J~U6)., lndem4nd 

driven evaluation~ an ele.meni of a stream is pfC>4µced,. 90ly w.~~n,i(S.con~rner ~iros it To 
' :·, •. • ' . ' ' '.. /'. 'j • , ~ 0 • .' l ';: T .. i .. - -• • .. . ''l, • • • • 

implement this foature,_ a special record element call~ 8i~Rf~~p~ !,/1Jf9(iuc~. A suspe11sion 

contains the address of ~e instruction in ' the strea~ P,~U,~fr . ,re,rcmsiblc (or in~~nl~l~lng 

production of the next stream element ,When a ~~11~f!~~~ ~::su~~?.sio~~r!,he s~pension 
'\ .,. . -

becomes replaced by an early completion queue and a sigflal is~~nt W the addrc5$ which the 
< ; • , ' • ' ' • ':. 7 !_' ' • J ~ ! ! < ••• : ; ' ~ • ' ' : ; ,•· 

suspension holds. A new record is created for the next .~lcmcn\ and the early t-0111pl~tion queue 
, • ' ; • ' j C : C ~ \ O O, > • • 

will get replaced with the uid of this record. The hc~td. of this p,cw record will t·ontain the new 
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stream element and the tail of this record will again hold a -susi,ension. We illustrate this process 

graphically in Fig. 7. 

1. Stream S withjin(S) = ,. 
s 

1. ,4/ler suspension accessed, it becomu an ECQ. 

s 

~-sp __ __ 

s 

V 

vl 

J.. Producer yields next element which is transmitted to waittng consumers. 

Fipre 7: Demand driven evaluation of a stream using suspensions 

SUSP = <U X N> 

v ! ECQ · (u,i) 

(11, I) Is the consumer lnslnlctlon 

The suspension structure is a pair <u. i> which represents the address in the stream 

producer that is to be signalled when the suspension is accmed. 

2.S Semantic. Fuuctions for Ml 

In this section, we present an operational model for the VIM Shell Interpreter and base 

language instn1ctions which extends the operational model denned in the previous section. The 

instructions which we examine here are chosen because of their relevance to the backup and 

recovery algorithms developed in the following chapters. 'We partition our presentation into 

four categories: formal description of the Shell and Interpreter, instructions which operate on 
. ' 

structure types. instmctions which are used for manipulating early completion structures and 

stream clements. and instructions which arc concerned with function application and return. 
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SEMANTIC FUNCTtONS 'FOR Ml 2S 

· In the next section,· we define' sortte atfxiliaty functions that' wilt be uSeful for our 

presentation. These functions are used in the deflrtftiohs··otffie -af>dve· nientidried base language 
instructions. 

2.5.1 Au1iliary Functiom 

TM re are sevenil printitive-auxiliary functions which' ~tteed·to define before presenting 

our operational model; :fliest fundions optl'ate·bri'b'1iltip, etivatlon;· 'and envirotunent 

components of the VIM state. , The fi:nitttfbns) ~-,·iJ&wftiitl/t!dji'adds and··remove an 

element to and from the heap respectively. Th~-~&f P~ ,~~~Jl -~«:$ ~ ~ree ~µmen ts: a 
current heap H, a uid u, and a structure. v. It returns a new heap. H •• identical to H except that 

this new heap is defined ft>futUdr that·et(-u1·=· ,. ··'tbirdet'lriitioti iof'Newlfeap allows us to 

rebind existing uid's to different val~ a featµte w~~l ~~-V<IMtA-~ltalellting early 

completion structures and suspensions as we shall see later. The RemoveHeap function takes as 

arguments a heap H and uid u, and returns a new heap, H'identkW \(>-'/i,:ex~t that H'(u) is 

undefined. 

NewHeap: ff X UH X ST - ff 

Function NewHeap(H. u, v) 
V u1 € UH let H'(u1} _=_ H{ti1}'1f "t"' u 

=votlllWl!le-·· 
In 

a· 
endlet 

endfun 

RemoveHeap: H X U8 - ff 

Function RemoveHeap (H, u) 

V u1 E UH let H'(u1) = H(u1) if u1 :it u 
= undefined otherwise 

in 
H' 

cndlct 
endrun 

There are similar funclions. AddAct tir\a R1:moveAcq:lcrlned fbt_ Ute activation component 

of the stale und AddEm• and Rcmol'el:·nv defined for the environment component as well. 
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Since the transmission of results and signals i& an ~ity J::omqx>n to ev~ry instruction, we 

define an auxiliaryJunction, SendTol)est ~hich is ~~~~JF,,for ~ding a vahre .~r a sianal as 

the case may be to the specified target instruction and constructing a new activatiOll fµocuon and 

new set of enabled instructions to reflect the effect of this transmission. SendToDesl constructs a 

new activation component in which the target instruction found in dla!Cfestinadon atJDnlent has 

been updated to ~tlect theJ~o.n of the vatl¥.qr.si&4tll.,·.U.,,,u111'1Ultof.this lt'al\Smmion, 

the target instruction \)ecomos e~e4.J.&., bav~ ~ts,~ ~.-1'-tJidds be®me· zero. that 

instruction is appended W the eiiabled:~~~ 

ResultType = (U8 · UScalir) Us~ 

SerulfoDesl: Act X .EIS X lJ A. X D X RelJiltTftl "TI',~· X £IS 

Fanetion Sl!ndToBatf.Act, EIS, UFA' <de, I.' opmim)/ rnillij 

let FA= Act(u,) 
I= FA(I) 
resultval = ii ruult = s'9nal, 

tlltl UIJdll/ 
elsemult 

endlf 

newopnuml = if opnum ;t op1 the11;J.QPt .-e"'4'hyq( 
newopnum2 = if opnum :,,: OP2 then I.O'fl ~J?fl . 
newopnum3 = if opnum :,,: op3 thea /.op3 else rm,/t,al 

newopcnl = if result = s'9nal, 
then / .opc;nt 
else /.opcnt-1 

endif 
newsigcnl= if result = signal 

then /.~nt-1 
else /.sigi;nt 

cndif 
. •,. 

I'= l.opcoae X newopl X newop2 X newopJ X newopcnl X newsigcnl X /.ats 

V j E N FA '(J) = F A(J). j :,,: i. 
=I'. J=i. 

NewAct = Add.4cl(Act. uFA' FA)% new set of activations 
NewEis = if{/'.Q~tlt ~ 0) I\ (f.~,;tit,=. 0} 1 

then E/5'U {<uFA· l>J ·. . . 
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in 

else EIS 
endlf 

New.Act, NewEis 
endfun. 
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Two functions which call Sen<ll'oDesJ are S~Ya44e AAd·. ~ipal. The function 
. ' . -. . - ,-. ' 

,SendValuecall$ SenDoDest for every target in the destiDatioA list ofm.~-whose opnum 

is not s~nal. That is, all target instructions ·d!atve· u,:~~fthe resu\t otjthe instruction are 
.' .. : :· -~ t ! ' 

sent the result value by SendValue. This operation is accomplished through the use of 

Senr/ToDest. SendSignal operates in a similar fashion:'W Stltd¥'1ltie ~xcept that it calls 

Senr/ToDest for all targets in the destination list of an in,~ wb..,pi,num.iJ slg1'M,IL 
~- :~ /5-t. ' ~ F 7 ,,.,, · }~- . · 

SendValue: Act X EIS X UA X Dests X ResultTJ8i~·~><ci'.IS 

Function SendValue(Act, EIS, uFA• dests. v) 

let Va/Dest= {<de, i. opnum> € ~l.oplUflffE1(qpJ~~QfO}} 
(del' il' op"""\),._~ ~• . , 

opnufni>, .... <den• ;,.. opnum,,> = 
n components of Va/Dest 

in 
SendToDesl( 

SendToDOl(t., 
SendfoDest(..A.ct, EIS, uFA' <tk1, il'o~>. v) 

endlet 
UFAt ~~~Q~, v):.} ,, <' . 

endfun 

SendSigrwJ; Ad X EIS X UA X Dests X ,...,. Ad X DS 

Function SendSignal(Act, EIS, uFA' desJs) 

let SigDest ~ { <de. I, _opnu,n> € dests I opn,µ;,'!. = signal} 

in 

<dc1, i1, opn_um,v-<rk1·4.·~>, • .... <4q,,,., im• opnwnm> = 
m components of SigDat : 

SendToDesl( 
SendToDesl( ... 

SendToDesl(Act. EIS. uFA' <de 1. iI• op11um1>. si9~. 
u FA' <de 2• i2• opnum2>. s~nal) ... ) 
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endlet 
endfun 
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2.5.2 A Formal Model of the Shell 

§2.5 

As we described above, the VIM shell serves as the interface between the interpreter and 

the VIM user. The fonnal definitrol'l of the shell is given below: 

Command = C x Name x (Exp U und6/) 
C = {BIND, DELETE} 

Session: StreamlC°'8111Ud) 

Shell: Session X State - State 

Function Shell (&Sllon, State) 

let <A.ct, H, EIS, En,> = State 
NewState= 

if CltooltToExecule (State, Seoiolt) 
then Shel(Sesslon, Execute(State,,ChooS#(Els») 
elseif empty(Se.uion) 

cndif 

then State 
else let c, = flrst(Se.uion) 

in if cl .c = DELETE 
then <A.ct, H. EIS, De/En't(.En,. Name)> 

endlet 

elseif Ci ·C == BIND . ·. . ; 

then let CJ, cominanctis BIND 

FA = Translate(c 1) 

"FA= newuidftom UA 
Ac(= AddAcl(.Act. uM FA). . 
Nt!WEIS == EIS1J(. ~uF~ t> I FA(i).apcnt = o 

/\ F A(i).sigcn.t = UJ . 

State·,,= Inter/J(.State, Cholce(NewEIS)) 
<Act', H·. ETS'. Err,)b:state· . 
En'v = AddtoErit'(En~~ c1 .name. v) 

in 
<Ac(, H', EIS". Env) 

cndlet 
endif 
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In 
if empty (Session) 

thesl'ff EIS'.e {} 
tllelt-Shell,(Sn,ion..Ex,cute(Nnalale.iCholtcl!(El&))) 
else Newstate 

endlf 
else Shell (rest(Session), Newstate) 

endif 

..net 
endfun 
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The shell takes· in a input a SlteOm of· WJ1111~<11: J'k · cans dte function 

CJ,oo.re1'0Encu11.which.·.e---1he•CUffeftt Me"lid tr'eltitf·'iind'determllies if tire shell 

should process the next shell command or whether it should call the~ function using the 

current enabled insttuetiolf• ·!fet:····· Thi!· function. -illows ~ffie ·systeni to . continue ~ process 
instructions even if the remainder of the ~PJl'1f:J9~Pllflti';" •r., OM. poaible 

implementation of this function would be a routine which examines the current input buffer -
- _ .: , _ ,7, :. . ; _ ! .'';- ~- .; ;..-j ~.~, ~&> :\· (<~ ,\J) ,.,1s~i(-') \~'"- .::.:-,\ ,: ~:: ;,__ - : 

if the buffer is empty and there are instructions still to be executed, it returns true. If, on the 

other hand, there are shell commands available to be processed. it returns false. In tile case when 

there are both commands and enabled instructions avit1iiYili if~' ~rl~ '~m either true 

or false. If the function returns false and the flqt.~Qllliltja~·ctream is DELETE. 

then the shell removes the <name. ¥alue> bindidf'fWSitt'the ~n?~trohment and processes 

the rest of the command stream. If it is a BIND coml'IW)d..-,p~'•'O£ ~ ,-uiHiary function, 

Translate with this command stream element T~~·in•aetlvfij~ PJf.\vhich embodies 
~ .)\ _'\_ }>:,··,ir1;_\_" :-~-if·\·1;:1\:}I, ~: ·;\!~ \ , :~~-

this command. For example, if the command input to Tn:uulate was BIN~~, ,= / (z)), the 

activity returned would be of the fonn shown in Fig. 4. The n:sult of evaluathlgi~ activity 

represents the value of the command. A new activation is constructed from this activtfian~.this 
< --· ·- --~ - ....... ' - ..... , •• -- .,, ..... , __ ...,...._,.,_. -""<' ~....:...- _____ ,.,.,4,,_,,.. -----··=·-~· ,.,_,_ ~ -, .. -- - .,..... 

activation augments the current activation state. The enabled instruction component is also 

apptqnlatdy augmemed.-iltdude.alt4M~ lhls~vlido,rt.HM b~ilieiroperand 

and signal a>llnt al~;zeft}. · 'The ltlclt eaD>tttt, ~terpf'ett:r·'Wftfflififsl;~ 'state amr some 

enat>led instruction front die set .of' (lWat,led' 1iMIN~ 1''fl\ei-~hok:C' or •hidt enabtcil 

instruction 'to,cxccute:is mack19'y ,91e:c1to1u.flMttkWl:•,1'ffe-11eWl.ttate !&Ci~ by' tfitdnt~rprcfer 

ti used by. the shell m:,proc:esh19 t11e11ext'Shefl·cemWmntflf i~·anf imrc io'·t,e p~. 
lbc value. i. returned by lh4 intcrpt'Cfetr is'~ ik1lfflJv5i!i' efttiMttlffcnt'to'the symbolic name 
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which is an argument to the BIND command. If there are no more stream commands to be 

processed, the shell calls the Execute function described bel9\V to ~ecute the remaining 

instructions found in enableddnstruction set. If there .are no. more enabled instructions, the 

function returns with the final state. 

2.5.3 A Formal Model of the Interpreter 

The interpreter is a state transition function from states and enabled instructions to a state 

and either a unique id or a scalar value: 

lnterp(<A.ct, H, EIS, Env>, Choice(EIS)) t- <A.ct', H', EIS', Env"> X (UH U Scalar) 

The Choice function, as we explained-above, is u,ed to.determine which enabled instruction 

should be chosen for execl41~ from tbe en.abltd ins~ ·.sel. The, definition of the 

Interpreter is given below: 

/nterp: State X El - State X (U8 U Scalar) 

Function Interp(State, <u, I>) %<u, i'> is an enabled instruction 

let 

in 

<Act, H, EIS, Env> = State 
FA= Ac(u) . 
Newstate = EXffllff(SUM. (14 i.>) 
<Ac(, n·. EIS', Env> ,= New3/ale 

if FA( /).opc;ode :: mt:MfNAT£ 
thu N,w~(e, F A(,~1 
else lnterp(Newstate, Choice(E/S')) 

endlf 
eadlet 

endfun 

The instruction which is chosen for execution must be paitofsomc activation defined in 

the set of current actiwations. Act. The _interpreter alla, on an·. ,auKiliary function. Execllle, 

defined below whic~ wntains the definiJions of all Ille bQse language primitives. Note that the 

interpreter only rctums-iei result when the TERMl~ATE instBUrtion'.11a.,,executcd. This restriction 

guarantees that environments will be.updated axrectly ~rding to the:Ordcr in which· BIND 

commands were input. When the inlerprctcr returns. a new eommand can. be pmce~d by the 
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shell. Note that because of the presence of early cotrip~tion structures, ·there' may still be many 

activities in progress at · the tim-e the TERM1NA TE:'· insttuctiott : ~xecutes and 'tile next shell 

command is processed. Thus, our mGdel aflows instnrctions'tbattd·ittattivfties created from the 

evaluation ofdifferentbind commands to·execute·in pataHef: We·cto not come into problems in 

augmenting environments though, because, as we di~~, Qrtier, ~~np are: al~ays 

constructed in the proper serial order. 

The Execute function examines the instr\lction ~-~and perfomts the necessary 

functioo. The·resultolthia function wttt be-a new--VIM1Jtate.~,'J"hesthtcture of'this·function can 

be given • follows: 

Execute: State X El -+ State 

Function Execute(State, <uFA' kF,.>) 

let <Act, H, EIS, Env> = State 
FA= Acl(uF) 
I = FA(kFA) 
destinations = /.Dest, 

in 
NewEIS = EIS-{<uFA' kFA>} 

if /.opcode = SET then ... 
elseif /.opcode = APPLY then ... 

endlf 
endlet 

endfua 

' '. 

The destination list specifies those instructions in the current activatjQn l:O: which the result 

of executing this particular instruction should be sent. ;,~?~at' in ~dditi~ to tran~itting 
} , ; • • , ' • '; > '.. • : f' .}' ' ··:• < ,; ';i 

results, we may also need to send signals to destination& 
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2.5.4 Formal Definition of Base Language Instructions 

In this section, we present a formal definition of th~ ba$C language, ins,tructions that will 

be useful to us in describing the backup and re~yery al&Pritlm,Js• lawr in the thesis. K~p in 

mind that these definitions are actually found within the i;¥a;ute funqtjon given above. 

2.5.4.1 The TERMINATE lnstructloa 

The TERMINATE instruction is used to receive the ·result of evaluating a base language 

program. This resuJt,v1ilue is then bound by,the abell4atbe11S«,avironmcnt. Toe:instruction 

takes in one aqument. which is either a seal# value or a uid. It sends no,IZSUbs but will ~nd a 

signal to a RELFASE instruction which is used to remove the activity from the set of current 

activities. We describe the operation of the RELEA-SE instruction -tater in the chapter. The 
' . 

interpreter picks up the result from the first operand slot in the instruction when it returns back 

to the shell. 

if /.opcode = TERMINATE then 
let 

val = H(/.op1) 

Act', NewEis' = SendSignal(Act, EIS, uFA' destinations) 

in 
<Act', H, NewEis; Env> 

endlet 
endif 

2.5.4.2 Structure Operations 

The base language a>ntains powerful in5'rUCtions for the creation and manipulation of 

structure types. There are three structure operations of partic.t,llar inte.rest - CREA TE. REPLACE 

and sa£CT. The ClE.ATE operator is used to~ a stnJctU~ ~(a.particular dimension. In a 

functional language. a structure. once defined, cann6t be ,su~uen'ti>' altered. Replacement of 

an element a in a structure with an element p is done by creating a new version of the structure 

with /J replacing a in the new version. The SELECT operation returns the value of a specified 

field in a structure. 

The operations we describe below are for the record structure type but are very easily 

converted ft.>r the array or oncof type. 
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To create a record 5tructure. we have a MAKEREC·iftstruction. «It takes in one argument. the 

size of the record structure to be created and constructs a record' of such a dimensjQll. setting all 

the fields in the record to be undef. In addition to the MAKEREC. i~on. there is also a 

MAKERECEC instruction which constructs a· record.· all of whc)Se elements are early completion 

structures. 

if /.opcode = MAKEREC then 
let 

m = J.op1 % m is a natural number 

uv = anew uid in u8 • . ' 
Act', NewEis' = SendValue(,Act. EIS, uf.d_. destlnadfln•::Gp 
Act .. , NewEis .. = SendSignal(Ac(, Ne~l.t',t,NdJstinations) 
H = NewHeap(H. uv' MakeRecortl.,1 •. m-../Jntliilj) · <' 

la ' 
<Act ... n·. NewE/s", En,> 

endlet 
endif 

The RFPLACE instruction on records takes in three arguIIlM_,,the uid of a record R, the 
, . · C' , , .... , l , '·.•,. "s'i ,,.,;" 

field in the record which is to, be rer>JacedJ."and the vafue:Qflb,.:new element. x. which may be a 
' > ·, "· • • • ' , , '_,·.'-;·..,~" • ''-"" 

scalar or a uid. It creates a new copy of the record. R', with field /in this copy having value x. 

We mention the RFPLACE instruction here maidf~f-~~ as it will not be involved in 

the design of the backup and recovery algorithms we develop' later'lit.~e thesis. For a detailed 

semantic description of this operation, the reader should see (In 

The SELECT instruction is given a record structure and the offset in the record .of the field 
,:; ,. 

to be selected. If the item .to . .be.-5dected is.an ear4-complelioD 5'ruaUr.c. thea the inskUCtion 

queues itself onto the ec-queue. When the value of this field is finally known, the. sel~t 
rrnHrn,i; ; <: · • ' ·· 

instruction will be placed again on the enabled instruction queue so that it may execute. It is also 

possible tliat the· item being ~ected may be ja · sus;,e;Jsimt1f tl\tte&rtf f~ l)rut of a strearii. Recall 

"that the rest operation on 1streatmris' tmtislatediintt> Isefeci'~Hitidtrotdhcf setond comtK>~ent 

· of-the head of~ currentstre-Jm. Bccnust streams attf:pi&tucca1
fn a demaha driven manner, 

this field may be a suspension in which case the:sftocf'fnstriict16tt1\vilt ne<!d to send a'sfgnafto 

the instruction referenced' by ttfc susr,cnsion. The' field occtfr,fcd1tiy th~'suspensk,n ~m then get 
changed to an early completion queue which will get -~tr ·tfr·thc ·acti~ation rcsp6nsibfo for 

pro<lucing Lhc next stream clement 
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if I.opcode = SELECT then 
let . 

R = H(/.op1) 
f = I.op2 % f must be a natural number 

t = R(j) 
Newstate = if t € UH A H(t) € ECQ 

then <Act, 

in 
Newstate 

endlet 
encllf 

NewHeaJX..H, t, H(t) U {<uFA' kFA>}) 
NewEis, . 
En,> 

elseif t € U8 A H(t) € SUSP 
tlaen let 

<u',. k'> = H(t) 
Act', NtwEis'· = 

SendToDest(Act, NewEis, u·, <unGOnd., k;stgnal>, signal)) 
in . 

<Act', 
NewHeaAH, t, MalceECQ (<uFA' kFA>)) 
NewEJS; 
Ett,> 

eacllet 
elselet 

endtf 

Act', NewEis" = SertdJ:'al~~~-,, ljn1~il. uf_., destinations, t) 
Aci, NewEisH = SendSigiial(Act, NewEis, uFA.' desJinations) 

in . 

<Act", Q. NewEis .. , Env 
endlet 

2.5.4.3 The Set Operation 

§2.5 

The majn ope~tion on early rompletion elemeqts. i' tbe. ~-- jnstruction, The instruction 

truces in three arguments. a record R. an offset in!)le.recqfcl w.,l\ic~pr~nt•tUte. field wmcn is to 

be set. and a value. x. When the set inslruction.ex~t~ it ~P~~--lhe .. eacly completion 
,· 0 ' •• • ., ' - ' 

~tructure found at the specified component with· x. .. M~.~er, all the. elements in the 

ec-strµcture arc appended onto the enabled inslruction 91,1cuc sinc;e. the value pf the field which 

these instructions initially requested is now avail.1blc. The. Sta i~fuction. unlik~ the REPl.J\CE 
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operation mentioned above. dQes.aot cause a new vfflioniof the structure to be created. Instead, 

the early completion structure is replaced with tbe V61ue /lf.;Slla., Tnis·,does;not vlolate·any 

principle of referentiaUnmsparenq becau• no instructiorf ts aflowetHo read a field which Is an 

ec-structure. Since the SELECT instruction on structures prevents any of its targets from 'reading 

the value of the field until it is property set. the appltcatiti property of the base 1an8\lase is not 
~~j(; •{~ ";-, ,-, ---~-/ I·}~ ' 

compromised. Because all instructions which require the value of this field are ,on the early 

completion queue, SET does not send any results to any of its destinations, only signlls. 

if /.opcode = SET tbea 
let 

u = I.opt 
R = H(u) 
I= /.Of'2 
X = J.op3 
u·= H(R(/J) 

V v€N 
RlY) = R(v) If v ;a/ 

= X otllenrise 

Ac(, NewEis' = SendSignal(Act, NewEis, UFA• IM:f(~lltlliOlll) 
H' = NewHea1'.,H, u, R") . . •· ·':'. ,:-\, .. 

in 
<Ac(, 
H', 
NewEis' U H(u") 
Env> 

endlet 
encllf 

2.5.4._4 The S...115-.n. pPerator 

The SETS~P ~ ~ ~ble'.i« seltiftaJt.atspcRIMlll,ill;aA'la>ftllstructure. .ft.takes 

in thrt;e ai;gumeou. ~ue,;or4~ fOP~W tbtwMU.:of1ae\cul'lllll.aream; an offlrec!into 

.. ~is structure whereu.ie $1~skm,iuo ~.PIMacl an,.lilatstM&ionJaddrm.:irt:p~ting;lfte 

instru~ion which is ~. be sign~4. wlw~· ti!~ su*..a isj~ :TM.Alfiset·musti>e an .early 

comp~ti~n elemei:tt .PfCSUDHJpl)I ~1$1d 9y, a,Mld<f.iaE€£CJillstru.ationl SB15USP se1SU'I this 

record the value. <u1,A. 1). ~FA''beingilhc ,uif!.of ·1'~,~ttv._itn:,vthich Ille SETSIJSP oPcrator is 

executing. If Lhc cc-structure i&•oot. empty. then SfiTSU$:R1JjgnalsjfflC activation :JS well smauuch 
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a situation implie.5 that some select operation has alreado/,:attempted to read the next stream 

element Like the SET instruction, SETSUSP does not send any results. The instruction is only 

used in the translation of the VIMVAL operator, affix. which is responsible for the construction of 

streams. 

if /.opcode = SETSUSP then 
let 
. "= /.op1 
R = H(u) 
I= 1.op2 
i = l.Op3 
Act', NewEis' = SendSignal(Act, NewEis, "FA.' destinations) 

V v€N, 
Rlv) = R(v) if v 'f6 f 

= MakeSusp(<uFA.' i>) otherwise 
in 

ifR(l)€ECQAIR(l)l=O 
then <Act, 

NewHeap (H. u, R), 
NewEis' 
Env> 

else let Act .. , NrNEis' = 

endlf 
endlet 

endif 

in 
SendToDest(Act', NewEis', "FA' <u.ncon'1, i, signal>, signal) 

<Act, H, NewEis .. , Env> 
endlet 

2.5.4.S Function Application and Retun 

The instructions which will be of greatest interest to us in the coming chapters will be those 

ronccmed with the manipuladc!,n of functions. 'Flfefe n ftitir lftsttuctions in VIM which deal 

with this: APPLY, TAil.APPL¥, STREAMTAIL, andREJltJRN. nte,.AIPt.t instruction is the •andatd 

function application instruction, taking a funtflon closure and an · argument record · and 

constructing a new activation for this function. By: CMYentm. tfre ·first operand of the first 

instruction in the activation receives the closure of the funct-ion. thus' aUowing the activation to 

access the free variables of the· functkln. the first operand of tfie: second instruction receives the 

argument ret'Ol'd. and the first operand of the third in~1:ructk>n· in the activation receives the 
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destination list ,of the APPLY operator. APPLY uses an auxiliary function, Make/Jat which 

packages the destination entries found in the de$tinadolt list of dte i11SU'uctibn into a n!COl'd and 

p~ this recotd on the heap .. MalceDasHakeilcin threei~eats,.1the currentJ1eap,'-the um of 

the current ;1ef.lvation and the ,destination a>mp()nfin1 of de inStnactioft, · 1t m:ums a record. a, o( 
\ 

two ektrne11ts, th't first element contains tfle uid ~ afHI lbl ·tecehd contains the ukl,bf the 

record contai~ing the elements found· in the.~ list. 1bt uid of a is passed a an 

argument to the called activation. Placing the destination oomponeAU-into.a.r«Ord allows them 

to be acc~d by the RETURN instruction in the called activation. 

if /.opcode = APPLY t• 
let 

C = /.op1 
arg =1.op2 

<u/'free> = H{C') 

,l = a new uid from ':.1 A' 
u .. ·= a new uld from u8 
Act' =:= Atf.tACl(Act, ~·• 11(.uf.)) 
Jr= AddHeaA,H, u , MakiDest(H. "FA' /.deSWSi)) 

Act ... NewEis' = 

in 

Sen4J'oDesl. 
(Sencfl'oDest 

(SendToDesl 
(Act', NewEis, u·. <unGOnd, L op1>, C), 
u·, <"nconcl 2. op1> •. arg) 
u·, <uru;oNL, 3, opt>, u') 

<Act·, H', NewE1s: En,> 
encllet 

endlf 

There is no explicit iteration construct in either VIMVAC or.dle.,llase:language. Instead, 

iteration is modeled using tail-recursive functions wherein.the resait'otthe' iteration is obtained 

in the final recursive call. Otherwise. while the recursive call is bei'll ;p~. the calling 

activation would exist merely to route the result back to the caller. To avoid having the calling 

activation persist until the call is t'Olnplete. there is a special ~., l~J,,W~C instruction for 
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handling tail-recursion. TAILAPPLY. The TAILAPPLY operator differs from the APPLY instruction 

in that it requires a third. operand, which is the return address to which the result should be sent 

By providing its own return link to the callee. the caUer need. not wait for the recursion to 

complete. We illustrate this process ia Fig. 8. The tailappJy instruction sends only signals to its 

targets. Typically. the t.araet of TAU.APPLY will be a RELEASE i.-ruction. described below. 

which reclaims the space used by this activation. 

closure closure closure 
I I I 

f • • • f 

I I 
Arg. Record 1 ,_ Arg. Record 2 

I - -

LinkL 

Figun 8: Tail application in VIM 

if /.opcode = TAil.APPLY then 
let 

C = /.opt, 
arg = /.op2 
dest = l.op3 

<u1 free>= H(C) 

u· =anew uid fmm u,.. 
Act'= AddAcl( Act. u: H(u1)) 

Act·, NewEis' = 
SenaFoDest 

(SendToDest 
(SendTo/Jest 

Fint le· I actiratiolU eon bt rrclamutl witllorlt wa_ltinf for subffquent calls to complete. 
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. (Ac(, NewEis •.. u:.<unrond..-1.opu...Q 
u·, <uncoNl, 2, op1>, arg) 
u·, <uncoNl, 3, op1>, dest) 

Act'", NewEis" = SendSignal(Ac(', NewEis', uFA' destinations) 

in 
<Ac(", H, NewEis .. , En,> 

encllet 
endtf 
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The STREAMT AIL instruction is similar to tlJe TAil.APPL Y operator in that both are used for 
i ! • 

implementil!J tail recursion. 'f\\P SlJEAMlAIL t instruction. ho,evec,., _is~ in the 

implementation of a· STREAM producer. _ \Jnlike ; tie tAILAni.v-~: the return link . .'. ~-' .: . ; ~ . . ~ . ·; ; t 
argument to STR.EltMrAIL is a recdrd fiet<Un the tat; strefam'elemfflt created. When the next 

; ; i ' ~ 

activation of the producer is instantiated, this return _lhf w~ !f SET to the llid of the new stream 

element Thus. while the destination of the T~Y ~-~5.-~wats an instruction, the 

return link of the STREAMTAIL operator must be• Ne8ftl field eithe last stream element created. 

