
MIT /LCS/TR- 35 3

DATA BACKUP AND RECOVERY

IN A

COMPUTER ARCHITECTURE FOR FUNCTIONAL PROGRAMMING

Suresh Jagannathan

October 1985

This blank page was inserted to presenie pagination.

l ~ ..
-~- ·:.,,<"" .. _,..,,,-1_,,.-.,_.-... ~,,,;~~-~--.

Data Backup and Recovery
• ID a

Computer Architecture for Functional Programming

by

Suresb Japnnatltu

October, 1985

<C> Suresh Jagann3lhan 1985
The author berel1y ;Jrants to M.l.T. pennismon to reproduce and distribute copies of this

thesis document in whole or in part. ·

· Funding for thi&,work was provided in part by tlMt N~al Science Foundation #NSF
DCR-7915255 and the Department of Energy, #DOE DE-AC02-79ER 10473.

This empty page was substih,ted for a
blank page in the original document.

DATA BACKUP AND RECOVERY
INA

COMPUTER ARCHITECTURE FOR FUNCTIONAL PROGRAMMING
by

Suresh Jagannathan

Submitted to the Department of Electrical Engineering and Computer Science
on October 28, 1985 in partial fulfillment of the requirements

for the Degree of Master of Science

Abstract

The VIM computer system, an experimental project under development in the Computation
Structures Group at MIT, is intended to examine the efficient implementation of functional
languages using the princip~ of data flow computation. In this thesis, we examine how to
incorporate backup and recovery mechanisms into this system to guarantee that no online
information is lost because of hardware malfunction. Our solution, which takes advantage of VIM's
powerful applicative base language and its uniform treatment of data and files, integrates the
operation of the backup and recovery system within the interpreter itself, resulting in a system that
can ensure a high degree of data security without ex~ive performance degradation. Unlike
schemes found in other systems to guarantee data security, operation of the backup facility requires
no user intervention.

To present our algorithms rigorously, we first develop a formal operational model of system
behaviour. This set-theoretic model views VIM as a state trapsition system with the interpreter
serving as a state transition function. The specification language is a superset of the applicative
language, VIMV AL. We enhance this model to include a concept of system failure and augment to
the basic components in the system a backup state with the base language instructions now
operating· on both the VIM as well as the backup state. A formal proof demonstrating the
correctness of our algorithms is also given. Issues concerning the implementation of .these
algorithms are also addressed in the thesis.

Thesis Supervisor : Jack B. Dennis

Title: Professor of Electrical Engineering and Computer Science

Keywords: Dataflow, Dynamic 0Jtaflow Architecture, Functional lanlJJages, Fault

Tolerance, Data Backup and Recovery, Reliability, Fomial Operational Models, Dataflow Graphs,

Resitiency, Language Based Art:hitecture.

This empty page was substih,ted for a
blank page in the original document.

...

Acknowledgments
The result of knowledge should be the tumtng '™ZY from unreal things, whlle altachment to these Is the result

of ignorance. This Is observed in the case of one who knows a mirage and things of that sort. and one who doa
noL Otherwise, what otMr tangible result do tM knowers of Brahman obtaln1

- Yivelcachudamanl of Sri Sankaracharya

I am grateful to my thesis advisor, Prof. Jack Dennis, for the many invaluable suggestions and
insights he has provided during the development of this thesis. His continued interest in this work
has been instrumental in the formulation of many of the ideas presented here.

I also thank Bhaskar Guharoy for the many enlightening conversations we have had together
and for his help especially in the early stages of this work. It is a pleasure to acknowledge his
assistance in the development of the formal model presented in Chapter Two.

The friendly and intellectually stimulating atmosphere of the Computation Structures Group
provided an ideal environment in which to undertake this research. I thank the other members of
the VIM group: F.arl Waldin, Bradley Kuszmaul and Prof. Nikhil for many interesting disci&ions.
Tom Wanuga, Kevin Theobald, Willie Lim and Tam-Anh Chu were responsible for many an
enjoyable lunch.

Above all, I am indebted to my parents and brother, Aravind, without whose constant support
and encouragement this document could never have been written.

This empty page was substih,ted for a
blank page in the original document.

To my parents

This empty page was substih,ted for a
blank page in the original document.

Chapter 1.

1.1 Goals of the Thesis
1.2 Motivation
1.3 Background ·
1.4 Previous Works

Table of Contents , ·

1.4.1 Data Security in Centralized Systems
1.4.2 Distributed Systems
1.4.3 Fault Tolerant Systems

1.5 Thesis Outline

Chapter 2.

2.1 The Applicative Language, VIMV AL
2.2 The VIM Interpreter
2.3 The VIM Shell
2.4 A Formal Operational Model - Ml

2.4.1 The Base Language Instructions
2.4.2 Early Completion Structum
2.4.3 Delayed Evaluation Using Streams

2.5 Semantic Functions for Ml
2.5.1 Auxiliary Functions
2.5.2 A Fonnal Model of the Shell
2.5.3 A Formal Model of the Interpreter
2.5.4 Fonnal Definition of Base Language In~, .

2.5.4.1 The TER.MINATE Instruction
2.5.4.2 Structure Operations
2.5.4.3 The Set Operation
2.5.4.4 The Suspension Operator
2.5.4.5 Function Application and Return

2.6Summary

Chapter 3.

3.1 Failure Model
3.2 Fundamental Issues
3.3 A High Level Overview of the Backup and Recovery Faci-
3.4 Architectural Enhancements
3.5 Summary

Chapter 4.

4.1 The Computation Record
4.2 The Activation Descriptor Entry
4.3 Early Completion Stmcturcs
4.4 f unher Enhancements

1
2
3
s
s
6
8

10

11
12
15
17
21
22
22
24
25
28
30
32
32
32
34

··. 35
36
41

43
44
46

; 49
52

ss
59
62
63

•
I

4.4.l Tail Recursion :
4.4.2 Stream Structures

4.4.2.1 Rationale
4.4.2.2 Implementation

4.5 A Fonnal Model of Backup and Recovery
4.5.1 The Backup State
4.5.2 Early Completion
4.5.3 Auxiliary Functions

4.5.3.l The Copy Operation .
4.5.4 Toe Shell

4.5.4.1 Removing log F.ntries
4.5 .5 The Interpreter
4.5.6 Function Application

4.5.6.1 Toe Apply Instruction
4.5.6.2 The TailApply Instruction

4.5.7 The Return Operator
4.5.8 Stream Operations

4.5.8.1 Toe Suspension Operator
4.5.8.2 The StreamTail Operator

4.5.9 The Set Operator
4.6Summary

Chapter S.

5.1 The Copy Operation
5 .2 Storage Organization in VIM
5.3 Perfonning the Copy Operation · ·

5.3.1 Early Completion
5.4 Storage Management

Chapter 6.

6.1 Contributions of the Thesis
6.2 Future Research

Appendix A.

A.I Definitions and Tenninotogy
A.2 Proof of Correcuu.

References

64
65
67
69
71
71
74
74
15
n
79
80
81
81
82
85
87
87
90
92
95

97
98

101
103
105

107
108

111
112
116
121

List of Figures

Figure 1: A simple VIMV AL program
Figure 2: A VIM data flow graph
Figure 3: Function application in VIM
Figure 4: The translation of the BIND command
Figure S: The Abstract VIM System
Figure 6: The Use of Early Completion Structures
Figure 7: Demand driven evaluation of a stream using suspensions
Figure 8: Tail application in VIM
Figure 9: Skeleton of a Stream Producer
Figure 10: System Operation
Figure 11: High Level Organization of the Backup Store
Figure 12: Abstract Architecture of the VIM System with Backup Store
Figure 13: Representation of a Computation Record
Figure 14: Dynamics of a Computation Tree
Figure 1 S: Structure of an Activation Descriptor Entry
Figure 16: The Effect of the SET Operator on Backup Store
Figure 17: Handling Tail Recursion
Figure 18: Reconstruction of a Stream Structure
Figure 19: Recording Tail Recursive Functions
Figure 20: The Effect of the SETSUSP Instruction on the Backup Heap
Figure 21: The Representation of a VIM structure_

13
14
IS
16
19
23
24
38
40
49
SI
52
57
58
61
63
66
70
84
88

100

This empty page was substih,ted for a
blank page in the original document.

- lJ_fll.O

.t»ria~b oo nJ>:) aro1i~i !;W~ tid&id ,.,,

N 1t1~q !'>w ~riltw 'ft,v~ bal·-­
_, l,bom , w -~ ,,,ru rm~

_.,S unai - · _- - --.... ''

t

' - ~- : -~ :wo gi bnuol

: oo,- 3'0ffl -ail ,mnU
-· ·_ _ •i,ffl# bna olq,nk

. ',

----- ----}~-,Jftf~,;~;:t~;~)"_;~;.~,¼'~> -,
··;~.r·~/

l

-~:':t;~ _-
:~-~~

·<·:r:1
. '?~:i

. -~;~J;~:::f

·--~~~:f:Jj
. ;ti~

'',',-~·
' -.-,,l~

><_. ~''.,;;_~i~~
)'.\Jf;f;

~-~J~~~
- "i •.>,; . .,,~ ._, ,_ :·.;

\1
~i~
~-:t
t~
'c}i

-< {Ji
·;~·-~:/_~f~]

T,,,,,_:"

:{j

2 GOALS OF THE THESIS §1.1

found in our system provides a framewoi:k QO which a highly secure system can be designed.

Unlike its more conventional counterparts, the backup and recovery utilities we present are

simple and efficient and do not require any ,.ttF·~ce to perform their task. We model the

presence of failures and the actions undertaken by the backup and recovery mechanisms by

defming a formal operational semantics of system beh'ajour. This formal model is used to give a

precise description ofthebehavidur of the backup and reawery system. We demonstrate, using

this formal model, that the backup algorithms developed p~y records the relevant portions

of the system state and'that the recovery system does-~y·restore the.proper system state as

well.

1.2 Motivation

The prot>lem of ~tc;eing • secwity il ,certainly not a new one. Virtually every

major computer systelJl develo~~lude$ some.tYJ)I ~[pro)edionaechanism tosafoguard:the

.. information. entrusted to it.. It. is. the~fore. · natu~ :for tu reada' te.qttemti0tt why the ·studf of

data security for. tlle VIM _system is. ai problem ·wtlr'dtr pf ,i~.. .lbere :are two main

reasons why '\VC have not cbe$ea to-simpJy.usebaeimp;• ~ algoriduns de.eloped.for

other systems for. VIM. First, l¥ld fo,-iosr,. baetupJabd.,1dicaaf • svstems in «l>Rv«tdonal

systems. are not able to 1)4Dvidc full,1dala.fllC\lffW,MJiaout ~tiemmivety,aomplex·~d

inefficient In gene,al tl\e.itJlPMmentadoat of,lhea-lditidelJlre'inot·iablle fl>,provided\Ht ·data

security witb04,1t incQrring $1Aiikant ~ m ~--; ·ln:afldition,to dritmajor

drawback, these schemes are based on a computational model which is much different from that

found in VIM. The implementation strategy that we present in this dYesl!s 1gWttanteet faff data

security ~d exploi~ the ~~~res of VJM • ~-,, k •~r-.dij'fetat·&om other

data seQlrity ~ ~ b .,both ~~ -~~sr,Sllsnsc\Some of the more
interesting aspects of VIM pert.inpn~ ~--~ •ue of data,~ lfldlcd helow:

. • VIM is based on a dJ11811lic dala flow ardlitectUlll'.

In a data flow computer system, all instructions in ,.the prog~, are viewed as potentially
, - ' , ' ' - . .. -',: , ', -. . / ' . ·, ; ' - . ; . ' ~ ' . ' .

executable. with the only constraint ~ing that they must hav,e received all "!!C~ry operam:.ts
' ' ' • -· - • - ' ' ' ; ~ ,,:· ~ > ' ; I ,,· • i ~ t I ' >- ; ! ~ I ; ' ,' : -· : • • , ; t

and control signals. This execution model allows f9r.~ gr~t 1deaJ},>f~cu.rr:cqcy t9 be rcaljz.e~.

Thus. our data security mecha~ism. ~usl 'be d~isn~d;k>.,be -~~,' i,~,i~ hig~ly co~cu~ent
. ' ," ; ; : : ~ ' ~- -· ' '

environment.

§1.2 ,MOTIVATION 3

• VIM interprets an applicative base language, -namely. the• lanauage of ,dynamic data
flow graphs.

A dynamic data flow graph i, a directed, acyclic grBt)h where nodes represeftt instructions and arcs

define data dependencies eetween thelJe i~ ~graph; w dynamic if the execution of a

function activation is explicidy, ,initiated by SOMe· applto,,enttM., 1 lrt · but' system. each l\inction

activation has its own graph,created by dle'4f/lP/y in8trutliott; Tfle.tiase~angu&ge instruction set is

very powerful, containing instructions for function application and reUlrtt/~ct\Jte fflation and

manipulation as well as instructions to. handle st?,~e ~~Ille:~~, J{p ~ take advantage of

this feature in the design of oµr data ~urity mechaQ~m b.t ;~~tjp& tile ~m,antics of these
' • 0 • ,: _.. > • ' ~. ~ ' • ~,, • ,

instructions to support the backup and recovery p~ures.

• There is no distinction between.ft/es and data iJi, VIM.
' ' . ,· . ' : .

Unlike conventional systems, the units of storage alkx:atlon tn VIM''are the infonnation uriits on

which the primitive operations of VIMoperaw i.e. tnstrltctions, scllfjr \tatti~ arrays, ~d rec6tds.
· This feature will allow US to design bdup al~1 thlt';ca1fht'iutiy . cbgniwit or how

infonnation is being created and rtlanipufated in ~sys111r1-

• The unit of transfer between dtslc and main 'meDlOl'y is ~ small fixed-si~e unit ~f
infonnatioa calWd,a ahlutlt. · ' · · · ·

The small unit of information transfer will allow extensive concurrency of operation to be

·- achieved byexptolting the 1data:dl'iven·e1ecution·rmllel1t6•~•.-h1gh1evetiof mfbrmation

· traffic between disk; and rnemoi,. The' u~'lt'Jf" ~: as':the 1ttnit 6f tnlrisfet jj&ses
interesting. Pft)blemsfbr ibe, backup, system·· wh'ert inftwrn.ttm tt'e&ts ~~ <X>Pi~ ·trom·m~mory

to a more stable storage medium. W• :d..,_ this s_.ri\ tti6ih!ik

l.3 Background.

While hardware is generally reliable for the most·part: catlSttt>phes do indeed occur and it

is necessary that the computer sxstem designer be sensitive.to Ulls~;ility..,(d~ .. we would like . . . ' '(,'' . ' ·.)- \:-.,~,: ' '. . ' .. ''

to provide a guarantee to the users of our system that all ac~~pJ_e qi\lij ,wjll survive _the effects. of
; ; • ·, . . 1 '"' 'I" ,·.' • ' ' • 1 . . '

any hardware malfunclion. The approach .that i~ J•~opJ~dt.~Q,,erf'i-;1wi,,tna~urallY,, be_ .st~~>ngly

influenced by efficiency const~aints. In mostconvc11tk>.nal ~IJ1P4}~l:~YS~~,s lhat cto not P~.<?vide

extra hardware support to ac;hicve this aim, the cost of realizing (11114,ata-scc~ritY.~tJally inyqlvcs
, . . , , .)('. . !.'•. ,. ; . r

LCXl much overhead and reduced performance Lo be a realistic gp.d. In tflc~ sy~tpms. users arc

4 ' BACKOR0UND §1.3

forewarned that some of the informarion they have·-~'to'the'system may not survive a

hardware failure. Consequently, these users must take explicit action to preserve data they deem

important by perioqk:ally-"baok4ng UJ>I' -ir ~offl0a;ffl6fe'ffliable.storage medium.

Infonnation which is not lAUI~ OfHt} ~ MICI is:,~:a caslt lt is usually not

l)OS.iible in most systems to~ thiJ,lostQ8l.a ~- ifllitlie·gampmatici>ns·whiob initially

produced it since there is 110-m~to m.QtWfilr:d,o cnaaart· ~ ·of information

occurrins in the sy~

We shall say that the informatfon· held by ·a computer system is fully secure from Jos., or

corruption if the system contains m~anisms ~hich"ensu~ the.pr~~ati~n of all data d~ite
;:'.. .'./•.,:, . ,.$·' .:·,:--r~ i1~J nu;.i:_ J] :):~.? r: .:;.: ~ ', 1

•

the presence of unreliable underlying hardware components. These mechanisms may be

incorporated as backup and recoverysof\wate uttlitiwnr1\1iifikit'.bltbrin ofrepli~ storage

elements_ or miy ~-~-~~~d, ~ SQtne ~~,:'#;~•":.~ ~; .. 9£4&~.~ty

P,rovided by.,~ co~P;µter~~.m ,W}>n~ ~"t,e:.9'i~:~~~d~fiQ~ ~.~liable.-~ra of

the system can_ oonfulc;ml¥: ~~ ~~~:~~L~;~Wfi.~;1~rJltat;4ata ~~Yr does
not necessarily imply reliability si~;~,~~ ~.~ ~,~1--- .~Ali tQithe

external wort~. , ,A sys~, ~-h~h ~ -~~~i~ ~H!, ~ ~~~~~ mr~r. ~tpc;s its users
that no failure in the system will cause any accessible in~tor.1-bil•'tYCftlthough users

may be prevented from accesung it for a time if a ~lure takos place.
... ;,.·; •~•; : 7_;;[:''f''

.. The ~tt:11,Uo ,,v~ -~:<:aa~ def,a;~tJau----ille~t-Jlidle availability of

the sy~., In, app~ -.--~~•s•-.ll.ril ia~-that no1single

f harciwa.t;e f~re ~«;Ii - WSWl\. l-~~' fo,,~~•-lrtMttk>ihof,-.~ f The basic

approach to masking ~,pf'~.!Pili«....., ••••done1'1tieheibarn&re
level itself. by incorporating sufficient redundancy into the system·{26i In this thesis, we shall

not be concerned with availability. Radler. we shall be focusing out attention-GfttftM;,w,t,iefffof

,. enltanciqa Y(M to provtcieJW,~~~>lJOfJll9PB~
•· •-• ;, C ' •; ',• • ' •

For systems which need not mask. failures. 'the -~d~rd app~h used to guarantee data

security h~ 'beerr to prdvide liaclup Md reco~erj soft~arcj utlfttletfo/ the: system. n1e backup

utt1ity serves l(J safegunrcf 1nforrnatit>11' bt{sclm~·stoAfge ;~ictthai1l~1
i1~mune to. the effects of

hardware . fallure. The recovery U(iliry' is invoked 'w~~n. k h~~~~ie Jfattiire; occurs and u~ the
irtfotrt1alion pteservedby tbe'btdu~facifity to r(~rfcM;yitcffi1to·a"kiic ~hich existed before

< ' • • • • ~ .' < • ' '. ' • ' • '. 'i . ' '' i· ; ; - . . : ' ' '

the faih1rc. The degree of datd security 'ptt>viclccf bY'the 'systciit'ts·'diti'1jtc'ct hy the (.'OSl of the

§1.3 BACK6ROUND s

backup and recovery process., Most· current systemS ,ha""-hae to'-sa<?rit'ice the goal of providing

full data security .because of the high overhead tllawoutttbeinvooe(fih supporting thejbackup

and recovery .systam. In these systems,; tlM state· ffJBtGNd ·by; the,~very utility may not be the

· one which existed-immediately .prior to the failu-. Motet>Vet!,~itiis ~uaHy dte case that thete is

no means of recoveria, thi.1 desired state: from the one p,oduced :by dte recovery' procedure.

Thus. information las.1 is a pmsibility whicb users-Of.the -,.CRi MUSf accept. ·

1.4 Previous Works

In this section, we: wiefty describe. some-·previous' ~ftbrts in the·· design of highly secure

systems undertaken for both centralized ~d d~b~~,5¥~ .~.,tJU ~ 59I~ proposed for
, . . .; ". \ ' ; ; . , ',. , ~-' -~. ·-' , : .

providing fault-tolerance for a class of {Jata flow ~it(1ct1,u,s •.. Wed>e>int out ~~, .ma.ior
' . ·' . ',. . : . • . . , -~ . ''· ~ ;, 1-. ' - . : ._, ; ·.; ·' . j' . J-. > , - '

deficiencies and assumptions made in these pl'OJ)9':'ls t,tt~t,)~e ~e~. n<>t suita_ple. for

implementati~n in our system. - ·

l~4.l Data Security In Centralized Systems

t~ conventional single-processor machines;tf>:~ simplest ~d pe~aps m0$t di.~ect-~~ of

recording state· infonnation · for recovery_ pu~-- is . to, .~~It a ~~lcpoint ·4~,:ibiqg. all
·'. ; ~ , '. ,' ;- ~·,. ': , :' ••• ~ •• f , •• /'T...:- ;(;~ ~--:..:·.,. 1i~.t ~- '-..; ,_ 'i.,~ •,,. ,·.<

aspects of the system state. The checkpoint state is COQst.n,t~d by ~~ing, the ~e of the
,) • • j _,. • • ; , • : • ,' f. f '• C !>," ; -} / f ~ ••. > 1 ~;_•_ ' : . >: ; '. ; ' . • ,• •.

system at some point onto a reliable storage mediun_t suGh 8',qtj)e. Tlt~,JilQSt,obvio\lS dr,aw,back
• , , ~ f• .·- , : -_-"[{; -,·_,'-)1 r-;;,; · .:·..,·: :· ;_, <; t· ·~-, ,: · ,· ~

of this scheme is the potentially large amount of data, wh~h must ~ ~in~ -- an o~tim,es
, • . . : ,• " •: • ' ,., .. __ ;; l:_;·,,,,:,,'.,_. '.) ~~~ .-: .. ,d l f! .;, ~,-; ·. : '; .. ·

.unnecessary and expensive strategy si~ce most of thtoJ>j~ ~ ~~ sy~m ;-r?~~d pro~bltnot
have· been modified .betwee,n succegive. ch.eckpo~~,·, .Te> ~I~'!,~}~~ ,p,~b,lem. ~,tuit.

. many timesharing sy~iems'.perfonn ~ acti~ty ~ferred,.to --~ -i~crem~~tal dumping to k~p Ute
• . i ', ·-· : ; .,; ' • ~

backup system abreast of any modifications to the file hierarchy between su~ive checkpoints.

In the event of a major mishap that necessitates the reconstructkx\,Rf.1JIJ°- ~.h~hy.,.,~e

system can be reloaded from the last checkpoint and appfOP_rja~I)'. µlQdiijed by_usin1 ~~ current
• • ' • ' ",' j-; ;._~ ·, • ;' -. ;'' :-:'~}'.:tf ,).,-r- ;, :·,,,.: ~✓ •~·! ;.!.: ·: . ·, <

incremental dumps to restore the system to a more rece.nt Qte. ,, All iJJ~q:.l)l~"tal dump., ¥C
, .. ,· .. , ,. _ - .. ·;. ,, . .: :L'.:.f~i-'. ,;i, ., .:-•:,,)> .. {I'.• -.J ~- ·.. '•_., ,, ,

copied onto magnetic tape. In ord~r that t!te r~very ph~ of~!~ _restqration may_ p~~d
. . .. ' - . ; . : ', ... · *''". -. ,,." . , '

. faster. incremental dumps ~re periodically C?nsolidat.~~ ~- rcmore ,Q,~~1t~~ copies of files .. This
, consolidation proccs.5 is known as secondary dumpi,,g. ', . . .

Using incrementat and secondary dumps to ttoord·ink>nmition :ibout the system State is

the hasic itpproa,:h used by the Multics or,crating system {27): to' rtmvidc secure· ~Nice ·to its

6 PREVIOUS WORKS § 1.4

users. A modification to the ~kup and recovery. protocol employed by Multics was sugested

by Benjamin [6) for the ~ta Network Computer. J~;of usill& magnetic tape as the rrledium

to store backup copies. it wasadyoaited,that the aillllll)Ut2'SJB1Ulbe:integmted wittrilra network

of autonomous systems. wi~ each. sy~ being,allowccl ~ to dle,storage.devicesohhe other

processing elements. The backl.lP facility mamtaias a oonsment i11111e-of the file stotase at a

remote site within the .network. The motivation i,rrhavjag saa .a taaemp •system is the greater

ease in managing the backup system that results when we do not have to deal with sequential

access tape storage. The problem in using such a system. however, coriies 1ftom 1the decrease in

availability that may occur due to:the extra ~-~•iation)lines etc.

Perhaps the most serious objection to the solution adopted by Multics is the cost involved
. : .. ~ ~ ! ·- ,·:; .: '-~ -· ' ' - ' .) -: ,

in periodically scanning the file hierarchy to find-those tiles which have been created or_up~ted

since the last incremental dump. The cost of' peifo~blg i chec°tpo~t i~ Multics -~~
0' ...,\.: .I' . .;/ ·:: ,~: ,: : } , ' ~ __ , - : : 1 ~ • ·";

linearly as the size of the system increases. To achieve the same degree of data security in a

heavily used system where files are constantly ~< ~~i~ ,9~~ 81 1iQ 1a. Ugpdy

used one, it is necessary that the backup system be invoked RlOl'e frequently. 'Ibis, in tum,
· · , ,. .. · ,. , _ ·.·;·.fh ··: .,· .-. _,,.;_··-:t·~-s)_2::\, · ... :; · ·· . r··

implies degraded service to the user community. The basic reason wlzy Multics (and other

conventional centralized systems) are not able to provide full ~· ~h,' ~fficiently ~ppeat'S to

be the inability on the part of th~ backup system'tri'fmmedi~ly d~~ when cbta'h~ ;been
-. _ _ .·· .. ,.- - . .:.: .L ::-·r'. ';•_:t~;.·· ~.J -._·.;. ,, . • ~ -· ~ -· ,·- ::

· created or altered and to reflect this fact onto the 1-:kup image of the system state. Beawse the

. mechanism by Which data ~ created and' ~pdatecf~' ~ refu~~Jl~ 0

dle 'file system with which
• _ ;. -i. ,t·, ; ,! •: .n~? 1.'t'.'°''i/ .,\ .. ,_, _ .. --~ ~.!·, ·, -~~(:'.>r •';-- · '

· the backup system interacts, the incremental'dunipirig i,rocm is costly '1'd jnefficient The end
.. ' ''- . .' -; -· ,,.:~· . ~.-_,;,,_~_._r;~-- .'j·ii-::~:~;:.;'~)-~i~:. ··<-•i)"/,,::;-:· r .. ··;. 1:_1:..~i. '. 'f! ,

'-result JS a computer system which cannot guarantee full data security without incurring exc~ive
• ;~ ' ' • ,·~ •· !' • ~ 1 ~-•Cr,. •

overhead.

· · 1.4.2 Distributed Systems
, _ · t • , . - · . • .. ~ r ·' , - •,, ·,. . ,,i

Unlike single-processor machines or multi-prdcessor machines under centralized control, it
. _ . , . ., . ,_ ~· . ,'£~ . i.1 rr,· ·/.·" ·~:(t .0 :\,1,.,;~ · ;.>-:-•j>:, .. - , , , · ~· ·
is difficult to· perf'orm global checkpoints in· multi-processor systems under distributed control

- •. /~L 1;_,:; "/.1~rtc1 r1: ,t~ : '-'·· ;··'.,-' 1· -,,: .. . : ;,
· because of the lack of any system wide ·synchronizatton capability. Hence. although distributed

. systems may have the potential or pro~idfng a more ~~~r~ COOl~U;i:ng'~~;ironme~tas; resul~ of
~- ,\. '"!}\\ ,,·:.•.1' ·· .. >=_,. In fi) :·: -::J.~ 1' ~1 ·. ,; .

the redundancy present in their architecture (29). exf)k>i'ting su~h redundancy to achieve this end

becomes much more diffl(;ult. A ~pic~I mod~I ch,Qmctcrianga_diurib11tcd syslem wowd be one

where both, the data as wen as the qx.lc of a pn,>eQti.-; is ~ln:ru'.l oNcr scva.-n1l physit.-.,:11 nodc,dn-mc
"i

§1.4 PREVIOUS WORKS 7

system. Communication between processes in such a model is usually· through some form of

remote procedure ca11 l2S)or m-. pb&Sing-medtanism (llJ.· 18,JlJi' Failure in these systems

can -cause ~ to·tleadtfjCk{lj:after the recowry;p11ue·0GOmpfetes. To- avoid deadlock

.J)l'OOlems arisiq. from the Bl'l!ll' IICOWl'f of a PfOtllla 1that is • tttemtiet of a collection of

communicating ,prooessas, tacal- daributed systems: or --lieMM ·an,>u~ts usually have' the

ability to sctkicalited chac:kpoiata,fereach-Proctf!IWA' -Suclh•dlcd~rta~'tefetori~tfto as rectnery
poittLs. .Jf a faiklt!e ofa:paessJtdctected. ltis~ •Wbfm)yirol¥·8aekthe faited'l)rocess

to its most recent. ~ry .pt'int.ri but to aJto: Nllti all. c>dWN· ~- that had· e,khanged

•information with 1he miJea:p&ugea lince th& tiMdiof! OW. ,taJt;-;ft:M"Y 1point in order to, avoid

. ' deadlocks from omumna when ,.,.tion -it-WntiriuedI'•' ff flMMei.~" points are not set
J>topedy, it is-quite likoly;t(J:tlave a.domino dM'~~wlteretfjt,ilJ.•ptetesses'lnitiate··ret()yery

actiofts .dlatJead. tllem to diemadiat re:overyfdlJli~ whtHO set JmWery points

and finding a canmtentaet :of SIICh poilats ts a fl0\l..t1d¥W1m,ei11li'[31J~-dffen' ~y
reduetaithe overall ~ofdle.syslllln. ·

Borg -etalfij and ,-;gaui,tS}·Preseatsthemel-1br enlM'htg-'M~rity of.data in a

distribllted m~bwd-s,a•. ·The baltc adtla-11t:1M11t·~· tn~eit-maintaihlng an
i, inactive backup procm on;a ,ditfCftbt. _p1001810f-tlrtfadl::aotM1ptooeS\S irl the·systetn·: ·If a

: . · failure of a-primary ·Proces&OCQml. ·lbe backup..pmc•rfll•t>+er"•xetutlen. ltt:Bc,fg's dteme,

:. mes.,aaea eicllanscd between twt>.,-caa1s· are also•lll~~ 911 beekup ,l'tdlSes

• ·well hl_.additial.-,botD,the wctupJUld NC10?1uy··pri)11■ •~ipftiodiallly,syncflftllited.

, Whea a failure tXCUn on a. p-.,,..process., 1-..., ._..,.~m tfle ate 'tllafl!he

.. failed ,primary hacl at the1•8Jlldll'QJlliaaoft ~;ltfe a.klP ciR tatdt up to the-stilterlhe

primuy had just befontdae failure rbyi~W •••~ wMdt· were aettt txHt.

Barigazzi uses a similar approach in his system._ ~wever. i.nstead ofh::1rins m~es 54=nt

from the primary to th~ backup process. an exp!icit_ ~~i~,~~f r~i~i:i~j~II, ~~~~~~d for
every primary. Setting a recovery point for a process also requires establishing recovery points

for all proce~ that communicated with this procea since thq,)il#,,~~ J><>int •~:.SFL

Recovery in this scheme involves rescuing all processes to their. hnt recovery point While both
' •'' : r. .. . - . • i~{; ~,.: •. / ;.; ;: ;(. :,. r:),_:\:? i~i." - . "

these· schemes provide full data security. they do so at the oost of higl,1_ ov~_rheµctin O)Ujntaining
, ·, : ; J: " · ... ·.' · .;.:.-</ ,:.;, · ,,.._ -,~, .;_;1 ~!·:~t"L·_;;.?" ;, ;; . _.i_, · .. :

up-to-date multiple copies of the primary _ p~ _ on disJ~int P,~rs. In a<;ldition~ both
. . •. . • 1_;. ", -~~)~.f"""•/ . ! ,~: n _dP;1• 1t, . .: , ~·• ; , ... : · •

proposals assume the tmnsmis..liion of meS&.1gcs to -be ~ relatively ir1.cxpensi\'c ppcration. qn
' • • <" ' , -~ ~ : • 1) ~ •,l• ' :, . •' I l '! ; s') ; i . . >. ' . C !

~L'-isumption whkh is ccrclinly argmtblc.

8 PREVIOUS WORKS §1.4

In addition to general distributed systems; there · bas been much interest of late in

distributed transaction systems for which a hiah dqJree of data security is essential. A

sophisticated approach to handling data security, for transaaion based applications can be found

in the Argus system. The A,ps integrated pf01fammffll: lanauage ·and distributed system being

developed at MIT (231 is a comprehensive auemptto ptOVidcJiaguistic support for ensuring data

security and consistency within a dl$tributed fX)fllptltiftl!ellvirmnment The language provides

constructs to encapsulate vjtal data objects which are- tll-. auaraateed to survive crmhes of the

host processor with high probability. In addition9 a~ is provided.to express atomicity

of p~ acuvity. WheA a hardware failure occurs. caeh~ng,atomic action is forced to

abort. A two phase oommit protocol is . used to• c~, that ajJ tramractions preserve the

consistency of the active data. To guaJ'Blllee data secwity,,objects. are dmtnguished • being

either stable or w,fsu/e. All &&able objocts ,are written oa1D.i>1e storqcnkmcesc whenever a

transaction completes. The. intearitY of stable :Objed:s'is.c then,rore. pmerved,·even though

crashes of the host node may talce place. Volatile da&a is ,,-unad to be lost upon failure.

Perhaps the greatest point of contrast be~:tlle,Arpts implementatien of data security

anc:l that which we want ,to: prov:ide in ow- .sysrmn is'. the.~· in Arsus that the user

prespecify thQSe objects which are to surrivo crasltm. Our pl i1 to ensure that measures taken

to provide data security are transparent to·the:111Ct;m.tinguisue primitives are.provided to

specify the ~ be wislles to survive failure and no upticit,,cxmstructs arc provided to control

backup operations. While the gap between dM 1>f08,..nmilig;modeJ,and the backup facility is

-not !K> severe in Argus as in Mu.ltiot. die· fact that the:~;J)IStem is, based on an updatable

memory execution model makes the task Gf ensuring ·a ~nt state a oomplk:at-1 one

involving expensive protQa)ls audl as ·two-phase .-.it. and sophisticated. algorithms to

maintain a correct and up-to-date backup image. Moreover. the application domain for which

Argus is best suited is a relatively restrictive one and the oomp~~ity of the system is probably not

·warranted for most non-transaction ba.,ed computations.

1.4.3 Fault Tolerant Systems

There have been several proposals put forth for the design of fault-tolerant data flow

computers which attempt to achieve data security (as well as availability) by incorpomting low

level fault masking capability into the system. We outline several ot these proposals here to

present an alternative approach to solving the problem of providing data security for a computer

system.

§1.4 PREVIOUS WORKS 9

An error recovery system in the context of a fault-tolerant data flow·tnachine based on the

Dennis~MiSWtas architecture'(9)1was-described•t,y -~; inf24];;, .'fhie lbodel advocated was

b$ed on providing tripJe fflGdular;•redunancy.~!fMR1):ft'>r, ttlefflt>tyi>and the 'futicdoriat-units.

Each instruction cdl acts as a va&er and. r«eive&,tlffd Mui~ fat1i'aeh q>enincf pnetating cirror

packeu if discrepancies arc found. In adEMdUn,·;~ failiiNI 1l1e mihdletf 'by·'.alfowing the

network. to be recoofipt!ed. The scheme· invol• -.mitt;loftlieid, in t&ms of increased

. packet traffic.and extra hardware. ad is depetlcleftV,• tbe4ide t,f5~edglhent signals to

allow reconfiguration 11:>:tateplaoe. A fiwlMolmMdei1p·fot abde'<i~fa1tbw:arehittct'are was
also proposed by Leuag (2lf.: , In llis, plOJ)OCdr a-0,m1tlc•l'ddl!ll11iney'techrtlque- was employed

whereby redundant Uflits-are used to•detect'and !taalta,,·wfdfltf'Ricted corriputatfons

reexecuted when necesa,y.

Hughes (19) suggests that; a dleokpoinma ,, lsuftaMy · · modifietf fi:>t data flow

oomputation.may, be.an ~ lllldlanlsntifi>ti...,..,._lg fttor~teceYelo/ln a ·tfatil ffow

machine. Basically, eadl cd~r.;~;Wbi.Oll-,is1dtelltpMWtid • IMtke& When~fthe

backup system initiat,es adMkpoint. allf aMt•cdl<tJOt ~,~~ 'are •ved:' On

recovery, all active ceUs that \!ere checkpointed ;u-e ~~ , Wh,~ ~inple ~. iq1plement, ,;_ <· . . ~;-• - ; ~~ .- ;f•.p: ,_,-ff.~. ·;)Vi. d{J(•. L,. ·, ,,;

. recovery, in. this scheme requi~ ~e ~i~!!ializa~,, ~(L!!.1~. ~?:r,e,j 1~~,, wpich ,~ ,an, .~en

unnecessary step. In addition. the memory of~~~.~ W~,!Je.~~ine.<;f.at ~,cti~~ppint
' - . ,. . .' • :i • : . '.: ~ .,, - ' ' ~· .,_ , . ~

to determine which ite~ have not yet ~? ~pi~;~~is i!.;~~~~-~ ~~~ful, ini~t. m,s~~
Finally. this proposal assumes that all infonnation is resident in memory whenev~r the

checkpoint .process is. iinoked; by contr11t,·iruhe i;sllntMIMIIWev&aiJeHlala wiff \be spread

across the memmy.hierarclly Mtweendiskattd 11'1aWlfOM!ciuff8g~•ecution. ,. · ·•· ···
l • ;f·. '" ;'_} :· I ~ j;

All three of the proposals cited here are based on ~ architectural model much diffe~nt
' . ·' ~ ,- ',:: ·_-; , ·. ~(.:, ,;; f~,:~15'./J;, (,:·~ .. ·,:-.~ ''; ";(\:., '- .. :·::'-<\

_ .~mm the dynamic data flow m?<iel des!gn~. fO.~, VI~ .• , -'.~?repv~r•.-1 th~ycreq~ire special

· architectural erichancements to mask hardware faults. VJM is not intended_ fof appliqtiqps
''<.t' • ,t

which have high availability requirements and. thus. there is no need for fault-masking strategies

to be incorporated into lhe system. · COftsequendy.-tlle,app~··to achieving data security

taken by these schemes will. not be directly .,.1k.'able 4n sat48fyHtg lhe n?EfUirements we have ~t

forlh tor our system.

