MIT/LCS/TR-353

DATA BACKUP AND RECOVERY
IN A

COMPUTER ARCHITECTURE FOR FUNCTIONAL PROGRAMMING

Suresh Jagannathan

Uctober 1985

Tius blank page was inserted to preserve pagination.

Data Backup and Recovery
ina
Computer Architecture for Functional Programming
by
Suresh Jagannathan
October, 1985

© Suresh Jagannathan 1985
The author hereby grants to M.LT. permission to reproduce and distribute copies of this
thesis document in whole or in part. -

‘Funding for this work was provided in part by the Natlonal Stience Foundation #NSF
DCR-7915255 and the Department of Energy, # DOE DE-AC02-79ER 10473,

This empty page was substituted for a
blank page in the original document.

DATA BACKUP AND RECOVERY
INA
COMPUTER ARCHITECTURE FOR FUNCTIONAL PROGRAMMING
by
Suresh Jagannathan

Submitted to the Department of Electrical Engineering and Computer Science
on October 28, 1985 in partial fulfillment of the requirements
for the Degree of Master of Science

Abstract

The VIM computer system, an experimental project under development in the Computation
Structures Group at MIT, is intended to examine the efficient implementation of functional
languages using the principles of data flow computation. In this thesis, we examine how to
incorporate backup and recovery mechanisms into this system to guarantee that no online
information is lost because of hardware malfunction. Qur solution, which takes advantage of VIM’s
powerful applicative base language and its uniform treatment of data and files, integrates the
operation of the backup and recovery system within the interpreter itself, resulting in a system that
can ensure a high degree of data security without excessive performance degradation. Unlike
schemes found in other systems to guarantee data security, operation of the backup facility requires

no user intervention.

To present our algorithms rigorously, we first develop a formal operational model of system
behaviour. This set-theoretic model views VIM as a state transition system with the interpreter
serving as a state transition function. The specification language is a superset of the applicative
language, VIMVAL. We enhance this model to include a concept of system failure and augment to
the basic components in the system a backup state with the base language instructions now
operating on both the VIM as well as the backup state. A formal proof demonstrating the
correctness of our algorithms is also given. Issues concerning the implementation of -these
algorithms are also addressed in the thesis.

Thesis Supervisor : Jack B. Dennis
Title: Professor of Electrical Engineering and Computer Science

Keywords: - Dataflow, Dynamic Dataflow Architecture, Functional Languages, Fault
Tolerance, Data Backup and Recovery, Reliability, Formal Qperational Models, Dataflow Graphs,
Resitiency, Language Based Architecture.

This empty page was substituted for a
blank page in the original document.

Aéknowledgments

The result of knowledge should be the turning away from unreal things, while attachment to these is the result
of ignorance, This is observed in the case of one who knows a mirage and things of that sort, and one who does
not. Otherwise, what other tangible result do the knowers of Brahman obtain?
— Vivekachudamani of Sri Sankaracharya

I am grateful to my thesis advisor, Prof. Jack Dennis, for the many invaluable suggestions and
insights he has provided during the development of this thesis. His continued interest in this work
has been instrumental in the formulation of many of the ideas presented here.

I also thank Bhaskar Guharoy for the many enlightening conversations we have had together
and for his help especially in the early stages of this work. It is a pleasure to acknowledge his
assistance in the development of the formal model presented in Chapter Two.

The friendly and intellectually stimulating atmosphere of the Computation Structures Group
provided an ideal environment in which to undertake this research. I thank the other members of
the VIM group: Earl Waldin, Bradley Kuszmaul and Prof. Nikhil for many interesting discussions.
Tom Wanuga, Kevin Theobald, Willie Lim and Tam-Anh Chu were responsible for many an
enjoyable lunch. |

Above all, I am indebted to my parents and brother, Aravind, without whose constant support
and encouragement this document could never have been written.

This empty page was substituted for a
blank page in the original document.

To my parents

This empty page was substituted for a
blank page in the original document.

Table of Contents -

Chapter 1.

1.1 Goals of the Thesis

1.2 Motivation

1.3 Background

1.4 Previous Works
1.4.1 Data Security in Centralized Systems . .
1.4.2 Distributed Systems
1.4.3 Fault Tolerant Systems

1.5 Thesis Qutline

Chapter 2.

2.1 The Applicative Language, VIMVAL
2.2 The VIM Interpreter
2.3 The VIM Shell Sl
2.4 A Formal Operational Model - M1 R e e e e
2.4.1 The Base Language Instructions - = -~~~ ¢
2.4.2 Early Completion Structures
2.4.3 Delayed Evaluation Using Streams
2.5 Semantic Functions for M1
2.5.1 Auxiliary Functions
2.5.2 A Formal Model of the Shell
2.5.3 A Formal Model of the Interpreter s
2.5.4 Formal Definition of Base Language Instow
2.5.4.1 The TERMINATE Instruction
2.5.4.2 Structure Operations
2.5.4.3 The Set Operation
2.5.4.4 The Suspension Operator
2.5.4.5 Function Application and Retum
2.6 Summary

| Chapter 3.

3.1 Failure Model

3.2 Fundamental Issues ’
3.3 A High Level Overview of the Backup and Recovery Facﬂiﬁa
3.4 Architectural Enhancements

3.5 Summary

Chapter 4.

4.1 The Computatlon Record

4.2 The Activation Descriptor Entry
4.3 Early Complction Structurcs
4.4 Further Enhancements

O 0O OV h W N

[

15
17
21

2%
28
32

32
kY.

o0 38

41

43

49

52

55
59
62
63

e PSSR T e T T e T g e S D g R e e

4,41 Tail Recursion - GoFTE i EL 64
4.4.2 Stream Structures 65
4.4.2.1 Rationale 67

4.4.2.2 Implementation 69

4.5 A Formal Model of Backup and Recovery o , 71
4.5.1 The Backup State o 1
4.5.2 Early Completion ' ; o 74
4.5.3 Auxiliary Functions S 74
45.3.1 The Copy Operation A " 75

4.5.4 The Shell o | i
4.5.4.1 Removing Log Entries) 79

4.5.5 The Interpreter o 80
4.5.6 Function Application . 81
4.5.6.1 The Apply Instruction 81

4.5.6.2 The TailApply Instruction - -+ -~ . . 82

4.5.7 The Return Operator T u 85
4.5.8 Stream Operations Lt 87
4581TheSuspensnonOperator R R IR T Pl 87

4.5.8.2 The StreamTail Operator . . =0 : 90

4.6 Summary e ROE : 95

Chapter 5. |
5.1 The Copy Operation R = : o7

5.2 Storage Organization in VIM e e | 98
5.3 Performing the Copy Opérition e o 101
5.3.1 Early Completion SR R 103

5.4 Storage Management S 105

~ Chapter 6.

6.1 Contributions of the Thesis S 107
6.2 Future Research , 108

Appendix A. | | m

A.1 Definitions and Terminology e 112
‘ A2ProofofComctnus o) C et 116
 References L T A 121

P e N S M R S e S DT S R R e e

e

i

Figure 1:
Figure 2;
Figure 3:
Figure 4;
Figure 5:
Figure 6:
Figure 7;
Figure 8:
Figure 9;
Figure 10:
Figure 11;
Figure 12;
Figure 13:
Figure 14:
Figure 15;
Figure 16:
Figure 17:
Figure 18:
Figure 19;
Figure 20;
Figure 21;

List of Figures

A simple VIMVAL program

A VIM data flow graph :
Function application in VIM

The translation of the BIND command
The Abstract VIM System

The Use of Early Completion Structures

Demand driven evaluation of a stream using suspensions
Tail application in VIM
Skeleton of a Stream Producer
System Operation
High Level Organization of the Backup Store
Abstract Architecture of the VIM System with Backup Store
Representation of a Computation Record
Dynamics of a Computation Tree
Structure of an Activation Descriptor Entry
The Effect of the SET Operator on Bukup Store
Handling Tail Recursion
Reconstruction of a Stream Structure
Recording Tail Recursive Functions
The Effect of the SETSUSP Instruction on the Backup Heap
The Representation of a VIM structure

13
14
15
16
19
23
24
38

49
51
52
57
58
61
63

70

100

This empty page was substituted for a
blank page in the original document.

mma mb i bﬂu&

o 918 Inseng ow esisility (19voom bmqs i AP0 msenco om wi olilnlU
o sds Isbom sw,;iaéi SEE ﬁnm_ﬁ,i" |] N e & hfmmmmubns a_&qmiz“' , :;

2 . GOALS OF THE THESIS §1.1

found in our system provides a framework on which a highly secure system can be designed.
Unlike its more conventional counterparts, the backup and recovery utilities we present are
simple and efficient and do not require any yser-guidance to perform their task. We model the
presence of failures and the actions undertaken by the backup and recovery mecha.msms by
defining a formal operational semantics of system behaviour Thls formal model is used to glve a
precise description of the behaviour of the backup and recovery system We demonstrate using
this formal model, that the backup algorithms developed properly records the relevant pomons
of the system state and that the reoovery system does correctly restore the proper system state as
well,

1.2 Motivation

The problem of guaranteeing data security is certainly not 2 new one. Virtually every
major computer system developed includes some type of protection mechanism to safeguard the
_.information entrusted to it.- It is, therefore, natural for the neader to question: why the study of
~ data security for the VIM system is @ problem worthy of .investigation. ‘There are two main
reasons why we have not chesen to simply. use backup.and recovety algorithms developed for
other systems for VIM. First, and foremest, backup.:and recovery systems in conventional
_systems. are not able to provide full: data. security: without Mgfe‘msivdy%mplexﬁ ahd
inefficient. In general, the implementations. of these utilities are:not able to-provide: full data
security without incurring significant reduction jn system:pefformance. In-addition: to this major
drawback, these schemes are based on a computational model which is much different from that
found in VIM. The implementation strategy that we present in this dvesis giararitees foll data
security and exploits the novel features.of VIM in doing 50 I issignificansly different from other
data security schemes proposed for both sequential and-pamilel. systems: :Some of the more
interesting aspects of VIM pertinegnt to the issue of datasecusity ase cited below: :

.oVIM rsbwdonadym;cdamfbw architecture. -

In a data ﬂow oomputer system alt mstructlons m the program are vrewed as potentlally
'exccutable with the only oonsmum bcmg Lhat thcy must have recewed all necessary operands
and comrol srgnals This execuuon model allows fpr a great deal of concurrcncy to be rc,.rl;zed
“Thus, our data security mechamsm must be desrgned to be used in a hrghly concurrent

en viron mcnt

- 81.2 - .MOTIVATION 3

oVIM interprets an applicative base language, namely, the-language of dynamic data
flow graphs.

A dynamic data flow graph is a directed acyclic graph where nodes represent instructions and arcs
define data dependencies between these instructions. A-graph i§ dynamic if the execution of a
function activation is explicitly initiated by some dpply operator. 'In our system, each function
activation has its own graph.created by the apply instruction; The base-language instruction set is
very powerful, containing instructions for function application and retéim, structure creation and
manipulation as well as mstrucnons to handle storage managemens. We can take advantage of
this feature i in the d&sxgn of our data secunty mechamsm by enhancmg the semanum of these

”””””

aaaaaaa

instructions to support the backup and recovery pmcedura. ,
eThere is no distinction betweenfles.and data m:.vm, .-

-Unlike conventional systems, the units of storage allocatfon in 'VIM ‘are the information units on

which the primitive operations of ViM operate Le. 'ifistrictions, scalar vams, arrays, and records.

“This feature wilt allow us to design backup algoritms’ rhﬁt c&ﬁ‘ﬁ Thlly oOgnizant of how
information is being created and mampuiated in the' sym o

«The unit of transfer between dnsk and main memory IS a small ﬁxed-snze unit of :
information calted-a chunk. - |

The small unit of information 'tronsfer v)i!l allow 'extensivo concurrency of operat.ion to be
- achieved by exploiting the data driven execution mudel't& support ‘& High Tevet'of fiiformation
" traffic between disk and miain memory. ‘The' use“ef churiké" - the ‘unit Of transfer pOses
- interesting problems for the backup system' when informatiorr tieéds oy be copied ﬁ'om memmy
to a more stable sxomge medium. We discuss this issue-lfer i Medhesis, =

1.3 Background
While hardware is generally reliable for the most part; catastrophes do indeed occur and it
is necessary that the computer system designer be seasitive to this reality. . Idcally, we would like
to provide a guarantee to the users of our system that all aceessible dam wxll survive the effects of
any hardware malfunction. The approach that is adopied, however. wlu naturally be strongly
influenced by eﬁ‘ cncncy constraints. In most convcntxonal oompute)' systeis that do not provide
extra hardware support to achicve this aum the cost of realumg full data sccunty usually involves
too much overhead mld reduced pcrform.mu to be a realistic goal. In these systems. users are

4 ' BACKGROUND §1.3

forewarned that some of the information they have entrusted to the system may not survive a
hardware failure. Consequently, these users must take explicit action to preéerVe data they deem
_ important by periodically-"backing up” their information-omo amore:reliable storage medium.
Information which is not transferred opto: bagkup store is-lost-sfter a crash. It is usually not
possible in most systems to recover this lost data by reexecuting the computations which initially
produced it since there is ao mechanism: (o manitor: the creation and:modification of information
occurring in the system. : o

We shall say that the mformat.Ion held by a computer system 1s ﬁdly secure from loes or
corruption if the system contains mechamsms whrch ensure the preservatlon of all data despne
the presence of unreliable underlymg hardware components.’ These mechamsms may be
incorporated as backup and recovery software utﬂﬁieskbf thay take the form of replmt.ed storage
elements or may be. implemented a8 some combination of both. The degree of data security
prowded by a oompu;er system is one measure.of ifs reliability. . If a system js.reliable, users of
the system can confidently store and agoess data, henever, desired. Note that data security. does
not necessarily imply reliability sincs.a secure comMeE Sysem m@m sk fularen o the
external world. A system which does provrde full qtug security, howey
that no fa:lure in the system ‘will cause any messrble mfomm to*hﬁioat mﬂmugh users
may be prevented from messmg 1t for atime rf a fmlure takﬁ plaec.

r.di :

The extentm wl'udl AISETS Can ACCRSS dﬂa MM mm of the. avadabrlity of
 the system.. In, applications sugh. #. recket guidance il for casmple. it is-crucial that nosingle
, hardware failure makes. the. system. uaavqilable. for, sven:a:sbes:period of time. - The basic
approach to masking failuses of hardwase. from: the estaraal sysiemy-is: best:done at the hardware
level itself, by incorporating sufficient redundancy into the system [26]. In this thesis, we shall
not be concerned with availability. Rather, we shall be focusing our attention-onthe: preblem of
- enhancing VIM to proyide full data security. for all onlime mformation: .

For systems which néed not miask fd'lures. the standard approach used 0 guarantee data
“security has beer to provide backup and recovery soft‘l e’

¢ utilitics ?or the system The backup
utility serves to safeguard fnférmation’ on' ‘some storage ﬂe*vwe &at is lmmune to the cffccts of
‘hardware fallure. The recovery utility is invoked when a haraware faﬁure occurs and uses the
information preserved by the backup f: rcmty o rcswre thc systcm lo a smtc whu.h cmslcd bcfore
the failure, The dcgrec of duh securily prm ided by the sys&cm ls dm ved b) the mst of lhe

§13 - BACKGROUND 5

backup and recovery process. Most current systems have had to'sacrifice the goal of providing
.-full data security because of the high overhead that would be involved in supporting the backup
~_and recovery system. In these systems; the state restored by: the-recovery: utility mray not be the

. - one which existed immediataly prior to-the failure. Morebver, it is usiatly the case that thete is

no means of recovering this desired state: frony the one produced by the recovery procedure.
Thus, information loss is a possibility which users of the systemt mustaccept. - »

1.4 Previous Works

In this section, we: briefly describe some-previcus efforts in the- design of highly secure
systems undertaken for both centrahzed and dtstnbuted Systems 3. well as solutions proposed for
: vprovrdmg fault-tolerance for a class of data ﬂow archrteetum We Jpoint out some. major
deﬁcrencnes and assumpt:ons made in these pmposals that. make them not suitable for
o 1mp1ementatton in our system.

© 141Dana Secnmy in Centraltzed Systems

In conventronal smgle-pmoessor machmes, the srmplest and perhaps most dlrect means of
lvrecordmg state mformatron for recovery purposes is to estabhsh a checkpomt c!escrtbtng all
. aspects of the system state The checkpomt state is oonstngcted by reoordmg the state. of the
system at some pomt onto a rehable storage medmm sueh as tape. The most obvrops drawback
'of thrs scheme is the potentlally large amount of data whrch must be exammed - an oftentmm
o unnecelsary and expenslve strategy smce most of the o!yects m the system would probably not
'have been modtﬁed between suocessrve checkpomts To ameporate this Jproblem somewhat,

many nmesharmg systems perform an actmty referred to as incremental dumping o keeg the
backup system abreast of any modifications to the file hierarchy between successive checkpomts.
In the event of a major mishap that necessitates the reconstruction of the filg hierarchy, the
system can be reloaded from the last checkpomt and appropnately modtﬁed by using the current
" mcremental dumps to restore the system to a more recent state. All mcrem,ental dumps are
copled onto magnetrc tape In order that the reeovery phase of state restoratlon may proceed
faster lncrcmenml dumps are penod|cally consohddted to rcmoye outdated coplcs of fi les. Thls

: consohdatlon proccss is known as secondary dumprng

Using incremental and secondary dumps to record: information: dbout the system state is
the basic approach used by the Multics operating system {27} to provide secure scrvice to its

6 PREVIOUS: WORKS §1.4

users. A modification to the backup and recovery. protocol-employed by Multics was suggested
by Benjamin [6] for the Data Network Computer. -1astead of using magnetic tape as the miedium
~ to store backup copies, it was adyocated:that the computer system be integrated within a network
of autonomous systems with.each system being allowed access to the storage devices of the other
processing elements. The backup facility maintains a consistent image of the file storage at a
remote site within the network, The motivation for having such a backup system is the greater
ease in managing the backup system that results when we do not have to deal with sequential
access tape storage. The problem in using such a system, however, comes ‘from 'the decréase in
availability that may occur due to-the extra dependengy or sommuaication lines etc.

Perhaps the most serious objecuon to the solution adopted by Mulncs 1s the oost involved
in periodically scanning the file hierarchy to find those ﬁles which have been created or updated
since the last incremental dump The cost of performmg a checkpomt tn Mulhes mcmses
linearly as the size of the system increases. To achieve the same desree of data mnw ina
heavily used system where files are constantly created, destroyed, and updqted. as in a lightly
used one, it is necessary that the bacltup system be invoked more ﬁ'equently Tlns, in turn,
implies degraded service to the user commumty :The bﬁc reason why Mulncs (and other
| conventional centrahzed systems) are not able to provrde full data secunty efﬁctently appeats to

be the inability on the part of the bmkup system to tmmedlately dtseem when data has been
* created or altered and to reﬂect this fact onto the backup 1mage of the system state Because the
 mechanism by which data is created and updated is far removed from the ﬁle system wrth whlch
 the backup system interacts, the mcrémental dumpm; PrOCESs is

is costly and mefﬁctent. The end
‘resultis a computer system whlch cannot guarantee’l‘ull dataseeunty wrthout mcurnng excesswe

overhead.

-'1.4.2 Distributed Systems

- Unlike srnglepmcessor machines or multr prdeessor machmes under centrahzed eontrol it
‘is difficult to perform globul checkpomts in mult; processor systems under dlstnbuted control
~ because of the lack of any system wide synchromzauon ca;;;bthty Hence although dlstnbuted
" systemis may have the potentlal of provndmg a more sccurc computmg envnronmwent as a result of
the redundancy present in their architecture [29] explottmg such redundnncy to‘ achleve thls end
becomes much more difficult.- A typical model chameterizing o distributed system would be one

where both the data as well as the code of a process is spread over several physicat nodes in the
D

§14 PREVIOUS WORKS -1

system. Communication between processes: in such a model is usually' through some form of
. remote procedure call [25] or message passing mechanisn¥ [20, 18,:31];' Failure in these systems

- can cause processes to-deadfock {2} after the recovery: phase completes. To avoid deadlock
problems :arising. from the ‘error recovery ‘of a process ‘that i a member of a collection of
~ communicating processes, local: distributed systers: or network computers usually have' the
.ability to set localized checkpoints for: each.process. Such chedkpoints are referred to as recovery
. points. If a failure of a.process.is detected, it is necessary o siot dnly roll-Back the failéd process
. to its most recent.recovery point;ibut to ulso reset all othe¥ prodesses ‘that ‘had' exchanged
.. information with the failed:process.since the- time'of the 1t fecovery ‘point in order 1 avoid
-.. deadlocks from oocurririg when operation is-continued;. If these recowéry points are not set
. -property, it is quite likely to have a domino effect[R):whereby all protesses ‘initiate recovery
actions that lead theny to theineariiest recovery polat ‘Detisiiinihiz when:to set recovery points
- and finding a consistent set of such points is- &WWMBHMOM submdally

reducesthe overall concurrency of the systear, - SR s : '

, Borg et-ai{7} and Barigazzi{5} present schemes for ensuring: the security of data in a
. distributed message-based system. ‘The basic: idea in: both’ preposily- thvolves maintaining ‘an
;. inactive backup process on:a different pmmmm ‘aotiVe provess in the system . If a
- failure of a-primary process occurs, the backup process thites over execution. I Borg’s scheme,
- messages exchanged between two processes are also: autonvatically: recorded on beckup processes
. as well. In addition, both: the backup and recovery procssseyane: pefiodically synchivonized.
- When a failure occurs .on & prissary (process, its backupy boging execution in the state that the
.. failed primary had at the: jast:synchronziation point.s THé beclkep can ¢atch up o the state’the
_ primary had just before the fa&mwmmmm énmm wmch-mmmn

Bangazz: uses a sxmllar approach in hxs system However, mstead of havmg messages sgnt
from the primary to the backup process. an exphc:t rgcovery pomt is genodncal[y estgbhshed for
every primary. Setting a recovery point for a proces also requn'cs establishing recovery points
for all processes that communicated with this process since the. Jast Jecovery point. was: set.
Rccovery in ths scheme involves rcseumg all process&s to thcnr last ecoyery pomL Whale both
these schemcs provsde full dala sccumy they do so at thc oost of htgh ovcrhead in mdmuumng

‘up -to- date muluple copn&s of the: pnmdry process on dlSjomt pmcesors. ln addluon, both
| proposals assume thc tmnsnmslon of messagcs to bc a rclauvely mcxpensm. opcration, an

“assumption w hl(his ccmmly arg uable.

8 _ PREVIOUS WORKS §1.4

In addition to general distributed systems; there has been much interest of late in
distributed transaction systems for which a high degree of data security is essential. A
sophisticated approach to handling data security for. transaction based applications can be found
in the Argus system. The Argus integrated programming: language and distributed system being
developed at MIT [23} is a comprehensive attempt to provide linguistic support for ensuring data
security and consistency within a distributed computing environment. The language provides
constructs to encapsulate vital data objects which are then guaranteed to survive crashes of the
host processor with high probability. In addition, a mechanism is provided: to express atomicity
of process activity. When a hardware failure occurs, esch-outstarrding: atomic action is forced to
abort. A two phase commit protocol is. used to emsure that all tramsactions preserve the
consistency of the active data. To guarantee data security, objects are distinguished as being
either stable or volatile. All stable objects are written oeto stable storage devices whenever a
~ transaction completes. The. integrity of stable objects is, therefore, preserved.‘even though
crashes of the host node may take place. Volatile data is ptesumed to be {ost upon failure.

Perhaps the greatest point of contrast between:the Argus implementation of data security
and that which we want to provide in our system is: the requirement in Argus that the user
prespecify those objects which are to survive crashes. Our goal is to ensure that measures taken
to provide data security are transparent to the: mser; o linguistic primitives are provided to
' specify the objects he wishes to survive failure and no explicit-constructs are provided to control
backyp operations. While the gap between the programming model and the backup facility is
-not 8o severe in Argus as in Multics; the fact that Mundedmsyswm is based on an updatable
memory execution model makes the task of ensuring-a comsisteént state a complicated one
involving expensive protacols such as two-phase .commit and ‘sophisticated algorithms to
maintain a correct and up-to-date backup image. Moreover t.he apphcatlon domam for which
Argus is best suited is a relauvely restrictive one and the oomplexlty of the system 1s probably not
warranted for most non-transaction based oompntaﬁons. ‘

1.4.3 Fault Tolerant Systems

| There have becn several proposals put forth for the design of fault-tolerant data flow
“computers which attempt to achieve data security (as well as aVailubiIity) by' incorporating low
level fault masking capability into the system. We outlme several of these proposals here to
present an alternative approach to solving the problem of prowdmg data security for a computer

systen,

11 g B R A e P T it s T e

‘§1.4 PREVIOUS WORKS 9

An error recovery system in the context of a fault-tolerant data flow machine based on the
Dennis-Misunas architecture'[9]):was :described by Misunas. in {24 Fhe model advocated was
based on providing triple modular: redundancy (TMR) for: memioty-and the functionat units.
- Each instruction cell acts as a voter and receivos thtes fesults for‘each ‘operand generating error
packets if discrepancies are found. ‘In addition, processor: failiirés are hdndled by allowing the
. network to be reconfigared. ‘The scheme: involves extensive:overheid in téfms of increased

. packet traffic and extra hardware and- is dependent on the- 1ol of ‘acknowledgment signals to
allow reconfiguration to take place. A fault-tolerant design for astatic-data flow-architecture was
also proposed by Leung [22] -In his proposal,a dynasiic reden@iiney technique was employed
‘whereby redundant units: are used to: detect and m ‘faqlis, with afflicted eomputaﬁons
reexecuted when necessary. IR A R R IEE L SR

Hughes [19] suggests . that: a checkpointing - strategy 'saitably mbodified: for data flow
computation may. be:an appropriate Mmlsm«iothwm érror-recovery In a tata flow
machine, Basically, each celf {or instruction) which.is:shebkpaiftsd 4 murked. ‘Whenever the
backup system initiates a checkpoin, all active cetisnot previously checkpointed ‘are saved. On
recovery, all active cells that were checkpomted are restored. Whrle simple to rmplement,
recovery m ‘this scheme requrres the remmahzatron of the ennre state, wlnch 1s an oﬁen
unnecessary step In addmon the memory of the system must be exammed at each checkppmt

to determme whrch rtems have not yet been oopred thrs is also &glnte wasteful in most mstar}oes.
Fmally, this proposal assumes that all mformatron is resrdent in memory whenever the
. checkpoint process is invoked; by contrast, in the system-whiéh We envisage, data wilt be spread
across the memory hierarclyy betwesn disk and mmdummﬂecu&on

All three of the proposals crted here are_ based on an archttectural model much drfferent
5 from the dynamrc data flow model desugneel for VlM Moreover they requrre specral
architectural enchancements to mask hardware faults VlM is not mtendcd for appllcauons
which have high availability requirements and, thus, there is no need for fault—maskmg strategies
to be incorporated into- the spstem. - Consequently; the approsches 1o dchieving data security
taken by these schemes will not be directly awllmble in saustylngthe requrrements we have set

forth for our system.

L T SRR e T T

10 PREVIOUS WORKS §15

1.5 Thesis Outline

_ In the next chapter, we present a detailed model of the VIM Computer System. We
describe in detail the applicative base language being used and the dynanmic data flow execution
model employed. In addition, a formal semantics of system behaviour is also: developed to
rigorously define its operation. The manner in: which users communicate with. the system and
the means by which long-lived objects are defined are .also presented. To simplify . the
presentation, we assume a system supporting only a single:user.’ Beeause of the applicative
programming model used in ViM; this simplification does.not invatidate its applicability to a
multi-user system. We do not consider non-determinate comipitation in our model. This
restriction also simplifies the algorithms. . The complications involved .in moorporating non-
determinacy into the model is a topic which we discuss in Chapter Six.

The third chapter in the thesis presents the general strategy for the backup and recovery
system. We define the criteria- which the backup.system will use in determining what
information should be recorded on . the hbackup storage medium: We also present the
architectural enhancements necessary 10 support.the: backup ant recovery utitities.

In the fourth chapter we grve a more detalled deecription of the backup and recovery
algorithms. The alterations necessary to the mterpreter are drscussed. We also fonnahze the role
~ of the backup and recovery system in the context of the abstract model gtven in Chapter Two
and present the changes necessary to the base language mstmcuons to support our algonthms.

The fifth chapter deocnbes low levei details in the transfer of information . between the
backup storage medium and the VIM system. We. discuss-how -to: guardntee the atomicity of
information transfer so that a consistent 1mage of the system state is mamtamed on the backup

"storage medium. We also menuon how storage management is handled on the backup store as
‘well as descnbmg how to minimize the oopymg of mformatton from system memory onto

‘backup memory

The final chapter presents a summary of the thesis and discusses some topics for further
rescarch. We pay particular attention to the changes which may need to-be made to the backup
and recovery algorithms if our modcl of system behaviour is augmented to allow non-

determinate computation.