The ~ic structure of a stream producer using th~ ~:(rt~~~~·J~wn 'f~'Ag. 9. 
J,, ,,_,,,_,,.,.......,_,,_, ••-•'• •••--• --~, ".-..~~- V• •> s• ,.,, •• , •• ~ ,,.,,_ • 

The RETURN instruction takes as input two ~~,~~~-~(?{.fC!µW:.~resses and a 
value. It sends to each of these re..-., add...__~ vaJue a11Nhea: Slllds signals to 

target instructions within /.~.o~~•,.~v~r~ _u,y1,~_fK1:~t~.l~~e i~truction, the 
execution of the R.qf,~ ,~~-\~~~-•-~~--us. own. Thus, 

having the RETURN operator execute may lead to instructions in other activations_ becoming ,., 
Hi 

enabled'. The value_argument to the return instruction repl"'W!fl;~,,~~f~.~vation: no 

other effects of the activation will be visible outside of the- value sent by the retlh'ft·ftperator to 

the receiving instructiolls __ in "~~5a_l!!ng __ ~tiya~!!_: __ This J?.~.1J~ __ a __ 9Qll~,Q.Y~.o~ .9( the 

applicative property of the base language. The RETURN instruction uses an auxiliary function, 

GetliJesl..: which, is the conw,IM4eM of .. ~ Milffelkkt-~ 'eai1fer.'. · Oerb-est when 

gfl'en tha,henp amt &ttewf~fU.~rif;;mlffltS tj sef tep,_ftihgifflc Besthrati&{llstt,d:tgeci 
in tn[llrecord. 

ifopcock = RETURN thee let . ,, . ' 

IJL = H(/;opt) 41, fhe,listoffCttan1nddrcsses 
ur = DL (I) % uid of Lhc calling activ.alion 
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2 

MKREC·EC 

2 A 1. V 
closure Arg. rec. 

I 
SETSUSP SET A STREAMTAIL .__ ____ ..._ Jiu 2 

F1111n 9: Skeleton of a Stream ~ucer 

targets= GetDeS'l(_H, Dl(tJ) 
val ::: /.0,Z '- the value.to be retumed 

Act', NewEis' = SendValue{Act, NewEis, u~ targets, val) 
Act .. , NewEis .. , = SettdStgnal('Acr,~Nn,£11~11,_,/ddinadons) 

in 
<Act .. , H, NewEtJ'; En,> 

endlet 
endif 

§2.5 

The last instru~ we ~allpraetlt is the·.llEJ..M&E ~- Unlite an>1 of the other 

instructions presented thus far, .RELEASf. is not. used h\,~jrnpt..e,atation of 8ll&' V1MVAL 

construct Instead. it is used for memory management purposes in the machine. Wllen all 

instructions within an activation havetompleted. thestorage·ocettftied by the activation may be 

reclaimed by the system. The RELEASE instruction performs thi~ function. In a language 

without early completion ilructures, this operatioll, would, U$UaHy be a. part of the RETURN 
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instruction, but because there may still be computations still in progress within the activation at 

the time the RETURN . executes, it is necessary for a separate instruction to handle storage 

reclamation. 

if opcode = RELEASE then 
<RemoveAct<..Act, "FA) 
H, 
NewEu. 
Env> 

endlf 

2.6Summary 

In this chapter, we have presented a fonnal operational model for the VIM computer 

system. We introduced the application language. VIMVAL, and described the role of the Shell in 

the system. A rigorous definition describing the behaviour of some of the more interesting base 

language instructions was also presented. There are two key points raised in this chapter that 

should be noted. First, for the most part, an object created by an instruction is immutable. For 

those cases where it is not, as in early completion structures. the acc5 and updating of these 

objects is carefully regulated to prevent incorrect infonnation from being read. This feature of 

the system has major ramifications for the design of a backup system because it means that 

objects copied onto a backup storage device will, by and large. never need to be updated. The 

second characteristic of the system is the power of the individual base language instructions. 

Because of the expressive power of the base Ianguaae, it should be poaible to integrate the 

design of the backup and recovery system within the base language itself. The means by which 

this can be done is addressed in the following chapters. 

We are now ready to develop the backup and recovery algorithms for the system. In the 

next chapter, we give a general overview of the approach we take in designing these procedures 

and the enhancements which need to be made to the system in order to support them. In 

subsequent chapters. we shall use the formal model given here to precisely describe the 

algorithms as well as to show their correctness. We will fonnalize our notion of "correctn~" 

later in the thesis. 
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The goal of this thesis is to design efficient,a!gorittJms ~hJch.~uara~~e_complet~ ~urity 
' • l ·; ,,.. ; ..• ,,,'!"'", ;· ''h (,,·, .. i>;}-t;:_,11: . ;f' ; 'J .~ -

of all infonnation in the VIM system against 1cm or corruption becau~ of hardware lllfllfu~~tion. 
' l· . .;:,,_,: ,·~: ,:~ b~qrn:-:-'u)··--: ~'""'i ti:'·': •,"·· ·. ; --- : ·,· .:1 :r~-· .. ,·;.-. 

In this .. chapter, we· discus., the general aP,P,roagt .~t -'!e ... ~!'.IJ ~~ in . fOJ''!lttl,t,i~g . f!tese 
' .·_, :· ;_.' , {: ~.;L'.._;·-; it; .. ~;, ~i .. i~1 :·_.• , •• -•i·. :.• -~·- .··., .• _-,., .•. .)• .• 

procedures. In the next se~tion, we present a failure model of system operation. This model 

.defines &he a,propriata,contnt i1J;wbjdtto,taldn-.a111eat,t11e;..,._ f>f•·bldcup ·and recovery 

. aljo.rithQls.. In soc:tion J~;we<.raile,somoJuada111eadill -- atrmusritJ, addressett'by. the 

backup and J"tQMty system.· .. 'Jbae iaueum: t»JIUirfles;ftitl}.-ibitbq'J u ,etfonwed.·how 

hackup procedur.es .. :imlolled and;howithe tm · rct,tJl'inlbawadon::IMM'-M main rnemo,y to 

the-backup~is ~led:brthe-backllp,~•w,t111all 1Jei~afthe pdk,tWc>ftdata 

$eCUrity- jn, m.. 'COlltext ota siqle aaer s,stom,:inf twhic:11'110n~Mlf4· abpmatmil··ls· not 

allowed Section 3.3 gives a high lev.-,dllsi ... ot.dklt.._ilftd1~ qe#itllm&; We 

. classify the infonn~tion_ -~oun,~i i~. th~ VIM ~e ,f;l~}twg" 1!~~t ~ffifi>?~, ~~. d~~ how the 

information in each of these ~~gories is view~~~ ~~,~P.~~~ __ Vi~ -~-~~ribe 
- • ' • (,,.,._ •' • f '. ' -~ :-! .J_J_ ~ . .:!.t-.• . ,:,.J-~,, ..i-f..,_ '\" ,_,,,.. .,. ' 

the basic operation of the recovery algorithm in , this sec:tiop.. Section 3.4 ~~ the 
,. , • ., \ •. • t-< :,: , ,•• :• , •• -: ': ~ \ _,: ,•~-~~-\/{.,fl''.-; -'.~~~-!;

0
'?1_:•! ,r;.-, i, ,!f'f: ' -.., ~••• 

architectural enhancements that need to be made. to the. basic VIM archi~ture to efficiendy 
_,,..,1L .~1:: ; · ·.:, :r1 .,n ·•r!, ·t.rtr· ~n~l \1"tfff ??.C ·r _, -~-,--·, .-2·: , ~, · :-: .. : . 

support the implementation of these procedures. These enhancements are primarily concerned 

with the physical organization of the backup store. The last section ~J~p(tbff ,flpaf>ter. 

3.1 Failure Model 
'1 ' 

Many of the decisions. that are made in the c;lesign of the ~kup and .~very sy~m 
'. . ' · ,, ·- ···~ ' . .i.~ -c~ ; ,:__, /,, '., ~, .. - . .., , ,. -A_.).'t,(, . .fi!}rJI)~~-- , ~,,p :" ._.J', '_. - ;,~ •. /•. • .. 

follo~ from the f~i~ure _m~~-• that. is mu_~ed. ·. ~• ~~~~~' ~• •~:,~,~ec\f~!l~cof TTiµ-dware 

behaviour characterizing~~ ~~ o( fl~ults_e;~~d ~d
1
_,~ i~~~~ ,~~~~~ fai!~~ ~-~ ~on­

failed con1ponents in the mactifoe. Some of the facto_r~ whfs;h will ~~"ence th~ ~isn of_.~e 
""\ . r· - ' - ;:J -~~ -::,~ ... u ~(.). ,~1;ru;-;.1 : .. ·, __ f )1: '!: t_, .: ; ' '; :J·, .. J· ·.• ; 

backup and recovery algorithms that are described by the failure model include the frequency of 

failures,in the system and the le~I ofhardware eiirotldct_.,,.'cap19iNc,lhat1is.Y:,ri>vided. 

t/;-. ] , 'i ·i - -~1 i 

VrM is not a faulMolcrant system and. therefore. there will be faults that are not masked 
• • ~ • ,_ • ' - ' ) ! • • '> 

which will cause the system to behave erroneously. 'ft -i~ ~nr~able to expect. however. that 
' ', l ·;,. i; '). _,, _ _,~•~"~f; .,: , ,.i ,~~ ,.• . 1 

• -

there will be no faull covcmge in the system at all: like many COJ1Ventional systems, VIM. is 
• < • " \•; ; ; • t·,; I : '' ' 
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expected to provide enough fault coverage to QQl'l'ect many common errors arising from minor 

transient faults. Correction of single bit errors in memory, for example, is a feature which is 

found in many commercially available memory., units'anti, thus, the services of the recovery 

utility should not be required when such an error is detected. In this thesis, we shall assume that 

the recovery utility is· invoked only when errors cause information found on main memory or 

secondary store to be lost or corrupted. Power outage, short circuits, a malfunctioning disk head 
. ,, . 

etc. are some examples of the type of faults which lead to such erron. 

We do not expect that such faults will occur frequently; hardware is mumed to be reliable 

most of the tune. We do make the as.,umption, JI~ -that invalid information created 

because of an error is detected· when it is accessed. -,For example;. ifa faulty dist head ~uses data 

to be written incorrectly onto disk. then what the data is.,mad ati80llle ftltur~ time, the error will 

be detected. This auumption is important becaqse itdneans ,that any infbrmation which the 

backup system observes and copies will either be eon-ect-0r detected • being erroneous -

invalid ,data is ne:ver maintained by the badcup utility. 

If the recovery utility is invoked, it will need to reconstruct the system state based on the 

information preserved by the backup facility. Duri~g this period, ~pther failure may occur; the 

recovery facility must be robust enough to correctly· restore the syste~ state even following such 
' . ~ ' ! • ., . . ' . 

circumstances. We discuss how this may be.achieved later in the thesis. 

3.2 Fundamental Issues 

Toe backup system will need to interface with the interpreter and shell to monioor the 

progress of computations in the system. We need ~ decide. however, when it should a<;tually get 

invoked and by wh~m. · Secondly, once it is invoked, ~h• info~tion, sho~.ld it actually copy to 
, . . , ',· . !. . .. . . 

the backup store? Thirdly, how should this copy operation be performed i.e. could normal 

system operation be intermixed with the execution of the backup procedures or must normal 

processing cease while the transfer of data is taking place? 

The first question was alreudy partially answered in the previous chapter where it was 

mentioned that the semantics of the base language instructions could be suitably altered to 
I • 

. . . 

support the backup procedures. Unlike most conventional systems. the backup utility is not 

explicitly invoked by any process or user: it is implicitly activated whenever the appropriate base 

language instruction is fired. In a sense. the "logic" of lhe backup algorithms is distributed 
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among the. various -~ ,language i~£;tiPASi ~~:~Jqt\ Th~ 'llle$®n of which process 
• • ' ' ,c " 

activates the J:>ackµp facilityis not-wmane llfWO,: ,lhif desip .. ~~qe,~ i~.£e6POllsiWI for 

invoking the. entir.e ~ti,lity; different por.tiqQS. pf •'RfL-~'l#lLP~ are ~tfvaltd as 
instructions in an activati<>n are enabled. h,\, ~ ~. Jh4 •lwP ~~Y-,ii -mQl'e an• e.ktension 

of the interpreter, al'ld shelL ratller than • .a ~ ~: wkiqb_ Mt:M:iodica,HY ~oked 

ac~rd,ing to S9me.pred~~,t~~cy~ V~ .Qft"eff ~~-~ me.ke,lhe-1-tup'filcility 

.more ~ftlcient .because, it js ~bed~p witqm,,,tl;\e, ~.#A~ Tbis ~~ will 

allow us to .desi&J:t ab~ facility tnat,c.an ~~1~~ ofQQmputauoa'.18 a greater 

degree than would othe~~.be ~le. 

The answer to ·the !eCdnd que$tk)n involves' det~fning; how' much information should be 

preserved artd how the remaitrder of·tJte Sy~dii~~'·t,e· <Mfivecf from this.'data . While all 

data generated by the system could conceivably be copied onto the backiip ·storage mediutn, it 

. would ttot ~, a veg ~~~~Lsplµtioi,. beca~,of~ qv~)JJ~,~~• iQstructions 

. in the~ Iarwu •. ae~•~e ~-~-~~,..--~ -.zn~ oHhiJ._egy 
would involve modifying er,~ -Jan~,~~-'~ ~~:_resql~,et;~ Q~ to 

backup store. This would clearly result in severe performance degradation. The backup 

algorithms will, theref~ QMd·.to ~ :in~ albutdle,s,stem ute',iJi;a tblidensed 

form ~~icl) th~ recpv~cy S)'$te~~-sµ~~,atl){~J~Jf;f,9,V~~PMt of~;SJ~ state not 

explicitly preserved. As w~ $1)~1 _ ~~ ~-. of ~~-~!MfR .~~,.(pr,.~~ -~"'R·• roc;p~ry 

system wm _ be d~voted to devj$ing,~tlJ.cierµ. ~.~ 1,la,.~t> en4t1in~t these ~ds. 

We discuss .this issu.e irl ~~r del$1.i,n,.the n~t.~ 

Because VIM is an appfftatfve ·system, no 'data: ft>uncf 6ft tire heap, once created can be 

~bsequently ·altered by eitfter tlie·bd:up ·system ·ot'tlr6 tnre°ij,~~.-, nius.·having'the backup 

pmcedttres operate COftC\ITtently wittdtortnat'system ~ori•ctm~icaose' ally irtvanants over 

the data to be vk>lated: · Mo~vet. 'the dtita oopft!tfit,y dr'e .fgyiem wilr'never be in ✓an 
inconsistent !late when the·cdpf operation fs peifot1ried1~'hb•iupdating' of in'fdnnation 

takes place. Our baekap:·prdccduits can·~ tlrcrcfbre:' tid1altd~ect'~C-xccute t:dnctlrrently with 

,·normal system opcrntion1 without 'the need for any·cxpntlt''CXJ11~ii~y ch'ecks. 

During the rccoveo process. no shell comn~ arp . ..accppt~ ~y Ille.system. If shell 

1.-fhcrc is a caveat lo U1is d:1i01 which will be explained in lhc nexl chapter 
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commands could be processed concurrently with the recovery process, it may be possible to have 

computations reference .data which has still not been restored by· the recovery:·procedures.: . .In 

addition, this restriction also simplifies the interface between the recovery procedures and the 

shell by avoiding the need for any synchronization protocols' between the two p~ in 

updating ( or deleting) environment entries. When the tecovery procedures · are invoked, they 

make no -assumption about the integrity of the data which mat stiff be. accessible. Thus, the only 

information used in the reconstruction of the state is that found on the backup store. Of course. 

it is inetftcient to restore the entire state ofthe system if ontya traclion ofit were affected by an 
- . 

error. Significant-complexity is added to the backup -and reco~ ·procedures. however, if we 

requir;-the system to support partial recovery. -.~ is not dear wnether"ihe ~efit$ -dcriv~ f~~ 
. - . - ) . . - .. - ~ .- '. . ,_ . . . . .. :: . -. - . -_ : - .. '. ,:._ 

implementing partial recovery outweighs this increased ~rµplelity. We sha!l addr~ this topi~ 

again later in the thesis. 
.. - . , . - .... , 

In the next section, we present the high level _ design of the backup and recovery 

algorithms. · The rationale for oor design decisions have- been mainly based on· the effectiveness 
of these algorithms in addressing the questions ~,it1 thJssecdon:·:· _:'·• .: ... _ --~: 

3.3 A High Le,el Oveniew of the Backup-and RecMery F~ltles: 

The design of the backup and recovery facilities are based on one' important observation: 

every computation in the system is associated with the eva~tlon of some shell co~n_<j __ input ~o 

the system. Thus, one immediate solution which presents itselr is to simply record all shell 
- - - . . - , . . • - . . . -. " '. _' . . • .. - . , :,'. : - . . l 

commands on the backup state. This is obviously a correct sol\ldon since the behaviour of the 

system is presumed to be determinate. Reexeclltin,&. _in , ~ pro~r serial order, the shell 

commands that were input to the system before the f~re oc;curecJ. is. therefore, guaranteed to 

yield a correct state. This state will be identical to the-,state,imnu;piately prior to the .f~lure 

except for the uid's associated with structures and activations. . Toe uiq's chosen during the 

recovery pi:~ may not be the same as chosen originally2 but beca~se these uid's are not _v~ible 

_ to the programmer, no difference in the two states will be ,ex~mally discemable. Obviously, 

such a scheme would inflict little degradation to system performal)<.'C since only the text ofthe 

shell command need be maintained. On the other hand. recovery would be intolerably slow 

because every shell command is reexccutcd from scratch with no irifom1ation about the results of 

2Rccall from Chapter two LhaL no n.-slrictions arc m.ide on how uid's may he schx:ted 
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these ~nunands being,kept Oft -IB:kup store .. The ~•JM sya\em.·.starlffll Jrom some initial 

recovery Slate. wo~ld ~.1'<> '8eJecutiee~e,yshjffi~~·lO·itbcsys14m from tu1start 

of system operaU. ~._ no infQnnauon•.~ ·mo :-ltlUk,d;:aitJ of.these eontlDlnds are 

recorded. Such a major drawback makes this strategy unattractive for all practical purposes. 
! : { : : . -f ·-; 1.. : { ~ •• - ·, ~: . 

To see w~ opti~QIR be Rl4lde to;aUoriate:,,;thit<problem.Jet ~ axamine how shell 

comrnanqs ~ µse,t lo_ -"tt,:•Ua4,.-aa.._ .'D1ei.thclillco•••IHl'.of!--.,to,us;·here is the 

BIND conm.iand Th,e-;JJ?t;µ~,;~• 11--•--~ computatioa.andiplaces 
this binding in thcu•i;·~ ~~. TJ;ao--v.i111;tlQIJlMl,..,tlle ..... i ..... a.long,flived 

value - it S,Urvivcs th•-~ in wtuch~_.,_...,_ :3lllt-dela111tB.by•dletmct of the 

$)'stem. are Prea-.il the. ¥81-.: ~4·.in ,1-/ ~ u.._ _,.__ :valaes- bare li:ftsdmes 

greater tb,ln, ~. c;:Qln~Mt~.· ill:. wh~ ••x•··.wm.::..,._Jto~ .eeriainl, he. a .DUQOf 

optimization. if .d,le ~ ·~ ~,11Mtt --•'!dlotblsmpitU>re .. •Thia ~d 

,obY:iate. the n~< for'..~ ~l'J ~ lD,:~idlAo IOIMlllldsrwbose evaluation 

.~. :P~~ .tl;leae val\lC$,, .~ ~1p;f~ -MJAv1i\·*li&>alfO !Dliltllininl a,Joi_;ofthe 

. : · CQllll1W1~,,mPU.t . lP ~ M'stelll.;,alla.•i~ 4t<,_.~ tfiradiqs,.; found Jn. ;tb&"uset 

.. ellYif9nq:nt.i. ~ bj,idilMl\-..,an9'1_,be,, ... rt1riJlhthlNld ',t .. _. .~ ,is, applicatrfe; thus. 

OJ1Ce.a l?inpin&is. ~~~-~.,dw ~--~ apm maMmfae1hat 
entry in the user environment to check if it has been altered. 

Th~~fQUD4inYN.~---~-'11Jt:O~,. . ....._,w.biah--corresponds 

,to the resultv~,is qf~~~;~;-IHlltil~1-e:beca bemid.to a 
;.name.ill i uset.en~~Ml~J,-ili,,Nr(;4·•¥illl•a,111lllldl~._i~•--d&her 

.. ·· partof~)ffl~J•C~Y~.~~•1PMU.Sj(,cM.~VallMUt(1i·---•Mfioacdl....-J10t ,et"1eelJ;bound 
to a name in some environment A computation consists of the collection of activatioos•data 

created during the evaluation of a shell command. lnstruc&ions in these activations produce 

-; ttansit1ona1 ttaraJi~ce ·tilts· ctat.:' .. 11 ~~~trror16rii1 ~t~i~¥tie;~.,i~~ ,,~ which it wa 

, •icmttetf~ifsts: 1'be Valub ffll•nf ~rocfucect'by a·~,,- ~ . .-1~~n8'~1~'~· ~vi~~ent 

and. as·tt 1resutt>•itrbc&me qu~~f. ;~ b~ilp1 (~y~'~,'{g ~ s&~iri,n,~~ted 
'above; WOUid ·oh1Y be a~art or·4uie.~nt data.' 'triiiisa~;~rJmiii~,r ~rr~di~g 'to' d'ata 

: j,r6ducetf dirring a corri~utatihn_;~~ld'jjot be un&r1jthi~iiriy11~filifl~k~J pn>cedJ~ 

'When a failure' tt&kes i,tk tind the' ~st~·sta~ ~afto·'' ?=ri\ 1~rea the ~';ery 
. fadlity first rcst()rcs·~11 quiesceht\Jata presetved 1iy~~-'biaui/~m1i l~nto'the '.new recovery 

. • " . - ~ · •. -~ '"If~,.'. _: : . ~ ' ' , . ~ ' , , • • ' .. 
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state. It must then reexecute tllose shell commands :feumf-on· the command log which had ~ither 

not yet. oomple(ed .or wJtose,;result bindittg, 'eotltd· not~ teee~l,y ffie,baokUV tacltity before 

the,failure. These shen,comlriands will befefernHf.to • w,&,tf/~ 
,, 

Having the backup facility · record only quiescent data is an optimization that reduces 

overall l'CCOVery time.· It does'so·wktiout•eHlllllsifli ~,,~ because the 

backup facility· is only mvoW,when•an M>DNl!N¥'itillll\lioli3a~•t&i act&atly place the 

binding m. die, environment,• ...,..r. ·cm:~~f ldf-tht 6ata ·fri · parallel.with 

normal system cperatiolt lt·WOdld·blca&·evtrt~ffitlie1bacltup -nt;cnuld 

help reduce, reexocudoll time O,:,tMJise, .. le4tell'(!(Rfinei(dflouftd~ on ·lhe tog by ~tding 

information about those c:oftlPU ..... lftfelr \fflel~lif ~•bf taHute.' If tfitre are many 
resource intensive, time-.consu'lldnr•11CtmltioASti ai~JMdfhWing~,backttp ftiWity 

ignore the praaeuce ofthe,tral5idoftal .._,pffldWaiftHiMNWatn~11teaftS 1htt 1t1e time to 

.nmver this state lllUlt be at--- ~·frdl«.¼IHtl:>wlt;y)tfti ~·11t: taus ta 'rem!cote this 

entn ooaiputation. • This1il not virf1•ftMI --~·edUtcl·lffl already;hen 

·executing fora very Ion& .,..,._ .wlleft-lhe<.faiftt'6rto11,:,IMPiMalWaittinr1toihe' •tecord tJf the 

oomputation on ,tilt 1bacHf) :.,..,"°lf, . ....,"tfte·'~dracilly1 to -ffl>lf·n:~ly 

reexecuting th018 subpartl of a·~ WliidHlidiillll\lyflMtlbed theil"-~ before the 

failure. 

It is remonable- to expect1..cllat tb4ft will t,e;mawy ~s•ini tJt'Oiress at the time of 

failure~ To ttcOJd; dle.pt'08MI d ~ ....... ._ • ....,,~ midntaim infortt1ation 

- 'about•dleee cirawpu~i-~NH, 'letlMMW\lp~d'fff ~lfie stfuctunn,r a 

computation rooonllmllloW~'~~ ~ fadtltytn the'next 
cl1apler. _. ~! 1 r: . ~-= 1 

We ~n now .J>~°,t _our}nte~~~ ~I ot~-~~,fr:,JlM.: ~ ~p~~~ 
,.oomplete, ~-vr,J~esJ9.~ ~~ff 1~;~~~ ~~~&~-mtlJF;~~ ~~¥itf:~~rves -
th,ese ~i~~ings o~ the ~u,p

1
~,~~,~•,,n1!' ~~lfflh::~~j'~~;f~: ~,~i~ve 

_compu_tations i~ ,P~~ ,!ll~ :~k~Jt f~,i\itY ,~Rffil~~Wl8'1l'ffi~a~~ ~~,~~,lJ.~,~pns 

as' well. Th,is 'infonna~~~ CJ!!~i~ ;, .~; ~ma~,~~h,~f~LJfi'PP~ ~~;-~~' tfl~. ~~~ry 
procedur~ to av?id ~~~_.~ ~c~ec~~~~ a,r ~gv,~ ~P,!f~J~p l~,[~4): :Pu~4i,~ir 
result before ttic failur~ .. When th_e.~very ~~~,~)s i~1y~y~1JL~~ ~,r~,?1., CW~JJ~ta 
found on the backup store. It then uses the computation records to restore the remaining part of 
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the state. The mite after recovery is complete will be tiquivatern to the: state which existed prior 

to the failure insofar a, the ~cture and inforination content of both• states will be the same. 

The states need not be ide'ntical; h0\¥ever, because dle 'uid'sL~iated. with . activations and 

structures may be different The reason why·the' stat:es'woaltfWofbe identical is betause the 

order in which enabled iMtructions are· thdsefi·itor execution may be diff'erent -dtlrfug the 

recovery process thaft before me failure. ibts•·c1oes·•ndfcdrrii,rdmtse the ~ctness of the 

recovered state· because of th 1lPl)licative nature df VtM ...:.: rto ;We:.etfects occur and. ·thus. no 

explicit ordering on instructiori exetution ~ ·ro '& ad~tmC1fb. We. itlustrate the system 

operation in Fig. 10. 

Quiesciemilila 

Flpn 10: System Operation 

3.4 Architectural E11118ncelllelits 

FailunDmtir. 