10 PREVIOUS WORKS §1.5

1.5 Thesis Outline

In the next chapter. we present a detailed model of the VIM Computer System. We

describe in detail the applicative base langµage bein& used alllidle dynamic data flow execution

model employed. In addition. a fonnal semant,ies of. S¥Sfam behavioor is also developed to

rigorously define its operation. The manner in: 'Yhiclt. usm oomnmnicate with, the qstem and

the means by which looa·lived · ~ are defined are ,aJso ,-sented. To simplify the

presentation. we assume ,a $)'stem supportin& C.lftly a aingle:ar./ .Because of the applicative

programming.model use4 in VIM, thia·simJ>lification doe&,aot.mvatidate;as applicability to a

multi-user system. We 49 not consider ~oate ,~---, in dill' model This

restriction also simp~es .the alloritb-. Th• complicatioas invohedcin incorporatins non­

determinacy into the model is a topic which we discuss in Chapter Su.

The third chapter in ·the thesis presenm ~ pneral.strategy.i>r the backup and, recovery

system. W& defiqe the, ~ which .the bactup: _.,., ,will useJ in determining what

infonnauon should, be.~· on .the ,backup . .,_e -~·· We· . .alll) present the

architectural enhancotnents ~ to suppott1ho: ba,;ku.p-'flkXJYeqraatitiea.

In the fourth chapter, we give a more detailed· description of ~e backup and recovery
. ' ' . ,, • . I C • , ... ~· '>

algorithms. The alterations necessary to the interpreter are discussed. We also formalize the role
'. • ' , • ' ' • • : • '• ' • • , / ;) , , ' ; _v I : , t.; • I ' • ' ~ ' ' , • ~

of the backup and recovery system in the context of the abstract model given in Chapter Two
' ' . . '' (. J"i'.. ,' '' .. '.~: ·:. ; ~- . 'I' ,'' ' , • • ; i .

and present the changes necessary·to the base language ins~ctions to support our algorithms.
; ,_ .: ',

The ti(Ul chapter dacri- low level details .. in the. transfer of, information between the

backup storage medium· aQd .the VJM. s,stem. We, •disauls· how ,tilt guarantee the. atomicity of

information transfer so that a consistent image of the system state is maintained on the backup

storage medium. We al&> mention.how storage m~nagement :i~ haridl~d' on the backup store as
. . .

welJ as describing how to minimize the copying of information from system memory onto

· backup memory.

The final chapter presents a summary of the thesis and discu~ some topics for further

research. W c pay particular attention ao the changes wbich may. need to, be made to the backup

and recovery algorithms if our model of system behaviour is augmented to altow non­

dcterm inatc computation.

§2.0 11

The VIM Computer System i~ an e~perimen~('prri~ ii:t .d1e ··computation Structures
'· -.-.,c .:] .-Sj .; ',.if•.•1~ 1 ~i.(q-_ +·;:. '. ;- ' ,,_;.~.. ..

Group intended for the irivestlgatiori' of a novel dat4 tlow architecture for the efficient support of
~. ·.:' '· • • - \<_, ~~I . ·;·: > -~'~::~-~'! f ·{i,;i >:,i"'~!L ;i:,''; ·:,. ,:·, ',.)_.·,· l' ••

futttdonal languages. In this chapter, we discus., the desian of the system an.d p~nt an
- _, ,· .- -. , . . ·-·. t-_: , -. ,:~;;-,:--,:.) jr .. '.i~fI:•1.:,l;::~:. ~1"", . ~/ /:, ·

Operational -setnailtics for . its applicative . b~ larigtlage. , The !11ain. programm~g language
,. • • • • '< _-,. , ~-, , ~- •• , ,. :._-J-:, ·! ··•fL ~ --~;: 1rri (t::t:).· :_,._,.-~1~- ·- : · \:-.¼_-._, - ·i,

- ' supported by VIM is 'VIMV AL. a majorextension of.the applicative l~guage VAL [l). VIMV AL
• . · . . · ')- . · i ,-·. : •• : ?.-, ,,._ ti~-';.·\ ,·,_f ·,'/ i 1 . ;' ,, , . ' - I.'..,· , -

programs are translated into the bue 1anguage data. flew/ graph representation which is then

.executed by .tlle VIM In~~ ,f.Jaep;~icale,,1ridl.,V1M1tuolJlb1a:iSheJZ,pil)gram.. The

Shell provicies a ~werfulin~ to the ,y"4rn •t ~rs to btiijd and manipulate VIM

!IIViT()IIIM(IIS.· tpomai,nJ"Mjijt,y for GQaJUueti09 kllll,liJttcl«IWt.UftlL•;Wedilr:uss each;of,tbese

. ~ponei»s. ,VIttiVJ..!...•the,~rpn:tQr,-4 Ule,'Slwg~~

2.1 The Applicat.ive Lanp., VIMV AL

In. i this seQion. we. PfW!ll an, i'1formal overview· of tbe·:· VIM bigtwevel applications

. languap, VIMVAL VIM\l,U. di&rs·&rm VN..i, ittpredc.oS1901'iUUh11Amcdons•mtitfeaUkf as

first.-cla$s obj~•froe use-:Qf m:ursion and muiuatinicursion;is:aUowedrmpolymorphin is

~PPP~ th~h a Mibter,,ttyJ,, type inferenea m,ecmanim lfeli,aan ... prc,pam IDc:a suu.ttured

and hierarchical manneuJu-.lJfte;.useofai~-dll«I'~.

In addition to various scalar types such as integers. reals,~~ aq4.~~Jl$!.y.:1~V:AL
. ,.,.'",_ .. : ... ·.-' . .

also contains struc11:1re types such as amys and reconls. Users can expreu histocy ,sensitive
, . , , , _. ,.:,"; •',f'_-~ ; . .':;\, ,,, / ~;-1,·~ •~:;:,,,;< i ,;~~t '.',_; . ·' ~

computation through the use· of streams (30). A stream is a potentially. infinite sequence _ of
• • • , , • • • •. , ~ :; ; } _ • l ; 0·' • ·; ;'°;.,, ,.. .\ ·• •,J::~ .,..1 ;, '/ f',/, : ". : , ' f''; I' , ' - . '

homogeneous Values which may be of any type (induding stream) that allows users to write

' hiswry· sensidve tod~ (such as· the modeling of a. convent~f ~~ory cell) Within· a fun~tional
, ; - +•, , ••• :· •• ~ i,•·~·•· .• : r~r '.:·· . -.-'. ,, , !

framework. Thtre are· three opemdons on streams:'·llrit which. returns the fi,rst element of a
' . ~ ·_ ,- ~-' .~;::··i ~~•>·'-;.· .. ;..-. ',;;i~,''. j ii_:. <,. ~ 'i

··. sttearri. rest which given a stream returns the stream· without its. first clement. and affix which

affixes an el~ment to the head of a stream. We ~afl di~uss 'the I impl;~e~tation of streams' in

greater detail in the next section.

Because functions arc treated as first-:class objects. :lhey·may bet pamd as Qrguments to

othl!r functions. rcturn1.'d as the result of a Junction ·acti.\·atiem1 and, may be buih into data

12 THE APPLICATIVE LANGUAGE, VIMVAL §2.1

structures e.g., array[Function]. The body of a function is an expression whose type is the result

type of the function. The fonn of an expression may contain conditional expressions, function

in vocations, tagcase expressions. wbi;b d'ow one of•t series of expressions to be chosen based on

the value of a tag, and let expressions which are viewed ~ Sl.lg~ng for lambda abstractions.
l ' ,} J.-~ • '

Conventional iteration in VIMVAL is expressed using tail recursion. Variablc;s in VIMVAL are
• • > ·', ' ,-·". • ' --! i - < \

considered as only identifiers for a value. Once an identifier~ ~efi.r;ied, it.cannot be chang-1-

VIMV AL is a single-assignment language. The treatment of varjables 8$ identifiers for values as

opposed to placeholders for memory cells which may be Mbitqujlr,qiu~t~d as .found~ more
, . . - .

conventional constructive languages i.s a distinguishing characte~~ of VIMV AL
• . • It , ·: • .,

A module in VIMVAL is a function. which may be itwoked ·ftom other modules or by a user

command to the -system. A m0dute • provides a medlalrisrtt· 1 tbt ·gtoopi11g related functions

.together. These.functions may be invoked f-rom,withift: die modtrleor, if they are passed as a

result of the module; by• funouons,extemat to ihe module. · The-body of a modutemay use names

that are not bound by definitions in the module. These free names must be bound before the

module can be run. Modules may be separately compiled witl{type consistency of" identifiers

used across modules being checked by a linker; .1)1,e spedffeations an,-zeptional · in VIMV AL

Omitting type definitions allows free names in modules to- be,bound iin possibly several contexts.

each binding causing a different resolution of the typeS of lfte Bee variables. Users can, thus.

expr9 useful polymorphic ~ctions using the type 'inferemte MtGl'laaism. For a· more detailed

exposition on the. VIM VAL hmguap. the.reader mould see[UJ Met (28}.

2.2 The VIM Interpreter

The base language for the VIM system is the lanJuge of 9ynamic data flow graphs.
'. 1 .. ' > ' '

Programs written in VIMVAL are translated into their data flo"1, graph representation. Base
• ' < l , •

language programs are evaluated by the VIM interpreter. A dyn~ic data tlQw sraph is a
.. ' ,, ... ,· ;, . ' -

directed acyclic graph in which nodes represent base lang~ in~ctiQnS."14-arcs are u- to
a ~ • • ' \

indicate data dependencies among instructions. There are two types of arcs io,the graph: value
. . - ; ,,.. . ; - -

arcs and signal arcs. An arc (s. t) is a value arc if it carries the valµe produc~ by the execution of

node s to node t. A signal arc is used for perfonning a control function sµch as selecting which
• ~ I •

arm of a conditional expression is to be evaluated. A node is said to be enabled if and onJy if it

has received all necessary vnlm.-s and signals. Enabled instmctions c.tn be executed in any order

ancl the interpreter is free to chcx>SC the execution of any cn:.tbfcd 1nstntction from any current

fu1Ktion activation.

§2.2 Tl-iE VIM IHTERPRfilER 13

To illustrate the structure ofa VrM data flow graph, we show in Fig. 2 the base language

representation of the VIMVAL function shown in Fig. 1. Instructions are drawn as boxes, with

the opcode of the instructi9n ~led iQside the. box. Value arcs are drawn from the bottom of

the instruction which produces the value to the appropriate operand slot in the target instruction.

Thus, operand number one for an instruction will be sent along the leftmost value arc entering

that instruction. Signal arcs are drawn entering into the side of instructions. Each instruction has

an index in the activation used for addressing purposes. The behaviour of: the base language

instructions are described in greater detail later in this chapter.

Funct-ion/(x :hoelba; h, g: Function returns hit)
if X = true

then h(l) % h returns an i11teger.
else g(2) % g ...iums aa- intager.

endif
endfua

F1pn 1: A simple VJMV AL Prosf8111

Any non-scalar value produced during the evahsation of-an activation is placed on the VIM
._ .· '}, t

heap. The objects which may be found on ttte-·· tJeav· ·· ind\d: function templates and data
'

structures such as arrays and records. As.,oclated widi every object is a unique idtntijier, u«t

which distinguishes this object 1'°Qm every other pbjec(orr~heap. Thus, unlfittfJmple scalar
·, ,· ·• ., •• •·• · •• " i ·l 1 ·

values, data structures and function templates are not ttiffsmitted along value arcs in an

activation. Rather, _the result of producing a complex° structum~t:Q:-f~ ~js;st~~. on the

heap and to send. its uid to all target,.destinadoAs imwad, ---\£1M..-IR1f)ioys a---reference eount

mechanism to manage the-~·-• "'11en.lhe~ e~_, po,~fe~~~~ QJl tl)e,heap f~

within any current activ~tjor. d)a,t ~~e can be; ~~d_Ji:~rq,~ J\f-ffP: ~ ~~ ~d.
The VIM heap may be COJ)side~d to be a multi~~d, ~ir~~f;IW:,~l'J ~ere an arc (,s. t).

connecting nodes s and t, in~l4=$ that t. is a ~~<>f.,S.;i,~Pts .Oil Ule _,b~p may be

safely shared among objects. This feature is a result C?f:"1~-~~v~ na&µre .of Ute base

language. An object on the heap consists of a unique identifier and a structure value.

A distinctive feature of VIM base language programs is that no. arc in the graph is ever

reused. This is a consequence of the graph being acyclic with tail recursion used to model

iteration. This model of data now graphs rcqt!ircs that every new function application create a

14 THE VIM INr_fEU~ §2.2

Udt

1
F

1

True

SWITCH

1 1
False

1

MAKEllEC

1 2

§2.3 THE VIM INTERPRETER lS

F

d1 ; , . .,.,it~ '.

/ ...
dl • •

J. After actlYalion completn witlt r#lll'fll IWIIIJ K
- ., ..• - . ·- .•·•· . ·~··-«-···~-«' -- ,., "" '":• ' .

Fi611n J: Function application in VIM

2.3 The VIM Shell

Users communicate with the VIM system th~gh a sy~ Shell. The VIM shell is
. .. ··-·- --~-......... ~-- ---·----~-- ,-··-·;

responsible for accepting user commands. andt transl~ them irtto the appropriate base
; '!__;'t'H" !

language representation and then invoking the interpreter to remte this base language program

whenever necessary. A user sessio~ typically consists of the t15er axnmunicating with the Shell

in an interactive mode, inputing Shell commands whose tefflts are subsequently output to the

user. Every user executes in a unique enrironmeni~ A··viM envi~mdat relates symbolic names
.--, ~j•L'-i •~,~-----~• .. ,w,•••"•-•• -4 •~J}'.,_.,~•Hf-,~,ir.~ti l

to values.and acts~.a r.eposi&oryforall long-lived ehjeeta.-01,jccts referenced in an environment
bni;rnrntr) z:.,,,: ·:~ :;di·· . .,:.; n,~;i: ,·::n,~·;,.t *.·- 1:: • ·fr~:-~

must be explicitly deleted by the user. The VIM environment plays the role of a directory
• • • , .-,,,,_, .. _..,. ~• ·-• , . .._,,.,.,.--~•a•••••-••-•.,,,_,._,.._..,~_...,_...,_,,•• ~••~~ ___,, . ._. ~ -••• •• ,-,

structure in conventional systems. Users specify that a particular <name. WJlue> pair is to be

pl~ccd in;his'enviroriment Olrb~gfi thc"BiNOc6fu'iitanif1Th~ ~~ ~~~d':' , ,. , , .
- ·(':"i ;. ; :·:, . ._,,:, 'Jfl. .)i •.

BIND name:= <expression>

16 · THEVIMSH&.L §2.3

binds the value of the expFession to the name specified: -This·bindingis then·pfacedin the user's

environment In addition to the BIND command, there is a DELETE command which, when given

a name, removes the <name, Value> binding from the user's environment The command:

DFLEl'EN

removes the bindiq. <N. Va/lie> from the current Cl)vifmtMnt. .Ulers must execute a DELETE

command to have an entry in their VJM environment removed.

The VIM shell ~. a BIND a,mmand into its base language,repre-,ntuion which can

then be executed by the VIM Interpreter. The translation for the command BIND x : = / (z) is

shown in Fig. 4. The APPLY instruction creates an activation of the function /with argument z.

The result of this activation is sent to a~ instruction, JOMINATE, which informs the shell

that the value which is to be bound to the nanib~, is avJlilable. The storage occupied by this top
/

level activation can then be reclaimed by the systegr\fllll the RELEASE instruction. Thus, once
.,/ -

the value which is to be bound to the symbolib,1iame is ~ the activation created by the shell

can be removed from the system.

F z

APPLY

TERMINATE RB.EASE

Fig,ue 4: The translation qf the BIND oommand

There is no translation into a base lartgu<Jgc prog"?m nec~.ry f<>rdte Q~LETf: ce>mmund. This

command is processed by the shell entirely - no assistance is required from the Interpreter to

execute it

§2.3 THEVIMSm:LL 17

The TERMINATE·instrttction ·destribed above'fs·t1secl to synchronize the operation of the

interpreter prognnr with the sheil: · l'f this synehronizatiol1 · mtdianistn · \itere removed and BIND

commands were allo.ed to al'bitrailf ·over~p with' 'one anbtner;' 1r·ts· possible for in<:0rrect

environments to be constructed. To see why, consider two BIND commands input in succession:

BIND(x, f) and BINI)(x, G). It i~ clear W~tif tile ~nRS.~~:~roctly. x should
• ' ' - , • - ' ~ _ _, - • : ~ • C • <

finally get b,ouncl to the ~Jilt of ~v.µuaµng G. Jo1 .~~ • ~2~;~i~ talc" place,

however, requires that the.~.m~p CQmmand ~;~~~f;~til ~ ti&;$t one~

As we shall see later. it}s possible .~ $il,1 exploit..a ~ ~J>~~~ »Y,~O~ the

computation of FtQ be spll p~~d,i~ eyenifBl~O(~!')_ e~~~ .'f9is f~iu,-.e, known~•rly

compl~ion._ is described in segjon 2.♦:-2,

In the next section, we will present a formal operationafffl&tef for the VIM interpreter.

base language and shell. This model, ~led,Ml,,wµl~H~~\y;~p91,a~ ;We ~i.ijaotbe

considering, for example, internal representation of ~n~ffi',,S .,in.~emol'J.~ p~J)S: of

structures to and from memory or scheduling algorithms. We make two simplifications of the

actual system in our model. First, we cmume that all cbfflr,uf.addd in the ~m is 'tlhtrminate.

A computation is determinate if its output is totally specified by ,Jbt; ;~ue of -its- ipputs; it's

output does not depend on such factors as the relative arrival time of its inputs. Secondly, we
. '. . ~ i .

3$Ume that only a single environment exists in the system and, thus, there is no need for

providing an explicit environment ume to. lhoee ~.lllhidlimanipalate ,enviroa1ments.

In the following chapters, we shall refine this model tq ~be)he ~kup and ~very
'. ., . ; ~ _; . : ' ' , . -

algorithms.

2.4 A Formal Operational Model · Ml

The VIM system contains three major components: an Interpreter, a system State and a
~ , -'" '

Shell. The State ·embodies all current information in. the system z~·: 'henp. activations. enabled

instructjons and envirqam~ Tho,,inie,preter --• .a lbale,:i..... .~iation or a

Shell command and rcn"m' the valµe of lhut,commarul. :1 Thc,~aluc ,cwmOfl hr.the inteq,reter is

bound to a symbolic namecin .thtl ~r cnvironmeat The;rwne odngi bound,•is determined by

the current BJNP command being .Proq:ssed. A shell COllVOOtldds .translated intG its base

language .represcn talion and is ~n e~ecuted .by tbf; inJefltt'®t::. . 'Ehis; tramlation is perfonned by

the Shell. The shell as described above isa function m11pping fN>m,a SIIIJe.and a session to a new

Swte. A session denotes the history of Shell t·ommands input to the system. The shell translates

18 A FORMAL OPERATIONAL MODEL - Ml §2.4

shell commands, invokes the interpreter to execute ~:c<>mman.ds in the current state, and

binds the result of these commands to names in the Uself eqvhpnm~ot. Itr.ewms the state which

is produced after evaluating all shell commands in the 1~ The ~~ architectut~ of the

VIM system is shown in Ftg. S.

In the following discussion, sets are denoted by bold font. elements of sets are denoted by

italicized letters and names are indicated by a scriputrinp of letail'S. Thus. Set is a set. Elt € Set

and 'G9 is a tag. We present our semantic definitions· uimg~ViMVAL~tike syntax augmented with

· operations for performing set abstraction, set metriberiltfp,-etc~·dri the domains defined below.

Function . domains are specified using· arrow . (:.....) notalfori. . thus, . the domain equation,

A = B -+ C defines A to be the set of all functions ·-wfth·· dottrldn 'B · arid range C. Tuples are

enclosed using angle brackets.

Formally, we define the VIM System to be a three-tuple:

VIM= <Shell, lnterp, State> where

State :=:: <Act X H X EIS X Ea,>

Act = U A -+ Adiflty

H = U8 -+ST

U A = the set of unique identifiers used for activatioftl.

UH = the set of unique identifiers used for structures.

EIS = the set of enabled instructions. described later.

Env = Name - (U U Scalar)

Activity = N - lastruetioa, N being the set of qatu~ numbers.

An element Act in the domain. of VIM activations. Act; ·is a ma,t)ing ftom unique identifiers to

activities. An activity is a fundion mapping from natural nttmbefs to instructions and represents

the code ofan activation. An activity am be thought,ofanarny·offflStructions. the /Ir element

in the array specifying the /h instru(;tion. The VIM-'ttel~ H~ is modeled ns a function from

unique identifiers to structure types. ST defined below .. The striJctufe ·of the heap is detennined

from the mapping dcl1ncd by the heap function. Sc:Jl:ir vafucs· ate not represented on the heap.

§2.4 A FORMALOPEAA TIONAt MODEL·- Ml 19

Acti¥idoit

',.,

value,

~

Instructions
. Interpreter Shell

value Env News._

lnstNclioa

Fi6111"1 S: The Abstract VIM System

In the actual system, such values are transmitted directly along the :value arcs in the gnijlh. The
- -.• ~-·. ; . ·, ,(' ·> ,:· ::~.:~:·f,-Tt. .-~ _(, ~ i",£_:,;· "t:L.! { •t; . . ~ .. -ld .

Environment component in the StaJe is also ;i fuDGd<>Jl, ~~ ftt>m,,.;~, .1,1~e. wflicb is ,'PY
.: -.. _, ·.• '., :(• - ·_ ,,, .. ·~-•·,,., ltj~,, '-~ .,,;-· (;j•-_. ,,._,. : '._,,,. ,,..1 -~

sequence of characters, to either a _unique ide_ntifi~_r ~fe~cj,~ a ~ture}>f1 the heap <?' a
'< • -; • •• :' ,. •• ,, '•·' \.,• .,_: ,

scalar value.

The data types supported by .the s,stennue given below:

Name = Character•, the set of alt character seqtiences'.

Integers = the set of all iotc&ecs u.{.u.ndq}
Reals = the set of alT reals U { undej}

· IJooluas :::, { rru« }1JJ$1!.· .· »llde}t,
Character = the set of characters in the machine U { undej}

Null = { nil. unde./}

20 A FORMAL OPERA TlONAL MODEL- Ml

ST= {ArrayU{unde/}}U {RecordU{unde/}} U {OneofU{URdej}} U {Function}
U {ECQ} U {Clsr} U {Dests}

Array= Z-+ (Uu u Scalars), Z being t.hesetofintegers.

Record = N -+ (UH U Scalars U SUSP U Dest). N being the set of natural numbers.

Oneof = N-+ (Uu U Scalars U SUSP), N being the set..ofnatural numbers.

Function = N -+ Instruction, N being the set of natural.numbers.

§2.4

The set of structure types includes arrays. rec..-ds, and eneofs. ,:.Arrays are modeled as functions

from integers to either unique identifie~ representing structures on the heap or scalar values.

Records are modeled as functions from natural numbers to either unique identifers representing

some structure on the heap. scalar values. suspensions. which we describe later. or destination

lists. As we explain below, the return address of an activ.aµoa is packaged into a record and

transmitted to that activation when it is mstantiated bythe APPLY ·instruction. The destination

list represents the list of return addresses which are to receive the: res,ult of the activation. While

components of record structures are add~ by their field·name in VIMVAL. the compiler

translates these names to the omet of the addre5$ed component in the record.

Note also that the set of functions is also included among the elements of the structure
. -.--- _,

types in the system. This is consonant with our treatment of functions as first class citizens. An
. -f

element of type Function is a mapping from natural numbers ·10 instructions just as elements of
• - • • • : '.,_ ', .:;-· c' ' ; ; ~ ' :·. ,' ; • : •

the set of activations are. As we shall see below. the only difference between a function
' .,

definition and its corresponding activation is that the latter is sensitive to the effect of instruction

execution since operands and signals are received by the instructions within an activation

whereas a function is a pristine object like any~ V~-.tAIICtlmt.

A function closure is a special ft!COl'd of •twe «>m,-.e-.: the first cemponent is the uid of

the function template of the closure and the seco~d QJmpooent is the U$1 of free variable
. ~ ; :•] i, ' . . . • I _ , ,'' . ' • -

definitions found in the function. The closure of a function completely defines the bindings of

the free variables in the function and. thus. must be dc'ttn~ ~on: the func~ion can be applied.

Free variables are acc~d by its index in the free variable li$l. The dct1nition of a closure is

given fonnally as:

Clsr = <U 11 X (N -+ (U 11 U Scalar))>

§2.4 A FORMALOPERATlONAL·MOOl!k- Ml 21

2.4.1 The Base Language Instructions

A base language instruction i&an seven~tu,le·C0116iSlinlof'an opeade, three operand fields

(not all need be uaed). an operand,count usedtt.o:ffldicate;lk:,w:many-·oper.at1ds must arrive, a

signal .c;owit U$ed to indicate .bow may signais'fffllSf,t,etr&llilfedHmd the· desti11af.ion record

CQntainin& the list of d~ for dlis instrucciolL l'be;tat,d'~-we wffl be a)ftSidffing

in our opera\ional model :MILindude irecord-<ltMlllr.e·,~oos. function application

in~ons. Md .operations: ca eariy oompletion eltm.ata tft•dmMes of inslntctions wiH be

the on~ of greatest interest when,we presenu>1.u:.t,ac1tup anttNCOfti, algorithms.

Instruction = OPS x (U8 u·Scalars)3 x N x N ·x bests

A de$tination ·1- a type .whic;h is ~-~tonaL if tbtuault of 1he it1$tl'UOtion is to be

sent automatically to the destination, true or false usedr'°'ca; SWll'CHJbst'luctioil to, ~I

conditional evaluation. If the type of the destination is true, then the result is a signal which is

sent to the destination mstfuctiori if and only it\th~ s\VITCI{: ~raior ~~al~a~ci ~ ~e. A similar
' · _ ·: •• ' ,:·~ • '•, '·· _ :-,;_ .; ··: _ ,. ; _I i•"V' '~'i\: r \:,} :)l•·;~ 'j' ;: ~c.::' ' .. . •' :·• ·:., :
descilptlon · appttes for a false' type destination; All destinations ot an· instruction must be within

._ .1 . ; . > . ~ :· .··, ·'.··. ,· ;,. -. ,/":~.L. :"' ·.;J.'s..) .':;_:·';liti.i.,}··;(.(.- ·."':~~:·:.·: .' ;-•:,·: ... ,·:.
the same activation. The second component or a destination is the instruction number to which

'· ~ ,'., .-,,.., :· .. ;, •- ·:•·· d, ,', ·::) // ·---:q""·_; ·;":~-' •. ,.: :·\ ':·~ ;'.;\. '..R:

. 'the sfgnalor result value shoutd be sent. If'the'destinatloii"JS to 'receive a signal, then dtis must
' __ _·, --)'·- ,: : · /' · .n1r ·.··_-; ~'. .~-~~:,..:~"';.-~: \' . J :r: ··1;--:· ~ ·.·: ~i·

be specified. Otherwise, the operand field to which the result is to be sent must be _provided.

For convenience we shall refer to the elements of an instruction using ~-•~ notation. For

example, the opcode of instruction / shall be denoted as I.opcode etc.

Dests = ~(I)) .
·o-= "{UtlC0N1, 'ttue, false} X N >< {op1, Op2, op,, stqnal}

An enabled instruction is a two-tuple (u. ,) repraion-.-~ ,in•.s:>me activation which

has received all nec~ry operands .and signals. Any enabled instruction can be executed by the

interpreter. The applicative nature of the system guaraMets'thit~ ~a'riobr bf tht'program

w:m be ~nnin$ ·~dk¥ Qt' tho: order in whidLa.blat! inilrucdobs~iin':)the p,dgram are

executed.

El= <UA X N>.

EIS = ~(El) is the set of enabled instructions.

•

22 A FORMAL OPERATIONAL MODEL· Ml §2.4

2.4.2 Early Completion Structures

According to the model of operation presented above, an instructiPn is allowed to execute

only when it receives all necessary operands and sipals~ In :the case when an, instruction is to

operate on a data struature such as an array or m:ol1d,;this means that the emire:scructure must

be fully constructed before tbs irastru.ctioa can execute. Jf die astructioh only needs to examine

a certain portion of the SU"UOtvre. then the execution· model i11111teoeaarily, oonstrains parallelism

in the program. To alleviate this proalem. there· is a. fac.ilit, ia VIM: know11 ,aa, emly cmnpl~ion.

Early completion structures allow areater ooncurrency :9f openiuoa by; allowing a data structure

to be constructed and used before all of its component, are available. , The q)lllpUer designer ,ean
, ··. ·-;l}"'.' ~h,.., l_ <' ,,._.. i· - , :

use this facility, for example, to generate code which will cause the results of an activation to be

an early completion structure to allow the ealling 'adMtiGn 'to·use- !bme of the results of the

callee before aH of them are knowtt.

An element of the set ECQ is an early completion e/em~(!p]. An early completion
' '. ' . ·;.

element is a two tuple, (u, ,), where u € UA and I €_ .N. '{be wty compl~ti<>n stnac~ is
' , . . . '', i' \ \. .-... :. . . _,. '

essentially a queue containing target addresses Qf those instt:uctions. which r~qq,ir.e the vatu~ of
. . • ·: - . : ! f ~ ~' - •• • ·, • ·., " ",: • • j ·. . ' . • '

this element in the structure. When the value is ,fit)atlx pr9d~. it wi~ i:epJace the ec-s~cture
. , ' ; . ~ : ' .. ,,, . . - .. ' ' ,- .

and will be sent to all targets. This process is illustrated, in F°~ ,6 ..
' J • 1 ,t ~ • •

ECE = <UA X N>.

ECQ = ~(ECE)

An element, (u, ,) € ECE denotes an instruction \\'.h,ich,h~ ~u~ted t,he vatue whicb is to
' .,., . ,J ,. .. . < -''.~~~~' . ' '.-' . .

replace this early completion structure. The uid u denotes a function activation, and I is the

index in. this .activatk>n of tho ta11et .illstnJctton.

2.4.3 UelaJed E,aluation lJsia& StrellllS

The astutetader would haw noticed ,tJtac the;...., t)lpe,,,_.d m an earlier section is

not defined in our fonnal model. We represent streams using the record and oneof types:

Strcam[f] = oneof
[empty: null
non-empty : record

(first: T
rest : Stream[f]]]

§2.4

R

1 2

vl v2 A vk

A FORMAL OPERATIONALMOOEL- Ml

R j

R V

A: SELECT

B:

I
I
I
I
I
I

R. k is OIi ~ completion stnlctrn whose value ts SET by Instruction B.

23

l Heap·

I l ktl,ation

R

- 1 2 k

vl vl V vt

I
I
I
i

R j

A: L · 1
~

J Mu B txffllles..value of R.k. ts Wll u,all rarietr.

Figare 6: The Use of Early Completion Structures

We have previously mentk>n~ that str~ID$ are.~n~'1\Y ~iµite •ructures. In a J)llrely
j' • ' • • t. ; t •• RC ..t ,- •• , r • •]

data driven execution model. the production of a stream may far outstrip its consumption. To

avoid wasteful computation. streams are produced in a de'"ff'tt/$',11J~U6)., lndem4nd

driven evaluation~ an ele.meni of a stream is pfC>4µced,. 90ly w.~~n,i(S.con~rner ~iros it To
' :·, •. • ' . ' ' '.. /'. 'j • , ~ 0 • .' l ';: T .. i .. - -• • .. . ''l, • • • •

implement this foature,_ a special record element call~ 8i~Rf~~p~ !,/1Jf9(iuc~. A suspe11sion

contains the address of ~e instruction in ' the strea~ P,~U,~fr . ,re,rcmsiblc (or in~~nl~l~lng

production of the next stream element ,When a ~~11~f!~~~ ~::su~~?.sio~~r!,he s~pension
'\ .,. . -

becomes replaced by an early completion queue and a sigflal is~~nt W the addrc5$ which the
< ; • , ' • ' ' • ':. 7 !_' ' • J ~ ! ! < ••• : ; ' ~ • ' ' : ; ,•·

suspension holds. A new record is created for the next .~lcmcn\ and the early t-0111pl~tion queue
, • ' ; • ' j C : C ~ \ O O, > • •

will get replaced with the uid of this record. The hc~td. of this p,cw record will t·ontain the new

24 A FORMAL OPERATIONAL MODEL- Ml §2.4

stream element and the tail of this record will again hold a -susi,ension. We illustrate this process

graphically in Fig. 7.

1. Stream S withjin(S) = ,.
s

1. ,4/ler suspension accessed, it becomu an ECQ.

s

~-sp __ __

s

V

vl

J.. Producer yields next element which is transmitted to waittng consumers.

Fipre 7: Demand driven evaluation of a stream using suspensions

SUSP = <U X N>

v ! ECQ · (u,i)

(11, I) Is the consumer lnslnlctlon

The suspension structure is a pair <u. i> which represents the address in the stream

producer that is to be signalled when the suspension is accmed.

2.S Semantic. Fuuctions for Ml

In this section, we present an operational model for the VIM Shell Interpreter and base

language instn1ctions which extends the operational model denned in the previous section. The

instructions which we examine here are chosen because of their relevance to the backup and

recovery algorithms developed in the following chapters. 'We partition our presentation into

four categories: formal description of the Shell and Interpreter, instructions which operate on
. '

structure types. instmctions which are used for manipulating early completion structures and

stream clements. and instructions which arc concerned with function application and return.

§2.5
,• .

SEMANTIC FUNCTtONS 'FOR Ml 2S

· In the next section,· we define' sortte atfxiliaty functions that' wilt be uSeful for our

presentation. These functions are used in the deflrtftiohs··otffie -af>dve· nientidried base language
instructions.

2.5.1 Au1iliary Functiom

TM re are sevenil printitive-auxiliary functions which' ~tteed·to define before presenting

our operational model; :fliest fundions optl'ate·bri'b'1iltip, etivatlon;· 'and envirotunent

components of the VIM state. , The fi:nitttfbns) ~-,·iJ&wftiitl/t!dji'adds and··remove an

element to and from the heap respectively. Th~-~&f P~ ,~~~Jl -~«:$ ~ ~ree ~µmen ts: a
current heap H, a uid u, and a structure. v. It returns a new heap. H •• identical to H except that

this new heap is defined ft>futUdr that·et(-u1·=· ,. ··'tbirdet'lriitioti iof'Newlfeap allows us to

rebind existing uid's to different val~ a featµte w~~l ~~-V<IMtA-~ltalellting early

completion structures and suspensions as we shall see later. The RemoveHeap function takes as

arguments a heap H and uid u, and returns a new heap, H'identkW \(>-'/i,:ex~t that H'(u) is

undefined.

NewHeap: ff X UH X ST - ff

Function NewHeap(H. u, v)
V u1 € UH let H'(u1} _=_ H{ti1}'1f "t"' u

=votlllWl!le-··
In

a·
endlet

endfun

RemoveHeap: H X U8 - ff

Function RemoveHeap (H, u)

V u1 E UH let H'(u1) = H(u1) if u1 :it u
= undefined otherwise

in
H'

cndlct
endrun

There are similar funclions. AddAct tir\a R1:moveAcq:lcrlned fbt_ Ute activation component

of the stale und AddEm• and Rcmol'el:·nv defined for the environment component as well.

26 SEMAl'{TIC FUNCTIONS FOR Ml §2.S

Since the transmission of results and signals i& an ~ity J::omqx>n to ev~ry instruction, we

define an auxiliaryJunction, SendTol)est ~hich is ~~~~JF,,for ~ding a vahre .~r a sianal as

the case may be to the specified target instruction and constructing a new activatiOll fµocuon and

new set of enabled instructions to reflect the effect of this transmission. SendToDesl constructs a

new activation component in which the target instruction found in dla!Cfestinadon atJDnlent has

been updated to ~tlect theJ~o.n of the vatl¥.qr.si&4tll.,·.U.,,,u111'1Ultof.this lt'al\Smmion,

the target instruction \)ecomos e~e4.J.&., bav~ ~ts,~ ~.-1'-tJidds be®me· zero. that

instruction is appended W the eiiabled:~~~

ResultType = (U8 · UScalir) Us~

SerulfoDesl: Act X .EIS X lJ A. X D X RelJiltTftl "TI',~· X £IS

Fanetion Sl!ndToBatf.Act, EIS, UFA' <de, I.' opmim)/ rnillij

let FA= Act(u,)
I= FA(I)
resultval = ii ruult = s'9nal,

tlltl UIJdll/
elsemult

endlf

newopnuml = if opnum ;t op1 the11;J.QPt .-e"'4'hyq(
newopnum2 = if opnum :,,: OP2 then I.O'fl ~J?fl .
newopnum3 = if opnum :,,: op3 thea /.op3 else rm,/t,al

newopcnl = if result = s'9nal,
then / .opc;nt
else /.opcnt-1

endif
newsigcnl= if result = signal

then /.~nt-1
else /.sigi;nt

cndif
. •,.

I'= l.opcoae X newopl X newop2 X newopJ X newopcnl X newsigcnl X /.ats

V j E N FA '(J) = F A(J). j :,,: i.
=I'. J=i.

NewAct = Add.4cl(Act. uFA' FA)% new set of activations
NewEis = if{/'.Q~tlt ~ 0) I\ (f.~,;tit,=. 0} 1

then E/5'U {<uFA· l>J ·. . .

§2.5

in

else EIS
endlf

New.Act, NewEis
endfun.

• SEMANTIC f1JNCTIONS FOR Ml 27

Two functions which call Sen<ll'oDesJ are S~Ya44e AAd·. ~ipal. The function
. ' . -. . - ,-. '

,SendValuecall$ SenDoDest for every target in the destiDatioA list ofm.~-whose opnum

is not s~nal. That is, all target instructions ·d!atve· u,:~~fthe resu\t otjthe instruction are
.' .. : :· -~ t ! '

sent the result value by SendValue. This operation is accomplished through the use of

Senr/ToDest. SendSignal operates in a similar fashion:'W Stltd¥'1ltie ~xcept that it calls

Senr/ToDest for all targets in the destination list of an in,~ wb..,pi,num.iJ slg1'M,IL
~- :~ /5-t. ' ~ F 7 ,,.,, · }~- . ·

SendValue: Act X EIS X UA X Dests X ResultTJ8i~·~><ci'.IS

Function SendValue(Act, EIS, uFA• dests. v)

let Va/Dest= {<de, i. opnum> € ~l.oplUflffE1(qpJ~~QfO}}
(del' il' op"""\),._~ ~• . ,

opnufni>, <den• ;,.. opnum,,> =
n components of Va/Dest

in
SendToDesl(

SendToDOl(t.,
SendfoDest(..A.ct, EIS, uFA' <tk1, il'o~>. v)

endlet
UFAt ~~~Q~, v):.} ,, <' .

endfun

SendSigrwJ; Ad X EIS X UA X Dests X ,...,. Ad X DS

Function SendSignal(Act, EIS, uFA' desJs)

let SigDest ~ { <de. I, _opnu,n> € dests I opn,µ;,'!. = signal}

in

<dc1, i1, opn_um,v-<rk1·4.·~>, • <4q,,,., im• opnwnm> =
m components of SigDat :

SendToDesl(
SendToDesl(...