8§20 : \ Sy ap 1
Cha;pter Tm
The VIM Systm

"The VM Computer System is an expenmental project m the Computatnon Structures
* Group intended for the mvesugatron of a novel data ﬂow archttecture _for the efﬁclent support of
fuictlonal languages. In tlus chapter we dnscuss thedemgn of the szstem and preeent an
operational sémantics tor its apphcattve base language 'ls'he mam programmmg language
" ‘supported by VIM is VIMVAL, a major extensron of the appheauye language VAL [1] VIMVAL
programs are translated into the base language data ﬂow graphirepresentanon whnch is then
_executed by the VIM Jnigrpreter, Users communicate with VM through-a. Shell program. The
. Shell provides a powerful intgrface to the system that sliows:users to build and manipulate VIM
environments - the main fagility for constructing long-lived stouctures. - We discuss each ofthese

_ camponenys, VIMVAL, the Interpreter, and MSM&:&WW

: 2.1 The Appllcatrve Language, VIMVAL '

In. . this section, we present an informal overview: of the: VIM ‘high~devel applications
- language, VIMVAL. VIMVAL differs: fromr VAL, its: predecessor; in: that functions are: treatéd as
first-class objects, free use-of recursion and mutuak:rocursion:s aliowed; 'and polymorphism is
~ supported threugh a Milner-style iype inferenoe mechanism. Usersxan program in‘s structured
and hierarchical manner througlr the: use of a:madideconstmet described below.

In addition to various scalar types such s integers, reals, characters and boaleaps, VIMVAL
also contains Structure types such as arrays and reeorrls Users can express hlstory sensmve
‘ oomputatIon thmugh the use of streams [30] A stream 1s a potentxally mﬁmte sequenoe of
. homogeneous values whlch may be of any type (mcludmg stream) that allows users to wnte
" history sensitive ¢odé (such as the modelmg ol‘ a oonventronal memory cell) wrthm a functtonal
" framework. ‘Thére are three operatlons on streams ﬂrst whlch returns lhe ﬁrst element of a
""stream rest which given a stream retums the stream wuhout ns ﬁrst element, and afﬂx whzch
" affixes an element to the head of a stream We shall drscuss the lmplementatron of stneams in

greater detail in the next scctlon '

Because l‘unctions are treated as first-cluss objects, ‘they-may be: passed as arguments to
other functions, rcturned as the result of a function -activation: and :may be built. into data

12 THE APPLICATIVE LANGUAGE, VIMVAL §2.1

structures e.g., array[Function]. The body of a function is an expression whose type is the result
type of the function. The form of an expression may contain conditional expressions, function
invocations, tagcase expressions whi¢h aow one of'a series of expressions to be chosen based on
the value of a tag, and let express:ons Whlch are vnewed as sugarmg for lambda abstractions.
Conventional iteration in VlMVAL is expressed using tall recumlon Variables in VIMVAL are
considered as only 1denufiers for a value Once an 1denuﬁer is deﬁned it cannot be changed —
VIMVAL is a smgle-assngnment language The treatment of vanables as ldenuﬁers for valyes as
opposed to placeholders for memory cells whlch may be arbntrauly mutated as found in more
conventional constructwe languages isa dxstmgulshmg charactenstlc of VIMVAL.

A module in VIMVAL is a function which may be invoked from other modules or by a user
command to the system. A module provides a mechanism for-grouping related functions
together. These functions may be invoked from within the modtle or, if they are passed as a
result of the module; by functions externat to the module. The body-of a module may use niames
that are not bound by definitions in the module. These free names must be bound before the
module can be run. Modules may be separately compiled with“type consistency of ‘identifiers
. used across modules being checked by a linker. - Type specifications are eptional in VIMVAL.
Omitting type: definitions allows free names in modules to be-bound ‘in possibly several contexts,
each binding causing a different resolution of the types of the free variables. Users can, thus,
express useful polymorphic functions using the type inference meéchanism. For a more detailed
exposition on the VIMVAL language, the reader should see [13]and (28}

2 2 The Vim Interpreter

The base language for the VIM system is the language of dynamxc data flow graphs.
Programs wntten in VIMVAL are translated mto their data ﬂow graph representanon Base
language programs are evaluated by the ViM mterpreter A dynamlc data flow graph is a
directed acyclic graph in which nodes represent base language mstructtons and arcs are used to
~ indicate ddta dependencies among instructions. There are two types of arcs in the graph: walue
arcs and signal arcs. An arc (s, 0 is a value arc if it carnes Lhe value pmduced by the exccution of
node sto node 1. A szgnal arc is used for performing a control funcnon such as selecting which
arm of a conditional expression is to be evaluated. A node is satd to be enabled if and only if it
has reccived all necessary values and signals. Enabled instructions cin be executed in any order
and the interpreter is free to choose the execution of any cnabted instruction from any current

function activation,

§2.2 " THE VIM INTERPRETER - 13

To illustrate the structure of a Vim data flow graph, we show in Fig. 2 the base language
representation of the VIMVAL function shown in Fig. 1. Instructions are drawn as boxes, with
the opcode of the instruction labeled inside the box. Value arcs are drawn from the bottom of
the instruction which produces the value to the appropriate operand slot in the target instruction.
Thus, operand number one for an instruction \yill be sent along the leftmost value arc entering
that instruction. Signal arcs are drawn entering into the side of instructions. Each instruction has
an index in the activation used for addressing burposu. The behaviour of%the bas§ language
instructions are described in greater detail later in this chapter. .

Function f(x :boelean; 4, g : Function returns int)
if x = true
then /(1) % hreturns an integer
else g(2) % greturns an integer.
- endif
endfun

Figure 1: A simple ViMVaL program

Any non-scalar value produced during the evahxat:on ofan activation is placed on the VIM
heap. The objeots which may be found on the heap mciudé function templates and data
structures such as arrays and records. Associated wzﬂx every object is a umque 1denufer uid,
which distinguishes this object from every other M on me ‘ieap. Thus unlike sxmple scalar
values, data structures and funcuon templates are ﬁbt tréiisrmttzd along value arcs in an
activation. Rather, the result of producing a complex stmcmm,ga,toplapg ;h;s;;stmm on the
~ heap and to send its uid to all target destinations.-instead. --ViM-employs a-reference-count
mechanism to manage the beap. When there exists no.reference 10, structure onthe heap from
wnhm any current acuvanon that structure can be remoyed. fmn}the heap and its space reused.
~ The ViM heap may be consnden:ed to be a multi- raou:d, dirgeted acyclic, graph where an arc (s, 9),
, connectmg nodes s and , mqmtes that ¢ is a compon rghof,s. JHerents on &he heap may be
'safely shared among objects. This feature is a resuk of .the. applicative nalpre of the base
language. An object on the heap consists of a unique identifier and a structure value.

A distinctive feature of VIM base language programs is that no.arc in the graph is ever
reused. This is a consequence of the graph being acyclic with tail recursion uscd to model

iteration. This modcl of data flow graphs requires that cvery new function application create a

S Bt NP it e B B e e

u THE ViM INTERPRETER - 8§22

ne‘wcoby'bf‘ﬂ’\eﬁmctiﬁn' miction tetnpld
tagged tokert dynamic dutd’ fow thodetl nﬁed’an‘Wﬂﬂ” ’When a ﬁmcnon is

“ retums a resifit. the acky
“instructions.’ %nﬁﬁstrawﬂhs iﬁ*ﬁg 3

False

MAKEREC

| RELEASE

L

SET

Hgmz AVmMMM

o Y Lt .ive,.# v‘..‘,i,h, i

4td-and i s SergeEYDE thokight of 2s a sxmphﬁcanon of the

e

msmmmd ﬂxewpyafﬁiéf&nm ns‘graﬂedawfem Ji 1 when theacuvauon
: ‘ : LWMWMMséﬂﬂoaﬂnmawmet

5ot Jf’zé‘f AN H ”Wi iR

YRSt TS

N

- §23 THE VIM INTERPRETER 15

SX A APPL Piidownes.

trod L SR S

1. Bafoe APPLY t executed.

3 Aﬁeraclmuon completes with mummultu e
Figure 3 Function application in Vix

2.3 The ViM Shell :
Users communicate with the VIM system thrq;gh a syste@ Shell. The VIM shell is

© vy £

responsible for accepting user commands, and*i translam; them mto the appropriate base
language representation and then invoking the mterpmarw?xmmls base language program
whenever necessary. A user session typically consists of the ?ner communicating with the Shell
in an interactive mode, inputing Shell commands whose m@l&s are subsequently output to the
user. Every user executes m qumgue enwmnmenr A VIM envnronmebt relates symbolic names

PR EE

to values and acts asa- mposnory for all Iong-!wed objects: -Gbpetsnferenced in an envnronment

ShRpIngns e ek Uy P B R

must be eprICltly d«.letcd by the user. The VIM cnvwonment p!ays the role of a dlrectory
structure in conventional syslems Uscrs spemfy that a partlcular (name mlue) palr is o be

2SI Wt

piaccd in hIS emfironmem ﬂlrough the BIND comﬁ;anﬂ The user command

Lot '7"‘- i R

BIND name ;= <expresswn>

6 - THE VIM SHELL §2.3

binds the value of the expression to the name specified: -This binding is then ptaced in the user’s
environment. In addition to the BIND command, there is a DELETE command which, when given
a name, removes the <name, Value> binding from the user’s environment. The command:

DELETEN

removes the binding, <N, Value> from the current envirotiment, Users must execute a DELETE
command to have an entry in their VIM environment removed.

~ The VIM shell translates a BIND oommand into its base language representation which can
then be executed by the VIM Interpreter. The translation for the command BIND x := f(2) is
shown in Fig. 4. The APPLY instruction creates an activation of the function f With argument z.
The result of this activation is sent to a special instruction, TERMINATE, which informs the shell
that the value which is to be bound to the name\;: is av/adable. The storage occupied by this top
level activation can then be reclaimed by the systegr m the RELEASE instruction. Thus, once
the value which is to be bound to t.he symbohcaame is kno\m. the activation created by the shell
can be removed from the system.

'
~

APPLY

 TERMINATE ____4 RELEASE

Figure 4: The translation of the BIND oommand ;

There is no translation into a base lungquc program necéssary for the DELETE command. This
command is processed by the shell enurely — NO assistance is rcqmred from the Interpreter to

cxecute it.

§2.3 " THE VIM'SHELL 17

The TERMINATE instruction described above 'is ised to synchionize the operation of the
interpreter program with the sheil: ' If this syrichroﬂiiaiﬁdh’ﬁie‘@ﬁéﬁisr’h’&ere temoved and BIND
commands were allowed to arbitraily overlap with one another s possane for moorrect
environments to be constructed. To see why, consider two BlND commands input in succession:
BIND(x, F) and BIND(x, G). It is clear that if the commangds .are. processed correctly, x should
 finally get bound to the result of evaluating G. To, ensure. thaubls semllzatm takes. place,
however, requires that the second BIND command does not gecyF, until the first one completes.
As we shall see later, it 1s possible to still exploit a great amount of concurreacy by allowing the
computation of Ftp be sl pl’oceedmg even if BIND (x, #) exeeytes. This feature, known as early

completion, is described in section 24.2. A

In the next section, we will present a formal operational midde! for the VIM interpreter,
base language and shell. This model, called M1, will he necessarily vecy abstract. We will not be
considering, for example, internal representation of data stru%ml:gs in .memory, paging, of
structures to and from memory or scheduling algonthms. ‘We make two sxmphﬁcanons of the
actual system in our model. First, we assume that all cbifiputatiod in the system is Hérerminate.
A computation is determinate if its output is totally specified by the walue of its inputs; it's
output does not depend on such factors as the relative arrival time of its inputs. Secondly, we
assume that only a single environment exists in the system and, thus,'t'.'!\'lere is nd n;eed for
providing an explicit environment name (o those instructions which manipulate enviroaments.
In the following chapters, we shall refine thxs model to describe the backup and recovery
algorithms L e D T G O :

2.4 A Formal Operational Model - M1

The VIM system contains three major componems an lnterpreter a system State and a

Shell. The State embodies all current information in the system ie, heap activations, enabled

instructions and environments. The interpreier executes a base: language representation of a

Shell command and rewurns the value of that.command, ;The value sewrned by.the interpreter is

- bound to a symbolic name.in the user environmeat. The name being bound is determined by

“the current BIND command. being processed. ‘A shell command: is translated into its base

language represcntation and is.then executed by the interpreter. This:tsanslation: is performed by
the Shell. The shell as described above is a function mupping from a State and a session o a new

Stare. A scssion denotes the history of Sac/l commands input to the system. The shell translates

18 A FORMAL OPERATIONAL MODEL - M1 §2.4

shell commands, invokes the interpreter to execute these. commands in the current state, and
binds the result of these commands to names in the user environment. It returns the state which
is produced after evaluating all shell commands in the session. The abstract architecture of the
VIM system is shown in Fig. 5.

In the following discussion, sets are denoted by bold font, elements of sets are denoted by
italicized letters and names are indicated by a script strings of lettefs. Thus, Set is a set, Elf € Set
and tag is a tag. We present our semantic deﬁnitibﬁs‘uiihzg;‘\g'fl‘MVALiiik‘e syntax augmented with

- operations for performing set abstraction, set memberstip, etc. ori the domains defined below.
Function domains are specified using arrow (=) notaton. Thus, the domain equation,
A = B — C defines A to be the set of all functions with dothain B and range C. Tuples are
enclosed using angle brackets.

Formally, we define the ViM System to be a three-tuple:
VIM = <Shell, Interp, State> where |
State = {Act X H X EIS X Eav>
Act = U, — Activity
 H=Uy ST
U, = the set of unique identifiers used for activations.
Uy, = the set of unique identifiers used for structures.
EIS = the set of‘enabled instructions, described later.
Env = Name — (U U Scalar)
Activity = N — Instruction, N'being the set of natural numbérs. ‘;

An element Act in the domain of VIM activations, Act; is a mapping from unique identifiers to
activities. An activity is a function mapping from natural numbers to instructions and represents
the code of an activation. An activity can be thought of an' array of imstructions, the #* element
in the array specifying the #* instruction. The ¥iM-heap, H. is modeled as a function from
unique identificrs to structure types, ST defined below. The striscture of the heap is determined
from the mapping defined by the heap function. Scalar values are not represcrited on the heap.

SR et T e e T T

R A I S S e

§24 , - A FORMAL OPERATIONAL MODEL - M1 19
Activation
value,
: Instructions ¥
Eis - [Interpreter Shell .
v
New State

Figm 5: The Abstract Vim System

‘‘‘‘‘

Environment oomponent m the State xs also a fum:tion mapmng from a name whlch is gny
sequenoe of characters, to enther a umque 1denuﬁer refemcmg, a structure on the heap or a

scalar value.

The data types supported by the system-are given below:

Scalars = !nm_elsu Reais L+ Boolesns) Character U-Null - -
‘Name = Chamcter “the set of all character sequences
Intc;,crs the set of all mtcgers U {undej}

‘Reals = the set of all reals U {undef}
Booleans = {rrue; fulse, -uhdef}:

Character = the set of characters in the machine U {undef}

Null = {nil. undef}

20 A FORMAL OPERATIONAL MODEL - M1 §2.4

ST = {ArrayU{undef}} U {RecordU{undef}} U {OneofU{undef}} U {Function}
U {ECQ} U {Clsr} U {Dests}

Array = Z — (U U Scalars), Z being the set of integers.
Record = N — (U, U Scalars U SUSP U Dest), N being the set of natural numbers.
Oneof = N — (Uj U Scalars U SUSP), N being the set.of natural numbers.

Function = N — Instruction, N being the set of natural numbers.

The set of structure types includes arrays, records, and oneofs. - Arrays are modeled as ﬁmctions
from integers to either unique identifiers representing structures on the heap or scalar values.
Recards are modeled as functions from natural numbers to exther unique identifers representing
some structure on the heap, scalar values, suspensions, whlch we describe later, or destination
lists. As we explain below, the return address of an activatior is packaged into a record and
transmitted to that activation when it is instantiated by the APPLY instruction. The destination
list represents the list of return addresses which are to feeeive the result of the activation. While
components of record structures are addressed by theii' ﬁeidmatﬁe in VIMVAL, the compiler
translates these names to the offset of the addressed component in the record. o

Note also that the set of functions is also included among the elements of the structure
types in the system. Thls is consonant with our treatment of func’uons as ﬁrst class citizens. An
element of type Function is a mappxng fmm natural numbers to mstructlons just as elements of
the set of activations are. As we shall see below, the only dlfference between a function

definition and its corresponding activation is that the latter is sensitive to the effect of i mstrucnon
execution since operands and signals are received by the instructions within an ‘activation
whereas a function is a pristine object like any other ViM structure.

A function closure is a special record of twe compenents:: the first component is the uid of
the function template of the closure and the second component is the list of free variable
dcfinitions found in the function. The closure of a fixnctien,eonlplctely defines the bindings of
the free variables in the function and, thus, must be’ dcﬁncd before the funcuon um bc apphcd
Free variables are accessed by its index in the free vanable hst. ’ﬂie doﬁnmon ofa ck)sure is

given formally as:

Cisr = <U; X (N — (U, U Scalar))>

- §24 .- AFORMAL OPERATIONAL MODEL - M1 21

2.4.1 The Base Language Instructions

A base language instruction is an seven-tuple consisting of‘an ‘opeode, three operand fields
- {not all need be used), an operand.count used-to: indicate ‘how:many operands must arrive, a
. signal count used to indicate how many signals: must:be:recsived; and the destination record
containing the list of destinations for this instruction. The:set-0f opeodes we will be considering
in. our operational model .will include .record. structirs . operations, function application
instructions, and operations oa early completion clessents, Thess clases of instructions will be
the ones of greatest interest when.we present our backup undmom*y algonthms.

Instruction = OPS X (U UScalars)3x N X Nx Dests

A destination has type which i sither umondmpml. if the:sesult of the instruction is t be
sent automatically to the destination, true or false used:bysa SWITCH:instsuction %0: control
conditional evaluatlon If the type of the deslmatxon is true, then the result is a sxgnal which is
" sent to the déstination mstructton if and only if the swrrcn pperator evaluated to true A similar
* description appties for a falsz type d&stmatlon AII désﬂnéﬁons of an mstructxon must be wnthm
" the same activation, The second component of a dwtinauon 1s the mstrucnon number to whlch
" the signal of result value should be sent. If the dstmanon ls to recelve a sugnal then thxs must
be specified. Otherwise, the opérand field to which the ‘result iS 10 be sent must be provnded.
For convenience we shall refer to the elements of an instruction using dbt', . notatxon. “For
example, the opcode of instruction 7 shall be denoted as Lopcode etc. ' '
Dests = (D)

D= {uncond truz fatsc} X N X {opl 0p2, opz, slqnd}

An enabled instruction is a two-tuple (u i) representing.an mu:netbn in some activation which
has received all necessary operands and signals. Any enabled instruction can be executed by the
interpreter. The applicative nature of the system guardneess thi¥iché beliaviout of the program
will be determinate regardiess-of the:order in which. enabledinstructiohs i the program are

exccuted.

El = <U, X N>.

EIS = #(El) is the sct of enabled instructions.

n A FORMAL OPERATIONAL MODEL - M1 §2.4

2.4.2 Early Completion Structures

According to the mode! of operation presented above, an-instruction is allowed to execute
only when it receives all necessary operands and signais. In the case when an instruction is to
operate on a data structure such as an array or record,.this means that the entire structure must
_ be fully constructed before this instruction can execute. If the iastruction only needs to examine
a certain portion of the structure, then the execution model unnecessarily constrains parallelism
in the program. To alleviate this problem, there is a facility im VIM: known a8 early complétion.
Early completion structures allow greater concurrency of operauoa by:allowing a data structure
to be constructed and used before all of its components are avaxlable. The compller designer.can
use this facility, for example, to generate code which wxll cnuse the results of an activation to be
- an early completion structure to allow the cafling activation ‘to-use some of the results of the
callee before all of them are known., ' ; ‘

An element of the set ECQ is an early comp[enon elemen{ 111] An early completion
~ element is a two tuple, (1), where u€ UA and i € N. The early completmn structure is
asennally a queue oontammg target addresses of those mstrucuons ‘which requu'e the value of
this element in the structure. When Lhe value is ﬁnally produmd lt w1u replace the ec-structure
and will be sent to all targets Thxs prooess is mustmed in Fig. 6..

ECE = <U, X N>.
ECQ = %(ECE)

An element, (1, §) € ECE denotes an mstrucuon whlch has requested the value whxch is. 10
replace this early compleuon structure. The uid u dcnom a funcuon activation, and / is the
index in this activation of the target instruction. ' ‘

2.4.3 Delayed Evaluation Using Streams
The astute reader would have noticed that the stresm type presented in an earfier section is
not defined in our formal model. We represent streams using the record and oneof types:

Stream[T] = oneof
[empty : null
non-empty : record
[first: T
rest . Stream[T]]]

§24 A FORMAL OPERATIONAE MODEL - M1 23

1 2 ik A SELECT

— ©
‘——-_.
g <

vl v2 A vk

R.k is an early completion structure whose value is SET by instruction B.

Heap Activation

* After B executes value of R.k is sent 1o all wrgets.
vl vl v ‘

Figure 6: The Use of Early Completion Structures

We have prevnously menuoned that streams are pptem,\ally mﬁmte structures. In a purely
data driven execution model, the product:on of a stream may far outstnp its consumption. To
avoid wasteful computation, streams are produced in a demgad-driven fushion [16}. In demand
driven evaluation, an elemem of a stream 1s produced only when n[s consumer requires it To
| nmplement tlus feature, a specual record element called afu;pensgoal is lmroduced A suspension

contains the address of the mstrucnon in the stream producer responsible for instantiating
f productxon ol‘ the next slream elemenL When a consumer agcepses a suspcnsnon. Lhe suspensxon
" becomes replaced by an early compleuon queue. and a signal is scnt o the, address which the
suspcnsuon holds A new record is Cl‘CdlLd l‘or the neu elcmenl ;md the carly mmpleuon qucue

will get erl.lCLd with the llld of llm record. The head. of lhts new record will contain the new

7 S A FORMAL OPERATIONAL MODEL - M1 §2.4

stream element and the tail of this record will again hold a suspension. We illustrate this process

graphically in Fig., 7.

1. Stream S with firs{S) = v. M 2. After suspension accessed, it becomes an ECQ.
s S

v l Susp ' v ECQ -

Producer - (u,i) is the consumer instruction

3. Producer yields next element which is transmitted to waiting consumers.

Figure 7: Demand driven evaluation of a stream using suspensions
SUSP =<UXN>

The suspension structure is a pair <, » which represents the address in the stream
producer that is to be signilled when the suspension is accessed.

2.5 Semantic Functions for M1

In this section, we present an operational model for the ViM Shell, Interpreter and base
language instructions which extends the operational model defined in the previous section. The
instructions which we examine here are chosen bécause of ‘L‘heir relevance to the backup and
recovery algorithms developed in the following chzipters'. “We partilion our presentation into

“four categories: formal description of the Shell and I‘m"er"pgf‘eler, instructions which operate on
structurc types. instructions which are used for m:inipulaliﬁg éarly completion structures and

strcam clements, and instructions which are concerned with function application and return,

§2.5 SEMANTIC FUNCTIONS FOR M1 2

“In the next section; we define sore auxilidry furicions that will be useful for our
presentation. These funttions are used in the deﬂninons of" ﬂie a’bcwe mermoned base language
instructions. SR e

-2.5.1 Auxiliary Functions

There are several primitive auxiliary finctions which wé'need to define beforé presenting
our operational model. These funcions operate on the héap, -activation; ‘and environment
components of the VIM state. The fimétions NewHenp: RenioveHeny adds and remove an
element to and from the heap respecnvely The NewHeap funcnon tages m Lhree anxuments a
current heap H, a uid u, and a structure, v. It retums anew heap H 1dentml to H except that
this new heap is defined for uw such that H'Gi) = ». This deffrition ‘of 'Néwﬁeap allows us to
rebind existing uid’s to different values, a feature which.will bﬁw when implementing early
completion structures and suspensions as we shall see later. The RemoveHeap funcnon takes as
arguments a heap H and uid u, and returns a new heap H xdenuéf w{l except that H'(u) is
undefined. bt S

| NewHeap: H X Uy X ST - H

Function NewHeap (H, u, v)
Vu €Uy let H(u) = H(u)ﬂu wy
1 | vi - L
in o
H
endlet
endfun

RemoveHeap. H X Uy—H
Function RemoveHeap(H, u) B S ""

vV, €U letH(u)- H(u)lfulatu
= undeﬁned otllerwise
in
H
endiet
endfun

There are similar functions, AddAct and RunoveAct dcﬁned lbr thc activation componcent

of the state and AddEnv and Removelny defined for the cnwronmcm u)mponuu as well,

B T IR - . R T T I

2% ~ SEMANTIC FUNCTIONS FOR M1 §2.5

Since the qanSmission of results and signals is an activity.common to every instruction, we
‘define an auxiliary function, SendToDest which is responsible,for sending a value or a signal as
the case may be to the specified target instruction and constructing a new activation function and
new set of enabled instructions to reflect the effect of this transmission. SendToDest constructs a
new activation component in which the target instruction found in the:destination argunient has
been updated to reflect the transmission of the value orsignal. . If; a6 airesult of this transmission,
the target instruction becomes enabled ie, bave its opens and sigens fields become zero, that
instruction is appended to the enabled instruction set.

Result‘l‘ype (UH U Scalaﬂ U signal
SendToDest: ActXEISx U&x DxReaphT;peﬂmx ElS
Function SendToDesK Act, EIS, uF 3 Lde, I, opﬁhm) mult)

let FA = Act(ug)

I = FA()
resultval = if result = signal
then undef
else result
endif

newopnuml = if opnum # op1 then Jop1. qlgmlml

newopnum2 = if opnum # op2 then 1.0p2 elsé.pesultnal
newopnum3 = if opnum # op3 then /.0p3 else resultval

newopent = if resuit = signal
- then Jopcnt
else /opent-1
endif
newsigent= if result = signal
then /sigcnt-1
else /sigent
endif

[= l.opcode X newopl X newop2 X newop3 X neivopcntﬂx newsigent X ldests

ViENFA() = FAY, j#i
= j=1i

NewAct Add 4AcA Act ., FA ') % new sct of activations

"~ then [IS U {<u 1‘>}

§25 ‘SEMANTIC FUNCTIONS FOR M1 -

else EIS
endif
in
NewAct, NewEis
endfun.

Two functions which call SendToDest are SendValue and SendSignal. The function
‘SendValue calls SendToDest for every target in the destination list of an instruction whose opnum
is not signal. That is, all target instructions that are to‘recéivé’ the result of the instruction are
sent the result value by SendValue. This operation is accomphshed through the use of
SendToDest. SendSignal ‘operates in a similar fashion: 'w: SendMalue excépt that it calls
SendToDest for all targets in the destination list of an mst.nwon whose.opnum. xssigmL

SendValue: Act X EIS X U, x Dests X ResultTml-u mx ﬂS

Function SendValue (Act, EIS, up ,, dests, v)

let ValDest = {<dc, i, opnum> € destslnanG {th,opz.m}}
<de,, i}, oplmmlk ey, by,
opnumy,>, ... <dc i opnumn> =
n components of ValDest
in .
SendToDes«
SendToDesK...
SendToDes{ Act, EIS u <dc i,0 >, v)
Fa Sy Yy M
U gy Sy b OPAUMLY, V)os) .
endlet
endfun

SendSignal: Act X EIS X U, X Dests X — Act X EIS
Function SendSignal (Act, EIS, u £ g0 dests)

let SigDest = {(dc i, opnumk>‘€ dests | apnuiri ‘ stqnal}

<dey. iy, opnumy> <dcysiy.0pnumy, ... <y opnumm> =

m components of SlgDesl
in
SendToDesK
SendToDesK...
SendT oDest(Act. EIS. u. <dc'l - opnum > siqml.)
(dcz 5 opnum2> Stgnal))

28 SEMANTIC FUNCTIONS FOR M1 §2.5

endlet
endfun

2.5.2 A Formal Model of the Shell

As we described above, the VIM shell serves as the 'mterface between the interpreter and
the VIM user. The formal definition of the shell is given below:

Command = C X Name X (Exp U undef)
C = {BIND, DELETE}

Session: StreamjCommand]

Shell: Session X State — State

Function Shell (Session, State)

let <Act, H, EIS, Env> = State
NewState =
if ChooseToE xecute (State, Session)
then ShelX Session, Execute (State. Choasq"EIS)))
elseif empty(Session)
then State :
else let ¢, = first(Session)
inifc - .C = DELETE
then <Act, H, EIS, DelEm(Env, Name))
elseif - .C = BIND . o
then let % cofitmand is BIND

FA = Translate(c,)
Upy = new uldfrom U,
Act’ = AdlAcz(Act Ure FA){ »
NewEIS = EISU 4&; B | FAG).opent = 0
A FAG)sigont. = 6'} |

State’, v = Imerp(State, Chatcc(NewEIS))
{Act’,H', E1S". Em = State’
Env' = AddtoEnv(Env; <. .name, v)
in - ‘
{Act', H', EIS’, Env>
endlet
endif
endict
cndif

T P 1T, SRR SR S e B i e YR g o

- §25 . SEMANTIC FUNCTIONS.FOR M1 9

in -
if empty (Session)
then if E75°2 {} ’ ‘
then-Shell (Session; Execute{ Newstate, ChaMilS ')))
else Newstate
endif
else Shell (rest(Session), Newstate)
endif

endiet
endfun : : Syt

The shell takes in a8 input a siream of sheil'‘cotnands. ‘It calls the function
- ChooseToExecute which -examines the .cutvent stateidnd séaMon and: detérfines if the shell
should process the next shell command or whether it should call the Execute finction using the
current enabled instruction™ set. ~ This fiinction “allows “the system 0 continue to process
instructions even if the remainder of the sesgion. has po%ggt;bm;'gpuqhymg mser.- One possible
implementation of this function would be a routme whtf:h! exag:mgs :he current mput buffer —
if the buffer is empty and there are mstructxons stdl to be executed, it retums true. If, on the
other hand, there are shell commands available to be pmssed 1t retums false. In the case when

there are both commands and enabled instructions avaiiable. it can o arbitrar

it ‘ﬁl'y’ remm either true
or false. If the function returns false and the ﬁmmmﬂnmm is DELETE,
then the shell removes the Cname, value> bindifg Tréiii the chirent evironment and processes
the rest of the command stream. If it is a BIND command. ewever, iteplisan puxiﬁary function,
Translate with this command stream element. rmmh Quih‘ty Fﬁ ’whxch embodies
this command. For example, if the commarid{ ;n;n o f'run:latef\\was BlND»‘.x f(2), the
activity returned would be of the form shown in Fig. 4. The result of evaluating’ﬂm activity
represents the value of the command A new activation is constructed from this actnvnty and this
activation augments the current activation state. The enabled instruction component is also
appropriately augmented 1o inchude alt-instructionsin tis wew aclviition that Have their operand
and signal count already.:zero. 'The sholl callyiie %ém&&r%‘ﬁkn&w siate and"some
enabled instruction’ from the set -of cnabled ingercHSNs, - /Phé" choide: of which eriabled
instruction 10.exccuteis madc by ‘the Cholee funttion - Pieiew Waté #tuimed by the interpreter
is used by the shell in-processing the-next sheil- commhand tf e afe any more to be processed.
The value, v. returned by the interpreter is Bound it e user eftvivatiment to' the symbolic name

30 SEMANTIC FUNCTIONS FOR M1 §25

which is an argument to the BIND command. If there are no more stream commands to be
processed, the shell calls the Execute function described be‘lp\y',to e;gééute the remaining
instructions found in enabled -instruction set. f there are: no more-enabled instructions, the

function returns with the final state.