Active ConijKllldob · 

(Computation Records) 

s is equivalent to 11 

Statesl ---------4 
.:' utecove,f Procedure> 

------► 
Tuna 

Up to -this point, we have only mentioned that· the backup store on which backup data is 

kept has the .propeny that infonnation entrusted to if ~iU ~rviv~ failu.res of th~, machine with 
. : . . . ·, .. ' ~ ~'~ : ; ' .•~. . " .' ,' ·: - ' ,: 

very high probability. The most common type of backup ~.used. is magnet~ tape. . The 
' . . _,;.... :}·:_/)t;!;~'-,·f. . . ~- . 

sequential ace~ nature of· tape drives. however. mak~ it inconvienent to update the 

information found on·· the tape .. - Since the "back~p 'racila~y ~ill be freq~ently updating 

computation records associated· with :ictive MP~tations tc/''~n~{ the progre~' of the 
, • . .• : • . c -: ' , ~" .,-·. ;L') ... ~--f. . ., ; : , • : 

· computation. using tape as the only backup storage device W0\11~ _ be imprac~cal. Our design 

dictates the need for a faif-safc storage device fro~'. wi1ich in(o~lation m~y be easily accessed. 



so ARCHITECTURAL ENHANCEMENTS §3.4 

updated. and deleted. We call a devic;e which has thffie p(Ql)&rt~ a stable storage device. It is 

not difficult to implement such a ,dev~ on top Qf non.le stprase devices. Lampson 

{21] gives one implementation of a stable stor9.~tice, irt ~ disk ~e is converted in to 

stable storage by maintajning multiple CQpies of~~~~ diA"e.-..di§ks and ensuring that all 

writes to disk are atomic Le the. write either tak~ pl~,pn. ~ 4~ ()I' o~ none. Because both 

. disks are guaranteed to have .consistent infoanatio~;,~1lost;.-use-of failure of any one disk 

can be recovered from the other .. Advances in V~l ,~:~e ~ it ~vable to 

consider a ~ardware implementation of~ ~'°' ~ JQ113'~1e,. CMOS static RAMS 

and a backup battery supply. Because of the low power consug1ptic;;Jn of CMOS chips, 

infonnation on RAM could be retained. despite power failure. using the backup battery supply. 
, ~" • - ., • •• , ,,..,. > • - • • __ , __ ., 

In this thesis, we shall not be considering implementations of stable storage but will as.,ume that 

such a device is available for use by the backup and recovery utilities. Because of its relatively 

high cost. we shall also as.,urne that stable storage is qot very large (certainly much smaller than 

the size of the backup state) and. therefore. in order ~ guarantee that backup infonnation is not 

susceptible to 1~. it willbl necmary to have anothe1 backup storage device capabfe of holding 
- " -, . . ,.... --~ ., . .,.,· ... ' ,_ ""'-";,,~-.. ~··· . " - ., - . 

that part of the ~k1,1p state which ~ot be.hekt in:stable ~- We,as.,ume magnetic tape 

storage is used for this purpose. 

Quiescent data is never updated by the backup procedures and, therefore, can be kept on 

tape. Of course, if the binding is subsequently deleted, the data will have to be removed from 

the backup state as well. A delete record indicating that a value has been removed from the user 

environment can be written onto tape i~ such ~~~na _ Tht~i>.u.!ation ~rds ~ated 

with active computations do need to be accessed and a>nstructed relatively frequently. These 

records will, therefore. need to be held on stable sto~ .~~~ 1,e,~d.q. which 

.con~~s al~ shell com01~ds,~nP.ut to~~~~'~~•~ ~ftVf,,~th~~,nQtye~ ~n produced 

or have not yet been ~d~ onto back_up ~ .. wilt~r~~,"?,~ he.I~ OP sta~le storag~. As 
• • ' \ :I. ' ;l ~ < ;; • ' ~ ., ) 1 , • ' ' '., . • • 

we shall see. most compu~~n records _wiU
1
be ri:,,~:~~? ~~!~fld ~)h~, wUI, oot occupy 

stable storage· for aJ!Y. ~~iftcant amount of time •. , ;n,e ~~n,i .1~~~ o~ a ~putation _ rec9rd is 

quiescent and can be migrated onto tape, allowing the space ~ by: the computation recqrd to 
. ;£, >, "J: ( . r·· •"} '.! ~:t '•'-:(CJ ::J!~r 'H} ;L l ,. •• ' '• ' 

be reclaimed. It is expected that st~b!e st?ffige w~II p,l,way~ ~J•~I~ to,,&.Jpport all comp~tation 
·. - . ~ i; ~!- < '-,· C, , __ : -~,-- .:!, ~i;',. ~.~J•} ~i•'.-:. f",. ;· ': ' •. ,, 

record~ in the system becaµse of their short Ii f etime. W~en th~ recovery. system is jnvoked after 
~-l _J t; .,' '. ,'~~ ·': :J. ',-.'::~- ,1l1J,'i' ..... \ ::. ' . ~· C;. 

a failure is detected. it ~ill first re~d. from the tape '111 t,hc,qp~sccf\t qa~a al)d will restore~ n:mch 
, , -1 ' ;·k ·• · .I i, ' , 

of the environment image as possible from this data. Volatile shell commands arc then executed 
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Quiac/1111 Data 

Tran1itional DaJa 

from the command log in the order in which they were originally input The computation 

records found on stable store are used to reduce the overall recxecution time during this· phase. 

When this phase is c::omple~, th~ .. system can proc=.d with. normaLopecation. The high level 

organization of the backup store is depicted in Fig. 11. 

We illustrate the organization of the.VlM £¥item• with the-backup heap·and environment in 

Fig. 12. The backup heap is used to hold all transitional data whereas quiescent data is held on 

the backup environment The backup heap and environment constitute the Vtffl,adup store. 
The Interpreter constructs wmpti&lalion. recor~on •bM111>.iMDP auriactnonmtproce~ing 

and interprets them during feC(.)vcry~ Jn ad(Jit~. the inW~i* ,_.,as l>f.a computation are 

also stored on the backup bt:ilp· by the intcrprei.e.-, .. <~r->J>io~11u1ro plw:ed Qn the 

backup environment by th~ ~hell which also builds,~ '991Dl8nd,k>& f®nd,on the bockup,heap. 
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flow of information during recovery 

--- flow of information during normal procming 

Instruction 

value 

Activation 

Interpreter 

Activation 

value. 

sfaoal 

value 

tnstNction· 

Billdin, 

Fi111n 12: Abstract Architecture of the VrM System with Backup Store 

3.SSummary 

§3.5 

session 

Shell 

NewStata 

In this chapter. we have presented a high levet strategy fut· the bt1ekup and recovery 

algorithms for the VIM system. Our main obsemttion about system behrivioor was that all active 

computation in the system is as&>eiatcd with the evaluation oflsome fflcll command. The first 

!Dlution proposed involved simply storing the log of all sttefi'con\mands. recxccudng them from 

the beginning if a failure occurcd. While correct. because VIM is a determinate system. thjs 
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solution has the drawback of a very slow recovery time. A major optimization to this solution is 

to record all quiescent data Le. data bound in some user environment A further optimization, 

intended to reduce the overall recovery time in reexecuting volatile shell commands is to have 

the backup facility maintain some mea.wre of information about all active computations. The 

recovery facility uses this infonnation to avoid needless rccomputation. Once this reexecution 

phase is complete, the state of the system is properly restored. During this reexecution ph~. 

the order in which instructions are executed may be different from the original execution 

sequence. This may lead to different uid's being migned to different structures but the overall 

structure of the heap and activations component remain identical. The reason why the order of 

instruction execution is not important during the recovery process is because VIM is an 

applicative system. 

We also introduced the notion of stable storage in this chapter. Infonnation about active 

computations will need to be frequently recorded by the backup system. A backup storage 

device on which data can be easily accessed and added is required to support these computation 

records. While quiescent data can be copied on~ tape storage, computation records need to be 

maintained on stable store. 

In the next chapter, we present the detailed organization of a computation record and 

discuss how the backup system monitors the progress of computation. As we noted earlier in this 

chapter. the logic of the backup procedures is actually distributed among certain bme language 

instructions. We present a formal model of the VIM system supporting the backup and recovery 

procedures and argue that the information embodied in the computation records is consistent 

with the actual system state being represented. 
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Chapter :Four 

Constructing Computation Records 

ss 

A major~ of the '-kllP and. RCXWcey::allOfidansfot·VtM mneems the construction 

of computatipn rec<)(ds.. • Reoall fronl dle: last chapter dlat:a bemiJutation ;J'l!COl'd is used· to record 

infonnati011 a.bout ~eptJy eweudng ¢0lllJ)lltad.aaa.,k'fn· duiullaptery we shalt be primarily 

int~ in hQw. ~PW3U9n RQ<>n;ls oiay,bc consp111talsand\!niaintained. In Section 4.i, we 

p,:esept the a~t,repreae~ ofCQfflPUtaqpn:nooaall flle. ... componem:in tJae:tecord 

is kno~ as an ~liWlfk>IJ '-"""' entry whicb ~--illtblmation· abGut an indtvidual 

activation. In order to~ a<Xm\lMltation redOrfl,dtanaes'ADdle"Oplrational behaviour of 

. the base language ~• gi¥ea in. O.pter ·:n-i,.,will1be. neaeaary; · ·Section 4.2 dmasses 

these ch~ as well as dl...-aeourary _to AhoacH arutilntelfJle-. In. secOOD-4.S,, we"ptesent 

.. the.aliere4 opera~,of.O.IMle lanpp,inltactioat~al:an~ operationall\\bdel, 

M~ which. is an ~leGSk>n- of .-I.Ml,~ ,inrCllapatr-itwo. Thea., are aeverat major 

optimii.ations. ~hi.ch- .am•• made in . manaama ~ ·ftlOOl'dl. . 'J!'hea optimtrattons are 

~.fo,m>.aliz.od ~ lhis ..... 

4.1 The Computation Record 

In Chapter three, we argued that the backup sy•~. should. record the progrea of active 
, . , .. , . : .',_ ~•l'l.(.; ;/ (':ir,,·.rrt ~ :-:·~:;:-;_,, .. : ~- '~ .. -- ,, ·., ~ . 

computation in the system to help reduce ~err ~ ~ co~puta~o~ .• record is an 
. , , ,. . ,, " .• '. ,. r, .;<J • .' [ •. , ' 

infonnation structure ~~ructed by the· &~ku~ .S>'.~ f~-~.~ .~u~:, , Our focus in. this 
section will be Ort determining how much information' should 't,e kept on the computation ,record 

i '. ' - - i ' ' • ; ; .. - : f ~ ;-~ r.'. J ;• • }: - '' • ~ ~ : i" ;-'"'' -.: r·: ~ '~ ~. , ' '_' ~. •. '"': J ••• 

to allow the recovery procedures to restore the system to its ~_pi:_ior u.,> the_ failµre. One simple 
, . ; :.: , __ . -·, ~ . .:'·_,~.;;:?r:·;~-• .,d4l ,H ~f}J.-,,, ·• ,·. , -· , / - '· · 

scheme would be to periodically .checkpoint all actfvatiQns cceated .by_,a computation. To 
, -·, 'i . i · - - · t-._~ ! .- . it.: 1 l; ~ .. ' - . 

checkpoint an lletivation means recording the state of all . ill$lructions which have not yet 
. \ , . · ,. _. . _ _., .. ~ ·._ . ,:.: y "· Jf~i: l 1 ,.~; :,. Ji •~.i · ,._ ~ :. , 
executed in that activadon at the time of the checkpoint The state of aJl instruction consists of 

its opcode, destination list. operand ~d'si~nal ~~t ~'~;ir; ;~~ ~-~-l~e ~f i~ o~randl This 

approach· would be very si111ilar to that take~ in m.~~y ~~r ~~rall~I co:nputer. syste-~s where a 
. , . . . ·, . ,·-.. , _:; ·1 ~,:;·r(f'.: :'.::~ J-<~ _:.,: < •;; · · : 

recovery point representing the state of one of possibly many concurrently executing processes is 
~ , . ) ,. ,- __ .,, f•, '., : ~ 1 -':' l • ; , 

31r an opcnmd is 1t <.·omplex :.truc:tute. 1his means reu,rding:dl i.uhstruclures tderenced frottJ the to(Wevd stnK.1urc 
:is well. · 
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periodically taken by the systems',: ba:k1p faail~; i~our system, the recovery procedures would 

only need to find all enabled instructions in the computation records to begin the reexecution 
phase. '' i'• 1 • , ;,, 

Periodically recording die ,state of all• acdvationl aelNd by' a 'COmpet.ation, 'is 'simple idea 

but hes two major drawhacks whicadols -~ a:faiiitA&iMtu~ our puij,oses., First, 

, chedcpointina all acti---:• acomplltiaa0n1.U.,...,,'be:\liltilfy tmJtl,eeau$e dte;size of 

activations can be very,big. ~~:in otdlf:«>:,llflllht1e,lMltl1irt«>Misl~firMie'of the 

oom,utation is mainwllcd cm stae·backup udtillr~ · we ~:.fla-itojdistllow ·arty, enabled 

inst.ruction witbm ID)' .11dhatioa bl tttatcom,utilk>tf ft'onl~IHlt''WNf~ ·medleekpt>fttt of that 

activation is bcina, peramed. , ,T:o see whT tha.lil ._._ --,., two fltti'fation~ « arid' /J in 

the-same computation where •hatcai•lf/Ji ilfr1Jl• allowed1a1..-1a1nmile-'ad\eekpt)MH>f a is 

being .made. lhon JI. ma)'; .raium its, ~toi:«, andi~.._.,., REfu!ASI! or,etadcri~ :; If the 

~ of a on _,baok.up state,lfaes ~ mlect,:t11ei4elUM:,ratfe'Ildt't,y;,a, and:"/J was1 not 

. dieckpoieted, hcfore tbe,llflJ!M& operadCJ1NtX1CtMd.l*•~}ftebl'd woukfrepttsent 
an.incolRICtistar& Upon:RICCWay~dlens,woutdilter•--~t1the'f«titn·leslilt'vahte'of /J 
without reexecuting a. This is precisely a manifestation of the,'~ eneouttteft!dimother 

concurrent systems that use recovery points to guarantee data security. 
I 

A more clever approach to recording state infqrmatio,n about activatk>ns takt$,advantage of 
. . t..- .·;-" :, '.,·,.:-:t~':rfr~\.J;_; i;,-~~•.'t°';..,~ ;\ .·.-.-=t!r-:: .-:.·~--

the applicative progranuri~g model VIM uses.· A ~~{e'~~ll;l'!.~f,81!,~P.li~t.~v~ lan.&W'Se is 
' - . ·- - : ."'.~·; ,-' ~.:i .. '-!'<.·~·~ ~'.-~>,!.",J~ q,_;~) 1 ,!',1, i{:L .. ,·· ·. ,; : u '" -,, ; . •I' 

, that 'each function ~ . be trea~ ~; ~ con~~,/~~'f{f-~~ l:!:!:v:ff'fn; j A 5f~r CX?D~i'5,:<?,f, co~~ts 
combined by funcuoh composition and' appl~. In oonventie>.nal Plpg!'amtn)llS l;mSWlles 

. 'J ' ___ : ~ ~~:':-v~ __ -_:f":_'··,.lP.':'.!Jffl . .-,,(:· ··:rrrn:;;.~i-:,,~;, ·,.-, ··,~··? 

such as Pascal or Fortran. a function cannot be treated as a ~t because its ev'1uatiQn may 
· .• , \ '. . .•· ... ·;~ ·.3: ·· · ·-···, -,-r:·; ~-:f~c.~..t~:. 1: • •! ;:~)~lJ .. ;~YJ,"-"' t '-.,. ,-

1

·~ -.;·~; • 

cause side-effects to occur in the program. In. V~¥: ,~aviJW_ .alJ .~~~s 9C. simply. ~ts 
. ·. l ,··.. ·,·'. _; 1 1~~'.; __ ,'c). 'i~!\~ ~ f 1!'!,,:;.JiLJ\.--.< ,J,.; '~."• ·- - l. ' '' 

means that the behaviour of the function can be determined by just knowins its inputs. In the 
• : • ~ .. : y, ~· • '. • •• ~ ,. , rt: f n r( t .• : ') 1 t; f" ;·;,. L.; · - .. : · -·. · · · -· 

base language. an activation is the application of aTunction to !l>l1le inP.UL Beca1,1se functions are 
.. . . · .. : ,-. ". - ':r-,: '. ', -~-1 ~~~L. --~O :;.n,~_: i::-:,I, JL ::;~-J:>.',. n f, \ ; ; :_·:,, ·::, ? . . 

cars. we can embody an activation on the ·backup •e by record,ins the f,u~n closure, its 
i, , .- -~,•, , -·.- <· 1• . ~ ··,1r.- O.!'r~. Lr, ;··f ·:--cJc .1<·: , . .., . :·' 

inputs and return link. Under this scheme. the recovery, systen, w()Uld need to only APPLY the 
· · ' ' - ~ , , ' : ; '· .{ f'.) 1. .·(} l. i- j ~;. ·'. ~ f i.: (,: i J' i • - , ' - ' 

closure to the argument list to construct the corrcspopding acti~ation being represented. An 
i • • .-·• , -~. r , , ' .:~~i;~ \.· .i; :.< -,.1;,: ~'.H ! ; · · , ,; · :-·1 • · .. : 

important advantage of this proposal over the checkpointing one is that no executing code is 

maintained on backup store. Because all data is immutable. the transfer operation of the data 

from m:.tm memory to backup slore can· p,occod• in ,ixmaltef wim • the·cAecution of any activations 
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which operate on this data. Mofeover. the aftlOllnt of information which needs tobe copied is 

also greatly reduced. since no data co:ated by instatctians willnn ·these. instl'U£tions are- preserved. 

Such data would be recovered :whcm the activation is reexecuted. 

A natural representation for a computation record in this ~heme is as a directed tree in 

which nodes represent activations and edges indicate caller/callee·re1a.tionships between pairs of 
1- • ' ~ ~ '-,,: ~ ' '·~ •'. • . ' 

activations. This tree is known as the compulalioir tree for· the computation. We illustrate this 

representation in Fig. 13. 

Name exp 

113 / 
/ \ 

\ I 
/ Comp,,tatlolt tiff I 

L. ...::!!!!a:lat a2 · _\ _ 

Fig11n I J: Rcpresentat.ion of a Compu~ Record 

\ 

The root of a computation record represents the initial acdvation con1tructed by the Translate 

function of the shell Every node in the computation tree is labeled with the uid of its 

corresponding activation. If (s.t) is a fl)ember of Ee. the sel of edges in a computation tree c, then 

activation t is instantiated from activatk>n s. Each computation has a unique computation tree. 

A node in a computation tree is called an acti~lion •riplar entry. An activation 

descriptor contains the necessary infofmation about an activation needed to restore the state of 

the activation. The representation of a computation record giycp above is simple qutccrtainly 

docs not help much to alleviate rel.-overy time fiu: transilil-)Ual data. Thisi..~ because computation 
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trees may become very large for long running computations. Reducing · the size of the 

computation tree would speed up the recovery ~; The· information in an activation 

descriptor entry in this schente contains the closure-and aJgUl'rlent list of that activation. During 

recovery, however, every activation represented by ~ activatipn .d,~tjptor entry in the backup 
·, . ,' ·.,' .. •'" 

state would be reexecuted. The time to reexeaite all these activation~ would result in an 
; : '. / .• :'_ ' : : ·:' " ~ • , : ' • ~ ' ' ' • < ' • 

unacceptably high recovery time. Oearly, what is needed is a mechanism. to record ~ults of . . - \ . - . ~ ', ~. ;~:){ ~-'. .. ;, i:. ,, ~ ' . . 

activations as well as their instantiations. Thus, when a result of an activation is known, it 
' • - . ; 1 <. ~ • '1 . • ' 

replaces that activation in the computation tree.· When this value is encountered by the recovery 
-~ .. . - ... 

procedures, it is sent directly to the destination addre.s, eliminating the need to reexecute any 

activation in the subtree rooted at the node containing the result. In this way, we can imagine 

the computation tree growing and shrinking in response w- the iastantiation and eompletion of 

function activations. This process is shown in Fig.14. 

' I 
' I / 

v 

./ 

/ 

Qruult oja2 u a 

/ 
/ 

SuhtrceJ roowd at al, aJ, afld a4 

figure 14: Dynamics of a C'ompulation Tree 
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When an activation is instantiated. a new descriptor efttty is plnced in the computation tree 

and an edge is added from ~e ~fer to this new 9}ff>'· )V,h~fh~ ~!Jlt c?f an ~tivatiqp becomes 

known, it replaces ~is noqe. U,l ~e. CP,mp~tati<>p U'~ i~ ~po~qffi* -~vatj.9:(l. •tiptor 

. entries are then removed. Th~~e ~ \w9feau.t~.,o~w,i[.~~~t,~1Jll~)tf~M>ical 

d_ata bac~up strategies found in conventipnaj -X~~.;,'I1Jf,}J~ ~ ~ lqF;~~n&1of.•te 

info_nnation in our schem~J~,9-~Re_Qd~~t tp~Y,Y,OA ~,-~hf.¥iEl¥r. ~ 1~e, h~ ~yql\Od in 

the last chapter, tYPical _back~p ~~i~ ~ ~-1~e~~.iJN;8i~li9 ~,d~~~e Jw~, the 

checkpoj!}tyt_JjS to,_~- ~ppt\ lb~ ~d, anp~}~ftid.W~~: ~,#lat~. the 

construction of the computation tree talc es advantage of the applicative programming model. the 

CORlpUtatiOft~ tree ·aut•il,e ~~• Whenevef tl Yesuft1tW 61t'\c\fta~n' tt>ed)tnt$' li\()~. In 8 

languagewhtth petmia'side'effect!f'alid~arlrifdrhott~F~rfatlii. .;~ ~ld hor·be able to 

manage (he backup 9ge ~tht'Cd~Off1Wtins ffmlJlet. 1 
• 'j i l ; 

It np~ re,mam,s ~. ~P~ e~~ h_Qr the,:m~~., ~l!"14.~~e~tia 
need to be J,llodijied to._S\Ji~rttl,le ~~~-R{,~~1~<1$. -:~~ e~.the 

structure of an activatio~ ~-~?Ptpr ~~Jp'.Jr~~~,~'r#l ffi1Jll•~~~f.~~; , ,~ . 

4.2 The Activation Descriptor Entry 
," ; . ~- . 

We,had meotio~e<l iJJ ~-.•~ ~tiQJl!p~.~-ac~~-~~~14gJ-»ain ~gh 

inform~tiQn S?.;tbat,,tpe.'.~coverr ~~µ~ ~~i(~~ ~:~ dMr. -=tiY~fl, .,,We 

.observed~ if the. functjQQ_,c~~ ~ ~;~y~,"~~•:~e 
_ recovery p~~u~ pee~ only ~ply,th~,cl~.~ -~ ~~i~~-th~~~.lin~ to 

•••• t• ,••• •c • • • 

restore the activapon ~-

The re<.'01'ery ~ in this proposal is'Strailthtft>hvard. ··, ~1f ~tlvat16tt d~riptor entries 

· containing the function dosttre. argument ~ akc{'~n{ Wnk '&k h6v~, the funcu~n 

' application take place in purallel: Whenever' an appfy 6t:,eratl6n lJ to ;l)er~kictitecf during the 

recovery phase, a check is made to see if the fortctitm1ft$' ~~~ri'tK~tantiated:. That is.= all 

APPLY instructions dutjng .th~ recQvery. pt}ase,,(ll;tq 11P. ~e .if; wi ~»~~-• ~ptq~ already 

. exists for the activation they ar~ t~ ini*nc. If oi;i_~ ~iSJA, "~ . .fi,•P,~~f;(Jv~b~, i~ ~e instrue\wn 

since the rcsu It of the appl i(;atipn_ is :,dNad.y known. If ru> li&icl;t;d~or ~,ists., we perform. lhe 
. . . ,. • ' ; •. -~ _;..,, - , l . } •• . ' ,.· . . . . , . 

application. Result values found on an activation descriptor entry are used to.prevenUnitiation 

of an activation. When a value is founu i_n ~u1_ Af?f,.i.kC•Y, be ~Jlt aircc~I)· .l,p thc,dcstination 
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address specified in its return Iink4• 

In a system in which errors requiring intervention of recovery procedures are assumed to 

be relatively infrequent, we may find the ec>st 6t evert maintaining function closures and 

argument records too expensive. As we explain below, ·the~Jhti6 ~ for nee.ding the closure 

of the activation on the backup store. fs if we w~lt, fu'·h~ve' alf activation descriptor entries 

· evaluated in paraHet. If we are witting: to · toteratk ·JonM~fr rec6vity tifue, we ~ signficantly 

reduce the amount of infbrmatiort which needs 11if'tk h~Jl c:,n ·the activinion entries by 

eliminating the need to hold even the fun:ction ttosure .<it at1ument recoM on' backup store. 

Instead of having all activa~ initiaf.¢ .. Jn p~ . we ~; )Jave the (X)mpuiation 

reexecuted from the initial ~tivatiop d~9ptorAn ~->~~~,tr~ wt\cn&VJf a new 

activation is about to be initia~ 1~~ ~~Q'. ~~-,~ ~~~"~ ~~ing 
activation descriptor entry for that activation (remember that there is a unique computation tree 

for every computation). -If that entry corttains'a ~It/ttieti; thatval~e'isused di.~y and the 
• f • • 

new activation is not initiated.'· If, on theother ftmd;'no ~tt ~ 1ts found in the descriptor. a 

new activation is constn:icttd 'and · proce$.littg p~ a'· ht>rtriat. No function closure or 

argument record needs to be maintained in this scheme ~se the computation is reeyal,µated 
·,<r:.? t·>;<'j; (JJ·, -~ ·:\:>~.:. ,. ... 

from its initial activation - no parallel invocation of activations within the computation takes 

place. Whtte the time to ~re a COlttputatiob ls: gMtet thaif tr fnnction closures were 

maintained in the backup· state, it is bounded bf the titnt the' sy~· woiittt have taken to have 

processed this comi,utation under nonnat cfrcu11tsfmia:s. · lf1bn'cdo~:.cfosu~ :and ·atgument list 

of activations were rrtaintamed, · then the recov~ry ·· syscetn ·ct>ukl ;~xp1oit ·more·· paralltlism · than 

what was available during the original evaluation of the compuuitfbrl predsely because all 

activation descriptor en9res in the a)IJ1putati99 ~~fd'.~11J4. ~ ~~l'l~ted -~rrent)y. It is 

important to k~p in mind, ,hqwev~f, that_ ~ven if ~is ex.µ-aJpfon,µ,Jl9n, is not :kq>t ~ the 

activation descriP,tors. the ~xecution of the CO'PJ).Utatiort W(?U~ ~ S,tiU ~Mi~ .w . ll\Uch 

concurrency as it would h,ve uo4er npnnat conaitiont. 

The infom1ation hcfd by an activation descriptor-entry must affow the recovery procedures 

to detem1ine if an actt\'ation needs to be initiated or· not . THete are two fomts of an acti'vation 

descriptor. The first fonn is for those activations ·whose results ·were· recbrded by the backup 

4wc arc assuming lh:it uid's of .icti\'alions arc pn:scrvcd· in 1.hc had.up sWlc and .ire used during the rccmcry phase 
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, , , facility. If an ADE for bll activation «oontaillS' a valiit'/~ 1hfs"vUhre ret,itSents the result of a. 

The second ftWm.· of,an';AJ!J£i is usetflvtten·1he;teiWHiPim dfti9iti& Has nut S,tt'~n' refut'ded 
. by dre ,l>aokvp tkility. c tit Yris aile;: ·~ ADE 'ctlfttais r~i ~'.}to; affaci1wati6rtS' thit\vere 

· •·· initiated ftam· a"befori the ralhlfii eee\lredJ t9'MHJ1~ti)';'tt #HI 1tk'1~iJa~' ~Rd that 

edges in the~tlltiofl ttet ~H!tl~~-~lpi~w~'ldN~· ! · 

uid 

of 
''.~ 

i~ ! ,; ,,;·_ti /,;_:·_>: -.1' - ~,,__,~·-- · ~"!" ~~-- 1 !tJcch . .-(:t:,.,i:' •.. LU-1:.;i,~JI Ld,,;s 1~).(': ::J<>U :.td.:j~~:,..'i < !i( 'tC;;f'.-~--

'; ,~~-~~t ~ ~,~(}~ ~~~~;.;~~f➔~L~~ gfb\hmrriPR;Jd<.,Hlff?t:!~r.~•t 

,~,;.~~~~.ts, .
the ~~~. ~'..).~~: ~~~~~·•i~~1.,

0k~rf bfflft1~!~.rt/~~JfJ!ich 
~h',~~~18-?~-~~~:•~~ · ~e~., ~~~~J~2 :'r~~!).~"£f~~o-fh:&offllJl{JPRd~,qy~f!~TIRtor 
· · ~iated with the·ca11~,~~~~~~.·:J~~ ffll'-lfu~~!'tfflP~l)~fR8~i,~ .f£Ji~;\9on 

being initiated. When an application instruction is encountered during recovery, the activation 

(··,~~illg ••~1&o 1&11i.dlttlWi~-cff1alvafiJe 1s~~resent in 

·,, , thi& AD6~ itan4Jt llllt~~~iitbr.n!be~\lfltd is 

. ~ ,usect u.,tocate.,'~.ti'i:f>r, ... .., •lb-.1t111•••rH, .. 1·••ifi1w w n'eeit11ttt·oJ"se1 
• .~ .cdil1>e'caoseue..,.'1dlldW · ,_'.~~nbt6-1ihe 
, · same •· •·•order~• -.blclli1tWy:-.e .... 1,i··wtediMif!J<~~H1i~ei,:;r~~ry 

. tfuac:ticm. applieation ,ii onindrWldl r•eafit6~-itl;f1Mttti''~' RBei~i811;6t·aiJven 
; : : «tncatiomwi1111otdllap ~'.\1A1a odila.ufiliil-M'Wdi a,iVM,~tfflte ~'ffot' ~t 

-;,!arif'tl priofl ~-~~t~ .. i:ffias.S tflif1KitbMt;~ftmtl~~• o:J/sl!J~ttif1tfle 

; :fu'nciioa :appHtada1uJpe,au,te1,,~i'ml.AM..¥l•WM1!Mkn(tt/MIR'W1tejW & :~tap 

., ,heap to prope,ty,~:.itdurin91the ~ p~o','.t ?'.ni:u'.Y n· ' , .. 
I • • , .' •• ; • • f- . ~ • 

Th~, ~he.me ~e'~~~:vej.~·v_~~,a~.ve:,. r~9\'~Itt }~!',ti~ii~~!Jfp1,1~,V ,~f ,b,~(~lfl?. :~~if_~y. 