SendToDesl(Act. EIS. uFA' <de 1. iI• op11um1>. si9~.
u FA' <de 2• i2• opnum2>. s~nal) ...)

28

endlet
endfun

SEMANTIC FUNCTIONS FOR Ml

2.5.2 A Formal Model of the Shell

§2.5

As we described above, the VIM shell serves as the interface between the interpreter and

the VIM user. The fonnal definitrol'l of the shell is given below:

Command = C x Name x (Exp U und6/)
C = {BIND, DELETE}

Session: StreamlC°'8111Ud)

Shell: Session X State - State

Function Shell (&Sllon, State)

let <A.ct, H, EIS, En,> = State
NewState=

if CltooltToExecule (State, Seoiolt)
then Shel(Sesslon, Execute(State,,ChooS#(Els»)
elseif empty(Se.uion)

cndif

then State
else let c, = flrst(Se.uion)

in if cl .c = DELETE
then <A.ct, H. EIS, De/En't(.En,. Name)>

endlet

elseif Ci ·C == BIND . ·. . ;

then let CJ, cominanctis BIND

FA = Translate(c 1)

"FA= newuidftom UA
Ac(= AddAcl(.Act. uM FA). .
Nt!WEIS == EIS1J(. ~uF~ t> I FA(i).apcnt = o

/\ F A(i).sigcn.t = UJ .

State·,,= Inter/J(.State, Cholce(NewEIS))
<Act', H·. ETS'. Err,)b:state· .
En'v = AddtoErit'(En~~ c1 .name. v)

in
<Ac(, H', EIS". Env)

cndlet
endif

· · §2.S SfMANtlC fi1:IN€TlONS.FCa Ml

In
if empty (Session)

thesl'ff EIS'.e {}
tllelt-Shell,(Sn,ion..Ex,cute(Nnalale.iCholtcl!(El&)))
else Newstate

endlf
else Shell (rest(Session), Newstate)

endif

..net
endfun

29

The shell takes· in a input a SlteOm of· WJ1111~<11: J'k · cans dte function

CJ,oo.re1'0Encu11.which.·.e---1he•CUffeftt Me"lid tr'eltitf·'iind'determllies if tire shell

should process the next shell command or whether it should call the~ function using the

current enabled insttuetiolf• ·!fet:····· Thi!· function. -illows ~ffie ·systeni to . continue ~ process
instructions even if the remainder of the ~PJl'1f:J9~Pllflti';" •r., OM. poaible

implementation of this function would be a routine which examines the current input buffer -
- _ .: , _ ,7, :. . ; _ ! .'';- ~- .; ;..-j ~.~, ~&> :\· (<~ ,\J) ,.,1s~i(-') \~'"- .::.:-,\ ,: ~:: ;,__ - :

if the buffer is empty and there are instructions still to be executed, it returns true. If, on the

other hand, there are shell commands available to be processed. it returns false. In tile case when

there are both commands and enabled instructions avit1iiYili if~' ~rl~ '~m either true

or false. If the function returns false and the flqt.~Qllliltja~·ctream is DELETE.

then the shell removes the <name. ¥alue> bindidf'fWSitt'the ~n?~trohment and processes

the rest of the command stream. If it is a BIND coml'IW)d..-,p~'•'O£ ~ ,-uiHiary function,

Translate with this command stream element T~~·in•aetlvfij~ PJf.\vhich embodies
~ .)\ _'_ }>:,··,ir1;__" :-~-if·\·1;:1\:}I, ~: ·;\!~ \ , :~~-

this command. For example, if the command input to Tn:uulate was BIN~~, ,= / (z)), the

activity returned would be of the fonn shown in Fig. 4. The n:sult of evaluathlgi~ activity

represents the value of the command. A new activation is constructed from this activtfian~.this
< --· ·- --~ - ' - , •• -- .,, , __ ...,...._,.,_. -""<' ~....:...- _____ ,.,.,4,,_,,.. -----··=·-~· ,.,_,_ ~ -, .. -- - .,.....

activation augments the current activation state. The enabled instruction component is also

apptqnlatdy augmemed.-iltdude.alt4M~ lhls~vlido,rt.HM b~ilieiroperand

and signal a>llnt al~;zeft}. · 'The ltlclt eaD>tttt, ~terpf'ett:r·'Wftfflififsl;~ 'state amr some

enat>led instruction front die set .of' (lWat,led' 1iMIN~ 1''fl\ei-~hok:C' or •hidt enabtcil

instruction 'to,cxccute:is mack19'y ,91e:c1to1u.flMttkWl:•,1'ffe-11eWl.ttate !&Ci~ by' tfitdnt~rprcfer

ti used by. the shell m:,proc:esh19 t11e11ext'Shefl·cemWmntflf i~·anf imrc io'·t,e p~.
lbc value. i. returned by lh4 intcrpt'Cfetr is'~ ik1lfflJv5i!i' efttiMttlffcnt'to'the symbolic name

30 SEMANTIC FUNCTIONS FOR Ml §2.5

which is an argument to the BIND command. If there are no more stream commands to be

processed, the shell calls the Execute function described bel9\V to ~ecute the remaining

instructions found in enableddnstruction set. If there .are no. more enabled instructions, the

function returns with the final state.

2.5.3 A Formal Model of the Interpreter

The interpreter is a state transition function from states and enabled instructions to a state

and either a unique id or a scalar value:

lnterp(<A.ct, H, EIS, Env>, Choice(EIS)) t- <A.ct', H', EIS', Env"> X (UH U Scalar)

The Choice function, as we explained-above, is u,ed to.determine which enabled instruction

should be chosen for execl41~ from tbe en.abltd ins~ ·.sel. The, definition of the

Interpreter is given below:

/nterp: State X El - State X (U8 U Scalar)

Function Interp(State, <u, I>) %<u, i'> is an enabled instruction

let

in

<Act, H, EIS, Env> = State
FA= Ac(u) .
Newstate = EXffllff(SUM. (14 i.>)
<Ac(, n·. EIS', Env> ,= New3/ale

if FA(/).opc;ode :: mt:MfNAT£
thu N,w~(e, F A(,~1
else lnterp(Newstate, Choice(E/S'))

endlf
eadlet

endfun

The instruction which is chosen for execution must be paitofsomc activation defined in

the set of current actiwations. Act. The _interpreter alla, on an·. ,auKiliary function. Execllle,

defined below whic~ wntains the definiJions of all Ille bQse language primitives. Note that the

interpreter only rctums-iei result when the TERMl~ATE instBUrtion'.11a.,,executcd. This restriction

guarantees that environments will be.updated axrectly ~rding to the:Ordcr in which· BIND

commands were input. When the inlerprctcr returns. a new eommand can. be pmce~d by the

§2.S SEMANTIC FUNcnONS FOR Ml 31

shell. Note that because of the presence of early cotrip~tion structures, ·there' may still be many

activities in progress at · the tim-e the TERM1NA TE:'· insttuctiott : ~xecutes and 'tile next shell

command is processed. Thus, our mGdel aflows instnrctions'tbattd·ittattivfties created from the

evaluation ofdifferentbind commands to·execute·in pataHef: We·cto not come into problems in

augmenting environments though, because, as we di~~, Qrtier, ~~np are: al~ays

constructed in the proper serial order.

The Execute function examines the instr\lction ~-~and perfomts the necessary

functioo. The·resultolthia function wttt be-a new--VIM1Jtate.~,'J"hesthtcture of'this·function can

be given • follows:

Execute: State X El -+ State

Function Execute(State, <uFA' kF,.>)

let <Act, H, EIS, Env> = State
FA= Acl(uF)
I = FA(kFA)
destinations = /.Dest,

in
NewEIS = EIS-{<uFA' kFA>}

if /.opcode = SET then ...
elseif /.opcode = APPLY then ...

endlf
endlet

endfua

' '.

The destination list specifies those instructions in the current activatjQn l:O: which the result

of executing this particular instruction should be sent. ;,~?~at' in ~dditi~ to tran~itting
} , ; • • , ' • '; > '.. • : f' .}' ' ··:• < ,; ';i

results, we may also need to send signals to destination&

32 SEMANTIC FUNCTIONS FOR Ml §2.5

2.5.4 Formal Definition of Base Language Instructions

In this section, we present a formal definition of th~ ba$C language, ins,tructions that will

be useful to us in describing the backup and re~yery al&Pritlm,Js• lawr in the thesis. K~p in

mind that these definitions are actually found within the i;¥a;ute funqtjon given above.

2.5.4.1 The TERMINATE lnstructloa

The TERMINATE instruction is used to receive the ·result of evaluating a base language

program. This resuJt,v1ilue is then bound by,the abell4atbe11S«,avironmcnt. Toe:instruction

takes in one aqument. which is either a seal# value or a uid. It sends no,IZSUbs but will ~nd a

signal to a RELFASE instruction which is used to remove the activity from the set of current

activities. We describe the operation of the RELEA-SE instruction -tater in the chapter. The
' .

interpreter picks up the result from the first operand slot in the instruction when it returns back

to the shell.

if /.opcode = TERMINATE then
let

val = H(/.op1)

Act', NewEis' = SendSignal(Act, EIS, uFA' destinations)

in
<Act', H, NewEis; Env>

endlet
endif

2.5.4.2 Structure Operations

The base language a>ntains powerful in5'rUCtions for the creation and manipulation of

structure types. There are three structure operations of partic.t,llar inte.rest - CREA TE. REPLACE

and sa£CT. The ClE.ATE operator is used to~ a stnJctU~ ~(a.particular dimension. In a

functional language. a structure. once defined, cann6t be ,su~uen'ti>' altered. Replacement of

an element a in a structure with an element p is done by creating a new version of the structure

with /J replacing a in the new version. The SELECT operation returns the value of a specified

field in a structure.

The operations we describe below are for the record structure type but are very easily

converted ft.>r the array or oncof type.

§2.S SEMANTIC FUNCIIONS EOR Ml 33

To create a record 5tructure. we have a MAKEREC·iftstruction. «It takes in one argument. the

size of the record structure to be created and constructs a record' of such a dimensjQll. setting all

the fields in the record to be undef. In addition to the MAKEREC. i~on. there is also a

MAKERECEC instruction which constructs a· record.· all of whc)Se elements are early completion

structures.

if /.opcode = MAKEREC then
let

m = J.op1 % m is a natural number

uv = anew uid in u8 • . '
Act', NewEis' = SendValue(,Act. EIS, uf.d_. destlnadfln•::Gp
Act .. , NewEis .. = SendSignal(Ac(, Ne~l.t',t,NdJstinations)
H = NewHeap(H. uv' MakeRecortl.,1 •. m-../Jntliilj) · <'

la '
<Act ... n·. NewE/s", En,>

endlet
endif

The RFPLACE instruction on records takes in three arguIIlM_,,the uid of a record R, the
, . · C' , , , l , '·.•,. "s'i ,,.,;"

field in the record which is to, be rer>JacedJ."and the vafue:Qflb,.:new element. x. which may be a
' > ·, "· • • • ' , , '_,·.'-;·..,~" • ''-""

scalar or a uid. It creates a new copy of the record. R', with field /in this copy having value x.

We mention the RFPLACE instruction here maidf~f-~~ as it will not be involved in

the design of the backup and recovery algorithms we develop' later'lit.~e thesis. For a detailed

semantic description of this operation, the reader should see (In

The SELECT instruction is given a record structure and the offset in the record .of the field
,:; ,.

to be selected. If the item .to . .be.-5dected is.an ear4-complelioD 5'ruaUr.c. thea the inskUCtion

queues itself onto the ec-queue. When the value of this field is finally known, the. sel~t
rrnHrn,i; ; <: · • ' ··

instruction will be placed again on the enabled instruction queue so that it may execute. It is also

possible tliat the· item being ~ected may be ja · sus;,e;Jsimt1f tl\tte&rtf f~ l)rut of a strearii. Recall

"that the rest operation on 1streatmris' tmtislatediintt> Isefeci'~Hitidtrotdhcf setond comtK>~ent

· of-the head of~ currentstre-Jm. Bccnust streams attf:pi&tucca1
fn a demaha driven manner,

this field may be a suspension in which case the:sftocf'fnstriict16tt1\vilt ne<!d to send a'sfgnafto

the instruction referenced' by ttfc susr,cnsion. The' field occtfr,fcd1tiy th~'suspensk,n ~m then get
changed to an early completion queue which will get -~tr ·tfr·thc ·acti~ation rcsp6nsibfo for

pro<lucing Lhc next stream clement

34 SF.MANTIC FUNCTIONS FOR Ml

if I.opcode = SELECT then
let .

R = H(/.op1)
f = I.op2 % f must be a natural number

t = R(j)
Newstate = if t € UH A H(t) € ECQ

then <Act,

in
Newstate

endlet
encllf

NewHeaJX..H, t, H(t) U {<uFA' kFA>})
NewEis, .
En,>

elseif t € U8 A H(t) € SUSP
tlaen let

<u',. k'> = H(t)
Act', NtwEis'· =

SendToDest(Act, NewEis, u·, <unGOnd., k;stgnal>, signal))
in .

<Act',
NewHeaAH, t, MalceECQ (<uFA' kFA>))
NewEJS;
Ett,>

eacllet
elselet

endtf

Act', NewEis" = SertdJ:'al~~~-,, ljn1~il. uf_., destinations, t)
Aci, NewEisH = SendSigiial(Act, NewEis, uFA.' desJinations)

in .

<Act", Q. NewEis .. , Env
endlet

2.5.4.3 The Set Operation

§2.5

The majn ope~tion on early rompletion elemeqts. i' tbe. ~-- jnstruction, The instruction

truces in three arguments. a record R. an offset in!)le.recqfcl w.,l\ic~pr~nt•tUte. field wmcn is to

be set. and a value. x. When the set inslruction.ex~t~ it ~P~~--lhe .. eacly completion
,· 0 ' •• • ., ' - '

~tructure found at the specified component with· x. .. M~.~er, all the. elements in the

ec-strµcture arc appended onto the enabled inslruction 91,1cuc sinc;e. the value pf the field which

these instructions initially requested is now avail.1blc. The. Sta i~fuction. unlik~ the REPl.J\CE

§2.5 · SEMANTIC FUNCTJONSFOk Ml 35

operation mentioned above. dQes.aot cause a new vfflioniof the structure to be created. Instead,

the early completion structure is replaced with tbe V61ue /lf.;Slla., Tnis·,does;not vlolate·any

principle of referentiaUnmsparenq becau• no instructiorf ts aflowetHo read a field which Is an

ec-structure. Since the SELECT instruction on structures prevents any of its targets from 'reading

the value of the field until it is property set. the appltcatiti property of the base 1an8\lase is not
~~j(; •{~ ";-, ,-, ---~-/ I·}~ '

compromised. Because all instructions which require the value of this field are ,on the early

completion queue, SET does not send any results to any of its destinations, only signlls.

if /.opcode = SET tbea
let

u = I.opt
R = H(u)
I= /.Of'2
X = J.op3
u·= H(R(/J)

V v€N
RlY) = R(v) If v ;a/

= X otllenrise

Ac(, NewEis' = SendSignal(Act, NewEis, UFA• IM:f(~lltlliOlll)
H' = NewHea1'.,H, u, R") . . •· ·':'. ,:-\, ..

in
<Ac(,
H',
NewEis' U H(u")
Env>

endlet
encllf

2.5.4._4 The S...115-.n. pPerator

The SETS~P ~ ~ ~ble'.i« seltiftaJt.atspcRIMlll,ill;aA'la>ftllstructure. .ft.takes

in thrt;e ai;gumeou. ~ue,;or4~ fOP~W tbtwMU.:of1ae\cul'lllll.aream; an offlrec!into

.. ~is structure whereu.ie $1~skm,iuo ~.PIMacl an,.lilatstM&ionJaddrm.:irt:p~ting;lfte

instru~ion which is ~. be sign~4. wlw~· ti!~ su*..a isj~ :TM.Alfiset·musti>e an .early

comp~ti~n elemei:tt .PfCSUDHJpl)I ~1$1d 9y, a,Mld<f.iaE€£CJillstru.ationl SB15USP se1SU'I this

record the value. <u1,A. 1). ~FA''beingilhc ,uif!.of ·1'~,~ttv._itn:,vthich Ille SETSIJSP oPcrator is

executing. If Lhc cc-structure i&•oot. empty. then SfiTSU$:R1JjgnalsjfflC activation :JS well smauuch

36 SEMANTIC FUNCTIONS FOR Ml §2.5

a situation implie.5 that some select operation has alreado/,:attempted to read the next stream

element Like the SET instruction, SETSUSP does not send any results. The instruction is only

used in the translation of the VIMVAL operator, affix. which is responsible for the construction of

streams.

if /.opcode = SETSUSP then
let
. "= /.op1
R = H(u)
I= 1.op2
i = l.Op3
Act', NewEis' = SendSignal(Act, NewEis, "FA.' destinations)

V v€N,
Rlv) = R(v) if v 'f6 f

= MakeSusp(<uFA.' i>) otherwise
in

ifR(l)€ECQAIR(l)l=O
then <Act,

NewHeap (H. u, R),
NewEis'
Env>

else let Act .. , NrNEis' =

endlf
endlet

endif

in
SendToDest(Act', NewEis', "FA' <u.ncon'1, i, signal>, signal)

<Act, H, NewEis .. , Env>
endlet

2.5.4.S Function Application and Retun

The instructions which will be of greatest interest to us in the coming chapters will be those

ronccmed with the manipuladc!,n of functions. 'Flfefe n ftitir lftsttuctions in VIM which deal

with this: APPLY, TAil.APPL¥, STREAMTAIL, andREJltJRN. nte,.AIPt.t instruction is the •andatd

function application instruction, taking a funtflon closure and an · argument record · and

constructing a new activation for this function. By: CMYentm. tfre ·first operand of the first

instruction in the activation receives the closure of the funct-ion. thus' aUowing the activation to

access the free variables of the· functkln. the first operand of tfie: second instruction receives the

argument ret'Ol'd. and the first operand of the third in~1:ructk>n· in the activation receives the

§2.5 SEMANTIC FUNCTIONS FOR Ml 37

destination list ,of the APPLY operator. APPLY uses an auxiliary function, Make/Jat which

packages the destination entries found in the de$tinadolt list of dte i11SU'uctibn into a n!COl'd and

p~ this recotd on the heap .. MalceDasHakeilcin threei~eats,.1the currentJ1eap,'-the um of

the current ;1ef.lvation and the ,destination a>mp()nfin1 of de inStnactioft, · 1t m:ums a record. a, o(
\

two ektrne11ts, th't first element contains tfle uid ~ afHI lbl ·tecehd contains the ukl,bf the

record contai~ing the elements found· in the.~ list. 1bt uid of a is passed a an

argument to the called activation. Placing the destination oomponeAU-into.a.r«Ord allows them

to be acc~d by the RETURN instruction in the called activation.

if /.opcode = APPLY t•
let

C = /.op1
arg =1.op2

<u/'free> = H{C')

,l = a new uid from ':.1 A'
u .. ·= a new uld from u8
Act' =:= Atf.tACl(Act, ~·• 11(.uf.))
Jr= AddHeaA,H, u , MakiDest(H. "FA' /.deSWSi))

Act ... NewEis' =

in

Sen4J'oDesl.
(Sencfl'oDest

(SendToDesl
(Act', NewEis, u·. <unGOnd, L op1>, C),
u·, <"nconcl 2. op1> •. arg)
u·, <uru;oNL, 3, opt>, u')

<Act·, H', NewE1s: En,>
encllet

endlf

There is no explicit iteration construct in either VIMVAC or.dle.,llase:language. Instead,

iteration is modeled using tail-recursive functions wherein.the resait'otthe' iteration is obtained

in the final recursive call. Otherwise. while the recursive call is bei'll ;p~. the calling

activation would exist merely to route the result back to the caller. To avoid having the calling

activation persist until the call is t'Olnplete. there is a special ~., l~J,,W~C instruction for

38 SEMANTIC FUNCTIONS FOR Ml §2.S

handling tail-recursion. TAILAPPLY. The TAILAPPLY operator differs from the APPLY instruction

in that it requires a third. operand, which is the return address to which the result should be sent

By providing its own return link to the callee. the caUer need. not wait for the recursion to

complete. We illustrate this process ia Fig. 8. The tailappJy instruction sends only signals to its

targets. Typically. the t.araet of TAU.APPLY will be a RELEASE i.-ruction. described below.

which reclaims the space used by this activation.

closure closure closure
I I I

f • • • f

I I
Arg. Record 1 ,_ Arg. Record 2

I - -

LinkL

Figun 8: Tail application in VIM

if /.opcode = TAil.APPLY then
let

C = /.opt,
arg = /.op2
dest = l.op3

<u1 free>= H(C)

u· =anew uid fmm u,..
Act'= AddAcl(Act. u: H(u1))

Act·, NewEis' =
SenaFoDest

(SendToDest
(SendTo/Jest

Fint le· I actiratiolU eon bt rrclamutl witllorlt wa_ltinf for subffquent calls to complete.

§2.5 SEMANTICFUNCTIQNSFOR Ml

. (Ac(, NewEis •.. u:.<unrond..-1.opu...Q
u·, <uncoNl, 2, op1>, arg)
u·, <uncoNl, 3, op1>, dest)

Act'", NewEis" = SendSignal(Ac(', NewEis', uFA' destinations)

in
<Ac(", H, NewEis .. , En,>

encllet
endtf

39

The STREAMT AIL instruction is similar to tlJe TAil.APPL Y operator in that both are used for
i ! •

implementil!J tail recursion. 'f\\P SlJEAMlAIL t instruction. ho,evec,., _is~ in the

implementation of a· STREAM producer. _ \Jnlike ; tie tAILAni.v-~: the return link . .'. ~-' .: . ; ~ . . ~ . ·; ; t
argument to STR.EltMrAIL is a recdrd fiet<Un the tat; strefam'elemfflt created. When the next

; ; i ' ~

activation of the producer is instantiated, this return _lhf w~ !f SET to the llid of the new stream

element Thus. while the destination of the T~Y ~-~5.-~wats an instruction, the

return link of the STREAMTAIL operator must be• Ne8ftl field eithe last stream element created.

The ~ic structure of a stream producer using th~ ~:(rt~~~~·J~wn 'f~'Ag. 9.
J,, ,,_,,,_,,.,.......,_,,_, ••-•'• •••--• --~, ".-..~~- V• •> s• ,.,, •• , •• ~ ,,.,,_ •

The RETURN instruction takes as input two ~~,~~~-~(?{.fC!µW:.~resses and a
value. It sends to each of these re..-., add...__~ vaJue a11Nhea: Slllds signals to

target instructions within /.~.o~~•,.~v~r~ _u,y1,~_fK1:~t~.l~~e i~truction, the
execution of the R.qf,~ ,~~-\~~~-•-~~--us. own. Thus,

having the RETURN operator execute may lead to instructions in other activations_ becoming ,.,
Hi

enabled'. The value_argument to the return instruction repl"'W!fl;~,,~~f~.~vation: no

other effects of the activation will be visible outside of the- value sent by the retlh'ft·ftperator to

the receiving instructiolls __ in "~~5a_l!!ng __ ~tiya~!!_: __ This J?.~.1J~ __ a __ 9Qll~,Q.Y~.o~ .9(the

applicative property of the base language. The RETURN instruction uses an auxiliary function,

GetliJesl..: which, is the conw,IM4eM of .. ~ Milffelkkt-~ 'eai1fer.'. · Oerb-est when

gfl'en tha,henp amt &ttewf~fU.~rif;;mlffltS tj sef tep,_ftihgifflc Besthrati&{llstt,d:tgeci
in tn[llrecord.

ifopcock = RETURN thee let . ,, . '

IJL = H(/;opt) 41, fhe,listoffCttan1nddrcsses
ur = DL (I) % uid of Lhc calling activ.alion

40 SEMANTIC FUNCTIONS FOR Ml

2

MKREC·EC

2 A 1. V
closure Arg. rec.

I
SETSUSP SET A STREAMTAIL .__ ____ ..._ Jiu 2

F1111n 9: Skeleton of a Stream ~ucer

targets= GetDeS'l(_H, Dl(tJ)
val ::: /.0,Z '- the value.to be retumed

Act', NewEis' = SendValue{Act, NewEis, u~ targets, val)
Act .. , NewEis .. , = SettdStgnal('Acr,~Nn,£11~11,_,/ddinadons)

in
<Act .. , H, NewEtJ'; En,>

endlet
endif

§2.5

The last instru~ we ~allpraetlt is the·.llEJ..M&E ~- Unlite an>1 of the other

instructions presented thus far, .RELEASf. is not. used h\,~jrnpt..e,atation of 8ll&' V1MVAL

construct Instead. it is used for memory management purposes in the machine. Wllen all

instructions within an activation havetompleted. thestorage·ocettftied by the activation may be

reclaimed by the system. The RELEASE instruction performs thi~ function. In a language

without early completion ilructures, this operatioll, would, U$UaHy be a. part of the RETURN

§2.S SEMANTIC FUNCTIONS FOR Ml 41

instruction, but because there may still be computations still in progress within the activation at

the time the RETURN . executes, it is necessary for a separate instruction to handle storage

reclamation.

if opcode = RELEASE then
<RemoveAct<..Act, "FA)
H,
NewEu.
Env>

endlf

2.6Summary

In this chapter, we have presented a fonnal operational model for the VIM computer

system. We introduced the application language. VIMVAL, and described the role of the Shell in

the system. A rigorous definition describing the behaviour of some of the more interesting base

language instructions was also presented. There are two key points raised in this chapter that

should be noted. First, for the most part, an object created by an instruction is immutable. For

those cases where it is not, as in early completion structures. the acc5 and updating of these

objects is carefully regulated to prevent incorrect infonnation from being read. This feature of

the system has major ramifications for the design of a backup system because it means that

objects copied onto a backup storage device will, by and large. never need to be updated. The

second characteristic of the system is the power of the individual base language instructions.

Because of the expressive power of the base Ianguaae, it should be poaible to integrate the

design of the backup and recovery system within the base language itself. The means by which

this can be done is addressed in the following chapters.

We are now ready to develop the backup and recovery algorithms for the system. In the

next chapter, we give a general overview of the approach we take in designing these procedures

and the enhancements which need to be made to the system in order to support them. In

subsequent chapters. we shall use the formal model given here to precisely describe the

algorithms as well as to show their correctness. We will fonnalize our notion of "correctn~"

later in the thesis.

§3.0
42

§3.0 43

The goal of this thesis is to design efficient,a!gorittJms ~hJch.~uara~~e_complet~ ~urity
' • l ·; ,,.. ; ..• ,,,'!"'", ;· ''h (,,·, .. i>;}-t;:_,11: . ;f' ; 'J .~ -

of all infonnation in the VIM system against 1cm or corruption becau~ of hardware lllfllfu~~tion.
' l· . .;:,,_,: ,·~: ,:~ b~qrn:-:-'u)··--: ~'""'i ti:'·': •,"·· ·. ; --- : ·,· .:1 :r~-· .. ,·;.-.

In this .. chapter, we· discus., the general aP,P,roagt .~t -'!e ... ~!'.IJ ~~ in . fOJ''!lttl,t,i~g . f!tese
' .·_, :· ;_.' , {: ~.;L'.._;·-; it; .. ~;, ~i .. i~1 :·_.• , •• -•i·. :.• -~·- .··., .• _-,., .•. .)• .•

procedures. In the next se~tion, we present a failure model of system operation. This model

.defines &he a,propriata,contnt i1J;wbjdtto,taldn-.a111eat,t11e;..,._ f>f•·bldcup ·and recovery

. aljo.rithQls.. In soc:tion J~;we<.raile,somoJuada111eadill -- atrmusritJ, addressett'by. the

backup and J"tQMty system.· .. 'Jbae iaueum: t»JIUirfles;ftitl}.-ibitbq'J u ,etfonwed.·how

hackup procedur.es .. :imlolled and;howithe tm · rct,tJl'inlbawadon::IMM'-M main rnemo,y to

the-backup~is ~led:brthe-backllp,~•w,t111all 1Jei~afthe pdk,tWc>ftdata

$eCUrity- jn, m.. 'COlltext ota siqle aaer s,stom,:inf twhic:11'110n~Mlf4· abpmatmil··ls· not

allowed Section 3.3 gives a high lev.-,dllsi ... ot.dklt.._ilftd1~ qe#itllm&; We

. classify the infonn~tion_ -~oun,~i i~. th~ VIM ~e ,f;l~}twg" 1!~~t ~ffifi>?~, ~~. d~~ how the

information in each of these ~~gories is view~~~ ~~,~P.~~~ __ Vi~ -~-~~ribe
- • ' • (,,.,._ •' • f '. ' -~ :-! .J_J_ ~ . .:!.t-.• . ,:,.J-~,, ..i-f..,_ '\" ,_,,,.. .,. '

the basic operation of the recovery algorithm in , this sec:tiop.. Section 3.4 ~~ the
,. , • ., \ •. • t-< :,: , ,•• :• , •• -: ': ~ \ _,: ,•~-~~-\/{.,fl''.-; -'.~~~-!;

0
'?1_:•! ,r;.-, i, ,!f'f: ' -.., ~•••

architectural enhancements that need to be made. to the. basic VIM archi~ture to efficiendy
_,,..,1L .~1:: ; · ·.:, :r1 .,n ·•r!, ·t.rtr· ~n~l \1"tfff ??.C ·r _, -~-,--·, .-2·: , ~, · :-: .. : .

support the implementation of these procedures. These enhancements are primarily concerned

with the physical organization of the backup store. The last section ~J~p(tbff ,flpaf>ter.

3.1 Failure Model
'1 '

Many of the decisions. that are made in the c;lesign of the ~kup and .~very sy~m
'. . ' · ,, ·- ···~ ' . .i.~ -c~ ; ,:__, /,, '., ~, .. - . .., , ,. -A_.).'t,(, . .fi!}rJI)~~-- , ~,,p :" ._.J', '_. - ;,~ •. /•. • ..

follo~ from the f~i~ure _m~~-• that. is mu_~ed. ·. ~• ~~~~~' ~• •~:,~,~ec\f~!l~cof TTiµ-dware

behaviour characterizing~~ ~~ o(fl~ults_e;~~d ~d
1
_,~ i~~~~ ,~~~~~ fai!~~ ~-~ ~on­

failed con1ponents in the mactifoe. Some of the facto_r~ whfs;h will ~~"ence th~ ~isn of_.~e
""\ . r· - ' - ;:J -~~ -::,~ ... u ~(.). ,~1;ru;-;.1 : .. ·, __ f)1: '!: t_, .: ; ' '; :J·, .. J· ·.• ;

backup and recovery algorithms that are described by the failure model include the frequency of

failures,in the system and the le~I ofhardware eiirotldct_.,,.'cap19iNc,lhat1is.Y:,ri>vided.

t/;-.] , 'i ·i - -~1 i

VrM is not a faulMolcrant system and. therefore. there will be faults that are not masked
• • ~ • ,_ • ' - ') ! • • '>

which will cause the system to behave erroneously. 'ft -i~ ~nr~able to expect. however. that
' ', l ·;,. i; '). _,, _ _,~•~"~f; .,: , ,.i ,~~ ,.• . 1

• -

there will be no faull covcmge in the system at all: like many COJ1Ventional systems, VIM. is
• < • " \•; ; ; • t·,; I : '' '

44 FAILURE MODEL §3.1

expected to provide enough fault coverage to QQl'l'ect many common errors arising from minor

transient faults. Correction of single bit errors in memory, for example, is a feature which is

found in many commercially available memory., units'anti, thus, the services of the recovery

utility should not be required when such an error is detected. In this thesis, we shall assume that

the recovery utility is· invoked only when errors cause information found on main memory or

secondary store to be lost or corrupted. Power outage, short circuits, a malfunctioning disk head
. ,, .

etc. are some examples of the type of faults which lead to such erron.

We do not expect that such faults will occur frequently; hardware is mumed to be reliable

most of the tune. We do make the as.,umption, JI~ -that invalid information created

because of an error is detected· when it is accessed. -,For example;. ifa faulty dist head ~uses data

to be written incorrectly onto disk. then what the data is.,mad ati80llle ftltur~ time, the error will

be detected. This auumption is important becaqse itdneans ,that any infbrmation which the

backup system observes and copies will either be eon-ect-0r detected • being erroneous -

invalid ,data is ne:ver maintained by the badcup utility.

If the recovery utility is invoked, it will need to reconstruct the system state based on the

information preserved by the backup facility. Duri~g this period, ~pther failure may occur; the

recovery facility must be robust enough to correctly· restore the syste~ state even following such
' . ~ ' ! • ., . . ' .

circumstances. We discuss how this may be.achieved later in the thesis.

3.2 Fundamental Issues

Toe backup system will need to interface with the interpreter and shell to monioor the

progress of computations in the system. We need ~ decide. however, when it should a<;tually get

invoked and by wh~m. · Secondly, once it is invoked, ~h• info~tion, sho~.ld it actually copy to
, . . , ',· . !.

the backup store? Thirdly, how should this copy operation be performed i.e. could normal

system operation be intermixed with the execution of the backup procedures or must normal

processing cease while the transfer of data is taking place?

The first question was alreudy partially answered in the previous chapter where it was

mentioned that the semantics of the base language instructions could be suitably altered to
I •

. . .

support the backup procedures. Unlike most conventional systems. the backup utility is not

explicitly invoked by any process or user: it is implicitly activated whenever the appropriate base

language instruction is fired. In a sense. the "logic" of lhe backup algorithms is distributed

§3.2 , FUNDAMI;t,JTAL 1$SUF.S 45

among the. various -~ ,language i~£;tiPASi ~~:~Jqt\ Th~ 'llle$®n of which process
• • ' ' ,c "

activates the J:>ackµp facilityis not-wmane llfWO,: ,lhif desip .. ~~qe,~ i~.£e6POllsiWI for

invoking the. entir.e ~ti,lity; different por.tiqQS. pf •'RfL-~'l#lLP~ are ~tfvaltd as
instructions in an activati<>n are enabled. h,\, ~ ~. Jh4 •lwP ~~Y-,ii -mQl'e an• e.ktension

of the interpreter, al'ld shelL ratller than • .a ~ ~: wkiqb_ Mt:M:iodica,HY ~oked

ac~rd,ing to S9me.pred~~,t~~cy~ V~ .Qft"eff ~~-~ me.ke,lhe-1-tup'filcility

.more ~ftlcient .because, it js ~bed~p witqm,,,tl;\e, ~.#A~ Tbis ~~ will

allow us to .desi&J:t ab~ facility tnat,c.an ~~1~~ ofQQmputauoa'.18 a greater

degree than would othe~~.be ~le.

The answer to ·the !eCdnd que$tk)n involves' det~fning; how' much information should be

preserved artd how the remaitrder of·tJte Sy~dii~~'·t,e· <Mfivecf from this.'data . While all

data generated by the system could conceivably be copied onto the backiip ·storage mediutn, it

. would ttot ~, a veg ~~~~Lsplµtioi,. beca~,of~ qv~)JJ~,~~• iQstructions

. in the~ Iarwu •. ae~•~e ~-~-~~,..--~ -.zn~ oHhiJ._egy
would involve modifying er,~ -Jan~,~~-'~ ~~:_resql~,et;~ Q~ to

backup store. This would clearly result in severe performance degradation. The backup

algorithms will, theref~ QMd·.to ~ :in~ albutdle,s,stem ute',iJi;a tblidensed

form ~~icl) th~ recpv~cy S)'$te~~-sµ~~,atl){~J~Jf;f,9,V~~PMt of~;SJ~ state not

explicitly preserved. As w~ $1)~1 _ ~~ ~-. of ~~-~!MfR .~~,.(pr,.~~ -~"'R·• roc;p~ry

system wm _ be d~voted to devj$ing,~tlJ.cierµ. ~.~ 1,la,.~t> en4t1in~t these ~ds.

We discuss .this issu.e irl ~~r del$1.i,n,.the n~t.~

Because VIM is an appfftatfve ·system, no 'data: ft>uncf 6ft tire heap, once created can be

~bsequently ·altered by eitfter tlie·bd:up ·system ·ot'tlr6 tnre°ij,~~.-, nius.·having'the backup

pmcedttres operate COftC\ITtently wittdtortnat'system ~ori•ctm~icaose' ally irtvanants over

the data to be vk>lated: · Mo~vet. 'the dtita oopft!tfit,y dr'e .fgyiem wilr'never be in ✓an
inconsistent !late when the·cdpf operation fs peifot1ried1~'hb•iupdating' of in'fdnnation

takes place. Our baekap:·prdccduits can·~ tlrcrcfbre:' tid1altd~ect'~C-xccute t:dnctlrrently with

,·normal system opcrntion1 without 'the need for any·cxpntlt''CXJ11~ii~y ch'ecks.