2.5.3 A Formal Model of the Interpreter

The interpreter is a state transition function from states and enabled instructions to a state
and either a unique id or a scalar value: '
Interp ({Act, H, EIS, Env>, Choice(EIS)) - (Act'; H', EIS", Env> X (U [y Scalar)
The Choice function, as ‘w'e explained above, is used to determine which enabled instruction
should be chosen for execution from the enabled instruction set. The. definition of the
Interpreter is given below: o

Interp: State X EI — State X (UH U Scalar) -
Function Ihterp (State, <u, D) %(u,‘ Disan enabled mstrucuon ‘

let '
{Act, H, EIS, Env> = State
FA = Acku)
Newstate = Execute(State, <u,)
{Act', H', EIS", Env> = Newstate
in
if FA().opcode = TERMINATE
then Newstate, FA().opnumi
else Interp(Newstate, Choice(EIS 7))
. endif ‘
endlet
endfun

The instruction which is chosen for execution must be part of some activation defined. in
the set of current activations. Act. - The interpreter calls:on an auxiliary function, Execute,
defined below which contains the definitions of all the base language primitives. Note that the
interpreter only returns its result when the TERMINATE instruction: Bas.executed. This restriction
guarantees that environments will be: updated correctly aecording to the order in-which BIND
commands were input, When the interpreter returns. a pew command can be processed by the

§2.5 SEMANTIC FUNCTIONS FOR Ml k)|

shell. Note that because of the presence of early completion structures, there may still be many
- activities in progress at -the time the TERMINATE instruction ' executes and ‘the next shell
command is processed. Thus, our model aftows instructions foand: i activities created from the
evaluation of different bind commands to'execute‘in paritiel; We do not come into problems in
. carlier, bindings are: always

augmenting environments though, because, as we discussed
constructed in the proper serial order.

, The Execute function examines the instruction being: precessed and performs the necessary
function. The result of this function will be a new: ViM state.- The structure of this function can
be given as follows: ‘

Execute: State X EI - State
Function Execute (State, <u Fp kF A>)

let <Act, H, EIS, Env> = State
FA = Acl(uF .
I = FA(kg)
destmauons = J.Dest,

NewEIS = EIS - {<ug o kp)
in
if Zopcode = SET then ...
elseif /.opcode = APPLY then ...

'endif'
endlet
endfun

The destmatxon list speclﬁes Lhose mstmctnons m the current actwagqn to, whxch the result
of executmg this pamcular mstrucuon should be sem. Recall that in addmon o transmnttmg

results we may also need to send sngnals to d&stmauons. 3

R SEMANTIC FUNCTIONS FOR M1 §2.5

2.5.4 Formal Definition of Base Languag_e Instructions

In this section, we present a formal definition of those base language. instructions that will
be useful to us in describing the backup and recovery algorithms: later in the thesis, Keep in
mind that these definitions are actually found within the Kxecute function given above.

25.4.1 The TERMINATE Instruction

The TERMINATE instruction is used to receive the result of evaluating a base language
program. This result.value is then bound by the shell in the user environment. The instruction
takes in one argument, which is either a scalar value or a-uid. It sends no:results but will send a
signal to a RELEASE instruction which is used to remove the activity from the set of current
activities,. We describe the operation of the RELEASE mstmcmn fater in the chapter The
interpreter picks up the result from the first operand slot ir in the mstructlon when it returns back
to the shell. '

if Lopcode = TERMINATE then
let
= H(lopt)

Act’, NewEis" = SendSignaKAct, EIS, u FA destinations)

in
{Act’, H, NewEis, Env>

endlet
endif

2.5.4.2 Structure Operations

The base language contains powerful instructions for the creation and manipulation of
structure types. There are three structure operanons of pamcular mterest CREATE, REPLACE
and SELECT. The CREATE operator is used to create a stmczure of a part:cular d:mensnon. Ina
“functional Ianguage a structure, ‘once defi ned, mnnot be subsequently altered Replacement of
an element « in a structure with an element ﬂ is done by creaung a new version of the structure
with B replacing a in the new version. The SELECT operation returns the value of a specified

field in a structure.

The operations we describe below are for the record structurc type but are very easily

converted for the array or oncof type.

§25 SEMANTIC FUNCTIONS FOR M1 33

To create a record structure, we have a MAKEREC intstruction. -1t takes in one argument, the
size of the record structure to be created and constructs a recordof such a dimensjon, setting all
the fields in the record to be undef. In addition to the MAKEREC. imstruction, there is also a
MAKERECEC instruction which constructs a fecord, all of whose elements are early completion
structures.

if J.opcode = MAKEREC then
let (
m = [opl % m is a natural number

, = anewuid in Ug,
Act’, NewEis" = SendVaIue(Act EIS destinatiam:w
Act”, NewEis” = SendSignal Act’, Newg‘ﬁ Mmtions)
H = NewHeap(H, u, MakeRecam(l m Y
in
{Act”, H', NewEls , Env>

endlet
endif

The REPLACE instruction on records takes in t.hree argumanm -the uid of a record R, the
field in the record which i is to be replmd,f‘ and the val"ue pf nmnew element, x, which may be a
scalar or a md It creates a new copy of the record, R with field fin this copy having value x.
We mention the REPLACE instruction here mostly for wﬂme as it will not be involved in

the design of the backup and recovery algorithms we develop latenwthe thesis. For a detailed
semantic description of this operation, the reader should see [17]. -

The SELECT inistruction is given a record structure and the offset in the record of the field

to be selected. If the item to be selected is an early completion. structuse, then the instruction
queues itself onto the ec-queue. When the value of this field is finally lfnown, the select
instruction will be placed again on the enabled instruction queue so thz:t5 :? V:;\ay“e‘iecute It is also
 possible that the item being selectéd may bea wspeﬁsi&iﬁf the rebirti s pirt of a stream. Recall
-that the rest opctation on:streams'is trinslated into a ‘sébect’ dpétation on the sécond component
 of the head of the current stream. - Becausé streams aré produced in a demand driven manner,
this field may be a suspension in which case the SELECT instructioh'will need to sead a'signal to

the instruction referenced by the suspension. The field oceupicd'By the suspension will thén get

“changed to an early completion queuc which will get SET it ‘the activation responsible for

producing the next stream clement.

M SEMANTIC FUNCTIONS FOR M1 §2.5

if /.opcode = SELECT then

let
R = H(lopt)
f= lop2 % fmust be a natural number
t = R())
Newstate = if t€ U, A H() € ECQ
then <Act,
NewHeap(H, t, H(t)U {(u ke OD
NewEis, FA* "FA
Env> -
elseif 1 € Uy A H(7) € SUSP
then let
<u' k> = H())
Act’, NewEis"= : B
SendToDest(Act, NewEis, u’, <uncond ksignal.) slqnal.))
in
(Act
NewHeap(H, t, MakeECQ (Cu k >)
NewEIS, F4 "
Env>
endlet
else Jet
Act’, NewEis" = SendValue(Act. NmEts, Upp destinations, 1)
Act”, NewEis™ = S’endegnaI(Act NewE:s Upgp destinations)
in .
{Act”, H, NewEis Env>
endlet
endif
in
Newstate
endlet
endif
25.43 The Set Openﬁon

The main operation on early completxon elements is the se;r instruction, The instruction
takes in three arguments. a record R. an offset in the record which-sepresents the field which is to
‘be set, and a value, x. When the set instruction excautes, it- feplaccs. the early completion
structure found at the specified component with x. .Moreover, all the. elements in the
ec-structure are appended onto the enabled instruction gueue since: the value of the ficld which
Ulcsc instructions ihitiully requested is now available. The SEr instruction, unlikc the REPLACE

8§25 - SEMANTIC FUNCTIONS FOR M1 - 35

- operation mentioned above, does-not cause a new version-of the structure to- be created. Instead,

_ the early completion structure is replaced with the value wsuu;f This does not violate any
principle of referential.transparency because no instruction is aflowed:to read a field which is an
ec-structure. Since the SELECT instruction on structures prevents any of its targets from reading -
the value of the field until it is properly set, the applicative pfOperty of the base language is not
compromised. Because all instructions which require the value of this ﬁeld are-on the early
completion queue, SET does not send any results to any of its destinations, tmiy srgml&

if I.opcode = SET then

let

u = lLopt

R = H(u)

f= lop2

x = lop3

u'= H(R(f))
VvEN

R =R()ifvaf

= x otherwise

Act’, NewEis" = SendSignal Act, NewEis, ug,, destinations)
H = NewHeap(H “ R')

in
{Act’,
H’, R
NewEis" U H(u) ' ‘
Env>

endlet

endif

2.544TheSuspemionOpentw T T PP
Thﬂsmwpomwmbhfwmammamedm It takes
in .thrgc arguments, a,record stuchuTe Fopresenting the:head of the current stream; an offset into
-this structure. where the suspension is 10 be placed. and an insirudtion address. i representing;the
instruction which is to be signallgd when the suspension is.acoesised: The.offset must be an early
completion element presumably construciod by a. MAKERECEC: Wastruction; SETSUSP sets in- this
record the value. up o 2. up being the-uid . of the activationinewhich the SETSUSP opcrator is
exccuting. If the ec-structure is not empty, then SETSOSi??signalsam activation us well since:such

36 ' SEMANTIC FUNCTIONS FOR M1 §2.5

a situation implies that some select operation has already«aaempted to read the next stream
element. Like the SET instruction, SETSUSP does not send any results. The instruction is only
used in the translation of the VIMVAL operator, affix, which is responsible for the construction of
streams, :

if Lopcode = SETSUSP then
let ’
-u= lopi
R = H(u)
f= Iop2
i = Iop3
Act’, NewEis' = SendSignaK Act, NewEis, u, o destinations)

VvEN,
R() = RWifv+f
= MakeSusp(<up 4 D) otherwise
in
fRNEECQAIRWI =0
then <Act’,
NewHeap (H, u, R’),
NewEis’
Env> ,
else let Act”, NewEis'= R
SendToDesAct’, NewEis', u.,, <uncond, i, signal>, signal)

in
{Act, H, NewEis”, Env>
endlet
endif
endlet
endif

2.5.4.5 Function Application and Return

The instructions which will be of greatest interest to us in the coming chapters will be those
concerned with the manipulation of functions, There are four instructions in ViM which deal
with this: APPLY, TAILAPPLY, STREAMTALL, and RETURN. The APPLY instruction is the standard
function application instruction, taking a function closure ‘and: ‘an’ argument record and
constructing a new activation for this function. By’ convention, the first operand of the first
-instruction in the activation receives the closure of the function, thus alfowing the activation to
access the free variables of the function, the first operand of the second instruction receives the
argument record. and the first opcrand of the third instruction in-the activation reccives the

§2.5 SEMANTIC FUNCTIONS FOR M1 37

 destination list of the APPLY operator.. APPLY uses an auxiliary function, MakeDest which
- packages the destination entries found in the destination-list of the instruction into a record and
. places this record on the heap. ‘MakeDes: takes in three arguments, the current-heap, the uid of
~ the current aemauon and the destination component of the instruction. Tt returns a record, a, of
- -two elements, tlie first element eontains the uid arguwment, and the second contains the tiid of the
record containing the elements found in the destimation list. The uid of a is passed as an
argument to the called activation. Placing the destination componeats into a-record allows them
to be accessed by the RETURN instruction in the called activation.

if LJopcode = APPLY then
Iet
= Lop!
arg Top2

<uf. Jree> = H(C)

u’ = anew uid from U,,
u”-= anew uid from lfn

Act’ = AddAcAct, u’, H(uf)) :

H’ = AddHeap(H, u”, MakeDes{H, u Fa 1.destlist))

Act”, NewEis" =
SendToDest.
(SendToDest
(SendToDest
(Acl NewEis, u’, <uncond, 1, opl) 0,
u', <uncond, 2. op1>, arg)
u’, <uncond, 3, op1>, u”)

in
<Act”, H', NewEis, Env)>.
endlet
endif

There is no explicit iteration construct in either VIMVAL or the:base: language. Instead,
iteration is modeled using ‘ail-recursive functions wheréin the resait of the iteration is obtained
in the final recursive call. Otherwise. while the recursive call is being proeessed, the calling
activation would exist merely to route the result back to the caller. To avmd having the calling
activation persist until the call is complete. there is a special b,;sg lam,mgc instruction for

38 SEMANTIC FUNCTIONS FOR M1 §2.5

handling tail-recursion, TAILAPPLY. The TAILAPPLY operator differs from the APPLY instruction
in that it requires a third operand, which is the return address to which the result should be sent.
By providing its own return link to the callee, the caller need not wait for the recussion to
complete. We illustrate this process in Fig. 8. The tailapply instruction sends only signals to its
targets. Typically, the target of TAILAPPLY will be a. RELEASE inStruction, described below,
which reclaims the space used by this activation.

| |
cloa:ureI closurel closure'
R B T
I f l f « o o | f
T >
Arg Recoriil Arg. R'eeomz - Ar;aneordr
‘ ________
Link L

First k-1 activations can be reclaimed without hqmngjbr subsequent calls to complete
Figure 8: Tail application in Viu '

if Jopcode = TAILAPPLY then
let
C = lopt,
arg = l.op2
dest = [.op3

<uf Jfree> = H(C)

u” = anew uid from UA.
Act'= AddActfAct, u’ H(u.))

Act”, NewLis' =
SendToDest
(SendToDest
(SendToDest

s PN T

§2.5 SEMANTIC FUNCTIONS FOR M1 .3

(Act’, NewEis, u’,<uncond, 1,0p1>,.C)
u’, <uncond, 2, op1>, arg)
u’, <uncond, 3, op1>, dest)

Act”™, NewEis” = SendSignaK Act”, NewElis', u ., destinations)

in

{Act™, H, NewEis”, Env»
endlet
endif

The STREAMTAIL instruction is similar to t.ke TAILAPPLY operator in that both are used for
1mp!ementmg tail recursion. The SW | instruction, hoyever,, is M in the
unplementauon of a STREAM producer Unhke tie TMY operator, the return link
argument to STRE:AMTAIL isa reedrd field- mﬂrew strdam*elemem creeted ‘When the next
activation of the producer is instantiated, this return lu* wnll gg SET to the uld of the new stream
element. Thus, while the destination of the TAILA.PPLY msgum is always an instruction, the
return link of the STREAMTAIL operator must be Hoeard—ﬁdd-el the last stream element created.
The basrc structure of a stream producer using the RUFTALL structs

ctlon IS shown m Fig 9.

gt e s

The RETURN instruction takes as input two argam ,{ang Of fetumn, addresses and a
value, It sends to each of these retum adidresses.-thie specified value anid ther ends signals to
target instructions within rts own acuvauon | \Unl e gnxL ther ?base lapgque mstructron the

execution of the RETURN. memtor M@Wmﬂmm jts.own. Thus,
having the RETURN operator execute may lead to instructions in other actrvauons becoming

enabled. The value argument to the return instruction reprogemts-the yalue.of tha. act:vauon, no
other effects of the activation will be visible outside of the- value sent by the retm bperator to
the recenvmg mstructlons in the _calling activation. ‘This property is a_ eonsequence of the
applicative property of the base language. The RETURN instruction uses an auxlhary function,
© GetDest, which: is the comploment of the' MakeDeir RiIbA dtrbied
giventhcheapmdme‘ﬁddﬁmefeeerd retumsuset' spresen

i that record. TR e G Ry by e

|ropcodc = RErURNthen
et
DL = H{lopt) % the listof retarm addresses -
u, = DL (1) % uid of the calling activation

40 SEMANTIC FUNCTIONS FOR M1 §2.5

MKREC-EC

closure Arg. rec.

N |

ser 1 Al STREAMTAIL
by
* Figure 9: Skeleton of a Stream Producer
targets = GetDesH, DL(2))
wal = [0p2, % the value to be returned

Act’, NewEis’ = SendValue(Act, NewEis, u& targets, val) _
~Act”, NewEis", = SendSignaKAct’, NewE#s' u , , destinations)

in
{Act”, H, NewEis" Env>
endlet
endif

, The last instruction we shall. present is the RELEASE instruction. Unlike any of the other
instructions presented thus far, RELEASE is not used in-the implementation of any VIMVAL
construct. Instead, it is used for mcmbry management purposes in the machine. When all
instructions within an activation have completed. the storage oceupied by the activation may be
reclaimed by the system. The RELEASE instruction pcrforﬁ'né‘thli; function/.. In a"language
without early complction structures, this operation. would: usually be a:part of the RETURN

§2.5 SEMANTIC FUNCTIONS FOR M1 -4

instruction, but because there may still be computations still in progress within the activation at
the time the RETURN executes, it is necessary for a separate instruction to handle storage

reclamation.

ifopcode = RELEASE then
{RemoveAcK Act, up A)
H,
NewEis,
Enw

endif

2.6 Summary

In this chapter, we have presented a formal operational model for the VIM computer
system. We introduced the application language, VIMVAL, and described the role of the Shell in
the system. A rigorous definition describing the behaviour of some of the more interesting base
language instructions was also presented. There are two key points raised in this chapter that
should be noted. First, for the most part, an object created by an instruction is immutable. For
those cases where it is not, as in early completion structures, the access and updating of these
objects is carefully regulated to prevent incorrect information from being read. This feature of
the system has major ramifications for the design of a backup system because it means that
objects copied onto a backup storage device will, by and large, never need to be updated. The
second characteristic of the system is the power of the individual base language instructions.
Because of the expressive‘power of the base language, it should be possible to integrate the
design of the backup and recovery system within the base language itself. The means by which
this can be done is addressed in the following chapters.

We are now ready to develop. the backup and recovery algorithms for the system. In the
next chapter, we give a general overview of the approach we take in designing these procedures
and the enhancements which need to be made to the system in order to support them. In
subsequent chapters, we shall use the formal model given here to precisely describe the
algorithms as well as to show their mﬁccmess. We will formalize our notion of "correctness”

later in the thesis.

42

§3.0

§3.0 - : 'S

Chapter leee
The Gesteral Sﬁatear

The goal of this thests is to destgn efftcrent algonthms whtch guarantee eomplete secunty
of all mformatton in the VlM system agamst loss or eorrupnon because of hardware malfunctton
In this chapter, we dtscuss the general approach that we slgall take i m formulattngm these
procedures. In the next sectton we present a failure model of system operatlon Thts model
- defines the appropriats, context in whick t0:ressoi abowt:the degigh 0f-the: Backup and recovery
. algorithms. . In section 3.2, we:raise some.fundamentil isues that nust be addressed by the
. backup and recovery system. . Fhese issiies.are concerneet with whior backuyy s petformed; how

“backup procedures are imvoked and how: the: transfer of information from (he main memory to
the-backup store is handied by the backup: system.: 'Wershall be vansidering the problem-oft data
security: in. the context of a8 single ueer systerit:in iwhick Jontduterminats computation is not
allowed. Section 3.3 gives a high levet design of diss betiwgs amtl recovery algotithms, - We
N classify the information found in the VIM state tnto?tho“;ditﬁ‘erenjt ente’%ones and dtscuss how the

" information in each of these eategones 1s vtewed by the beckup rocedures. We also descnbe
' the basic operatlon ‘of the recovery algonthm in thts sectton Sectton 3 4 dlscussee the
' architectural enhaneements that need o be made t? the bjas} réthhid archltecture to efﬁctently

support the unplementatnon of these procedures. These enhancemnts are pnmanly eoncemed
with the physical organization of the backup store. The last section is a summary. of the chapter.

3. I Failure Model

" Many of the declstons that are made in the desngn of the backup and recovery system
" follow from the farlure model thatts assumed. A fatlure model rsha‘ spectﬁcatton of hardware
" behaviour charactenzmg the type of faults expected and tzhe’ tgtera%uon between failed and non-
failed components in thé machine. Some of the factors which wnll_ mﬂuence the desngn of the
backup and recovery algorithms that are descnbed by the fatlure model mclude the frequency of

failures in the system and the level of hardware emmdeteam:mpablhym is provided.

VIM is not a f'tult-tolcnnt system and therefore there w:ll be faults that are not masked
which will cause the system to behave erroneously lt 1s unreasonable to expect. however that

,,,,,,

~there will be no fault covcr'lgc in the system at all hke many eonventtonal systems. ‘VIM is

4 FAILURE MODEL §3.1

expected to provide enough fault coverage to carrect many common errors arising from minor
transient faults. Correction of single bit errors in memory, for example, is a feature which is
found in many commercially availtable memory.units dnd, thus, the services of the recovery
utility should not be required when such an error is detected. In this thesis, we shall assume that
the recovery uullty is invoked only when errors cause mformatlon found on main memory or
~ secondary store to be lost or corrupted. Power outage, short c1rcu1ts. a malfunctxomng disk head
etc. are some examples of the type of faults Wthh lead to such en'ors.

We do not expect that such faults will oceur frequently; hardware is assumed to be reliable
most of the time. We do make the assumption; however, that invalid information created
because of an error is detected when it is accessed. .For example; if a faulty disk head causes data
to be written incorrectly onto disk, then when the data is.read st some future time, the error will
be detected. This assumption is important becauyse it-ineans that any information which the
backup system observes and copies will either be correct or detected as being erroneous —
.. invalid.data is never maintained by the backup utility.

If the recovery utlhty is invoked, it will néed to reconstruct the system state based on the
information preserved by the backup faclllty Dunng thls penod another fallure may occur; the
recovery facility must be robust enough to correctly restore the system state even following such
clrcumstances We dlSCUSS how this may be achleved later in the thesns.

3.2 Fundamental Issues

The backup system will need to interface with the interpreter and shell to monitor the
progress of computations in the system. We need to declde, however when it should actually get
invoked and by whom Seoondly. once it 1s mvoked what mformauon should 1t actually copy to
the backup store? Thlrdly, how should this oopy operauon be perfonned ie could normal
system operation be mterrmxed with the executlon of the backup pmoedum or must normal
processing cease whlle the transfer of data is takmg plaoe"'

The fi rst question was already partially answered in the previous chapter where it was
mentioned that the sem.mtlcs of the base language instructions could be suntably altered to
~ support the backup procedures Unhke most conventlonal systems the backup utlllty is not
exphcutly invoked by any process or user: it is |mpl1c1tly acuvated whcncvcr the appropriate base

language instruction is fired. In a sense, the "loglc of the backup alg,onthms is distributed

........

§3.2 ,FUNDAMENTAL ISSUES 45

among the. various base language instructions; described. earlier, The question of which: process
~ activates the backup facility is not germane under this design.. No one process is respongible for

“invoking the entire utlity; different portions. of the: backup procedures are activaied as
instructions in an activation are enabled. In this sense, the backup facility. is more an extension
of the interpreter and shell, rather than as a separate program: which is periodically invoked
according to some predetesmined policy. VIM offegs the opporanity to make the. backup facility
- more efficient because it is embedded. within. the. interpreter and shell. This organization will
~allow us to design a backup: facility that can observe,the. progress of computation 1o a greater

degree than would otherwise be possible. :

The afiswer to the secohd Quosﬁon involves detérmining hiow much information should be
preserved and how the remuifider of the systen $tatéé3n be defived from this data. ‘While ail
data generated by the system could conceivably be copied onto the backup storage medxum it
. would not be a very practical solution because of the avezbeadsipcusaed.. Besauseail instructions
- in the base language generate data and update the sysem siater implementation of this stzategy

would involve modifying every base Janguage instruction. 10 send. the: result of theis execution to
backup store. This would clearly result in severe performance degradation. The backup
algorithms will, therefore; need to maintain informatioti akioiit theisysten siate 'in:a ‘condensed
form which the recovery system can subsequently. use. t. sscovay; shat part of the system state not
explicitly preserved. As we shall see, most of the. design effort for, the. backup. and. recovery
system will be devoted to devising efficient algorithms to v ain. and interpret these records.

\ "We d;s_cpss thxs issue in ,greavt_er»detauim,the next section.

Because ViM is an appHicative system, no data found ofi the heap, once created can be
subsequently altered by either the backup system ormé?hmrpmer *“Thus, having the backup
procedures operate concurreritly with normal system operation canridt cauisé iny invariants over
the data to be violated. 'Moreover, the data copted by the bdckl'xp syétcm will ‘Hever be in an
inconsistent state when the-copy ‘operation is petformed ‘béciuse nb upditing of information
takes place. Our backap'procedures can: therefore; be altowedt % exceuté bOncurrenﬂy wnh
»normal system oper'rﬁon without the need for any cxpﬁttt wﬁsistericy chéck& A

Dunng the recovery process, no shell oommands are mcppted by thc system.. If shell

Mhere is a caveat to this cluim which will be explained in the next chupter

%6 FUNDAMENTAL ISSUES §3.2

" commands could be processed concurrently with the recovery process, it may be possible to have
computations reference data which has still not been restored by the recovery procedures. ..in
addition, this restriction also simplifies the interface between the recovery procedures and the
shell by avoiding the need for any synchronization protocols ‘between the two processes in
updating (or deleting) environment entries. When the recovery procedurcs are mvoked they
“make no assumption about the integrity of the data which may still be accessible. Thus the only

- information used in the reconstruction of the state is that found on the backup store. Of course,
it is inefficient to restore the entire state of the system if Only"é fraction of it were affected by an
error. Slgmﬁcant complexny is added to the backup anﬂ recovery procedures, hOWever if we
requtre the system to suppon pamal recovery. Ttis not clw whcther she beneﬁts danved from
implementing partial recovery outwexghs thxs mcreased complexlty We shall address t.ms toplc

' again later in the thesxs .

-

PR e v e

In the next section, we present the high level design of the backup -and recovery
algorithms. The rationale for our design decisions have been mamly based on the effectiveness
of these algorithms in addressing the questions raited'in this section. - Cotnoon e Lur

-33A High Level Overview of the Backup«and 'Recowry Fadl_lt_le;s: T
The design of the backup and recovery facilities are based on one important observation:
every computation in the system is associated with the evaIuatIon of some shell command input la
the system. Thus, one immediate solution which' pments 1tselt‘ is to s:mply record all shell
commands on the backup state. This is obwously a correct solution since the behav:our of the
system is presumed to be determinate. Reexecuting, in.the proper serial order, the shell
commands that were input to the system before the failure occuned is, therefore, guaranteed to
yieid a correct state. This state will be identical to thcfstatozimmdiatcly prior to the failure
except for the uid's associated with structures and activations. The uid's chosen during the
‘recovery process may not be the same as chosen originally” but because these uid's are not visible
_to the programmer, no difference in the two states will be externally discernable. Obviously,
such a scheme would inflict little degradation to system performance since only the text of the
shell command necd be maintained. On the other hand. recovery would be intolerably slow

because every shell command is reexectited from scratch with no information about the results of

2 Recull from Chapter two that no restrictions are made on how uid's may be selected

- §33 A HIGH LEVEL OVERVIEW OF THE BACKUP AND RECOVERY FACILITIES 4

. these commands being. kept on backup stere. . The recovery. system, starting from some initial
~ recovery state, would nged to reexecute every shell:pommeand input to-the system from the start

of system operation begause. no information-ahout ‘the -fesult: of any of these commands are
recorded Sucha major drawback makes thxs strategy unam'acuve for all practxml purposa.