·. ~UO~.li~~ ~~P,~~~ti~I\ i~lln~C~ .. ~y ,~~~i~j ,}1,.~~r,/rm~~i:~~P:};?!. ;~; .~~' ~J.>imPrJ~e 
· computati~n tree. ~~n tfle res~lt_of ~ ~~y.at~)1',.~~?;,it1~J>l.~~.,~,~, 1~es,;~~~t~fff'"YJPr 
· Lil.it activation on the backup stale. We do not ~ri~W":ia!1~~8"~t5f?.r~S)Ul,d, Fl~rcs,.of 
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activations. choosing instead to reexecute the co~tatian fll)l)l .the beginning, only avoiding 

reexecution of ~tivatioll$: whose results, are _.1r~cly}kt1PWP• While re@.v~ry time in this proposal 

. is greater than _the <>ne iq whip11 closures and ar&Jlll)AlJ ~,45 ~ . ~ed. dler:e is a 

su bstantia.l redµction in. the COrtlP..Utati~~ resqu~ ~~, ~ tm; ~up facility. As we have 

mentioned previoU$ly. efficient,Jp,1plemen&i91l of~ .... ~U ~-,~ of aome of 

the base language instructions. A fonnal, definition_~f-~~~Jtven io Section 4.5. 

4.3 Early Comple.tion Structures 

The preceeding sections have presented,,d\o g~n~~-~~er_o~- and rationale upon which 

computation records can be organized. While sufficient for; most· cases, there are certain 
. . 1-.. ·• :~ ;_e;i:; r _,; 

1 

progr.am structures for .which our design ts still-inadequate; 'Fhe--first ·type of program structure 

not properly addressed in our presentation is. the iilif/~pldi~~ structure. ·-~Y i~lf,_ an early 
- "• ,~~~,--,•-,--w,_.,.._ . ..., ' • "~ ••~- .,..,. .. •~ • • 

completion structure does not add useful information to the backup state since it only indi~tes 
· - . - ,_ ,. ·"'"''~- • .:i~·- ,,,;-:.:,,,~-, -~ r;~ ··;•:,}-, • .. -,,_-.·. ,:: .,'} 

that' an activation bas heel\ initiated "to produce tlledesire<I valui" Copying an early completion 
·. . . .· ,·:··-.. :, :f ·.· ;:r~-J-ri:,.i--,~-,_- ··_,'{t l*, <--.<1·;· 0,.·,: .--·· ·: 1

~~· 

structure<>nto the backup'stoi'e would not alfow the recovery system to'restore the proper state 

uriless the,"actiwtion tespohslble
1

for'pfuautin~';tlle~~~e ~fiidi''1fo 1
iep~·th~i-~cni~ is also 

copied. This1Sobvtouslfrtofades1tctbtesitu\adc,n iJ'have'tri!~fw1€6:' .) -, . . : . ,_ -

For our pu~!,a &imp~ {1'mt~ .~~-,..._ ~• to avoid- copJing early 

,compl~~n ~~~ts until .U~-~~~l~ --e • s\Vbtn a 

.. -~wre w~icb ~eaflr,cpmpJ4licHJ;~is"'1 •---CNUO<biabqn•m,;.dutsa,~elds 

are_ f~l~ .witlt, ~ special. flaf~~~-~ .._:_-ia;to;;bc·i:ventuml, mpied. 

When a SET instnl~:: e,oa>uQtMS .SUJ:h · IJu~ iti•ec:u ... tGlACIOr w,ltedar ,anJ1 other• arty 
t . .,,· . '• ' ;~ - . . - ' - ' ' 

: wmpletion el~menta ex~stj.~1.~~t if.fQ,1~ ........ 1lll'fomaedl,otherwise.·the 

str4ctu~e is (X)l)i~_-00tp_.~:~¥1>~$1't,. ·'IM 1M,£,--.:,is;,tdrmf•111DC1",dlis,1tl!UCIIH'e>will 

. initially ~ve,icsvah,ef~~.~• a~tur,e_N11i~~1Yllhd. •MiOl What all fields . . \ ,_ ' - ' - . . .. ' ' 

.. in Jhe .~re are kJJ~. ~~~.-.nee-.. --~-~~••tothe'illty,:clefined 
structure. If the recovery routines CllCOijAWr~ ~·•it~-a v.alue-~ it is trcated,as 

not being defined and is ignored during the reexecution process. Th_c structure containing the 

early completion clement being set may be 'a'co~tpoocnt'Jr ~:.l~rgei si.ruci~re which ~ needs to 
• • ~ , " J . ' • : ~ :,~) h JC I • ' ) : : ' 

be copfed onto the backup store. l'fthis structure becomes-rully· defined as a result of executing 

this in~truccion. then it too will 'get copied onto the b~k~p '~J~~- . We· ill
1

u~ratc. the effect of the 

Sf.T operator on the b.ickup store in Fig. 16. 
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S isfulfy d,:/lnod by SET operations aJd.~ 1rareferrttl to ~'IP Slort. 
- • ' : ' • ~ ; :, J ' - ' ' 

u . u' u u' 

Fig11n 16: The Effect of the SET Ope•r on BK.kllP. S~ 

4.4 Further Enhancements 

There are two other program structures whose bc=hav~r ~pgt be effic_ientl)' captured by 
, " .. (' _f';: ,;-, _. _' ,· ,;- .~:-.:, :~--· t~;: 1_'. ,[ (.l' l 1 ~ ,,, ', - .;'. . •· .;; 

the backup facility by just modifying the semantics of the APPLY and RETURN operators. The 

fii,t is the tail recur.s1Nproanmutxpmsiech1Sing 11MTM~ ~r .. :1Jhe'secoftct'c1ass of 

,programs notbandJed by ourspean.~ in~-Olfl>~ of.Jirtallrs implemented 

using the SETSUSP and, SflE.AM'rAJL instJUttions.: ·1te111 ; ..... ~-of pqran,s•use· Slk!Cfa1 

._function.application and sipaltin1 t,peratilDls whim Mqdire~illlcated ,a1gorMuns than 

those presented above.· .latke nax.t twocSUbleotions vre1dilcutstfle'w1ttw:~up:~~ shooldlte 

8Ulfflented tQ. handle tail JeCUndve" actnations ~"··••F-~CMlilittion- ·of •ream 
structures. 
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4.4.1 Tail Recursion 

Recall that tail recursion is used to implement iteration in the base language. The key 

feature of tail recursive activations is that they need 11ot persist until the recursive call completes 

because the return link is provided as the third operand to the TAILAPPLY instruction. In our 

current design of the backup system, if tlte TAILAPPLY operator was treated as being identical to 

the APPLY instruction. then every tail-recursive activation WQUJ4. cause a new activation 

descriptor entty to be ~nstructed. The structure of' the ~~d cornp11tation tree would 
' 

contain a long chain of ADEs with only the last ADE in thei chtin having the relevant result 
, ' __ ,P, .••• ; • " " 

value. The backup system can optimize the construction of Aj.DEs when tail recursion is 

involved by reusing the same ADE for tail recursive calls instead of building new ones for each 

new tail recursive application. An important observation c;oncetning tail recursion ii, that tail 

recursive activations differ from each other only .in they" argument records. All activations 

initiated from a tail recursive call use the same ~&}osure and return link. Each activation 

serves only to construct a new argument record for the sua:oeding one to use. In fact. because 

activations in which the TAILAPPLY operator executes·tto·not return a result value, there is no 

RETURN instruction which is executed. It should be clear that" this 'behaviour is not well 

supported by our backup algorithms which very much depend on results of activations being 

recorded on backup store in order to help reduce recovery tim~.~v9l;mlei com~d& The 

reason for this incompatability is the fact that no tail-recursive activation except the last returns a 
, I _; (' • •.-· •. • :,•;";'~\: :, ' • ,•· o• 

result. making any intermediate tail recursive activation descriptor entries essentially uselea 
' ' : t ,, "'; \ 

We introduce a new type of activation descriptor ibri tail· recursive, activations which 

includes the argument recocd of the activation. W..a fuae&i:111 is instantiated by an APPLY 

insirucuon .. an activation descri~ ·• coastructed fof!i& with•tnte"""1J.- · If t:lla·function was tail 

recursiv._ then during. the evalllJlion ,of this futtcti0n·a:·TAlt.AIPl)Y iinstrumon rnay execute. 

Execution of this .instrucwo. while. cavsing a new actiwtiea ta,be,added to the set of activations 

.in the ~~ doe& aot ~-•new actiYation.descriptOr, toae constnacted as well. ·Instead, 

we change the activation descriptor of the current activation to type ta.ilapply. The argument 

record passed as the second operand LO the TAILAPPLY instruction is recorded in this activation 

descriptor. In addition. all edges emanating from this ADE are removed. The old state of the 

activation descriptor is thus replaced to reflect the new activation. Other function applications 

that take place in the activation arc recorded in the ta.ilappl1J ADE as was done in the apply 

ADE. Suhscqucnt tail recursive calls in this activation will cause the same elTcct as took place 
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initially:_the old argument record is replaced with &heargumeat,Fee8ffl ofthenewaetivation, and 

the edges emanating from the ADE are removed. 

The inclusion of the argument record in the descriptor allows the recovery system to avoid 

reexecution of aH the tail recursive calls leading up to lfle ·one ,represented on backup store. 

Since th!) closure and retum link -'1"e the same, keeping th~ ~~,ecord in the -ADE make:$ it 
'. ,_J -

unnecessary to reexecute .any of the prior tail recursive activations originally executed from the 

initial APPLY. The rep~sentation of tail recursive activations we have chosen-lies two beneficial 

aspects. First, the depth oftbe oomputation tree is n~ fat e~ery-tail recursiv~ <=all since 
':· ·- ·', . . ~-_.!,·..:1~:-. . ,~: ~-:-~---

the niw 'ADE can replace ~e ADE of the calling ~_tiyadQfit This is because. tail iecursive 

activations send their result directly to the address specified in ~eir third operand; the calling 
_;._,,:::::-1,,:''''~~.--•,; ""1\(\,"'"' • '-:. 

activation does not receive the ~It of the callee. Secondly, by storing the argument record on 
··_,, .,t·•\ ,. 

backup store, reexecution can begin by applying the function to this argument record and the 

returrt link provided by the APPLY instruction which initially instantiated this function. 

lit Fig. 17, we show some steps in the transfonnation of a computation tree which 

embodies the evaluation of the following function to illustrate the process described above: 

Function Example (f: Function, n : Integer returns lnte,u) 

Function Tailexample(m,n : Integer; f :Function returns Integer) 
If m> n · ., -- · ·- · · · 

. t"am 
else Tailemm,u(/,(111). n) 

endfun 

Tatlexample(l,nJJ 
elldftta 

4.4.2 Stream Structures 

Our .basic approadt to,recording th~ Pf081'.CJS of computatiens is-1190 not welfsuited for 
! "!' 

expressing the behaviour of computatioqs involving qte production of stream structures. Recall 

from Chapter Two that streams are produced by tail n.--cursivc functions in a demand driven 

fashion. The unique instruction in a stream producer wh~,..,ID,IH~~ ;the, \~rcvaJu~\ioP of a 

strl!a!:Jl. is the suspension 9~rator. The.backup and reco~..algorithms.as curr.emly defme4 are 

not capable of modeling the kind of program behaviour exhibited by stream producers for 

reasons discussed below. 
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Steps in the computation ofTailExample, with initial argwnents: m = 1 n = 1 and f(x) = x + 1. 

Step 1 Step2 

u appt.1 
undef 

II 

\ 
y 

empty ul appt.y. undef 

qfter Tailtxampl~ Instantiated. 

qftu /IMOtltfared. 

COffl/llllOlk»I rrw roow t11.f1 ADE. 

Step 3 Slep4 

' 

u af'1'1,y undef a~y 
undef 

u 

\ '. 

! 

ul empty tau.apply 
empty 

Tail Rl!CUl'SIW! C(l// ffll.tU-ADE. FIMI Wlhlt of Fru,etioll di/ Is 2. · 

Figure 17: Handling Tail Recursion 
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4.4.2.1 Rationale 
,. . . 

To see why our current method is insufficient. CC>n$hler the st~ture of the oomputation 

tre<: produced by the backup.algorithmtas currently defined}~stream producing function. 

Since such a function is tail recursive. its associateft · aodvatien :would be represented by a 

'4ilappl~ ADE. The.:Jetum link in a stream,produc:er is used torronnect tOgether suc:cc:uive 

elements in a stream. When. a new &tivat:ion of a .-.m plVdbter· is initiated, the ~tum link 

which is pas.wd. to this new actiYatioaiis:tbe uid of the-last----- ~leMffll Thus.when the new 

. stream element is produc~ the fiekl previously GOncainlril t1te ,mspensi&it ift· the la.1t stream 

element would now refermce this new element .'ftle De\¥ elaertt.;ift:tum;-woul<f eitber be a 

record whose second field is a suspension to the ~ .ins1ftlction in the current 

activation or the value nuU denoting the empty stream. 

Now. consider the behaviour of the computation ·eree. if die sntEAMTAIL instruction were 

to be treated -as being idenlil:a1 to.the TAJLAPPL"Y o,ntQr; tJlder this aisumpdon~ our backup 

algorithm would pa,eserve the argument· reaxd for· eaob ;.uwititm of the streatn · producer 

function initiau:d. in aca>tdance with the descripdan of td ~ gWen Mx)ve. Notice ·that 

because a stream dvation only executes a RE'l1JRN. wMft·· no" DWNt tall recursive calls are 

necessary, the only n:sult value that woukl:he ,resem,d.ot tbe,bacltup,'store would be the last 

stream element produced. Intermediate elements which 8(C a:>nstructed usins the SET and 
. ' , • : ~.' ; \ ,,·'~ -!~ r C '-. ~; , ~ '; • 

SETSUSP operators would not be maintained on backup store. Mor~ver, recording only the 
• • ! • · , · ' . L." :·, •., ' '. \ , :' ; , •· -~ ' , ' u• • 

argument record of the tail recursive activation for a stream producer would not be ~fficient to 
' -:· ' ' :~- \_ ·~- ~ ':;~ ····>'.-:~::'·:• .~ t· ':", ,, ... ~ ._, ... -. 

restore the rest of the stream because the return link for each activation is .different Recall from 
: ; .• - ~ -:.~ 1: ; : ~- . ; ,;r; : (~ ;, ) ..... ': · · :.__ _, · ··: · · · 

Chapter two that the return link .p&ed to an activation Qf a .. ~-producer is ~ly the 
, . ' . . . ' ~ . '. : . . :-:_ ~ -- !. .:'" '_}f: . ' - . ; ' [ 

second field of the record represen~ng the. last stream e~m"t ~,bl, ~is producer. 'nlus. 
the return link of each call to the stream producer 'would ·~ diff~l'fflt. . . . . 

This analysis indicates that the current design of the backup and recovery algorithms suffer 
.. . . . ' \ .• ,. '' ~ . , . : ' : ' .. :--·: ' '\ f;' :), 't.\~ -<;\ '.. _:. ,c' ~ .. 

from two drawbacks with respect to the handling of ~ms. First, bcquse tail recursive 
', • ' • '~ ' • ~. ' - "'I. ~ • • ' .... , ' • • 

activations associated with a stream producer differ from each othc:r in more than just their 
~: '. .. ' ' - - .. ; . . .'-~ \ .- .• ' :·- ' . ! . , . 

argument records. we need to maintain more infonnation about \Jle activation on backup store. 

The extra infonnation ~hich ~eeds to be ~rded' must ~~i~~r,,~cl~d~ ~e .new ~t~ 
element produced. The second drawback is the, i~~bility of ,.f!l~. back,up, algorithms to 

incrementally construct a data structure on the backup sto~ .. • When· a stream element is created. 
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it does not define the entire stream but represents only one element in the stream. Because 

streams are created in a demand driven manner. whenever anew. stream element is created. there 

is also an activation aB>Ciated with it whose Slate is ,relevant to the backup &-ystem. The 

suspension signals an instruction in this activation to initiate . pro<iuetion of die next stream 

elemenL Of most importance to the backup system is- the aJiument record held by the 

STREAMT AIL instruction which instandates the next sweam activation. The backup system must 

record this infonnation if it is to properly restore the s&atei of:the s,stem. If the arawruutt record 

is not copied. then there would be no way for the recmi.er}' system to generate any further stream 

elements beyond that which has been copied -onto the t.ctup store. We discuss the 

ramifications of this requirement below. 

The instruction responsible for setting the suspension in the stream is the SETSUSP 

instruction. The argument to SETSUSP is the record. representing· the· new· stream element. We 

see that one means of noting the production of. new sueam ~. drerefbre. is to alter the 

behaviour of the SETSUSP instnlction. The SEl'SUSP instructiotl, in , addition to setting a 

suspension in the new stream element, also initiales the transfer of this streaa element onto the 

backup store. Of course. the vah.te of the stream may:be an early completion structure in which 

case it will be the responsibility of the S£1' instruction· to pertbtm ,the ;actual transfer. 

The instruction responsible for initiating a new activation of the stream producer is the 
. . 

STREAMTAIL instruction. The main operand to this instruction of interest to us is the argument 

record that is used to initiate the new activation.· ·Recording the argument record serves a 

different purpose from its use in normal tail ~cursive activations. F;r streams. recordblg the 
. ' ' 

argument record of the STREAMTAIL operator is essential to restoring the state of the stream - ;;. " 

. producer activation to allow further generation of stream elements after th~ the recovery 

procedures complete. 

The advantage in altering the behaviour of the SETSUSP instruction to initiate the copying 

of the stream element instead of the STREAMTAIL instruction is that th.e transfer of the stream 

clement can take place before a demand is made for the next element If we choose to record the 
. ' 

creation of stream elements by making the STREAMTAIL instructi9n ~PY its return link structure, 

we would need to wait for the next demand to be made (sin~e tha~ 
1

it is wh~n the STREAMTAIL 

instmction fl res) before the copy operation of the current stream element can be started. 
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Because- stream elements are produced tn ·a demarHf cttfven fiisliiori, if the evaluation of a 

bind expression yields a stream, the value field in <name, value> pair bound in the backup 

environment will contain a single element initially,' namely the first element in the stream. As 

more elements of the stream are produced, they are afded §iitg the bac~p imag~ and are 
- , . ,.-c< - - '"',l -·-

CORsidcred as part of the stream image in the baelup envialenmeat. • 

4.4.2.2 lmplementatioa 

To monitor a stream producer, we introduce ~ atew type of activation descriptor called a 

stream ADE. A strallft ADE is -stn1Jlar to a ~ descriptor in that both maintain 

information about a function activation other than ~lfll its return value. The stream ADE, 

however, in addition to containing the argument ¥ for the next stream activation to be 

initiated, also contains the stream element result of its associated stream producer activation. 

These stream.elements are linked together on the backup ~-i)ming the reqoveryprocea. the 
. ( .... ,, ., i {~ ' ,_, 

backup stream image is first restored. The reroveJlY sy~ then ~cts: a steleton of the 
' , . ----..l. I 

activation of the stream producer. 1biS·steteton1s used. to1lll1dlrllffuduction orthe. next stream 

element when the next demand is made. The only instruction that can be enabled in this 

ac.tivation . .is- the St'REAMTAIL operator whose argument record is taken from the backup store 

and whose return link is the addtess'ot the last stream element. The suspension field in this 

element is set to the address of the STREAMTAIL instruction. Toe reason for storing the 

argument~ is.to set,-up.,-the skeleton' acti~aifod•tcfsu~'the'demand driven execution 

mechanism-for streams. When the recovery procedure a>mpletes. a subset of the stream image 

recorded on backup_ store will be restored. Let <ii ~·"2~::.:X·;i,1,t tHi ~, eleinents ~riied on 
. ' - - -,. " ' ,., . - " -- '" .,_!!,__ _________ .,, ...... _.. .. .. ,, ...... -- -" ........... --· -

backup store. Then the recovery system restores the first J elemen~ / .s n,. where x1 is, the 

greatest element for wtriclftJre aJIUrl't~rf r~<:t.Ytcfl\~ wHt&ti'itfte1 ff~kf~ ef~m~t has 
been preserved. A tiletoN 'ktt+atbn 1S' coMt~ m'Yteii lYehJ~tji; r~l~trleri{~keti "the 
demand tbr ifis made~' {Durfftg .. ·dle con~o« cirttie ~i,t11,w.iil~ '..«ate~ filsum~rit reco~ 
may 1,e refflt'nect ftt)m.the~m -wtten rrtan ~i-~ \kltflil~1 wi nofbc(n~ 

Wilen., th~ sus~n~ fi~ld. i!J. ~. e_ .. ,-.. .. , ctwn~·:9.P r~,~I.\Pi1i~. ~ ~d '1\lll98 
, ' - ' ' .,, 

recovery. the STREAMTAIL instruction i°': tbc:. ,,,clf?I! ~~~1'8'H~i~ ~~~• tllc,qext 

activation of the producer to produce thej+ I th element We illustrate this p~ in Fig. 18. _ 

To summarize~ unlike all the other structures we have examined. there arc /K'o operators 
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Stream image on the backup h«1p. 

va11 vain 
arg 1 • • l1 

undtf 

Ul:. 
vall vain 

F 11 the c/0111n of the ,r,mm p~er /;11tetlt»L . 

Flflll't 18: Reconstruction ofa ~.Strucyire 

which are responsible fo~ ~~~in,~ ~~p~J~,-~~. Th•,S~SP QPe@f,Qr is 

responsible for :iniuaQIJ8 ~ ~~ Q(tJ1~~9~ ,~~~ 1ffll9i"90 9':"=klJQ~ •. TIie latk 

field qfthe st~ ele~~"')1p~~,~kl!P.,i~Wl&'!;~,\~~.8'~~~!R~....-r.AJLAP1,ratp1:,w)l,en 

it executes. The S~A:~ ~ .~ 41f>r~~ ~~lff.llMh• ~~to 

the backup store. The backup system should treat the arg~~.;~: to Jhe 

STREAMTAlL instruction in an activation and the stream element created within that activation 

~'.ooflcctiveiy to ensure U1at a oortcct Strcurif'.im'age;:isj~&l\lba'. 1Ttle' iniptem~ntadon of this 

<value, argumenr> rccotcl-'is d~d fn the ntit sectidh.'' '; 

In the next section. we fom1ali1e the backup algorithms outlined informally above. Our 
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fonnal model is an extension of the one given in Chapter twa'a&K\ mainly in,olves ttlteting the 

definitions of those base language instructions responsible for the c~eation and updatit;l8 of 

AD Es on the backup store. 

4.S A Formal Model of Backup and Recovery 

Beyond the need.fur modifiying the oohaviour of some of the base Iansuage instructions, a 
'. . .i. ; ;'· '. •.c'" .: .:.:--:. •• J ' • ' 

fonnal model of VIM augmented with the backup and recovery algorithms must also have some 
t"'~ ·.:< ,.:.,;1::-~--,:,;. ·-· - / . ;-_:, ~ 

concept of failure. A failure should be that special state which causes the system to invoke the 

recovery procedures. The modified operation of the base 18§&\Jlltt__,.ctbns dUTerlfttHn their 

counterparts in Chapter two in that the~r execu~o~.~~~in;' ~1~~~ ~:~ weU ~ in a 
new VIM state being constructed. 

. ' ' 

In the following presentation, we ~all be using_~ ~ 1n~<>1,1: as in Qla,p~~ tw9:,_ 
' ' • • • •• ' , __ , ,__ ~ ~ • 1 

4.5.1 The Backup State 

Fonnally, the VIM system is now treated as a four-tuple: 

VIM =. <Shell,/nterp,Backu~tate,ViniStite> ;here. 
VbnState = <Act X H,?'.(~ X Ea,>.U,{f~ .• 

BacmqtState::: <Loa )(·8H.X'IIE9,): 

The Act.H,D.S.aIJd. En, :~~ent.,,i~ th~y~1~,~~Jhd,r~flpj~, i~.model 

.. _Ml. ~~ti~ that.~ Y~fi !)n, i¥i?i~ .. ~ ~_yAr,lf~,-, ~ 69ffl~f§.-l&ft•W 1Ml;• 
contains the special value, failed. A failure in the systan is modeled by having the V~tt 

take on the value fAiwl All info~atio~ ~~;~~ !~,re,~:re~~f~"¥~•_\s.:,~:•.if~e.r'f!+S'tate 
has the f ail.et.i value. The domain Back~tate is de tined as a three·tupie where the first 

component in the tuple, Loa represents the command bJt'Ufiilitblatite.'&he//cbhtttfmi~. the 

second component. BHeap. denotes the set ~~;,~~,..-oRi~~~, b;lckup p~ures. 
and the third component. REnv contains all <name. Yalue> bindings preserved by the backup 

utility. These values constitute the quiescent data in the systim: ~i~~~1n~uatr6n for BEnv 

is the same as that for lhe environment component in the VIM state, nan1ely., -, 

5 ...... ';· . . -
· Rl'Cilll that mkllile l'ommands arc those comm,mds whose results have either not been producl.'d or have not been 

1.:opi1.:J 01110 the ~ladup Slorc. · 
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BEnv = Name -(UH U Scalar) 

The command log, as was described in Chapter three, is used to hold the record of all currently 
', 

volatile Shell commands input to the system. By safely recording these commands, we are 

guaranteed of being able to restore the correct,syst~m 5'4\te._'f\le~,is,,,~tu,&?~e. coqsistipg of 
• ' ' •• ~. , - ~., s - ~ .. " ' • 

a function mapping from natural numbers to log entries and a size q;>mponent indicatipg the size 
' : ' "' ·• ' : I ; - ' • . . , C ' ' ' ~ 

of the log. New log entries are appended to the end of the log. 

Log = <N - LogEntry> X N 

LogEntry = <Com■and X U.> 
U8 = the set ofuid•s used for computation records. · 

As new Shell commands are input to the system, the text of the command is copied by the 

backup procedures onto the I~ This'iext ~~ds: to the c~~nd-com~nent of the 

Logentry. The second component in a log entry is a reference to the <:qffi&,>PfApPp ~~ted 

with this computation. This computation tree will reside on the backup heap. 
! ~ ·~i;: ;; .--,•~-

Every element on the backup heap, BH~~-}~~~-ffl~~pJ<.L,~ To,ere ~-,~e ~ of 

elements on the heap: structures which are nonnal VIM structures discussed previously, 

activation descriptor entries. and stream . ooordinatbr' ~ritJ l diat": are used to' package 

information about a stream activation. We di~~oft-~ ~«.m~MOJt,ecord in 

greater detail when presenting the operation of the suspension operator later in this chapter. 

Every ADE ofrthe backup hap' will~eithef Hie tefeieHce,r,W~~ 1iliieL~iJE in" ilie' coinp~tation 

tree or will bt teretenced from a command togenttyi tr it;is iit'i'trir&l ADE in the ~puJiion 

tree. 

BHeap = (UH u u,> - (ST u Ade u S~•~ec) 

StreamRec =, (VaJ x '.Al& :X I.JIik> 

-Ade = <U i,. X AdcEntry X AdeTypc X Result> 

Val. Arg = UH U Scalar U undef 

Link = U8 U undef 

AdeEntry = (N - U8 U empttJ 

d '-
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AdeType = {apply,tailappl~. stream, ualue} 

Result= (UH U ScalarU unde/J) 

73 

An activation descriptor entry is a structure of four components. The first component is 

the uid of the activation being represented. As we show bebw;tllis field is ysed to idehtify the 

activation descriptor so that the result of the activation can be properly forwarded to the ADE 

when it becomes known. 'Fhe ~ compGnent{ tJte• AdiEnt)y,' is iJ1Atnetion mapping from 

natural numbers to backu, uick. . If there am no entries 1# tl\e' llilt!ntry, this ex>mpontnt has 

value sm.pty. The domain ,of the .MeEn1,:,, l\mcden is tlleMI« MHnsttuctiord1umbers in the 

corresponding activation which are either APPLY, tAII.JcflPl:T,;~STR1?AMTML1>PCl'ltions. Toe 

range denotes the uid'sofdle ADCs intheBH-,oorrespeildifli t&theseacdvatkms. "Fhus, if/ 

was the instruction number in some activation a correspondins tobatt APPLY instruction~ then 

AdeEntry{j) would be the uid of the ADE associated with the activation created by this APPLY 

instruction. Because the computation tree i$ pruned whenever ~, 're"sulf of· an activation is 

reoordect activation descriptor entries, will ha-yij'thefr<~.,,,iftetd·tet to' the vatue empty 

indicating that there at1 no subordinate A.DEs of tllW'\eti._b •d' that the result of this 

activatiOll has already been· ~ded. The third CJOfnpt,ftMtt :in~ ADE boritidns the type of the 

descriptor. There are at Jeast·two types of :A.Dtf1'; • ..._~,~~dn• acttvatirins for 

which a result is not yet kno'Yn; ~d IICll.ue AD£'~.~~~.~~~.~~,,,~~ oftpe.activation. In 
' • , • < , ', • 1' °t ' ,; T • e • I ~•• .• , ,/ , ~· • • ~ _., 

addition to these two types of d~ior.,. tlte~. 'fC~ .. ~ ff>-~' ~PtqJ.'$_ for ~ ~mve 

activations and stream producers which.we ~~J~.tee~~~9~,. The.t;oycth.t,ield 

represents the result of the activation. It can either be a ~. Qr, a uid, »-hicb. refe~ces. the 
'il:.-~1'":..1~~· •. ; ,y ,': ·- ,-• -· ., "'' 

structure on the backup heap.. All stru~tures. arJ. ~late.d.widl...only one uid Thus. the uid's 

used to reference structures on the backup heap •·.the ·IIIM;a, dkMe- 1used tb'teference 

structures on the VIM heap. We shall use dot notation ~ .. N~~i: ~ ~~~,Pf an. activation 

descriptor. 