During the rccoveo process. no shell comn~ arp . ..accppt~ ~y Ille.system. If shell

1.-fhcrc is a caveat lo U1is d:1i01 which will be explained in lhc nexl chapter

46 FUNDAMENTAL ISSUES §3.2

commands could be processed concurrently with the recovery process, it may be possible to have

computations reference .data which has still not been restored by· the recovery:·procedures.: . .In

addition, this restriction also simplifies the interface between the recovery procedures and the

shell by avoiding the need for any synchronization protocols' between the two p~ in

updating (or deleting) environment entries. When the tecovery procedures · are invoked, they

make no -assumption about the integrity of the data which mat stiff be. accessible. Thus, the only

information used in the reconstruction of the state is that found on the backup store. Of course.

it is inetftcient to restore the entire state ofthe system if ontya traclion ofit were affected by an
- .

error. Significant-complexity is added to the backup -and reco~ ·procedures. however, if we

requir;-the system to support partial recovery. -.~ is not dear wnether"ihe ~efit$ -dcriv~ f~~
. - . -) . . - .. - ~ .- '. . ,_ :: . -. - . -_ : - .. '. ,:._

implementing partial recovery outweighs this increased ~rµplelity. We sha!l addr~ this topi~

again later in the thesis.
.. - . , . - ,

In the next section, we present the high level _ design of the backup and recovery

algorithms. · The rationale for oor design decisions have- been mainly based on· the effectiveness
of these algorithms in addressing the questions ~,it1 thJssecdon:·:· _:'·• .: ... _ --~:

3.3 A High Le,el Oveniew of the Backup-and RecMery F~ltles:

The design of the backup and recovery facilities are based on one' important observation:

every computation in the system is associated with the eva~tlon of some shell co~n_<j __ input ~o

the system. Thus, one immediate solution which presents itselr is to simply record all shell
- - - . . - , . . • - . . . -. " '. _' . . • .. - . , :,'. : - . . l

commands on the backup state. This is obviously a correct sol\ldon since the behaviour of the

system is presumed to be determinate. Reexeclltin,&. _in , ~ pro~r serial order, the shell

commands that were input to the system before the f~re oc;curecJ. is. therefore, guaranteed to

yield a correct state. This state will be identical to the-,state,imnu;piately prior to the .f~lure

except for the uid's associated with structures and activations. . Toe uiq's chosen during the

recovery pi:~ may not be the same as chosen originally2 but beca~se these uid's are not _v~ible

_ to the programmer, no difference in the two states will be ,ex~mally discemable. Obviously,

such a scheme would inflict little degradation to system performal)<.'C since only the text ofthe

shell command need be maintained. On the other hand. recovery would be intolerably slow

because every shell command is reexccutcd from scratch with no irifom1ation about the results of

2Rccall from Chapter two LhaL no n.-slrictions arc m.ide on how uid's may he schx:ted

. §3.3 A HIGH LEVEL OVERVIEW OF THB ~CK;'UP'.'l~ND&-ECOVERri FACILITIES 47

these ~nunands being,kept Oft -IB:kup store .. The ~•JM sya\em.·.starlffll Jrom some initial

recovery Slate. wo~ld ~.1'<> '8eJecutiee~e,yshjffi~~·lO·itbcsys14m from tu1start

of system operaU. ~._ no infQnnauon•.~ ·mo :-ltlUk,d;:aitJ of.these eontlDlnds are

recorded. Such a major drawback makes this strategy unattractive for all practical purposes.
! : { : : . -f ·-; 1.. : { ~ •• - ·, ~: .

To see w~ opti~QIR be Rl4lde to;aUoriate:,,;thit<problem.Jet ~ axamine how shell

comrnanqs ~ µse,t lo_ -"tt,:•Ua4,.-aa.._ .'D1ei.thclillco•••IHl'.of!--.,to,us;·here is the

BIND conm.iand Th,e-;JJ?t;µ~,;~• 11--•--~ computatioa.andiplaces
this binding in thcu•i;·~ ~~. TJ;ao--v.i111;tlQIJlMl,..,tlle i a.long,flived

value - it S,Urvivcs th•-~ in wtuch~_.,_...,_ :3lllt-dela111tB.by•dletmct of the

$)'stem. are Prea-.il the. ¥81-.: ~4·.in ,1-/ ~ u.._ _,.__ :valaes- bare li:ftsdmes

greater tb,ln, ~. c;:Qln~Mt~.· ill:. wh~ ••x•··.wm.::..,._Jto~ .eeriainl, he. a .DUQOf

optimization. if .d,le ~ ·~ ~,11Mtt --•'!dlotblsmpitU>re .. •Thia ~d

,obY:iate. the n~< for'..~ ~l'J ~ lD,:~idlAo IOIMlllldsrwbose evaluation

.~. :P~~ .tl;leae val\lC$,, .~ ~1p;f~ -MJAv1i\·*li&>alfO !Dliltllininl a,Joi_;ofthe

. : · CQllll1W1~,,mPU.t . lP ~ M'stelll.;,alla.•i~ 4t<,_.~ tfiradiqs,.; found Jn. ;tb&"uset

.. ellYif9nq:nt.i. ~ bj,idilMl\-..,an9'1_,be,, ... rt1riJlhthlNld ',t .. _. .~ ,is, applicatrfe; thus.

OJ1Ce.a l?inpin&is. ~~~-~.,dw ~--~ apm maMmfae1hat
entry in the user environment to check if it has been altered.

Th~~fQUD4inYN.~---~-'11Jt:O~,._,w.biah--corresponds

,to the resultv~,is qf~~~;~;-IHlltil~1-e:beca bemid.to a
;.name.ill i uset.en~~Ml~J,-ili,,Nr(;4·•¥illl•a,111lllldl~._i~•--d&her

.. ·· partof~)ffl~J•C~Y~.~~•1PMU.Sj(,cM.~VallMUt(1i·---•Mfioacdl....-J10t ,et"1eelJ;bound
to a name in some environment A computation consists of the collection of activatioos•data

created during the evaluation of a shell command. lnstruc&ions in these activations produce

-; ttansit1ona1 ttaraJi~ce ·tilts· ctat.:' .. 11 ~~~trror16rii1 ~t~i~¥tie;~.,i~~ ,,~ which it wa

, •icmttetf~ifsts: 1'be Valub ffll•nf ~rocfucect'by a·~,,- ~ . .-1~~n8'~1~'~· ~vi~~ent

and. as·tt 1resutt>•itrbc&me qu~~f. ;~ b~ilp1 (~y~'~,'{g ~ s&~iri,n,~~ted
'above; WOUid ·oh1Y be a~art or·4uie.~nt data.' 'triiiisa~;~rJmiii~,r ~rr~di~g 'to' d'ata

: j,r6ducetf dirring a corri~utatihn_;~~ld'jjot be un&r1jthi~iiriy11~filifl~k~J pn>cedJ~

'When a failure' tt&kes i,tk tind the' ~st~·sta~ ~afto·'' ?=ri\ 1~rea the ~';ery
. fadlity first rcst()rcs·~11 quiesceht\Jata presetved 1iy~~-'biaui/~m1i l~nto'the '.new recovery

. • " . - ~ · •. -~ '"If~,.'. _: : . ~ ' ' , . ~ ' , , • • ' ..

48 A HIGH LEVHLOVERVIE'WOFTHEBAClruPAN&,Rf.CO\'£R>Y FACfLITIES '', §3.3

state. It must then reexecute tllose shell commands :feumf-on· the command log which had ~ither

not yet. oomple(ed .or wJtose,;result bindittg, 'eotltd· not~ teee~l,y ffie,baokUV tacltity before

the,failure. These shen,comlriands will befefernHf.to • w,&,tf/~
,,

Having the backup facility · record only quiescent data is an optimization that reduces

overall l'CCOVery time.· It does'so·wktiout•eHlllllsifli ~,,~ because the

backup facility· is only mvoW,when•an M>DNl!N¥'itillll\lioli3a~•t&i act&atly place the

binding m. die, environment,• ...,..r. ·cm:~~f ldf-tht 6ata ·fri · parallel.with

normal system cperatiolt lt·WOdld·blca&·evtrt~ffitlie1bacltup -nt;cnuld

help reduce, reexocudoll time O,:,tMJise, .. le4tell'(!(Rfinei(dflouftd~ on ·lhe tog by ~tding

information about those c:oftlPU lftfelr \fflel~lif ~•bf taHute.' If tfitre are many
resource intensive, time-.consu'lldnr•11CtmltioASti ai~JMdfhWing~,backttp ftiWity

ignore the praaeuce ofthe,tral5idoftal .._,pffldWaiftHiMNWatn~11teaftS 1htt 1t1e time to

.nmver this state lllUlt be at--- ~·frdl«.¼IHtl:>wlt;y)tfti ~·11t: taus ta 'rem!cote this

entn ooaiputation. • This1il not virf1•ftMI --~·edUtcl·lffl already;hen

·executing fora very Ion& .,..,._ .wlleft-lhe<.faiftt'6rto11,:,IMPiMalWaittinr1toihe' •tecord tJf the

oomputation on ,tilt 1bacHf) :.,..,"°lf,,"tfte·'~dracilly1 to -ffl>lf·n:~ly

reexecuting th018 subpartl of a·~ WliidHlidiillll\lyflMtlbed theil"-~ before the

failure.

It is remonable- to expect1..cllat tb4ft will t,e;mawy ~s•ini tJt'Oiress at the time of

failure~ To ttcOJd; dle.pt'08MI d ~_ •,,~ midntaim infortt1ation

- 'about•dleee cirawpu~i-~NH, 'letlMMW\lp~d'fff ~lfie stfuctunn,r a

computation rooonllmllloW~'~~ ~ fadtltytn the'next
cl1apler. _. ~! 1 r: . ~-= 1

We ~n now .J>~°,t _our}nte~~~ ~I ot~-~~,fr:,JlM.: ~ ~p~~~
,.oomplete, ~-vr,J~esJ9.~ ~~ff 1~;~~~ ~~~&~-mtlJF;~~ ~~¥itf:~~rves -
th,ese ~i~~ings o~ the ~u,p

1
~,~~,~•,,n1!' ~~lfflh::~~j'~~;f~: ~,~i~ve

_compu_tations i~ ,P~~ ,!ll~ :~k~Jt f~,i\itY ,~Rffil~~Wl8'1l'ffi~a~~ ~~,~~,lJ.~,~pns

as' well. Th,is 'infonna~~~ CJ!!~i~ ;, .~; ~ma~,~~h,~f~LJfi'PP~ ~~;-~~' tfl~. ~~~ry
procedur~ to av?id ~~~_.~ ~c~ec~~~~ a,r ~gv,~ ~P,!f~J~p l~,[~4): :Pu~4i,~ir
result before ttic failur~ .. When th_e.~very ~~~,~)s i~1y~y~1JL~~ ~,r~,?1., CW~JJ~ta
found on the backup store. It then uses the computation records to restore the remaining part of

§3.3 A HIGH LEVEL OVER VIEW OF THE BACK~ AND RECOVERY FACILITIES 49

the state. The mite after recovery is complete will be tiquivatern to the: state which existed prior

to the failure insofar a, the ~cture and inforination content of both• states will be the same.

The states need not be ide'ntical; h0\¥ever, because dle 'uid'sL~iated. with . activations and

structures may be different The reason why·the' stat:es'woaltfWofbe identical is betause the

order in which enabled iMtructions are· thdsefi·itor execution may be diff'erent -dtlrfug the

recovery process thaft before me failure. ibts•·c1oes·•ndfcdrrii,rdmtse the ~ctness of the

recovered state· because of th 1lPl)licative nature df VtM ...:.: rto ;We:.etfects occur and. ·thus. no

explicit ordering on instructiori exetution ~ ·ro '& ad~tmC1fb. We. itlustrate the system

operation in Fig. 10.

Quiesciemilila

Flpn 10: System Operation

3.4 Architectural E11118ncelllelits

FailunDmtir.

Active ConijKllldob ·

(Computation Records)

s is equivalent to 11

Statesl ---------4
.:' utecove,f Procedure>

------►
Tuna

Up to -this point, we have only mentioned that· the backup store on which backup data is

kept has the .propeny that infonnation entrusted to if ~iU ~rviv~ failu.res of th~, machine with
. : . . . ·, .. ' ~ ~'~ : ; ' .•~. . " .' ,' ·: - ' ,:

very high probability. The most common type of backup ~.used. is magnet~ tape. . The
' . . _,;.... :}·:_/)t;!;~'-,·f. . . ~- .

sequential ace~ nature of· tape drives. however. mak~ it inconvienent to update the

information found on·· the tape .. - Since the "back~p 'racila~y ~ill be freq~ently updating

computation records associated· with :ictive MP~tations tc/''~n~{ the progre~' of the
, • . .• : • . c -: ' , ~" .,-·. ;L') ... ~--f. . ., ; : , • :

· computation. using tape as the only backup storage device W0\11~ _ be imprac~cal. Our design

dictates the need for a faif-safc storage device fro~'. wi1ich in(o~lation m~y be easily accessed.

so ARCHITECTURAL ENHANCEMENTS §3.4

updated. and deleted. We call a devic;e which has thffie p(Ql)&rt~ a stable storage device. It is

not difficult to implement such a ,dev~ on top Qf non.le stprase devices. Lampson

{21] gives one implementation of a stable stor9.~tice, irt ~ disk ~e is converted in to

stable storage by maintajning multiple CQpies of~~~~ diA"e.-..di§ks and ensuring that all

writes to disk are atomic Le the. write either tak~ pl~,pn. ~ 4~ ()I' o~ none. Because both

. disks are guaranteed to have .consistent infoanatio~;,~1lost;.-use-of failure of any one disk

can be recovered from the other .. Advances in V~l ,~:~e ~ it ~vable to

consider a ~ardware implementation of~ ~'°' ~ JQ113'~1e,. CMOS static RAMS

and a backup battery supply. Because of the low power consug1ptic;;Jn of CMOS chips,

infonnation on RAM could be retained. despite power failure. using the backup battery supply.
, ~" • - ., • •• , ,,..,. > • - • • __ , __ .,

In this thesis, we shall not be considering implementations of stable storage but will as.,ume that

such a device is available for use by the backup and recovery utilities. Because of its relatively

high cost. we shall also as.,urne that stable storage is qot very large (certainly much smaller than

the size of the backup state) and. therefore. in order ~ guarantee that backup infonnation is not

susceptible to 1~. it willbl necmary to have anothe1 backup storage device capabfe of holding
- " -, . . ,.... --~ ., . .,.,· ... ' ,_ ""'-";,,~-.. ~··· . " - ., - .

that part of the ~k1,1p state which ~ot be.hekt in:stable ~- We,as.,ume magnetic tape

storage is used for this purpose.

Quiescent data is never updated by the backup procedures and, therefore, can be kept on

tape. Of course, if the binding is subsequently deleted, the data will have to be removed from

the backup state as well. A delete record indicating that a value has been removed from the user

environment can be written onto tape i~ such ~~~na _ Tht~i>.u.!ation ~rds ~ated

with active computations do need to be accessed and a>nstructed relatively frequently. These

records will, therefore. need to be held on stable sto~ .~~~ 1,e,~d.q. which

.con~~s al~ shell com01~ds,~nP.ut to~~~~'~~•~ ~ftVf,,~th~~,nQtye~ ~n produced

or have not yet been ~d~ onto back_up ~ .. wilt~r~~,"?,~ he.I~ OP sta~le storag~. As
• • ' \ :I. ' ;l ~ < ;; • ' ~ .,) 1 , • ' ' '., . • •

we shall see. most compu~~n records _wiU
1
be ri:,,~:~~? ~~!~fld ~)h~, wUI, oot occupy

stable storage· for aJ!Y. ~~iftcant amount of time •. , ;n,e ~~n,i .1~~~ o~ a ~putation _ rec9rd is

quiescent and can be migrated onto tape, allowing the space ~ by: the computation recqrd to
. ;£, >, "J: (. r·· •"} '.! ~:t '•'-:(CJ ::J!~r 'H} ;L l ,. •• ' '• '

be reclaimed. It is expected that st~b!e st?ffige w~II p,l,way~ ~J•~I~ to,,&.Jpport all comp~tation
·. - . ~ i; ~!- < '-,· C, , __ : -~,-- .:!, ~i;',. ~.~J•} ~i•'.-:. f",. ;· ': ' •. ,,

record~ in the system becaµse of their short Ii f etime. W~en th~ recovery. system is jnvoked after
~-l _J t; .,' '. ,'~~ ·': :J. ',-.'::~- ,1l1J,'i' \ ::. ' . ~· C;.

a failure is detected. it ~ill first re~d. from the tape '111 t,hc,qp~sccf\t qa~a al)d will restore~ n:mch
, , -1 ' ;·k ·• · .I i, ' ,

of the environment image as possible from this data. Volatile shell commands arc then executed

§3.4

•
•
•

X F.Jtp •

•
•

Command Lot

AllCHITECTURAL ENHANCEMENTS

• • •
Backup Environment ·

Flg11n 11: High Level Organization of the Backup S&ore

51

Quiac/1111 Data

Tran1itional DaJa

from the command log in the order in which they were originally input The computation

records found on stable store are used to reduce the overall recxecution time during this· phase.

When this phase is c::omple~, th~ .. system can proc=.d with. normaLopecation. The high level

organization of the backup store is depicted in Fig. 11.

We illustrate the organization of the.VlM £¥item• with the-backup heap·and environment in

Fig. 12. The backup heap is used to hold all transitional data whereas quiescent data is held on

the backup environment The backup heap and environment constitute the Vtffl,adup store.
The Interpreter constructs wmpti&lalion. recor~on •bM111>.iMDP auriactnonmtproce~ing

and interprets them during feC(.)vcry~ Jn ad(Jit~. the inW~i* ,_.,as l>f.a computation are

also stored on the backup bt:ilp· by the intcrprei.e.-, .. <~r->J>io~11u1ro plw:ed Qn the

backup environment by th~ ~hell which also builds,~ '991Dl8nd,k>& f®nd,on the bockup,heap.

52 ARCHITECTURAL ENHANCEMENTS

flow of information during recovery

--- flow of information during normal procming

Instruction

value

Activation

Interpreter

Activation

value.

sfaoal

value

tnstNction·

Billdin,

Fi111n 12: Abstract Architecture of the VrM System with Backup Store

3.SSummary

§3.5

session

Shell

NewStata

In this chapter. we have presented a high levet strategy fut· the bt1ekup and recovery

algorithms for the VIM system. Our main obsemttion about system behrivioor was that all active

computation in the system is as&>eiatcd with the evaluation oflsome fflcll command. The first

!Dlution proposed involved simply storing the log of all sttefi'con\mands. recxccudng them from

the beginning if a failure occurcd. While correct. because VIM is a determinate system. thjs

§3.S SUMMARY 53

solution has the drawback of a very slow recovery time. A major optimization to this solution is

to record all quiescent data Le. data bound in some user environment A further optimization,

intended to reduce the overall recovery time in reexecuting volatile shell commands is to have

the backup facility maintain some mea.wre of information about all active computations. The

recovery facility uses this infonnation to avoid needless rccomputation. Once this reexecution

phase is complete, the state of the system is properly restored. During this reexecution ph~.

the order in which instructions are executed may be different from the original execution

sequence. This may lead to different uid's being migned to different structures but the overall

structure of the heap and activations component remain identical. The reason why the order of

instruction execution is not important during the recovery process is because VIM is an

applicative system.

We also introduced the notion of stable storage in this chapter. Infonnation about active

computations will need to be frequently recorded by the backup system. A backup storage

device on which data can be easily accessed and added is required to support these computation

records. While quiescent data can be copied on~ tape storage, computation records need to be

maintained on stable store.

In the next chapter, we present the detailed organization of a computation record and

discuss how the backup system monitors the progress of computation. As we noted earlier in this

chapter. the logic of the backup procedures is actually distributed among certain bme language

instructions. We present a formal model of the VIM system supporting the backup and recovery

procedures and argue that the information embodied in the computation records is consistent

with the actual system state being represented.

§4.0

54

§4.0

Chapter :Four

Constructing Computation Records

ss

A major~ of the '-kllP and. RCXWcey::allOfidansfot·VtM mneems the construction

of computatipn rec<)(ds.. • Reoall fronl dle: last chapter dlat:a bemiJutation ;J'l!COl'd is used· to record

infonnati011 a.bout ~eptJy eweudng ¢0lllJ)lltad.aaa.,k'fn· duiullaptery we shalt be primarily

int~ in hQw. ~PW3U9n RQ<>n;ls oiay,bc consp111talsand\!niaintained. In Section 4.i, we

p,:esept the a~t,repreae~ ofCQfflPUtaqpn:nooaall flle. ... componem:in tJae:tecord

is kno~ as an ~liWlfk>IJ '-"""' entry whicb ~--illtblmation· abGut an indtvidual

activation. In order to~ a<Xm\lMltation redOrfl,dtanaes'ADdle"Oplrational behaviour of

. the base language ~• gi¥ea in. O.pter ·:n-i,.,will1be. neaeaary; · ·Section 4.2 dmasses

these ch~ as well as dl...-aeourary _to AhoacH arutilntelfJle-. In. secOOD-4.S,, we"ptesent

.. the.aliere4 opera~,of.O.IMle lanpp,inltactioat~al:an~ operationall\\bdel,

M~ which. is an ~leGSk>n- of .-I.Ml,~ ,inrCllapatr-itwo. Thea., are aeverat major

optimii.ations. ~hi.ch- .am•• made in . manaama ~ ·ftlOOl'dl. . 'J!'hea optimtrattons are

~.fo,m>.aliz.od ~ lhis

4.1 The Computation Record

In Chapter three, we argued that the backup sy•~. should. record the progrea of active
, . , .. , . : .',_ ~•l'l.(.; ;/ (':ir,,·.rrt ~ :-:·~:;:-;_,, .. : ~- '~ .. -- ,, ·., ~ .

computation in the system to help reduce ~err ~ ~ co~puta~o~ .• record is an
. , , ,. . ,, " .• '. ,. r, .;<J • .' [•. , '

infonnation structure ~~ructed by the· &~ku~ .S>'.~ f~-~.~ .~u~:, , Our focus in. this
section will be Ort determining how much information' should 't,e kept on the computation ,record

i '. ' - - i ' ' • ; ; .. - : f ~ ;-~ r.'. J ;• • }: - '' • ~ ~ : i" ;-'"'' -.: r·: ~ '~ ~. , ' '_' ~. •. '"': J •••

to allow the recovery procedures to restore the system to its ~_pi:_ior u.,> the_ failµre. One simple
, . ; :.: , __ . -·, ~ . .:'·_,~.;;:?r:·;~-• .,d4l ,H ~f}J.-,,, ·• ,·. , -· , / - '· ·

scheme would be to periodically .checkpoint all actfvatiQns cceated .by_,a computation. To
, -·, 'i . i · - - · t-._~ ! .- . it.: 1 l; ~ .. ' - .

checkpoint an lletivation means recording the state of all . ill$lructions which have not yet
. \ , . · ,. _. . _ _., .. ~ ·._ . ,:.: y "· Jf~i: l 1 ,.~; :,. Ji •~.i · ,._ ~ :. ,
executed in that activadon at the time of the checkpoint The state of aJl instruction consists of

its opcode, destination list. operand ~d'si~nal ~~t ~'~;ir; ;~~ ~-~-l~e ~f i~ o~randl This

approach· would be very si111ilar to that take~ in m.~~y ~~r ~~rall~I co:nputer. syste-~s where a
. , . . . ·, . ,·-.. , _:; ·1 ~,:;·r(f'.: :'.::~ J-<~ _:.,: < •;; · · :

recovery point representing the state of one of possibly many concurrently executing processes is
~ , .) ,. ,- __ .,, f•, '., : ~ 1 -':' l • ; ,

31r an opcnmd is 1t <.·omplex :.truc:tute. 1his means reu,rding:dl i.uhstruclures tderenced frottJ the to(Wevd stnK.1urc
:is well. ·

56 THE COMPUTATION RECORD §4.l

periodically taken by the systems',: ba:k1p faail~; i~our system, the recovery procedures would

only need to find all enabled instructions in the computation records to begin the reexecution
phase. '' i'• 1 • , ;,,

Periodically recording die ,state of all• acdvationl aelNd by' a 'COmpet.ation, 'is 'simple idea

but hes two major drawhacks whicadols -~ a:faiiitA&iMtu~ our puij,oses., First,

, chedcpointina all acti---:• acomplltiaa0n1.U.,...,,'be:\liltilfy tmJtl,eeau$e dte;size of

activations can be very,big. ~~:in otdlf:«>:,llflllht1e,lMltl1irt«>Misl~firMie'of the

oom,utation is mainwllcd cm stae·backup udtillr~ · we ~:.fla-itojdistllow ·arty, enabled

inst.ruction witbm ID)' .11dhatioa bl tttatcom,utilk>tf ft'onl~IHlt''WNf~ ·medleekpt>fttt of that

activation is bcina, peramed. , ,T:o see whT tha.lil ._._ --,., two fltti'fation~ « arid' /J in

the-same computation where •hatcai•lf/Ji ilfr1Jl• allowed1a1..-1a1nmile-'ad\eekpt)MH>f a is

being .made. lhon JI. ma)'; .raium its, ~toi:«, andi~.._.,., REfu!ASI! or,etadcri~ :; If the

~ of a on _,baok.up state,lfaes ~ mlect,:t11ei4elUM:,ratfe'Ildt't,y;,a, and:"/J was1 not

. dieckpoieted, hcfore tbe,llflJ!M& operadCJ1NtX1CtMd.l*•~}ftebl'd woukfrepttsent
an.incolRICtistar& Upon:RICCWay~dlens,woutdilter•--~t1the'f«titn·leslilt'vahte'of /J
without reexecuting a. This is precisely a manifestation of the,'~ eneouttteft!dimother

concurrent systems that use recovery points to guarantee data security.
I

A more clever approach to recording state infqrmatio,n about activatk>ns takt$,advantage of
. . t..- .·;-" :, '.,·,.:-:t~':rfr~\.J;_; i;,-~~•.'t°';..,~ ;\ .·.-.-=t!r-:: .-:.·~--

the applicative progranuri~g model VIM uses.· A ~~{e'~~ll;l'!.~f,81!,~P.li~t.~v~ lan.&W'Se is
' - . ·- - : ."'.~·; ,-' ~.:i .. '-!'<.·~·~ ~'.-~>,!.",J~ q,_;~) 1 ,!',1, i{:L .. ,·· ·. ,; : u '" -,, ; . •I'

, that 'each function ~ . be trea~ ~; ~ con~~,/~~'f{f-~~ l:!:!:v:ff'fn; j A 5f~r CX?D~i'5,:<?,f, co~~ts
combined by funcuoh composition and' appl~. In oonventie>.nal Plpg!'amtn)llS l;mSWlles

. 'J ' ___ : ~ ~~:':-v~ __ -_:f":_'··,.lP.':'.!Jffl . .-,,(:· ··:rrrn:;;.~i-:,,~;, ·,.-, ··,~··?

such as Pascal or Fortran. a function cannot be treated as a ~t because its ev'1uatiQn may
· .• , \ '. . .•· ... ·;~ ·.3: ·· · ·-···, -,-r:·; ~-:f~c.~..t~:. 1: • •! ;:~)~lJ .. ;~YJ,"-"' t '-.,. ,-

1

·~ -.;·~; •

cause side-effects to occur in the program. In. V~¥: ,~aviJW_ .alJ .~~~s 9C. simply. ~ts
. ·. l ,··.. ·,·'. _; 1 1~~'.; __ ,'c). 'i~!\~ ~ f 1!'!,,:;.JiLJ\.--.< ,J,.; '~."• ·- - l. ' ''

means that the behaviour of the function can be determined by just knowins its inputs. In the
• : • ~ .. : y, ~· • '. • •• ~ ,. , rt: f n r(t .• : ') 1 t; f" ;·;,. L.; · - .. : · -·. · · · -·

base language. an activation is the application of aTunction to !l>l1le inP.UL Beca1,1se functions are
.. . . · .. : ,-. ". - ':r-,: '. ', -~-1 ~~~L. --~O :;.n,~_: i::-:,I, JL ::;~-J:>.',. n f, \ ; ; :_·:,, ·::, ? . .

cars. we can embody an activation on the ·backup •e by record,ins the f,u~n closure, its
i, , .- -~,•, , -·.- <· 1• . ~ ··,1r.- O.!'r~. Lr, ;··f ·:--cJc .1<·: , . .., . :·'

inputs and return link. Under this scheme. the recovery, systen, w()Uld need to only APPLY the
· · ' ' - ~ , , ' : ; '· .{ f'.) 1. .·(} l. i- j ~;. ·'. ~ f i.: (,: i J' i • - , ' - '

closure to the argument list to construct the corrcspopding acti~ation being represented. An
i • • .-·• , -~. r , , ' .:~~i;~ \.· .i; :.< -,.1;,: ~'.H ! ; · · , ,; · :-·1 • · .. :

important advantage of this proposal over the checkpointing one is that no executing code is

maintained on backup store. Because all data is immutable. the transfer operation of the data

from m:.tm memory to backup slore can· p,occod• in ,ixmaltef wim • the·cAecution of any activations

§4.1 THE COMPUTATION RECORD S1

which operate on this data. Mofeover. the aftlOllnt of information which needs tobe copied is

also greatly reduced. since no data co:ated by instatctians willnn ·these. instl'U£tions are- preserved.

Such data would be recovered :whcm the activation is reexecuted.

A natural representation for a computation record in this ~heme is as a directed tree in

which nodes represent activations and edges indicate caller/callee·re1a.tionships between pairs of
1- • ' ~ ~ '-,,: ~ ' '·~ •'. • . '

activations. This tree is known as the compulalioir tree for· the computation. We illustrate this

representation in Fig. 13.

Name exp

113 /
/ \

\ I
/ Comp,,tatlolt tiff I

L. ...::!!!!a:lat a2 · _\ _

Fig11n I J: Rcpresentat.ion of a Compu~ Record

\

The root of a computation record represents the initial acdvation con1tructed by the Translate

function of the shell Every node in the computation tree is labeled with the uid of its

corresponding activation. If (s.t) is a fl)ember of Ee. the sel of edges in a computation tree c, then

activation t is instantiated from activatk>n s. Each computation has a unique computation tree.

A node in a computation tree is called an acti~lion •riplar entry. An activation

descriptor contains the necessary infofmation about an activation needed to restore the state of

the activation. The representation of a computation record giycp above is simple qutccrtainly

docs not help much to alleviate rel.-overy time fiu: transilil-)Ual data. Thisi..~ because computation

58 TIIE COMPUTATION RF.CORD §4.1

trees may become very large for long running computations. Reducing · the size of the

computation tree would speed up the recovery ~; The· information in an activation

descriptor entry in this schente contains the closure-and aJgUl'rlent list of that activation. During

recovery, however, every activation represented by ~ activatipn .d,~tjptor entry in the backup
·, . ,' ·.,' .. •'"

state would be reexecuted. The time to reexeaite all these activation~ would result in an
; : '. / .• :'_ ' : : ·:' " ~ • , : ' • ~ ' ' ' • < ' •

unacceptably high recovery time. Oearly, what is needed is a mechanism. to record ~ults of . . - \ . - . ~ ', ~. ;~:){ ~-'. .. ;, i:. ,, ~ ' . .

activations as well as their instantiations. Thus, when a result of an activation is known, it
' • - . ; 1 <. ~ • '1 . • '

replaces that activation in the computation tree.· When this value is encountered by the recovery
-~ .. . - ...

procedures, it is sent directly to the destination addre.s, eliminating the need to reexecute any

activation in the subtree rooted at the node containing the result. In this way, we can imagine

the computation tree growing and shrinking in response w- the iastantiation and eompletion of

function activations. This process is shown in Fig.14.

' I
' I /

v

./

/

Qruult oja2 u a

/
/

SuhtrceJ roowd at al, aJ, afld a4

figure 14: Dynamics of a C'ompulation Tree

§4.1 THE COMPUTATION RECORD 59

When an activation is instantiated. a new descriptor efttty is plnced in the computation tree

and an edge is added from ~e ~fer to this new 9}ff>'·)V,h~fh~ ~!Jlt c?f an ~tivatiqp becomes

known, it replaces ~is noqe. U,l ~e. CP,mp~tati<>p U'~ i~ ~po~qffi* -~vatj.9:(l. •tiptor

. entries are then removed. Th~~e ~ \w9feau.t~.,o~w,i[.~~~t,~1Jll~)tf~M>ical

d_ata bac~up strategies found in conventipnaj -X~~.;,'I1Jf,}J~ ~ ~ lqF;~~n&1of.•te

info_nnation in our schem~J~,9-~Re_Qd~~t tp~Y,Y,OA ~,-~hf.¥iEl¥r. ~ 1~e, h~ ~yql\Od in

the last chapter, tYPical _back~p ~~i~ ~ ~-1~e~~.iJN;8i~li9 ~,d~~~e Jw~, the

checkpoj!}tyt_JjS to,_~- ~ppt\ lb~ ~d, anp~}~ftid.W~~: ~,#lat~. the

construction of the computation tree talc es advantage of the applicative programming model. the

CORlpUtatiOft~ tree ·aut•il,e ~~• Whenevef tl Yesuft1tW 61t'\c\fta~n' tt>ed)tnt$' li\()~. In 8

languagewhtth petmia'side'effect!f'alid~arlrifdrhott~F~rfatlii. .;~ ~ld hor·be able to

manage (he backup 9ge ~tht'Cd~Off1Wtins ffmlJlet. 1
• 'j i l ;

It np~ re,mam,s ~. ~P~ e~~ h_Qr the,:m~~., ~l!"14.~~e~tia
need to be J,llodijied to._S\Ji~rttl,le ~~~-R{,~~1~<1$. -:~~ e~.the

structure of an activatio~ ~-~?Ptpr ~~Jp'.Jr~~~,~'r#l ffi1Jll•~~~f.~~; , ,~ .

4.2 The Activation Descriptor Entry
," ; . ~- .

We,had meotio~e<l iJJ ~-.•~ ~tiQJl!p~.~-ac~~-~~~14gJ-»ain ~gh

inform~tiQn S?.;tbat,,tpe.'.~coverr ~~µ~ ~~i(~~ ~:~ dMr. -=tiY~fl, .,,We

.observed~ if the. functjQQ_,c~~ ~ ~;~y~,"~~•:~e
_ recovery p~~u~ pee~ only ~ply,th~,cl~.~ -~ ~~i~~-th~~~.lin~ to

•••• t• ,••• •c • • •

restore the activapon ~-

The re<.'01'ery ~ in this proposal is'Strailthtft>hvard. ··, ~1f ~tlvat16tt d~riptor entries

· containing the function dosttre. argument ~ akc{'~n{ Wnk '&k h6v~, the funcu~n

' application take place in purallel: Whenever' an appfy 6t:,eratl6n lJ to ;l)er~kictitecf during the

recovery phase, a check is made to see if the fortctitm1ft$' ~~~ri'tK~tantiated:. That is.= all

APPLY instructions dutjng .th~ recQvery. pt}ase,,(ll;tq 11P. ~e .if; wi ~»~~-• ~ptq~ already

. exists for the activation they ar~ t~ ini*nc. If oi;i_~ ~iSJA, "~ . .fi,•P,~~f;(Jv~b~, i~ ~e instrue\wn

since the rcsu It of the appl i(;atipn_ is :,dNad.y known. If ru> li&icl;t;d~or ~,ists., we perform. lhe
. . . ,. • ' ; •. -~ _;..,, - , l . } •• . ' ,.· , .

application. Result values found on an activation descriptor entry are used to.prevenUnitiation

of an activation. When a value is founu i_n ~u1_ Af?f,.i.kC•Y, be ~Jlt aircc~I)· .l,p thc,dcstination

60 THE ACTIVATION DE.5CRIPTOR ENTRY §4.2

address specified in its return Iink4•

In a system in which errors requiring intervention of recovery procedures are assumed to

be relatively infrequent, we may find the ec>st 6t evert maintaining function closures and

argument records too expensive. As we explain below, ·the~Jhti6 ~ for nee.ding the closure

of the activation on the backup store. fs if we w~lt, fu'·h~ve' alf activation descriptor entries

· evaluated in paraHet. If we are witting: to · toteratk ·JonM~fr rec6vity tifue, we ~ signficantly

reduce the amount of infbrmatiort which needs 11if'tk h~Jl c:,n ·the activinion entries by

eliminating the need to hold even the fun:ction ttosure .<it at1ument recoM on' backup store.

Instead of having all activa~ initiaf.¢ .. Jn p~ . we ~;)Jave the (X)mpuiation

reexecuted from the initial ~tivatiop d~9ptorAn ~->~~~,tr~ wt\cn&VJf a new

activation is about to be initia~ 1~~ ~~Q'. ~~-,~ ~~~"~ ~~ing
activation descriptor entry for that activation (remember that there is a unique computation tree

for every computation). -If that entry corttains'a ~It/ttieti; thatval~e'isused di.~y and the
• f • •

new activation is not initiated.'· If, on theother ftmd;'no ~tt ~ 1ts found in the descriptor. a

new activation is constn:icttd 'and · proce$.littg p~ a'· ht>rtriat. No function closure or

argument record needs to be maintained in this scheme ~se the computation is reeyal,µated
·,<r:.? t·>;<'j; (JJ·, -~ ·:\:>~.:. ,. ...

from its initial activation - no parallel invocation of activations within the computation takes

place. Whtte the time to ~re a COlttputatiob ls: gMtet thaif tr fnnction closures were

maintained in the backup· state, it is bounded bf the titnt the' sy~· woiittt have taken to have

processed this comi,utation under nonnat cfrcu11tsfmia:s. · lf1bn'cdo~:.cfosu~ :and ·atgument list

of activations were rrtaintamed, · then the recov~ry ·· syscetn ·ct>ukl ;~xp1oit ·more·· paralltlism · than

what was available during the original evaluation of the compuuitfbrl predsely because all

activation descriptor en9res in the a)IJ1putati99 ~~fd'.~11J4. ~ ~~l'l~ted -~rrent)y. It is

important to k~p in mind, ,hqwev~f, that_ ~ven if ~is ex.µ-aJpfon,µ,Jl9n, is not :kq>t ~ the

activation descriP,tors. the ~xecution of the CO'PJ).Utatiort W(?U~ ~ S,tiU ~Mi~ .w . ll\Uch

concurrency as it would h,ve uo4er npnnat conaitiont.

The infom1ation hcfd by an activation descriptor-entry must affow the recovery procedures

to detem1ine if an actt\'ation needs to be initiated or· not . THete are two fomts of an acti'vation

descriptor. The first fonn is for those activations ·whose results ·were· recbrded by the backup

4wc arc assuming lh:it uid's of .icti\'alions arc pn:scrvcd· in 1.hc had.up sWlc and .ire used during the rccmcry phase

§4.2 THE AtnV .(ti()N' !Jf.SellP'tOi ~ Y 61

, , , facility. If an ADE for bll activation «oontaillS' a valiit'/~ 1hfs"vUhre ret,itSents the result of a.