To see wkat optimizations can be made wwmkm let us examine how shell
commands are used to alter the sysiem.state. The: shellicommand. of intorest.to.us-here is the
'BIND command. The BIND command:binds a name.io:the resultifsome computation and:places
this binding in the user’s eaviroament, . The: value:bound. to:the name: represeats a long-lived
. value — it survives the computation in which it was created. <The data seen by:the user of the
. system are precisely the values: bound in his environment. . Since these values have lifstimes
greater than the computetions in which they were defined, .itowould certainly be.a major
. .obviate the need for.tha recowery system 10 meexgoute:those sonunands: whose evaluation
-+ .produced these valyes. The backup facility must now in addition t0 maisitaining a log.of the
.-commands. input. to the system, -alse..recond alli<neme mibe>. bindings. found .in. the user
. enyironments. -These bindiags cannot be. agbirtarily.chengad bessuse ¥iM is applicative;. thus,
once a binding is recorded.on, backup-store, the MMWWW reexamine that
entry in the user environment to check if it has been altered. JOFS

. The data found in ViM may be classified into two-categories;; quiesient, which corresponds
. to the result values of compusations assacisted: with RIND commands thet have-heen bound to a
.name in 3 user enviroomeat, and /aansitional, which ea0epEnds 10,108, kakues that are either

. part of some active computation. os Fasult. values of-a-comuietion ha have not yet been bound
to a name in some environment. A computation consists of the collection of activations.and data
created during the evaluanon of a shell command. lnstrmom m thae acuvanons produce
** transitional data sinoe ‘this data’ wﬂl survive for onfy so iong as‘iﬁe eomputanon m wh:ch 1t was
“icrédted exists. The value ﬂhaﬂy produwa by a mputauon will | get i')ound in an envnronment
" ‘and, as 4 'result, will become qmescem. he %xfup faéﬁny acéo?dﬁ:g”ib the sci;eme pmemed
“above; would only be award of qme.scent data” Transitmal mf‘ormanoﬂ correspondmg to data
' produced during a computat:on ‘would' not be under the scrutmy of' the backup prooedures.
sy wpothes

“When a faiture takes pTace and the system ‘state needs to be properiy restored, the recovery
facility ﬁrSt rcsmrcs “all qmesccnt data praerved by the backup fﬁcnhty onto the new recovexy

8 A HIGH LEVEL OVERVIEW OF THE BACKUF AND RECOVERY FACILITIES 7§33

state. It must then reexecute those shell commands feund on the cominand log which had ¢ither
not yet compileted .or- whose result binding cotfd not bé recorded by the' baekup* facﬁity before
the failure. These shell:.commands will be referred:to a8 ‘ib!eirl reominands ‘

Havmg the backup facxhty record only qu:escent data is an optnmnzatlon that reduces
“overall recovery time, It ‘does 50 without: excessive Performance dégradataion because the
- backup facility is only invoked:when an ADDTOENW instrudtori ekécutes to- actually place the

binding in- the: environment and; moreover; ‘cirr pérfoniw i Sopy of the data in'parallef with
‘normal system operation. It would be an even greatsicoptiiiition if the backup system’ could
- help reduce reexecution time of those volatile-shiell’ convmends' found on ‘the fog by recording
- information about those computations whicly wore:-active df the:tiie'of faiftite. If there are many
_resource intensive, time-consuming activations # &' compataion, dvéri hiaving the-backup facility
ignore the presence of the transitional date: produwotd iii: this Gemputition edns that the time to
- recover this state must be at.least bousided: from:below by e ifvie it takes to reexecute this
~ entire computation. ' This:is not very-desirable sitice: the-¢ontputati ewtdhavea!remdybeen
-executing for-a very long peniod when wmww Wmmm‘&uf the
. computation on :the ‘backup stove -would -aliow:-ithe ‘resovety: ‘Pacility 'to -avold needlessly
- reexecuting mmwbpnmoftwmpumn mmmfmmesmnmm
failure. ; : o

, It is reasonable to expect.that there will be many eoniputafions i progress at the time of

- failure. To Tecord the progress of thess-computations;thé U Systeth muintains information

-~ - about these computations-on: & compaerion’ &WWW”W&M% stiucttire of a
- computation mmmmw o dide e B *"‘facimymmenen

/ We can now pment our mtended model of sys%n. fpr VlM As compu(,anons
_. oomplete musmg values to be bound wnthm somg qu: ,;q ;{bacl;up facmyggmrva ‘
'these bmdmgs on the chkup mc%mm ln ﬁﬁ% A }r, W I,l also be_many active
,,computauons m pmgress. ‘,The tzackup fac:hty mqmtmns l;n;:i mation ¢ qut; g1e§¢ oqmputguons
‘as well. This lnformatlon embodlcd a3 oomputagonm ord, can be used by the recavery
procedures to avond needless recxecuuon of _computations which, had gl!eadx produced their
result bcfore thc faxlure When the rccover_y sysu.m 1s "“'9"5“ i 'r§(restorea 9I| qumcea}. data

" found on thc backup store. It then uses lhc computauon rceords to restore the remaining part of

v R SRS DT 0 Y e

§3.3 A HIGH LEVEL OVERVIEW OF THE BACKUP AND RECOVERY FACILITIES 49

the state. The state after recovery is complete will be equivalent to the state which existed prior
to the failure insofaf as the structure and information content of both states will be the same.
The states need not be identical; however, because the id's 4ssociated with activations and
structures may be different. The reason why the states woald ot be identical is because the
‘order in which enabled instructions are chosen' for execution may be different during the
recovery process than before the faifure. This does not conipromise the correctness of the
recovered state’ because of the applicative nature of VimM — no $idé-éffects occur and, thus, no
explicit ordering on instructiofi execution needs be adhéi’ed ‘tb. - We illustrate the system
‘operation in Fig, 10. ‘ - -

" Failure Detected
g —— {suwest
Quiescient Data AciveCompimtioh |~ IRecovery Procedured
(Computation Records) S
‘ \ >
s is equivaleat to sl . L Time

Figure 10: System Opemtion

3.4 Architectural Enhancements

Up to this pomt, we bave only mentioned that the backup store on which backup data is
kept has the pmperty that mformatxon entrusted to it will sunnve fallures of the machme wrth
very high probability. The most common type of backup store used is magneuc tape “The
~ sequential access nature of tape drives, however makes lt mconvnenent 0 update the
information found on the tape. Smce lhe backup ﬁ\clhty wnll be frequently updanng
‘computation records associated with active computauons to reﬂect the prot,res of the
' 'computatnon using tape as the only bnckup storage dewce would be |mpr1ct|cal Our desngn
~ dictates the need for a fail-safc stomge dewcc from Wthh mfommuon may be enslly dCCCSSCd

0 ARCHITECTURAL ENHANCEMENTS - §34

updated, and deleted. We call a device which has these properties a stable storage device. It is
not difficult to implement such a .device on top of non-stable storage devices. Lampson

[21] gives one implementation of a stable storage device in which disk storage is converted in to
stable storage by maintaining multiple copies of the data on different disks and ensuring that all
writes to disk are atomic Le, the write either takes place.on both disks.or on none. Because both
disks are guaranteed to have consistent infoemation,. data dost because-of failure of any one disk
can be recovered from the other. Advances in VLSI te haok ‘have also-made it conceivable to
consider a hardware implementation of siable siorage using; fof xample, CMOS static RAMS
and a backup battery supply. Because of the IO\y power consumption of CMQOS. chips,
information on RAM could be retained, despite power failure, using the backup battery supply.
In this thesis, we shall not be considering implementations of stable storage but will assume that
such a device is available fotvuse by the backup and recovery utilities. Because of its relatively
high cost, we shall also assume that stable storage is njot very large (certainly much smaller than
the size of the backup state) and, therefore, in order te guarantee that backup information is not
, suscepuble to loss, it will be necessary to have anothez backup storage device capabte of holding
that part of the backup state which cannot be héld in: stable storage. We.assume magnetic tape
storage is used for this purpose.

Quiescent data is never updated by the backup procedures and, therefore, can be kept on
tape. Of course, if the binding is subsequently deleted, the data will have to be removed from
the backup state as well. A delete récord mdleatmg thata value has been removed from the user

environment can be written onto tape in such situations. 'Ihe eomputanon lecords associated
with active computations do need to be accessed and constructed relatively frequently. These
records will, therefore, need to be held on stable storage.. [n adgdition, the command log. which
| contains all shell commands mput to the system whose mults hgve elther not yet been produced
or have not yet been recorded onto backup stone, wnll a§o need 0 be held on stable storage. As

- we shall see, most computatson reeords wﬂl be relanvely short hypd and, Ihus, wdl not occupy
‘ stable storage for any sngmﬁcant amoum of ume fl]m f nal value of a computation record is
| qulescem and can be mlgrated onto tape allowmg the space useq by t.he oomputauon record to
be reclalmed lt is expected that slable storage wnll glways be able to support all oomputzmon
4‘ records in the system because of thelr short hfeume When Lhe recovery system is invoked after
a failure is delectcd it wnll f' tst rcad from lhe tape all the quncsccm. data and will restore as much
of the cnvironment mmgc as p()S!slble from ths dnLn Vol.xule shell commands arc then executed

§3.4 ARCHITECTURAL ENHANCEMENTS 5

Bound Objects
copied °) . . ’
: i ‘ / Backup Environment ~
A) , ’ e I H
nl | n2 - e nk
—
Quiescient Data
.
°
°
X Exp.
)
.
Command Log S Transitional Dala

Figure 11: High Level Organization of the Backup Store

from the command log in the order in which they were originally input. The computation
records found on stable store are used to reduce the 6verall reexecution time during this phase.
When this phase is complete, the system can proceed with normal operation. “The high level
organization of the backup store is dep:aed in Fig. 11.

We illustrate the orgamzauon of the. VlM system- wuh the bxkup heap -and-environment in

Fig. 12. The backup heap is used to hold all transitional data whereas quiescent data is held on
the backup environment. The backup heap and environment constitute the VIN¢ backup store.
‘The Interpreter constructs computation records:on the. byekup, heap. during; norml; processing
- and interprets them during recovery. In addition, the intcrmediate results of a computation are
also stored on the backup heap by the intcrpretey; <Numc,léalm>bmdmgsarc placed on. the
backup environment by the Shell which also builds-the command:log found.on the backup heap.

52 ARCHITECTURAL ENHANCEMENTS §3.5

—= = flowof information during recovery

Jlow of information during normal processing Activation

session

Activation

Instruction Inum \B)}ay ‘__7_. Shell

value « New Suu
Env BEny |

Instruction
Figure 12; Abstract Architecture of the Vim System with Backup Store

3.5 Summary

In this chapter. we have presented a high level striategy for the backup and recovery
algorithms for the ViM system. Our main observation about system behaviour was that all active
computation in the system is associatcd with the evaluation of'some shcll command. The first
solution proposed involved simply storing the log of all shelt commands, reexccuting them from

the beginning if a failure occurcd. While correct. because VIM is a determinate system, this

#
4

§35 SUMMARY 53

solution has the drawback of a very slow recovery time. A major optimization to this solution is
to record all quiescent data ie data bound in some user environment. A further optimization,
intended to reduce the overall recovery time in reexecuting volatile shell commands is to have
the backup facility maintain some measure of information about all active computations. The
recovery facility uses this information to avoid needless recomputation. Once this reexecution
phase is complete, the state of the system is properly restored. During this reexecution phase,
the order in which instructions are executed may be different from the original execution
sequence. This may lead to different uid's being assigned to different structures but the overall
structure of the heap and activations component remain identical. The reason why the order of
instruction execution is nbt important during the recovety process is because VIM is an
applicative system.

We also introduced the notion of stable storage in this chapter. Information about active
computations will need to be frequently recorded by the backup system. A backup storage
device on which data can be easily accessed and added is required to support these computation
records. While quiescent data can be copied onto tape stdrage, computation records need to be
maintained on stable store. |

In the next chapter, we present the detailed organization of a computation record and
discuss how the backup system monitors the progress of computation. As we noted earlier in this
chapter, the logic of the backup procedures is actually distributed among certain base language
instructions. We present a formal model of the VIM system supporting the backup and recovery
procedures and argue that the information embodied in the computation records is consistent
with the actual system state being represented. | -

54

§4.0

§4.0 .55
Chapter Four

Constructing Cdmputation Records

A major aspect of the bai;kup and. recovery:algorithms for ViM concerns the construction

~ of computation recoeds., Recall from the. last chapter that a bemputation record is used to record

~information about cusrently executing computations. In: this :chapter, we shall be primarily

. interested in how. compugation records may be constiucted and¢maintained. In Section 4.1, we

. present the abstract representation of computation recoeds. The main componem:in the: record

_is known as an activation descripior entry which embaodies: state: infomnation about an individual

- activation, In order to comstruct a computation record, changes 4o the ‘operational behaviour of

. the base language instruetions given in. Chapter Two will be necdssary. Section 4.2 discusses

 these changes as well as changes. necessary to the sheli and intespreter. In section 4.5, we présent

_ the altered operation.of the base language insteuctions in-tesins of an abstract operational model,

MR, which is an extension of made! Mi -presanted in; Chapter-twox. There: are several major

optimizations. which.can -b¢ made in managing cam;mﬁm peoords. : These: opmniudom are
- also formalized in this seetion. ' - : ‘

4.1 The Computation Record

In Chapter three, we argued that the backup system should rccord thc progms of actlve
" computation in the system to help reduce neoovery ume. A Hcomputauan reoord ls an
 information structure constructed by the backup system for th:s purpose Our focus m th|s
 section will be on determmmg how much mformanon shpuld be kept on the oomputauon ,record
to allow the recovery procedum to restore the systgt_n to its fstate pnorﬁt,o the f‘mlure One snmple
,scheme would be to penodmﬂy checkpoml all aétivanons created by a computanon To
checkpomt an acnvauon me'ms recordmg the state of all mstmcuons whlch havc not yet
execufed in that activation at the time of the checkpomt. The state of an instruction consnsts of
"t opcode, destmauon hst. operand and sngnal count. as well as the value of its operands3 This

‘approach would be very sumlar to lhat taken in many ot.hcr parallel oomputer sys&ems where a
‘ 'recove'y pomt rcpresenung the state of one of possnbly many concumntly cxecuung processes is

3 If an opcrand is a complex structure. this means recording ik substructures referenced from the top-level structure
as well.)

T s - L T

* that each funcuon ean be treated as a conxzant agplica;ive

s ,ea I PR R TR A S T e S Rt i e U St A

56 ‘ THE COMPUTATION RECORD 8§41

periodically taken by the systems’. backap facility. ;lFour system, the recovery procedures would
only need to find all enabled instructions in the oomputauon records to begin the reexecution
phase, - gt SRR R A o

Periodically recording the state of all activations created by a computation is simple idea
but has two major drawbacks which does not makie:it a feagible sslution for our putposes.' First,

. cheekpointing all activations in a computation: wilb probubly be i ooy task because the'size of

activations can be very big. Secondly, :in order: %0 guarsntee ithat & consistert ‘inmge o

computation is maintained on the backup utility, we would have: to-disallow aty- enabled
instruction within any activation in that computasiont from-executing white the ¢heckpoifit of that
activation is being: performedl. . To see why this’is thie case, vodgider two' activations, a-and B in
the same computation whese a-has calied 8: 1€ s allowetzo endtwte while e checkpoint of a is

- being made; thea B may retunt its result:to: & and; thenexeviite' & RELEASE operation, "I the

image of a on _backup state does not WMMWMtbya andﬁwai’ not

checkpointed hefore the RELEASE operition -executed, the compatatior fecord would' represent
~ an incorrect state. Upan: recovery, there would ibe:ne way w0stover the: return-resiilt valug'of 8

without reexecuting a. This is precisely a manifestation of the:pioblems enéountered 'ini other
concurrent systems that use recovery points to guarantee data secutity

A more clever approach to reoordmg state mfonna;ion about acuvanons takcs advantage of

the applncauve programmmg model VIM uses. A chstmcnve feature of an gpphcanve language is
ouf A caf oonsrsts of constants

ER R

oombmed by funcuon composmon and apphcauon In o_onven :gng} pmg;ammmg languaga

such as Pascal or Fortran a funcuon mnnot be treated as usoonsmnt because rts evaluauon ‘may
"7- {d PRI QP;';
cause side-effects to occur in the program In VlM havmg all functtons be samply constants

FE 1A Tl AN

means that the behavrour of the ﬁmcnon can be d{et{cmmed by Just knowmg its mputs. in the
base language. an acuvatlon lS the apphcauon of a funcl:on to some mput. Because funcnons are
caf's. we can embody an acnvat:on on the bwkup state by reeording the function closure, its
inputs and retumn lmk Under thns schcme the recovery syste avvould need to only APPLY the

'o‘n‘ bemg represemed An
1mportam advamage of lhIS proposal over the checkpomtmg one 1§ tnat no executing code is
maintained on backup store. Because all data is immutable, the transfer operation of the data

from main memory to backup store can procced in paratiel with the cxecution of any activations

OB

closure to the argumem list to construct the correspondmg act

§4.1 THE COMPUTATION RECORD .87

- which operate on this data. Moreover, the amount of information which needs to:be copied is
. also greatly reduced since no data created by instructions within these instructions are preserved.
- Such data would be recovered when the activation is reexecuted.

A natural representation for a computation record m thns scheme isasa d:rected tree in
which nodes represent activations and edges mdmte caller/mllee relauonshnps between palrs of

activations. This tree is known as the computauon tree for the computatxon We 1llustrate this
representation in Fig. 13.

Name exp

. rootedata?’ \ / . \ / | \

Figure 13: Representation of a Computdtion Record

"The root of a computation record represents the initial activation constructed by the Transiate
function of the shell. Every node j_in the computation tree i labeled with the uid of its
correspondin_g activation. If (s¢) is a member of E_. the set of edges in a computation tree ¢, then
activation ¢ is instantiated from activadon s. Each computation has a unique computation tree.

A node in a computation tree is called an. activation descriptor entry. An aclivation
descriptor contains the necessary infoemation about an activation needed to restore the state of
the activation. The representation of a computation record given above is simple but certainly

does not help much to alleviate recovery time for transitional data, This is because computation

8 THE COMPUTATION RECORD §4.1

trees may become very large for long running computations. Reducing the size of the
computation tree would speed up the recovery process. - The information in an activation
descriptor entry in this scheme contains the closure and argument list of that activation. During
recovery, however, every activation represented by an acuvatxon descnptor entry in the backup
state would be reexecuted. The ume to reexecute all these actxvatlons would result in an
unacceptably high recovery time. Clearly, what 1s needed ts a mechamsm to record results of
activations as well as their instantiations. Thus, when a result of an actwatxon is known, it
replaces that activation in the computation tree.” When this value is encountered by the recovery
procedures, it is sent dlrectly to the destination addresses, ellmmatmg the need to reexecute any
activation in the subtree rooted at the node containing the result. In this way, we can imagine
the computation tree growing and shrinking in response to the instantiation and completion of
function activations. This process is shown in Fig, 14.

a

al . \

Ifresultofal isa

o/
/
/

\
S
\

{

I

|

I

I
v
Subtrees rooted ara?, a3, and a4

Figure 14: Dynamics of a Computation Tree

§4.1 " THE COMPUTATION RECORD 59

When an activation is instantiated, a new descriptor enty is placed in the tomputation tree
and an edge is added from the caller to this new. cq;;y When the l;qsplx ofan activation becomes
, entnes are then removed There are :wo features pt' gu; mhegy,, Lhat dgsungutsh it from typlcal
data backup strategnes found in oonventlonal systergs, . Tha : first is that the: updating (of state
mformatxon in our scheme is dependent totally, on, \ RFORIAM. belugxqur As.we had mentioned in
the last chapter typu;al backup strategics use a predetermined, policy to determine whea, the
checkpomtmg isto be done _Tne second, and.more. impol 1y
construction of the computanon tree takes advantage of the apphcanve programmmg model, the
. computationtree can-be "prunéd™ whenever &' fesufor ‘afbotialion‘bectimes kidwn. In a
language which permits side-éffects and $haring' of no“Iocat’ Mﬁﬁi&, wé thld hot be abte to
manéage the baém mge wthe‘ddmpméuon"ilf&k mhnner G

It now remams tq show exacr.ly how the ;agrgm sgg;l and basp lansugaa semantm
~ need to be modxﬁed to support the ponst;uctmnpf these computation records. . We examine.the
| structure of an activation descriptor entry in greater dgt,aal m&h# M&ctim

sd B2

4 2 The Actlvatlon Descnptor Entry

_ We had mennoned in the last section athat an acwa&m,dﬁg‘im should confain m&h
‘mformatmn so.that the_recovery pmoedurﬁ could. mestore the, state of the activation, . -We
~observed that 1f the function closure and an it, list.of the.act yaqipp werte presarved, then the
_recovery pnooedur@ need only apply the closur; to the argument; l;gt. setting the retum: link, to

~ restore the activation s&am :

AR <R

The recovery process in this proposal is straightforward. Aﬂ %ﬁvadbn dascnptor entries
- containing the function closire, argumerit reoofd‘ abid “rétirm” ik ‘can’ Have the functlon
 application take place in parallel: Whenever an apply operation’ to be eketuted durmg the
recovery phase. a check is made to sec if the firiction RS Alfeddy been iHstantiated. That is. all
APPLY instructions during the recovery phase.check to sge.if p activation descriptor already
_exists fgf the activation they a‘rgloi}initjg;c. If one exists. we can ¢ffectively, ignore the jnstruction
$incc the result of the application. is alrcady known. If no such-descriptor. exists we perform the
application. Result values found on an activation descriptor entry are used to prevent initiation
of an activation. When a valuc is found in an 4DE, it can be seat directly 1o the destination

60 THE ACTIVATION DESCRIPTOR ENTRY §4.2

address specified in its return link?,

In a system in which errors requiring intervention of reéovery procedures are assumed to
be relatively infrequent, wé may find the cost of even maintammg function closures and
argument records too expensive. As we explain below, the mam reason for needmg the closure
of the activation on the backup store Is if we wish to have all' acuvaﬁon deScnptor entnes

~ -evaluated in parallel. If we are willing to toferate longer reoovery time, we can srgnﬁcantly

reduce the amount of information which needs'to be held on thé activation enmes by
eliminating the need to hold even the function ctosure or argument reoord on baekup store

Instead of havmg a.ll activations mmated ;n paranel. we can. t;ave the oomputamn
reexecuted from the initial activation descriptor :in the.compugagion: tree. Whenever. a. new
acﬁvaﬁon is about to be initiated, the recovery. procedure. firgt sxamines, the coreesponding
activation descriptor entry for that activation (remember that there isa umque computatron tree
for every computation). If that entry cofitdins'a result, tten’ that value 1s ‘used dnrectly and the
new activation is not initiated.” If, on the othér hand, A result vahre is ?ound in the dmcnptor a
new activation is constricted and ﬁrooessing proceeds & normal "No function closure or
argument record needs to be maintained in this scheme beeeuse the oomputauon 1s reevaluated
from its initial activation — no parallel invocation of aetrvatrons wrthm the oomputatlon takes
" place. While the time to restore a comtputation s’ géeater than if finction closures were
maintained in the backup state, it s bounded by the tifne the systent wolild have taken to have
 processed this computation under normat circumstanices, “If fniction cfosures and ‘argument list
of activations were maintained, then the recovery system ‘could exploit more parallelism than
what was available during the original evaluation of the computation precisely because all
~ activation descriptor entires.in the computation. record.coyld, be svalyated concurrendly. It is
) importzint to keep in mind, slilowe'v,_‘er;, th‘at‘eyen if, thrsewamfommonns not kept on the
activation descripiors, the reexecution of. the computation,. would siill exhibit: as much

; ” coneurreney as it would heve under npnnaiqooqditioos.

The information held by an activation dcscr’iptor\entry’ musi 'aﬂow the recovery procedures

v e i

descriptor. The first form is for those activations whose results were recorded by the backup

“TWe are assuming that uid's of activations ase preserved in the backup state and are used during the recovery phase

AR S

§42 2 THE ACTIVATION DESCRIPTOR ENTRY | |

~ facility. If an ADE for an activation ercontains a valiss; thén this'value represents thie result of a.

The second form of an ADE is used when-the rest-tP st 2eiVition Has mot yet beér recorded
. by the backeip faeility. “ B tiis Gase, the #DE ‘conrtinis the €dfies (b’ alt-activations that were
-+ initiated from a'beford the Falluré octured “DRTing TeOVEH! & dﬁlbe%ﬁ‘ecﬁté& f’iiééaif"mat
edges in *thewmpumtioﬂ tre¢ mrcﬂl&riﬁﬁ&’mﬁm&g&w&ﬂ acﬁv .

1 A enoiie

»i s ,t}.‘«»

uid
" of
- activathon: | FR YRS , LS
b X "—
e F1 2 wp kA LR ER
FigmlS Structureofan ctivaio e : I
1oy’ LU Y N ST .l CHMM LIRSS £ Tidis

: i ne Ntuen Bop oo b

Jwe “’"'“‘"“ a“ °"“° “? ”“"‘“"“ d‘“"?”’ %‘n‘ﬂ “?baﬁ"{%“b’&ﬁ‘%@f% #'4% W‘mb Set

_ﬂ.?-:represents the offset m the actlvanon array mq 3%933}%1%} ation,, ;mm

{'lsémstannats the new actxvatxon azx)d wher ‘,)u d rep t}s&l’ﬁ ﬁﬁp 08 ﬁqﬂm: lgptor
~ associated thh the called acuvatnon }he gp' bm% W‘l‘ dﬂ&’@?? the aq;ganon

Al EASRE

being initiated. When an apphcamn instruction is encountered during recovery, the activation

-+ descriptos-cosresponding to v RcivatioN 0 Vo Hiisdhirhiedl Wbtamired If'4 viltre ¥ pPresentin

. .this ADE, it can:be sent dirsctig1o Usy GERRIoN IraaabRsb S Bperator. The GHivet fiéfd is
-+ used to’locate: the ADEDf the adtivation muw T eSS Wity wé nied! the offset
. field atait is-because the Order i whiich instiniot SuebiiticRaliring reéovery may ot bethe
. same 88 the- order: in whicl: thiy- Sere drigihally:eiedWil B silieH{iial lahgudges eVery
. *fusction application is ordensd: with respectito every oM AppilaRtiblt - Réeteciition oF a given
'+ activatiomwill act-change thisordering. > h'a ooricu Fewe Pt Rttt 45/ VM e does tiot eist
..y’ prion oderingion instruésion’exectition. ' FHiess the TRGLEIRI -timBer. offsel of the
. function application :opefator T e, APHEY mmum#ﬁm nmsé‘bé“kéﬁt &1 backup
«..heap to propesly: mmm«m memmiy pmemw R R

I T

,,,,,,,,,

"Funcuon apphcauon IS noted by addmg 2 ncw acg gpogv “dmcnpto; to me appl:qpuate ‘
«comput'mon tree When the result of an acmalton;lf knovyn it replaccs the d&scnmpr entry for
" that activation on the b.ukup state. We do not m;xmmn ﬂ'EH‘}‘Jg,“&I%&Q‘TdS,%Q-EIQSP,TCSi;Of

62 THE ACTIVATION DESCRIPEQR ENTRY - 8§42

activations, choosing instead to reexecute the computation-from the beginning, only avoiding
~ reexecution of activations whose results are already knowa. While recovery time in this proposal
is greater than the one in which closures and argument fegords are maintained, there is a
- substantial reduction in the computational resources, requised by the backup facility. As we have
mentioned previously, efficient implemention of this steategy. will require- alteration of some of

the base language instructions. A formal definition of these operators is given in Section 4.5.