When an ADE is initially constructed. there wiH 1be'11&·value to,pJat"C'in its result field. 

Thus. this component is initially set to undef When a ·~1(Va1ue is subscquerlly_produced. it 

will replace the undefined element 
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4.5.2 Early Completion 

Early completion structures are represented in MR as follows: 

ECQ = ~(ECE) 

ECE = <U8 X N> U {NClt} 

ba(;lt is a special flaa which i1'(ijcata that this early '*-1\pleuon stmcwre is part of a structure 

which needs to be placed on the backup heap .. 'fhb flag .erp1-ced in the queue by the Copy 

function. We present ~ definition of this fu4euon below.· Wboa. the: SET opcra10r replaces an 

early compJetion struc~e contiaining this flag wJth a ·valut. lt will check if the structure 

containing this field can ht copied by detelll)iniog if fJlere •· any more early oompletion 

-elements in the structure. 

4.5.3 Auxiliary Functions 

As was the case lf(ith th-= heap in •Ml. we have .BMO, auiliary 'functions defined on the 

backup heap. AddBHeap an4 R.tmodH,ap, w~. :a,:14 ..ad.· temove, an element from the 

backup heap respectb:ely. Tbe:~ns are omiu,rd h•,••• rtader ma, simply substitute 

BHeap for Hin the definiticngi.v.te ff.>r AddH~~d·-R~.ff-,in Chapter two. 

There are also two functions. defined on the oommand lo& AddLog and RemoveLog. 

AddLog adds a new tog entry to the end of the log an<f Rimovelog entry removes a defined entry 
, ·-, - .. ,~ - . l .-_;.,,, , 

on the log. In addition, we also define two functions over At.kEntries to replace and remove 

elements from a given AdeEntry. 

Adi/Log-. Lea X IA&fMrf ..., Loa 

Function AddLog( log,logentry) 

let <LogVal, size> = Log 
LogVal'(m) = LosvdnJHI m ;e size+l, · 

= Logenlry if m = size + 1. 
size+ I 

In 
<LogVa/', size+ l> 

endlct 
endfun 

' 
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Removelo,. Loa x N ...... Los 

Function Removelog (log, n) 

let Log Ya/, size = Log 
I:.o,-Vaf,llft;;;: ~m)rtf:m• ,r 

= u,yll/11 r,:, .== n 
in 

<LogVar, s1:o 
endlet 

endfun 

NewA.deEntry. AdeEntry X U A X N - AdeEntrJ 

Function NewA.deEntf')(_A.deEntry,u, n) 

let AdeEntry'(m) = AdeEntf')(_m) If m • .n 
= u lf1'1 ~ ·,t '' ' - - ' 

In 
AdeEntry· 

endlet 
endfun 

RA.deEntry. AdeEntry X N - AdeEntry 

Function RA.deEntf')(_A.deEntry,n) 1 
- :,, -

let AdeEntry·(m) = A«Y:~m) If m·tt: ii -, · 
d ~ '4::,• -; . , .. 

In -.. 

AdeEntry· 
endlet 

endfun 

4.S.3.1 The Copy Opentloa 

1S 

Before describing the CQpy~opetadbn., 'M,·llll\lM ....,_ llfeiibstract representation of a 

structure on the VIM heai,?fitfh~~ 1~ -~~ti&\th~~'>9JA,jn which every node is 

labeled with a unique identifier. Nodes on the heap correspond to structures in our s)IStem. This 
,\ ' ' 

representation allows for structures to be components of other structur~~ ~,. an ARRAY of 
,,, (· . - ' 

RECORDS. In our discussion. whenever we refer to a VIM structure, we also inclMllMJis to mean 

all of the component structures which this stnacturc references unless we eit\lk:tify state 
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otherwise. Thus, when a VIM structure is to be copied to the backup heap, it is also necessary 

that all component structures be transferred as well 

In order to preserve information found on the VIM state .. it.Js necessary to have a function 

which can transfer data from the heap and environment~ of the VimState to their 

respective counterparts in the BackupState. This Copy ftinctloit is given below: 

Copy: (UH U Scalar) X H X BHeap - H X BHeap 

Function Copy ( Val,H,BHeap) 

let NewH, NewBH = 
if Val E Scalan 

then H,BHeap 
else let 

in 
NewH. 
NewBH 

endlet 
cndrun 

RefStruct = {u I 3 m EN, RE R~nl.s.L 
H(Va/) E Rec A H(Val)(m) = u} 

u1,l½,···•uk = elements of Ref'Struct 
ECStruct = {u € UHi H(u) E: ECQ A SteA,Yal) = u} 

NewH', NewBH' = 

In 

if ECStruct = {} 
then if Re/Struct ;11 {} 

th.en Cop.>(u1, 
(Copy("2, ... 

( Copy (uJ, HJJHfllP)_) 
else H,BHeap 

emlif 

else AddBack(H, ECStruct), BHeap 
endif 

NewH', 
if ECStruct = {} 

ti.- AddllHetl/1..NewBH~. k'1ll.H(Val:,) 
else Add/JHeap(BHeap.~I. ({notco~l)) 

endlet ,, · 
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The Copy function talces as input the uid of the structure,to be copied and first detennines 

if there are any early completion elements in the ~ructure. If there are, the structure is not 

copied; instead, those fields which are early compl_et(qn Q\lq&le$ are.,.gmented with the special 

flag back. The function, AddBack, talces as argu.ments-the' ~- heap and the set of uid's 

which reference early completion elements in the $tAICture. It ;t11rns a new heap in which the 
• ,r i>-,; , ,, 

flag, back, has been added to each of these4'aflyQ'.)fflp)etioh llructures. Detennining if there are 

any early· completion elements in . the structute ~~•~ that all component structures be 

examined to see if they referwe any -sudl eleni.-; Bte function Step takes as input the uid of 

the top level structure and returns . the set of all uid's referenced from any substructure 

referenced from it that is ~~ with al) early ~pletion structure on the heap. 

If there are no early completion element$ m, the structure, then it is transferred to the 

backup heap. Since a structure tnay reference many substructures. the Copy function copies rill 

substructures referenced from tile ~tllR by .i:equsively calling itself. A structure if fully 

copied only when· it and-tCII substruc;tuNS it references have been placed on the backup heap. 
' 

While the Copy function is easily , expressed {Q -<>ur abstract model, it is significantly more 

complex in the actual implemeaaatioll~ We addrm the implementation problems in the next 

chapter. 

4.5.4 1be Shell 

The command log contains the te~t of the sbcU comand input and the name to which the 

result of evaluating this command, mouUM,e: botlrul: This information is used by the recovery 
" 

system which reinterprets the command text The ~p~tion record mociated with the log 

entry is used to avoid unneccesarily reexecuting operations .wtt.e results have already been 

recorded. Maintaining this information requires modifying the ope~tl'6n of the shelL The shell . .-': 

must now. in addition to the stream of shell commands and curre._t.J<W1a-.alsolake as input 

the current BackupState. It returns a new VimS~te resultjng { frQtri 'ttt~ · evaluation of these 

commands and a new BackupState which COl\tai'1$,a Q~--,kl& ;fl.~ ~ ev;~ command input 

Shell: Session x VimState x BackupState -+ VbnState x BackupState 

Function Shell (Session. VimState. BackupState) 

let <Acl. II. EIS. Env> = VimStale 
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<Log. BHeap, BEnv> = BackupState 
NewState = 

if ChooseToExecute ( VimState, Session) 
then Sltel/(Session, Execute (VimState. Choost(EIS)). BackupState) 
elseil~)-

then VimStale, BackupState 
else let ~l . = flrst(Sesslbn) . 

ia if c1.C i:a. 06f.Bm · 

..... 
endlf 

tben <.Act, H. £,JS, Del&m(E.nY,.Name)>. BackupSIQle 
elseff c

1
.C · BIND · .·· . 1 

· • · · 

theiilat 'lr~i&'MHD · 

FA = Translate(c 1) 
u :A = neW11id'ftoniUA 
Act'= A.ddAcl(_~ct, uF.f FA) 
NewEJS"'l:'£18;1.i>ffi.,-A• f>1f,FA(i).e,c;nt = 0 

A F~~:;:,pJ .. 

State', v = lnterp(.State, ·Choict(NewEIS)) 
<Act'. H', EIS', En,> = YimStat,' 
Env· = AddtoEnv (Env. cerame, ,) 

in 
<Act·. H', E~·amf>. 
<NewkfJg.dJrll.-.a,? 

encllet 
endlf 

.ifet11pty·(Sallon) 
tlaea if EIS'• {} . . .. . . 

. then Shell (Session. Executt(Newstaf~. Choict(EIS))) 
else Newsldle. N'eWIJaclcupSttJJ~ ·· ·' · · 

endif 
else Shell(rest(Session). Newstate. NewBadcupState) 

endif 

endlet 
endfun 

§4.5 
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The new log entry constructed by the shell contains the text of the' command input and a 

reference to the root of the corriJ)Utation tree to be assb'daii!~>~ttt'this•computatiah. The uid 

field in the· root activation· descriptor entry conufus it~ uitt 'of tttt~tr~atioh being instantiated. 

Its AdeEntry is undefined since no functloils have·~ iqipliedlfutn' thi's actlvtatiori }et The log 

can be thought·6f8S"•mt arfay tff"log entrf~. The '1reft'u~'ih~·-itbg l>y adding the new log 

entry_ to some :curren~y _u~9~f¥1~ ;~~~~:'. :N<?tC-~ai~~~~-~~;H)voked. qfler the log 

entry has been recorded. The shell acknowledges a shell input by demanding the next command 

in the irtput sttearll 011tfwrten thc.f currertrsheW~ffiitt~ wi"bie~: ndied'on the ba~kup store. 

This guarantees that no processing will be done on a computation which cannot-:le recovered 

from failure since the text of the command is use!-'bt'ffl~; ri:dvit·p_totedu~ to reexecute the 
!\t ~~' a,. f. 

command. The two functions which are ~-,g ~~frM!i~nt, De/En, and 
AddEn•nnust atao· be. modifted. 11ret,i>f/B,f• .ii ~ifiW::ieimmn1:· an· ef!Vironment entry 

\'"•i -1"1.·,.:. ·,~ .r·i ,~-/\ \ ~?}-_·ir,i· .. iY\. ·.:.. ~\.,;:,.,·.·jr~: "' _. .c, 

from the current envrionmenl Since ertvJ.~Wf\(~'I~ ,~
1
~ p( the backup state, 

De/En, must remove the entry from the BEn, as well 

4.5.4.1 Removing Log Entries 
.,,. , . ' .t ~ • ~ ~ ~.'., _; ,~:, . > • 

The A.ddEnv funcU0$1,is,.~b~ ~ ,"'1\iM,ap~.~~:Rinding to the current 

environment The,bac111p~,1fl~ "iw1'tltfflh of,_ computation record 
t .- !-~ ,.-~ 

about the computation that produced this value.. This computation record n~1~:,ikept on the 

backup store only so long a the binding was not placed in the image of the enviNNllWCWtt kept on 

·me backup state. · Once the biridirig'is' placed. iridie backup state environment and tiie"resutt 
_ v~JJe is fully qefulecl.tbt.~~;a~JN~lfM,~P~~aw~and can 

be rem,oved f~-~ ~~*''l?:1'•· ~:~J.,~itM ~~Oft!~JMJ•11lt ·Yallw QllltMins 

r,arly COJlilP~«:¥~!1:WU~~~- ~Jro,n ~-~;1q .. ;l)e.<Nalue 

conipPnent in ~e ~~ .. -. thi$1~,~~~z ,ln~~~~~iW.J'e&IPWl,,iliaf of 

th~ ~GT ppera,tor ·to J'C.fll?~•pb~ ~~~'~ ~ 1\'Mfti~Jullr1 dogned. If 

. there a11;:no ep.rly cxxu,;,~:•~~.~J•,:,~t1~-~-~ ~ Ille 

. bindi~Jon the bQ~p ~v.iroqm~ancJ,rcmQY,e$,~_,,.lf.V: ~~9.lllJlp~tifflUlf·•I. 
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4.5.5 The Interpreter 

Because base language instructions will be nQw be operatitl~,oo the backup state as well as 

the VIM state, it is n~r.y to alter the ~haviour of theJ~_terprete~~ The interpreter is now a 

state transition function frQm a VJmState, a_ Ba~~Up$lff'e, ~-~,~instruction to a new 

VimState a new BackupState and a, result value. I.ts de,f~t~ is:8ivea bc;low: . 

lnterp: VIIIIState X Badup.State X D - Vi.state X Baciup.Sfate X {U8 U Scalar) 

Function Interp ( VimState, BackupState, <u.i>) %<u,i> is .,.enabl.ed inltruction 

let 

in 

<Act,H,EIS.Env> = VimSuue 
FA= Act(u) 
<Log,BHf!flp,1BE,r,> = BackupStat~ 
New Vm,.stqte.. New~,Sla# = 8-»,tltf_YlmSltlMJlack.,Sta-, <u.t>) 
NewVimstatf = Failure(NewYimstat~) 
<Act';H',EJ~. Eiiv"'>·= iltwYlmstate' . 

if failecK_NewYimstale) 
then Recovery(BaclcupState) 
elseif F A(,).opcode = TERMINATE 
· tflett· N~N'ltitatt':N~lkritlf)Statt,FA(lj.o,ftUm1 
else l11tef'l(NewVimS"-"ew~_,~JS~)) 

endif 
endlet 

eur.n 

The Failure function fflOdels the Introduction of a f1lW state in the system. It returns 

either the state fc&ilerl or the state' passed to ·if as input 'Fite· fimttk>n fatted returns true if the 

new ~te is a failed state antffalse otherwise. Wl1eti ~tetumstrue, the interpreter irtvotes 

the recovery procedures to restore the systetrt to a cdrtect state'/' The 'rriodel of failure glven here 

is, of course. sirnptisl'ic imofar as it mu mes that a -faifur~ dbes nofoccur during the middle of 

instruction execution. In the actual·fmplernentatbrftlf'ttie system. care must be taken to 

guarantee that copy operations Oft the bttclrnp Store ate perf'onnechttomicatfy; The model given 

here, however. is convenient for expre~ing the salient aspects of the backup algorithms, 

abstracting low level details such as preserving atomicity of copy opc~tions. These i~ues are 

addressed in the next chapter. 
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4.5.6 Function Application 

In this sectioh, we present· the modified operatioodl'senmtltics' of two of the base language 

instructions responsible tor function apptication,in ~~(•~ste~ the APPLY and the TAILAPPLY 

instructions. 

4.5.6.1 The Apply Instruction. 

The effect of executing the APPLY operator is to augment the number of activations in the 

VimState. The addition of a new activation is reflected on the. backup heap~ b~. adding a new 

activation descriptor entry for this new activation and creating a new A.dei.'11'1: function in the 

ADE of the currently executing activation. This new function maps from off$et to uid where 
<' "- ('\-~' '\~ . (:t/_\\ \ Ii,\ ·· .. ~. · ... 

offset is the instruction number of the APPLY operator and uid JS dte unique ~tier of the 

ADE representing the new activation on the backup heap. The new A.DE will c:ot1tal1? in its uid 

fietd, the uid or me new activation; its AdeEniry"lielo' is set-to empty, and its type field is 

initiali~ed . tq, a,ppL,y fndlcatiq' .. lAAt: ~q~~~; ·'IV~ ~~ :l?Y, aa, •~1, Y, umtruction. 

Sine~ the ,:es~lt of tbjs ~~V~'.l ~,Rot Y,4' kp~~• Hr1 ~~§e!~ ~fl• .. 
if 1:0,CC,C. = APPLY a-. 

let 
C = /.op1, 
arg ~ '/.op2, 

<u1 Jree> = H(C), 

u· =anew ui~ fro,m lJ.A• 
u .. = a new·uat fft1m o;. . i 

A.ct~ ,.tfdd..4el{,ikt..u'.,J.)},,, 
n· =. A.ddff eap..H,JJ .... ~flkiP:qdJf,~.11p1 ~~fJ.W,,,:P. .. 

Act .. , N,wEts' == 
Sen(/fo/Jesl 

(SeiidToDest 
(SentllbDt!lt 

(.Ac(. /;/ewi,~11·, <~ l.to,l>. Cl. • 
u;_ <':'~.""•: 2. ~,.!\ arg) 
u , <uncoiut. J, opt): ill, 

u bit = a newui<J ch~n frosn y .• .. 
newade = <u·. empty. fapptyr. unde/>. 
B.Heaf}) = AddBHeiJp(IIHt'rlfJ.~w,-he1WJtie),'· 
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in 
<Act·, 
n·. 
NewE/J', 
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tn 
.AddBHeaJi..BHeap1, u11 Update.Ade) 

endlet 
else BHeap 

endlf 

En,>, 
<Log,BHeapl'BEn,> 

endtet 
eadlf 

§4.5 

It is possible that there is no computatiori''tecord on tlufbackup lteap that contains the 

activation descriptor for the activation m which tht, Affl.. f' instruction is found. , , This may 

happen if the result of the oomputation has already been lls>IIR4 in die ¥up. emdronment 
t ,, ~.. • • ••• 

before the APPLY executes. In this case, there is no change to the backup state. If there is an 

activation descriptor oorresponding to the current activation, its .AdeEntly is"ujxlate<l to reference 

this new ADE. 

4.5.6.2 The TailApply Instruction 

The TAILAPPLY operator is also modified to monitor ,th~ .J,l~ of tail recursive 

functions. If a TAILAPPLY operation executes as part of•lail~ve activation. we oopy the 

argument record p~d as the seconcflnput tat.he lttStiodl6j,{tottte backup heap. replacing the 

old argument reoord found in the activation descriptor entry. As we menuonect earlier, doing 

this substantially .reduces the time needed to reexecute a tail recursiv~ "1\lpctlbn. Copying the 

argument record becomes a non-trivial issue, however, beca-.e·• of ··dle.:presence of early 

completion structures. ff the argument record to bt ~ contains early completion elements, 
. , .·: .· ,.u· · ..... ,' 

the copy operation can only take place after all sucb elcm*,Qts ~Y.~: ~n ~L The old argument 

record on backup heap m1d the .AdeEntry component cannot be replaced until the new record is 

fully copied. To ensure that this restriction is obsoridd. -it is o.~~ry to create a new ADE 

corresponding to this new activation. We now need ~ liAk,fhe"old,JofD£ ~d the new ADE 

together. Since the idea of noting the argument record on the backup heap is to avoid 
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reexecution of prior tail recursive calls, we interpose the new ADE between the activation 

descriptor corresponding to the current activation and its parent ADE. The parent ADE 

represents the activation in which the initial call to the tail recursive function was made. In this 

sense, the compu~ion tree bttilt from tail recursive activations.i&-OOOStntetecl"bottom-up". with 

old tail recursive ADEs•ins pushed down the tree and new ADh7s,J,tfij'fltted in between its 
,. __ .,_ ' --

caller and the original caller of the function. We illustrate thi~ ptocess in Fig. 19. · Wilen an 

argument record is copied. we set the AdeEntry field . in. tQt descriptor to en\pt~. effectively 
., - '"., •., . . . ' 

discarding prior ADEs ~lated with this function. Th"5. once ~:~gument record is fully 

copied, all previous A~Es of this tail recwsive function are-removed from the backup state since 

the link connecting these activation descriptors with the rest of the ex>mputation tree is severed. 

The fonnal definition of the modified TAILAPPLY instruction is given below: 

if /.opcode = TAILAWLY then 
let 

C = /.op1, 
arg = /.OP2 
dest = J.op3 

u· = a new uid from U , 
Act:.= AddA~t( Act,u; ~(•) 
Act , NewEis = 

SendToDest 
(Sentil'oDat 

(Sen([I'oDat 
(Ac(, Ney1Eis, u·.<~l.op1). C) 
u·.<uncond.2.opt>, arg) 
u·,<uncond.,3,opt>, dat) 

Ac, .... NewEis·· = SendSignaK_Ac1·.·.1ve..ea·Jl,-~slilllltlons) 
:.!J-·. 

u new = new uid from U8 

BHeap1 ::: if 3 Ur,-''~Jc_ at. ·BHea,Ji."i~ ,(u~.~n~-T1",•~esult> 
A AdeEntQ(k) -:u._ ~,IJNiiafA.•JU'='1'11tA 

then Add8llm~BH«Jli.u1,,<11~~i, ,, .. \). ni t;·,J, 

NewAdeEn11)(Ade~nlry.~M~'k)'/f'ype,Rentlt>) 
eke ,Bffllllp ·• , ·, , 

endif 
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J. 2. 
After jlrsr tail recuni~ call 

u ----•tciilAPJJI.~ 

J. 

,4/ttr ar,ume111 record of s«:ond call coplal. 

u1 empty ~ 

Flgve 19: Recording Tail Recursive Functions 

H',BHeap2 = if BHeap1 = BHeap 
then H.BHeap 
elie·Cap>(.arg,H~HaJJJi) 

endif 

v2 

BHeap3 = if BHeapi(arg) * notcopted. 
· the• AddBltl«lP( 8Heap2~¼1tw<u:·.empt~~,JIY.arg>) 
elwif 3 u•.•t..BNeap(u~ ='u,-_. · · 

then let AdeEn1ry·=~Ailf!Em1'({1'..fl-ad~·•J 
la ' 

AddBHea~BHeap2 .• unew·<u';MtEntq-:tauappl~.arg>) 
cndlet 

else BHeap2 

§4.5 

vl 
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endif 
in 

<Act .... 
n·. 
NewEis" 
Env>. 
<Log.BHeapJtBEnv> 

endlet 
endlf 

8S 

The backup heap is modified in three steps by the TAil.APPLY operator. In the first step. 
:' ' ·. '.•. :._ -< '. y :-\ :~ '.: '.1 - ·-.· 

the ADE of the activation which initially in~~1'd,:t1J
0~jffM. ~~~ tun~ is modified to 

have its AdeEnt,y field mfen(a:tlle'.·~tivation•4eicil.-.~ for this new application. 
' ... ,.1,., ... ,. 

This new descriptor has its AdeEmry field initialized to refetence ffi,:; dDE of its caller. If no 
:JJh' i, 

such ADE exists. then no change is made. In the next step. the argument record is placed on the 
• . • ; ~' ···. _.. '-... ::_ . •. . ; __ ' \_., 

backup heap. If the copy operauon was s_u~fu-~ .. ttien. m (lie tl\f(d'step, tbe AdeEntry field of 
•\,..".I-,_ ._\. ~- -. - ~ t ·~ ., : .... :•,,,1.:~ .) t~·JH ~ 

the newly created descriptor is set to empty since ~ •. ~~ WACOOure can use the argument 

record directly during the restoration of the system state. If the ~re was not copied. then a 

reference in the AdeEntry component of~!JlF net,y ·-~~ ~~~}«>if c;al~r ,,..., '{bis allows us 

to still reference previous activati>ns.d:tbe tail(~~ 1\srietio1i>until the argument record is 

finally oopied. 
\ \ :·£.• :! -, 

4.5. 7 The Return Operator 

One of the ~~t features ,of pur ~1'11orithm is that results of activations are 

recorded on the computadcla tree~ Tliis,J$ t.he p~lmeans of reducing reexecution time of ,, 
volatile shell commands. '{he R~UJlr-i, ~-~smits the result of an activation to the 

, ' ,• •- ,. , • tC_. •.-.,,' 0 I 

backup heap. The return value •. if it is a VIM !itriidlare will. in most cases. oontain early 

completion elements. The SET operator is responsible. in ~~~~~ces. for ensuring that 

the structure does finally get copied. If the return value is copied, tht'A,aU ADEs referenced 

from this descriptor are removed from the backup· state. This has the effect ~f pruning the 

computation tree. Because ADE's can be removed in this manner, it may be the caJe that when 

the RETURN instruction executes. there maybe no ADE associated with its •activation since a 

return instruction in a parent activation may have placed its rcsuJ~ Pl):,J.h~ .P~~up heap. In this 

case, no action on the backup state is required by the instruction. The modified dtifflition of the 

instruction is given below: 
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if opcode = RETURN then 
let 

DL = H(l.op1) % the list of return addre.s 
u, = DL(l) % uid of the calling activation 

targets= GetDesd..H,DL(2)) 
Val= /.op2, % the value to be returned 

Ac(, NewEis' = SendValwe(Act,NewEis,*,- tarpts, w,!) 
Ac(', NewEis .. , = SendSignal(Ac(,NewEis',u FA.destinations) 

Ade= <uFA'AdeEnllJ!,Type,Result> . _ 
BHeapl = if 3 u;, s.t. BHear(uj =: Adi · _ . . .· 

dleat ""'1,I/IH «JJl(Blleap.11,; <u F ~""7,1JlM.U,j Yal)) 
else BHeap . . 

endlf · 

H',BHeap2 = if Val E U8 
then Copy( Val,H',BHeap) 
elH H;BHtiipf 

enclif 1 

H .. ,BHeap3 = if 3. ub s.r._. B=t(U,,) =_ Ade . 
ttte.if 81/J ' ¥al) =1 lldiaapkci 

then n·. H eaP,_ 
else let 

in 
<Ac(', 

endif 
else H,BHeap --

NewEis .. 
Env>, 
<Log.BHeap3,BEnv> 

endlet. 
endif 

Ref= {nl AdeEntf)'(.n) is defined} 
n1 ,ni:_ ... ,n ~ = Ir. elements of Rel ·. · · 
AdeEntry = RAdeEntrJ(. .. 

(RAdeEtrtiy(Ail~i1t,t.1h11,.::n ic))) ' 
,NewAtk =,◄11,AdfdlEn,q:: ... Y.& 
in , _ .- ___ . 

H',AddBHiiJJJ,.BH~.u,,NewAde) 
endlet ' 

§4.5 
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The backup heap is updated in three steps by the RETURN instruction. The first step 

determines if an activadoa descriptfJI' ft>rthe Cllt'mttllttffatimt e••~~ itthls activation has an 

ADE which ia part of some amputation aree. · Ir so; 11t:HY!)e ~this acth·ation··descriptor is 

changed to· ucal.ue indicating1thata result bas been cmtatld ~reliltn value rs writteit Utto the 

result field of that AllE. ,l:f;the ntumvalue,i,,aisttucfare;._·Wemltlate a Copy-operatk>n to 

place this structure on tbe badlup heap.· ; If the ~!fj Mjl.Jd>pieitH,ecause it1C()Ofmr1S no 

early rompletioa elements.er if the ..a WIii a __,.vat._;,._ WJcJ..f.DB's1eferenced fnSrrfthis 

descriptor are removed .. from . the backup heap., effedi:vely -~• -~-tree as 

discussed earlier. If, on the other hand, the result was a structure contains early completion 

structures, it is the responsibility of the m ·~ ·10-perfbrm iie pruning of the 
, ·., :.,, ·1· , , 

computation tree. 

4.5.8 Stream Operatlou 
t' 

There are two operations which manipulate stream activation descriptors on backup heap: 
,.c,.,. 

the SETSUSP instruction and the STREAMTAIL instruction. 1bfse operators are responsible for 

recording the creation of new stream e~~. ~4 .•. 81'1'\ment records of activations to 

allow the recovery procedures to reconstruct the stream image ~ to permit demand driven 

evaluation of those elements not recorded. 