The second ftWm.· of,an';AJ!J£i is usetflvtten·1he;teiWHiPim dfti9iti& Has nut S,tt'~n' refut'ded
. by dre ,l>aokvp tkility. c tit Yris aile;: ·~ ADE 'ctlfttais r~i ~'.}to; affaci1wati6rtS' thit\vere

· •·· initiated ftam· a"befori the ralhlfii eee\lredJ t9'MHJ1~ti)';'tt #HI 1tk'1~iJa~' ~Rd that

edges in the~tlltiofl ttet ~H!tl~~-~lpi~w~'ldN~· ! ·

uid

of
''.~

i~ ! ,; ,,;·_ti /,;_:·_>: -.1' - ~,,__,~·-- · ~"!" ~~-- 1 !tJcch . .-(:t:,.,i:' •.. LU-1:.;i,~JI Ld,,;s 1~).(': ::J<>U :.td.:j~~:,..'i < !i('tC;;f'.-~--

'; ,~~-~~t ~ ~,~(}~ ~~~~;.;~~f➔~L~~ gfb\hmrriPR;Jd<.,Hlff?t:!~r.~•t

,~,;.~~~~.ts, .
the ~~~. ~'..).~~: ~~~~~·•i~~1.,

0k~rf bfflft1~!~.rt/~~JfJ!ich
~h',~~~18-?~-~~~:•~~ · ~e~., ~~~~J~2 :'r~~!).~"£f~~o-fh:&offllJl{JPRd~,qy~f!~TIRtor
· · ~iated with the·ca11~,~~~~~~.·:J~~ ffll'-lfu~~!'tfflP~l)~fR8~i,~ .f£Ji~;\9on

being initiated. When an application instruction is encountered during recovery, the activation

(··,~~illg ••~1&o 1&11i.dlttlWi~-cff1alvafiJe 1s~~resent in

·,, , thi& AD6~ itan4Jt llllt~~~iitbr.n!be~\lfltd is

. ~ ,usect u.,tocate.,'~.ti'i:f>r,, •lb-.1t111•••rH, .. 1·••ifi1w w n'eeit11ttt·oJ"se1
• .~ .cdil1>e'caoseue..,.'1dlldW · ,_'.~~nbt6-1ihe
, · same •· •·•order~• -.blclli1tWy:-.e 1,i··wtediMif!J<~~H1i~ei,:;r~~ry

. tfuac:ticm. applieation ,ii onindrWldl r•eafit6~-itl;f1Mttti''~' RBei~i811;6t·aiJven
; : : «tncatiomwi1111otdllap ~'.\1A1a odila.ufiliil-M'Wdi a,iVM,~tfflte ~'ffot' ~t

-;,!arif'tl priofl ~-~~t~ .. i:ffias.S tflif1KitbMt;~ftmtl~~• o:J/sl!J~ttif1tfle

; :fu'nciioa :appHtada1uJpe,au,te1,,~i'ml.AM..¥l•WM1!Mkn(tt/MIR'W1tejW & :~tap

., ,heap to prope,ty,~:.itdurin91the ~ p~o','.t ?'.ni:u'.Y n· ' , ..
I • • , .' •• ; • • f- . ~ •

Th~, ~he.me ~e'~~~:vej.~·v_~~,a~.ve:,. r~9\'~Itt }~!',ti~ii~~!Jfp1,1~,V ,~f ,b,~(~lfl?. :~~if_~y.

·. ~UO~.li~~ ~~P,~~~ti~I\ i~lln~C~ .. ~y ,~~~i~j ,}1,.~~r,/rm~~i:~~P:};?!. ;~; .~~' ~J.>imPrJ~e
· computati~n tree. ~~n tfle res~lt_of ~ ~~y.at~)1',.~~?;,it1~J>l.~~.,~,~, 1~es,;~~~t~fff'"YJPr
· Lil.it activation on the backup stale. We do not ~ri~W":ia!1~~8"~t5f?.r~S)Ul,d, Fl~rcs,.of

62 THE ACTIVATION O~~lU~R ENTRY §4.2

activations. choosing instead to reexecute the co~tatian fll)l)l .the beginning, only avoiding

reexecution of ~tivatioll$: whose results, are _.1r~cly}kt1PWP• While re@.v~ry time in this proposal

. is greater than _the <>ne iq whip11 closures and ar&Jlll)AlJ ~,45 ~ . ~ed. dler:e is a

su bstantia.l redµction in. the COrtlP..Utati~~ resqu~ ~~, ~ tm; ~up facility. As we have

mentioned previoU$ly. efficient,Jp,1plemen&i91l of~ ~U ~-,~ of aome of

the base language instructions. A fonnal, definition_~f-~~~Jtven io Section 4.5.

4.3 Early Comple.tion Structures

The preceeding sections have presented,,d\o g~n~~-~~er_o~- and rationale upon which

computation records can be organized. While sufficient for; most· cases, there are certain
. . 1-.. ·• :~ ;_e;i:; r _,;

1

progr.am structures for .which our design ts still-inadequate; 'Fhe--first ·type of program structure

not properly addressed in our presentation is. the iilif/~pldi~~ structure. ·-~Y i~lf,_ an early
- "• ,~~~,--,•-,--w,_.,.._, ' • "~ ••~- .,..,. .. •~ • •

completion structure does not add useful information to the backup state since it only indi~tes
· - . - ,_ ,. ·"'"''~- • .:i~·- ,,,;-:.:,,,~-, -~ r;~ ··;•:,}-, • .. -,,_-.·. ,:: .,'}

that' an activation bas heel\ initiated "to produce tlledesire<I valui" Copying an early completion
·. . . .· ,·:··-.. :, :f ·.· ;:r~-J-ri:,.i--,~-,_- ··_,'{t l*, <--.<1·;· 0,.·,: .--·· ·: 1

~~·

structure<>nto the backup'stoi'e would not alfow the recovery system to'restore the proper state

uriless the,"actiwtion tespohslble
1

for'pfuautin~';tlle~~~e ~fiidi''1fo 1
iep~·th~i-~cni~ is also

copied. This1Sobvtouslfrtofades1tctbtesitu\adc,n iJ'have'tri!~fw1€6:' .) -, . . : . ,_ -

For our pu~!,a &imp~ {1'mt~ .~~-,..._ ~• to avoid- copJing early

,compl~~n ~~~ts until .U~-~~~l~ --e • s\Vbtn a

.. -~wre w~icb ~eaflr,cpmpJ4licHJ;~is"'1 •---CNUO<biabqn•m,;.dutsa,~elds

are_ f~l~ .witlt, ~ special. flaf~~~-~ .._:_-ia;to;;bc·i:ventuml, mpied.

When a SET instnl~:: e,oa>uQtMS .SUJ:h · IJu~ iti•ec:u ... tGlACIOr w,ltedar ,anJ1 other• arty
t . .,,· . '• ' ;~ - . . - ' - ' '

: wmpletion el~menta ex~stj.~1.~~t if.fQ,1~ 1lll'fomaedl,otherwise.·the

str4ctu~e is (X)l)i~_-00tp_.~:~¥1>~$1't,. ·'IM 1M,£,--.:,is;,tdrmf•111DC1",dlis,1tl!UCIIH'e>will

. initially ~ve,icsvah,ef~~.~• a~tur,e_N11i~~1Yllhd. •MiOl What all fields . . \ ,_ ' - ' - ' '

.. in Jhe .~re are kJJ~. ~~~.-.nee-.. --~-~~••tothe'illty,:clefined
structure. If the recovery routines CllCOijAWr~ ~·•it~-a v.alue-~ it is trcated,as

not being defined and is ignored during the reexecution process. Th_c structure containing the

early completion clement being set may be 'a'co~tpoocnt'Jr ~:.l~rgei si.ruci~re which ~ needs to
• • ~ , " J . ' • : ~ :,~) h JC I • ') : : '

be copfed onto the backup store. l'fthis structure becomes-rully· defined as a result of executing

this in~truccion. then it too will 'get copied onto the b~k~p '~J~~- . We· ill
1

u~ratc. the effect of the

Sf.T operator on the b.ickup store in Fig. 16.

§4.4 EARL Y-COMPL&TIQN STa,UCTURF.S 63

S isfulfy d,:/lnod by SET operations aJd.~ 1rareferrttl to ~'IP Slort.
- • ' : ' • ~ ; :, J ' - ' '

u . u' u u'

Fig11n 16: The Effect of the SET Ope•r on BK.kllP. S~

4.4 Further Enhancements

There are two other program structures whose bc=hav~r ~pgt be effic_ientl)' captured by
, " .. (' _f';: ,;-, _. _' ,· ,;- .~:-.:, :~--· t~;: 1_'. ,[(.l' l 1 ~ ,,, ', - .;'. . •· .;;

the backup facility by just modifying the semantics of the APPLY and RETURN operators. The

fii,t is the tail recur.s1Nproanmutxpmsiech1Sing 11MTM~ ~r .. :1Jhe'secoftct'c1ass of

,programs notbandJed by ourspean.~ in~-Olfl>~ of.Jirtallrs implemented

using the SETSUSP and, SflE.AM'rAJL instJUttions.: ·1te111 ; ~-of pqran,s•use· Slk!Cfa1

._function.application and sipaltin1 t,peratilDls whim Mqdire~illlcated ,a1gorMuns than

those presented above.· .latke nax.t twocSUbleotions vre1dilcutstfle'w1ttw:~up:~~ shooldlte

8Ulfflented tQ. handle tail JeCUndve" actnations ~"··••F-~CMlilittion- ·of •ream
structures.

64 FURTHER ENHANCEMENTS §4.4

4.4.1 Tail Recursion

Recall that tail recursion is used to implement iteration in the base language. The key

feature of tail recursive activations is that they need 11ot persist until the recursive call completes

because the return link is provided as the third operand to the TAILAPPLY instruction. In our

current design of the backup system, if tlte TAILAPPLY operator was treated as being identical to

the APPLY instruction. then every tail-recursive activation WQUJ4. cause a new activation

descriptor entty to be ~nstructed. The structure of' the ~~d cornp11tation tree would
'

contain a long chain of ADEs with only the last ADE in thei chtin having the relevant result
, ' __ ,P, .••• ; • " "

value. The backup system can optimize the construction of Aj.DEs when tail recursion is

involved by reusing the same ADE for tail recursive calls instead of building new ones for each

new tail recursive application. An important observation c;oncetning tail recursion ii, that tail

recursive activations differ from each other only .in they" argument records. All activations

initiated from a tail recursive call use the same ~&}osure and return link. Each activation

serves only to construct a new argument record for the sua:oeding one to use. In fact. because

activations in which the TAILAPPLY operator executes·tto·not return a result value, there is no

RETURN instruction which is executed. It should be clear that" this 'behaviour is not well

supported by our backup algorithms which very much depend on results of activations being

recorded on backup store in order to help reduce recovery tim~.~v9l;mlei com~d& The

reason for this incompatability is the fact that no tail-recursive activation except the last returns a
, I _; (' • •.-· •. • :,•;";'~\: :, ' • ,•· o•

result. making any intermediate tail recursive activation descriptor entries essentially uselea
' ' : t ,, "'; \

We introduce a new type of activation descriptor ibri tail· recursive, activations which

includes the argument recocd of the activation. W..a fuae&i:111 is instantiated by an APPLY

insirucuon .. an activation descri~ ·• coastructed fof!i& with•tnte"""1J.- · If t:lla·function was tail

recursiv._ then during. the evalllJlion ,of this futtcti0n·a:·TAlt.AIPl)Y iinstrumon rnay execute.

Execution of this .instrucwo. while. cavsing a new actiwtiea ta,be,added to the set of activations

.in the ~~ doe& aot ~-•new actiYation.descriptOr, toae constnacted as well. ·Instead,

we change the activation descriptor of the current activation to type ta.ilapply. The argument

record passed as the second operand LO the TAILAPPLY instruction is recorded in this activation

descriptor. In addition. all edges emanating from this ADE are removed. The old state of the

activation descriptor is thus replaced to reflect the new activation. Other function applications

that take place in the activation arc recorded in the ta.ilappl1J ADE as was done in the apply

ADE. Suhscqucnt tail recursive calls in this activation will cause the same elTcct as took place

§4.4 FURTHERENHJ\NCl!MENTS 6S

initially:_the old argument record is replaced with &heargumeat,Fee8ffl ofthenewaetivation, and

the edges emanating from the ADE are removed.

The inclusion of the argument record in the descriptor allows the recovery system to avoid

reexecution of aH the tail recursive calls leading up to lfle ·one ,represented on backup store.

Since th!) closure and retum link -'1"e the same, keeping th~ ~~,ecord in the -ADE make:$ it
'. ,_J -

unnecessary to reexecute .any of the prior tail recursive activations originally executed from the

initial APPLY. The rep~sentation of tail recursive activations we have chosen-lies two beneficial

aspects. First, the depth oftbe oomputation tree is n~ fat e~ery-tail recursiv~ <=all since
':· ·- ·', . . ~-_.!,·..:1~:-. . ,~: ~-:-~---

the niw 'ADE can replace ~e ADE of the calling ~_tiyadQfit This is because. tail iecursive

activations send their result directly to the address specified in ~eir third operand; the calling
;.,,:::::-1,,:''''~~.--•,; ""1\(\,"'"' • '-:.

activation does not receive the ~It of the callee. Secondly, by storing the argument record on
··_,, .,t·•\ ,.

backup store, reexecution can begin by applying the function to this argument record and the

returrt link provided by the APPLY instruction which initially instantiated this function.

lit Fig. 17, we show some steps in the transfonnation of a computation tree which

embodies the evaluation of the following function to illustrate the process described above:

Function Example (f: Function, n : Integer returns lnte,u)

Function Tailexample(m,n : Integer; f :Function returns Integer)
If m> n · ., -- · ·- · · ·

. t"am
else Tailemm,u(/,(111). n)

endfun

Tatlexample(l,nJJ
elldftta

4.4.2 Stream Structures

Our .basic approadt to,recording th~ Pf081'.CJS of computatiens is-1190 not welfsuited for
! "!'

expressing the behaviour of computatioqs involving qte production of stream structures. Recall

from Chapter Two that streams are produced by tail n.--cursivc functions in a demand driven

fashion. The unique instruction in a stream producer wh~,..,ID,IH~~ ;the, \~rcvaJu~\ioP of a

strl!a!:Jl. is the suspension 9~rator. The.backup and reco~..algorithms.as curr.emly defme4 are

not capable of modeling the kind of program behaviour exhibited by stream producers for

reasons discussed below.

66 FURTHER ENHANCEMENTS §4.4

Steps in the computation ofTailExample, with initial argwnents: m = 1 n = 1 and f(x) = x + 1.

Step 1 Step2

u appt.1
undef

II

\
y

empty ul appt.y. undef

qfter Tailtxampl~ Instantiated.

qftu /IMOtltfared.

COffl/llllOlk»I rrw roow t11.f1 ADE.

Step 3 Slep4

'

u af'1'1,y undef a~y
undef

u

\ '.

!

ul empty tau.apply
empty

Tail Rl!CUl'SIW! C(l// ffll.tU-ADE. FIMI Wlhlt of Fru,etioll di/ Is 2. ·

Figure 17: Handling Tail Recursion

§4.4 FURTHER ENHANCEMENTS 67

4.4.2.1 Rationale
,. . .

To see why our current method is insufficient. CC>n$hler the st~ture of the oomputation

tre<: produced by the backup.algorithmtas currently defined}~stream producing function.

Since such a function is tail recursive. its associateft · aodvatien :would be represented by a

'4ilappl~ ADE. The.:Jetum link in a stream,produc:er is used torronnect tOgether suc:cc:uive

elements in a stream. When. a new &tivat:ion of a .-.m plVdbter· is initiated, the ~tum link

which is pas.wd. to this new actiYatioaiis:tbe uid of the-last----- ~leMffll Thus.when the new

. stream element is produc~ the fiekl previously GOncainlril t1te ,mspensi&it ift· the la.1t stream

element would now refermce this new element .'ftle De\¥ elaertt.;ift:tum;-woul<f eitber be a

record whose second field is a suspension to the ~ .ins1ftlction in the current

activation or the value nuU denoting the empty stream.

Now. consider the behaviour of the computation ·eree. if die sntEAMTAIL instruction were

to be treated -as being idenlil:a1 to.the TAJLAPPL"Y o,ntQr; tJlder this aisumpdon~ our backup

algorithm would pa,eserve the argument· reaxd for· eaob ;.uwititm of the streatn · producer

function initiau:d. in aca>tdance with the descripdan of td ~ gWen Mx)ve. Notice ·that

because a stream dvation only executes a RE'l1JRN. wMft·· no" DWNt tall recursive calls are

necessary, the only n:sult value that woukl:he ,resem,d.ot tbe,bacltup,'store would be the last

stream element produced. Intermediate elements which 8(C a:>nstructed usins the SET and
. ' , • : ~.' ; \ ,,·'~ -!~ r C '-. ~; , ~ '; •

SETSUSP operators would not be maintained on backup store. Mor~ver, recording only the
• • ! • · , · ' . L." :·, •., ' '. \ , :' ; , •· -~ ' , ' u• •

argument record of the tail recursive activation for a stream producer would not be ~fficient to
' -:· ' ' :~- _ ·~- ~ ':;~ ····>'.-:~::'·:• .~ t· ':", ,, ... ~ ._, ... -.

restore the rest of the stream because the return link for each activation is .different Recall from
: ; .• - ~ -:.~ 1: ; : ~- . ; ,;r; : (~ ;,) ': · · :.__ _, · ··: · · ·

Chapter two that the return link .p&ed to an activation Qf a .. ~-producer is ~ly the
, . ' . . . ' ~ . '. : . . :-:_ ~ -- !. .:'" '_}f: . ' - . ; ' [

second field of the record represen~ng the. last stream e~m"t ~,bl, ~is producer. 'nlus.
the return link of each call to the stream producer 'would ·~ diff~l'fflt.

This analysis indicates that the current design of the backup and recovery algorithms suffer
.. . . . ' \ .• ,. '' ~ . , . : ' : ' .. :--·: ' '\ f;' :), 't.\~ -<;\ '.. _:. ,c' ~ ..

from two drawbacks with respect to the handling of ~ms. First, bcquse tail recursive
', • ' • '~ ' • ~. ' - "'I. ~ • • ' , ' • •

activations associated with a stream producer differ from each othc:r in more than just their
~: '. .. ' ' - - .. ; . . .'-~ \ .- .• ' :·- ' . ! . , .

argument records. we need to maintain more infonnation about \Jle activation on backup store.

The extra infonnation ~hich ~eeds to be ~rded' must ~~i~~r,,~cl~d~ ~e .new ~t~
element produced. The second drawback is the, i~~bility of ,.f!l~. back,up, algorithms to

incrementally construct a data structure on the backup sto~ .. • When· a stream element is created.

68 FURTHER ENHANCEMENTS §4.4

it does not define the entire stream but represents only one element in the stream. Because

streams are created in a demand driven manner. whenever anew. stream element is created. there

is also an activation aB>Ciated with it whose Slate is ,relevant to the backup &-ystem. The

suspension signals an instruction in this activation to initiate . pro<iuetion of die next stream

elemenL Of most importance to the backup system is- the aJiument record held by the

STREAMT AIL instruction which instandates the next sweam activation. The backup system must

record this infonnation if it is to properly restore the s&atei of:the s,stem. If the arawruutt record

is not copied. then there would be no way for the recmi.er}' system to generate any further stream

elements beyond that which has been copied -onto the t.ctup store. We discuss the

ramifications of this requirement below.

The instruction responsible for setting the suspension in the stream is the SETSUSP

instruction. The argument to SETSUSP is the record. representing· the· new· stream element. We

see that one means of noting the production of. new sueam ~. drerefbre. is to alter the

behaviour of the SETSUSP instnlction. The SEl'SUSP instructiotl, in , addition to setting a

suspension in the new stream element, also initiales the transfer of this streaa element onto the

backup store. Of course. the vah.te of the stream may:be an early completion structure in which

case it will be the responsibility of the S£1' instruction· to pertbtm ,the ;actual transfer.

The instruction responsible for initiating a new activation of the stream producer is the
. .

STREAMTAIL instruction. The main operand to this instruction of interest to us is the argument

record that is used to initiate the new activation.· ·Recording the argument record serves a

different purpose from its use in normal tail ~cursive activations. F;r streams. recordblg the
. ' '

argument record of the STREAMTAIL operator is essential to restoring the state of the stream - ;;. "

. producer activation to allow further generation of stream elements after th~ the recovery

procedures complete.

The advantage in altering the behaviour of the SETSUSP instruction to initiate the copying

of the stream element instead of the STREAMTAIL instruction is that th.e transfer of the stream

clement can take place before a demand is made for the next element If we choose to record the
. '

creation of stream elements by making the STREAMTAIL instructi9n ~PY its return link structure,

we would need to wait for the next demand to be made (sin~e tha~
1

it is wh~n the STREAMTAIL

instmction fl res) before the copy operation of the current stream element can be started.

§4.4 - FURTHER: ENff/tNE:MNTS 69

Because- stream elements are produced tn ·a demarHf cttfven fiisliiori, if the evaluation of a

bind expression yields a stream, the value field in <name, value> pair bound in the backup

environment will contain a single element initially,' namely the first element in the stream. As

more elements of the stream are produced, they are afded §iitg the bac~p imag~ and are
- , . ,.-c< - - '"',l -·-

CORsidcred as part of the stream image in the baelup envialenmeat. •

4.4.2.2 lmplementatioa

To monitor a stream producer, we introduce ~ atew type of activation descriptor called a

stream ADE. A strallft ADE is -stn1Jlar to a ~ descriptor in that both maintain

information about a function activation other than ~lfll its return value. The stream ADE,

however, in addition to containing the argument ¥ for the next stream activation to be

initiated, also contains the stream element result of its associated stream producer activation.

These stream.elements are linked together on the backup ~-i)ming the reqoveryprocea. the
. (.... ,, ., i {~ ' ,_,

backup stream image is first restored. The reroveJlY sy~ then ~cts: a steleton of the
' , . ----..l. I

activation of the stream producer. 1biS·steteton1s used. to1lll1dlrllffuduction orthe. next stream

element when the next demand is made. The only instruction that can be enabled in this

ac.tivation . .is- the St'REAMTAIL operator whose argument record is taken from the backup store

and whose return link is the addtess'ot the last stream element. The suspension field in this

element is set to the address of the STREAMTAIL instruction. Toe reason for storing the

argument~ is.to set,-up.,-the skeleton' acti~aifod•tcfsu~'the'demand driven execution

mechanism-for streams. When the recovery procedure a>mpletes. a subset of the stream image

recorded on backup_ store will be restored. Let <ii ~·"2~::.:X·;i,1,t tHi ~, eleinents ~riied on
. ' - - -,. " ' ,., . - " -- '" .,_!!,__ _________ .,, _.. ,, -- -" --· -

backup store. Then the recovery system restores the first J elemen~ / .s n,. where x1 is, the

greatest element for wtriclftJre aJIUrl't~rf r~<:t.Ytcfl\~ wHt&ti'itfte1 ff~kf~ ef~m~t has
been preserved. A tiletoN 'ktt+atbn 1S' coMt~ m'Yteii lYehJ~tji; r~l~trleri{~keti "the
demand tbr ifis made~' {Durfftg .. ·dle con~o« cirttie ~i,t11,w.iil~ '..«ate~ filsum~rit reco~
may 1,e refflt'nect ftt)m.the~m -wtten rrtan ~i-~ \kltflil~1 wi nofbc(n~

Wilen., th~ sus~n~ fi~ld. i!J. ~. e_ .. ,-.. .. , ctwn~·:9.P r~,~I.\Pi1i~. ~ ~d '1\lll98
, ' - ' ' .,,

recovery. the STREAMTAIL instruction i°': tbc:. ,,,clf?I! ~~~1'8'H~i~ ~~~• tllc,qext

activation of the producer to produce thej+ I th element We illustrate this p~ in Fig. 18. _

To summarize~ unlike all the other structures we have examined. there arc /K'o operators

70 FURTH~RENldANCE~~NTS §4.4

Stream image on the backup h«1p.

va11 vain
arg 1 • • l1

undtf

Ul:.
vall vain

F 11 the c/0111n of the ,r,mm p~er /;11tetlt»L .

Flflll't 18: Reconstruction ofa ~.Strucyire

which are responsible fo~ ~~~in,~ ~~p~J~,-~~. Th•,S~SP QPe@f,Qr is

responsible for :iniuaQIJ8 ~ ~~ Q(tJ1~~9~ ,~~~ 1ffll9i"90 9':"=klJQ~ •. TIie latk

field qfthe st~ ele~~"')1p~~,~kl!P.,i~Wl&'!;~,\~~.8'~~~!R~....-r.AJLAP1,ratp1:,w)l,en

it executes. The S~A:~ ~ .~ 41f>r~~ ~~lff.llMh• ~~to

the backup store. The backup system should treat the arg~~.;~: to Jhe

STREAMTAlL instruction in an activation and the stream element created within that activation

~'.ooflcctiveiy to ensure U1at a oortcct Strcurif'.im'age;:isj~&l\lba'. 1Ttle' iniptem~ntadon of this

<value, argumenr> rccotcl-'is d~d fn the ntit sectidh.'' ';

In the next section. we fom1ali1e the backup algorithms outlined informally above. Our

§4.4 FURTHER,ENHANCl!MENtS. 71

fonnal model is an extension of the one given in Chapter twa'a&K\ mainly in,olves ttlteting the

definitions of those base language instructions responsible for the c~eation and updatit;l8 of

AD Es on the backup store.

4.S A Formal Model of Backup and Recovery

Beyond the need.fur modifiying the oohaviour of some of the base Iansuage instructions, a
'. . .i. ; ;'· '. •.c'" .: .:.:--:. •• J ' • '

fonnal model of VIM augmented with the backup and recovery algorithms must also have some
t"'~ ·.:< ,.:.,;1::-~--,:,;. ·-· - / . ;-_:, ~

concept of failure. A failure should be that special state which causes the system to invoke the

recovery procedures. The modified operation of the base 18§&\Jlltt__,.ctbns dUTerlfttHn their

counterparts in Chapter two in that the~r execu~o~.~~~in;' ~1~~~ ~:~ weU ~ in a
new VIM state being constructed.

. ' '

In the following presentation, we ~all be using_~ ~ 1n~<>1,1: as in Qla,p~~ tw9:,_
' ' • • • •• ' , __ , ,__ ~ ~ • 1

4.5.1 The Backup State

Fonnally, the VIM system is now treated as a four-tuple:

VIM =. <Shell,/nterp,Backu~tate,ViniStite> ;here.
VbnState = <Act X H,?'.(~ X Ea,>.U,{f~ .•

BacmqtState::: <Loa)(·8H.X'IIE9,):

The Act.H,D.S.aIJd. En, :~~ent.,,i~ th~y~1~,~~Jhd,r~flpj~, i~.model

.. _Ml. ~~ti~ that.~ Y~fi !)n, i¥i?i~ .. ~ ~_yAr,lf~,-, ~ 69ffl~f§.-l&ft•W 1Ml;•
contains the special value, failed. A failure in the systan is modeled by having the V~tt

take on the value fAiwl All info~atio~ ~~;~~ !~,re,~:re~~f~"¥~•_\s.:,~:•.if~e.r'f!+S'tate
has the f ail.et.i value. The domain Back~tate is de tined as a three·tupie where the first

component in the tuple, Loa represents the command bJt'Ufiilitblatite.'&he//cbhtttfmi~. the

second component. BHeap. denotes the set ~~;,~~,..-oRi~~~, b;lckup p~ures.
and the third component. REnv contains all <name. Yalue> bindings preserved by the backup

utility. These values constitute the quiescent data in the systim: ~i~~~1n~uatr6n for BEnv

is the same as that for lhe environment component in the VIM state, nan1ely., -,

5 ';· . . -
· Rl'Cilll that mkllile l'ommands arc those comm,mds whose results have either not been producl.'d or have not been

1.:opi1.:J 01110 the ~ladup Slorc. ·

72 A FORMAL MODB.. OF BACKUP AND RECOVERY §4.S

BEnv = Name -(UH U Scalar)

The command log, as was described in Chapter three, is used to hold the record of all currently
',

volatile Shell commands input to the system. By safely recording these commands, we are

guaranteed of being able to restore the correct,syst~m 5'4\te._'f\le~,is,,,~tu,&?~e. coqsistipg of
• ' ' •• ~. , - ~., s - ~ .. " ' •

a function mapping from natural numbers to log entries and a size q;>mponent indicatipg the size
' : ' "' ·• ' : I ; - ' • . . , C ' ' ' ~

of the log. New log entries are appended to the end of the log.

Log = <N - LogEntry> X N

LogEntry = <Com■and X U.>
U8 = the set ofuid•s used for computation records. ·

As new Shell commands are input to the system, the text of the command is copied by the

backup procedures onto the I~ This'iext ~~ds: to the c~~nd-com~nent of the

Logentry. The second component in a log entry is a reference to the <:qffi&,>PfApPp ~~ted

with this computation. This computation tree will reside on the backup heap.
! ~ ·~i;: ;; .--,•~-

Every element on the backup heap, BH~~-}~~~-ffl~~pJ<.L,~ To,ere ~-,~e ~ of

elements on the heap: structures which are nonnal VIM structures discussed previously,

activation descriptor entries. and stream . ooordinatbr' ~ritJ l diat": are used to' package

information about a stream activation. We di~~oft-~ ~«.m~MOJt,ecord in

greater detail when presenting the operation of the suspension operator later in this chapter.

Every ADE ofrthe backup hap' will~eithef Hie tefeieHce,r,W~~ 1iliieL~iJE in" ilie' coinp~tation

tree or will bt teretenced from a command togenttyi tr it;is iit'i'trir&l ADE in the ~puJiion

tree.

BHeap = (UH u u,> - (ST u Ade u S~•~ec)

StreamRec =, (VaJ x '.Al& :X I.JIik>

-Ade = <U i,. X AdcEntry X AdeTypc X Result>

Val. Arg = UH U Scalar U undef

Link = U8 U undef

AdeEntry = (N - U8 U empttJ

d '-

§4.5 A FORMAL MODEL OF BACKUP,ANO RECOVERY

AdeType = {apply,tailappl~. stream, ualue}

Result= (UH U ScalarU unde/J)

73

An activation descriptor entry is a structure of four components. The first component is

the uid of the activation being represented. As we show bebw;tllis field is ysed to idehtify the

activation descriptor so that the result of the activation can be properly forwarded to the ADE

when it becomes known. 'Fhe ~ compGnent{ tJte• AdiEnt)y,' is iJ1Atnetion mapping from

natural numbers to backu, uick. . If there am no entries 1# tl\e' llilt!ntry, this ex>mpontnt has

value sm.pty. The domain ,of the .MeEn1,:,, l\mcden is tlleMI« MHnsttuctiord1umbers in the

corresponding activation which are either APPLY, tAII.JcflPl:T,;~STR1?AMTML1>PCl'ltions. Toe

range denotes the uid'sofdle ADCs intheBH-,oorrespeildifli t&theseacdvatkms. "Fhus, if/

was the instruction number in some activation a correspondins tobatt APPLY instruction~ then

AdeEntry{j) would be the uid of the ADE associated with the activation created by this APPLY

instruction. Because the computation tree i$ pruned whenever ~, 're"sulf of· an activation is

reoordect activation descriptor entries, will ha-yij'thefr<~.,,,iftetd·tet to' the vatue empty

indicating that there at1 no subordinate A.DEs of tllW'\eti._b •d' that the result of this

activatiOll has already been· ~ded. The third CJOfnpt,ftMtt :in~ ADE boritidns the type of the

descriptor. There are at Jeast·two types of :A.Dtf1'; • ..._~,~~dn• acttvatirins for

which a result is not yet kno'Yn; ~d IICll.ue AD£'~.~~~.~~~.~~,,,~~ oftpe.activation. In
' • , • < , ', • 1' °t ' ,; T • e • I ~•• .• , ,/ , ~· • • ~ _.,

addition to these two types of d~ior.,. tlte~. 'fC~ .. ~ ff>-~' ~PtqJ.'$_ for ~ ~mve

activations and stream producers which.we ~~J~.tee~~~9~,. The.t;oycth.t,ield

represents the result of the activation. It can either be a ~. Qr, a uid, »-hicb. refe~ces. the
'il:.-~1'":..1~~· •. ; ,y ,': ·- ,-• -· ., "''

structure on the backup heap.. All stru~tures. arJ. ~late.d.widl...only one uid Thus. the uid's

used to reference structures on the backup heap •·.the ·IIIM;a, dkMe- 1used tb'teference

structures on the VIM heap. We shall use dot notation ~ .. N~~i: ~ ~~~,Pf an. activation

descriptor.

When an ADE is initially constructed. there wiH 1be'11&·value to,pJat"C'in its result field.

Thus. this component is initially set to undef When a ·~1(Va1ue is subscquerlly_produced. it

will replace the undefined element

74 A FORMAL MODEL OF BACKUP AND RECOVERY §4.5

4.5.2 Early Completion

Early completion structures are represented in MR as follows:

ECQ = ~(ECE)

ECE = <U8 X N> U {NClt}

ba(;lt is a special flaa which i1'(ijcata that this early '*-1\pleuon stmcwre is part of a structure

which needs to be placed on the backup heap .. 'fhb flag .erp1-ced in the queue by the Copy

function. We present ~ definition of this fu4euon below.· Wboa. the: SET opcra10r replaces an

early compJetion struc~e contiaining this flag wJth a ·valut. lt will check if the structure

containing this field can ht copied by detelll)iniog if fJlere •· any more early oompletion

-elements in the structure.

4.5.3 Auxiliary Functions

As was the case lf(ith th-= heap in •Ml. we have .BMO, auiliary 'functions defined on the

backup heap. AddBHeap an4 R.tmodH,ap, w~. :a,:14 ..ad.· temove, an element from the

backup heap respectb:ely. Tbe:~ns are omiu,rd h•,••• rtader ma, simply substitute

BHeap for Hin the definiticngi.v.te ff.>r AddH~~d·-R~.ff-,in Chapter two.

There are also two functions. defined on the oommand lo& AddLog and RemoveLog.

AddLog adds a new tog entry to the end of the log an<f Rimovelog entry removes a defined entry
, ·-, - .. ,~ - . l .-_;.,,, ,

on the log. In addition, we also define two functions over At.kEntries to replace and remove

elements from a given AdeEntry.

Adi/Log-. Lea X IA&fMrf ..., Loa

Function AddLog(log,logentry)

let <LogVal, size> = Log
LogVal'(m) = LosvdnJHI m ;e size+l, ·

= Logenlry if m = size + 1.
size+ I

In
<LogVa/', size+ l>

endlct
endfun

'

§4.S · A FO~L MODEI.:.OF.BA<UQlJPtANf)JIU!GOVERY

Removelo,. Loa x N Los

Function Removelog (log, n)

let Log Ya/, size = Log
I:.o,-Vaf,llft;;;: ~m)rtf:m• ,r

= u,yll/11 r,:, .== n
in

<LogVar, s1:o
endlet

endfun

NewA.deEntry. AdeEntry X U A X N - AdeEntrJ

Function NewA.deEntf')(_A.deEntry,u, n)

let AdeEntry'(m) = AdeEntf')(_m) If m • .n
= u lf1'1 ~ ·,t '' ' - - '

In
AdeEntry·

endlet
endfun

RA.deEntry. AdeEntry X N - AdeEntry

Function RA.deEntf')(_A.deEntry,n) 1
- :,, -

let AdeEntry·(m) = A«Y:~m) If m·tt: ii -, ·
d ~ '4::,• -; . , ..

In -..

AdeEntry·
endlet

endfun

4.S.3.1 The Copy Opentloa

1S

Before describing the CQpy~opetadbn., 'M,·llll\lM,_ llfeiibstract representation of a

structure on the VIM heai,?fitfh~~ 1~ -~~ti&\th~~'>9JA,jn which every node is

labeled with a unique identifier. Nodes on the heap correspond to structures in our s)IStem. This
,\ ' '

representation allows for structures to be components of other structur~~ ~,. an ARRAY of
,,, (· . - '

RECORDS. In our discussion. whenever we refer to a VIM structure, we also inclMllMJis to mean

all of the component structures which this stnacturc references unless we eit\lk:tify state

76 A FORMAL MODEL OF BACKUP AND RECOVERY §4.5

otherwise. Thus, when a VIM structure is to be copied to the backup heap, it is also necessary

that all component structures be transferred as well

In order to preserve information found on the VIM state .. it.Js necessary to have a function

which can transfer data from the heap and environment~ of the VimState to their

respective counterparts in the BackupState. This Copy ftinctloit is given below:

Copy: (UH U Scalar) X H X BHeap - H X BHeap

Function Copy (Val,H,BHeap)

let NewH, NewBH =
if Val E Scalan

then H,BHeap
else let

in
NewH.
NewBH

endlet
cndrun

RefStruct = {u I 3 m EN, RE R~nl.s.L
H(Va/) E Rec A H(Val)(m) = u}

u1,l½,···•uk = elements of Ref'Struct
ECStruct = {u € UHi H(u) E: ECQ A SteA,Yal) = u}

NewH', NewBH' =

In

if ECStruct = {}
then if Re/Struct ;11 {}

th.en Cop.>(u1,
(Copy("2, ...

(Copy (uJ, HJJHfllP)_)
else H,BHeap

emlif

else AddBack(H, ECStruct), BHeap
endif

NewH',
if ECStruct = {}

ti.- AddllHetl/1..NewBH~. k'1ll.H(Val:,)
else Add/JHeap(BHeap.~I. ({notco~l))

endlet ,, ·

§4.5 A FOR~L MODEL OF BACKU.PrANDRECOVERY 77

The Copy function talces as input the uid of the structure,to be copied and first detennines

if there are any early completion elements in the ~ructure. If there are, the structure is not

copied; instead, those fields which are early compl_et(qn Q\lq&le$ are.,.gmented with the special

flag back. The function, AddBack, talces as argu.ments-the' ~- heap and the set of uid's

which reference early completion elements in the $tAICture. It ;t11rns a new heap in which the
• ,r i>-,; , ,,

flag, back, has been added to each of these4'aflyQ'.)fflp)etioh llructures. Detennining if there are

any early· completion elements in . the structute ~~•~ that all component structures be

examined to see if they referwe any -sudl eleni.-; Bte function Step takes as input the uid of

the top level structure and returns . the set of all uid's referenced from any substructure

referenced from it that is ~~ with al) early ~pletion structure on the heap.

If there are no early completion element$ m, the structure, then it is transferred to the

backup heap. Since a structure tnay reference many substructures. the Copy function copies rill

substructures referenced from tile ~tllR by .i:equsively calling itself. A structure if fully

copied only when· it and-tCII substruc;tuNS it references have been placed on the backup heap.
'

While the Copy function is easily , expressed {Q -<>ur abstract model, it is significantly more

complex in the actual implemeaaatioll~ We addrm the implementation problems in the next

chapter.