4.3 Early Completion Structures .

The preceedmg sections have presented the general framework and ratlona,le upon which
computauon records can be orgamzed ’Whrle sufﬁcrent for most mses, there are certain
program structures for which our dwgn is still- madeqm ‘Fheﬁm type of program structure
not properly addressed in our presentauon is t}ie early c_ompleuon structure By 1tself an early
completron structure does not add useful mformauon to the backup state since It only mdreates
- that an activation has beeft initiated to produce the deured value. Copymg an early compleuon

‘structure onto the backup Store would not alfow the recovery sys(em to restore the proper ‘state
" unless the activation responsible for pmd’ucmg the value whicﬁ ls to replace that structure is also
‘copied. Thisis obviously rlot a desrrabie srmaﬁcm to have to deal wrth o

For our purposes, a. sunpler (andmore cfﬁﬁmm A8 to avoid. copying early
. completion elements until all the early, completion felds in the-gmcture become set. -When a
 structure which contains early. complation ficlds i 48 e copied onsabackup store, theseier-fields
. -are.labeled with a special flag indicating that the comtaining siructisre i to:be eventually copied.
. When a SET instruction. eacounters. such 8. figld; it checks: to_sde: whether :any; other: early
 completion elements exist, i the structure; if $0,n0-00py operasiog:ia performed;.otherwise, the
structure is copied onto the backup.store, The ADE whish: is:to: refesence his structure will
initially have is value field reference a structure with-a speciaj value, netsopied. When all fields
. in the structure are known, this. reference gets roplaced: with:thecsefersnce o the- fully defined
structure. If the recovery routines encounter a siuciure -with: a vajue-aoicopied, it is treated: as
not being defined and is ignored dunng the reexecutlon process. Thc structure conuumng the

carly completion clement bemg set may be a oomponcm of a larger structure whrch also needs to
be copied onito the backup store. If this structure becomes f‘ully deﬁned as a result of execuung
‘this instruction. then it too will get coplcd onto the backup slore We tllustratc the cﬂ‘u,t of the
SET operator on the backup store in Fig, 16, ' ‘

§4.4 ‘ EARLY.COMPLETION STRUCTURES 6

S s fulydeimd by SET operations ad & frangered o backup siore

Figure 16: The Effect of the sev Operator on Backup Store

‘4.4 Further Enhancements

‘There are two other program structures whose behavnqur cannot be efﬁcxently captured by
the backup facnhty by Just modxfymg the scmantks of the APPLY and RETURN operators. The
first is the sail recursive program:expressed using the TAILAPPLY operator.. The second class of
‘programs not handied by our system are those involving thé prodiietion of streams implemented
using the SETSUSP and STREAMTAIL instructions. 'Both :titeve: slasses of programs ‘use special
function. application and signalling operations which fequiné miresophisticated algorithms thin
those presented above. In the naxt two subwections we'discuss how: thé-baekup-system should be
augmented to.handie tail recursive activations mwmmwam

structures.

e e b G S L PSR et R BRI e T v e T
B ¥ ¢ R E T E -

4 * FURTHER ENHANCEMENTS §4.4

- 4.4.1 Tail Recursion

Recall that tail recursion is used to implement iteration in the base language. The key
feature of tail recursive activations is that they need not persist until the recursive call completes
because the return link is provided as the third operand to the TAILAPPLY instruction. In our
current design of the backup system, if the TAILAPPLY operatbr was treated as being identical to
the APPLY instruction, then every tail-recursive activation -would cause a new activation
descriptor entry to be constructed, The structure of the asloclated computation tree would
contain a long chain of ADE”s w1th only the last ADE in th& cham havmg the relevant resuit
value. The backup system can optimize the constructloﬁ of 4.DE’s when taJl recursion is
involved by reusing the same ADE for tail recursive calls instead of building new ones for each
new tail recursive application. An important observation eoncctnmg tail recursion is that tail
recursive activations differ from each other only in theq arguinent records. All activations
ion closure and return link. Each activation

initiated from a tail recursive call use the same

it e 2 Aol 8
Bag e 13 IS

serves only to construct a new argument record for the succeeding one to use. In fact, because
activations in which the TAILAPPLY operator executes-do not return a result value, there is no
RETURN instruction which is executed. It should be clear that thls behavxour 1s not well
‘supported by our backup algonthms which very much depend on results of activations being
recorded on backup store in order to help reduce recovery ume of, volatile commands; The
reason for this moompatabnhty is the fact that no tail- recurswe actxvanon except the last returns a

result, making any mtermedlate tail recursive acuvauon dacnptor entnes &ssenually uscless.

We introduce a new type of activation dmmor ﬁm ail recursive activations which
includes the argument record of the activation. - Whes: a fuaction is instantiated by an APPLY
[instruction, an activation deseriptor is constructed for it with-type.appty. If this function was tail
recursive, then during the evaluation of this' function a TAILAPPLY tinstruction may execute.
Execution of this instruction, while causing a new activation to:be-added to the set of activations
in the system, does not necessitate a new activation descriptor. to-be coastructed as well. Instead,
we change the activation descriptor of the current activation to type tailapply. The argument
record passed as the second operand to the TAILAPPLY instruction is recorded in this activation
descriptor. In addition, all cdges emanating from this ADE are removed. The old state of the
activation descriptor is thus replaced to reflect the new activation. Other function applications
that wke place in the activation are recorded in the tailapply ADE as was done in the apply

ADE. Subscquent tail recursive calls in this activation will cause the same effect as took place

- §4.4 FURTHER ENHANCEMENTS © 65

initially: the old argument record is replaced with the argument record of the new activation, and

the edges emanating from the ADE are removed.

The inclusion of the argumen‘ti record in the d&scriptor allows the recovery system to avoid
reexecution of alf the tail recursive calls leading up to e one represented on backup stoe.
Since the closure and Teturn link are the same, keeping the argummmrd in the ADE makes it
unnecessary to reexecute any of the prior tail recursive actxvanons originally executed from the
initial APPLY. The representation of tail recursive acuvauons we have chosen has two beneficial
aspects. Fll'st, the depth of the computation tree is nmmgased fot every taxl recurswe call since
the niéw ADE can replace the ADE of the calling activatioh. This is bécause tail recursive
activations send their result directly to the address specified m ;hexr thlrd operand the calling
activation does not recexve the result of the callee. Secondly, by storing the argument record on
backup store, reexecution mn begm by applying the function to this argument record and the
return lmk prov1ded by the APPLY instruction which initially instantiated this function.

In Fig. 17 we show some steps in the transformation of a computation tree which
embodies the evaluation of the following function to illustrate the process described above:

Function Example (f: Function, n : Integer returas Integer)

Function Tallexample(m,n Integer, f:Function retlmls Integer)
“itm>n
. theam :
else Tailexample(f (m). n)
endfun

Tadexample(l n,/)
endfen

4.4.2 Stream Structures

Our basic approach to-recording the progress of computations is-aiso not well suited for
expressing the behaviour of computations inwlviné the production of stream structures. Recall
from Chapter Two that streams are produced by tail recursive functions in a demand driven
fashion. The unique instruction in a stream prbducer wh_;nctll/alloyvs J.helazyevaluauon of a
stream is the suspension operator. The backup and recovery algorithms as currently defined are
not capable of modcling the kind of program behaviour exhibited by stream producers for

reasons discussed below.

66 FURTHER ENHANCEMENTS " §44

Steps in the computation of TailExample, with initial arguments:m = 1n= land f(x) =x + L.

Step 1 ' Step 2
v . ' \ 4 ‘
ul empty apply‘ , wf] apply ndef
after Tailexample instantiated, ’
after [instantiated
Compuzation tree rooted at f's ADE.
Step 3 : ‘ - Stepd
u — appiy| 7 T apply

ul| empty |tailapply ul

Tail Recursive call reuses same ADE, Fingl value of Fanction.call is 2. -

Figure 17: Handling Tail Recursion

§44 FURTHER ENHANCEMENTS S

- 44.2.1 Rationale ,

To see why our current method is insufficient, consider the structure of the computation
tree produced by the backup algorithm {as currently defined) for-a:stream produeing furiction.
Since such a function is tail recursive, its associated activation 'would be represented by a
tailapply ADE. The.return link in a stream producer is used to ‘connect together successive
- elements in a stream. When a new activation of a stream preducer s initiated, the return link
_which is passed to this new activation-is the uid of the last stream elemem. ‘Thus, when the new
stream element is produced, the field previously containinig tive suspension in the last stream

element would now reference this new clement. ‘The new clement, i turn, would either be a
record whose second field is a suspension to the STREAMTAIL instraction in the current
activation or the value null denoting the empty stream.

Now, consider the behaviour of the computation tree if the STREAMTAIL instruction were
_ to be treated as being identical to the TAILAPPLY operatar.: {nder this assumption; our backup
algorithm would preserve the argument record for each attivation of the stream’ producer
function initiated, in accordance with the description of til recursion given above. - Notice that
because a stream activation only executes:a RETURN. wheén no more tail recursive calls are
necessary, the only. result value that would: be presewdoﬁthc backup-store would be the last
stream element produced. Intermediate elements whlch ace constructed using the SET and
SETSUSP operators would not be mamtamed on backup store Moreover reeordmg only the
‘argument reoord of the taxl recursxve actxvauon for a stream producer would not be sufﬁcnent to
restore the rest of the stream because the retum lmk for wch acuvanon IS dlfferent. Recall from
Chapter two that the retum link pwsed t an acuvauon of a sire; prod,ueer is actually the
second ﬁeld of the record representmg the last stream elemem created by thls producer Thus,
the return link of each call to the stream producer would be different.

This analysns indicates that the current des:gn of the backup and recovery algonthms suffer
" from two drawbacks with respect to the handhng of strwma Fursi, beeause tzul recurswe
activations aqsocmted wrth a stream producer dlffer from each other m more than just therr
argument records, we necd to mamtam more mfonnauon about qhe actlvatlon on backup store.
The extra information which needs to be recorded muet obvrously mclude the new stream
~element produccd The second drawback rs the mablhty* of }he backup algonthms to

incrementally construct a data structure on the b.ackup store. When a stream element is created,

68 FURTHER ENHANCEMENTS §4.4

it does not define the entire stream but represents only one element in the stream. Because
streams are created in a demand driven manner, whenever a new stream element is created, there
is also an activation associated with it whose state is relevant to the backup system. The
suspension signals an instruction in this activation to initiate production of thie next stream
element. Of most importance to the backup system is the argument record held by the
STREAMTAIL instruction which instantiates the next stream activation. The backup system must
record this information if it is to properly restore the state of the system. If the argument record
~ is not copied, then there would be no way for the recovery system to generate any further stream
elements beyond that which has been copied -onto the backup store. We discuss the
ramifications of this requirement below.

The instruction responsible for setting the suspension in the stream is the SETSUSP
instruction. The argument to SETSUSP is the record. representing the new stream element. We
see that one means of noting the production of new siream elements, therefore, is to alter the
behaviour of the SETSUSP instruction. The SETSUSP instruction, in addition to setting a
suspension in the new stream element, also initiates the transfer of this stream element onto the
backup store. Of course, the value of the stream may be an early completion structure in which
case it will be the responsibility of the SET instruction: to perform the actual transfer.

The instruction responsible for initiating a new acttvatnon of the stream producer i 1s the
STREAMTAIL instruction. The main operand to thxs mstrucnon of mterest to us is the argument
record that is used to initiate the new acttvatnon Reeordmg the argument record serves a
different purpose from its use in normal tail recursive acttvauons. For streams, reoordmg the

'argument record of the STREAMTAIL operator is essentxal to restonng the state of the stream
* producer activation to allow further generatmn of stream elements after the the recovery
procedures comptete

The advantage in altering the behaviour of the SETSUSP instruction to initiate the copying
of the stream element instead of the STREAMTAIL mstructton is that the transfer of the stream
element can take place before a demand is made for the next clement lf we choose to record the

“creation of stream elements by making the STREAMTAIL mstructnon copy its return hnk structure,
~ we would need to wait for the next demand to be made (smce that it is when the STREAMTAIL

instruction fires) before the copy operation of the current stream elcmcnt can be started

£ g e e N o Uy R TR RN S R D S e e e

§44 " FURTHER ENHANCEMENTS 69

Because stream elements are produced in"a démand driven fashion, if the evaluation of a
bind expression yields a stream, the value field in ¢name, value> pair bound in the backup
environment will contain a single element mmally, namely the first element in the stream. As
more elements of the stream are produced, they are aqldéd onto t.he backup image and are
consrdered as part of the streamimage in the baekup envmemn&. "%

44.2.2 lmplementution
To monitor a stream producer, we introduce a riew type of activation descriptor called a
stream ADE. A stream: ADE is similar to a tqilapply descriptor in that both maintain
information about a function activation other thang | its return value. The stream ADE,
however, in addition to containing the argument rl@rd for the next stream activation to be
initiated, also contains the stream element result of its associated stream producer activation.
These stream elements are linked together on the backup hap*bming the regovery process, the
backup streem image is first restored.. The recovery sysqem then eonstructs a skeleton of the
activation of the stream producer. This sketeton s used to mwﬁoducuon of the next stream
element when the next demand is made. The only instruction that can be enabled in this
~ activation is the STREAMTAIL operator whose argument record is taken from the backup store
and whose return link is the address of the last stream element. The suspension field in this
element is set to the address of the STRF.AMTAIL mstrucuon The reason for storing the
argument record is, 10 set-up, the skeleton activation 't support the demand driven execution
mechanism-for streams. When the recovery procedure eomplews, a subset of the stream image
recorded on backup store will be restored. Let <:t1 xz,. ,x ?hé the stré’dﬁ'n ekments reoBrded on
backup store. Then the recovery system restores the first J elements, j 5 n, where xj is the
" greatest element for whidl the argumeént record W‘&S‘ ‘WOME e ikt strdam element has
‘been preserved. A skéleton ‘dtivation is'construéted” t5'éid *&evj#fr* dicment ‘when ‘the
* demand for it is made. "Duting the consiructiont of thie &t b’ b store, argument récords
" tay be removed f‘rmmhe\ftrum nnase*when ft‘tan S‘e Mﬁnm%&&ﬁ&tiﬁey Wﬂl not be needed

R

- -during the recovery pmcess.

When the suspensmn ﬂeld in me ,last clemeng qn,lhe mqkup |m;\gs is apcesqed durms
rccovery the STREAMTAIL instruction in.the skeleton activation wauld. fire, initiating the next
activation of the producer to produce the j+ l"' elemem. We |llustrate thns process in F|g 18.

E “jf'x’; sk

To summarizc, unllkc. all thc mher strudurcs we havc cmmmcd Lhcrc are /wo operators

0 FURTHER ENHANCEMENTS - §44

Stream image on the backup heap.

— = | valn
arg 1 __r* 2 o & @ .-
s undef

< Skeleton Activity

F'is the closure of the stream producer function. -

Figure 18: Rcconstruction of a Stream Structure

| which are responsxble for mam&ammz a oonstsmn; mpm Qﬁa strm The s;:rsusr operator is
responsnble for mmatmg the msfe; of the new. stream element gnto the backup store.. The link
field of the stream elemems in.the backup imagg; gumed,hym&'{REAMTML operator when
it executes. The smr:wummsxmmon is also. respogsible for qepying the atgument record to
' the backup store. The backup system should treat the argument. -record passed to .the
STREAMTAIL instruction in an activation and the stream element created wnthm that actnvanon
“‘collectively to ensurc thdt a correct stream’ mmge is ’p*reservbd “l‘he 1mplementauon of ths
(value argumenv record is discussed in the nexi secuon o ‘ -

RS

In thc ncxt section, we fommhze the backup algomhms outlined informally above. Our

Tk B s> SRk A S it

- §44 . FURTHER ENHANCEMENTS: on

formal model is an extension of the one given in Chapter two-and mainly ‘involves altering the
definitions of those base language mstrucuons responsxble for the creauon and updaung of
ADE's on the backup store

4.5 A Formal Model of Backup and Recovery

Beyond the need for modlﬁymg the behavnour of some of the base languag,e instructions, a
formal model of VIM augmented with the backup and recovery algomhms must also have some
concept of failure. A failure should be that special state whxch eauses the system to mvoke the
recovery procedures. The modified operation of the base lgguagbdnstractions: differ'from their
qckupstateaswellasma

counterparts in Chapter two in that their execution reStgts in g pew b

new VIM state being constructed.

In the following presentgddn,"we $hall be usmgthn sa:nenogauon asin Chapter two,

2
HIREN R E PR

4.5.1 The Backup State
Formally, the VIM system is now treated as a four-tuple:

VM = <Shell Interp,BackupSute vms:::» where -

VimState = <Act X H xElS X. Env> U, {fam
nacmsu State =;<m 1 x-BHe‘ip’xfn‘my

. A o . ey e, identi ,fgg,thwdeﬁmtms mmodel
,Ml Nome t.hat thc VimState , i addmon 1o Mvm;(xne same companents-ag. in Ml also
“ 'oontams the spec:al value, faﬂed A fanlure in the system is modeled by having the Vim$sate
take on the value failed. All information found in ;he currem %’ijtate is "lost if the Vim,S‘late
has the failed value. The domain BackupState is deﬁned as a three-tuple where the first
component in the tuple, Log represents the command Log of HEVOlatite Shell comiiianids’, the
second component, BHeap. denotes the set of struetur valpg Sﬂkl%brﬂ)& bockup progedures,
‘and the third component, BEnv contains all (nwnc.value) bmdmgs prescrved by the backup
utility. Thcese values constitute the quiescent data in the sysicm The domam equatfon for BEnv

is the same as that for the environment component in the ViM state, namely, - -

“SRecall that volatile commands are those commands whose results have either not been produced or have not been
copicd onto the buckup store.

7 A FORMAL MODEL OF BACKUP AND RECOVERY 845

BEnv = Name — (U, U Scalar)

The command log, as was described in Chapter three, is used to hold the record of all currently
volatile Shell commands input to the system. By safely recordmg these oommands we are
guaranteed of being able to restore the correct system state. The Log isa mo-mple, consisting of
a function mapping from natural numbers to log enms and a sue oomponem mdmtmg the size
of the log New log entries are appended to the end of the los. o

Log = <N — LogEntry) XN
LogEntry = <Command X Ug>
Up = the set of uid's used for computation records,

As new Shell oommands are input to the system the text of the command is copned by the
backup procedures onto the log. Thls text oorresponds to the Command oomponent of the
Logentry. The second component in a log entry is a reference to the c%:pmaum iree-associated
with this computation. This computation tree will reside on the backup heap. .

Every element on the backup heap, EH:ap. has. 5 an asqclgt,eg pid. There are three types of
elements on the heap: structures which are normal VIM structures dxscussed previously,
activation descriptor entries, and stream’ coordifftor recordls 'that°‘are used 0 package
information about a stream activation. We discuss.the.rgle.ofithe strgam coordinator. record in
greater detail when presenting the operation of the suspension operator later in thls chapter
Every ADE on the backup heap will éither be mfe”::j 2 By %{iﬁé%&her ﬂDE in the computatlon
tree or wnll be referenced from a cbmmand Iog entry ’if it'is thé mmal ZDE in the computatton

tree. '

 BHeap = (U U Up) = (STU Ade U Stgeq'mRéc)‘ o

- StreamRec = <Val X:Arg X Link> -
‘Ade = <U, X AdcEntry X AdeType X Resuit> -
Val, Arg Uy u Scalar U undef |
Link = Ug U undef -

AdeEntry = (N — U, Uempty

gy L i Lt T e R

§4.5 A FORMAL MODEL OF BACKUR-AND RECOVERY 73

AdeType = {apply.tailapply, stream, value}
Result = (U U Scalar U undef))

An activation descriptor entry is a structure of four components. The first odmponent is
the uid of the activation being represented. As we show below; this field is used to identify the
activation descriptor so that the result of the activation can be properly forwarded to the ADE
when it becomes known. The second component; the” AdeEntiy, is a‘furiction mappihg from
natural numbers to backup uids. . If there are 1o entries i tie AdeEntry, this component has
value empty. The domain of the AdeEntry function is the set of afl instruction humbers in the
corresponding activation which are either APPLY, TAILAPMLY, o STREAMTAIL operations. ‘The
range denotes the uid’s of the ADE’s in the BHeap correspionding to'these activations. Thus, if j
was the instruction number in some activation a corresponding to“an’ APPLY instruction, then
AdeEntry()) would be the uid of the ADE associated with the activation created by thxs APPLY
instruction. Because the computation tree is pruned whenever a resuli of an activation is
recorded, activation descriptor entries: will Nave their: ddkeEniry ‘fleld set to the valie empty
 indicating that there are no-subordinate ADE's of thi$"sctivéition-and that the result of this
- activation has already been recorded. The third component in‘the ADE contains the type of the
descriptor. There are at least two types of ADE'S: ‘dpphy DB fepresénting activations for
which a result is not yet known and value ADE‘s whu:h goqtaln the ;psul; of the activation. In
addition to these two types of dmcnp;ors, there are. also spe;:ml gﬁcnptots for tail recursive
acnvatxons and stream pmducers whtch we descnbed m the Rrevigus sections. The. £oun:h field

S

represents the result of the acnvauon It can elther be a mar or a u1d whlch mferenc&s the

used to reference structures on the backup hwp are. ihe m‘at thade- used to° ‘reference
structures on the VIM heap. We shall use dot notation to refer to campenents of an activation
descriptor.

When an ADE is initially constructed. there will: be‘no valae to: placem its result field.
Thus, this component is initially set to undef When a result’ vzﬂue is subsequently produced it

will replace the undcfined element.

74 A FORMAL MODEL OF BACKUP AND RECOVERY §4.5

4.5.2 Early Completion

Early completion structures are represented in MR as follows:
ECQ = 9(ECE)
ECE = <Uy X N> U {back}

back is a special flag which indicates that this early completion structure is part of a structure
which needs to be placed on the backup heap. This flag is.placed in the queue by the Copy
function, We present the definition of this function below.: When the: SET operator replaces an
early completion structure containing this flag with a value, it will check if the structure
containing this field can be copied by determining if there are any more early completion
clements in the structure,

4.5.3 Auxiliary Functions |
~ As was the case with the heap in ‘M1, we have two. auxiliary functions defined on the
backup heap, AddBHeap and RmnBHaap. which‘: add and remove an element from the

BHeap for Hin the deﬁnnmgmr for AddH eap. md~£mﬂmm Chw two,

There are also two functions defined on the oommand log, AddLog and RemoveLog
AddLog adds a new log entry to the end of the log and’ RemoveLog em:ry removes a deﬁned entry
on the log. In addition, we also define two ﬁmcttons over AdeEnmes to replace and remove
elements from a given AdeEntry

AddLog: Leg X Legkatry — Log
Function AddLog(Log,Logentry)

let <LogVal, size> = Log
LogVal(m) = Logvakm)if m = size+1. .
= Logentryif m = size + 1,

size+1 ‘ ' '

in
<LogVal, size+ 1>

endlet

endfun

iy
e

845 - A FORMAL MODEL OF BACKUPAND/RECOVERY g8

RemovelLog: Log X N — Log
Function RemoveLog (Log, n)

let LogWal, size = Log
LogVal{m) = lnynlém)fﬂmﬁn
=undeffm=n
in

- {LogVal’, stze>
endlet
endfun

NewAdeEntry: AdeEntry X U A X N — AdeEntry
Function NewAdeEntr{ AdeEntry,u, n)

let AdeEntry’(m) AdeEntry(m) ﬂ'm »n

= ulf‘m"'
in
AdeEntry’
endlet
RAdeEntry: AdeEntry X N — AdeEntry 0 e
Function RAdeEntr)(AdeEm)y,n) e
let AdeEntry (m) = AdeVa&m) if m# n
= oMM =0
in
AdeEntry’
endlet '
endfun : BEE AR L
453.1 The Copy Operation S

Before describing the Ccawopemibn fet-uy fivet véview !loiabsttact representauon of a
structure on the VIM heap “TH heip i Hiodeled ab's aé‘.fék‘éd*‘ﬁmg jn which every node is
labeled with a unique identifier. Nodes on the heap correspond to structurcs m our system This
represcntation allows for structures to be components of other structures, c.g an ARRAY of
RECORDS. In our discussion, whenever we refer to a VIM structure, we also mclpdgu)ls to mean

all of the component structures which this structurc refercnces unless we exﬁﬁcftfy state

% o B O G R e i b Y e

76 A FORMAL MODEL OF BACKUP AND RECOVERY - §4.5

otherwise. Thus, when a VIM structure is to be copied to the backup heap, it is also necessary
that all component structures be transferred as well.

In order to preserve information found on the VIM state, it.is necessary to have a function
which can transfer data from the heap and environment components of the VimState to their
respective counterparts in the BackupState. This Copy function is given below:

Copy : (Uy; U Scalar) X H X BHeap — H X BHeap
Function Copy (Val,H,BHeap)

let NewH, NewBH =
if Val € Scalars
then H,BHeap
else let o
RefStruct = {u| 3 m€ N, R € Record s.£
H(Val) € Rec A H(Val) (m) = u}
Uy lUy,..., U, = elements of RefStruct
ECStruct = {u € Uy| H(u) € ECQ A Ste(Val) = u}

NewH’, NewBH’ =
if ECStruct = {} »
then if RefStruct = {}
then Copy(u,,
(Copy (4y,... :
(Copy (uy), H, BHeap)...)
else H,BHeap
endif

else AddBack(H, ECStruct), BHeap
endif .
in
NewH',
if ECStruct = {}
ther AddBHeap{ NewBH ', ¥al, H(VaD) =
else AddBHeap(BHeap.val. ({notcopied}))
endlet ‘ T
in
NewH.
NewBH
endlet
endfun

- 8§45 A FORMAL MODEL OF BACKUP.AND RECOVERY -m

The Copy function takes as input the uid of the structure:to be copied and first determines
if there are any early completion elements i in the structure. lf t.here are, the structure is not
copied; instead, those fields which are early oompienqn queues areaugmented with the special
flag back. The function, AddBack, takes as argumeats the eufrent heap and the set of uid’s
which reference early completion elements in the st,mctnre. lt retums a new heap in which the
flag, back, has been added to each of these eaﬂy mmp)etion structures. Determining if there are
any early: compleuon elerhents in the structure requtres that all component structures be
examined to see if they reference any. suchelemm The function Step takes as input the uid of
the top level structure and returns the set of all uid’s referenced from any substructure
referenced from it that is associated wnth an early completwn structure on the heap.

If there are no early completion, elemems-m ithe structure, then it is transferred to the
backup heap. Since a structure may reference many substructures, the Copy function copies all
substructures referenced from the structure by .recursively calling itself. A structure if fully
copied only when it and. all wbstmctmes it refemcs have been placed on the backup heap.
While the Copy funetion is easily expressed in our abstract model it is significantly more
complex in the actual implementation. We eddm the implementation problems in the next
chapter.

454 The Shell

The command log contains the text of the shell comand input and the name to which the
result of evaluating this command: should- be: bouﬁd. Thls mﬂ)rmataon is used by the recovery
system which reinterprets the command text. The oon;pmanon record associated with the log
entry is used to avoid unneccesarily reexecuting operations whese results have already been
recorded. Maintaining this information requires modifying the operati‘gon of the shell. The shell
must now, in addition to the stream of shell commands and current KimSrate; also take as input
the current BackupState. It returns a new VimSiate resumng from tﬁe evaluation of these
commands and a new BackupState which comams a new log em:y ,fm; every command input.

Shell: Session X VimState X BackupState — VimState X BackupState
Function Shell (Session, VimState. BackupState)

let <Act, H. EIS. Env> = VimSiate

78] A FORMAL MODEL OF BACKUPAND RECOVERY §4.5

<Log, BHeap, BEnv> = BackupState
NewState =)
if ChooseToE xecute (VimState, Session)
then ShelXSession, Execute (VimState, Choose(ElS)) BackupState)
elseif empty(Session) -
then VzmState. BackupState
else let c; = first(Session)
in i}c .C = DELETE : '
then {Act, H, EIS, DeIEn(Eny. Name)) BackupSlate
elseif ¢ ¢.C= ‘BIND
then let % cormandis' BIND

FA = Tmnslate(cl)
= newuid flom U,
A’c:t = AddAcAct, “F » FA)
NewEIS = Eﬁ&u{ﬁﬂp P D FAQ) opcnt 0
A FA@sigent =0}

u) = anewuidin Uy
NewAde = <ug: {enpply }undap
BHeap" = Aﬁﬁﬂ@,ulﬂm:{dc)

Logentry:= €&y 7
NewLog = A&:‘cdm[-ﬂwuf)

State’, v = Interp(State, Choice(NewEIS))
{Act', H', EIS’, Env> = VimState’
Env’ = AddioEnv (Env, c,.name, V)
in
<Act, i, EIS'; Env>,
{NewLog, BHeap', BEnv?
endlet
endif
. endlet
endif
in
if empty (Session)
then i £157= {} ,
‘then Shell (Session, Execute(Newstate Chaice(EIS‘)))
else Newsuate, ﬁewBatkupStale i
endif
else Shell (rest(Sesston) Newstaze NewBackupState)
endif

endlet
endfun

" §4.5 " ' A FORMAL MODEL OF BACKUP'AND RECOVERY ‘ o

The new log entry constructed by the shell contains the text of the command mput and a
reference to the root of the computation tree o be assbciathﬁ with' mis oOmputatwn The uid
field in the root activation descriptor entry contiins the uld of the setivation bemg instantiated.
Its AdeEntry is undefinied since no functions have Béen dppltéd from t}us actmaﬂon yet. The log
can be thought 6f a§ an array of log entries. “The el apdates

' the fog by adding the new log
entry to some currently undefmed mdex, ; Note Aga; ﬂﬁ;agqm&@onb,mvoked after the log
entry has been recorded. 'Ihe shell acknowledges a shell mput by demandmg the next command
in the input strearm onfy when the'current shell éommiﬁd has been noted on the backup store.
This guarantees that no processing will be done on a computation which cannot-be recovered
from failure since the text of the command is used by e :ueévei-y b}oeedureg to reexecute the
command. The two functions which are resporsible fgp Mcgg gmonment, DelEny and
AddEnv must siso be modified. The DelEnv is responsibiefs i-ﬁmévhg an’environment entry
from the current envrionment. Since erlv;roﬁmiemivp abg,pm of the backup state,
" DelEnv must remove the entry from the m.} a;s Qell. .

4.5.4.1 Removing Log Entries . S o \
The AddEnv function is. zespopsible | fw addmaqnewcgmv#uﬁ #ix;ding to the current
environment. The:backup systenv iigintains informadon i e firin of-4 computation record
about the computation that produced this value. This computation record neeg;bp kept on the
backup store only so long as the binding was not placed in the image of the envirosmest kept on
thé backup staté. Once the binding is placed in the backup state environment and the result
. value is fully defined, the computation jree assoripted Juith; the ey sluation: of shis contmnand can
 be removed from the backup. ahm It may bethe case, homayey, that the pesult value contains
early comp.leuon structures, preventing it from humgmm sheap. . Thewnalue
. component in the binding in this case is notcopigd,. Insuch. ipstanges. it.is.the responsibility. of
_ the SET operator to remove. the compwiation. macord. when; the yalue: boearaes fully- defined. If
there are. no early completion Wum in.the. resuit; yalue. the Addbay function places: the
7 bmdm&,on the backup environment and.removes the log enty, ©r Mis compwtation.as well, .