4.5.8.1 The Suspension Operator 

As we had de$Cribed earlier. the "SETSUSP operator }l~cls to . l>e altered to record the 
--';'-• ; _,,~· ,· • I ':.. '.'~ • j '-,' •· , 

production of streanr etemenu on tlw llackup heap. ~ ,.., ,OUf' ~thm is the use of a 
.f, ,-, <;-· ·--.~·~...--,-·_,.,.-.-•-····•-· - ·--•·' ·-- ... --.. 

stream coordinator record which contains the element produced by a stream producer activation 

and the argument_ record to the STJlf'AMTAIL,~~,-,fO-~~,~q,v~of the 
;• . ·i' - • . •.• . '• 

producer. When a new stream acd¥ation is in&wn&ial.t.-a.MW- ADE isaated fortt. •· Unlike1he 

case with the APPLY operator, hQ.-.Vt:Y,4'r~ A.Of$:;~ PY.Al~~~~ ....... ~. are 
' . ' -

~~d through the stream..wordinak>r tee0rd. Tbe.liAk.fiekl.~,is used 

to link together all stream activation descriptors in a chain:i1rd\1~tft1g the cdti~~~n of the 

stream on the VimState. The SETSUSP instruction is responsible for i~ly c;reating the 

coordinator record and for linking the clements in the backup stream1wttage .. When the 
l~ r · 

STREAMTAIL instruction executes. it initiates the copy operation for the arg~cnt JCi=Ord of the 
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new activation being instantiated. In addition, it sets the liRk field in the coordinator record of 

its corresponding ADE to that of the new stream producer activation. 

The SETSUSP operator takes as input the reoord ~g dae new stream element It 

updates the .ADE associated with this activauon to ~ .,_. and constructs • new stream 

coordinator which is referenced from the Resuu. of 1this. clesctipf.Or~ It then initiates the, copy 

operation for tbis stream element. Each new iavocationi of ·die :stream producer causes a new 

ADE to be constructed. witluhe link field in the cootdiaator of:the;previous activation sot to :this 

new ADE. In Fig. 20, we illustmte the effect of tile SfiSl.:ISP intlnlCtion on the hookup heap. 

u 

) 
Mer a SETS USP o/Jfflll(W bl octlYatlo" wttlt. ,Mu 1x«111a. 

and Jtrfltlm ""'""' rei:on/jtJ_ 

u Stret.&ffl 

Fi611ff 10: TM Effect of the sasUSP Instruction on the Bac:tup ·1teap 

The format definition of the SETSUSP operator is given below: 

if /.opcoae = SETSUSP then 
let 

u = I.opt 
R = H(u) 
/= /.op2 
i = /.op, 
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'"·•·:·. ! 

u ew = anew'uid~ u . ·. . _ .. -· . '··~ . , _·.· :·.','!.• -
1 ,ll}-,2 #;JAdllB'IRllil.BAttpt.tl'~~/,,t,,- _! • .-., • 

In .. . . 
if R(j) f. ECQ A IR (hf = o . 

tll11ftAol'.' : · , n ,- -

' ~'1fP.:(l(;;,~11.), 
NewEtr; . . 

v'Hi,-6-,,,'t ' 
' <u,1,;~Bt,w-,, . 

- e1sei1et (.!4tr:NHt1s~:-j~D~A~t .Ar~tii;:<1~.~,siqriai) 
. flat ·· < :.,/.J t: .. ;::!-" l -:: -~~,._-rlJ1! .. ]5!T?. s;t! <JJ b-:Jl(:r:q b1i;.:•'·:1 :t~. . 

· ~f• ,·· .:.,·{] -~i)dh,q'J 0'~l ,,:. ,.<:,,· 

CN•~~ •·,-:~·:. /; ~,,;i (~:.: .. {',)f,tJ ,,,:~ 

E/1.M,:;/t,;_ \\ . .,, ,/..,, L ,, ,:,..·f'. G:: :y,,, . 

. J~~• Bl(~~~~~~> -~. , .. si. n,; .,.,!.-; 1; :1i ,,, .. , -

-..U, · ,. 'u~ ; ... ,.: J~ ·: :r .---~ ".:''. De,:~-~ td.:f: :Ct>~1J? :jijT'~lr:· endlet .' 
endif 

!!$:H .hft-H/; __ HJf? ·,c ~.:·~~p, i: 

There are three major tasks that the SETSUSP oper.itor is responsib~1 Jg~,~~ J.~i update of 

the backup heap. The first is the construction of the stream coo~iecerf\,, It creates a 

record. whose fir.;t component is the ~&,ortffi-1~ ~1 ~nt. ~ the second 

and third components are given value. undt'f. This second mm~f';f 19 ~~-t"tw:,value of the 

argument record but may only be defined when the STREAMf AIL instruction in this activation 
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executes. The third component holds the link to the 'ADE bf the next activation of the stream 

producer and can also only be set when the STREAMT AIL operator executes. The second task is 

the copying of the value component of the stream record. Recall that our definition of a non­

empty stream element is a n;cord of two fields,.the first being the :element itself~d the second 

holding the suspension to the rest of the stream. The.badup·•f'acllity .·Beed··onfy copy the first 

element of the record since the link field to the ne~t ~ .elell)ent can be set by the recovery 
''," : . 

procedure when the stream is reconstructed. The third major ••that the operator performs is 

the updating of the activation descriptor entry associated with .~e stream producer. It changes 

the type field of the ADE to stream'. al}d. upclatea a.,.lwr,v,k;,,tp .reference the new stream 

coordinator record. We next examine how the STREAMTAIL instruction needs to be modified to 

maintain a consistent and up-to-date imap of~~~ 

4.5.8.2 The StreamTail Operator 

The STREAMTAIL instruction operates in conjunctiQll with fbe, SETSUSP operator in 
"·;', 

maintaining the stream coordinator records and activation descriptors. ·. When this instruction 

executes, it initiates the transfer of the argument reconl passctf 1i.,,tts ~d argument onto the 

backup heap. The stream coordinator corresponding to this activatio1' j$,,~pdated to reference 

this argument record. If both the value field and the·arsumenN'"OC!Jl'<iiare fully copied, then all 

subordinate AD Es can be removed from the backup, b~ ln lb,is ~nse,, the stream value and 
. ' ~. ', \ : .. ··" . " ) •, ' . .·'' . 

argument record passed to the STREAMT AIL instruction constitute the result value of this 

activation and just as the computation tree is pruned by the RETURN ihst'ruction when the. return 

value is placed on the backup heap, we perform the same action here when both the stream value 

and argument record are safely recorded. Like the TAILAPPLY instrbttion, STREAMTAIL is also 
~ < • ' ,,, • .,: ' 

responsible for creating a new activation descriptor. The type of this t4!)4is set to stream and 

the link field in the current stream activation record is set to the uid of this descriptor. We give 

the formal definition of the STREAMTAIL instruction below: 

if /.opcode= STREAMTAJL then 
let 

C =/.op1. 
arg = l.op2 
desl = I .op3 % deSI is a field in a stream record 
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u ~-== a new -ttid from-U· , 
Ac( = AddAcl( Act.u: ti-(u) 
Ac(:, .~w· ·= . · 

SendToDat 
(senilfotfesr 
, (Stnd1lall•t : , : , 

(Act,.Newpi.s,.,1{,~~nd 1 nn.1~,J:) . 
u•.<i4ncorwij~o,1>. ~)~ft, . , . • .. 
u·,<~~}- ; . , -~, , ., ,.•·: .'.. 

;_1.' 

Ac( .. , NewEI~ .. = ·senfYi,~A~(;,_~;f '!°:f Mt~f"ff'2 _ , 
u,.... =·JMW,~d,n-.,v. ·.·· ,;.,' ,,, ' },' 
newade =·'<u·~•~.stream.undeJ> ., ' . 
BHeap1 = AddBH,ap(BH«ip,u~) 

in 
' <Ac( .. , 

Newl~1s .. 
trt,>. · 
<. '-4.MHIJIIPj,BEn~ . 

enda:t~ 
!. '';_-,:., 

91 
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' . ' 

There are four steps that the STREAMTAIL instruction follows in updating the backup heap. 

The first step is the construction of the activation descriptor for~~,,. activation to be 

instantiated. In the next step, the instruction calls the Copy fu11dion', to-ttansfer the argument 

record to the backup heap. In the·thftd:~;;~e'~,-',, ;,-~(~fl~thr c&Oeiated with this 
., ·CH',\ •-$u ,.., ... :,ti(' F 1. 

activation is updated to have its argument record ~~: Finally, the instruction 

checks to see if both ~~ st~ elem~nt ~~
1
th~ ft~~~L~r~ -~v~,

1
~n copied, and if so, 

removes the subordinate AlJEs frdm the backup heap. We have avoided describing the removal 

of argument records of old stream coordinatior records ~fS-lfhe ~11tadon. 
,~l f"',_,;..,_: ,t,~"r ~~• "\ 

4.5.9 The Set Operator 

The operation of th~ SET.~~ctio°. is~~.·~~ !Ji~,n,on the backup 
heap. A structure.containing an early~--~ ~,~ran argument rea>rd to 

a TAILAPPLY i~ orny~ ... ,_.,ofa -'t~~~~tii activation. In section 4.3. we 

argued that such a structure should augment ~e '~ '-1only when it and all of its 

substructures are fully defined L~ when they contain no early completion structures. If the early 

com letion ueu~ in the~~.~. ,Ct; N 
1HJ~~--·~~'=: it means that this p q ',,· . '"''(U',' ,~ 1·•, ' '"'~' '' .,~ -, -~) ' "'.· , • ' , . , .,, . · ·,. ,_ · '. 1' · } . . · ,. ~ .1 .:J- ,"~ _.: .... ti .· 'Ir- • , , t. 

field is part of some structure waita__. to• ~Ina> die backup· heap. In fact, because 

elements on ·the heap-drri'&'-.ed die,~~, this field may be a component of 
1~L ~o/.H 

many structures, some o~ :w.-..t ~·· ~;,ii,«\;~ ::IO,;;~up heap. The SET instruction 

examines each of these stractUH!Mo 1• lf~re ,are-·9't.iarly .completion structures in them 
l-5-'., .-~ ::-;. ..-; ('\.f'. ·1•~-,~,l,\ 

which still need to get seL. ,Th,«. ~~-~~Y defined are copied. 
t,; 

The. ~ in~~ e.x~i• \IJP•~t~ flescrlptors or stream coordinators that 

have a reference to any of those structures that become ~clefl"ed because of its execution. If. 
\"n'l \\ il J", •~j~ 

for example, there is a ual.ue or ta.iiappty Ade whose ~/1'#,~ferences a structure that 

becomes fully defined because of the SET instruction, then. as was1~ by the RETURN and 
,il 

TAILAPPLY instructions. all references to activation descriptors from the AdeEnlQ\t9mponent of 

the associated ADE can be removed. Similarly. if the reference to a fully delihed structure 

emanates from a stream roordinator. then the SET operator must check to se~ ir'tb,{AdeEntry list 
·. . } ~ 

of the associated stream activation descriptor can be reset using4he:~\wc pi£ussed above. 

The instruction is also responsible for removing a log entry if the element bcini{~~1~ part of a 
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strucwre- to· tJe.;boond ·in .an envif011Q1eftt· '. We give the formal definition of the instruction ·· · 

below: 

if /.opcode = SET then 
let 

u = /.opl 
R = H(u) 
I= /,OP2 
X = /.Op3 
u·= H(R(J)) 

V v€N 
R'(v) = R(v) if v • / 

= X Otherwise 

Ac(, New Eis' = SendSignal(Act,NewEis,u F A.'disllnlztldliif 
H' = NewHea/1...H. u. R) 

. Parent = {uJil £'Stej:(u)} . 
u1 .14i .... ,u le = k oom~ents of ~arenl , 

· Addillf eatA.INtaitt•#t<Mt,fA4tEntry tT}'IW.1t;>) . ::t1!~1 ;( ~· ... ,,, ' ., .. . .. 
elscif Type= strea,11,~:· 11 

then let <val.arg.link> = BHeap(u) 
111 'ifor~(. .trl~-'fJM-•J) ;ft-:~, 

the~ ~~~ar,>,~.~!L. 

. .' 



94 A fOUfAL MOOEL..OF ~ANDU06VER.Y 

MdB.llmptt8Hea,1 illi,, <Ju l'A•Adl&ury; 'fyp,;u;>) 
else H .. , 

endlf 

encllet 
elseH,BHeap 

eadif 
endlet 

else BHeap 

NewLog = CheckLog(Log,Parrnt) 

in 

n·. 
NewEis' U H(u) 
En,>, 
<NewLog, BHtapa,, pg_,,,> 

endlet . 
endif 

BHeal't 

§4.S 

l,7~•:i'·.;s:,~ ~-.; __ -tJL<.~:F-·-.;t~1 ., ,·\ - ),} . . ~ 

Because objects on the heap can be shared, the record whose field IS being set may be a 

substructure of several objects. The set Parent denotes ta. ~ll~'s't~ Recall that 

the auxiliary function Step when given the uid of ~pliahn structure returns the set of 

all uids aB>Ciated with structures v41.i$MVe • ~ ·heap to this ec-structure. If the flag, 

back, is found in the early oompletion queue, the iniriil:btit lJ!e Copy function to attempt 
1bf, 

to copy all those structures whose uid's are in Parenl. This function will only copy those 

structures which do not~~~)'~ ~,-.~~,•~~!~1!':~ .,~ t>acluj{tteap returned 

from the calls to Copy will ~~~J-~n•qu~J ~~- from Parent which were able to 
be copied,becaJDe:ttiey ft0\ ....... ,can&aiJted., ~·. 

·t ;:.; 

If the activation descriptor1ef'trentfng"a,oopiett~~ was of type ualue or ta.tlqp~. 
'·-A, .~ =;;1 •:· 

then the subtree rooted at the ADE is removed If. on the other hand. this structure was 

referenced from a stream CQ'lJtliaat0r:,~. 0thcf·fflSll'Uction removes the subtree of the 

corresponding stream activation descriptor i' ~14 'i&e value and argument field in the 
' ... ~, ~ -

coordinator have been completely define&, 

We afal introduce- ooe'otl\er auxiliary' runtdonJ ;Otecklog. Some of the structures in the 

Parent set maybe values which' 'are to be lx)uud_. in the user environment. Among these 
·. . , ·,; '' ~ 
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structures. there maybe some whidt are ROW' ,fully ·•tmtd··• a resuft of executiflg the SET 

operalion and are placed m the die enviR>mMatsim111n• ~kupate: These, structures 

are the result vaktaof amve,computations.. l1Mse ~ lN"fJ'leltilled,·on the-backup 

beapas computatien•ll:COl'ds·whidi.ue•refereaced',-.rthd ..... -1intke~'log;·· The 

function CheckLog removes these log entries and returns the new k)I. 

4.6Summary 

ln this chapter, we p~nted the backup and rec_o~e!}' !l&orittmis fqr ~e YI:M sy~tem, Our 
.;.· .. ' ··; -··~.-·i . 1, 1 r~-;~(;ff'L1ii~1r~v '•'.•,,,•,eJl.--:>~, .•~ .. ·., 

attention focused on the representation W1d.manipul~~fflfl'~~p,,,~~1whj~~ ~tain 

infonnation about the progrm of volatile oommands in the system. A computation record is 

represented as a directed tree where nodes in the tree denote activations and edges signify 

caller/callee relationships. To update a oomputadon record requires altering the semantics of 

the APPLY and RETURN instructions. The APPLY operator adds a new node to the tree and the 

RETURN-operator replaces a node with the result value of its corresponding activation. 

A node in the computation tree is referred to as an acl/wJtlon dacriptor entry and embodies 

infonnation about an activation in some active computation. There are two basic types of 

ADEs: cip~ and uGlue, the fonner used to denote an activation whose result value is not yet 

known and the latter designating an aaivation whole · value bas been recorded on the backup 

heap. 

The main disadvantage with this simple scheme is that it is not sufficiently expreaive to 

handle early completion or stream structures and is inetTICient when tail recursive functions are 

involved. F.arly oompletion is handled by requirina that all «-elements in a structure be SET 

before the structure is oopied. Fnsuring that such a structure eventuaJly does get oopied 

necessitated the .modifteation of the SET instruction to update the backup heap when the 

structure becomes fully defined. Tail recursive functions are represented on the backup heap 

using a special ta~ ADE which holds the argument record of the tail recursive activation. 

We based the design of the tailclppl.¥ ADE on the observation that the recovery procedures 

could avoid executing intermediate activations of a tail recursive function if the argument 

records to the activations of the functions were recorded. During recovery. the function could be 

instantiated directly with the argument recorded found on the backup heap. Finally. we 

introduced a special descriptor to handle stream strul1urcs. A stream ADE contains a reference ,. 
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to a stream coof'fiinluor ,.-ord '.which embodies,·infimnation, about ,a,.streaat activation, In 

addition to st()riQg1the SlfearD ole-",pmduadrin,thal;alth-~ w~aa, keep the argument 

record needed IQ -lilCC the.-t ~ ... , 1hHSOllllnK'81Jn,andllllm1eRanoeofstream 

ooo,ciiuator ~. ~ ;rncwifyioa, me:'ope,ltidli lef:c .... ,:SEl'SUIP'alld SfRliAMTAIL 

instructions. 

The algorithms presented in this chapter were developed for a very a~t {n&Cb\flC in 
i . 

which such i~ues as structure organization, gu~teei•. atomicity of infoffll:~tion ~sfer from 

memory to backup heap, and ~mory-~f ~lai1~/~~J h~p ~~; ~C>t addreaed. In 
thettextd1apter, w«f~u'sstfiese~' . i•·r; ,,,,:,i:.: j';~.nr~-,,., .. ,~· n. :, , . . . 
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Chapter Five 

Implementat•n Issues 

97 

In this chapter, we are concerned witn concrete problems that arise when we attempt to 
• • : • : • '~ <! - • , ,· 

implement the backup algorithms presented in Chapter Four for the VIM system. These 
! .-.;,: "I,-_.!· ' • 

algorithms were described in the context of an abstract model MR_ which was used as a vehicle to 
... ' ' 

rigorously describe their behaviour. Issues which were con~~niently hidden in our model will 

now have, to be more thoroughly addressed. In pJUtitufar;wt •iU~oat'attention on how the 

Copy function may be implemented. The complaa, of.~ operatiotl mises -because of'the 

represenlation of structures in G1l1 system. Ouanmteeifta !lhat.tht oopy operation w.11 idways be 

IJIQmic is a non~trivial task given the stol'll80 represenlldontfQt.4ltfl;stnJcmres that VIM·uses. 

Section 5.l concen.uates on this issue. Section Sl4 dacrtlNIIJaltbtpfe,ttoNge 'management policy 

for stable storage. 

S.1 The Copy Operation 

lbe copy operation, as described in -Chapter F4>ur, ·ts n!9paftsible for copying a VIM 

structure object to .the backup heap. An.iefficient ~,(>fttJti, ()J)tfttion-is•necessary 

foE any practical realization of uur. backup algombms.- hi-, ~~-ltk>def/the'CtlPY opetadon 

was treated asa function which tra11smiUedtheSlk:CeSSof1:heoopy..,_. le its caller. l'he callers 

of this twtction were -base, lanpage instructions that -requlret( ~t values or atgument records 

to be placed on the backup heap. There ilcno 0 001tCO~•ba-Wfti1':the-ex«ution of the a1Her 

t e. .instructions and the Copy function ·in this model. M iMtruttRJiMhaN:aRs the Copy fuflctlon 

must wait for .the ·oopy to be mmplelle beforeL it C:811'.:coedrtuo etbtbt. In an actual 
unp!ementatiolt.· having the interpreter wait for the Enlliltet of:dati from memory to stut;le 

storage before beginning execution of the next instrudfaa. woufcf' lead to '-fntdlerably slow 

· perfonnance. Examination of the fonnal description of these instructions, however, reveals no 

reason why the transfer of data to stable storage cannot proceeii lh patal~I -With the'·execution of 

other. .instructions. Our ap_proadl to implementing the batkUJ) algorithms is to consolidate th~ 

"logic" for modifying the backup state into a bnckup.-systtm t-mel that is responsible for 

updating the computation records on backup stor<Mmd initiating die ~ operation to perfonn 

data transfer to stable storage. Base language instructions invoke, tile kernel. passing as 

arguments. the type of opcrution to be perfomu .. '<i le se1., result. tai/Bpplyetc. and the necessary 
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operands Le. data structure to be copied. The instructions can then proceed with nonnal · · · 

execution without having to wait for any results from the kernel. The responsibility of updating--­

the backup state would then be primarily in . the , .-rview of the backup system kernel. 

Overlapping execution of base language instructions with transfer of data to and from backup 

store makes the backup algorithms presented a much more a~ractive solution. If sufficient 

concurrency can be exploited in the b~ language programs, then we conjecture that updating 

stable storage should not cause major degradation in system per(onnance. 
' .. ,, 

An imponant requirement of the Copy funcdon:isdlat it'belJkJmic. In database-literature, 

atomicity is a property of a transaction whme overall· etTect i$ all"0r·nothing: either all the 

changes mac;le to the data by the transaction happen; or,none ofdte thaAges happen. Thus, all 

transactions appear extem.lly as indivisible operationL: This reqwument is essential to sui,port 

recoverability of data after hardware failures occur. Atemidty in. VIM is a property of an 

activation that refers to the point at which the effects of the activation are perceived-by other 

executing activities in the system. It is necessary that the Copy function be atomic because the 

effect of its execution i.e. the augmenting of backup state infonnatiort, 'should be 'rnade visible to 

the recovery procedures only aft.er the entire stNcltn'has:1,een oomplelely oopied to backup 

store. If a failure were to take p'8ce dacing the ffliddlcJ.of amp, ,operatioJl,, and the ftlRction was 

not atom~ the recovery system ~Id see-data in,t11ebackup,atatertbatdoen1otcorresponfwith 

_ any data that was present in the Vim state at,thc time ae; ftlilure took"'place. Guaranteeing 

atomicity is a non-trivial is$le for two reasons. Fifst. .. •ta~n11,in VIM may be ar~ittarily 

complex; if the structure to be copied represenced a node ci on the VIM heap. then the entire 

graph rooted .at a must also be 00Pietl onro the ,backup heap. :TIie other a>mplexity involved 

with the copy operation is duet,Hhe way datastllldllros~ mprcsented,Jn,V,JM~ We discuss the 

S\Orage organiiation of die VIM heap in the nut sedicln :and ,tflCIJ present our solution to 

guaranteeing atomicity for this operation. 

5.2 Storage Organization in VIM 

VIM structures have been thus far treated as monofitmc entities that are created and 

manipulated as a single unit This representation was useful in theprascntation of our backup 

and recovery algorithms, but is far removed from the a:tual Ml)RSentation of structures in our 

system. The representation chosen for structures in V-tM is influenced ,by the organization of 

physical memory and the desire to have only information necdcd,by the (.'Ohlputalion be resident 
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in main memory. VIM is based on a hierachically or~iz.ed p~y,SK:al ,nemory consistinJ of main 

memory and disk in which infonnation is broughtJtJ9 inai&,l1~ only u~ demand. To 

facilitate the transfer of infonnation between memory ll!ld dis~. the virtual .address space is 

partitioned into a number of fixed size pages .. The o~izatic>n of the address space in VIM 

differs from conven&ional deman? paged systems. however, in Ute ~e size chosen. To avoid 

the overhead of unneces!arily paging in unwanted infocmation, :die unit of storage allocation in 

VIM is a small page of 24-32 words, known as a chunk. Having a small pase size is the primary 

means of exploiting parallelism in base language PRJr&mS, In ,?~r data flow exeeQtion model, 

there is no dependency between any two enabled instructklas:8'd taus. 1/0 service required by 

one instructiorl does not prohibit the execution. of tl,le QtQ~r: i11 lbe interim period. By having a 

high level of concurrency of data transfer between the disk and main memory. the p~ing 

unit is seldom expected to be idle waiting for a pending 1/0 request to be serviced during 

program execution. It is expected that. in general. ~ere will be enough enabled instructions 
. t 

during program execution to make disk access completely transparent 

Because of the small page size used, each chunk holds at .most a single object Complex 

structures such as arrays and records are held in a number of chunks. The representation chosen 

- for these structures should be sensitive to the applicative ,iature of the programming model by 

allowing infonnation to be shared between structures whenever possible. One implementation 

well suited to our goal of effici~nt sharing is to ~p~nt.Yl~tstru~ as k-ary trees of chunks 
. •, e i .~ 

with the leaves of the tree ex>ntaining the. elements af 1he ~ and the i,ltenial nodes of the 

tree containing pointers to other dluRH:(11}. ~~'Can ·-be complex. leaf chunks 

may hold uid's to other structures in addition to. cqQUQl,liqa.~ v,al,ue& The ~oi~ of a tree 

. organization to represent chunks allows a high degiv-Of1AariRg te l,e.ildtieved~ For example. to 

construct a new version of a structure differing from its predecessor in a single element. the 
' .": <~:1 \-:/, -i' --; ,~/; i:n:d· .. __ -~•; · .-., .. ~-:, ,..· 

system need only construct a new path from the root of the new structure to the leaf chunk which 
~ "_:. ; ,.. -, , ~- •• _'. ·- " : < ' - - ~ ; : - • 7 

is to hold the new element; all other elements which are sdff'cbmm'dn 1o both structures are still 

shared between them by having both structures use the same paths to th.- common ;leaf chunks. 

The REPLACE instruction bricny described in Chapter Two, for example, which returns a new 
1!t·<; .• '_; '.-\, '. !_ 

version of a record differing from the old version in a single element operatcsjn•this,~~-

The address of an element in a structure is specified by a two-tuple. <uid. accesspath>. uid 

denotes the uid of the structure in Lhe system. The actcss~tfr~s'ilie'b.isc frct,rcscntalidn of the 
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offset of the desired element in the structure. The length of the ace~ path· for a given structure 

is the height of its VIM tree representation. 

Internal chunk cl 
size low 

• • • 

Internal chunk c1 
low' 

• 
• 

k 0 low" 

/ea,/chunll 
dl d2 • • 

k elements 111 t1,'u 'ii,,i,1· . 

Flptt 21: The Representadon ot• Vo& SU'Uc.1~Jte 

Abstractly. we view a chunk as a th~ tuple: 

Chunk = C°ld X Hea4er X Qua 

Header= N-+ N 

Data = Internal U Leaf 
lftteniiU = Cid'" 
Lear = (U u Scalar)'" 

; 

Cid = the domain of chunk.identifiers 

. ,ar..Cdmlt 

1 

1. 
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The Cid ofa chunk is lhe chunk:s.umque identifllrachnat,bt 1hougbtt>f as the,virtual addr~ 

of the chunk m the system. lt·shoukl be ~ hit f.bt1~dit1rtft: id's is not-rekttec:Mo the 

. 4omain of scrueture uids.wbicli:an wledto,unttlttly tdMtlfy:iobjem'on,f11e.VtMhea'p.···The 

Header field ill a chunk mntaitts admiaistrativc. iabflaadew ~ -the dNnl;.. rn; particulat; the 

n\Hn~ of refetences•iO;tbis dtlJl'lti in the.., tllt,ttelgbtiW thl,! .. hi itf the VIM ttee~ 'and 

the high. and low Jndicia ot; the .elemenaa, of die ~ ....... 111thit' lffimk' ate·· all infotntation 

kept in the !loader field.. ifa•chunk.Jbas~}.t'tfefMNiCG f~·U11sipfaoed on afrtt/isl 

. and its space may ·-be remcd wbornieedBdr; 11le Wt COllll'elllll'itdle"ditacpertiort bfme chunk. 

For an internal chunk, this consists.lllie Ctd!~.of_...-~ ..... dentsiin the'.tree; For a 

leaf chunk, this consists of ,ei~er u~•s. i~~e: ~~~r,i,~"~f1~~;~~8I~~ ~~~lv~-~ctures 
or scalar values. The size of the data portion is some ftx~d m. The siz,e of the ~unk Js m plus,the 

... , . ,:· , (, .,.>r.; ,_)i·-:·:L~ 1 0; ... ;r~;·.,,~- ·• ·" 

size of the header portion. . , 

For a complete d~ of the·stOl'aip 0111•at1on~oft¥1M"8ti\lctnre, the reader should 

see [17). ID •the next ..... :Jw~,.,..,,tbe,preble•_,..., fllle.,40PY,-~tioft atomic. 

_Structurw which are SO•be·copied;ltoa, the, ¥~Allap oid.&hi-~ heap)must be copied 

ato1Jlically i.&.•·stNctll~:oon11islina'of:tllliWJ1cliwlllftlkdl'tie~ • bang copied ooly 

when-all oflhe -c:hunu'wMdl.mi,.-.-it·,lmverbeell _,__~t& baelc:UJf·SUJte··and::not 

befQre. In °"r·discllSflOll.;we alaallafer10adll&la .. im tllllldi_,. as a VfMichuritillld a 

dlunk btnd.oa.baek~p 11011S m1, badmptdlmw1iW.lllltha.•..s~~ to 1"fertt>-.ny 

5.3 Performing the CoW _O,Cratioa 

. When a base·!anpilgftia'ucdon wlncb,~~ll'ie 1batkoJPstate executes. it 

· .invokes the baalwpisysaca temef 'whidl :~ .at.JftWMlftl~~htNt; thtfettrrent ~tus1 of 

·structures,which,..areiA the1pl'0CCIIII of.Weiag~ied)•.;'.ftll~ltik ~i~fot ~-the 

' oomputation .. and·COlllll--q Olf iblubJfHIIOd .... lie afallillMS'jVeft in' CftalMer 

'Four .. ,When-astructure;~tttbc«,piedt. taeterriel tatls:tlMVC6')i'~' 1'kis1 fvnttiorr ~ts 

as input the uid of the structure to be copied and produces as its output an acknowledgtfflent. 