4.5.4 1be Shell

The command log contains the te~t of the sbcU comand input and the name to which the

result of evaluating this command, mouUM,e: botlrul: This information is used by the recovery
"

system which reinterprets the command text The ~p~tion record mociated with the log

entry is used to avoid unneccesarily reexecuting operations .wtt.e results have already been

recorded. Maintaining this information requires modifying the ope~tl'6n of the shelL The shell . .-':

must now. in addition to the stream of shell commands and curre._t.J<W1a-.alsolake as input

the current BackupState. It returns a new VimS~te resultjng { frQtri 'ttt~ · evaluation of these

commands and a new BackupState which COl\tai'1$,a Q~--,kl& ;fl.~ ~ ev;~ command input

Shell: Session x VimState x BackupState -+ VbnState x BackupState

Function Shell (Session. VimState. BackupState)

let <Acl. II. EIS. Env> = VimStale

78

in

A FORMAL MODEL OF BACKUP' AND RECOVERY

<Log. BHeap, BEnv> = BackupState
NewState =

if ChooseToExecute (VimState, Session)
then Sltel/(Session, Execute (VimState. Choost(EIS)). BackupState)
elseil~)-

then VimStale, BackupState
else let ~l . = flrst(Sesslbn) .

ia if c1.C i:a. 06f.Bm ·

.....
endlf

tben <.Act, H. £,JS, Del&m(E.nY,.Name)>. BackupSIQle
elseff c

1
.C · BIND · .·· . 1

· • · ·

theiilat 'lr~i&'MHD ·

FA = Translate(c 1)
u :A = neW11id'ftoniUA
Act'= A.ddAcl(_~ct, uF.f FA)
NewEJS"'l:'£18;1.i>ffi.,-A• f>1f,FA(i).e,c;nt = 0

A F~~:;:,pJ ..

State', v = lnterp(.State, ·Choict(NewEIS))
<Act'. H', EIS', En,> = YimStat,'
Env· = AddtoEnv (Env. cerame, ,)

in
<Act·. H', E~·amf>.
<NewkfJg.dJrll.-.a,?

encllet
endlf

.ifet11pty·(Sallon)
tlaea if EIS'• {}

. then Shell (Session. Executt(Newstaf~. Choict(EIS)))
else Newsldle. N'eWIJaclcupSttJJ~ ·· ·' · ·

endif
else Shell(rest(Session). Newstate. NewBadcupState)

endif

endlet
endfun

§4.5

§4.5 A FORMAL MODEL ()fBACKOi>'.~.NO RECOVERY 79

The new log entry constructed by the shell contains the text of the' command input and a

reference to the root of the corriJ)Utation tree to be assb'daii!~>~ttt'this•computatiah. The uid

field in the· root activation· descriptor entry conufus it~ uitt 'of tttt~tr~atioh being instantiated.

Its AdeEntry is undefined since no functloils have·~ iqipliedlfutn' thi's actlvtatiori }et The log

can be thought·6f8S"•mt arfay tff"log entrf~. The '1reft'u~'ih~·-itbg l>y adding the new log

entry_ to some :curren~y _u~9~f¥1~ ;~~~~:'. :N<?tC-~ai~~~~-~~;H)voked. qfler the log

entry has been recorded. The shell acknowledges a shell input by demanding the next command

in the irtput sttearll 011tfwrten thc.f currertrsheW~ffiitt~ wi"bie~: ndied'on the ba~kup store.

This guarantees that no processing will be done on a computation which cannot-:le recovered

from failure since the text of the command is use!-'bt'ffl~; ri:dvit·p_totedu~ to reexecute the
!\t ~~' a,. f.

command. The two functions which are ~-,g ~~frM!i~nt, De/En, and
AddEn•nnust atao· be. modifted. 11ret,i>f/B,f• .ii ~ifiW::ieimmn1:· an· ef!Vironment entry

\'"•i -1"1.·,.:. ·,~ .r·i ,~-/\ \ ~?}-_·ir,i· .. iY\. ·.:.. ~\.,;:,.,·.·jr~: "' _. .c,

from the current envrionmenl Since ertvJ.~Wf\(~'I~ ,~
1
~ p(the backup state,

De/En, must remove the entry from the BEn, as well

4.5.4.1 Removing Log Entries
.,,. , . ' .t ~ • ~ ~ ~.'., _; ,~:, . > •

The A.ddEnv funcU0$1,is,.~b~ ~ ,"'1\iM,ap~.~~:Rinding to the current

environment The,bac111p~,1fl~ "iw1'tltfflh of,_ computation record
t .- !-~ ,.-~

about the computation that produced this value.. This computation record n~1~:,ikept on the

backup store only so long a the binding was not placed in the image of the enviNNllWCWtt kept on

·me backup state. · Once the biridirig'is' placed. iridie backup state environment and tiie"resutt
_ v~JJe is fully qefulecl.tbt.~~;a~JN~lfM,~P~~aw~and can

be rem,oved f~-~ ~~*''l?:1'•· ~:~J.,~itM ~~Oft!~JMJ•11lt ·Yallw QllltMins

r,arly COJlilP~«:¥~!1:WU~~~- ~Jro,n ~-~;1q .. ;l)e.<Nalue

conipPnent in ~e ~~ .. -. thi$1~,~~~z ,ln~~~~~iW.J'e&IPWl,,iliaf of

th~ ~GT ppera,tor ·to J'C.fll?~•pb~ ~~~'~ ~ 1\'Mfti~Jullr1 dogned. If

. there a11;:no ep.rly cxxu,;,~:•~~.~J•,:,~t1~-~-~ ~ Ille

. bindi~Jon the bQ~p ~v.iroqm~ancJ,rcmQY,e$,~_,,.lf.V: ~~9.lllJlp~tifflUlf·•I.

80 A FORMAL MODEL OF BACKUP ANP RECOVERY
- . . . f' ' ,. \

§4.5

4.5.5 The Interpreter

Because base language instructions will be nQw be operatitl~,oo the backup state as well as

the VIM state, it is n~r.y to alter the ~haviour of theJ~_terprete~~ The interpreter is now a

state transition function frQm a VJmState, a_ Ba~~Up$lff'e, ~-~,~instruction to a new

VimState a new BackupState and a, result value. I.ts de,f~t~ is:8ivea bc;low: .

lnterp: VIIIIState X Badup.State X D - Vi.state X Baciup.Sfate X {U8 U Scalar)

Function Interp (VimState, BackupState, <u.i>) %<u,i> is .,.enabl.ed inltruction

let

in

<Act,H,EIS.Env> = VimSuue
FA= Act(u)
<Log,BHf!flp,1BE,r,> = BackupStat~
New Vm,.stqte.. New~,Sla# = 8-»,tltf_YlmSltlMJlack.,Sta-, <u.t>)
NewVimstatf = Failure(NewYimstat~)
<Act';H',EJ~. Eiiv"'>·= iltwYlmstate' .

if failecK_NewYimstale)
then Recovery(BaclcupState)
elseif F A(,).opcode = TERMINATE
· tflett· N~N'ltitatt':N~lkritlf)Statt,FA(lj.o,ftUm1
else l11tef'l(NewVimS"-"ew~_,~JS~))

endif
endlet

eur.n

The Failure function fflOdels the Introduction of a f1lW state in the system. It returns

either the state fc&ilerl or the state' passed to ·if as input 'Fite· fimttk>n fatted returns true if the

new ~te is a failed state antffalse otherwise. Wl1eti ~tetumstrue, the interpreter irtvotes

the recovery procedures to restore the systetrt to a cdrtect state'/' The 'rriodel of failure glven here

is, of course. sirnptisl'ic imofar as it mu mes that a -faifur~ dbes nofoccur during the middle of

instruction execution. In the actual·fmplernentatbrftlf'ttie system. care must be taken to

guarantee that copy operations Oft the bttclrnp Store ate perf'onnechttomicatfy; The model given

here, however. is convenient for expre~ing the salient aspects of the backup algorithms,

abstracting low level details such as preserving atomicity of copy opc~tions. These i~ues are

addressed in the next chapter.

§4.5 . A FORMAL MODEL,OF BA.C~µB AND ~VERY 81

4.5.6 Function Application

In this sectioh, we present· the modified operatioodl'senmtltics' of two of the base language

instructions responsible tor function apptication,in ~~(•~ste~ the APPLY and the TAILAPPLY

instructions.

4.5.6.1 The Apply Instruction.

The effect of executing the APPLY operator is to augment the number of activations in the

VimState. The addition of a new activation is reflected on the. backup heap~ b~. adding a new

activation descriptor entry for this new activation and creating a new A.dei.'11'1: function in the

ADE of the currently executing activation. This new function maps from off$et to uid where
<' "- ('\-~' '\~ . (:t/_\\ \ Ii,\ ·· .. ~. · ...

offset is the instruction number of the APPLY operator and uid JS dte unique ~tier of the

ADE representing the new activation on the backup heap. The new A.DE will c:ot1tal1? in its uid

fietd, the uid or me new activation; its AdeEniry"lielo' is set-to empty, and its type field is

initiali~ed . tq, a,ppL,y fndlcatiq' .. lAAt: ~q~~~; ·'IV~ ~~ :l?Y, aa, •~1, Y, umtruction.

Sine~ the ,:es~lt of tbjs ~~V~'.l ~,Rot Y,4' kp~~• Hr1 ~~§e!~ ~fl• ..
if 1:0,CC,C. = APPLY a-.

let
C = /.op1,
arg ~ '/.op2,

<u1 Jree> = H(C),

u· =anew ui~ fro,m lJ.A•
u .. = a new·uat fft1m o;. . i

A.ct~ ,.tfdd..4el{,ikt..u'.,J.)},,,
n· =. A.ddff eap..H,JJ ~flkiP:qdJf,~.11p1 ~~fJ.W,,,:P. ..

Act .. , N,wEts' ==
Sen(/fo/Jesl

(SeiidToDest
(SentllbDt!lt

(.Ac(. /;/ewi,~11·, <~ l.to,l>. Cl. •
u;_ <':'~.""•: 2. ~,.!\ arg)
u , <uncoiut. J, opt): ill,

u bit = a newui<J ch~n frosn y .• ..
newade = <u·. empty. fapptyr. unde/>.
B.Heaf}) = AddBHeiJp(IIHt'rlfJ.~w,-he1WJtie),'·

82

in
<Act·,
n·.
NewE/J',

A FORMAL MODEL OF IJACRUP AND'RECOVERY

tn
.AddBHeaJi..BHeap1, u11 Update.Ade)

endlet
else BHeap

endlf

En,>,
<Log,BHeapl'BEn,>

endtet
eadlf

§4.5

It is possible that there is no computatiori''tecord on tlufbackup lteap that contains the

activation descriptor for the activation m which tht, Affl.. f' instruction is found. , , This may

happen if the result of the oomputation has already been lls>IIR4 in die ¥up. emdronment
t ,, ~.. • • •••

before the APPLY executes. In this case, there is no change to the backup state. If there is an

activation descriptor oorresponding to the current activation, its .AdeEntly is"ujxlate<l to reference

this new ADE.

4.5.6.2 The TailApply Instruction

The TAILAPPLY operator is also modified to monitor ,th~ .J,l~ of tail recursive

functions. If a TAILAPPLY operation executes as part of•lail~ve activation. we oopy the

argument record p~d as the seconcflnput tat.he lttStiodl6j,{tottte backup heap. replacing the

old argument reoord found in the activation descriptor entry. As we menuonect earlier, doing

this substantially .reduces the time needed to reexecute a tail recursiv~ "1\lpctlbn. Copying the

argument record becomes a non-trivial issue, however, beca-.e·• of ··dle.:presence of early

completion structures. ff the argument record to bt ~ contains early completion elements,
. , .·: .· ,.u· · ,'

the copy operation can only take place after all sucb elcm*,Qts ~Y.~: ~n ~L The old argument

record on backup heap m1d the .AdeEntry component cannot be replaced until the new record is

fully copied. To ensure that this restriction is obsoridd. -it is o.~~ry to create a new ADE

corresponding to this new activation. We now need ~ liAk,fhe"old,JofD£ ~d the new ADE

together. Since the idea of noting the argument record on the backup heap is to avoid

§4.5 A FORMAL MODEL OF BACKUP ANl).RfX!OVERY ' 83

reexecution of prior tail recursive calls, we interpose the new ADE between the activation

descriptor corresponding to the current activation and its parent ADE. The parent ADE

represents the activation in which the initial call to the tail recursive function was made. In this

sense, the compu~ion tree bttilt from tail recursive activations.i&-OOOStntetecl"bottom-up". with

old tail recursive ADEs•ins pushed down the tree and new ADh7s,J,tfij'fltted in between its
,. __ .,_ ' --

caller and the original caller of the function. We illustrate thi~ ptocess in Fig. 19. · Wilen an

argument record is copied. we set the AdeEntry field . in. tQt descriptor to en\pt~. effectively
., - '"., •., . . . '

discarding prior ADEs ~lated with this function. Th"5. once ~:~gument record is fully

copied, all previous A~Es of this tail recwsive function are-removed from the backup state since

the link connecting these activation descriptors with the rest of the ex>mputation tree is severed.

The fonnal definition of the modified TAILAPPLY instruction is given below:

if /.opcode = TAILAWLY then
let

C = /.op1,
arg = /.OP2
dest = J.op3

u· = a new uid from U ,
Act:.= AddA~t(Act,u; ~(•)
Act , NewEis =

SendToDest
(Sentil'oDat

(Sen([I'oDat
(Ac(, Ney1Eis, u·.<~l.op1). C)
u·.<uncond.2.opt>, arg)
u·,<uncond.,3,opt>, dat)

Ac, NewEis·· = SendSignaK_Ac1·.·.1ve..ea·Jl,-~slilllltlons)
:.!J-·.

u new = new uid from U8

BHeap1 ::: if 3 Ur,-''~Jc_ at. ·BHea,Ji."i~ ,(u~.~n~-T1",•~esult>
A AdeEntQ(k) -:u._ ~,IJNiiafA.•JU'='1'11tA

then Add8llm~BH«Jli.u1,,<11~~i, ,, .. \). ni t;·,J,

NewAdeEn11)(Ade~nlry.~M~'k)'/f'ype,Rentlt>)
eke ,Bffllllp ·• , ·, ,

endif

84 A FORMAL MODEL OF BACKUP AND-RECOVERY

J. 2.
After jlrsr tail recuni~ call

u ----•tciilAPJJI.~

J.

,4/ttr ar,ume111 record of s«:ond call coplal.

u1 empty ~

Flgve 19: Recording Tail Recursive Functions

H',BHeap2 = if BHeap1 = BHeap
then H.BHeap
elie·Cap>(.arg,H~HaJJJi)

endif

v2

BHeap3 = if BHeapi(arg) * notcopted.
· the• AddBltl«lP(8Heap2~¼1tw<u:·.empt~~,JIY.arg>)
elwif 3 u•.•t..BNeap(u~ ='u,-_. · ·

then let AdeEn1ry·=~Ailf!Em1'({1'..fl-ad~·•J
la '

AddBHea~BHeap2 .• unew·<u';MtEntq-:tauappl~.arg>)
cndlet

else BHeap2

§4.5

vl

§4.S A FORMAL MODEL Of' BACKUP1'.ND RECOVERY

endif
in

<Act
n·.
NewEis"
Env>.
<Log.BHeapJtBEnv>

endlet
endlf

8S

The backup heap is modified in three steps by the TAil.APPLY operator. In the first step.
:' ' ·. '.•. :._ -< '. y :-\ :~ '.: '.1 - ·-.·

the ADE of the activation which initially in~~1'd,:t1J
0~jffM. ~~~ tun~ is modified to

have its AdeEnt,y field mfen(a:tlle'.·~tivation•4eicil.-.~ for this new application.
' ... ,.1,., ... ,.

This new descriptor has its AdeEmry field initialized to refetence ffi,:; dDE of its caller. If no
:JJh' i,

such ADE exists. then no change is made. In the next step. the argument record is placed on the
• . • ; ~' ···. _.. '-... ::_ . •. . ; __ ' _.,

backup heap. If the copy operauon was s_u~fu-~ .. ttien. m (lie tl\f(d'step, tbe AdeEntry field of
•\,..".I-,_ ._\. ~- -. - ~ t ·~ ., : :•,,,1.:~ .) t~·JH ~

the newly created descriptor is set to empty since ~ •. ~~ WACOOure can use the argument

record directly during the restoration of the system state. If the ~re was not copied. then a

reference in the AdeEntry component of~!JlF net,y ·-~~ ~~~}«>if c;al~r ,,..., '{bis allows us

to still reference previous activati>ns.d:tbe tail(~~ 1\srietio1i>until the argument record is

finally oopied.
\ \ :·£.• :! -,

4.5. 7 The Return Operator

One of the ~~t features ,of pur ~1'11orithm is that results of activations are

recorded on the computadcla tree~ Tliis,J$ t.he p~lmeans of reducing reexecution time of ,,
volatile shell commands. '{he R~UJlr-i, ~-~smits the result of an activation to the

, ' ,• •- ,. , • tC_. •.-.,,' 0 I

backup heap. The return value •. if it is a VIM !itriidlare will. in most cases. oontain early

completion elements. The SET operator is responsible. in ~~~~~ces. for ensuring that

the structure does finally get copied. If the return value is copied, tht'A,aU ADEs referenced

from this descriptor are removed from the backup· state. This has the effect ~f pruning the

computation tree. Because ADE's can be removed in this manner, it may be the caJe that when

the RETURN instruction executes. there maybe no ADE associated with its •activation since a

return instruction in a parent activation may have placed its rcsuJ~ Pl):,J.h~ .P~~up heap. In this

case, no action on the backup state is required by the instruction. The modified dtifflition of the

instruction is given below:

86 A FORMAL MODEL Of' BACKUP ANO Rf.COVERY

if opcode = RETURN then
let

DL = H(l.op1) % the list of return addre.s
u, = DL(l) % uid of the calling activation

targets= GetDesd..H,DL(2))
Val= /.op2, % the value to be returned

Ac(, NewEis' = SendValwe(Act,NewEis,*,- tarpts, w,!)
Ac(', NewEis .. , = SendSignal(Ac(,NewEis',u FA.destinations)

Ade= <uFA'AdeEnllJ!,Type,Result> . _
BHeapl = if 3 u;, s.t. BHear(uj =: Adi · _ . . .·

dleat ""'1,I/IH «JJl(Blleap.11,; <u F ~""7,1JlM.U,j Yal))
else BHeap . .

endlf ·

H',BHeap2 = if Val E U8
then Copy(Val,H',BHeap)
elH H;BHtiipf

enclif 1

H .. ,BHeap3 = if 3. ub s.r._. B=t(U,,) =_ Ade .
ttte.if 81/J ' ¥al) =1 lldiaapkci

then n·. H eaP,_
else let

in
<Ac(',

endif
else H,BHeap --

NewEis ..
Env>,
<Log.BHeap3,BEnv>

endlet.
endif

Ref= {nl AdeEntf)'(.n) is defined}
n1 ,ni:_ ... ,n ~ = Ir. elements of Rel ·. · ·
AdeEntry = RAdeEntrJ(. ..

(RAdeEtrtiy(Ail~i1t,t.1h11,.::n ic))) '
,NewAtk =,◄11,AdfdlEn,q:: ... Y.&
in , _ .- ___ .

H',AddBHiiJJJ,.BH~.u,,NewAde)
endlet '

§4.5

§4.5 A FORMAL MODEL OF BACKUP AND R£COVERY 87

The backup heap is updated in three steps by the RETURN instruction. The first step

determines if an activadoa descriptfJI' ft>rthe Cllt'mttllttffatimt e••~~ itthls activation has an

ADE which ia part of some amputation aree. · Ir so; 11t:HY!)e ~this acth·ation··descriptor is

changed to· ucal.ue indicating1thata result bas been cmtatld ~reliltn value rs writteit Utto the

result field of that AllE. ,l:f;the ntumvalue,i,,aisttucfare;._·Wemltlate a Copy-operatk>n to

place this structure on tbe badlup heap.· ; If the ~!fj Mjl.Jd>pieitH,ecause it1C()Ofmr1S no

early rompletioa elements.er if the ..a WIii a __,.vat._;,._ WJcJ..f.DB's1eferenced fnSrrfthis

descriptor are removed .. from . the backup heap., effedi:vely -~• -~-tree as

discussed earlier. If, on the other hand, the result was a structure contains early completion

structures, it is the responsibility of the m ·~ ·10-perfbrm iie pruning of the
, ·., :.,, ·1· , ,

computation tree.

4.5.8 Stream Operatlou
t'

There are two operations which manipulate stream activation descriptors on backup heap:
,.c,.,.

the SETSUSP instruction and the STREAMTAIL instruction. 1bfse operators are responsible for

recording the creation of new stream e~~. ~4 .•. 81'1'\ment records of activations to

allow the recovery procedures to reconstruct the stream image ~ to permit demand driven

evaluation of those elements not recorded.

4.5.8.1 The Suspension Operator

As we had de$Cribed earlier. the "SETSUSP operator }l~cls to . l>e altered to record the
--';'-• ; _,,~· ,· • I ':.. '.'~ • j '-,' •· ,

production of streanr etemenu on tlw llackup heap. ~ ,.., ,OUf' ~thm is the use of a
.f, ,-, <;-· ·--.~·~...--,-·_,.,.-.-•-····•-· - ·--•·' ·-- ... --..

stream coordinator record which contains the element produced by a stream producer activation

and the argument_ record to the STJlf'AMTAIL,~~,-,fO-~~,~q,v~of the
;• . ·i' - • . •.• . '•

producer. When a new stream acd¥ation is in&wn&ial.t.-a.MW- ADE isaated fortt. •· Unlike1he

case with the APPLY operator, hQ.-.Vt:Y,4'r~ A.Of$:;~ PY.Al~~~~ ~. are
' . ' -

~~d through the stream..wordinak>r tee0rd. Tbe.liAk.fiekl.~,is used

to link together all stream activation descriptors in a chain:i1rd\1~tft1g the cdti~~~n of the

stream on the VimState. The SETSUSP instruction is responsible for i~ly c;reating the

coordinator record and for linking the clements in the backup stream1wttage .. When the
l~ r ·

STREAMTAIL instruction executes. it initiates the copy operation for the arg~cnt JCi=Ord of the

88 A FORMAL MODEL OF BACKUP,AND RECOVERY §4.5

new activation being instantiated. In addition, it sets the liRk field in the coordinator record of

its corresponding ADE to that of the new stream producer activation.

The SETSUSP operator takes as input the reoord ~g dae new stream element It

updates the .ADE associated with this activauon to ~ .,_. and constructs • new stream

coordinator which is referenced from the Resuu. of 1this. clesctipf.Or~ It then initiates the, copy

operation for tbis stream element. Each new iavocationi of ·die :stream producer causes a new

ADE to be constructed. witluhe link field in the cootdiaator of:the;previous activation sot to :this

new ADE. In Fig. 20, we illustmte the effect of tile SfiSl.:ISP intlnlCtion on the hookup heap.

u

)
Mer a SETS USP o/Jfflll(W bl octlYatlo" wttlt. ,Mu 1x«111a.

and Jtrfltlm ""'""' rei:on/jtJ_

u Stret.&ffl

Fi611ff 10: TM Effect of the sasUSP Instruction on the Bac:tup ·1teap

The format definition of the SETSUSP operator is given below:

if /.opcoae = SETSUSP then
let

u = I.opt
R = H(u)
/= /.op2
i = /.op,

. §4.5 89

'"·•·:·. !

u ew = anew'uid~ u . ·. . _ .. -· . '··~ . , _·.· :·.','!.• -
1 ,ll}-,2 #;JAdllB'IRllil.BAttpt.tl'~~/,,t,,- _! • .-., •

In
if R(j) f. ECQ A IR (hf = o .

tll11ftAol'.' : · , n ,- -

' ~'1fP.:(l(;;,~11.),
NewEtr; . .

v'Hi,-6-,,,'t '
' <u,1,;~Bt,w-,, .

- e1sei1et (.!4tr:NHt1s~:-j~D~A~t .Ar~tii;:<1~.~,siqriai)
. flat ·· < :.,/.J t: .. ;::!-" l -:: -~~,._-rlJ1! ..]5!T?. s;t! <JJ b-:Jl(:r:q b1i;.:•'·:1 :t~. .

· ~f• ,·· .:.,·{] -~i)dh,q'J 0'~l ,,:. ,.<:,,·

CN•~~ •·,-:~·:. /; ~,,;i (~:.: .. {',)f,tJ ,,,:~

E/1.M,:;/t,;_ \\ . .,, ,/..,, L ,, ,:,..·f'. G:: :y,,, .

. J~~• Bl(~~~~~~> -~. , .. si. n,; .,.,!.-; 1; :1i ,,, .. , -

-..U, · ,. 'u~ ; ... ,.: J~ ·: :r .---~ ".:''. De,:~-~ td.:f: :Ct>~1J? :jijT'~lr:· endlet .'
endif

!!$:H .hft-H/; __ HJf? ·,c ~.:·~~p, i:

There are three major tasks that the SETSUSP oper.itor is responsib~1 Jg~,~~ J.~i update of

the backup heap. The first is the construction of the stream coo~iecerf\,, It creates a

record. whose fir.;t component is the ~&,ortffi-1~ ~1 ~nt. ~ the second

and third components are given value. undt'f. This second mm~f';f 19 ~~-t"tw:,value of the

argument record but may only be defined when the STREAMf AIL instruction in this activation

90 A FORMAL MODEL OF BACKUPAND RECOVERY §4.5

executes. The third component holds the link to the 'ADE bf the next activation of the stream

producer and can also only be set when the STREAMT AIL operator executes. The second task is

the copying of the value component of the stream record. Recall that our definition of a non­

empty stream element is a n;cord of two fields,.the first being the :element itself~d the second

holding the suspension to the rest of the stream. The.badup·•f'acllity .·Beed··onfy copy the first

element of the record since the link field to the ne~t ~ .elell)ent can be set by the recovery
''," : .

procedure when the stream is reconstructed. The third major ••that the operator performs is

the updating of the activation descriptor entry associated with .~e stream producer. It changes

the type field of the ADE to stream'. al}d. upclatea a.,.lwr,v,k;,,tp .reference the new stream

coordinator record. We next examine how the STREAMTAIL instruction needs to be modified to

maintain a consistent and up-to-date imap of~~~

4.5.8.2 The StreamTail Operator

The STREAMTAIL instruction operates in conjunctiQll with fbe, SETSUSP operator in
"·;',

maintaining the stream coordinator records and activation descriptors. ·. When this instruction

executes, it initiates the transfer of the argument reconl passctf 1i.,,tts ~d argument onto the

backup heap. The stream coordinator corresponding to this activatio1' j$,,~pdated to reference

this argument record. If both the value field and the·arsumenN'"OC!Jl'<iiare fully copied, then all

subordinate AD Es can be removed from the backup, b~ ln lb,is ~nse,, the stream value and
. ' ~. ', \ : .. ··" . ") •, ' . .·'' .

argument record passed to the STREAMT AIL instruction constitute the result value of this

activation and just as the computation tree is pruned by the RETURN ihst'ruction when the. return

value is placed on the backup heap, we perform the same action here when both the stream value

and argument record are safely recorded. Like the TAILAPPLY instrbttion, STREAMTAIL is also
~ < • ' ,,, • .,: '

responsible for creating a new activation descriptor. The type of this t4!)4is set to stream and

the link field in the current stream activation record is set to the uid of this descriptor. We give

the formal definition of the STREAMTAIL instruction below:

if /.opcode= STREAMTAJL then
let

C =/.op1.
arg = l.op2
desl = I .op3 % deSI is a field in a stream record

§4.5 A F01tMALMO.D£l·OF BACKUP:AND'U'QOV£RY

u ~-== a new -ttid from-U· ,
Ac(= AddAcl(Act.u: ti-(u)
Ac(:, .~w· ·= . ·

SendToDat
(senilfotfesr
, (Stnd1lall•t : , : ,

(Act,.Newpi.s,.,1{,~~nd 1 nn.1~,J:) .
u•.<i4ncorwij~o,1>. ~)~ft, . , . • ..
u·,<~~}- ; . , -~, , ., ,.•·: .'..

;_1.'

Ac(.. , NewEI~ .. = ·senfYi,~A~(;,_~;f '!°:f Mt~f"ff'2 _ ,
u,.... =·JMW,~d,n-.,v. ·.·· ,;.,' ,,, ' },'
newade =·'<u·~•~.stream.undeJ> ., ' .
BHeap1 = AddBH,ap(BH«ip,u~)

in
' <Ac(.. ,

Newl~1s ..
trt,>. ·
<. '-4.MHIJIIPj,BEn~ .

enda:t~
!. '';_-,:.,

91

: 92 ~ FOR.MAL MODEL OFBA€KUPANDUCCl>V-ERY §4.5

' . '

There are four steps that the STREAMTAIL instruction follows in updating the backup heap.

The first step is the construction of the activation descriptor for~~,,. activation to be

instantiated. In the next step, the instruction calls the Copy fu11dion', to-ttansfer the argument

record to the backup heap. In the·thftd:~;;~e'~,-',, ;,-~(~fl~thr c&Oeiated with this
., ·CH',\ •-$u ,.., ... :,ti(' F 1.

activation is updated to have its argument record ~~: Finally, the instruction

checks to see if both ~~ st~ elem~nt ~~
1
th~ ft~~~L~r~ -~v~,

1
~n copied, and if so,

removes the subordinate AlJEs frdm the backup heap. We have avoided describing the removal

of argument records of old stream coordinatior records ~fS-lfhe ~11tadon.
,~l f"',_,;..,_: ,t,~"r ~~• "\

4.5.9 The Set Operator

The operation of th~ SET.~~ctio°. is~~.·~~ !Ji~,n,on the backup
heap. A structure.containing an early~--~ ~,~ran argument rea>rd to

a TAILAPPLY i~ orny~ ... ,_.,ofa -'t~~~~tii activation. In section 4.3. we

argued that such a structure should augment ~e '~ '-1only when it and all of its

substructures are fully defined L~ when they contain no early completion structures. If the early

com letion ueu~ in the~~.~. ,Ct; N
1HJ~~--·~~'=: it means that this p q ',,· . '"''(U',' ,~ 1·•, ' '"'~' '' .,~ -, -~) ' "'.· , • ' , . , .,, . · ·,. ,_ · '. 1' · } . . · ,. ~ .1 .:J- ,"~ _.: ti .· 'Ir- • , , t.

field is part of some structure waita__. to• ~Ina> die backup· heap. In fact, because

elements on ·the heap-drri'&'-.ed die,~~, this field may be a component of
1~L ~o/.H

many structures, some o~ :w.-..t ~·· ~;,ii,«\;~ ::IO,;;~up heap. The SET instruction

examines each of these stractUH!Mo 1• lf~re ,are-·9't.iarly .completion structures in them
l-5-'., .-~ ::-;. ..-; ('\.f'. ·1•~-,~,l,\

which still need to get seL. ,Th,«. ~~-~~Y defined are copied.
t,;

The. ~ in~~ e.x~i• \IJP•~t~ flescrlptors or stream coordinators that

have a reference to any of those structures that become ~clefl"ed because of its execution. If.
\"n'l \\ il J", •~j~

for example, there is a ual.ue or ta.iiappty Ade whose ~/1'#,~ferences a structure that

becomes fully defined because of the SET instruction, then. as was1~ by the RETURN and
,il

TAILAPPLY instructions. all references to activation descriptors from the AdeEnlQ\t9mponent of

the associated ADE can be removed. Similarly. if the reference to a fully delihed structure

emanates from a stream roordinator. then the SET operator must check to se~ ir'tb,{AdeEntry list
·. . } ~

of the associated stream activation descriptor can be reset using4he:~\wc pi£ussed above.

The instruction is also responsible for removing a log entry if the element bcini{~~1~ part of a

§4.S A FOllMALMOI>aOF BACKUPANO!de()V£RY 93

strucwre- to· tJe.;boond ·in .an envif011Q1eftt· '. We give the formal definition of the instruction ·· ·

below:

if /.opcode = SET then
let

u = /.opl
R = H(u)
I= /,OP2
X = /.Op3
u·= H(R(J))

V v€N
R'(v) = R(v) if v • /

= X Otherwise

Ac(, New Eis' = SendSignal(Act,NewEis,u F A.'disllnlztldliif
H' = NewHea/1...H. u. R)

. Parent = {uJil £'Stej:(u)} .
u1 .14i ,u le = k oom~ents of ~arenl ,

· Addillf eatA.INtaitt•#t<Mt,fA4tEntry tT}'IW.1t;>) . ::t1!~1 ;(~· ... ,,, ' .,
elscif Type= strea,11,~:· 11

then let <val.arg.link> = BHeap(u)
111 'ifor~(. .trl~-'fJM-•J) ;ft-:~,

the~ ~~~ar,>,~.~!L.

. .'

94 A fOUfAL MOOEL..OF ~ANDU06VER.Y

MdB.llmptt8Hea,1 illi,, <Ju l'A•Adl&ury; 'fyp,;u;>)
else H .. ,

endlf

encllet
elseH,BHeap

eadif
endlet

else BHeap

NewLog = CheckLog(Log,Parrnt)

in

n·.
NewEis' U H(u)
En,>,
<NewLog, BHtapa,, pg_,,,>

endlet .
endif

BHeal't

§4.S

l,7~•:i'·.;s:,~ ~-.; __ -tJL<.~:F-·-.;t~1 ., ,·\ -),} . . ~

Because objects on the heap can be shared, the record whose field IS being set may be a

substructure of several objects. The set Parent denotes ta. ~ll~'s't~ Recall that

the auxiliary function Step when given the uid of ~pliahn structure returns the set of

all uids aB>Ciated with structures v41.i$MVe • ~ ·heap to this ec-structure. If the flag,

back, is found in the early oompletion queue, the iniriil:btit lJ!e Copy function to attempt
1bf,

to copy all those structures whose uid's are in Parenl. This function will only copy those

structures which do not~~~)'~ ~,-.~~,•~~!~1!':~ .,~ t>acluj{tteap returned

from the calls to Copy will ~~~J-~n•qu~J ~~- from Parent which were able to
be copied,becaJDe:ttiey ft0\ ,can&aiJted., ~·.

·t ;:.;

If the activation descriptor1ef'trentfng"a,oopiett~~ was of type ualue or ta.tlqp~.
'·-A, .~ =;;1 •:·

then the subtree rooted at the ADE is removed If. on the other hand. this structure was

referenced from a stream CQ'lJtliaat0r:,~. 0thcf·fflSll'Uction removes the subtree of the

corresponding stream activation descriptor i' ~14 'i&e value and argument field in the
' ... ~, ~ -

coordinator have been completely define&,

We afal introduce- ooe'otl\er auxiliary' runtdonJ ;Otecklog. Some of the structures in the

Parent set maybe values which' 'are to be lx)uud_. in the user environment. Among these
·. . , ·,; '' ~

§4.5 A FORMAL MODEL OF B'ACKUP AND RECOVERY 95

structures. there maybe some whidt are ROW' ,fully ·•tmtd··• a resuft of executiflg the SET

operalion and are placed m the die enviR>mMatsim111n• ~kupate: These, structures

are the result vaktaof amve,computations.. l1Mse ~ lN"fJ'leltilled,·on the-backup

beapas computatien•ll:COl'ds·whidi.ue•refereaced',-.rthd -1intke~'log;·· The

function CheckLog removes these log entries and returns the new k)I.

4.6Summary

ln this chapter, we p~nted the backup and rec_o~e!}' !l&orittmis fqr ~e YI:M sy~tem, Our
.;.· .. ' ··; -··~.-·i . 1, 1 r~-;~(;ff'L1ii~1r~v '•'.•,,,•,eJl.--:>~, .•~ .. ·.,

attention focused on the representation W1d.manipul~~fflfl'~~p,,,~~1whj~~ ~tain

infonnation about the progrm of volatile oommands in the system. A computation record is

represented as a directed tree where nodes in the tree denote activations and edges signify

caller/callee relationships. To update a oomputadon record requires altering the semantics of

the APPLY and RETURN instructions. The APPLY operator adds a new node to the tree and the

RETURN-operator replaces a node with the result value of its corresponding activation.

A node in the computation tree is referred to as an acl/wJtlon dacriptor entry and embodies

infonnation about an activation in some active computation. There are two basic types of

ADEs: cip~ and uGlue, the fonner used to denote an activation whose result value is not yet

known and the latter designating an aaivation whole · value bas been recorded on the backup

heap.

The main disadvantage with this simple scheme is that it is not sufficiently expreaive to

handle early completion or stream structures and is inetTICient when tail recursive functions are

involved. F.arly oompletion is handled by requirina that all «-elements in a structure be SET

before the structure is oopied. Fnsuring that such a structure eventuaJly does get oopied

necessitated the .modifteation of the SET instruction to update the backup heap when the

structure becomes fully defined. Tail recursive functions are represented on the backup heap

using a special ta~ ADE which holds the argument record of the tail recursive activation.

We based the design of the tailclppl.¥ ADE on the observation that the recovery procedures

could avoid executing intermediate activations of a tail recursive function if the argument

records to the activations of the functions were recorded. During recovery. the function could be

instantiated directly with the argument recorded found on the backup heap. Finally. we

introduced a special descriptor to handle stream strul1urcs. A stream ADE contains a reference ,.

96 SUMMARY §4.6

to a stream coof'fiinluor ,.-ord '.which embodies,·infimnation, about ,a,.streaat activation, In

addition to st()riQg1the SlfearD ole-",pmduadrin,thal;alth-~ w~aa, keep the argument

record needed IQ -lilCC the.-t ~ ... , 1hHSOllllnK'81Jn,andllllm1eRanoeofstream

ooo,ciiuator ~. ~ ;rncwifyioa, me:'ope,ltidli lef:c ,:SEl'SUIP'alld SfRliAMTAIL

instructions.

The algorithms presented in this chapter were developed for a very a~t {n&Cb\flC in
i .

which such i~ues as structure organization, gu~teei•. atomicity of infoffll:~tion ~sfer from

memory to backup heap, and ~mory-~f ~lai1~/~~J h~p ~~; ~C>t addreaed. In
thettextd1apter, w«f~u'sstfiese~' . i•·r; ,,,,:,i:.: j';~.nr~-,,., .. ,~· n. :, , . . .