SR S T

80 A FORMAL MODEL OF BACKUP AND RECOVERY - 8§45

4.5.5 The Interpreter v

Because base language instructions will be now be aperating.on the backup state as well as
the ViM stéte, it is necessary to alter the behaviour of the interpreter. The interpreter is now a
state tranSitionfunc»tioh froh a VimState, a BackupStase, and an enabled instruction to a new
VimState a new BackupState and a result value. Its definition is given below: -

Interp: VimState X BaciupSt!te X El - Vm!lState X BaclmpState x (U U Scalar)
Function Interp (V:mState, BackupState, <u,t>) %(u,:) isan, enablcd instruction

let
{Act,H,EIS.Env> = VimState
FA = AcKu)
{Log,BHeap;BEnv> = BackupState
NewVimstate, NewBackupState = Emtdvmsmﬂackmswte, W)
NewVimstate’ = Failure (NewVimstate)
{Act’,H'.EIS’, Env> = NewVimstate’
in
if faile NewVimstate)
then Recovery(BackupS'tate)
elseif FA()).opcode = TERMINATE
" then New¥imstate’ NewBackupState,FA(H.oprumi
else Interp(NewVimState,New BackupState.Choied EIS))
endif
endlet

The Failure finction models ‘the introduction of a faled state in the system. It retums
either the state failed or the state'passed to it'as input. The fuiction fatled returns true if the
new state is a failed state and false otherwise. When faifed teturns true, the interpreter invokes
the recovery procedures to restore the system to a corfect state.” The niodel of failure given here
i, of course, simplistic insofar as it assumes that a faifure does not occur during the middle of
“instruction exécution. In the actual’ implementation’ of the system. care must be taken to

guarantee that copy opcrations on the backup store are performed ‘atomically. The model given
here, however, is convenient for expressing the salient aspeéts of the backup algorithms,
abstracting low level details such as preserving atomicity of copy operations. These issues are

addressed in the next chapter.

s SRR R e e e AN

§45 .- A FORMAL MODEL QF BACKIJR AND RECOVERY -8l

4.5.6 Function Application

In this ‘section, we present the modified operatmnﬁl sermmtics of two of the base language
instructions responsnble for function apphcanon in our system. the APPLY and the TAILAPPLY

SR ek

instructions.

4.5.6.1 The Apply Instruction

The effect of executing the APPLY operator is to augment the number of activations in the
VimState. The addition of a new activation is reflected on the backup heap by adding a new
activation descriptor entry for this new activation and creating a new AdeEniry. function in the
ADE of the currently executing activation. This new function maps fmm oﬂ}el to uid where
offset is the instruction number of the APPLY operator and uid is the umque lg!gnuﬁer of the
ADE representing the new activation on the backup heap. The new ADE will contaity in its uid
fietd, the uid of the new activation; its AdeEntry Field is set to empty, and its type field is
initialized to apply indicating that. this.activalion. was ipstantiaied by, an APPLY imstruction.
Since the resylt of this activation is aot yet known, its Besulis et 0 wndefined,

IR IS

if Fopcode = APPLYM
let T '
(—Iopl

arg = Lop2,

<uf Jree> = H(C),

u" = anew uid from U
u -anewuﬁftﬁmlf

Act' = AddAexmu,%, I

Act”, NewEis" =
~SendTaDest
(SerideODest
(Act NewE&u <uncond, 1. opt). Q..o
u’, <uncond, 2. opl) arg)
u’, Cincond, 3, opf)f i),

=a newu:d chosen from U ;
newade = <u’. empty. {app(yf undef>,
BHecq‘ul AddBHeap(BHeap.i "bf .hewade),”

82 A FORMAL MODEL OF BACKUP AND RECOVERY - §45

BHeap = if 3 u, st Bheap (u,) = <u,, AdeEntry, Type, ResuIt)
2 b
then let AdeEntry Newﬁdq&mngﬂe@(u AdeEntry. u,,,,),
UpdateAde = <uF 4 AdeEntry Type Result)

o o A
AddBHeap(BHeap,, u,,UpdateAde)
endlet
else BHeap
endif
in
{Act”,
H’,
NewEis’,
Enw,
(Log,BHeap,BEnv)
endlet
endif

It is possible that there is no oomputanon tecord on the’ backup ‘hieap that contains the
activation descriptor for the activation ‘in which the ‘APPLY' insmmon ‘fotind. This | may
happen if the result of the computation has already been bgmd _m,.,the bgckup_ emglronment
before the APPLY executes. In this case, there is no change to the backup state, Ifithere is an
activation descriptor corresponding to the current activation, its AdeEntry lsupdated to reference
this new ADE. .

4.5.6.2 The TailApply Instruction

The TAILAPPLY operator is also modified to monftor the progress of tail recursive
functions. If a TAILAPPLY operation executes as part .of'&ﬁil ecursive activation, we copy the
argument record passed as the second inptit to the ‘limruéﬁﬁntomebackup heap, replacing the
old argument record found in the activation descriptor entry. As we mentioned earlier, doing
this substantially .reduces the time needed to reexecute a tail recumve ﬂmcﬁbn Copying the
argument record becomes a non-trivial issue, however, becau;e of tbe pmenoe of early
completion structures. If the argument record to be cep‘ed conlams early completion elements,
the copy opcration can only take place after all such elcmcnls h:;ye bee.n set. The old argument
record on backup heap and the AdeEntry component cannot be replaccd until the new record is
fully copicd. To ensurc that this restriction is obsm'ved it is necesary 0 create a new ADE
corresponding to this new activation. We now nccd w iink the old. ADE and the new ADE
togcther. Since the idca of noting the argument record on the backup hcap is to avoid

§4.5 A FORMAL MODEL OF BACKUP AND RECOVERY v 83

reexecution of prior tail recursive calls, we interpose the new -ADE- between the activation
descriptor corresponding to the current activation and its parent ADE. The parent ADE
represents the activation in which the initial call to the tail recursive function was made. In this
sense, the computation tree built from tail recursive activations aseonstrucsed "bottom-up" with
old tail recursive 4DEs-being pushed down the tree and new ADEsbe&:g fitted in between its-
caller and the original caller of the funcuon We illustrate thxs proow in Flg 19 When an
argument record is copied, we set the AdeEntry ﬁeld in the dacnptor to emmg, effectively
discarding prior ADEs associated with this function. Thus, once an. argument record is fully
copied, all previous ADE’s of this tail recursive function are-removed from the backup state since
the link connecting these activation descriptors with the rest of the computation tree is severed.
The formal definition of the modified TAILAPPLY instruction is given below:

if 7opcode = TAILAPPLY then

let
C = lopt,
arg = l.op2
dest = 1.op3

<uf Jree> = H(C)

u’ = anew uid from U

Act’ = AddAct(Act,u ﬁl(u)

Act”, NewEis" =

SendToDest
(SendToDest
(SendToDest

(Act’, NewEis, u’<uncond,l.op1>, C)
u’.<uncond.2,opt>, arg)
u'<uncond,3,0p1>, desr)

Act””, NewEis” = SendS i‘gnal(Artf’,NewEiS';ﬁ;- pddestinations)

U, = new uid from UB

BHeap, = if 3u fd' & st BHeap(u)- <u o Mnm?‘ypekesulo

Lntrk) = .u N Maap(n l)w.:ﬂnm

then Add&HmABHagiu SO
NewAdeEnto(AdeEntry Une k)éT ype.RewII))

else BHeap

endifl

84 A FORMAL MODEL OF BACKUP ANDRECOVERY §4.5
L 2
After first tail recursive call. Second recursive call.
U || auappy 0 | ailappty

Computation Tree C : / '
| v] taitapply

Compumton Tree C

3
After argument record of second call copled

UIJ empty J tailapply

Figure 19: Recording Tail Recursive Functions

vl

H',BHeap, = if BHeap, = BHeap
then H,BHeap
else Capy(arg.H.BHeap,)
endif

BHeap, = if BHeapy(arg) # notcopied
-then AddBHeap(Bt eap ;. . uxmm%mpﬁy arg) -

elseif 3. Uy SE BIfeap(u kg
then let AdeEntry = anﬂ}.s adei')
in
AddBHeap(BHeap2 new (u MaEm:y tallapply arg>)
cndlet

clse BHeap2

- §45 A FORMAL MODEL OF BACKUP AND RECOVERY “gs

' endif -

in

{Act™,

H,

NewEis™

Enw,

<Log,BHeap »BEnv>
endlet

endif

R

The backup heap is modified in three steps by the TAILAPPLY operator In the first step,
the ADE of the activation which initially mg{amzaud &@l @curswg ﬁmcucm is modified to
have its AdeEntry field reforence the:activation mw for this new application,
This new descriptor has its AdeEntry field initialized to reférénce tfu: ADE of its caller. If no
such ADE exists, then no change is made. In the next step, the argument record is placed on the
backup heap. If the copy operation was successful, tben! m thi mxgd step, the AdeEntry field of
the newly created descriptor is set to empty since thq»me:y medure can use the argument
record directly during the restoration of the system state. If the séééiéture was not copied, then a
reference in the AdeEntry component of the new qet{ygﬁqa iss setie its caller Ade. This allows us
to still reference previous activations of the tml meam mm ‘until the argument record is
finally copied.

4.5.7 The Return Operator

One of the important features of our Wﬂgdrithm is that results of activations are
recorded on the computation tree. This.is the pﬁm mans of reducing reexecution time of
volatile shell oommands. Tne RETURN operatar. msmlts the result of an activation to the
backup heap. The retum value Jif it is a VIM stribeture will, in most cases, contain early

i

completion elements. The SET operator is responsible, in thes& gm; 15t
the structure does finally get copied. If the return value is copaed Mdl ADFE’s referenced
from this descriptor are removed from the backup state. This has the effect of ptuning the
computation trce. Because ADE’s can be removed in this manner, it may be the case that when
the RETURN instruction executes, there maybe no ADE associated with its activation since a
return instruction in a parent activation may have placed its result on-the bachupheap In this

case, no action on the backup state is required by the instruction. The modified définition of the

ces, for ensuring that

instruction is given below:

T et R R R LRI R BN i e P R R TR

A FORMAL MODEL OF BACKUP AND RECOVERY - §4.5

ifopcode = RETURN then
let
DL = H(lopt) % the list of return addresses
u = DL(I) % uid of the calling activation

targets = GetDesi(H,.DL(2))
Val = 1op2, % the value to be returned

Act’, NewEis" = SendValue(Act,NewEis,u, targets, val)
Act”, NewEis™, = Sendchnal(Act NewEts uF A,destinatlons)

Ade = <ug,, AdeEnzmType,Result)
BHeap, = if3u, st BHeap(u) = Ade T
then AddBHeap(I{aew.ub.(ur lAdeEzmy.ml.ua Val))
else BHeap ‘ , ;
endif

H'.BHeap, = if Val €Uy
then Copy(Val,H', BHeap')
else H’,Blkapl ‘
endif

H",BHeap, = i 3 u, s1. BHeap,(u,)) = Ade
thes:if BHeap;(Val) = notcopied
then H',BHeap,
else let
Ref {n} AdeEntrXn) is deﬁned}
., = kelements of Ref -
%rmy RAdeEmr)(
(RAMMWJ?E%W"!")J)
NewAde = ium.MEw m;yao B
in
H', AddBH éap(BHeap,,u, NewAde)
| i A8 H Byt Newdd
endif
else H,BHeap
endif
in
{Act”,
H”,
Newlis”
Enw,
<Log.BHeap;, BEnv>
endlet;
endif

§4.5 A FORMAL MODEL OF BACKUP AND RECOVERY 87

The backup heap is updated in three steps by the RETURN instruction. The first step
determines if an activation descriptor for the current activation exists £ if'this activation has an
ADE which is part of some computation tree. If so; the type of this activation-descriptor is
changed to-value indicating that a result has been creatixt dnd-he retitn value is writteh iito the
 result field of that ADE. If the return value: is-a'structire; or we inftiate a Copy operation to
place this structure on the backup heap. : If the structitre i fisllj-ebpied because it'contains no
early completion elements or if the result was a scalar value; ther dll-4DE's referenced from this
descriptor are removed .from the backup heap, effectively -pruning-the computation tree as
discussed earlier. If, on the other hand, the result was a structure oontainé eeirly completion
structures, it is the responsibility of the SET instruction to perform the pruning of the
computation tree. ' o -

4.5.8 Stream Operations

There are two operations which manipulate stream actwatxon dacnptors on backup heap:
the SETSUSP instruction and the STREAMTAIL mstructton. Thﬁe operators are responsible for
recording the creation of r new stream ets and arg\mem records of activations to
allow the recovery procedures to reconstruct the stream image amd to permit demand driven
evaluation of those elements not recorded. A

4.5.8.1 The Suspension Opentor

As we had described earlier, the SETSUSP operator needs to be altered to record the
production of streamy elemem on m bukup heap. Cm-d o w utgenthm is the use of a
stream coordinator record which contains the element produced by a stream producer activation
and the argument record to the STREAMTAILmstmcmnusgdto tiate. the-nextractivation-of the
producer. When a new stream activation is instansiated,-a-new ADE s ereated for it Unlike the
case with the APPLY operator, however, ADE's created by the STREAMTAR. instruetion are
accessed through the sircam coordinator record. The link ﬁeuw&mrdmrecordas used
to link together all stream activation descriptors in a chain.”nm roting the odﬁStmcﬁon of the
stream on the VimSiate. The SETSUSP instruction is responsible for ipitialy- creatmg the
coordinator record and for linking the clements in the backup stream“uﬁage , thn the
STREAMTAIL instruction exccutcs, it initiatcs the copy operation for the 1rgumcm rccord of the

88 A FORMAL MODEL OF BACKUP:AND RECOYERY §4.5

new activation being instantiated. In addition, it sets the link field in the coordinator record of
its corresponding ADE to that of the new stream producer activation.

The SETSUSP operator takes as input the record nepresenting the new stream element. It
updates the ADE associated with. this activation to type stream and constructs a new stream
. coordinator which is referenced from the Result of .this. descriptor. It then initiates the: copy
operation for this stream element. Each new invocation: of tlie stream produeer causes a new
ADE to be constructed, with the link field in the coordinator of the;previous activation set to this
new ADE. In Fig, 20, we illustrate the effect of the SETS&iSP instruction on the backup heap.

u apply undef

Computation tree
rooted at this activation

After a SETSUSP operator in activation with uid u executes.
and stream element recorded. .

u stream

undef

Figure 20: The Effect of the sersuse Instruction on the Backup Heap

The format definition of the SETSUSP operator is given below:

if /opcode = SETSUSP then

let
u= fopt
R = H(u)
S= lop2

i= lop3

845

' H"BHeap, = ua st BH 5& ul% = <usﬁ%£n

B R P S A R P 22 LR ERELE) E
. A v r P L T I
. w_ <3 LR P S O N S S F RS B X S S C A B N FEeSYE L BTILT

4 FORMAL MOQEL OF BACKUR ANDAECOYERY o 89

Act’, NewEis" = SendSignak Act, NMWFMWW

VVGN . : e .W_;f;
RO =ROMYSS e

= MakeSusp(<u, , D) ath
strecord = <REY), uridbfiinidef> Bargut r%wm noiknown yet.

- HBNeap, mMR(ERE, ¥ e o et st e

thga,}C : .H,.»Bﬂm) DR s
~else H’ aap o
‘ol pe Y i I TURSE-TL Th BT '.i AamiThoA

| ‘= anew uid from
'(é}'!aepz %Wﬂﬁmpl o mr&’

b} @; r'i”)l T EE

eke HJHup
endif

i t‘*gp T8 e Eeiie I R

in

im(/)eECQAIROﬁ o

- thea €Aof; =
Wméﬂ.a.«m,
NewEl.:,
(“&MFM‘ Pl e ik ’ ‘7'-»”:‘-"1' ?

Cebe mxcr:m»tu«— Senmnémcr z‘ir?‘ t,s"igna[).signal)

B0 IR WL e TMALNTE alt o} boessn D

= ..z,,

A, S s A SOORIGTHRGY 08T L e
NewBly, oo i os 0 s TguAusn nl D e
A Sl g chranet vinie o
<Log, BHeap;. BEnv) L

endlet

endif

R,

B JATHAIA LR = S, &

There are three major tasks that the SETSUSP operator is responslbI? fm; in lﬁe update of

the backup heap. The first is the construction of the strcam coordmammeergs It crcates a
record. whose first component is the SOMOFWMW Wbt ERfivient, 4t the second
and third components arc given value, undef. This sccond compm@gw to hold the,value of the
argument rccord but may only be defined when ;hc' STREAMTAIL instruction in this activation

90 A FORMAL MODEL OF BACKUP AND RECOVERY §4.5

executes. The third component holds the link to the ADE of the next activation of the stream
producer and can also only be set when the STREAMTAIL operator executes. The second task is
the copying of the value component of the_stream record. Re‘caII- that our definition of a non-
empty stream element is a record of two fields, the first bemg the element itself and the second
holding the suspension to the rest of the stream. The backup faclhty need only copy the first
element of the record since the link field to the next summ element can be set by the recovery
procedure when the stream is reconstructed. The thlrd major ta& that the operator performs is
the updating of the activation descriptor entry associated with the stream producer. It changes
the type field of the ADE to stream. and updates the Resu}t 0 referenee the new stream
coordinator record. We next examine how the STREAMTAIL instruction needs to be modified to
maintain a cons1stent and up-to- date 1mage of. stream producﬁm.

4.5.8.2 The StreamTail Operator

The STREAMTAIL instruction operates in oonjuncuon wnth the SETSUSP operator in
maintaining the stream coordinator records and activation dwcnptom. ‘When this instruction
executes, it initiates the transfer of the argument record p&ed as: ifs second argument onto the
backup heap. The stream coordinator corresponding to this acuvatlon is. updated to reference
this argument record. If both the value field and the argurnent-récord are fully copied, then all
subordinate ADE’s can be removed from the backup heap. In this sense, the stream value and
argument record passed to the STREAMTAIL‘ mstruct:on oonsiitute the result value of this
activation and just as the computation tree is pruned by the RETURN ifistruction when the return
value is placed on the backup heap, we perform the same action herewhen both the stream value
and argument record are safely recorded. Like the TAILAPPLY mstructton. STREAMTAIL is also
responsible for creating a new activation descriptor. The type of this ApE is set to stream and
the link field in the current stream activation record is set to the uid of this descriptor. We give
the formal definition of the STREAMTAIL instruction below:

if Jopcode = STREAMTAIL then
let
C =lopt, .
arg = 1.op2 ' ’ :
dest = 1.0p3 % dest is a field in a stream record . :

<u y Jree> = H(C)

- §45 - AFORMAL MODEL OF BACKUFANDRECOVERY

Act = AddAct(Act,u ?i(u)
Act”, NewEis" = .
SendToDest
o f(SéndTbD’es’r
- {SendTobest: v C’) ~
(Act’, NewEis, u ,QMEO'\%WI)
u’{uncond,2,op1, arg)

u <mwmpwm

A NewEis = SendS:gnaKAct NewEIs u , gons)

SRR

* e -MWdeug GErL ad L
nm = <y ,cmpcy,strmm,undep
BHeap, = AddBHmp(BHeap,uMmmde)

| H\BHeap, = Coplarg. H.BEeap,).

H“’Bﬁeap HIu s.t. Heq
- Mﬁ!ac

35331 .«F

u ‘J._H’ BHeap_.' if3u s.t. w&& 6%:%&)

i mwgum SHIR =

A3 y:) {
h m %&5 Iiw.);f

: m et e ’)i T [T O
elsell BI'Ieap2)
éiseﬁaﬂeap

in

K Aet™, : '
H™, TP Y B E RN S8 L AT N R TP L) B DR
Newlis . b
<Lugﬂ# BERY

en;llet s :

cndlf

;& AdeEnuy,strcamu)f | N |

Mmr‘y’tstmm a)

g TR AT R N B R SRS TR
A ke S

91

92 A FORMAL MODEL OF BACKUP AND'RECOYERY - 8§45

There are four steps that the STREAMTAIL instruction follows in upéatmg the backup heap.
The first step is the construction of the activation descriptor for the g)ew strq&m activation to be
instantiated. In the next step, the instruction catls the Capy fumn to:-transfer the argument
record to the backup heap. In the third" Step di‘g"&i:g;&ﬂ w?rghnator associated with this
activation is updated to have its argument record m&mm Finally, the instruction
checks to see if both the stream element and the arggx&ent record have been copied, and if so,

removes the subordinate ADE’s frdm the backup heap. We have avonded dmcnbmg the removal
of argument records of old stream coordinatior records mmﬁﬁﬁ"thé pmamion

4.5.9 The Set Operator
The operation of the SET mstrucuon ts alsa , b ectyr mtbrmanon on the backup
RS NSl S £ QN FEIR L X
heap. A structure contammg an early ompletion mmmm argument record to

a TAILAPPLY instructin ar meybe part: ot Nsa‘iﬁeeméofﬁf activation. In section 4.3, we
i’ 45 I
argued that such a structure should augment the ;

S¢gig-only when it and all of its
substructures are fully defined ie when they contain no early completion structures. If the early

AR }: xswn

completion queug in the ee-stractire | Being set mﬁ@ﬁ;} T Value; back, it means that this
field is part of some structure WMM mhwm the backup heap. In fact, because
elements on the heap can' be shared, the stractite cOnthit (n‘; thg field may be a component of
many structures, some o(whom . peed (0. be: W&,hckup heap. The SET instruction
examines each of these structires: w see if merg m q};\hﬂy completlon structures in them

which still need to get set. Those stmcmm« thich-are

. Th¢ SET. mst.ructmalm axagnmee those activation mpmrs or stream coordinators that

have a reference to any of those structures that become Wgczgid because of its execution, If,
for example, there is a value or tailapply Ade whose Pesulfipld raferences a structure that
becomes fully defined because of the SET instruction, then, as was tife by the RE.TURN and
TAILAPPLY instructions, all references to activation descriptors from the AdeEntry. oqmponent of
the associated ADE can be removed. Similarly, if the reference to a fully dei'm:d structure
emanates from a stream coordinator, then the SET operator must check to see ir Lhe AdeEntry list
of the associated stream activation descriptor can be reset usmgdhanmem;u,guussed above.

The instruction is also responsible for removing a log entry if the elcment bemgseﬁs part of a

Dt S SR TR G T 4 3 T s PR T P A e ST

§4.5 A FORMAL MODEL OF BACKUP AND'RECOVERY 93

structure- to-be:bound in an environment. - We give the formal definition of the instruction - -
below: o

if Zopcode = SET then
let
u = lLopt
R = H(w)
S= lop2
x = l.op3
u'= H(R())

VvEN
R()=RWify=f
= x otherwise .

Act’, NewEis" = SendSignaKAct,NewEis,u A.destlna?loi!i}
H’ = NewHeap(H, u, R)

" Parent = {up] u” € Step(u)}
| “1"‘2' Wiy = koomponents of Parent e

tben Copy{“p S e
o,
'{Gm‘% ﬂ,ﬂm YT

elseH BHeap : e

entlif *

BHeapl i3 u&,s.t. Blieqplg) =. <WW€TM'>

then let Ref = {n| Achm n) is defined
o ”1 .(,n = kﬁ&lﬁm&
: Wlﬁﬂmmdmnﬁwuk)»
in if Type value V Type = M
., then if::#gp(u) * W
t

,«(can F

HEr T I B e

AddBHeqn(&Hm,wg.(um.A&Entfy T)\mtg)
else BHeapl
endifl :
elscif Type = streame:: . i
then let <valarg. Imk) BHeap(u) :
R IUET N, 4 «-\(Mm»ul) ﬁmccopied)

R SR P

94 AFORMAL MODEL OF BACKUFANDRECOVERY - §4.5

 AddBHeaptBHenp,iu, Cu ., AdeEntry’ Type.u)

else H”,
BHeapl
_ endlet
 else H,BHeap
endif
endlet
else BHeap
endif
NewLog = CheckLog(Log,Parent)
in
{Act’,
H,
NewEis" U H(u)
Enw,
<{NewLog, BHeap,, BE’nv)
endlet equ
endif

Because objects on the heap can be shared the reoord whose ﬁeld is being set may be a

substructure of several objects. The set Parent denotes thé did 30 thése structares. Recall that
the auxiliary function Step when given the uid of an & A oo ““’%bn structure returns the set of

all uids associated with structures which-have %path mm’heap to this ec-structure. If the flag,
back, is found in the early completion queue, the m&'ﬁét%h‘§ ;he Copy function to attempt
to copy all those structures whose uid's are in Parent. Thts ﬁmcuon will only copy those
structures which do not eonm anyoﬂ'lereagfy toneleme Bt 1p

If the activation descnptorfe rencing
then the subtree rooted at the ADE is removed. lf on the other hand, this structure was
referenced from 'a -stream coordinator Techid, the “iistruction removes the subtree of the
corresponding stream activation descriptor i bolk Lﬁe value and argumcm field in the
coordinator have been oompletdy defined. LR

We also introduce-one: otﬁer auxmary ﬁmcnon CﬁeckLog Some of the structures in the
Parent set maybe values which are to be. bound in the uscr environment. Among these

T e E N N T o N s R St Gk e e T

§4.5 A FORMAL MODEL OF BACKUP AND RECOVERY 95

structures, there maybe some which ‘are sow' fully. dofined a8 a-result of executing the SET
operation and are placed on the the environment jmage on the-backup :state.. These structures
.~ are the result values of active:computations. Thess compirations are ropricsented-on the-backup
“heap as computation records which are: referenced :froms the wnteies'in the command log. The
function CheckLog removes these log entries and returns the new log. =

4.6 Summary

In this chapter we presented the backup and reeovery algonthms for the VIM sy§tem. Our
attention focused on the npresentauon and mampula}ig% %L ggm?putanon reoords wh;gn contain
information about the progress of volatile commands in the system. A computation record is
represented as a directed tree where nodes in the tree denote activations and edges signify
caller/callee relationships. To update a computation record requires altering the semantics of
the APPLY and RETURN instructions. The APPLY operator adds a new node to the tree and the

RETURN operator replaces a node with the result value of its corresponding activation, |

A node in the computation tree is referred to as an activation descriptor entry and embodies
information about an activation in some active computation. There are two basic types of
ADE’s: apply and value, the former used to denote an activation whose result value is not yet
known and the latter designating an activation whose value has been recorded on the backup
heap.

The main disadvantage with this simple scheme is that it is not sufficiently expressive to
handle early completion or stream structures and is inefficient when tail recursive functions are
involved. Early completion is handled by requiring that all ec-elements in a structure be SET
before the structure is copied. Ensuring that such a structure eventually does get copied
necessitated the modification of the SET instruction to update the backup heap when the
structure becomes fully defined. Tail recursive functions are represented on the backup heap
using a special taﬁappty ADE which holds the argument record of the tail recursive activation.
We based the design of the tailapply ADE on the observation that the recovery procedures
could avoid executing intermediate activations of a tail recursive function if the argument
records to the activations of the functions were recorded. During recovery. the function could be
instantiated directly with the argument recorded found on the backup hecap. Finally, we
- introduced a special descriptor to handle stream structures. A stream ADE contains a reference

3

S e R L e O I R

9% SUMMARY . . ' - §4.6

to a stream coordimtor record which ' embaodies:infosmation: about :a: stream activation. In
addition to storing-the stzeam element producesd in: that:agtivatioh; we-aiso keep the argument

‘record needed (@ praduce the next stream. element. The gonstruction and maintenance of stream

coordinator records - required :modifying. the: operation ‘of -ithe. SETSUSP ‘and STREAMTAIL
instructions.

The algorithms presented in this chapter were developed for a very abstract machine in
which such issues as structure orgamzatnon guaranteemg atom:clty of mformanon transfer from

HaRRT

memory to backup heap, and 1 memory management ofg the bﬂup h@gp wgre not addmsed. In

‘ thehextchapter wedlscussﬂlmm o

¢ P
@
ﬁ': i
- 3
i oY
L
Tiviyg
SRS FoR SR SR
e
i <1
H st
Satargc o0
St
2 FERS TS
. £ i
W % 3 IR
S'i:ﬁ ¥ i
i i
]

AL NS £ D T i PR e e Ll e P LR T T e e

§50 97
Chapter Five

lmplementatio‘m Issues

In this chapter, we are concemed w1th ooncrete problems that anse when we attempt to
implement the backup algorithms presented in Chapter Four for the VIM system. - These
algorithms were described i in the context of an abstract model MR whtch was usedasa vehxcle to
rigorously describe their behaviour. Issues whxch were oonvemently hldden in our model will
- now have to be more thoroughly addressed. In particutar, we will focus our ‘attention on how the
Copy function may be implemented. The complexity of tite operation arises because of the
representation of structures in our system. Guaranteeing that thié oopy operation will always be
alomic is a non-trivial task given the storage representation fof- data structures that VIM-uses.
Section 5.3 concentrates on this issue. Section 54 mam storage’ management policy
for stable storage.