. copied if the structure was fully COf~~~}l~t~ bac~ur,,~~ r !9~,fit ;~,~ ;noJ, be. The 

latter acknowl~dgcment occ~,~ w_he~ ~ st~u~~j~.-~lc ?,t\~,,,~5J~~)j~~\tairt,J,,e,~ly 
completion clements. The backup system kernel uses t.tats ~knowle,djcmcntto dc~q1.1ine, w.~n 

. . • · : ., · ,-:_ . .. 11;1 :>:;lil,n:1 %1 :1,,.J11,n ,_·: ; , .. • ·., · 

· activation dl-scriptors should be given a new type and when t·ommand log entries c:tn be 

removed. 
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A major complexity in imp)~endng the copy ,function· for the VIM system is due to the 

representation of VIM stl'\lctuf:eS as, trees of.chuaks. For the sake of uniformity -and simplicity, 

structures found on the backup heap will aJso havetae same:~tion anheir·countefT)arts 

on the VIM heap i.e. trees pf ehuaka. AUhe start ·of systal aperauon, :altdnmks oti the backup 

store wm be- on ~ freeli$t. Whenever. a VIM chunk needs to be copied ORU>· backup stOre, a 

backup:chunk is remov,d'frorn the backup freelistarui,dle;c:onielKsoft.heVIM'dnmk are copied 

onto it. This apprQach will iwnove-the·need forsophisticatod,mretpretationof,the.data found on 

the backup store by tbe rcte0very; srtlmL ActMtion.-dlscriptOI! entries:oomprising a computation 

record are treated as ~• which 41leCUJ>Y a single ehuk. 

To see how the Copy function can be implemented, let us first consider a simple scenario. 
. ' . . :· .. 

Suppose that the function is to transfer a structure whose leaves contain n scalar values onto the 
[) 

backup heap, where n > m. This structure will be represented on the heap as a tree of chunks. 

Let the leaf chunks of the structure be: labeleci. II, IJ .... ,lj. Cllarl¥. 'these leaf ohunks can be 

copied onto the backup heap without any,prepromasing by:.the-,:eopy routine ,since the leaves 

contain ®lY data. 1Atbl,b1 •..• ~llj be dlualcs·on the fillefist.on:dJe backup,~ Then.·the·data 

found Oil 11 can be ~ ontO bl. that of 12 can bo copitd ,to;bietc., :After tke leaf chunks have 

been thus copied. the QJUoe PN>eeeds with oopying dle intemai'dluttks as well. Copying an 

internal chunk is a little more complex became tllese alttana cantain, referentes to other VIM 

chunk id's. The copy routine translates these; ,tefitmhca ,to: their appropriate backup • store 

equivalents. Since the copy operation is being performed kM1·t,onom-u.p fashion though, all 

chunks referenced by an internal chunk would already have been given chunk id's on the backup 

store. If an internal chunk C has references to churib · cl,c1!.;,ci,r, rhen th~ aitrespollding 

backup chunk has references to bl ,b2, ••. ,bm whMe. bi is dle.bark.upi-.k. id a>rresponding to Ii. 

Toe copy routine updates the activation de&criptor; :to0:ietennace 4his struotu,e only when all 

chunks have ~11 wriwm to backup ,store. If a. failare takes place before the ADE can be 

updated. it will , appear to the reaweey 5Y5'ern that. ne i iftfol!lnaaion. al:out this activation was 

recorded by the backup S)'Stem. Note that all chun• at a pvcn · height-in the tree can be oopied 

in parallel. 

The copy routine performs a bottom-up breadth-first traversal of the structure. When a 

chunk is copied onto backup store. its backup chunk id is recorded .in_ the header portion of the 

chunk. If the copy routine is invoked later on. to copy a chunk which, has already been copied 
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on the backup store. it-can,avoid recopying theidlunt ,~ first 'chectking w see if that chunk 

already has a backup chunk 'id.: By smpty- reoofdirlg tbiM id'1tth~ian1e level, of,sharing found 

on t,h~ VJM ll~ is aebk:vtd on,thebaclmf)iteap• wellr: · 

In this simple scenario. guaranteeing atomicity is Q fai~Jy euy _task because the structure is 
~-~r~,jf~·: r-1• ~;-''1'ij ~-·,:,~ ··:, .f. , • •; 

not recorded as being copied until the copy funtion transfers all Vim chunks to the backup heap. 

The situati<>Jl ~:Jlightly,tllOl!e,dOmfie,t;wbelll••~tdW,'IClionl··whicti~d to be 

undenaken for Q>P>:'11.1'0._ -~Qltedr~ •l)U(itdlalVlhe !solution,~ a~ is 

n,ot sau$f~ for haadliusw~,wttole1eltrntaa1n,fhmll1Wts sautWNs e.:,.u:ARJtA Y 

of RECORDS.- Let llS jrst,COQlider tb.e11itllf:l&ionr1¥itboub•IJ1Jltl1IPled(>111., ~• tftat-~a;leaf 

chwnk, Ii. which is-t(>,})e.copied eontainS1ffferenc:cwntoi--~,on,,e·llea., · It is 

necessary th.i each of thee,•bordlnat,i~m....,_d . .-lbe uty ~ MffireVthis 

leaf chu.nkjt, ailowc,d,tQ-'be \dittan_:on10;qaclaap $t0re. --~ t11e1 copy l9Udtte in 

Chapter Foµr bad i\,.roculJiyolJ,_taa:itlelf·to,fll!PT ._!~' 'Wlten alf,~ 

. _ me~ from.this ehwhtvo,• capiedJ _.._illfdlllllk~ttselrbe tr8t1Sfettecl-Oitto 

backup_ sto~. •use,tbo .~. on}J:.Rtua'.'.tt>iitln:allern-...ni:1U~ hiWe teen 

. oopied. die~ ~-iJ atonaic•oe die bacdolip_. Wliltfie1 ~ -unttlc~ the 

. existence of tu sttueture.41IJIJ, \ffltlft Abe top'\'lealiGJPJ·a.,liae..-pletts,arwt~ iii mutt to 

the kemd. Booalaae we III IIDt ~eadJ_, ~•--- the o,p,;,ffiftCtbr is 
guarantaed tQ return •-ac~e~ ~,1 Nb pallilll:r ·uopltd , ... ,. ean: evet•be 

-. refere.nced .by ~Y activ.,_ ct.QIMQt •~.such.:reftaaoll .,._,,.-_.,by ,me·umei~,the 

copy .operation is~. 

5.3. l Earl7 ColllJl~ 

The presence of early a>mJ?letion elements in the leaf chunks of, SllUctares - t\Udier 

complicates the copy procedure. In Chapter Four. we noted that it is n~ry for the backup 
. . _ i ~ i _._ .. : ;, .. , :·::,.>.::, -:-1-:.: !vur! ·,_'t~i·1~;·.:·:; .,.~ ···'/ 

system to be able' to determine when there are rio tunher early axnpletion elements still to be 
,_ - . ·:;_~."- ~,- ,_- ·,.:·I!.,,.-.. •.·: 1 .)Cfff'.•-·• __ ;~:/':f..jL;·''.-(·1!· 1 .,,. :· 1---~~·;• 

SET before the backup, state can- be updated. In our implementation, we can dctermme this 
.; _ . ·, . (. -, _, . _ ;? ,-,tlh, ~-,::" ~-~Ln ;..,. :• __ \ · :i,: · --: 

_·. information through the use of reference counts. Every chunk has two reference counts 
- • . •. : . • , · . . f'. i' 1;: .~.,. _,,., f, 1 t ·. A;:: . .. 1. . · ' t · .. ' ! '. ;;,_ 

associated with it: the refcnt is'the total number of references to this chunk fourd in the system. 
'. . -~- ··. " .. ; ._. . .· -,.r.. ,-~'- . . "! .. ~.'-,,:~, :·~,.;;,'."-, ,·;~·· ~· ... - ·~ •' \•· 

futd the setcnt is the number ofsE'T' instructions stiU pending which' are to set early completion 

elements found in this chunk. The meaning of the refcnt is the same for._anjntcmalchunk~it 

is for a lcnf chunk. The setcnt field in the hl~1dcr of ?¥J-~rn~;-~1¥WkJs,th~ num~r ~f early 
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completion elements which need to be set in the_tr.ce,rooted'at thiscdtunt.1• Thus, the rsfGnt field 

in the root chunk of a structure holds the. ,wt.at number .of rdellellCtS to tJ.m: structure· and the 

setcnt field indicates the total number of earl){ mQIJ)lelio11 etemenu·.foundl~in; the stmcl'Ure6. 

When an early completion structure gets SET, the setcnt field in the heade~ of all chunks on the 
~ .• ' ' ' ';,.. ' -- ' ,- : ; ' 

path to this element get decremented. 

Let us fi~ consida:a simpiestructme te tnti-waiol\ does-, nut• ref'ertnoe mt other structure 

on the heap. To implemant the: mpy operaoon,m -the,~iof iCitty. tomc,letion structures. 

we do inc .following. .When-a lbaf ,chunt : with:-,on&,_.?.tlUII ~ZIN> i! eneounteh!d by" the 

_.copy proceclur~ we donot:u,py it ooto;the,'backu1rsto-.. Inst~dpweljlotatea l,adrupdtutilc id 

for tJtis ehunk.and-<IOlltimte examining;1he odler,:clwnks ilM.ta•·sctbet.tuie. TO:inform tbeSET 

operator which 'ri!evenwaily•ceplace.tho:early.~~1fduntf fft miscbunt·that it 

should copy the: chunk qtto bacblp store., lbl;,cepy,-:;,oudnd:mo~ -dtunk -Wffh the taa 

~- At the ume the-earl,cempleaon ele,ncnt:blcom~J-SSI' or,eratorwilfnbte-the 

fact that this cbunk ... beloop bl' a structure d1a1 is to!be capted •~ _..; · If tlle_.fd of 

this leaf chunk is zen>.,th~-~ invokes dm:_backup's,IIMi"tnet:10,«ipy this thunlr onto 

the~ chunk alb:aled·for,k. In ad~if:dlere·are.no·~sEl' imtnlcticHlsthat 

are to be ,executed tor this,~de.-mmecH,,-, uaMildflf tbt~uf M mot diuftt for 

tbis suucture., the kelncl also ~. tlle, ~; ---•: tit"'~ tMs :structure 

according to tlle algorilbm pven4o the laa:~. ·~---IWlth'm ffiifflls are only 

updated when all elcmee. in a ~ are fbUyrdef'hHdr IN Clt:pted"onto4he beetup Heap. 

Thus, it will never be the case that activation descriptors are aware olif~,fbr wltich not-all 

elements are known. Atomicity is still guaranteed even with early a>mpletion structures because 

a structure becomes a part of a a>mputation record only when no 1bitti«W '~leth~n~--~ 

referenced, from it 

We next examin~ how the backup system should hand)e_ early com,pJetj.Qn, strµctures 
, C • • ·••• •:,.,,; ~: 

0
,.e J.1.!f:':.. ,,:: f', j; ••t\,:: /'. • '• ,,,;;t • 

belonging to structures that are components of a largtr struc;ture w~~h js tp f?c: wpied .. When, a 
: , • •. '-_• -: : _i ,~ '-,;;;. ;;' • ;_ '\ • . : ; . : 'i ,- . ,'' 

leaf chunk which contains uid's to other structures is encounte,:ed _by the a?Pf f.1;1~ction, tl,te 
• • :, . ''. - - ,, • , '. • ~ ,,· ( ~ :._;; -1 ";: ' '. • ' - . " - , ' ~ •. - . ' 

setcnt of the root chunk of this subordinate strµcture must ~ CMffl\{l~7,. If ii .is _ _sreat~r th~n 
., ' ' • ! . ~ ; < • / ../ l ; ., ./ : • . ' , 

zero, it means there are early complccion elements which stiU n_eed t9 _be setin this $~cturq. As 
:, ' I ' ' \ : ' ~ ' ' , ; ' ', 

6inis doei; not indudc the refcnt or setcnt of its substrul1ures. 
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before, the copy routine is-recvrsively invoked ba>py thedtunks ilund m this substiftleture. It 

is necessary that the baskup state .does not ,get, updat..-1 witb, the, pa,ent -structure u~ all 

-subordinate st11.1~res-0fthis_parcnt become fully aefmeci;·;Otir ,imf>lementatiofl fo1lowsclosely 

with th~algorith~ gj\lim in th-, last chapter . .Eveiy:~mdc1bfa.stAactUre containsa,field in 

its header. P~rent, co~niog; the- uid of all ~'whiatl nfereace this structure tbatiai'e to 

be copied. This ti.eld ismanpged-by the,-a,py :function• it,trnenesthe1leap,. As9ociated with 

each uid ill the list. we also stQ.11 the dlunk id of;thcrleaf dmak ·in'the ,arent-stru<m.tte from 

which the reference eman-=s. When JllLearly a)llpleuon,.dement.s are :set ia a Slruetute that is 

to be copied onto bagkup stor4, .itstruCJ.ti• tefeRllCClll insits,PAfen.t;list.e-examined.- The 

backup state is updated with those structures referenced UIJtml,list whiclr have bec:ome.,fully 

copied. Determining whether a structure has been fully copied involves keeping track of the 

nurnber of chunks that still need to be tr~sferred an<f ihe ~~(~ti~ ~bstru~tures. Counters 

are used to record this information. Every root chunk~ fu''~~iti~n to 'the Parent list. also 

· contains a TostCo,te,l counter indicatfng the ~u~l~r of ~~nks stilt ~ be copied onto ~~up 

siore. When this va1ue becomes zero, ·the ~kup stilt~;~ -be upcbl~~ -~very leaf ch~kalso 
; , , , _ .,._ :, -- ~. . ·:1-:-__-,-·;~_L 1-· :/':~:;t~';(: I' , , ,, :· :,, ~ 

contains a counter indicadng the number of substructures which have not yet been fuJly copied. 

When this. counter reaches aro, the loaf. dumk can :.be c;q,ifd:.onta. -kup store and the 

ToBeCopwl wunter .QUl, be dee,ememed. Muoh,of lhei<ielail1awolvecl':m imptemendng the 

incrementing and decremon,tiq,of these .eountemds,no&,l!CIYri-.-blg, ad is omitted titre. 

The important point to not4 with,~ k>::wlJ;a,mplellen-;is:Ul8l • badcup system· •kernel is 

~nsible. not oµly fQI' ~. u,e. 'baeku,. ttat.c; .... :tlnldl.lJe cmataiAing die -1tlrly 

completion ele~ent bei1,11,eet. ,l,ut also; for,updatiin11 tbeJa::klql,._ ·with, alL.of its ,-rent 

structures that need to be.q,iftd as welL 

5.4 Storage Manacement 

One other imple--~ detail that deserNCS ,brief. meMm~is the .manner in wftich 

_ storage ~n..-.At ishondlod orurablestore.--The o,pnimdlalh•h&Je·~b" stableftt()re 

lends i~lf to a ~ery simple and effi~nt. lil0ragc maaagumentstmOflJI. ~IMhat stable stqe 

is used to hold transitio-1al dala represented in tile; formnaf 1QOlftf)utadon' record$1 · &ch 

computation 1"9cord embodies eke progress ofa>me.aati,e ~CJlllf'UtatM>fti in die system. Wt.en the 

result of a computation is recorded on Slable store-~ t,he;asaociated•oompucation ·recorded can be 

deleted. Deleted computation records arc added onto a fn-clist of backup chunks. We expect 
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that the set of quiescient data found on stable ,store WiU'.,ot periodically written onto tape. After 

the transfer. the space occupied by these data items·• aabl~,e,-can,bereclaitned. It is not 

necessary, however. to wait fonhe transfer,ofin~iott,'tt,;tape1Wore·sr,acecan be reused on 

stable store .. Once the result of a,computation is 'boarid w;d•envitt>ftmtftt. the storage occupied 

by the activation"descrilttor onttia of the~ft8iCOlitJMatioft1'fe(X)t(¥CMf be reused. We 

use a variant of a mark anci,sweep prbap colleak>A1pollty1:n-,1:alfri:sttUctum referenced from 

activation descriptor entrioin:a c:omputadoft·ra:ont1111t •~t.wned'.' Orice the·result of a 

wmputation isJmown and :is copied ~ the- badluJp 'stt,re,0 aJFdtvnks m that ..-obture are 

, marked. We canthe1Mmlaim,all dlwnlcsbetonginW teistWlctmtsrefe~ from'ADes, irl that 

computation ·that are not•tnlUted. 

The storage management policy is very ~mple fqr oiµ- sy~ ~u~ we can .d~tennine 
' . •.'" ·. , .: -. ; , · ·{_ . ! _: ",. i /. ! ;· ,S'i° : , l' . / :· , -· 

precisely when data is no longer accessible by obsefvins the d_nmpiiR of the command k>J .;_ 
. · · .. ·: ; ~: .., ·_ ·,.·,1 i ·_::·:itsH'] -:.:nr ;~:;Jr:· ·: '- ·-, 

removal ~fan item in the 1og implies !¥t the ~~,t~~,ff~ffl9<>~L~4t4'1 be reclaiJned. 
Waiting for a computation ~ com~lete ~fore rec~in,4J\!e,~~,i\~Ri~ Qn.~le)$t0rage 

obviates the need for introducing a complicated ~-~llecJf~l~J~ ~n stable store. '. 
' ' . ,,I ~ ' _, •'c - ' ~•• ' ' ~ 

It may be the case that the value.of a(Offlf)utatioft,fs retbrdllf'<kl the'backnp environment 

even benn· all lhe, valuesof dletADl"s in the'tll~'~itofl\putatic!Ni· ~; 'Slbte the tesult 

of the computation ilas beat ~eel in t!MMn~t llle:a,datec:H~mputatk>n record can 

be placed on the,,baclcup -..frecist Jt,an.-."tht.--,aldolt'tecortf;however. necessitates 

taking soma. action tG> mfonn • ·acd¥adons .-. Nllidta·••M Ml'inall}' ·~·tecx,rdtdin ·t11ese 

ADEs that the computation ftJCOl'd: is,JUJ longtr0 pa«~~·-~ ~rt · T<> do·this, · we 

maintain a uid entry table which contains referenciha·iltiMltfell' 'fet 1aU activations-ht the 

system. Entries in this table include the uid of the activation. the address of the activation in 

memory and the address of its ADE on backup store and a referilli~1 td rbbo1eah flag which 

indi~tes whether the COftlplldation .-conU1a&,becn NCJaimedtet1lid.'::When the aSmputation 

record. is ~~ from the baaup state. its ,assodatedilllg is let:to'ctue mfJ;the ,result value is 

,oot copied. Only the tnQt:activation of. a,~;oan,changc·this flag. Clearly, this 

·' operation is outside ofthe,puRSly functionat,pqmmming paWAli8ffl thusfur used: such resource 

managers are to .be writlcn·ua.mg tbe·,paMian COMUIIC((l0, wMdt:aUOM this sort o'f\non­

applicative behaviou, to expressed in an appHcatiftl8dling. · 
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Chaptei' Six 
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107 

This thesis has proposed a desian for the. V:IM .. cotnputcr .. ·system which guarantea the 

.. security of all onfule ~t'Qrm.auon aaainstk>s$ or C:Ol'l!t,lf)ticm •a:rcaldt,ofhardware faihare. We 

. ~eveloped backup. procedure;s dlat a. .ink'lldodnto, Cl~ macurrently with. normal 

computation. These proced~ llJCX>fd the p~ oflllia>m,matial,in:a•.'COfflpact fomu>n a 

bac,kup:storase me'1iwn ... When a a>mJ>U'atioft~iits~ia,bound ~tome MAtt in 

the VIM users,' envi~t~ ()nee thill,binqma is-l_aaded ,10 the backup,, en¥irorrment 

image, the computa~ .x>rfi -.odated widti dris ·anptttadon, il ... mtnoved frola lhe :backup 

state. We make no assumption as to the integrity otian,tdala'wijch.1111'\'iYesaJailureucept:for 

data found on the backup medium. The backup medium consists of two main devices: tape 
."c. ·. '. •• ' •• ,' ~-<,··"-1: ·;'·;_,,,> . .;:";.:.- .~: .. :. ''<. ,_ ':·-'., 

storage use,f to hold arr data bound to identitlen in the user ·environment, and stable storage 
· .. • . · .... ; i'":_;;_:_ .±1-r· tr:·~-;~;1 

_.::· ,~ ~- > 
which contllins· infonnation in· the fonn of computation ~rds about all active C9(1lputations in 

>. • -· • • • • • _' ::, fl•;: ~~~·t~;: ,:,- P~ '+'H-\" '; ---~, :>'j /,-·; - : ' ... ; 

the · system. When die recovery procedure ·is, iqvoked after a . failure, it . first restores the VIM 
. · ..... '. •.:i't• ,.,,·-.: ,. '. ;, ... - . . -:' .: 

environment structure using the backup environment imaie.' it then begins ~ex~tion of those 
. ,/ - ,, :~ ... : . . ,,. .• . -· ·r :'i ; .. 

commands,whidl were executing at the time the 0tailure~ix:cured. The time to reexecute" these 
' ' . - . ' . ' . .' . ' . ' . . ,. . ; -. "',' :..~ : ;-~ .. • .· :~'.- .,, ·~· !'"',' '· ... _ \ ,,., ' ,_.. 

commands is greatly reduced because of the infonnation kept on the corresponding oomputation 

· records. Once all commands 'have ·been reex~uted.,.tlie :riioo~~ey,.p~ss -,~ >~mpl~~ an(the 
' '.~ : . . ,. . ~ ' ~ : . 

system can accept further commands from its users. 

6.1 Contributions of the Thesis 

The contributions of this thesis have been two-fold Fint, we developed backup and 

. recovery algorithms ior the VtM system. These; a{gorithms ~ very ditrere~t frotri those found in 
: _ ~ ., " 

1 
• , • ; 1 .'i.:"':_ ~~-.~~'. ··; ~- -: '.j~t~; _.-:: .. ; _, '•., !, 

more conventional systems. The unique features ·of VIM that required a novel approach to 
i, t' \ .. '.. ~• ' • ~ - ' ~- ' I ';. ~ 

providing . data security lie in its applicative. programming' model and in the use of a .unifonn 

representation rorboth data and programs. Thi; horilo,ieneit{~ff~i~~ted the 'n~'to ma;intain 
• • • • '. -· • ' • • : ' ' ". l • ' ' ~. _;. ' • , J ' ~ ; •• : , , l - i ' • 

distinction between tiles and <fata. thus allowing the.backup· system to be more closely integrated 
. ' . ' ',,J ' ., . ' 

with the VIM interpreter than would otherwise be P<5ible. The use of an applicative base 

language made it ~ible to have a simple orgariiz.dt,on or'bactcJp st~ because data in such. a 
• t • '. ' • . • ' • > 

mndcl never changes its value. We cxploit~d th~ exp·rc~ivc power of the base language 

instructions by distributing the logic of our algorithms an1ong the salient b.L'ie language 
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instructions. The APPLY operator, responsible Jor creating a new function activation, was 

augmented to append to the appropriate computation record a new activation descriptor 

corresponding to the activation to be instantiate~ Similar enhancements were made to the 

RETURN operator and various structure operators as well. By embedding these algorithms within 

the interpreter itself, it~ poaible to achieve a •~of dataiteurity far greater than what is 

possible in conventional systems. In addition. such,a design makes the oj)efation of the· backup 

facility completely transpant to users of the sy!Mln. ·, Similatly; once the recovery ptocedures 

restore the system state aAer a faihlre, subsequent-emn,11tatioM Wiff not be able to determine 

that a failure occurred by examining .the restt>red state .. 1be:fact' ·that 1he base language is 

applicative also freed us .from having to introduce tomf)lk:ated bac'kup storage policies. Data 

,. once written onto to backupstote·is neverupdat~'it isliidlergafbarge<Oltected otbound to a 

symbolic name in the backup envilbnmerlt. 

In order to rigorously specify these algorithms, we develope~ a fQfillal operationaJ mQdel 
' •• > ·'. ~ l - :. ,. ! ' ' ,: • , 

of system behaviour for VIM. This model views VIM as.~ state trcui~tti.<>n sys~m with the VIM 
'·- . ... \ •--, ... 

interpreter being a state transition function. We pttJ;ented the 4eflnitions of some of the more 
' ' ; I ( : :~ • , ,~. ' •, :: } : ! ::• : ; - ; ' 

interesting base language instructions in this model u~ a v~~t ot: the t;u~ctional language 

VIMVAL. This basic model wa later enhanced to inco~te:the b~~pp $.ystem as welL The 
. . . = - . . 

backup state was treated as a separate component of VIM. The, ipterpn;ter was, now treated ~ a 
· ,: ; : . .·'!-,..;_ ·· :_f i h : , · . · , 

state transition system on a two-tuple consisting of, VIM, state . .and,~ ~~MP SU¢e. Beyond being 
• - > ' ,. • ,;, . , ~ i f • < , ' 

an important tool for expressing our algorithms, this model also allowed us to give a formal 
. ~ , : '., •,. '. -. , ,' I I ; ' '. 

proof of correctness of our algorithms (presented in the Appendix). 

6.2 Future Research 

One important area of investigation that was not addressed in ~ tbesis is the i§ue of 

correctly preserving the state of non-determinate computations.. A n<;>n·de~enninate computatipn 
.- ~ ! ~ ,•. • . ; 

is one which may exhibit different behaviours for the ~e inpu,ts.. ~js type pf cornputaµon 
' ' _;_ : ·.· . - -, . . 

contrasts with determinate computations for which repeatable ~h~viour isju~nteed. A m;uor 

assumption made in this thesis was that all computation was ~tcnnina~. This allowed us to 
. . ~ " ~ '. .• . ; i . (, . ; . . 

design a recovery system which can recxcc1,Jte comp.utatio11s wh~ re~u.lts are f'\Ot rccord,~d on 

the backup store by preserving the arguments to the computatk>r1. Such a design is J>O$Sible 

because any computation in this model is guaranteed to produce the same result when.presented 

with the same inputs. The basic non-determinate operator in the VIM base language is the 
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MERGE instruction. The merge operator is enabled whenever an input arrives on either ofits two 

input arcs. Thus, the behaviour of this operator is characterized by the arrival order of its inputs. 

Such behaviour is inherently non-determinate. 

An important area of future research is augmenting the design proposed in this thesis to 

handle non-determinate computation. The changes made must take into consideration the fact 

that non-determinate computations cannot simply be reexecuted by the recovery system since 

there is a multiplicity of output behaviours possible. Reexecuting such a computation with the 

same inputs is, therefore, not guaranteed to produce the identical outputs. 

Most transaction systems such as airline reservations, banking, etc. are based on non· 

determinate computation. Such systems also typically have very high data security requirements. 

Enhancing the VIM backup and recovery system to support non-detenninate computation would 

be an important step in understanding how highly secure transaction systems can be written in 

an applicative computer system. Issues of atomicity and indivisibility of transactions could then 

be addressed in this context. 

It would also be a challenging task to map the abstract specification of the algorithms given 

in Chapter 4 into an efficient implementation on the VIM system. / Realization of these 

algorithms will require optimizations not addressed in the thesis. Such optimizations include 

minimizing the amount of copying done to stable storaae and efficiently reclaiming storage on 

the backup medium. These problems which were hidden in our abstract model were briefly 

addressed in Chapter 5. A truly viable implementation will need to confront these issues in 

much greater detail. 
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Proof of Correctness 
->,."-~:.:c~·:_i.¼dc.:~ . · 

In the previous chapters, we have developed a formal model of the VIM system to describe 

our backup and recovery algorithms. Beyond being a convenMrtt~tclt'tn'«,frfch to precisely 

state our algorithms.· lb&ft>l1MtMOdlh'611 also ~~:if'~~ ofdur design. 