§5.0

Chapter Five

Implementat•n Issues

97

In this chapter, we are concerned witn concrete problems that arise when we attempt to
• • : • : • '~ <! - • , ,·

implement the backup algorithms presented in Chapter Four for the VIM system. These
! .-.;,: "I,-_.!· ' •

algorithms were described in the context of an abstract model MR_ which was used as a vehicle to
... ' '

rigorously describe their behaviour. Issues which were con~~niently hidden in our model will

now have, to be more thoroughly addressed. In pJUtitufar;wt •iU~oat'attention on how the

Copy function may be implemented. The complaa, of.~ operatiotl mises -because of'the

represenlation of structures in G1l1 system. Ouanmteeifta !lhat.tht oopy operation w.11 idways be

IJIQmic is a non~trivial task given the stol'll80 represenlldontfQt.4ltfl;stnJcmres that VIM·uses.

Section 5.l concen.uates on this issue. Section Sl4 dacrtlNIIJaltbtpfe,ttoNge 'management policy

for stable storage.

S.1 The Copy Operation

lbe copy operation, as described in -Chapter F4>ur, ·ts n!9paftsible for copying a VIM

structure object to .the backup heap. An.iefficient ~,(>fttJti, ()J)tfttion-is•necessary

foE any practical realization of uur. backup algombms.- hi-, ~~-ltk>def/the'CtlPY opetadon

was treated asa function which tra11smiUedtheSlk:CeSSof1:heoopy..,_. le its caller. l'he callers

of this twtction were -base, lanpage instructions that -requlret(~t values or atgument records

to be placed on the backup heap. There ilcno 0 001tCO~•ba-Wfti1':the-ex«ution of the a1Her

t e. .instructions and the Copy function ·in this model. M iMtruttRJiMhaN:aRs the Copy fuflctlon

must wait for .the ·oopy to be mmplelle beforeL it C:811'.:coedrtuo etbtbt. In an actual
unp!ementatiolt.· having the interpreter wait for the Enlliltet of:dati from memory to stut;le

storage before beginning execution of the next instrudfaa. woufcf' lead to '-fntdlerably slow

· perfonnance. Examination of the fonnal description of these instructions, however, reveals no

reason why the transfer of data to stable storage cannot proceeii lh patal~I -With the'·execution of

other. .instructions. Our ap_proadl to implementing the batkUJ) algorithms is to consolidate th~

"logic" for modifying the backup state into a bnckup.-systtm t-mel that is responsible for

updating the computation records on backup stor<Mmd initiating die ~ operation to perfonn

data transfer to stable storage. Base language instructions invoke, tile kernel. passing as

arguments. the type of opcrution to be perfomu .. '<i le se1., result. tai/Bpplyetc. and the necessary

98 TI-IE COPY OPERATION §5.1

operands Le. data structure to be copied. The instructions can then proceed with nonnal · · ·

execution without having to wait for any results from the kernel. The responsibility of updating--­

the backup state would then be primarily in . the , .-rview of the backup system kernel.

Overlapping execution of base language instructions with transfer of data to and from backup

store makes the backup algorithms presented a much more a~ractive solution. If sufficient

concurrency can be exploited in the b~ language programs, then we conjecture that updating

stable storage should not cause major degradation in system per(onnance.
' .. ,,

An imponant requirement of the Copy funcdon:isdlat it'belJkJmic. In database-literature,

atomicity is a property of a transaction whme overall· etTect i$ all"0r·nothing: either all the

changes mac;le to the data by the transaction happen; or,none ofdte thaAges happen. Thus, all

transactions appear extem.lly as indivisible operationL: This reqwument is essential to sui,port

recoverability of data after hardware failures occur. Atemidty in. VIM is a property of an

activation that refers to the point at which the effects of the activation are perceived-by other

executing activities in the system. It is necessary that the Copy function be atomic because the

effect of its execution i.e. the augmenting of backup state infonnatiort, 'should be 'rnade visible to

the recovery procedures only aft.er the entire stNcltn'has:1,een oomplelely oopied to backup

store. If a failure were to take p'8ce dacing the ffliddlcJ.of amp, ,operatioJl,, and the ftlRction was

not atom~ the recovery system ~Id see-data in,t11ebackup,atatertbatdoen1otcorresponfwith

_ any data that was present in the Vim state at,thc time ae; ftlilure took"'place. Guaranteeing

atomicity is a non-trivial is$le for two reasons. Fifst. .. •ta~n11,in VIM may be ar~ittarily

complex; if the structure to be copied represenced a node ci on the VIM heap. then the entire

graph rooted .at a must also be 00Pietl onro the ,backup heap. :TIie other a>mplexity involved

with the copy operation is duet,Hhe way datastllldllros~ mprcsented,Jn,V,JM~ We discuss the

S\Orage organiiation of die VIM heap in the nut sedicln :and ,tflCIJ present our solution to

guaranteeing atomicity for this operation.

5.2 Storage Organization in VIM

VIM structures have been thus far treated as monofitmc entities that are created and

manipulated as a single unit This representation was useful in theprascntation of our backup

and recovery algorithms, but is far removed from the a:tual Ml)RSentation of structures in our

system. The representation chosen for structures in V-tM is influenced ,by the organization of

physical memory and the desire to have only information necdcd,by the (.'Ohlputalion be resident

§S.2 STORAGE ORGANIZI\TIQN IN VIM 99

in main memory. VIM is based on a hierachically or~iz.ed p~y,SK:al ,nemory consistinJ of main

memory and disk in which infonnation is broughtJtJ9 inai&,l1~ only u~ demand. To

facilitate the transfer of infonnation between memory ll!ld dis~. the virtual .address space is

partitioned into a number of fixed size pages .. The o~izatic>n of the address space in VIM

differs from conven&ional deman? paged systems. however, in Ute ~e size chosen. To avoid

the overhead of unneces!arily paging in unwanted infocmation, :die unit of storage allocation in

VIM is a small page of 24-32 words, known as a chunk. Having a small pase size is the primary

means of exploiting parallelism in base language PRJr&mS, In ,?~r data flow exeeQtion model,

there is no dependency between any two enabled instructklas:8'd taus. 1/0 service required by

one instructiorl does not prohibit the execution. of tl,le QtQ~r: i11 lbe interim period. By having a

high level of concurrency of data transfer between the disk and main memory. the p~ing

unit is seldom expected to be idle waiting for a pending 1/0 request to be serviced during

program execution. It is expected that. in general. ~ere will be enough enabled instructions
. t

during program execution to make disk access completely transparent

Because of the small page size used, each chunk holds at .most a single object Complex

structures such as arrays and records are held in a number of chunks. The representation chosen

- for these structures should be sensitive to the applicative ,iature of the programming model by

allowing infonnation to be shared between structures whenever possible. One implementation

well suited to our goal of effici~nt sharing is to ~p~nt.Yl~tstru~ as k-ary trees of chunks
. •, e i .~

with the leaves of the tree ex>ntaining the. elements af 1he ~ and the i,ltenial nodes of the

tree containing pointers to other dluRH:(11}. ~~'Can ·-be complex. leaf chunks

may hold uid's to other structures in addition to. cqQUQl,liqa.~ v,al,ue& The ~oi~ of a tree

. organization to represent chunks allows a high degiv-Of1AariRg te l,e.ildtieved~ For example. to

construct a new version of a structure differing from its predecessor in a single element. the
' .": <~:1 \-:/, -i' --; ,~/; i:n:d· .. __ -~•; · .-., .. ~-:, ,..·

system need only construct a new path from the root of the new structure to the leaf chunk which
~ "_:. ; ,.. -, , ~- •• _'. ·- " : < ' - - ~ ; : - • 7

is to hold the new element; all other elements which are sdff'cbmm'dn 1o both structures are still

shared between them by having both structures use the same paths to th.- common ;leaf chunks.

The REPLACE instruction bricny described in Chapter Two, for example, which returns a new
1!t·<; .• '_; '.-\, '. !_

version of a record differing from the old version in a single element operatcsjn•this,~~-

The address of an element in a structure is specified by a two-tuple. <uid. accesspath>. uid

denotes the uid of the structure in Lhe system. The actcss~tfr~s'ilie'b.isc frct,rcscntalidn of the

100 SlORAGE ORGANIZATION IN VIM §5.2

offset of the desired element in the structure. The length of the ace~ path· for a given structure

is the height of its VIM tree representation.

Internal chunk cl
size low

• • •

Internal chunk c1
low'

•
•

k 0 low"

/ea,/chunll
dl d2 • •

k elements 111 t1,'u 'ii,,i,1· .

Flptt 21: The Representadon ot• Vo& SU'Uc.1~Jte

Abstractly. we view a chunk as a th~ tuple:

Chunk = C°ld X Hea4er X Qua

Header= N-+ N

Data = Internal U Leaf
lftteniiU = Cid'"
Lear = (U u Scalar)'"

;

Cid = the domain of chunk.identifiers

. ,ar..Cdmlt

1

1.

§5.2 STORAGE OROANIV.1:tf)N IM ~M 101

The Cid ofa chunk is lhe chunk:s.umque identifllrachnat,bt 1hougbtt>f as the,virtual addr~

of the chunk m the system. lt·shoukl be ~ hit f.bt1~dit1rtft: id's is not-rekttec:Mo the

. 4omain of scrueture uids.wbicli:an wledto,unttlttly tdMtlfy:iobjem'on,f11e.VtMhea'p.···The

Header field ill a chunk mntaitts admiaistrativc. iabflaadew ~ -the dNnl;.. rn; particulat; the

n\Hn~ of refetences•iO;tbis dtlJl'lti in the.., tllt,ttelgbtiW thl,! .. hi itf the VIM ttee~ 'and

the high. and low Jndicia ot; the .elemenaa, of die ~ 111thit' lffimk' ate·· all infotntation

kept in the !loader field.. ifa•chunk.Jbas~}.t'tfefMNiCG f~·U11sipfaoed on afrtt/isl

. and its space may ·-be remcd wbornieedBdr; 11le Wt COllll'elllll'itdle"ditacpertiort bfme chunk.

For an internal chunk, this consists.lllie Ctd!~.of_...-~ dentsiin the'.tree; For a

leaf chunk, this consists of ,ei~er u~•s. i~~e: ~~~r,i,~"~f1~~;~~8I~~ ~~~lv~-~ctures
or scalar values. The size of the data portion is some ftx~d m. The siz,e of the ~unk Js m plus,the

... , . ,:· , (, .,.>r.; ,_)i·-:·:L~ 1 0; ... ;r~;·.,,~- ·• ·"

size of the header portion. . ,

For a complete d~ of the·stOl'aip 0111•at1on~oft¥1M"8ti\lctnre, the reader should

see [17). ID •the next :Jw~,.,..,,tbe,preble•_,..., fllle.,40PY,-~tioft atomic.

_Structurw which are SO•be·copied;ltoa, the, ¥~Allap oid.&hi-~ heap)must be copied

ato1Jlically i.&.•·stNctll~:oon11islina'of:tllliWJ1cliwlllftlkdl'tie~ • bang copied ooly

when-all oflhe -c:hunu'wMdl.mi,.-.-it·,lmverbeell _,__~t& baelc:UJf·SUJte··and::not

befQre. In °"r·discllSflOll.;we alaallafer10adll&la .. im tllllldi_,. as a VfMichuritillld a

dlunk btnd.oa.baek~p 11011S m1, badmptdlmw1iW.lllltha.•..s~~ to 1"fertt>-.ny

5.3 Performing the CoW _O,Cratioa

. When a base·!anpilgftia'ucdon wlncb,~~ll'ie 1batkoJPstate executes. it

· .invokes the baalwpisysaca temef 'whidl :~ .at.JftWMlftl~~htNt; thtfettrrent ~tus1 of

·structures,which,..areiA the1pl'0CCIIII of.Weiag~ied)•.;'.ftll~ltik ~i~fot ~-the

' oomputation .. and·COlllll--q Olf iblubJfHIIOd lie afallillMS'jVeft in' CftalMer

'Four .. ,When-astructure;~tttbc«,piedt. taeterriel tatls:tlMVC6')i'~' 1'kis1 fvnttiorr ~ts

as input the uid of the structure to be copied and produces as its output an acknowledgtfflent.

. copied if the structure was fully COf~~~}l~t~ bac~ur,,~~ r !9~,fit ;~,~ ;noJ, be. The

latter acknowl~dgcment occ~,~ w_he~ ~ st~u~~j~.-~lc ?,t\~,,,~5J~~)j~~\tairt,J,,e,~ly
completion clements. The backup system kernel uses t.tats ~knowle,djcmcntto dc~q1.1ine, w.~n

. . • · : ., · ,-:_ . .. 11;1 :>:;lil,n:1 %1 :1,,.J11,n ,_·: ; , .. • ·., ·

· activation dl-scriptors should be given a new type and when t·ommand log entries c:tn be

removed.

102 PERFORMING THECOPY OPBIATION §5.3

A major complexity in imp)~endng the copy ,function· for the VIM system is due to the

representation of VIM stl'\lctuf:eS as, trees of.chuaks. For the sake of uniformity -and simplicity,

structures found on the backup heap will aJso havetae same:~tion anheir·countefT)arts

on the VIM heap i.e. trees pf ehuaka. AUhe start ·of systal aperauon, :altdnmks oti the backup

store wm be- on ~ freeli$t. Whenever. a VIM chunk needs to be copied ORU>· backup stOre, a

backup:chunk is remov,d'frorn the backup freelistarui,dle;c:onielKsoft.heVIM'dnmk are copied

onto it. This apprQach will iwnove-the·need forsophisticatod,mretpretationof,the.data found on

the backup store by tbe rcte0very; srtlmL ActMtion.-dlscriptOI! entries:oomprising a computation

record are treated as ~• which 41leCUJ>Y a single ehuk.

To see how the Copy function can be implemented, let us first consider a simple scenario.
. ' . . :· ..

Suppose that the function is to transfer a structure whose leaves contain n scalar values onto the
[)

backup heap, where n > m. This structure will be represented on the heap as a tree of chunks.

Let the leaf chunks of the structure be: labeleci. II, IJ ,lj. Cllarl¥. 'these leaf ohunks can be

copied onto the backup heap without any,prepromasing by:.the-,:eopy routine ,since the leaves

contain ®lY data. 1Atbl,b1 •..• ~llj be dlualcs·on the fillefist.on:dJe backup,~ Then.·the·data

found Oil 11 can be ~ ontO bl. that of 12 can bo copitd ,to;bietc., :After tke leaf chunks have

been thus copied. the QJUoe PN>eeeds with oopying dle intemai'dluttks as well. Copying an

internal chunk is a little more complex became tllese alttana cantain, referentes to other VIM

chunk id's. The copy routine translates these; ,tefitmhca ,to: their appropriate backup • store

equivalents. Since the copy operation is being performed kM1·t,onom-u.p fashion though, all

chunks referenced by an internal chunk would already have been given chunk id's on the backup

store. If an internal chunk C has references to churib · cl,c1!.;,ci,r, rhen th~ aitrespollding

backup chunk has references to bl ,b2, ••. ,bm whMe. bi is dle.bark.upi-.k. id a>rresponding to Ii.

Toe copy routine updates the activation de&criptor; :to0:ietennace 4his struotu,e only when all

chunks have ~11 wriwm to backup ,store. If a. failare takes place before the ADE can be

updated. it will , appear to the reaweey 5Y5'ern that. ne i iftfol!lnaaion. al:out this activation was

recorded by the backup S)'Stem. Note that all chun• at a pvcn · height-in the tree can be oopied

in parallel.

The copy routine performs a bottom-up breadth-first traversal of the structure. When a

chunk is copied onto backup store. its backup chunk id is recorded .in_ the header portion of the

chunk. If the copy routine is invoked later on. to copy a chunk which, has already been copied

§5.3 'PE&FORMINO 1HE COP.Y~noN 103

on the backup store. it-can,avoid recopying theidlunt ,~ first 'chectking w see if that chunk

already has a backup chunk 'id.: By smpty- reoofdirlg tbiM id'1tth~ian1e level, of,sharing found

on t,h~ VJM ll~ is aebk:vtd on,thebaclmf)iteap• wellr: ·

In this simple scenario. guaranteeing atomicity is Q fai~Jy euy _task because the structure is
~-~r~,jf~·: r-1• ~;-''1'ij ~-·,:,~ ··:, .f. , • •;

not recorded as being copied until the copy funtion transfers all Vim chunks to the backup heap.

The situati<>Jl ~:Jlightly,tllOl!e,dOmfie,t;wbelll••~tdW,'IClionl··whicti~d to be

undenaken for Q>P>:'11.1'0._ -~Qltedr~ •l)U(itdlalVlhe !solution,~ a~ is

n,ot sau$f~ for haadliusw~,wttole1eltrntaa1n,fhmll1Wts sautWNs e.:,.u:ARJtA Y

of RECORDS.- Let llS jrst,COQlider tb.e11itllf:l&ionr1¥itboub•IJ1Jltl1IPled(>111., ~• tftat-~a;leaf

chwnk, Ii. which is-t(>,})e.copied eontainS1ffferenc:cwntoi--~,on,,e·llea., · It is

necessary th.i each of thee,•bordlnat,i~m....,_d . .-lbe uty ~ MffireVthis

leaf chu.nkjt, ailowc,d,tQ-'be \dittan_:on10;qaclaap $t0re. --~ t11e1 copy l9Udtte in

Chapter Foµr bad i\,.roculJiyolJ,_taa:itlelf·to,fll!PT ._!~' 'Wlten alf,~

. _ me~ from.this ehwhtvo,• capiedJ _.._illfdlllllk~ttselrbe tr8t1Sfettecl-Oitto

backup_ sto~. •use,tbo .~. on}J:.Rtua'.'.tt>iitln:allern-...ni:1U~ hiWe teen

. oopied. die~ ~-iJ atonaic•oe die bacdolip_. Wliltfie1 ~ -unttlc~ the

. existence of tu sttueture.41IJIJ, \ffltlft Abe top'\'lealiGJPJ·a.,liae..-pletts,arwt~ iii mutt to

the kemd. Booalaae we III IIDt ~eadJ_, ~•--- the o,p,;,ffiftCtbr is
guarantaed tQ return •-ac~e~ ~,1 Nb pallilll:r ·uopltd , ... ,. ean: evet•be

-. refere.nced .by ~Y activ.,_ ct.QIMQt •~.such.:reftaaoll .,._,,.-_.,by ,me·umei~,the

copy .operation is~.

5.3. l Earl7 ColllJl~

The presence of early a>mJ?letion elements in the leaf chunks of, SllUctares - t\Udier

complicates the copy procedure. In Chapter Four. we noted that it is n~ry for the backup
. . _ i ~ i _._ .. : ;, .. , :·::,.>.::, -:-1-:.: !vur! ·,_'t~i·1~;·.:·:; .,.~ ···'/

system to be able' to determine when there are rio tunher early axnpletion elements still to be
,_ - . ·:;_~."- ~,- ,_- ·,.:·I!.,,.-.. •.·: 1 .)Cfff'.•-·• __ ;~:/':f..jL;·''.-(·1!· 1 .,,. :· 1---~~·;•

SET before the backup, state can- be updated. In our implementation, we can dctermme this
.; _ . ·, . (. -, _, . _ ;? ,-,tlh, ~-,::" ~-~Ln ;..,. :• __ \ · :i,: · --:

_·. information through the use of reference counts. Every chunk has two reference counts
- • . •. : . • , · . . f'. i' 1;: .~.,. _,,., f, 1 t ·. A;:: . .. 1. . · ' t · .. ' ! '. ;;,_

associated with it: the refcnt is'the total number of references to this chunk fourd in the system.
'. . -~- ··. " .. ; ._. . .· -,.r.. ,-~'- . . "! .. ~.'-,,:~, :·~,.;;,'."-, ,·;~·· ~· ... - ·~ •' \•·

futd the setcnt is the number ofsE'T' instructions stiU pending which' are to set early completion

elements found in this chunk. The meaning of the refcnt is the same for._anjntcmalchunk~it

is for a lcnf chunk. The setcnt field in the hl~1dcr of ?¥J-~rn~;-~1¥WkJs,th~ num~r ~f early

104 PERFORMING THE COPY OPBRATION §5.3

completion elements which need to be set in the_tr.ce,rooted'at thiscdtunt.1• Thus, the rsfGnt field

in the root chunk of a structure holds the. ,wt.at number .of rdellellCtS to tJ.m: structure· and the

setcnt field indicates the total number of earl){ mQIJ)lelio11 etemenu·.foundl~in; the stmcl'Ure6.

When an early completion structure gets SET, the setcnt field in the heade~ of all chunks on the
~ .• ' ' ' ';,.. ' -- ' ,- : ; '

path to this element get decremented.

Let us fi~ consida:a simpiestructme te tnti-waiol\ does-, nut• ref'ertnoe mt other structure

on the heap. To implemant the: mpy operaoon,m -the,~iof iCitty. tomc,letion structures.

we do inc .following. .When-a lbaf ,chunt : with:-,on&,_.?.tlUII ~ZIN> i! eneounteh!d by" the

_.copy proceclur~ we donot:u,py it ooto;the,'backu1rsto-.. Inst~dpweljlotatea l,adrupdtutilc id

for tJtis ehunk.and-<IOlltimte examining;1he odler,:clwnks ilM.ta•·sctbet.tuie. TO:inform tbeSET

operator which 'ri!evenwaily•ceplace.tho:early.~~1fduntf fft miscbunt·that it

should copy the: chunk qtto bacblp store., lbl;,cepy,-:;,oudnd:mo~ -dtunk -Wffh the taa

~- At the ume the-earl,cempleaon ele,ncnt:blcom~J-SSI' or,eratorwilfnbte-the

fact that this cbunk ... beloop bl' a structure d1a1 is to!be capted •~ _..; · If tlle_.fd of

this leaf chunk is zen>.,th~-~ invokes dm:_backup's,IIMi"tnet:10,«ipy this thunlr onto

the~ chunk alb:aled·for,k. In ad~if:dlere·are.no·~sEl' imtnlcticHlsthat

are to be ,executed tor this,~de.-mmecH,,-, uaMildflf tbt~uf M mot diuftt for

tbis suucture., the kelncl also ~. tlle, ~; ---•: tit"'~ tMs :structure

according to tlle algorilbm pven4o the laa:~. ·~---IWlth'm ffiifflls are only

updated when all elcmee. in a ~ are fbUyrdef'hHdr IN Clt:pted"onto4he beetup Heap.

Thus, it will never be the case that activation descriptors are aware olif~,fbr wltich not-all

elements are known. Atomicity is still guaranteed even with early a>mpletion structures because

a structure becomes a part of a a>mputation record only when no 1bitti«W '~leth~n~--~

referenced, from it

We next examin~ how the backup system should hand)e_ early com,pJetj.Qn, strµctures
, C • • ·••• •:,.,,; ~:

0
,.e J.1.!f:':.. ,,:: f', j; ••t\,:: /'. • '• ,,,;;t •

belonging to structures that are components of a largtr struc;ture w~~h js tp f?c: wpied .. When, a
: , • •. '-_• -: : _i ,~ '-,;;;. ;;' • ;_ '\ • . : ; . : 'i ,- . ,''

leaf chunk which contains uid's to other structures is encounte,:ed _by the a?Pf f.1;1~ction, tl,te
• • :, . ''. - - ,, • , '. • ~ ,,· (~ :._;; -1 ";: ' '. • ' - . " - , ' ~ •. - . '

setcnt of the root chunk of this subordinate strµcture must ~ CMffl\{l~7,. If ii .is _ _sreat~r th~n
., ' ' • ! . ~ ; < • / ../ l ; ., ./ : • . ' ,

zero, it means there are early complccion elements which stiU n_eed t9 _be setin this $~cturq. As
:, ' I ' ' \ : ' ~ ' ' , ; ' ',

6inis doei; not indudc the refcnt or setcnt of its substrul1ures.

§5.3 PERFORMING THE COPY OPERATION 105

before, the copy routine is-recvrsively invoked ba>py thedtunks ilund m this substiftleture. It

is necessary that the baskup state .does not ,get, updat..-1 witb, the, pa,ent -structure u~ all

-subordinate st11.1~res-0fthis_parcnt become fully aefmeci;·;Otir ,imf>lementatiofl fo1lowsclosely

with th~algorith~ gj\lim in th-, last chapter . .Eveiy:~mdc1bfa.stAactUre containsa,field in

its header. P~rent, co~niog; the- uid of all ~'whiatl nfereace this structure tbatiai'e to

be copied. This ti.eld ismanpged-by the,-a,py :function• it,trnenesthe1leap,. As9ociated with

each uid ill the list. we also stQ.11 the dlunk id of;thcrleaf dmak ·in'the ,arent-stru<m.tte from

which the reference eman-=s. When JllLearly a)llpleuon,.dement.s are :set ia a Slruetute that is

to be copied onto bagkup stor4, .itstruCJ.ti• tefeRllCClll insits,PAfen.t;list.e-examined.- The

backup state is updated with those structures referenced UIJtml,list whiclr have bec:ome.,fully

copied. Determining whether a structure has been fully copied involves keeping track of the

nurnber of chunks that still need to be tr~sferred an<f ihe ~~(~ti~ ~bstru~tures. Counters

are used to record this information. Every root chunk~ fu''~~iti~n to 'the Parent list. also

· contains a TostCo,te,l counter indicatfng the ~u~l~r of ~~nks stilt ~ be copied onto ~~up

siore. When this va1ue becomes zero, ·the ~kup stilt~;~ -be upcbl~~ -~very leaf ch~kalso
; , , , _ .,._ :, -- ~. . ·:1-:-__-,-·;~_L 1-· :/':~:;t~';(: I' , , ,, :· :,, ~

contains a counter indicadng the number of substructures which have not yet been fuJly copied.

When this. counter reaches aro, the loaf. dumk can :.be c;q,ifd:.onta. -kup store and the

ToBeCopwl wunter .QUl, be dee,ememed. Muoh,of lhei<ielail1awolvecl':m imptemendng the

incrementing and decremon,tiq,of these .eountemds,no&,l!CIYri-.-blg, ad is omitted titre.

The important point to not4 with,~ k>::wlJ;a,mplellen-;is:Ul8l • badcup system· •kernel is

~nsible. not oµly fQI' ~. u,e. 'baeku,. ttat.c; :tlnldl.lJe cmataiAing die -1tlrly

completion ele~ent bei1,11,eet. ,l,ut also; for,updatiin11 tbeJa::klql,._ ·with, alL.of its ,-rent

structures that need to be.q,iftd as welL

5.4 Storage Manacement

One other imple--~ detail that deserNCS ,brief. meMm~is the .manner in wftich

_ storage ~n..-.At ishondlod orurablestore.--The o,pnimdlalh•h&Je·~b" stableftt()re

lends i~lf to a ~ery simple and effi~nt. lil0ragc maaagumentstmOflJI. ~IMhat stable stqe

is used to hold transitio-1al dala represented in tile; formnaf 1QOlftf)utadon' record$1 · &ch

computation 1"9cord embodies eke progress ofa>me.aati,e ~CJlllf'UtatM>fti in die system. Wt.en the

result of a computation is recorded on Slable store-~ t,he;asaociated•oompucation ·recorded can be

deleted. Deleted computation records arc added onto a fn-clist of backup chunks. We expect

106 STORAGE MANAOl!MBNT §5.4

that the set of quiescient data found on stable ,store WiU'.,ot periodically written onto tape. After

the transfer. the space occupied by these data items·• aabl~,e,-can,bereclaitned. It is not

necessary, however. to wait fonhe transfer,ofin~iott,'tt,;tape1Wore·sr,acecan be reused on

stable store .. Once the result of a,computation is 'boarid w;d•envitt>ftmtftt. the storage occupied

by the activation"descrilttor onttia of the~ft8iCOlitJMatioft1'fe(X)t(¥CMf be reused. We

use a variant of a mark anci,sweep prbap colleak>A1pollty1:n-,1:alfri:sttUctum referenced from

activation descriptor entrioin:a c:omputadoft·ra:ont1111t •~t.wned'.' Orice the·result of a

wmputation isJmown and :is copied ~ the- badluJp 'stt,re,0 aJFdtvnks m that ..-obture are

, marked. We canthe1Mmlaim,all dlwnlcsbetonginW teistWlctmtsrefe~ from'ADes, irl that

computation ·that are not•tnlUted.

The storage management policy is very ~mple fqr oiµ- sy~ ~u~ we can .d~tennine
' . •.'" ·. , .: -. ; , · ·{_ . ! _: ",. i /. ! ;· ,S'i° : , l' . / :· , -·

precisely when data is no longer accessible by obsefvins the d_nmpiiR of the command k>J .;_
. · · .. ·: ; ~: .., ·_ ·,.·,1 i ·_::·:itsH'] -:.:nr ;~:;Jr:· ·: '- ·-,

removal ~fan item in the 1og implies !¥t the ~~,t~~,ff~ffl9<>~L~4t4'1 be reclaiJned.
Waiting for a computation ~ com~lete ~fore rec~in,4J\!e,~~,i\~Ri~ Qn.~le)$t0rage

obviates the need for introducing a complicated ~-~llecJf~l~J~ ~n stable store. '.
' ' . ,,I ~ ' _, •'c - ' ~•• ' ' ~

It may be the case that the value.of a(Offlf)utatioft,fs retbrdllf'<kl the'backnp environment

even benn· all lhe, valuesof dletADl"s in the'tll~'~itofl\putatic!Ni· ~; 'Slbte the tesult

of the computation ilas beat ~eel in t!MMn~t llle:a,datec:H~mputatk>n record can

be placed on the,,baclcup -..frecist Jt,an.-."tht.--,aldolt'tecortf;however. necessitates

taking soma. action tG> mfonn • ·acd¥adons .-. Nllidta·••M Ml'inall}' ·~·tecx,rdtdin ·t11ese

ADEs that the computation ftJCOl'd: is,JUJ longtr0 pa«~~·-~ ~rt · T<> do·this, · we

maintain a uid entry table which contains referenciha·iltiMltfell' 'fet 1aU activations-ht the

system. Entries in this table include the uid of the activation. the address of the activation in

memory and the address of its ADE on backup store and a referilli~1 td rbbo1eah flag which

indi~tes whether the COftlplldation .-conU1a&,becn NCJaimedtet1lid.'::When the aSmputation

record. is ~~ from the baaup state. its ,assodatedilllg is let:to'ctue mfJ;the ,result value is

,oot copied. Only the tnQt:activation of. a,~;oan,changc·this flag. Clearly, this

·' operation is outside ofthe,puRSly functionat,pqmmming paWAli8ffl thusfur used: such resource

managers are to .be writlcn·ua.mg tbe·,paMian COMUIIC((l0, wMdt:aUOM this sort o'f\non­

applicative behaviou, to expressed in an appHcatiftl8dling. ·

· · §6.0

Chaptei' Six

Conclusion

107

This thesis has proposed a desian for the. V:IM .. cotnputcr .. ·system which guarantea the

.. security of all onfule ~t'Qrm.auon aaainstk>s$ or C:Ol'l!t,lf)ticm •a:rcaldt,ofhardware faihare. We

. ~eveloped backup. procedure;s dlat a. .ink'lldodnto, Cl~ macurrently with. normal

computation. These proced~ llJCX>fd the p~ oflllia>m,matial,in:a•.'COfflpact fomu>n a

bac,kup:storase me'1iwn ... When a a>mJ>U'atioft~iits~ia,bound ~tome MAtt in

the VIM users,' envi~t~ ()nee thill,binqma is-l_aaded ,10 the backup,, en¥irorrment

image, the computa~ .x>rfi -.odated widti dris ·anptttadon, il ... mtnoved frola lhe :backup

state. We make no assumption as to the integrity otian,tdala'wijch.1111'\'iYesaJailureucept:for

data found on the backup medium. The backup medium consists of two main devices: tape
."c. ·. '. •• ' •• ,' ~-<,··"-1: ·;'·;_,,,> . .;:";.:.- .~: .. :. ''<. ,_ ':·-'.,

storage use,f to hold arr data bound to identitlen in the user ·environment, and stable storage
· .. • . · ; i'":_;;_:_ .±1-r· tr:·~-;~;1

_.::· ,~ ~- >
which contllins· infonnation in· the fonn of computation ~rds about all active C9(1lputations in

>. • -· • • • • • _' ::, fl•;: ~~~·t~;: ,:,- P~ '+'H-\" '; ---~, :>'j /,-·; - : ' ... ;

the · system. When die recovery procedure ·is, iqvoked after a . failure, it . first restores the VIM
. · '. •.:i't• ,.,,·-.: ,. '. ;, ... - . . -:' .:

environment structure using the backup environment imaie.' it then begins ~ex~tion of those
. ,/ - ,, :~ ... : . . ,,. .• . -· ·r :'i ; ..

commands,whidl were executing at the time the 0tailure~ix:cured. The time to reexecute" these
' ' . - . ' . ' . .' . ' . ' . . ,. . ; -. "',' :..~ : ;-~ .. • .· :~'.- .,, ·~· !'"',' '· ... _ \ ,,., ' ,_..

commands is greatly reduced because of the infonnation kept on the corresponding oomputation

· records. Once all commands 'have ·been reex~uted.,.tlie :riioo~~ey,.p~ss -,~ >~mpl~~ an(the
' '.~ : . . ,. . ~ ' ~ : .

system can accept further commands from its users.

6.1 Contributions of the Thesis

The contributions of this thesis have been two-fold Fint, we developed backup and

. recovery algorithms ior the VtM system. These; a{gorithms ~ very ditrere~t frotri those found in
: _ ~ ., "

1
• , • ; 1 .'i.:"':_ ~~-.~~'. ··; ~- -: '.j~t~; _.-:: .. ; _, '•., !,

more conventional systems. The unique features ·of VIM that required a novel approach to
i, t' \ .. '.. ~• ' • ~ - ' ~- ' I ';. ~

providing . data security lie in its applicative. programming' model and in the use of a .unifonn

representation rorboth data and programs. Thi; horilo,ieneit{~ff~i~~ted the 'n~'to ma;intain
• • • • '. -· • ' • • : ' ' ". l • ' ' ~. _;. ' • , J ' ~ ; •• : , , l - i ' •

distinction between tiles and <fata. thus allowing the.backup· system to be more closely integrated
. ' . ' ',,J ' ., . '

with the VIM interpreter than would otherwise be P<5ible. The use of an applicative base

language made it ~ible to have a simple orgariiz.dt,on or'bactcJp st~ because data in such. a
• t • '. ' • . • ' • >

mndcl never changes its value. We cxploit~d th~ exp·rc~ivc power of the base language

instructions by distributing the logic of our algorithms an1ong the salient b.L'ie language

108 CONTRIBUTIONS OF THE THESIS §6.1

instructions. The APPLY operator, responsible Jor creating a new function activation, was

augmented to append to the appropriate computation record a new activation descriptor

corresponding to the activation to be instantiate~ Similar enhancements were made to the

RETURN operator and various structure operators as well. By embedding these algorithms within

the interpreter itself, it~ poaible to achieve a •~of dataiteurity far greater than what is

possible in conventional systems. In addition. such,a design makes the oj)efation of the· backup

facility completely transpant to users of the sy!Mln. ·, Similatly; once the recovery ptocedures

restore the system state aAer a faihlre, subsequent-emn,11tatioM Wiff not be able to determine

that a failure occurred by examining .the restt>red state .. 1be:fact' ·that 1he base language is

applicative also freed us .from having to introduce tomf)lk:ated bac'kup storage policies. Data

,. once written onto to backupstote·is neverupdat~'it isliidlergafbarge<Oltected otbound to a

symbolic name in the backup envilbnmerlt.

In order to rigorously specify these algorithms, we develope~ a fQfillal operationaJ mQdel
' •• > ·'. ~ l - :. ,. ! ' ' ,: • ,

of system behaviour for VIM. This model views VIM as.~ state trcui~tti.<>n sys~m with the VIM
'·- \ •--, ...

interpreter being a state transition function. We pttJ;ented the 4eflnitions of some of the more
' ' ; I (: :~ • , ,~. ' •, :: } : ! ::• : ; - ; '

interesting base language instructions in this model u~ a v~~t ot: the t;u~ctional language

VIMVAL. This basic model wa later enhanced to inco~te:the b~~pp $.ystem as welL The
. . . = - . .

backup state was treated as a separate component of VIM. The, ipterpn;ter was, now treated ~ a
· ,: ; : . .·'!-,..;_ ·· :_f i h : , · . · ,

state transition system on a two-tuple consisting of, VIM, state . .and,~ ~~MP SU¢e. Beyond being
• - > ' ,. • ,;, . , ~ i f • < , '

an important tool for expressing our algorithms, this model also allowed us to give a formal
. ~ , : '., •,. '. -. , ,' I I ; ' '.

proof of correctness of our algorithms (presented in the Appendix).

6.2 Future Research

One important area of investigation that was not addressed in ~ tbesis is the i§ue of

correctly preserving the state of non-determinate computations.. A n<;>n·de~enninate computatipn
.- ~ ! ~ ,•. • . ;

is one which may exhibit different behaviours for the ~e inpu,ts.. ~js type pf cornputaµon
' ' _;_ : ·.· . - -, . .

contrasts with determinate computations for which repeatable ~h~viour isju~nteed. A m;uor

assumption made in this thesis was that all computation was ~tcnnina~. This allowed us to
. . ~ " ~ '. .• . ; i . (, . ; . .

design a recovery system which can recxcc1,Jte comp.utatio11s wh~ re~u.lts are f'\Ot rccord,~d on

the backup store by preserving the arguments to the computatk>r1. Such a design is J>O$Sible

because any computation in this model is guaranteed to produce the same result when.presented

with the same inputs. The basic non-determinate operator in the VIM base language is the

§6.2 FUTURE RESEARCH 109

MERGE instruction. The merge operator is enabled whenever an input arrives on either ofits two

input arcs. Thus, the behaviour of this operator is characterized by the arrival order of its inputs.

Such behaviour is inherently non-determinate.

An important area of future research is augmenting the design proposed in this thesis to

handle non-determinate computation. The changes made must take into consideration the fact

that non-determinate computations cannot simply be reexecuted by the recovery system since

there is a multiplicity of output behaviours possible. Reexecuting such a computation with the

same inputs is, therefore, not guaranteed to produce the identical outputs.

Most transaction systems such as airline reservations, banking, etc. are based on non·

determinate computation. Such systems also typically have very high data security requirements.

Enhancing the VIM backup and recovery system to support non-detenninate computation would

be an important step in understanding how highly secure transaction systems can be written in

an applicative computer system. Issues of atomicity and indivisibility of transactions could then

be addressed in this context.