5.1 The Copy Operation)

The copy. operation, as described in .Chapter Four, is responsible for copying a VIM
~ structure object to the backup heap. An.efficient impfemontation of this operation-is' necessary
 for any practical realization of our backup algorithms. In our abstract model; the copy operation

- was treated as a function which transmitted the success of the copy Hack to its caller. The calters
-of this function were base: language instructions that required result values or argument records
to be placed on the backup heap. There isno-concurrency béweer the execution of the cater

_Le instructions and the Copy function in. this model, Aw instruction:tht: calls the Copy function
_-must wait for the copy to be complete before: it can’comtinie esécution. In an actual

implementation, having the interpreter wait for the transfer of ‘data from memory to stable
storage before beginning execution of the next instruction would’ lead to ‘intolerably slow
‘performance. Examination of the formal description of these instructions, however, reveals no
rcason why the transfer of data to stable storage cannot proceed in paraﬁ‘el with the'execution of
other. instructions. Qur approach to implcmenting the backup: algorithms is to’ consolidate the

"logic" for modifying the backup state into a backup.systém kemel that is responsible for

updating the computation records on backup store and initiating the copy operation to-perform
* data transfer to stable storage. Base language instructions invoke: the kernel, passing as
urgumctns. the type of opcration to be performed ie: set: result, wailapply ctc. and the necessary

98 THE COPY OPERATION §5.1

operands ie. data structure to be copied. The instructions can then proceed with normal ~

execution without having to wait for any results from the kernel. The responsibility of updating-- -

the backup state would then be primarily in the pitview of the backup system kemnel.
Overlapping execution of base language instruétions with transfer of data to and from backup
store makes the backup algonthms presented a much more attracuve solution. If sufficient
concurrency can be explo:ted in the base language programs then we conjecture that updating
stable storage should not cause major degrada;xon in system perfgrmance.

An importaat requirement of the Copy function:is that it be atomic. In database literature,
atomicity is a property of a transaction whose overall effect is all-or-nothing: either all the
changes made to the data by the transaction happen; or none of the cthanges happen. Thus, all
transactions appear externally as indivisible operations.: This requirément is essential to support
recoverability of data after hardware failures occur. Atomicity in- VIM is a property of an
activation that refers to the point at which the effects of the activation are perceived by other
executing activities in the system. It is necessary that the Copy function be atomic because the
effect of its execution ie. the augmenting of backup state information, should be made v:sibie to
the recovery procedures only after the entire structure hes been completely copied to backup
store. If a failure were to take place during the middle of a copy operation, and the function was
.. not atomic, the recovery system would see-data in the backup.state:that does riot correspond with

. any data that was present in the Vim state at the time the failure took place. 'Guaranteeing
atomicity is a non-trivial issue for two reasons. First;.data structures.in VIM may be arbitrarily
complex; if the structure to be copied represented a node g on the VIM heap, then the entire
- graph rooted at a must also be copied onto the backup heap. The other complexity involved
- with the copy operation is due 10 the way data structures are represented in VIM. We discuss the
- storage organization of the ViM heap in the next section :and ‘then present our solution to
- guaranteeing atomicity for this aperation.

5.2 Storage Organization in Vim

VIM structures have been thus far treated as monolithic entities that are creatéed and
manipulated as a single unit. This represcntation was useful in the presentation of our-backup
and recovery algorithms but is far removed from the actual representation of structures in our
system, The representation chosen for structures. in ViM is influenced by the organization of
physical memory and the desire to have only information needed :by the computation be resident

PE SR A e e o SRR DL SR WA S LT s s m

§5.2 STORAGE ORGANIZATION IN VIM 9

in main memory. VIM is based on a hierachically arganized physical memory consisting of main
memory and disk in which information is brought, igte-mais.memory only upon demand. To
facilitate the transfer of information between memory and disk, the virtual address space is
partitioned into a number of fixed size pages. The organization of the address space in VIM
differs from conventional demand paged systems, however, in the page size chosen. To avoid
the overhead of unnecessarily paging in unwantéd information, the unit of storage allocation in
VIM is a small page of 24-32 words, known as a chunk.- Having a sméll page size is the primary
means of exploiting parallelism in base language programs. In our data flow execution model,
there is no dependency between any two enabled mstruMaad thus, [70 service required by
one instruction does not prohibit the-execution of the other in the intesim period. By having a
high level of concurrency of data transfer between the dtsk and main memory, the processing
unit is seldom expected to be idle waiting for a bending I70 request to be serviced during
program execution. It is expected that, in generai,’ there will be enough enabled instructions
during program execution to make disk access eomp.letely‘v transparent.

Because of the small page size used, each chunk helds at most a single object. Complex

structures such as arrays and records are held in a number of chunks. The representation chosen
- for these structures should be sensitive to the applicaﬁve nature of the programming model by
allowing information to be shared between structures whenever possible. One implementation
well suited to our goal of efficient shanng is to repregnt VLM stmcm[es as k-ary trees of chunks
with the leaves of the tree contammg the elements of the stmc!.utb and the internal nodes of the
tree containing pointers to other ehunks[l?} Bweusestmetmesm be complex, leaf chunks
may hold uid’s to other structures in addition to containing scalar values, . The choice of a tree
.organization to represent chunks-allows a high degree of sharing-to be-achieved. For example, to
construct a new version of a structure differing fnom 1ts predecessor in a smgle element, the
system need only construct a new path from the root of the new structure to the Ieaf chunk whlch
is to hold the new element; all other elements which are stiff’ cbmm‘on‘w both Structures are still
shared between them by having both structures use the same paths to the'common leaf chunks.
The REPLACE instruction briefly described in Chapter Two, for example whnch FCtUMs a new
version of a record differing from the old version in a single element operatc&m thls manner

The address of an element in a structure is specified by a two-tuple. <u1d. accesspa(h). uid
denotes the uid of the structure in the system. The aeé’cS‘éf‘bi\tﬁiis%tﬁé“;bdsc:'k‘?rebfcscmzui&ﬁ of the

100 STORAGE ORG‘ANXZATTDN”IN VIM §5.2

offset of the d&slred element in the structure, The length of the access path for a given structure
is the height of its VIM tree representation.

Internal chunk cl R height low. high: ... | tef.coums
* ‘. Y e ‘ ‘
Internal chunk ¢2 size’ | height-l low’ - hight o 1
. e . :
°
°
e
k 0 Jow™ high” 1
leaf chunk [. ' RRRETEIN JEL S NE e Vi -
eaf dl 2 o . . T &

k elements in tlrb clnunk i
Figure 21: ’Ithepmnmimof:VmMre‘ o

—

Abstractly, we v1ew a chunk asa three tuple:

Chunk Cid X Header x D&ta
* Header = N— N

Data Internal U Leaf

Intemdl = Cid™

Leaf = (U U Scalar)™

Cld the domam of chunk identifiers

§5.2 - STORAGE ORGANIZATION IN VIM 101

The Cid of a chunk is the chunk's unique identifier and maybe thought of as the virtaal address
of the chunk in-the system. ‘It should be noted that the:dematn-of chiaintk id’s is not related to the
. domain of structure uid's which are used 1 uniquely identify objests on the 'ViM heap. “The

- Header field-in a chunk contains administrative isformation abowt the chunk. - In’ particular, the

number of refesences-10this chunk in thre systerry thefeighti 6f this'snk i the VIM trée, and
~ the high and low.indicies of the clements.of the sulbtioecrootctt atthis' chunk are ull infotmation
- kept in the header field. 1f-a-chunk has no-outstandirs referonces to it; it'is placed on a freelist

. and its space maybe reused when needed; The faét comppanent is the ‘dita portion of the chink.
For an internal chunk, this consists. of the €if's-of ummemaam it the'tree. For a
' or scalar value& The snze of the data pornon 1s some ﬁxed m. The sxze of the chunk xs m plu&the
size of the header pomon ‘

Fox a oompletae description of the: WMMNN&N@& the reader should
see [17]. In the next section,. we. examing the problem of malting the-c0opy- opération atomic,
‘Structures which are to:be copied from the VM. Jueap oo thé baskip heap must be copied
atomically ie, & structure consisting: of many: clianks sHouli ‘bedbemed as being copied only
when all of the chunks which comprise it have ‘been: transfereduonto backup store: and ‘not
. before. In ourdiscussion; we shall refer to a chunk found:in min: tose as a VIM chutik and a
 chunk found on backup sore asia backup chuaki Wt use s word sructure 1 refer 10'any

;VlMstmcmagg. areay or record. . : R B R T k :

83 Performmg the Capy Operatiou

_ When a bese langunge:instruction which: needs to-dugment-the ‘backup staté executes, it
.invokes the backup:system kernel which maintains #tf fofbrinssion dbout’ the'crirrent status’ of
-structures which-are in the:process of Geing:copied: Thu:ieomeI i responsible for updating the
.computation tree and commant Jog: on: bavkup store bibed-on Mié aigovidans given in' Chapter
. Four. \When a structure is to'be.copicd; the keriel calls theCopp fuliction: - This funétion takes

as input the uid of the structure to be copied and produces as its output an acknowliéligement,
‘_v_pwd if i it could notbe The
' ctures) oontams early

copied if the structure was fully cop:cd onto backup store or

, St g 2eiGEIRG
latter acknowledgcment occurs when a structure (pr Any « of lts Substs
completion clemcms Thc b.ukup systcm kcmel uscs thqs mknO\vhdgenmcn(to dct.ermme when

: M RIS 1V i
activition dc:scnptors should be uvcn a new lypt. .md when command lug cntrics can be

removed.

e N N R T A RN AR gl LI T s T e T R Ry £

102 PERFORMING THE COPY OPERATION §5.3

A major complexity in implementing the copy, function for the VIM system is due to the
representation of VIM structuses. as treas of chuaks. For the sake of uniformity and simplicity,
structures found on the backup heap will also have the same representation as their counterparts
on the VIM heap Le trees of chunks. At the start of system operation, ‘all chunks ofi the backup
store will be on a freelist. Whenever a ViM chunk needs to be copied onto: backup store, a
backup.chunk is removed:from the backup freelist and the contents of the VIM chunk are copied
onto it. This approach will remove the need for sophisticated interpretation of the data found on
the backup store by the recovery system. Activation descriptos entries coniprising acomputauon
record are treated as records which occupy a single chunk, '

To see how the Copy function can be lmplemented let us ﬁrst consnder a s1mple scenario.
“Suppose that the function is to transfer a structure whose leaves contam n scalar valu&s onto the
backup heap, where n > m. This structure will be represented on the heap asa tree of chunks
Let the leaf chunks of the structure be labeled /4, /2.....4; Chearly, these leaf chunks can be
copied onto the backup heap. without any . preprocessing by the:copy routine since the leaves
~ contain only data. Let b/,2.....bj be chuaks-on the feeefist on the backup store. Then, the data
found on // can be copied onto I, that of [2 can be copied tod2 etc. - After the leaf chunks have
been thus copied, the routine proceeds with copying the internaf chunks as well. Copying an
_ intemnal chunk is a little more complex because. these chunks contain: references to other VIM
chunk id’s, The copy routine transiates these references to: their appropriate backup store
equivalents. Since the copy operation is being performed in.a bottom-upfashm ‘though, all
chunks referenced by an internal chunk would already have been given chunk id’s on the backup
store. If an internal chunk C has references to chunks ¢f,¢2., o, then the odtresponding
- backup chunk has references to b/,b2.....bm where bi is the. backup:chunk. id corresponding to /.
- The copy routine updates: the activation descriptor. to-reference this structure only when all
. chunks have been written to backup store. If a fatlure takes place before the ADE can be
updated, it will appear to the recovery system that no: information about this activation was
recorded by the backup system. Note that all chunks at a given height in the tree can be copied

in parallel.
The copy routine performs a bottom-up breadlh first traversal of the structure, When a

chunk is copied onto backup store, its backup chunk id is rccorded m the header pomon of the

chunk. If the copy routine is |mokcd ater on. to copy a chunk whl(,h has alrwdy bccn copu.d

S e T e e e SO T T e R R AR s

§5.3 'PERFORMING THE COPY OPERATION 103

on the -backup store, it-can-avoid recopying thechunk by first ‘checking to see if that chunk
- already has a backup chunk id. By simply recoeding these id's, the same level of sharmg found
on the VIM heap- lsaehicvedmlhebmhnphenpaswelk ‘ | :

In this simple scenario, guaranteemg atomrcrty is a falrly easy task because the structure is
not recorded as being copied until the copy funtion transfers all Vrm chunks to the backup hwp
. The situation becomes slightly more. compiex. when: we. consider:the actions which-need to be

. undertaken for copying more complicated structurey. {n-particular; the solution: giveri above is
 not sagisfactory for handling structupes. whase: slementsiare thenmseives structiires e.2.an ARRAY
- of RECORDS. Let us first consider the:situation-without:early psmpletion.: Suppose that a leaf
- chunk, /i, which is. to.be copied contains: referenices:itoi other struttures on the heap, - It is
. necessary that each of these subordinate structures:rustshemselves be fully copied deforé this
- leaf chunk.is allowed:to'be written onto. backug store. Quirddéssription.of the copy reutine in
. Chapter Four had nmm&ﬁﬂwmmmm “When all strdetiives
. referenced from this ehunk have heen copied; then Miuiwhnnlem tself be transferred-onto

backup store. Because.the routine only: returns £0: its caller wiger dll substruttures hive Been

. gopied, the copy actien is- atomic since the backup state will Be' opdated t0:acknowiedge the

. existence of this Structure oaly when the top-level:copy-Toutine-completes and feturms it result to

 the keel. Because we are not cansidering early; comgiation-slements, the Copy: fiinctio is
- guaranteed (0 retum an acknowisdgment; copied.: No partiefly copied structure can ever-be
- referenced by any activation descriptor-sinct such.refarenons awm!ymby the kernehﬁer the
copy operation is.compiete. S » :

5.3 1 Early Completion : o

The presence of early compleuon elements in the leaf chunks of structures” further
complicates the copy procedure.. In Chapter Four we noted that rt lS neo&ary for the _backup
“system to be able'to detérmine when there are no ﬁxrther early compleuon elements strll to be
'SET before the backup’ state can 'be updatcd ln our rmplementauon we can dctermme th:s
rnforrnatnon mrough the use of referencc coun(s Every chunk has two refcrence counts
' and the setcnt is the number of SET rnstrucuons Stlﬂ pcndmg whlch are to set carly compleuon
elements found in this chunk. The meaning of the refent is the same for an_internal chunk as it
is for a leaf chunk. The setent ficld in the header of #AB- m;s.mg,l;dmnk is the number of early

104 PERFORMING THE COPY OPERATION §5.3

~ completion elements which need to be set in the tree rooted:at this chunk. Thus, the refent field
in the root chunk of a structure holds the total number 6f references o this structure and the
setcnt field indicates the total number of earty completion elemerts found within the stracture®,
When an early complenon structure gets SET, the sctcnt ﬁeld in the headers of all chunks on the
path to this element get decremented.

Let us first consider a simple structure i e one:which does nat reference any other structure
on the heap. To implement the copy operation.it the geesence:of early completion structures,
‘we do the following. When a leaf:chunk with:refont greéater:than zero is encountered by the
_copy procedure, we do not.copy it onto:the backup store.. Instear; we allocate a backup chunk id
for this chunk .and-continue examining, the other.chunks i this tructure. To inform the SET
operator which will eventually ceplace the early. completion eleimene found in this chunk that it
. should copy the: chunk anto backup store, the copy toutind also 4abels the chunk with the tag
back. At the time the-early completion element becomes:definedd;; the SET opérator will ribte-the
fact that this chunk belongs to-a structuse that is to be copied 1 baskup store; If the setent of
 this leaf chunk is zem, the aperator invokes the: backup system ketiel 10 copy this chunk onto
the backup chunk allocated for it In addition, if there are no outstanding SET instructions that
are to be executed for this structure, determined by examining the'setont of the root chunk for
this structure, the kemnel aiso updates. the. activation: desctiptor: to reference this ‘structure
" according to the algorithms giveniin the last chupter. Netics that Sorputation records are only
updated when all elemewts in a structure are fully: defined a11d copied onto the backup fieap.
Thus, it will never be the case that activation descriptors are aw.are of striscture for which riot-all
elements are known. Atomicity is still guaranteed even with early oompleuon structures because
a structure becomes a part of a computation record only when no ‘f'urtﬁér ‘ec-eletments “are
referenced from it. - b SRAN S

‘We next examine how the backup system should handle early comgjet;on structum
belongmg to structum that are components of a larger structure whlgh st be copled When a
leaf chunk wthh contains uid's to other structures is encountered by the copy funcuon. the
setcnt of the root chunk of this subordmate structure must be egu;mmed If it is greater than
zcro, it means lhere are early compleuon e!cmems whnch sull need o be set.in this structure. As

Shis does not include the refcnt or SELCNL of its substructures.

Ve R L YRR S o . R e e R T e e e T

§5.3 PERFORMING THE COPY OPERATION ‘ 108

before, the copy routine is recursively invoked o copy. the chunks found in this substructure. It
is necessary that the backup state does not.get updiated with. the pasent.structure unless all
. subordinate structures of: this parent become fully defined. :QGur implementation follows closely
with the algorithms given in the last chapter. Every rootchunk:of a structure contains a field in
its header, Parent, containing. the uid-of all structures which referemce this structure that:are to
be copied. This field is mangaged by the-copy function as it traverses the'heap. - Associated with
each uid in the list, we also store the chunk id of theeaf churk inthe parent structure from
which the reference emanates. When all early completion:elements are set in a structure that is
to be copied onto backup store, all structures referenced inzits Parent. list are- examined: The
backup state is updated with those structures referenced in-this:list which: have become:fully
copied. Determining whether a structure has been fully copied mvolves keepmg track of the
number of chunks that still need to be transferred and the statué of 1ts substructures Counters
are used to record this information. Every mot chunk m addmon to the Parent hst, also
" contains a ToBcCopizd counter mdmtmg the number of dmnks sull to be copied omo backup
" store. When this value becomes Zero, the backup state m be updated Every leaf chunk also
contains a counter mdicating the number of substructures whxch rlavé not yet been fully copted
When this counter reaches zero, the leaf chunk can:be copied: onto. backup store and the
ToBeCopied counter can. be decremented. Mush of the; desiliinvolved:in implementing the
incrementing and decrementing. of these .counters: is. not: very- interesting and is omitted here.
_The importaat point to note with: respect to:-early completion is that the backup system kernel is
~ responsible, not only for updating the backup state: with the structure containing theé early
completion element being set, but also. for. updating: the . backup: .seate ‘with all: of its ‘parent
structures that need to be copied as well, AR TR : -

5.4 Storage Management 4
~_ One other implementation detail that deserves .brief. mention-is the mannrer in which
~ storage management is handled on stable stare. The organization: we have dhiosew for stable store
lends itself to-a very simple and efficient storage management strabegy. Recall'that stable stovage
is used to hold transitional data represented in 'the:-fnmmﬁfoumputation*records: Each
computation record embodies the progress of some agtive computation: in the system. ‘When the
result of a computation is recorded on stable store. the associated computation recorded can be
deleted. Deleted computation records are added onto a freelist of backup chunks. We expect

106 STORAGE MANAGEMENT §5.4

that the set of quiescient data found on stable store will-be perfodically written onto tape. After
the transfer, the space occupied by these data items on stable stove can be reclaimed. 1t is not
necessary, however, to wait for the transfer of informatiot to tape beforé: space can be reused on
stable store.. Once the result of a.computation is boririd ia-an: énviromitent, the storage occupied
by the activation descriptor entties of the corresporidifg computation record can be reused. We
use a variant of 8 mark and-sweep garbage collectionpolicy ¥ reckiiar structures referenced from

- activation descriptor entries ina computation record that can Berecliimed.” Otice the resuit of a

computation is known and is oopield'mwme backup: ‘store; ali ‘ehuanks in that structure are
‘marked. - We can then:reclaim all chunks beloligmg 10’ stiuctares referenced fromr ADE's in that
‘computation that are not marked, - SRR :

The storage management pohcy is very slmple for our sys:,em because we can determme
precnsely when data is no longer aoc&ss:ble by observmg the dynatnlq of the command log —
removal of an item in the log 1mphes that the a;ssocxated ‘com,gutwop geqordcgn be reclaimed.
Waiting for a computauon to complete before reclalmmg the storage, it opcupies on stable storage

B

obv1ates the need for mtroducmg a oompllcated garbw oolle::tion rfpohc,:)" on stable store. .

It may be the case that the vatue of a computation is recorded on thé backup environment
even before-all the: values of the ADE’s in the subtrees of e compistation are. ‘Since the result
of the computation has been recorded in the envirenment the associated computation record can
~ beplaced on the backup store freelist. - Remeving thé computation ‘récord, however, necessitates
 taking some action 1o inform the activations whbse resiilts wowld-novmilly b tecorded in these
‘ADE's that the computation record: is:no' longer part of the -batkup heap. To do this, we
maintain a uid entry table which contains referencing infomition for all activations-in the
system. Entries in this table include the uid of the activation, the address of the activation in
memory and the address of its 4DE on backup store and a referefiée 16 a Booledn flag which
indicates whether the compatation record. has. been reclaimed:or ot ‘When' the computation
-record. is removed from the backup state, its associated ! flag is set'to‘tfue and the result value is
ot copied. Only the root activation of a.computation 'tan change this flag. Clearly, this
+ operation is outside of the purely functional programming parndigem thus fur used: such resource
managers are (0 be written using the guardian ommct{l@ which allows this sort of non-
applicative behaviour to expressed in an applicative seiting. ‘

8§60 ' T
Chapter Six

Conclusnon

This thesis has. proposed 3 design for the Vm computer system’ which guarantees the
.. security of all online information against loss or cormption as a:resultof hardware failure. We
- developed - backup procedures that are .intended-:10. execute comcurrently with - normal

. computation. These procedures record the progress of all computation in-a‘compact form on a

‘backup: storage medium.. When a compusation complstes,sits cesylt is. bound to:some name in
‘the VIM users’ environment structuge. Once this binding is added 1o the backup environment
image, the computation record associated with: this computation s removed from the ‘backup
state. We make no assumption as to the integrity of.any:data which survives a failure except:for
data found on the backup medium. The backup medlum oonsrsts of two mam devrces tape

" storage used to hold all data bound to rdenuﬂers m the user envu‘onment, and stable storage

which contains mformatxon m ‘the form of oomputanon reoords about all act:ve oomputauons in
the system. When the recovery prooedure 1s mvoked aﬁer a failure 1t ﬁrst restores the VIM
environment structure using the backup envnronment lmage It then begms reexecut10n of those
" commands which were execuung at the time the faxlure occured The tlme to reexecute these
commands is greatly reduced because of the mfonnatron kept on the oorrespondmg oomputauon
| records. Once all commands have ‘been reexecuted, the reoovery process 1s oomplete and the
(system can accept further oommands fmm its users. ‘

6.1 Contributions of the Thesis

The contributions of this thesrs have been two-fold Fnrst, we developed backup and_
recovery algorithms for the ViM system These algonthms are very drﬁ'erent ﬁom those found i in
more convéntional systems. The umque features of VIM that requrred a novel approach to
providing data security lie in its apphcauve programmmg model and m the use of a umfonn
representation for both data and programs “This homogenclty elrmmaled Lhe need to mamtam
distinction between files and data, thus allowing the backup system to be more closely mtegralcd
with the VIM mtcrpreler than would’ orherwnse be possrble The use of' an appllcauve base
language made it possuble to have a snmple orgamzauon of backup store because data in such a
model never changes its value, We exploned the cxprcssrve power of the base I.mguage

instructions by distributing the logic of our ulgoruhms among the salient base language

EERLE R e L D R R DR ARWEL SRR itk SRR L A

108 CONTRIBUTIONS OF THE THESIS §6.1

instructions. The APPLY operator, responsnble fo; creating a new function activation, was
augmented to append to the appropnate computanon record a new activation descriptor
corresponding to the activation to be mstantlateck Similar enhancements were made to the
RETURN operator and various structure operators as well. By embedding these algorithms within
the interpreter itself, it was possible to achieve a measure of data security far greater than what is
possible in conventional systems. In addition, such'a design makes the operation of the backup
. facility completely transparent to users of the system. 'Similatly, once the recovery procedures
restore the system state after a failure, subsequent computations will' not be able to determine
that a failure occurred by examining the restored state. The:fact that the base language is
applicative also freed us from having to introduce tomiplicated backup storage policies. Data
.. once written onto to backup: store is never updated; it is sither: ga!bargeeolieeted or bound toa
symbolic name in the backup envisonment,

In order to ngorously specnfy these algonthms, we deveIOped a fannal operanonal model
of system behaviour for VIM. ThlS model views VIM as a state transmon system w:th the VIM
interpreter being a state transmon funcnon We prcsented the deﬁmtnons of some of the more
mterestmg base language mstructnons in this model usmg a vanant of the funcnonal language
VIMVAL. This basic model was later enhanced to mcorporate the backup system as well. The
backup state was treated as a separate component of VIM The mterpreter Was now treated as a
| state transition system on a two-tuple consisting of a VlM state and a backqp state. Beyond bemg
an important tool for expressing our algorithms, this model also allowed us to give a formal
proof of correctness of our algorithms (presented in the Appendlx)

6.2 Future Research

One important area of investigation that was not addressed in thxs thesls is the issue of
correctly preserving the state of non-determinate computauons. A non- detenmnate oomputanon
is one which may exhibit different beha\nours for the same mputs. Thxs type of computation
contrasts with determinate oomput.mons for which repeawblc behavnour is guaranteed A major
assumption mad«. in this thesis was that all computamm was detcrmmate This allowed us to
design a recovery system which can reexccute eomputauons whose results are not recorded on
the backup store by prescrving the arguments to the computation. Such a design is possible
because any computation in this model is guaranlecd to ‘produceythe same resultvwhcnv presented

with the same inputs. The basic non-detcrminate operator in the VIM base language is the

§6.2 FUTURE RESEARCH 109

MERGE instruction. The merge operator is enabled whenever an input arrives on either of its two
input arcs. Thus, the behaviour of this operator is characterized by the arrival order of its inputs.
Such behaviour is inherently non-determinate.

An important area of future research is augmenting the design proposed in this thesis to
handle non-determinate computation. The changes made must take into consideration the fact
that non-determinate computations cannot simply be reexecuted by the recovery system since
there is a multiplicity of output behaviours possible. Reexecuting such a computation with the
same inputs is, therefore, not guaranteed to produce the identical outputs.

Most transaction systems such as airline reservations, banking, etc. are based on non-
determinate computation. Such systems also typically have very high data security requirements.
Enhancing the VIM backup and recovery system to support non-determinate computation would
be an important step in understanding how highly secure transaction systems can be written in
an applicative computer system, Issues of atomicity .and indivisibility of transactions could then
be addressed in this context. '

It would also be a challenging task to map the abstract specification of the algorithms given
in Chapter 4 into an efficient implementation on the ViM system. , Realization of these
algorithms will require optimizations not addressed in the thesis. Such optimizations include
minimizing the amount of copying done to stable storage and efficiently reclaiming storage on
the backup medium. These problems which were hidden in our abstract model were briefly
addressed in Chapter 5. A truly viable implementation will need to confront these issues in
much greater detail. ' '

§A.0
110

. §A.0 | 11
Appendix A

Proof of Correctness

In the previous chapters, we have developed a fonnzil model of the VIM system to dacnbe
our backup and recovery algorithms. Beyond being a convenfert vihtere' in' Which to precisely
state our algorithms, the formal model can also becised iy provitig‘dié-correctness of Gur design.
_ Intuitively, demonstrating the correctness of the backuty aitd rééovéry procedures involves
showing that the recovery procedares do not restore:in- indofraft stite' Baséd o' the information
kept on backup store by ‘the backup-procedures.-' The compistitions which ‘execute after the
~ Tecovery. procedures complete should not: be ablée to ‘diuderti th¥ it -at'a fauilure hiad occurred
~ before. Thus, the state of ths systém observed by dny conjsiitation: instantiated ‘after recovery
from failure must be equivalent to the observable state which disted prior to the faitare, In
VIMm, oomputatnons Observe the effects of other computations through the- YiM environment
structuge. It is, therefore, w&at the enmmmmm-ﬂd by the secovery system
be equivalent to the environinent which’ exis&d before ““Z fﬁiﬁirg We' pment a formal
definition of environment equwalence later in thts appendxx To wtabllsh that environment
equivalence is preserved, we examine the state transitions,praduced, by ithe system when
interpreting the command log daring recovery :and odmpate it w&hthe aate ‘transitions that
result when interpreting the same log when no backup state mfonnauon is used. To show that
environment equivalence is preserved across the two transition seqyences, we us¢ the fact that no
instruction is executed durmg the veoovery process ﬂmmould o alsQ have been executed by
the VIM mterpreter evaluatmg the ;same command whea.no, m@ma&m an the packup state is
utilized. Our proof is as follows We first examine dwm eleq&d by executing a particular
instruction in the transition sequence of the recovery process. We then demonstrate that this
. environment is equivalent to the ehviroriment -component of the $éate credted by executing the

“equivalent instruction under norfital interpretation. Using'a sﬁﬂp&inmrcumatgumem. we then
~show that the environment componént’ of the final’ recovery state” is eqmvalem o ‘the
environment component that woutd have resulted iF no firitifre had mféh place

In the following secuon& we fonnal,ly :de,ﬁp;,gur qo;upqs; 9£ tmnsnm scquence and
equivalence. We then prove our main thcorem: The system state after the recovery process
completes is equivalent to the state that would have résulted thflio‘fuiiul‘é‘ taken place. This

12 " §A0

implies that it is not possible for any tomputation to observe the effects of a failure once the

recovery procedures complete.