Intuitively~ demonstrating the ~ of'the Mat1t1Md' lEo+dy J)~utesirtvolves 

showing that the Fe0Mf'¥~~donot2 
~-•~ 9bife:~··~•tfte intbtfn'ation 

kept on backup· ttoJ!e· bf· 'the· baekup-pmcedu.-.:.•1 ~ «Jfri~ .,.idf~xe'ctite · after the 

:recovery, procedul'Ctl,complete should not be able to~flht1fft1tiat'a failure hatt ~rred 

before. 1- die bte of ..cha iYUm ~ed 1by' ~ --~~ mstilittiatech1ftet recovery 

from failure must be equivalent to the observable state which itlste~h,ribr tti1he'1lillure. In 

VIM, comp~tatiops o~rye :~~ effects .9toth~f -~\llP~l~;~~.;~J~ environment 

SU'Uctme. 'It is. therefe,e. ~ •• the Ol'lldftlmnmt.iftlaat'.~ lbythCUllfCOViry system 

be equivalent to the ettvfrort~,~- whichi ~: .. ~~ .. ~~J~Ti~tf ·~~-)?~?~. a formal 
definition of environment equivalence later in this appendix. To establish that environment 

equivalence is. preserved, we eqmio,e tbe,~~. 1~'\P~~,,l>¥:~ system when 
. ' -' - - _, ' - -

interpreting the command 1oa ,dattns 1m>very ,&J1d ·~ It ~-tl\e · state"'transitions that 
,, ~ '{, ' 

result when interpreting the same log when no backup state informatioh is used.'· To show that 

environment equivalence~ presei:yed ~ U1~ tw~lffl~t~~Mfl~~~; ~pie fact that no 

instruction is executed durihg the recovery P~--~ •\~ have been oucuted by 

the VIM interpreter evat~,Ung ~e,sam~ ~•JS w~~,nQ."\qtg~~JR~ ~packup state is 
' . . ~ - ' - - i- - . . . 

utilized. Our proof is as follows: We first examine tho:-.e.a~ir1e<U~y.eucvt1ng,a particular 
. . -~ .. 

instruction in the transition sequence of the recovery process. We then demonstrate that this 

environment is equrvatenr to the ehvironment·d'Jl1,pd11enfot1n~ statt'~ t,y executing the 

· equivalent ntrudion under normal iruerpretatidn. ·usitigi ~-Jntfl:rctlbthttgumett~· we·ttten 

~ow 'that the envimnment COfnpOrienFof the· fhfat· rtoov&-,'!tnte'is equivalent to ;the 

environment component that woufd have resulted'ftnb firitffretttd tlitett1ptace: · 

In the following sections. we formally defio~-. qur qo~i91.1S; ~r trnnsitipn $CQUCl\Ct? ~d 

equivalence. We then prove our main theorem: The system state after the recovery proce~ 

contf)letcs is equivalent to the state that would have resulted tf:id no·faUurc taken place. This 
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implies that it is not possible for any tci>Mputalio• to observe the effects of a failure once the 

recovery procedures complete. 

A.1 Definitions and Terminology 

State Transition Segueoces 
Because we are ex>nsiqerins,VIM to be a~ter,.:nj..-JM._. we,QJn-modd tile execution of 

a program as a sequences of~t~ 1be Ex,c,,,te~ whidl "!hDO ;gir,en a;cu.rrent •state and 

.... _enabled instruction tetu.rns Uie~.~il>Y •~li•·•~· .. 'llw,operationofsome 

of the b~, laJ181,188e ~ ~.diffe~t ~-i~~bfdler lbefwstem is executing 

using tl_le no~ or ~qry mtew .. f, In ow,, RIOPf., ~i~t • (:OflCerud with oamining 

state transition sequea;ices ~ by the· ~MlCCtiv4 ,.l'JICWl,on tac Qli)lllmand stream 

preserved on the ~bap lo&, 

Definition t: The System State is a tw~tuple, < VimStaie, BackupState> where 
Yim&late and ,Jlac/a,pSlptr WCl'O,deftned, ift\0Nlpter~1 .ffiie:.•mfe,ery, c<Hlllntlitd 
stream fo,r .. a sy~~ S is,~,~~~.<?f.~. <i:,~~·••tcy,w4ere­
BackupState = <Log,BHeap,BEnv> and Log(~.command = c, 

Definition 2: A state t1'tl1tsitlon · motion, 1-. is a relation on states. Let S = 
<ActJI.EJS.~n,> _and T == <Ad',H:.El&-.E•·~ Tilen.,6 ~ T:ifa3 (11\1) E EJS s.t. 
Execute(S,(u,i)) = T. 

· Definition 3: A state transition sequence, <S rs ?,"'•S ;. is a sequence of states 
such that s, f- sd_., for l ~ ,; 'S k•l. . . . ·.· . i . 

For notational convenience, we shalt soriletirrles ·•denote a . state transition 
• sequence <S,sr···S1'• S;t-s1 

The recovery p~ is divided into .two ~ . In, die f~•iPA~. -~ content$ of the 

backup environment a{C ~re4 onto the VI1!1, ~.~~Ill~-~- ,(~e tJMs is ~ the 

command log i& reexecuted; during this reexecut,ion ~, .~kµp ~adon i$ used to a"oid 

unneccs.sary recomputation. The state of the sys.tc:ql after~ fi~P.h~wmpletes is.caJlcd.Cbe 

initial recovery slate. The heap in the initial ret-overy state contains aJl structures referenced from 

environment entries in the backup cnviroririlent image'. 

Ocfinition 4: Let SI.: b~ a VIM state such.th~ F<r1ilure(S") = Inµ, Let B,_. the 
backup slate corresponding lo Sk. he <Log.H/feap.lJEnv>. 
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Then, the initial recovery state for S k is the state: < {}, H (J' {}, En·v~> where 
! '.i, 

HJ.u) = if3 names.I. BEnv(~fl'te) = uandBlf~JJ(~),=.v then v. 
= if3 R,u1,m·s.'t. (HJ;u

1
) == R.)A ., ·., · . · .. 

(~},• ¥);A.(8Naip(rt)\:,,)tften:1r.L r ;: • , 

= undef otherwise. 

< -·,;. ,f \ ... /i' 

Unlike UlstruCtiQ~.,e~~, ~i-~~~i:~':UGlllS~~d during the 

recovery process use infonnation found ilube ~~.i "ffie:APP£Ymtth1etion, for example, 

avt>ids instantiation of If~' ~vatiorts lf tli~v~u~' lb,t'~·~Y~~~ ~~~1\-:p{~~i~usly executed 
*"•.l,:t\,·l~:: 'i .. 1\_: ~ •.. -,,..,._, .,,,., '\ '·. ,. · 

has been recorded on backup store. The commanfrlolcN!aitf•n::tJWa.tup 1~ is a sequence 
•-i-•'.'' :.;· : . \ ··\ -. ;· .~ -~§, ~..-.~ ,':'l.-. 'i -·,:~ ~ 

of comman~ wn,ose ~.~1, ,ha~e no.t ret ~~i(~:~"e~[ln,'~e'.:~~~up environment 
structure. When a failure occurs. the recovery system reexecutes the commands found on the 

- · . . . •· . :_>·: .,:/' >·.f/! ;:}.-.Hi1j~·~:.:-~;_nii ·_·)~~~~-·!,' 

log, using backup ~ information it hu accumulated about the ~tip". To <i9fflonstrate 

that ~e ~very_ p~ in~rpre!J' ,is,in~~~ ~fulii~~r~x~~~' how the VIM 
Interpreter would execute these same com~,if >N?:i~!f~-.1:~formatjcpn, jJ.~. The 

transition sequences produced by the respective interprete~~~J~ -~, a tran~ition sequence 

pair. If the recovery system interprets the in~JouldfOll'dlie .Nbkup state correctly, it 

follows that the final states iif-ttie'tw~ trarisiti«Sni~~·~t~~~~~aJen~ environment 
, • '; c •' • ;, ' • - • V 

compooents. 

Definition ~: Let R be the recovery command stream (Qr~ and let STS = 
<s

1
.s2 ..... S) be the state transition se~•~tMievaluauen of the 

~~. R~~~::.~~~:.•:i :.;:.~=: ~~ 
mttr.s1tmni~e b ~ S. .. ,. , ·, , ., · , . ·., • 

Let R be the recovery command stream for system state Sand Jet RTS = 
<R1.R2, .... RJ be the state transition sequence ~rod~~i~.th~~~~O.~~on of the 
call: Recover>(<Log,BHeap.BEn,>) . . Theta/ ltf'.•~~~•1

~ ~:111d Rr is 
'. the final il!COffll? .s:talt"for .JV, 'EIS,- IS .,,, ,.,.,~ Mi 0kts is~led the" recovery 

transition sequence for system state "S. '.J ·· · . · · • · 

Definition 6: A sequence pair for a system state. S:'ts')a twcMupf'e:· <llts.STS> 
'where R,TS = ,<R~~IJ··t·-.~I apd srs = .~~~ .. ~-.t~Jc ... h.,~Jt,~.S;t:are ·the 
final recovery state and ideal rec.-ovcry state roi-""thc command ·r~'lm, r~sp. R1 = S1, 
the initial•rccovery&utcfflrs,stem sttite s: · ·1 1 ' ' '· · · ·' •• 

1 
• ··· · · 
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State Equivalence 

In the following definition, we shall use the symbol, =, to denote the equivalence relation 
.- . 

between corresponding state components in .:differ~qttSt.ates. Ttn~s. if Env, and Envj are two 

environments in states Sands·, then E111,pra En,1Jttbese tw.>environments are equivalent 
,', ' < ,' 

Definition 7: Instruction Equivalence: Let FA and FA 'be two activities. Then. 
FA(m) a FA'(n) for m,n € N if: 

•FA{m).opcode = FA'(n).opcoc;te. 
• ¥ opnum-E co,num, ,opnurit2~~u~~ F A(m).opltum = F A"{n).opnum if 
FA(m).opnum~FA(n).o,-m~ Sc:lallrA ., · 

•V opnum E ~o,n14rn.1,~pn~m2,o.pn...,m3), fA(m).ofnum = FA'(n).opnum if 
FA(m).opnurn arid 'P'A'(n).opnun(~ U. · . . ' .. 

•FA(m);o,ont;: FJC~n,).opc;nl. 
•F A(m)._sigcnt = F 4 '(n).si9tnt. . . . . . . 
•V (dc,k,opnum) € F.l(i).ckst, 3 (dc,l,opnum) in FAv).ckst s.L FA(k) a FA'(/). 

Activity Equivale~e: Two Activities FA and FA;are ~Qivalent if for ev_ecy .m -~ 
N, F A(m) • FAtm). . . 

',. ' ' 

Object Equivalence: Let H1 and H_i be ~o heaps d~fined such that HJu) = v 
and H ju) = v'for u;u'E U. Then. v !i!tl''1f · · 

•v = unde/, v·= undef. 
• v € Scalar, then v'E Scalar actd , = ,·. 
ev E Re~ord. then v'€ ijecqllJ ~d _ I(,) •: P~ ,). ij)r e~ry i E N. 
•v € ECQ, then v'E ECQ and'v (uk,1) e· ·v, 3 (u

1
m) € v's.L (uk,1) = (u

1
m). 

ev E SUSP. v € SUSP s.t. if v = (u ,m) and v = (un,n), Ait(u~m) = 
Act(u,,)(n) o_ R Htv) € Record and v'E SUSP and~ sta~e fA:,.whe~ SJt-Sk and 
H1tlis H~,). · ·· .. ·· 

., € U, then v'E Uand Htv) • HJ,). 

Eavif:0111De1t Eapat,alpee: Let ~n,1 and En,1 .be two envimnmems in states s, 
and s1 Then. Env1 and Envj are equivalent if fi>r. cva, "J 1.t. En~n 1)= , 3 112 s.L 
Env}n;= ,·where if 

• v = undef. -v· = untie/. 
ev € Scalar. thon -vE: Scalar .and V == ,·. 
•v € U~ then vE U and ff,(v) a Hjv). H1andH

1
are the heap components in 

states S1 and s
1 

resp. 

Containment and Completeness 

In order to show that environment equivalence is preserved between states in the recovery . 
transition sequence and the standard tr.msition sequence. we w41J ;need to examine the effect of 



§A.1 DEFINITIONS AND ,TERMINOLOGY 115 

executing equivalent instructions in the two states. Thus, it is necesatr.y that ·for every enabled 

instruction -in the recovery state. there be an eqwi~lent instnactiqn in the ~rr~nding VIM 

. state. This property is called .conlainment. 

Definition 8: Let <RTS,STS> be a sequence·,mt fbr a·ststem·sta~ S, where R1 
is an ele°!ent of RTS an~. S1}s,an ~lrrne·µ' 1·0.~,f'~. 1~,,~ fP,~ .. aA ... P-'f4.in1, ii V(":'7') € 
EIS1 3 (u ,n) € EJS1 s.L F A{m) a FA (n) wh~,rt;. A,ctJM). =,J',~)J»A:~ctju > = FA • 

Dehitien 9: .if <RTS.STS> is a seGfUeltC»'paK",ft>F•~ ~. s. and R, is an 
element of RTSandSL:uanelementofSJ'S;'dlen~1'9 '8ti.,rettwrt·Sj if Enr1 • E,r,1 
and RI is contained in -s1 

Computation Sets 

In Chapter 4, we introd~ the computation 'tree. as -~ ~oi) to describe the 
',. '>-• , : : : ! .. : ·-- ; ~· ,. ; ; . - . - ; . , • 

instantiation of function acuvations in.a CQOlputatiQQ, lbtJohw.ial three. <ilfinitions fonnalize 

this idea. 

. Deftaitioa 10: .. Let aa a;uva.tion a be• instantiated, ,in state S. · Then, the 
computalion set C of-, i& Geff,ed es follewa: 

•a€C. 

•Any activation instantiated from an activation in the computation $Ct C is also inC. . · . ·. ,,.. . .... · . . :" . . . . 

That is. the computation Sil of an-aetivatiort (-.41),,epreeents .the: transitive dosure over all 

activations in the computadop tree rooted at (a.a) •. 
/. 

Definition 11: A compUfatton sequblce CS for an activation instantiated in state 

~e ':!.~:=:i=o~:~::=;'~~!'n~r!: 
activities found in C. ·. .. ' · ·· · . · 

Definition 12:A v .. ,€ Sc.alarV ST,'.•~itla·state·<Act,H.EIS.En,> 
if either: 

•There is some activity A s.L A(n) = / and J.ppflum =? l' for opnum € 
{op1.op2.op,}. ~d Acl(u) = A. · · · · 

• There is some, activity A. s.t · A(n). = ./ ,and l.op,rum = u for opnum € 
{opt.op2.op3}. AcJtu') = A and H(u} = ,. Jt 

• There is some v'E Rt-cord S.L v'(m) :::: v·oi- v·(m) = u where li(u) = V and v'is 
acccssi bte. 
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A.l Proof of Correctness 

Lemma 1: Let R; = <ActrH,.,EISrEnv? be an element of R!S an~ S1 = 
<ActlH1EIS

1
Env> be an element of STS. Suppose,,iib- Ry.,_ron aa.e~bJed mstruct10n. 1(u,1), 

wh~re Act,(uJ = FA and FA(,).opcoc:k * APPLY. Then, if R1 is oomplete wrt s
1 

3 a state Sk s.L 

s11-S k and RI+ l is complete wrtSt. 

Proof: To prove ~e lemma .we neecf tQ .,show, tha,t .en~Jronm~nt equivalence and 
containment holds between R +I and some stat'e'Sk for any insuuction 'whose opcoc:k is not 
APPLY. We prove the lemma by examining the different classes of instructions defined in our 
model and.show that ~IM!Gtabold&,~•,each of~·~ ;Jt:.l;ilicort1J;lete wrt s1 then, 
by the property of~~ tae,,e..,taan:~ble41-~ ,a~J)( EtS1 • (w,/). 

1. Scalar Operations: The effect of executing a scalar ~ration does not alter the 
environment and so, both environments in R;+J and SJ+/ remain equivalenl f:JY 
definition of instruction equivalence, we know that every destinatiort 1(.tlc,f,dphtJm) m 
F A(1).dest = 5'?flile ~~t]rati<>n, }d4-~~orlt~~ ~iF .f~: ~we, ~Ct~ s;alar 
values are sent to eqwvalent mstructrons, diese destinations remain equivalent 
Thus. equwalont ~16ecx)nw~._61id itfR;~}~Sj~J Htnce. ·1t1+1 Is 
contained in SJ+ 1 and, so, the lemma holds for scalar operations. 

2. Structure Operations: A structure operation.performed,~~~ ~t.rni~ht cause the 
newQate R1+JlD have.,~uliffelllat l'lapt, Nott~dla~~'ebtipt.,nent does 
not change when any structure operatkJn:ej~i:;'fow1tllat.,,ttie letWmastBl'lmlds 
for these types of instructions, we examine the various structure. OJ)CRld.ons in our 
system. 

a CRFATE: A create ·instruction executed in R
1 

wili. produce a new 1tl;Ucture on 
the heap in RI+ 1 with uid u I and size n. with all elements of the structure 
having value undef. where n is the operand to the instruction. The equivalent 
instruc:tion i&r£JS~•f J) wllea' necatecMrt!GJ~ait\W'~ on 
the heap in S.+ 1 with uid u2and.~~.~c.~~~J9~~~ajvaleo~ 
H;+ 1 and ~+ 1 are still equivalent · Showing that R1+ 1 is still contained in 
SJ+ 1 fo~lows th~ ~e a~t ~ji~en ,.~e. , : . . , . 

b. SELF.Cr: A ~ operatiqn ,ea .t,e; ,pct l>.ined .c,n: a,a~ dtment that is 
ejdler • scalar ,or,~. value •. ~ early ~••u•-.ie•or ·a ~on. 
We examine each of these in tum: 

i. w,Jue: There are two cases '? be consi~e_red if the item selec~d from H1 is 
a scaJar or a stAiCUlre.- ln ttre·liM1eate}tfle:~ seletielflmm'H. would 
also be a scalar or structure value. By the propcny of contain~ri( the 
operands to the SELECT instruc.tion, mll5l be ~jvqk:~L Si~ ,the. heaps 
and envfronmcru components 'do ~cij99'.~? t~ 'tJ_ti~.H,.,. . ,:fi H +,. 
R i+ 1 is still contained in S ·+ I because aff dest1riatk>ns of'ilie {E'tEcf in 
R; are equi#ment toflcslina1ioftlin.8i andtfbtloil,irtg'dle argumeht given 
in ( 1). these instructioos woatd, 'relhaiR :oqwvalent. · : Dus. · R; + 1 is 
complete wn, sj+ 1 in. Lhis case. 
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3. Terminate Opentioa: Execution of the TERMINATE instruction causts,-tt>ntrt>l to 
retttm tothe~:with·1he <nu,ne.ftlfaV bt~II ~ ·ro !M .. uset·envirQhm~t 
Since 1R· ng_ ~ ,iftO$ •Jtfie f~ 1jfth@(~teMiWlnre ~~) ntii1' be 
equivale~t in both R1and s1

1 
Env1+ 1 is. therefore.equ~V~iiv);("f1olk>wtni'""-

•·" . the sam~ a~v~.cnt;Jivcn~,\" J~) '"o(~c .~ ~~J·1+t1r~; ~« ~~"~~ ~j+ r ' .. ' 
4. l_l••~; ~ioa: ,'file "1"U~N ifls~~ Ilk• fW0."'1JllnJGIG •. lfle;.f"Ctum · value · : 

and the target list By the property of containment the return value and target lisl in-·,·, --
the equivalent instructions in R. _ and S. must be C9Uivalcnt. R i,;;J ,l~ l'()ntained_ ,in 
s1 + / smae tlk:'targct'_tltfo~ ~ the ~ 1 ~raMf;iihh.'quWa~-afi~ll\ittd~1~ 
values arc cquiv.1lcnl 111 the two Slates. · · · · 
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5. Tailapply Operation: The. TAIL.APPLY instruction takes in three arguments, the 
function closure, arsument list and return link. By the;property of containment, all 
three operands must be equivalent in the ex-ecruting instrudions in corresponding 
states. The result pf e~ting,the instructioft•js toadd atmw,activadon and to signal 
instructions in its, own activ:uion. Be§:ause tbe;;dbsure& and argument lists are 
equivalent, the instruaions en~IQC;t .in tho n1w .iivatioa must am, be equivalent in 
Rt+ 1 and s1+,. ·. following the U.gUment gwen,:m<(l). it i' _easily ·seen that R1f 1 is 
contained in s,+r A simHar . ..-pment. can. he applied. in t1le analysis o the 
streamtail operator andi$,omiue4.,._, · ·. 

§A.2 

Since we have shown that th~ lemma holds for all in~pn classes (excluding APPLY), 

the lemma is proved. □ 

The effect of executing a function is visible only in the ,~t value returned by that 

function. Thus, given a axnputation sequence for-some• &11ution, ·the values that are still 

accessible after all activations in the computation ~u~nce ha~e completed are precisely those 

returned by that activation to its caller. 
Lemm~ 2: ~t <S,Sr··•Si> _be a .a>mputaticm sequen.~, fo/ ~ ,~ti~adon 1· Then, ~e 

values accesstbie m S lr.+l' but fi<>t m Sare those values ~DleJiytn J•. mstructiOns found m 
the destination list of the activation, A. • · · 

Proof: (byco1ttradiclion). Suppose there issomeavalue, ,,that is accessible in Sk+l but not 
in S and is also not acamible from. thtt" .-um lint to the 11tdrittion". 1'1ri$!value must nave been 
created by me instrucwn that:u1an element of seftlRfaefiiffiott·ufthe c:bmputation set of A. 
Let this activation be a. h1 order for·this sthtctwre ta ~life':after the termination of this 
activation. it mUS\ be ·returned ·as a result &f dmt' dftlion'~~:fteferences to it from 
instructions within,«,are lost once:4he.R:~fnstrudidn•uiies?li~t'i1s''Caller be /l In order 
for the value to t,eacc:essl,~ in S '+r itmUtt.•by .µle slffle ~lftts atiove, be returned as a 
result .of this. activ~ti?n as well; ~~µ~~$ ~is ~W~tt ~w~ ~'·~:~~ v~e (?lfl only ~ 
accessible. in S k + ,. tf tt is retun1ed ~ the ~It of A. '1~ .tlus ~~~ Opr, QIJiUlal hypothes1s 
and so the temma is-i>roved C . . . . . .· . 

Theorem 1: Let <:RTSSTS> be~ sequ~nce ~ir ~orasy~m·.~~tS,~4]c:tll, € RTS and 
~j E STS. Then, if R/- RI+/ and R/is complete wrt s, then 3 a state sk S.L S/:.-sk and RI+/ 

~~--~ . 

Proqf: Our proof is by ~on. The iDQµa4on _., shows lhut· the1tbeorem bolds over aJI 
instruction. cl~s for our system. · 

... Basis: Let RTS = <R,.Rj and STS = <s,.s;. Since Rl = s,. ~d_by.dcfi_nition of th_e 
IOl~tal recovery state, EIS1 = rp, R, = Rland.s, = s, Tha~.;"1:1:' s1ana•tt1e,theorem IS 
sausficd. · · · · · 

1 lypothcsis: Suppose that the theorem holds ror aU scqucna:. p,airs <RTS.STS> where RTS 
is of uplo length i. i > 2. 
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Step: We show that the theotem holds for a sequence •pair <RTS,STS> where RTS is of 
length i+l 

Non-Apply Instruction: Refer to Lemma 1. 

Apply h•st~ion: There are , four types of-adivalion deseripton that are found on a 
computation. reoo.Fd. Th0$0.ft9Cri,tors.can either;be,of&ype:, -~- ualuc, rda~ or 
str~nua.&L When an APPLY ,instruction executo1 in k,it,mminesfdtelacdVildon ddcriptor for 
the activation to be initialted. 

1. apply or nonexistent Atk. If no Ade exi~ then IJ#e. ~,.,. 1 is (lOtnplete wrt state 
SJ+l since the APPLY i{l~ executing~ -rp)ti~.-~,~P inforu-,ton. 
Since R;is oomplete wft s1 apd equivalent.~,~~'~ thCS4 1two.~ 
then by analysis si!llifar to the: one 9iven .fff(,~ f~¥i.~ in LernQMI 1, 
Ri+l ail~ s/1-J' l'ef!l~ ~uiv~n~ Th~-•e~-,i~ .. -~ . .itr:n -~ APPLY 
operator 1$ to m~u.ie, an. acuvauon wbk:JJ, has,;~:~~-~p~r entry of 
type apply. Since no ~lt is found in the.~ i..oe.w,~~:~co:ated b:, the 
APPLY. . 

2. ual~: I_fa ual~ Ade,exists for~i~ ~vation, ~~l'(Ml,wg-~~ froru R,,in ~!It the 

:ti~t; ~ ~•b~!'°:u~al:;~~~~~f ~#~;,~;~:: ~-:: 
instantiation of an activation, (u rA), because no backup information is used. By 

Lemma 2. there isastate ~ ~~<Sr1+-,~~1+Y~1t11at~ voies 
accessible in SJ+k but not accessib"" in.~;..-.-~>._, ~1,le from . 
instructions found in the destination list pas.,ed to the activity, A. These values 
represent the result of the activation and thus must be equiwfent •die tiluett:>und 
in the Ade of the activation used iJ:t. R1 _(since, Y!,C . h~ve n~ n~~determi~i$tic 
oomputation). ·· Since the· mtv· instruction: ex~n :'lf, $el\ds' the vtifue or the 
activatiOn found~ thch4e to'alfdesttt'lltiohi; '.-fl1f tW1~f of ~~nrnent. 
the two APfl'l.Y fflltl'iletiMs e~j it1 .'Jl j-'\Yll~ edll~t destinatlon , . 
instructions. state ·R' '; ', tffllst ;fxf contaitteif :Jr de' Jt, !"' s~0tti- 'ettvfrm,nent '. 
image ,does oot ·m4 in 'atheriate~ -R . · •-~·wii"S' ,. and. so, dte · 
tbeorein hokts fbrthlsra.e. , ' ' · · l+,I '. :c · · : . -·; . .· 'Jt Ir. • , . . . . . . . 

3. tatlapply: If the Ade for an activation has '1J>C.'.f4J~"~v.,dwo:R;¥-14iffe11,from, · 
R1 in t.JJ~t R./+ 1 wilLcontain a n.ew activity. A. whose qument r.e.cord ia"8lrieved 
from the acuvation descriptor. When the corresponding APPLY instruction executes 
in s1 it will cause a new activity, A', to be created whose argument record is not 
nec9arily the same as in A. Consider the state transition sequence, 
<S1Sj+r"·•Sj+m> where Sl+m-l t- Sj+m on a TAILAPPLY instruction which creates a 
new activity, B. such that B = A. There must be such a transition sequence since all 
compumtion in the system is determinate. B is a descendent in the computation tree 
rooted at A: Fix the transition sequence from S/o S.+m !l> that E/S.+m contains no 
instruction from any activation on the path from A't6 B (or descend~nts of any such 
activations) in the computation tree rooted at A'. This is clearly pos.~ible because of 
the non-dctcnninacy of the Choice function. The only new values occ<.:ssiblc in Sj+m 
not accessible in ~~-arc those referenced from B. Since B = A. R;+J is still contained 
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in SJ+m· Since the environment image is not updated in,either tnnsition sequence, 
environment equivalence is still preserved. Thus, R1+1 remains complete wrt SJ+m· 

4. Streamtail: The case when the Ade is of tme Sllt£A~R,, .~ v~ $imilar to the 
TAILAPPLY Ade given above. In this instance, Rt+J diffe~ from R1 in two ways. 
First, the stream. image. on saablestor. e isoJ!eStDNd.. :onto,~~,1'S~dty, a *.•efeton 
activation is cieated to installbElte procll.lction ofltne1Nfni · ~ ef the1tteam. Irr 1tate 
S the apply opet'BlOl'wiUause• new,acdwtionv14cte;be~it0lproduciethe ftrst 
element of the stream. To satisfy the property of con~ we 'mnsidtr the 

:~= ~= :r:~;:,;ii:~: J~~~w:1:.:;;:if~!}r: 
point, the first;stream element is cbmpletely'd~ijig'ttt~'is,a suspqtsion in A 
which is· not yet enabled ,x,· .~. ;the riext'l~~e,it ., , BJ, :@t cfetlrii~on of Qpjm 

=t~:::·in~~::=: ~~~1~fate:=~~tlt ~~ 
enabled also remam equivalent: Hence O)tiUi~~~)c:t~ee,~tS .. and 
R1+r Since the en~ image does not'thinle.(:R,~1 ltttialnt)corn6S.wrt 

SJ+m· 

§A.2 

Since we have shown the theorem for, each of the ct.es of A,/4~s. which may be found on a 
computation record, th~ theorem is proved O . . . . . . . , . 

Corollary: If <RTS.STS> is a ,sequence pair, t1rerrR1 ~ ~plete· wrt Sj ~here R 1 and s1 
are the finahtates for Rm aml'STS mpecdvely. · · · · · -

Proof: (by eo11tradictlon) 

Supp.~ .. th. at Rfw~ ... · Ni>t eotn,p .. ·· le .. te .... wrt.· .to $1 . Sm .. ,pe;.··4¥.$'1 :::; i>, '",knqw Ulat,R1 1&.·. contained 
in SJ It must. theref~ ~: tb•.•~~~¥i~\1~i~ •1'~ ~44 ,bd,ween. the 
two Sqltes., By lbQOte~l. ~~~w1~ ~~~~~~All't_, ~,wJtefQ s1 .,_SJ 
As ,a c:9,qsequenq:_ ,of the hypoth~, thefF ~C~t~r~vi~t .~R.IJIJJttuctioh 
exe(;uted in ~ transki~ seq~ ~:f~Jt m-~~Ata\~ft9t ~•j~ffi·i)f.)V.0;~. This 
is a contradiction since by detini\ion s. life same ex>mmand ~~·••~.wNlliboth the 
ideal recovery state and final recovery _state. Thus, ~r ~.~.\h~t .~(iJ, "°!, oo,mp!e:te wrt s1 must,bt,fllhleand tJleCO'IOllatyi~f>IO'Hd t1 ·. · 1i, "·'' :.,, 1" 11 , ! . "'1 

, • · , 

_., ·_; . !:,c .! ;! .: t. 
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