It would also be a challenging task to map the abstract specification of the algorithms given

in Chapter 4 into an efficient implementation on the VIM system. / Realization of these

algorithms will require optimizations not addressed in the thesis. Such optimizations include

minimizing the amount of copying done to stable storaae and efficiently reclaiming storage on

the backup medium. These problems which were hidden in our abstract model were briefly

addressed in Chapter 5. A truly viable implementation will need to confront these issues in

much greater detail.

llO

§A.O

. §A.O 111

Proof of Correctness
->,."-~:.:c~·:_i.¼dc.:~ . ·

In the previous chapters, we have developed a formal model of the VIM system to describe

our backup and recovery algorithms. Beyond being a convenMrtt~tclt'tn'«,frfch to precisely

state our algorithms.· lb&ft>l1MtMOdlh'611 also ~~:if'~~ ofdur design.

Intuitively~ demonstrating the ~ of'the Mat1t1Md' lEo+dy J)~utesirtvolves

showing that the Fe0Mf'¥~~donot2
~-•~ 9bife:~··~•tfte intbtfn'ation

kept on backup· ttoJ!e· bf· 'the· baekup-pmcedu.-.:.•1 ~ «Jfri~ .,.idf~xe'ctite · after the

:recovery, procedul'Ctl,complete should not be able to~flht1fft1tiat'a failure hatt ~rred

before. 1- die bte of ..cha iYUm ~ed 1by' ~ --~~ mstilittiatech1ftet recovery

from failure must be equivalent to the observable state which itlste~h,ribr tti1he'1lillure. In

VIM, comp~tatiops o~rye :~~ effects .9toth~f -~\llP~l~;~~.;~J~ environment

SU'Uctme. 'It is. therefe,e. ~ •• the Ol'lldftlmnmt.iftlaat'.~ lbythCUllfCOViry system

be equivalent to the ettvfrort~,~- whichi ~: .. ~~ .. ~~J~Ti~tf ·~~-)?~?~. a formal
definition of environment equivalence later in this appendix. To establish that environment

equivalence is. preserved, we eqmio,e tbe,~~. 1~'\P~~,,l>¥:~ system when
. ' -' - - _, ' - -

interpreting the command 1oa ,dattns 1m>very ,&J1d ·~ It ~-tl\e · state"'transitions that
,, ~ '{, '

result when interpreting the same log when no backup state informatioh is used.'· To show that

environment equivalence~ presei:yed ~ U1~ tw~lffl~t~~Mfl~~~; ~pie fact that no

instruction is executed durihg the recovery P~--~ •\~ have been oucuted by

the VIM interpreter evat~,Ung ~e,sam~ ~•JS w~~,nQ."\qtg~~JR~ ~packup state is
' . . ~ - ' - - i- - . . .

utilized. Our proof is as follows: We first examine tho:-.e.a~ir1e<U~y.eucvt1ng,a particular
. . -~ ..

instruction in the transition sequence of the recovery process. We then demonstrate that this

environment is equrvatenr to the ehvironment·d'Jl1,pd11enfot1n~ statt'~ t,y executing the

· equivalent ntrudion under normal iruerpretatidn. ·usitigi ~-Jntfl:rctlbthttgumett~· we·ttten

~ow 'that the envimnment COfnpOrienFof the· fhfat· rtoov&-,'!tnte'is equivalent to ;the

environment component that woufd have resulted'ftnb firitffretttd tlitett1ptace: ·

In the following sections. we formally defio~-. qur qo~i91.1S; ~r trnnsitipn $CQUCl\Ct? ~d

equivalence. We then prove our main theorem: The system state after the recovery proce~

contf)letcs is equivalent to the state that would have resulted tf:id no·faUurc taken place. This

112 §A.O

implies that it is not possible for any tci>Mputalio• to observe the effects of a failure once the

recovery procedures complete.

A.1 Definitions and Terminology

State Transition Segueoces
Because we are ex>nsiqerins,VIM to be a~ter,.:nj..-JM._. we,QJn-modd tile execution of

a program as a sequences of~t~ 1be Ex,c,,,te~ whidl "!hDO ;gir,en a;cu.rrent •state and

.... _enabled instruction tetu.rns Uie~.~il>Y •~li•·•~· .. 'llw,operationofsome

of the b~, laJ181,188e ~ ~.diffe~t ~-i~~bfdler lbefwstem is executing

using tl_le no~ or ~qry mtew .. f, In ow,, RIOPf., ~i~t • (:OflCerud with oamining

state transition sequea;ices ~ by the· ~MlCCtiv4 ,.l'JICWl,on tac Qli)lllmand stream

preserved on the ~bap lo&,

Definition t: The System State is a tw~tuple, < VimStaie, BackupState> where
Yim&late and ,Jlac/a,pSlptr WCl'O,deftned, ift\0Nlpter~1 .ffiie:.•mfe,ery, c<Hlllntlitd
stream fo,r .. a sy~~ S is,~,~~~.<?f.~. <i:,~~·••tcy,w4ere­
BackupState = <Log,BHeap,BEnv> and Log(~.command = c,

Definition 2: A state t1'tl1tsitlon · motion, 1-. is a relation on states. Let S =
<ActJI.EJS.~n,> _and T == <Ad',H:.El&-.E•·~ Tilen.,6 ~ T:ifa3 (11\1) E EJS s.t.
Execute(S,(u,i)) = T.

· Definition 3: A state transition sequence, <S rs ?,"'•S ;. is a sequence of states
such that s, f- sd_., for l ~ ,; 'S k•l. . . . ·.· . i .

For notational convenience, we shalt soriletirrles ·•denote a . state transition
• sequence <S,sr···S1'• S;t-s1

The recovery p~ is divided into .two ~ . In, die f~•iPA~. -~ content$ of the

backup environment a{C ~re4 onto the VI1!1, ~.~~Ill~-~- ,(~e tJMs is ~ the

command log i& reexecuted; during this reexecut,ion ~, .~kµp ~adon i$ used to a"oid

unneccs.sary recomputation. The state of the sys.tc:ql after~ fi~P.h~wmpletes is.caJlcd.Cbe

initial recovery slate. The heap in the initial ret-overy state contains aJl structures referenced from

environment entries in the backup cnviroririlent image'.

Ocfinition 4: Let SI.: b~ a VIM state such.th~ F<r1ilure(S") = Inµ, Let B,_. the
backup slate corresponding lo Sk. he <Log.H/feap.lJEnv>.

· §A.l DEFINITIONS AND TERMINOLOGY

Then, the initial recovery state for S k is the state: < {}, H (J' {}, En·v~> where
! '.i,

HJ.u) = if3 names.I. BEnv(~fl'te) = uandBlf~JJ(~),=.v then v.
= if3 R,u1,m·s.'t. (HJ;u

1
) == R.)A ., ·., · . · ..

(~},• ¥);A.(8Naip(rt)\:,,)tften:1r.L r ;: • ,

= undef otherwise.

< -·,;. ,f \ ... /i'

Unlike UlstruCtiQ~.,e~~, ~i-~~~i:~':UGlllS~~d during the

recovery process use infonnation found ilube ~~.i "ffie:APP£Ymtth1etion, for example,

avt>ids instantiation of If~' ~vatiorts lf tli~v~u~' lb,t'~·~Y~~~ ~~~1\-:p{~~i~usly executed
*"•.l,:t\,·l~:: 'i .. 1_: ~ •.. -,,..,._, .,,,., '\ '·. ,. ·

has been recorded on backup store. The commanfrlolcN!aitf•n::tJWa.tup 1~ is a sequence
•-i-•'.'' :.;· : . \ ··\ -. ;· .~ -~§, ~..-.~ ,':'l.-. 'i -·,:~ ~

of comman~ wn,ose ~.~1, ,ha~e no.t ret ~~i(~:~"e~[ln,'~e'.:~~~up environment
structure. When a failure occurs. the recovery system reexecutes the commands found on the

- · . . . •· . :_>·: .,:/' >·.f/! ;:}.-.Hi1j~·~:.:-~;_nii ·_·)~~~~-·!,'

log, using backup ~ information it hu accumulated about the ~tip". To <i9fflonstrate

that ~e ~very_ p~ in~rpre!J' ,is,in~~~ ~fulii~~r~x~~~' how the VIM
Interpreter would execute these same com~,if >N?:i~!f~-.1:~formatjcpn, jJ.~. The

transition sequences produced by the respective interprete~~~J~ -~, a tran~ition sequence

pair. If the recovery system interprets the in~JouldfOll'dlie .Nbkup state correctly, it

follows that the final states iif-ttie'tw~ trarisiti«Sni~~·~t~~~~~aJen~ environment
, • '; c •' • ;, ' • - • V

compooents.

Definition ~: Let R be the recovery command stream (Qr~ and let STS =
<s

1
.s2 S) be the state transition se~•~tMievaluauen of the

~~. R~~~::.~~~:.•:i :.;:.~=: ~~
mttr.s1tmni~e b ~ S. .. ,. , ·, , ., · , . ·., •

Let R be the recovery command stream for system state Sand Jet RTS =
<R1.R2, RJ be the state transition sequence ~rod~~i~.th~~~~O.~~on of the
call: Recover>(<Log,BHeap.BEn,>) . . Theta/ ltf'.•~~~•1

~ ~:111d Rr is
'. the final il!COffll? .s:talt"for .JV, 'EIS,- IS .,,, ,.,.,~ Mi 0kts is~led the" recovery

transition sequence for system state "S. '.J ·· · . · · • ·

Definition 6: A sequence pair for a system state. S:'ts')a twcMupf'e:· <llts.STS>
'where R,TS = ,<R~~IJ··t·-.~I apd srs = .~~~ .. ~-.t~Jc ... h.,~Jt,~.S;t:are ·the
final recovery state and ideal rec.-ovcry state roi-""thc command ·r~'lm, r~sp. R1 = S1,
the initial•rccovery&utcfflrs,stem sttite s: · ·1 1 ' ' '· · · ·' ••

1
• ··· · ·

114 DEFINITIONS ANO TE,RMINQLOGY §A.l

State Equivalence

In the following definition, we shall use the symbol, =, to denote the equivalence relation
.- .

between corresponding state components in .:differ~qttSt.ates. Ttn~s. if Env, and Envj are two

environments in states Sands·, then E111,pra En,1Jttbese tw.>environments are equivalent
,', ' < ,'

Definition 7: Instruction Equivalence: Let FA and FA 'be two activities. Then.
FA(m) a FA'(n) for m,n € N if:

•FA{m).opcode = FA'(n).opcoc;te.
• ¥ opnum-E co,num, ,opnurit2~~u~~ F A(m).opltum = F A"{n).opnum if
FA(m).opnum~FA(n).o,-m~ Sc:lallrA ., ·

•V opnum E ~o,n14rn.1,~pn~m2,o.pn...,m3), fA(m).ofnum = FA'(n).opnum if
FA(m).opnurn arid 'P'A'(n).opnun(~ U. · . . ' ..

•FA(m);o,ont;: FJC~n,).opc;nl.
•F A(m)._sigcnt = F 4 '(n).si9tnt.
•V (dc,k,opnum) € F.l(i).ckst, 3 (dc,l,opnum) in FAv).ckst s.L FA(k) a FA'(/).

Activity Equivale~e: Two Activities FA and FA;are ~Qivalent if for ev_ecy .m -~
N, F A(m) • FAtm). . .

',. ' '

Object Equivalence: Let H1 and H_i be ~o heaps d~fined such that HJu) = v
and H ju) = v'for u;u'E U. Then. v !i!tl''1f · ·

•v = unde/, v·= undef.
• v € Scalar, then v'E Scalar actd , = ,·.
ev E Re~ord. then v'€ ijecqllJ ~d _ I(,) •: P~ ,). ij)r e~ry i E N.
•v € ECQ, then v'E ECQ and'v (uk,1) e· ·v, 3 (u

1
m) € v's.L (uk,1) = (u

1
m).

ev E SUSP. v € SUSP s.t. if v = (u ,m) and v = (un,n), Ait(u~m) =
Act(u,,)(n) o_ R Htv) € Record and v'E SUSP and~ sta~e fA:,.whe~ SJt-Sk and
H1tlis H~,). · ·· .. ··

., € U, then v'E Uand Htv) • HJ,).

Eavif:0111De1t Eapat,alpee: Let ~n,1 and En,1 .be two envimnmems in states s,
and s1 Then. Env1 and Envj are equivalent if fi>r. cva, "J 1.t. En~n 1)= , 3 112 s.L
Env}n;= ,·where if

• v = undef. -v· = untie/.
ev € Scalar. thon -vE: Scalar .and V == ,·.
•v € U~ then vE U and ff,(v) a Hjv). H1andH

1
are the heap components in

states S1 and s
1

resp.

Containment and Completeness

In order to show that environment equivalence is preserved between states in the recovery .
transition sequence and the standard tr.msition sequence. we w41J ;need to examine the effect of

§A.1 DEFINITIONS AND ,TERMINOLOGY 115

executing equivalent instructions in the two states. Thus, it is necesatr.y that ·for every enabled

instruction -in the recovery state. there be an eqwi~lent instnactiqn in the ~rr~nding VIM

. state. This property is called .conlainment.

Definition 8: Let <RTS,STS> be a sequence·,mt fbr a·ststem·sta~ S, where R1
is an ele°!ent of RTS an~. S1}s,an ~lrrne·µ' 1·0.~,f'~. 1~,,~ fP,~ .. aA ... P-'f4.in1, ii V(":'7') €
EIS1 3 (u ,n) € EJS1 s.L F A{m) a FA (n) wh~,rt;. A,ctJM). =,J',~)J»A:~ctju > = FA •

Dehitien 9: .if <RTS.STS> is a seGfUeltC»'paK",ft>F•~ ~. s. and R, is an
element of RTSandSL:uanelementofSJ'S;'dlen~1'9 '8ti.,rettwrt·Sj if Enr1 • E,r,1
and RI is contained in -s1

Computation Sets

In Chapter 4, we introd~ the computation 'tree. as -~ ~oi) to describe the
',. '>-• , : : : ! .. : ·-- ; ~· ,. ; ; . - . - ; . , •

instantiation of function acuvations in.a CQOlputatiQQ, lbtJohw.ial three. <ilfinitions fonnalize

this idea.

. Deftaitioa 10: .. Let aa a;uva.tion a be• instantiated, ,in state S. · Then, the
computalion set C of-, i& Geff,ed es follewa:

•a€C.

•Any activation instantiated from an activation in the computation $Ct C is also inC. . · . ·. ,,.. · . . :"

That is. the computation Sil of an-aetivatiort (-.41),,epreeents .the: transitive dosure over all

activations in the computadop tree rooted at (a.a) •.
/.

Definition 11: A compUfatton sequblce CS for an activation instantiated in state

~e ':!.~:=:i=o~:~::=;'~~!'n~r!:
activities found in C. ·. .. ' · ·· · . ·

Definition 12:A v .. ,€ Sc.alarV ST,'.•~itla·state·<Act,H.EIS.En,>
if either:

•There is some activity A s.L A(n) = / and J.ppflum =? l' for opnum €
{op1.op2.op,}. ~d Acl(u) = A. · · · ·

• There is some, activity A. s.t · A(n). = ./ ,and l.op,rum = u for opnum €
{opt.op2.op3}. AcJtu') = A and H(u} = ,. Jt

• There is some v'E Rt-cord S.L v'(m) :::: v·oi- v·(m) = u where li(u) = V and v'is
acccssi bte.

116 DEFINITIONS AND TERMINOLOGY §A.l

A.l Proof of Correctness

Lemma 1: Let R; = <ActrH,.,EISrEnv? be an element of R!S an~ S1 =
<ActlH1EIS

1
Env> be an element of STS. Suppose,,iib- Ry.,_ron aa.e~bJed mstruct10n. 1(u,1),

wh~re Act,(uJ = FA and FA(,).opcoc:k * APPLY. Then, if R1 is oomplete wrt s
1

3 a state Sk s.L

s11-S k and RI+ l is complete wrtSt.

Proof: To prove ~e lemma .we neecf tQ .,show, tha,t .en~Jronm~nt equivalence and
containment holds between R +I and some stat'e'Sk for any insuuction 'whose opcoc:k is not
APPLY. We prove the lemma by examining the different classes of instructions defined in our
model and.show that ~IM!Gtabold&,~•,each of~·~ ;Jt:.l;ilicort1J;lete wrt s1 then,
by the property of~~ tae,,e..,taan:~ble41-~ ,a~J)(EtS1 • (w,/).

1. Scalar Operations: The effect of executing a scalar ~ration does not alter the
environment and so, both environments in R;+J and SJ+/ remain equivalenl f:JY
definition of instruction equivalence, we know that every destinatiort 1(.tlc,f,dphtJm) m
F A(1).dest = 5'?flile ~~t]rati<>n, }d4-~~orlt~~ ~iF .f~: ~we, ~Ct~ s;alar
values are sent to eqwvalent mstructrons, diese destinations remain equivalent
Thus. equwalont ~16ecx)nw~._61id itfR;~}~Sj~J Htnce. ·1t1+1 Is
contained in SJ+ 1 and, so, the lemma holds for scalar operations.

2. Structure Operations: A structure operation.performed,~~~ ~t.rni~ht cause the
newQate R1+JlD have.,~uliffelllat l'lapt, Nott~dla~~'ebtipt.,nent does
not change when any structure operatkJn:ej~i:;'fow1tllat.,,ttie letWmastBl'lmlds
for these types of instructions, we examine the various structure. OJ)CRld.ons in our
system.

a CRFATE: A create ·instruction executed in R
1

wili. produce a new 1tl;Ucture on
the heap in RI+ 1 with uid u I and size n. with all elements of the structure
having value undef. where n is the operand to the instruction. The equivalent
instruc:tion i&r£JS~•f J) wllea' necatecMrt!GJ~ait\W'~ on
the heap in S.+ 1 with uid u2and.~~.~c.~~~J9~~~ajvaleo~
H;+ 1 and ~+ 1 are still equivalent · Showing that R1+ 1 is still contained in
SJ+ 1 fo~lows th~ ~e a~t ~ji~en ,.~e. , : . . , .

b. SELF.Cr: A ~ operatiqn ,ea .t,e; ,pct l>.ined .c,n: a,a~ dtment that is
ejdler • scalar ,or,~. value •. ~ early ~••u•-.ie•or ·a ~on.
We examine each of these in tum:

i. w,Jue: There are two cases '? be consi~e_red if the item selec~d from H1 is
a scaJar or a stAiCUlre.- ln ttre·liM1eate}tfle:~ seletielflmm'H. would
also be a scalar or structure value. By the propcny of contain~ri(the
operands to the SELECT instruc.tion, mll5l be ~jvqk:~L Si~ ,the. heaps
and envfronmcru components 'do ~cij99'.~? t~ 'tJ_ti~.H,.,. . ,:fi H +,.
R i+ 1 is still contained in S ·+ I because aff dest1riatk>ns of'ilie {E'tEcf in
R; are equi#ment toflcslina1ioftlin.8i andtfbtloil,irtg'dle argumeht given
in (1). these instructioos woatd, 'relhaiR :oqwvalent. · : Dus. · R; + 1 is
complete wn, sj+ 1 in. Lhis case.

§A.2 PROOF OF CORR-l!CtNESS 117

3. Terminate Opentioa: Execution of the TERMINATE instruction causts,-tt>ntrt>l to
retttm tothe~:with·1he <nu,ne.ftlfaV bt~II ~ ·ro !M .. uset·envirQhm~t
Since 1R· ng_ ~ ,iftO$ •Jtfie f~ 1jfth@(~teMiWlnre ~~) ntii1' be
equivale~t in both R1and s1

1
Env1+ 1 is. therefore.equ~V~iiv);("f1olk>wtni'""-

•·" . the sam~ a~v~.cnt;Jivcn~,\" J~) '"o(~c .~ ~~J·1+t1r~; ~« ~~"~~ ~j+ r ' .. '
4. l_l••~; ~ioa: ,'file "1"U~N ifls~~ Ilk• fW0."'1JllnJGIG •. lfle;.f"Ctum · value · :

and the target list By the property of containment the return value and target lisl in-·,·, --
the equivalent instructions in R. _ and S. must be C9Uivalcnt. R i,;;J ,l~ l'()ntained_ ,in
s1 + / smae tlk:'targct'_tltfo~ ~ the ~ 1 ~raMf;iihh.'quWa~-afi~ll\ittd~1~
values arc cquiv.1lcnl 111 the two Slates. · · · ·

118 PROOF OF CORREG.'TNF.SS

5. Tailapply Operation: The. TAIL.APPLY instruction takes in three arguments, the
function closure, arsument list and return link. By the;property of containment, all
three operands must be equivalent in the ex-ecruting instrudions in corresponding
states. The result pf e~ting,the instructioft•js toadd atmw,activadon and to signal
instructions in its, own activ:uion. Be§:ause tbe;;dbsure& and argument lists are
equivalent, the instruaions en~IQC;t .in tho n1w .iivatioa must am, be equivalent in
Rt+ 1 and s1+,. ·. following the U.gUment gwen,:m<(l). it i' _easily ·seen that R1f 1 is
contained in s,+r A simHar . ..-pment. can. he applied. in t1le analysis o the
streamtail operator andi$,omiue4.,._, · ·.

§A.2

Since we have shown that th~ lemma holds for all in~pn classes (excluding APPLY),

the lemma is proved. □

The effect of executing a function is visible only in the ,~t value returned by that

function. Thus, given a axnputation sequence for-some• &11ution, ·the values that are still

accessible after all activations in the computation ~u~nce ha~e completed are precisely those

returned by that activation to its caller.
Lemm~ 2: ~t <S,Sr··•Si> _be a .a>mputaticm sequen.~, fo/ ~ ,~ti~adon 1· Then, ~e

values accesstbie m S lr.+l' but fi<>t m Sare those values ~DleJiytn J•. mstructiOns found m
the destination list of the activation, A. • · ·

Proof: (byco1ttradiclion). Suppose there issomeavalue, ,,that is accessible in Sk+l but not
in S and is also not acamible from. thtt" .-um lint to the 11tdrittion". 1'1ri$!value must nave been
created by me instrucwn that:u1an element of seftlRfaefiiffiott·ufthe c:bmputation set of A.
Let this activation be a. h1 order for·this sthtctwre ta ~life':after the termination of this
activation. it mUS\ be ·returned ·as a result &f dmt' dftlion'~~:fteferences to it from
instructions within,«,are lost once:4he.R:~fnstrudidn•uiies?li~t'i1s''Caller be /l In order
for the value to t,eacc:essl,~ in S '+r itmUtt.•by .µle slffle ~lftts atiove, be returned as a
result .of this. activ~ti?n as well; ~~µ~~$ ~is ~W~tt ~w~ ~'·~:~~ v~e (?lfl only ~
accessible. in S k + ,. tf tt is retun1ed ~ the ~It of A. '1~ .tlus ~~~ Opr, QIJiUlal hypothes1s
and so the temma is-i>roved C· .

Theorem 1: Let <:RTSSTS> be~ sequ~nce ~ir ~orasy~m·.~~tS,~4]c:tll, € RTS and
~j E STS. Then, if R/- RI+/ and R/is complete wrt s, then 3 a state sk S.L S/:.-sk and RI+/

~~--~ .

Proqf: Our proof is by ~on. The iDQµa4on _., shows lhut· the1tbeorem bolds over aJI
instruction. cl~s for our system. ·

... Basis: Let RTS = <R,.Rj and STS = <s,.s;. Since Rl = s,. ~d_by.dcfi_nition of th_e
IOl~tal recovery state, EIS1 = rp, R, = Rland.s, = s, Tha~.;"1:1:' s1ana•tt1e,theorem IS
sausficd. · · · · ·

1 lypothcsis: Suppose that the theorem holds ror aU scqucna:. p,airs <RTS.STS> where RTS
is of uplo length i. i > 2.

§A.2 PROOF Of CORRECTNESS 119

Step: We show that the theotem holds for a sequence •pair <RTS,STS> where RTS is of
length i+l

Non-Apply Instruction: Refer to Lemma 1.

Apply h•st~ion: There are , four types of-adivalion deseripton that are found on a
computation. reoo.Fd. Th0$0.ft9Cri,tors.can either;be,of&ype:, -~- ualuc, rda~ or
str~nua.&L When an APPLY ,instruction executo1 in k,it,mminesfdtelacdVildon ddcriptor for
the activation to be initialted.

1. apply or nonexistent Atk. If no Ade exi~ then IJ#e. ~,.,. 1 is (lOtnplete wrt state
SJ+l since the APPLY i{l~ executing~ -rp)ti~.-~,~P inforu-,ton.
Since R;is oomplete wft s1 apd equivalent.~,~~'~ thCS4 1two.~
then by analysis si!llifar to the: one 9iven .fff(,~ f~¥i.~ in LernQMI 1,
Ri+l ail~ s/1-J' l'ef!l~ ~uiv~n~ Th~-•e~-,i~ .. -~ . .itr:n -~ APPLY
operator 1$ to m~u.ie, an. acuvauon wbk:JJ, has,;~:~~-~p~r entry of
type apply. Since no ~lt is found in the.~ i..oe.w,~~:~co:ated b:, the
APPLY. .

2. ual~: I_fa ual~ Ade,exists for~i~ ~vation, ~~l'(Ml,wg-~~ froru R,,in ~!It the

:ti~t; ~ ~•b~!'°:u~al:;~~~~~f ~#~;,~;~:: ~-::
instantiation of an activation, (u rA), because no backup information is used. By

Lemma 2. there isastate ~ ~~<Sr1+-,~~1+Y~1t11at~ voies
accessible in SJ+k but not accessib"" in.~;..-.-~>._, ~1,le from .
instructions found in the destination list pas.,ed to the activity, A. These values
represent the result of the activation and thus must be equiwfent •die tiluett:>und
in the Ade of the activation used iJ:t. R1 _(since, Y!,C . h~ve n~ n~~determi~i$tic
oomputation). ·· Since the· mtv· instruction: ex~n :'lf, $el\ds' the vtifue or the
activatiOn found~ thch4e to'alfdesttt'lltiohi; '.-fl1f tW1~f of ~~nrnent.
the two APfl'l.Y fflltl'iletiMs e~j it1 .'Jl j-'\Yll~ edll~t destinatlon , .
instructions. state ·R' '; ', tffllst ;fxf contaitteif :Jr de' Jt, !"' s~0tti- 'ettvfrm,nent '.
image ,does oot ·m4 in 'atheriate~ -R . · •-~·wii"S' ,. and. so, dte ·
tbeorein hokts fbrthlsra.e. , ' ' · · l+,I '. :c · · : . -·; . .· 'Jt Ir. • ,

3. tatlapply: If the Ade for an activation has '1J>C.'.f4J~"~v.,dwo:R;¥-14iffe11,from, ·
R1 in t.JJ~t R./+ 1 wilLcontain a n.ew activity. A. whose qument r.e.cord ia"8lrieved
from the acuvation descriptor. When the corresponding APPLY instruction executes
in s1 it will cause a new activity, A', to be created whose argument record is not
nec9arily the same as in A. Consider the state transition sequence,
<S1Sj+r"·•Sj+m> where Sl+m-l t- Sj+m on a TAILAPPLY instruction which creates a
new activity, B. such that B = A. There must be such a transition sequence since all
compumtion in the system is determinate. B is a descendent in the computation tree
rooted at A: Fix the transition sequence from S/o S.+m !l> that E/S.+m contains no
instruction from any activation on the path from A't6 B (or descend~nts of any such
activations) in the computation tree rooted at A'. This is clearly pos.~ible because of
the non-dctcnninacy of the Choice function. The only new values occ<.:ssiblc in Sj+m
not accessible in ~~-arc those referenced from B. Since B = A. R;+J is still contained

120 PROOF OF CORRECTNESS

in SJ+m· Since the environment image is not updated in,either tnnsition sequence,
environment equivalence is still preserved. Thus, R1+1 remains complete wrt SJ+m·

4. Streamtail: The case when the Ade is of tme Sllt£A~R,, .~ v~ $imilar to the
TAILAPPLY Ade given above. In this instance, Rt+J diffe~ from R1 in two ways.
First, the stream. image. on saablestor. e isoJ!eStDNd.. :onto,~~,1'S~dty, a *.•efeton
activation is cieated to installbElte procll.lction ofltne1Nfni · ~ ef the1tteam. Irr 1tate
S the apply opet'BlOl'wiUause• new,acdwtionv14cte;be~it0lproduciethe ftrst
element of the stream. To satisfy the property of con~ we 'mnsidtr the

:~= ~= :r:~;:,;ii:~: J~~~w:1:.:;;:if~!}r:
point, the first;stream element is cbmpletely'd~ijig'ttt~'is,a suspqtsion in A
which is· not yet enabled ,x,· .~. ;the riext'l~~e,it ., , BJ, :@t cfetlrii~on of Qpjm

=t~:::·in~~::=: ~~~1~fate:=~~tlt ~~
enabled also remam equivalent: Hence O)tiUi~~~)c:t~ee,~tS .. and
R1+r Since the en~ image does not'thinle.(:R,~1 ltttialnt)corn6S.wrt

SJ+m·

§A.2

Since we have shown the theorem for, each of the ct.es of A,/4~s. which may be found on a
computation record, th~ theorem is proved O , .

Corollary: If <RTS.STS> is a ,sequence pair, t1rerrR1 ~ ~plete· wrt Sj ~here R 1 and s1
are the finahtates for Rm aml'STS mpecdvely. · · · · · -

Proof: (by eo11tradictlon)

Supp.~ .. th. at Rfw~ ... · Ni>t eotn,p .. ·· le .. te wrt.· .to $1 . Sm .. ,pe;.··4¥.$'1 :::; i>, '",knqw Ulat,R1 1&.·. contained
in SJ It must. theref~ ~: tb•.•~~~¥i~\1~i~ •1'~ ~44 ,bd,ween. the
two Sqltes., By lbQOte~l. ~~~w1~ ~~~~~~All't_, ~,wJtefQ s1 .,_SJ
As ,a c:9,qsequenq:_ ,of the hypoth~, thefF ~C~t~r~vi~t .~R.IJIJJttuctioh
exe(;uted in ~ transki~ seq~ ~:f~Jt m-~~Ata\~ft9t ~•j~ffi·i)f.)V.0;~. This
is a contradiction since by detini\ion s. life same ex>mmand ~~·••~.wNlliboth the
ideal recovery state and final recovery _state. Thus, ~r ~.~.\h~t .~(iJ, "°!, oo,mp!e:te wrt s1 must,bt,fllhleand tJleCO'IOllatyi~f>IO'Hd t1 ·. · 1i, "·'' :.,, 1" 11 , ! . "'1

, • · ,

., ·; . !:,c .! ;! .: t.

References 121

References

1. Ackerman, W. B. and Dennis, J. B. VAL --- A Value Ori•&ediAil()l'itbmic.Language:
Preliminary Reference Manual. 218, Laboratory for Computer Science. MIT, Cambridge. Mm..
December.-197& .,, ·' ··. ; · .. ,• · .,, ·}.';.,if.!< Cf,;;1; ': __ ·•· • · · •

, ,t. • •. ·1 L: _.; ,'' '.'

2. Anderson, T., Lee, P. A., and S,~rivastava. S. ~ .s~m F~l!}?lenlll~. ~p Comput'f'g
· SystetBJl.dalJllq~ Andeftllal. T,,and ~dett,1B.d:ifs.'n119'9t· .. ,,., · ' · ·

. !{~(Ji()i;;~ .. }~)~ .,' ··.·

3. Arvind and Gostelow, K. P. "The U-interpreter". COMPUTER.15,i (feburary 1982),
42◄9.. ' . -;.-"•:' ,:i, ', ,i..·:

4. Avizienis. et al. "The STAR (Self-Testing And Repairing) computer: An investigation of
the theory an4;~~--~tonlpldOrctiliila~-n~roC4J. Il,(Nmtarttbfer:
1971). Ul2-13U. ' ! :f;f 1 ,:>; r i1u·· ! :· ; '-' , ..

5. Barigazzi, G .• and Strigini, L Application T~t ~tins of Recovery Poin~ l~th .. _
Annual Syraposiu1n mF-Mt TOM11M~del;~~~;1.S5} Li': ' . '_·. ·. ' '

_. ,,,. .r•1 -r•, '_tL:I~ .·:.:.::nr~~i~ . .J} "''P. ,d H..t t:U!'.;)~::< .. " .. , ~~~j::::i;.:;a~~~==-=:ix= ,,p.ita Net~rl ...
. ll,2;1tr Lbfr'i:Jo/f:~ \· ' . _.~ f'

7. Borg, A .• and Baumbach, J .• and Glazer. S. A,.Messaae S~ SuPP9rtin&f~lt ToleraQc;e.
6th Annuat·:SymposiumW0~18-ns.1AtML~I~.w. 98L99.') ',· <' ;

·>-·~ _ _ -~qu·) if_, , -:\: 1-,-~ . -!~f.i: , , "tll.- J, i ;~_,:- ~-)d~_ftJG 1'..)ii:l1_:·:~,_- ,_' _., ,, ,·-,,,_, ' •

8. Dennis. J. B .. First Version of~ Data Flow Procedu,re ~e. }n frog'!"""#nJ
SympDM/in: PJwHdmlt·~s,u;fiJ;p,.,~m,~"-J _,,; ,y,,,,, , ,,; ,_ · ·
Springer~,,1914;,pp,N21-J16r. · •.' ,· · · ,,;H.,, i . ., : , , ' · ·

. , ,- .. -,~:i·;~J,-:_;".t"·\ _ / l-1; -·,_:;:1 ·•; , _:, , I

9. Dennis. J.B. and Misunas. D. P. A.Preliminary ~rchitect~re For a~ Data-f½>w . ,
· . Pl'Ot1ISOI'. Rroteedhlp~~lfJJM,OlllldW~ ~~~, · ·

December, 1975, pp. U6-132. ·: ~; { -' i J ' , ,1 '(.,,; nniwqrniO l.'!1!1.n.1.;q ': · · ,;; i~,, · .. ' , · ·
' ',

10.. Dcnhts. J.;;&! l>atilillWJUlftltlft:Cflanpt A Mbdetti' •\~«•SYtiffl. 209, . ,· ;
~;;;f~ ~~~~ Q~· ~ ~~~S~\\ffl~~~~-~1-}~mn~~ M~.! ;·

II. Dertnis.J1.B. A~~~~-,a. l,_~~··••·~t.~{9f.~,J,l.,.aom~"'8:J'1~1",jd.\~lfdm>'~.nm."'·"n1 .e~~~~~_-· ·.
, . .. , ,. ,. ~., , ~ . I . . :.,.,9 . . . , . . Ul8, Structures. 'Ptesenttdihnc fh. a "'. ' •·· .. iu ffl , .. ·°1t~ief . 1

Concepts. Peniscola. Spain. JC. ~1¢~ 191tl . :".., · -. . J # • • • .

<f~ Oerinis. J:B:~ and'Gao~ U'. ~,.)mgT~J()v;.::,\:. ~iv~~puter. 213. '.
Computation Structures Group; tntibratoryfo'r'Compuier ·iOL ,)}',, Mif, Cam6ndge. Mm ..
, March.198,2. , , - , ,

~~- Dennis. J. B. mid Stoy. l 'E. and Ouharoy,8. vrM't.~fi E1xpcririlerifut Mu1ti-User System ..
,5-upponin& flm~1ionaf ~ins,,rl~;Qlnf,~~tijlh-lA,t~le'1Ut:e,.!984.'

References

14. 1981 Conference on Functional Programming and Computer Architecture, 1981.

15. J. Darlington et al.. Functional Programming and its Applications: An Advanced Course.
Cambridge University Prem. 1982.

122

16. Friedman, D. P., and D.S. Wise. CONS Should Not Evaluate its Arguments. In Automata,
Languages, and Programming, unknown, 1976, pp. 257-284.

17. Guharoy, Bhaskar. ~ta Squctu~ Mamaaeane~ in a Data Row Computer System. Master
Th., M~chusetts Institute Technology,1985.

. . . ' '

18. Hoare, C.A.R. "Communicating Sequential Processes". Comrnunciations of the ACM
(August 1978), 666-677.

19. Hug~ J. A. Error Detection and Correction, Tahniques f0r OataFk>w Systems. 13dl
Annual Symposium on Fault Tolerant Techniques, IEEE, 1983, pp. 318-32VA19o Center For
Reliable Computing Memo 83-1, Computing Systems Laboratory, Stanford University.

;:
·-1 ,,

20. Kahn, G., and D. M•cQu~,~aes•ail4N•'ffl>fM•ef Plu!delcP~· lnfonnation
Procesmng 77: Proceedings of IFIP Congr~ 77, August. 1977, pp. 9?3-998.

· ~r. .1 "·~ · , 1

21. Lampson, B.W. antiSturp, H.E. Crash ~:in•DiMributed:DataStoraae System.
Xerox PARC, 1979. Internal draft.

·22. Leung, C. K. C. Fault Toi~,in Packet <::otnmu~ Ardiitectures. TR-2SO.
Laboratory for Computer Science, MIT, Cambridge~ M.ass .• September, 1980.

) ,~, '·: ·.', .J •• ,,

23. Liskov, B., and Scheifler, R. Guar~,and Actigns;; ~ .$,uJll'Ql1 fot Robust.
Distributed Programs. 210-1, Computation Structures Groul>i ~ for<:.omputer
Science, MIT, Cambridge, Mass., Novemeber, 1981.

24. Misunas.. D. P. ~r ~tect.iqn a&ld ~~~e,y in• 0.ta~,tComputer. Proceedings of the
1976 Conference on Parallel Computing, 1976, pp.117-122.

25. Nelson. B. J., Rt>,m0te fr,ocedure C.IL Ph.D. 1\.;·c.tn""iMIUon.UJtiversity, May 1981.

26. Siewiorek and Swarz. The Theory and Practice of Reiki/Jie System. Design. . Digital Press,
1982.

27. Stem. J. A, Backup and Recovery ofOnlineJn~"tiPIJJq;~ Computer Utility. TR-116.
Laboratory for Computer·Sctence,· MIT, Cariibrid& Mia, 1974.. .

,· ,,,., - ,_ .

28. Stoy. J.E. "VJM: A Dynamjc Dataflow ,fmpJqncr.i~i°'o of VAL". TOPLA.S 0, To appear
in ACM Transactions On f>rogramming 4"guiig~·,An.d $>$ems.

, . . ·, ''! ' • ' '

29. Svobodova. L.. and Liskov, 8 .. and Clark. D. Distributed Computer Systems: Structure and
Semantics. TR-215. Laboratory for Computer Science, MJT, C~bricJg~ MasL 1979.

; ··' ' • ;;, ; • • <

30. Weng. K.-s. An Abstract fmptcmentalion for a Gencr.1ti1cd Ont:a Flow Language. TR-228.
Laboratory for Computer Sdcncc. MIT. Cambridge. Mass .• 1979.