A.1 Definitions and Terminology

State Transntlon Sequences o ;

Because we are considering VIM 0. be adetermim sysiem, we.can-moadel the execution of
.. aprogram as a sequences of states. The Execute function which when given a.current state and
. _enabled instruction returns tlwstate cseated; by executing the instruction. . The operation of some
of the base language instructions are different dependiagupon: whether the system is executing
using the normal or recovery interpreter, In our proof, we:shall: be concerned with examining
state transition sequences constructed by the respective interppeters on the command stream
. preserved on the backup log. ' '

Definition 1: The System State is a two-tuple, < V:mState, BackupState) where
VimState and - BackupSgate were defined: in: Chapter-Four: The recovery command
stream for a system- sale S is. a sequence of COMMARGS;. - <C;.Cp.0€)> . Where-
BaclcupState = <Log,BHeap,BEnv) and Lag(l) cormmmd

‘ Definition 2: A state transition- relation, 1--,' is a relation on states. Let S =
<Act,HEIS.Env> and T = <Act' ,H.EIS Env’>. Then, § b= Tif3 () € EIS st.
Execu(e(S,(u,I)) =T. ‘

'Definition 3: A state transition sequence, <S S_, ,Sk> is a sequence of states
such that S, - §, -, for 1 € i < k-1. ‘

" For notational convemence we shall somenmee denote a state transmon
.sequence<S S s,ms,*-s T ,

: The recovery process is dmded into two phases, . In the ﬁm .phase, the contents of the
backup environment are restored onto the ViM eavironment.situctute. -Once this is done, the
command log is reexecuted: during this reexecutjon phase, backup information is used to avoid
unnecessary recomputation The state of the system after the first ph,;se completes is called the
initial recovery state. The heap in the initial recovery state contams all structures referenced from

- environment entrics in the backup cnvnronmem mmge

Definition 4: Lct S bc a VIM state such thai Fallure (S) = drue. Let B, the
backup state corrc.spundlm, o §,. be <Log. Blieap.BEny>.

- §A1 DEFINITIONS AND TERMINOLOGY Cm

Then, the initial recovery state forS is the state: <{} H, {} Eny,)where

H(u) = if 3 name s.. BEnv(name) = uand BHeap (u) =V then V..
: 1f3Ru,ms.t(H ‘u)*‘R)A

(R(m)m WAL Heap(u) Wehenw: ¢
= undef otherwise,

Envy = BEny h L

Unlike instructions executed during poma},quauq& mamwms executed during the
recovery process use information found inthe W ‘Fhe APPLY M&uénon for example,
~ avoids’ instantiation of niew activations if the 'va.[“ﬁe *'or '_ \xbl&h Pm'OUSlY executed
has been recorded on backup store. The commanlﬂémfénnd &mbmkup State is a sequence
of commands whose final results have not yet beéﬁ\ﬁ’ot rgcarded ’in fhe bgckup environment
structure When a faxlure occum, the recovery system reexecum the oommands found on the
log, using backup state iﬁformanon it has accumulatzd abouf fﬂe cgmpptanom To. demonstrate
that the recovery process mterprets thns mformamn correctl); we exgmngg how the VIM
Interpreter would execute these same commm,ds nf m backyp:gq;;aéfi)manm isused. The
transition sequences produced by the respective mterprete;s 1s known asa transition sequence
pair. If the recovery system interprets the mfomnﬂon;jnm@ onwﬁc hﬁnnpstate correctly, it
follows that the final stam n ﬂie Wd mﬁmﬂ ii 3 must hav;‘ emQValent environment

components. 4 o e e

Deﬁnition'S' Let R be the recovery command stréam for state.S and let STS =

.S, be the state transition sequence gmdavad duriog the-evaluation of the

cal] .%hel R, S, <{}.{}.BEnv)). Then, S is the initial recovery state and S, is the
ideal recovery. st fov-R. EYS; i p, mémw 1P il . slancand

transition: sequenze for systomstate . -

: Let R be the recovery command stream for system state S and let RTS =
<R|.R,.. Rf be the state transition sequence produceifﬁ%&hng ‘thie'evaluation of the
call: Recoverv(<Log.BHeap, BEnv)). Then; Ri'ie'@WHhitidl iebovery state and R . is
- the final recovery statefor R EIS;. is ¢, m«anmbéc k'rs ié»dﬂled me*recovery
transition sequence for system state g

Definition 6: A sequence pair for a sysiem state. S.’is’a two-tuple: <RTS.STS
‘where RTS = <R.R,...Rp> and STS = ‘152....8*2 % k where R, aadiSk are the
final recovery state and |dc..x| recovery state or thc comm.md strcam resp = Sl,
the initiat recovery stite for system stitte' S,

114 DEFINITIONS AND TERMINQLOGY -§A1

State Equivalence ' o

In the following definition, we shall use the symbol =, to denote the equivalence relation
between corresponding state components in. dxfferent‘,st.ates Thus, if Env and Envj are two
environments in states S and S’, then Eny= Em if:-these Menwmnmems are equivalent.

Definition 7: Instruction Equivalence: Let FA and FA be two activities. 'Ihen
FA(m) = FA(n) for mn € N if*

eFA(m).opcode = FA(n). opcode
oV opnum € (opnumi opﬁumz,dpnuma} FA(m) opnum FA‘(n) opnum if
FA(m).opnum angd-FA(n).opnum € Scaler. -

oV opnum € {opnumi ,opnumz.opnumS) FA(m) agnum = FA (n) opnum if
- FA(m).opnum anid ‘FA(n).opnum € U.”

oFA(m)opent = FA{n).opent,

o FA(m). sagcm: = FA(n). stg;m

oV (de,k opnum) € FA(:) dzst 3 (dc /4 opnum) in FA‘(]) dest s.L FA(k) = FA (I)

Activity Equivalence Two Actlvmee FA and FA ‘are eqmvalent 1f for every meg.
N, FA(m) = FA(m).

Object Equivalence Let H and H, be two heaps deﬁned such that H[u) =y
and Hfu) = vfor uu'€ U. Then, varf

ov = undef, v'= undef.

ev € Scalar, then v'€ Sealavand v = v', o

ov € Record, then v’€ Record and i) = v{i), for.every i € N.

ov € ECQ, then v'€ ECQandV(u DEV,I(u,m)e€ vst.(u) = (u,m).

ey € SUSP, v'€ SUSP st if v = (u_,m) and v = (u n), Act(um)(m)
Act(u,Xr) OR H{») € Record and v sUsp and 3 state S where 5,5, and
Hv)a H.

ov€ U, then v€ Uandlli(v)s va’).

Environment Equivalence: Let Env and Envj be two environments in states S
and S, Then, Env, and Env are equnvalent if for gvery n; st Envfn) = vin, st.
Env(nz)— v'where if

ov-—undefv—undef

ov € Scalar, then v’ Scalarand v = v',

ov € U, then v'€ Uand H(v) = H(v') H, zde aretheheapmponentsm
states S andS resp.

Containment and Completencss
In order to show that environment equtvalence is pr&erved between states in the recovery
transition sequence and the standard transition sequence, we. wall feed to examine the effect of

§A.l DEFINITIONS AND TERMINOLOGY 115

executing equivaledt instructions in the two states. Thus, it is necessary that for every enabled
instruction in the recovery state, there be an eqmalenl instruction in the corresponding VIM
- state. This property is called comammem : '

Definition 8 Let <RTS, STS> be a sequence pmr fbr a system state, S, where R
is an element of RTS and Sj is an element of S7S. R, i fspmqiaad in§, if ¥(um) €
EIS IWn)€E EIS st FA(m) = Fl (n) whe;e ACI[H) 4 and Act,(u = FA’,

Definition 9: HQTSST»kamumpdrmfwmemm S,and R is'an
element of RTS and S;is an element of STS, then'R; & chﬂt—s ifEnv, = Env
andR 1soontamedm!§‘ _ ; e ,

Computation Sets D
In Chapter 4, we introtluced the computation t.reé as an ab r j’,"on to d&scnbe the

instantiation of function acuvauons ina mputanon m ﬁeﬂwm thres. dcﬁmmns ?‘ormahze
this idea. IR :

.Definition 18: Let an activation a he mmnuad an state S ’men, the
computation setCofaxsdeﬁnedasfoﬂews. S ;
ea€C.)

*Any activation instantiated from an actwanon in the computauon set C is also
inC.

‘That is, the eomputauon set ofan activation: (memme tmnsiuve closure over all
acnvaﬁons in the computation tree rooted at (a,a) Y

Definition 11: A computation sequénce CS for an actwauon instantiated in state
- 8, with computation- set C.is 3 state transition: soquence, X 8:84.5,,...,5,> where £ is
the smallest integer such that none of 518, . ¥ ,...4518*“ wansmms from
activities found in C, SERTIE

- Definition 12: A value, v € Scalar U ST, sacomlbbm astate (ActHEIS Env>

if either: ‘ oo

oThere is some activity 4 s.t. A(n) =TI and lopaum= v for opnum €
{op1.0p2.0p3}. and Act(u) -

oThere is some activity 4. s.t. ‘Aln). = l and I opmtm =y for opnum €
{opl.ep20p3} Acku) = Aand H(u) = v. s '

eThere is some '€ Record s.t. ¥(m)y =vor vi(m) = u where H(u) = vand v’is
accessible.

e AR

116 DEFINITIONS AND TERMINOLOGY §A.1

A.2 Proof of Correctness

Lemma 1: Let R, = <Act,H,EIS,Envp be an element of RTS and Sj =
<Act H EIS ,Env) be an element of STS Suppose& 4= R, on an enabled instruction, (u,),
where Act(u{ A and FA(i).opcode # APPLY. Then if R 1s oomplete wrt S, 3 astate S st

Sjl—S andR‘,_“1soonmlenmn'tst s

Proof: To prove the lemma we need to show that env;ronmem equivalence and
containment holds between R, ; and some state ‘Sk for any instruction whose opcode is not
APPLY, We prove the lemma éy examining the different classes of instructions defined in our
model and show that the lemama. holds over cach of thest classes: If R ;is:complete wrt S, then,
by the property of containmeat, there exists menammn, {u J) € EIS = (.

1. Scalar Operations The effect of executing a scalar operaﬂon does not alter the
environment and so, both environments in R, , and Sj ; remain equivalent. By
definition of instruction equivalence, we know that every desunauoni('dc i,ophumy in
FA(i)dest = some destination, (ch.opnma) inFd m Sipce. the. same scalar
values are sent to equivalent instructions, tﬁese destmauons remain equivalent.
Thus, equivalent instruetions bmmemmm;fm«ma«%sﬂ, Hence, R, Is
contained in S e 1 and, so, the lemma holds for scalar

2. Structure Operations: A structure operation performed i in state R might cause the
new state R, ;0 have a different heap,: Note:that the: " ;emfebmpbnentdow
not change when any structure operation-exécuses. “T0 sé€'thdt the lefyma still holds
for these types of instructions, we examine the various structure operations in our
system.,

a. CREATE: A create instruction executed in R wnll produce a new structure on
the heap in R, , with uid v Uy and size n, wnth all elements of the structure
having value undl f, where n is the operand to the instruction. The equivalent
instruction in: E£8: ug}Memmnﬂjwmmhmmm on
the heapin S, , with uid u, and size n.. By, olit definiyi ﬂ_}qf heap equivalence,

H_,and H , are still eqmvalent. Showing that R w11 is still contained in

)
S vl follows the same argument as glven ebqge.

b, SELECT: Amwmmmwmmaammtmm
either a scalar or. structure value, Jant early mpumﬁmmx‘or ‘2 wspension
We examine each of these in turn;

i. value: There are two cases to be considered if the item selected from H is
a scalar or & structure. n the firve edse the Wi sefected from*H, would
also be a scalar or structure value. By the property of oomamméﬁt, the
operands to the SELECT instruction must be eqmvals:m. Since the heaps
and environmerit components do 1ot change in this.case. 5 H
R, is still contained in S, because all destinations of the SELE
R are equixalent ladestmmms in. S} and: followiag) the argument gwen
m (1). these instructions woeld:remain ‘ogquivalent. - “Thus, "R it is
complete wrt S, in this case. .

§A.2

i, suspensiwt. 1 the item sew m f{ﬁﬁ”ﬁ"”
B {,, By pur, R-mﬂeﬂy of

. instruction . .

thtt)ne SET u&mgﬁ} ‘1’ addibon evéry fe-que
value in H is eqmvaient to an elcment in the rgueue set wi the value in H,
;Tfms. aﬂ,qr these instructio

PROOF OF CORRECTNESS

In the second case, the item selected in H, is‘a"récord representing a
stream, but the corresponding itemin H, is & Suspensiofi.” This case arises
when the APPLY operator is to instantiate #-funetion fepresented by a
stream Ade. The stream image ‘tn: ‘Sable store & resiored by the
recovery procedure. " in.state’S' the wdﬁmggem thé: mstantiation
ofanewacﬁvmdw* mﬁéwui@unefement. Let

‘,.S S, D be 2 state transiion sequenée where £1S. contains all

ed xmtmmom in-ElS; mptmwongmgw;!&rmyof,{s
descendents) in the compuéﬂmmﬁiﬁ Thei: H ‘will contain
the new stream elemem and, by the ty of o,bject g,qp:vglencp, the

two streams in ', anid N, would Be &guivalent. K R is obviously sl

contained in §,. ﬂus,R,HnssnllmplmmS

ii. early completion: If the item selected from H is an early completion

structure, then the select instruction, (u,ms added onto the queue, Since
~ operand values' are ‘equivalént (Becail' of “thntaiiment), the SELECT

ommmw:us mwommly contipletion structure -

from H, The SELECTm get added to. the

ecquelie. Sitice no 16w mscmdi%‘%’beme enab

ins,

ension, the ,..-ns;‘ truction
"reférenced '1nthe suspension’ s |
containment, the item selected in S, must also be a suspension and the
instryction.sefercaped in.#is MEWI00, Wokh sk be signafled. - The
equivalent, insipptic

¢ reen; n qqmvalm is still
aﬂd}"!ﬁ\ﬁ. 4*4 ISSﬁ"‘bOﬁlg! m 'J"! ‘

3. Tenniute Opentiu Execution of the TERMINATE mstruct:on musw comrol to

return to-the shell. with-the Crame; vatuz>-bindtng added 1 IV iser énvironment.
Since R;is. conmaingd 0, the operind 16! theoEWRaIE ﬁm&i&h 'madt be
equw.:lent in both R,and 5, Env,_, is. thercfore, equﬁﬁﬂﬂ%’ﬂ% s Pdilo(vihg

... thesame argyment | gwcn in (1) ané wesec that R, s ’«“R cqgta;m.;mg ;}H
4, Rotm Wiol- The &E!‘URN mswmﬂu {#o. mmﬂ\& the: retum- value

ed' Rl+1 lsoontamed |

mmmaamﬂ,mwmm ‘
g is still-presarved: sm;,mumd the
memmxmmm compleiion queus in- -
, ~ —wwm Sinon: the, two SELBET
cquivaies mmsmmvw,; :

h.‘wﬂm\‘nﬁ,w“ et (ke o penh R e T B IR

117

the Valise §7 i us&beequmlmno}
m“‘ "m amm;hthe,.;

and the target list. By the property of containment the return value and target listin -~
thc cqunv.nlcm instructions in R and §; must bc cgun.ulcnl ls contained in
/ since the wirget uddresses of the rémm Aor i uN"i'ﬁm aﬁdihe rcSult,
valucs are cquivalent in the two states.

18 PROOF OF CORRECTNESS §A.2

5. Tailapply Operation: The. TAILAPPLY instruction takes in three arguments, the
function closure, argument list and return link. By the property of containment, all
three operands must be equivalent in the executing imstructions in corresponding
states. The result of executing the instruction is toadd a new activation and to signal
instructions in its own activation, Because the:.closures and argument lists are
equivalent, the instructions enabled in the new activation must also be equivalent in
R,,,and S . . Following the argument given-in<(1), it is easily seen that R, , is

contained m S +r A similar. arsument can. be apphcd in the analyms of the

streamtail operator and is omitted here. -

Since we have shown that the lemma holds for all msttucuon classes (excluding APPLY),
the lemma is proved. O

The effect of executing a function is visible only in.the result value returned by that
function. Thus, ngen a computation ‘sequence for some: acti\mion the values that are still
accessible after all activations in the computauon sequenoe havc oomplcted are precisely those

returned by that activation to its caller. ’

Lemma 2: Let <S.S,.....5;> be a computation sequence for an activation A. Then, the
values accéssible in St ‘)ut not in S dre those valus wble from the instructions found in
the destmanon list of the acnvaﬁon A.

Prool: (by contradiction). - Suppose there is some value, v, that is accessible in S, _ , but not
in S and is also not accessible from: the retum link to the activation. “This'value must 'ﬁave been
created by some instruction that'is:an element of some’ ‘activaion’ i the: ‘computation set of A.
Let this activation be a. In order for-this stiuctuse tb be accessitie after the termination of this
activation, it must be returned ‘as a-result of that activation since any references to it from
instructions within.aare bstomthe RELEASE instruction éxeeutés: ‘Let its caller be 8. In order
for the value to be accessible in S, .. it must, by the sure redddniiig as dbove, be returned as a
result of this activation as well. Continuing this argument, we sge. that.the value can only be
accessible in 5, f if it is rerurned as the resull of A. But this oomragi:cts Our ongmal hypothesis
andsomelemmaxsprovecttl CL

Theorém 1: Let(RTS,SIS’)beawquence palr fmasystgmnateSmd letR € RTS and
S.€ STS. Then, if R, R, ,andR iscompfetewrts fmenjastateS st Sjt—SkandR,_”

)
is complete wrt S,

o

Proqf Our proof is by induction. The mducaansmp Shows thm lhe theorem holds over all
mstrucuon classcs for our system. ,

Basis: Lct RT’S = <R RP and STS = <S S} Since R = S and by definition of the
initial recovery state, £IS; = @, R, = Rfand S = Sf Thas, R o Sfmd the: theorem is
satisficd.

ll)pothcsn ‘Supposc that lhc thcorem holds forall scqucnce palrs <RYS S T. S> whcre RTS
isof upto length £ i> 2,

§A.2 PROOF OF CORRECTNESS 119

Step: We show that the theomm holds for a sequeme palr (RTS STS) where RTS is of
length i+1. .

Non-Apply Instruction: Refer to Lemma 1.

Apply lastruction: There are ‘four types of activation dcscnpims that are found on a
computation record: These descriptors can either be.of type: apply, value, tailapply or
streamiail. When an APPLY instruction executes in R,n mmnesdwwﬁ\m&on descriptor for
the activation to be inijtiated.

1 apply or nonexistent Ade: If no Ade exists, then state. R ; 18 complete wrt state
S, since the APPLY instruction executing in state. Kamm backup information.
Since R, is complete wrt S and equlvalent instructings execute.in these two states,
then by analysns similar to t.he one given for. the "TARLAPPLY, operator in Lemma 1,

, and S] remain equlvalent. This- sqme analyw holds when the APPLY
operator is to instantiate, an activation which. has.an myamn nmaptor eatry of
type apply. Smce no result is found in t.he Ade. 3 new activation. is created by the
APPLY.

2. value: If a value Ade exists for this acuvauon then R, , differs from R, in that the
value v is accessible from an activity in R, ; but i§ not mbl& ﬁ'om this same
activity in R, The equivalent mstrudim executi“n; in S, would cause the
instantiation of an activation, (u ,A), because no backup information is used, By
Lemma 2, there is a state trms;mu sequence @ﬂfﬂ,sﬁﬂ&ﬂp such:that the values
accessible in Sj+k but not accessible in S? .are those . values. accessible from
instructions found in the destination llst passed to the activity, A. These values
represent the result of the activation and thus must be equivalent & the values found
in the Ade of the activation used in R, (since, we have no pon-deterministic
computation). “Since thé APPLY instruction e cuting in ‘R, sérids the vafue of the

activation found on the: Ade to all destintions; by émpehrafmnwnmenn
the two APPLY instructions executing’ifi R, aﬁﬁ““S“ quivaiént destination
instructions, state R, “mst be- contained' i stite - § “the ‘environment
1mgedo&snetchmg&inexﬂ1érstatc Rms \vi‘t.S' x and, so, the

theorem hol& fmm;m

3. tailapply If the Ade for an activation has xype TMME{LY tben Ri-r. ' dlffm from -

R, in that Rﬁ_ will contain a new activity. 4. whose argument record is retrieved
from the activation descriptor. When the corresponding APPLY instruction executes
in S, it will cause a new activity, A°, to be created whose argument record is not
necessarily the same as in 4. Consider the state transition sequence,
<S Sy peeeS; o Where S, S +m ON @ TAILAPPLY instruction which creates a
new acuvuy. B. such that é A There must be such a transition sequcnce since all
computation in the system is detcrminate. B is a descendent in the computation tree
rooted at A Fix the transition scquence from S, to Sj +m S0 that EIS e contains no
instruction from any activation on the path from 4°t0 8 (or descendents of any such
activations) in the computation tree rooted at 4°. This is clearly possible because of
the non-detcrminucy of the Choice function. The only new vilucs accessible in S, om
not accessible in Sjarc those referenced from B, Since B= A. R iv] is still contained

oot o A i R i RS R D s Pt Lk T e T S e B

120 PROOF OF CORRECTNESS §A.2

in SJ Since the environment image is'not updated in.either transition sequence,

envnronment equivalence is still preserved. Thus, R, remams complete wrt Sj o

4. Streamtail: The case when the Ade is of type. STRFAMM;L s very similar to the
TAILAPPLY Ade given above. In this instance, R i1 dnffers from R . in two ways.
First, the stream image on stable store is:restored onto: # Secoridly, a skefeton
actwatlon is created to instanitiate production of the: mw&rafﬂwmm Ins staite

the apply opemtor will.cause & new activation, A, to bexamdmpmduee the first -

e{;ment of the stream. To satxsfy the property of contdistinént, we ‘consider the
transition sequence, (S S, > where EIS contains no instruction from
any from A (or any of its %cendent'fﬁ in the cof u&ﬁéﬂ h*ee moted at A. At this
point, the first stréam element is completely ‘deftfied"and’ ‘there is a Suspension in A
which is not yet enabled tb produce the ﬂext’“éténfent Byt 6ur deﬂnmen of ohject
equivalence, the corresponding streams i in S uu _and’ k / *f are equhlent. ‘Thus, all
destination’ instructions of the APPLY in rtésporiding “states which - become
enabled also remain equivalent. Hence mﬁt&mﬁ%nft;&ﬁrhbt&s between S

R, ., Since the environment iidge does not ‘change,’ R,H mxiamsmmpﬁ?e wrt
S

J+m

Since we have shown the theorem for. each of the clm&s of Ades whzch ‘may be found on a
computatxon record t.hc theorem is prow:d. a

Coreihry If ¢<RTS.STS> is a sequence pair, ﬂm‘: k is cothpletc wrt Sf where R fand Sf
are the final states for R?’SanﬂSTSmpectfvely -

Prool: (by contradiction)

Suppose that R .was net complem wrtito Sf Since; EIS = «p, wgknow that.R ,is contained
in S, It must, therefére, be. the case that environmaent m:mmawm -between the
two states,. By Theorem 1, we knowthat & - musthe, complele Wit some: siate S, where S, l—Sf
As a ognsequenoe of the hypothws. thene mugt@e m -envimnment a{mmg instruction
executed in the transition seq . S}&ag;mmt gm;jmm -of.vise varsa. This
is a contradiction since by det‘ m’lm 5, dé ‘samé command m@zm”amdwmmm the

ideal recovery state and final recovery state. Thus, our hypothsxs that R {xs not oomplete wrt Sf

mustbtf(lﬂmd m@mw&m d AT 5 i'f‘!(

References C 121

References

1. Ackerman, W. B. and Dennis, J. B. VAL - A Value Orisated-Algorithmic Language:
Preliminary Reference Manual 218 Laboratory for Computer Smence, MIT Cambndge, Mass.,
December, 1978, - = R

2. Anderson, T., Lee, P. A., and Shnvastava,‘s‘l(“s' mFault Tolerance In Computlng
Spstems Rehatit, Andersan, T. ahd Randelt; B, Bgo 1950”1

x;; 3{5)

3. Arvind and Gostelow, K. P "The U-mterpreter" COMPUTER 15 2 (Feburary 1982)
42-49. - ‘ :

4. Avizienis, et. al. " The STAR (Self-Testing And Repairing) oomputer An mv&sugauon of

the theory andpmenoe ef‘ MMMW“ qmqr: v«zo Il (Nomnlier
1971), 1312‘1321. : SRR n

5. Bangazzr G., and Stnglm L Apphoanon Transparent Semng of Reoovery Pomts. 13th
- Annual Symposium oiy Pt rmmmmfmw Wss: |

A0 enin 2 o
6. Benajamin, Arthur Improvmg Informauon S e Reliabhlity Usmg a Data Network.
TM-78; Laboritory for Cotipater Sveace; MIT, . RAAAP6.

Th lsfate L [

gth Annuaismpwummw mm Aeﬁﬁmﬁawp 90-99

Sine 1214 . :
8. Dennis, J. B. Flrst Versaon of a Data Flow Procedure Languase ln Progmmmlng
Symposism: Proceedings, @omme: ngmm
Springer-¥eriag, 1974, pp: :362-376; , v " S | |

9. Dennis, J. B. and Misunas, D. P. A Prehmmary Archrwcture ForaBastata—
. Procgssor.. Mpmwswwz mqm
December, 1975, pp. 126-132. ISR HEET A LRI TR S S A

10.. Dennis, J:B: Data:Shoull Not Ohange: A Modetfor o€

Computanon Structures Group, labomwrx for Cx
July, 198%; ©

I1. Dennis, J. B. An Operational Semantrg:sforq
Structures. ‘Presented at the thigrnatio o
Concepts, Peniscola, Spain, Aphl’

12 Dennis, J. B.. and Gao, G. R., andTodd.K \\l A)

Computation Structures Group Laﬁomtory for Compdter $ C Bndge Mass
March, 1982. _ y o

13. Dennis. J. B, and Stoy J.E and GuharoyB VIM An Eipenmental Mulu User System |
Supporting Fungtional Programming. 1984 Canference on High-LevekArehitecture, 1984,

P PR TR g S e S R I i L s e BT T B G

e R S e e e R R R B T et e T

References 122

14. 1981 Conference on Functional Programming and Computer Architecture, 1981,

15. 1. Darlington et al.. Functional Programming and llS Appltcatzons An Advanced Course.
Cambridge University Press, 1982,

16. Friedman, D. P., and D. S, Wise. CONS Should Not Evaluate its Arguments. In Automata,
Languages, and Pragrammmg, unknown, 1976, pp. 257 284

17. Guharoy, Bhaskar. Data Stmcwre Managemem in a Data Fhw Computer System, Master
Th., Massachusetts Insutute Technology 1985

18. Hoare, C AR. "Commumcatmg Sequentnal Processes" Communctatzons of the ACM
(August 1978), 666-677.

19. Hughes, J. A. Error Detection and.Correction Twmquesfar DataFlow Systems, 13
Annual Symposium on Fault Tolerant Techniques, IEEE, 1983, pp. 318-321.:Also Center For
Reliable Computing Memo 83-1, Computmg Systems I.aboratory, Stanford Umvemty

20. Kahn, G and D. MaCQueen. Cmmmw mdNﬁwmefWel Pmmscs. Information
Processing 77: Proceedmgs of IFIP Congress 77 August, 1977 pp 993-998

21. Lampson B W. and Sturg:s. I-L E. Crash Rmovery ha Dmbut;&Data Snomge Sysmm.
Xerox PARC 1979. Internal draft.

22, Leung,C.K.C. Fauk Tolerance in Packet Communm&ea Arehmctum. TR-250,
Laboratory for Computer Science, MIT Cambndge Mass September. 1980

23. Liskov, B and Scheifler, R. Guardlans and. Actnons. Lmsmstic Supp@rt for Robust.
Distributed Programs. 210-1, Computation Structures Grogp; Labomtory-for Computer
Science, MlT Cambridge, Mass., Novemeber, 1981

24, Mnsunas, D. P Error Dctecupn and ;Rseave&y ma Data*“Ftov Computer Proceedmg of the
1976 Conference on Parallel Computing, 1976, pp. 117-122. o

25. Nelson, B. J. Remote Procedure Call. Ph.D. Th.,Carnegie-Mellon University, May 1981.
26. Siewiorek and Swarz. The Theory arid Practice of Reliable S’ykte}h’be‘;ig‘n. Digifal Press,
1982,

27. Stern, J. A. Backup and Recovery of Online lnf‘ormat:omn a Computer Utility. TR- 116
Laboratory for Computer Science, MIT, Cambndg,c.Mas. 1974 ‘

28. Stoy. J. E. "VIM: A Dynamic Dataflow Implementation of VAL". TOPLAS 0. To appear
in ACM Transactions On Programming Languaggs And Systcms o

29. Svobodova. L., and Liskov, B.. and Clark, D. Distributed Computer Systcms: Structure and
Semantig:s. TR-215. Laborz;tory for Computer Sciengg. M]T Cambndge. Mass., 1979.

30. Weng. K.-S. An Abstract Implemcntation for a Generalized Data Flow Language. TR-228,
Laboratory for Computer Science. MIT, Cambridge, Mass., 1979, '

