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Abstract 

An optimization technique known as partial evaluation is explored. A partial 
evaluator optimizes code by making use of static information about program values. 
Our partial evaluator is designed to optimize mainly applicative code. Un-checked 
assertions are used to identify applicative constructs in the input code and guide the 
partial evaluator. Side-effects in the input code are retained but are not optimized. 

This thesis is part of a larger project devoted to language extensibility. Source 
language constructs will be transformed into kernel language constructs by 
syntactic transforms. These transforms will add applicative code for type-checking, 
etc. To assess the effectiveness of the part~-e\/aluator, some examples of kernel 
language programs are partially evaluated, and the results discussed. 
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1. Introduction 

1. 1 Extended Abstract 

In this thesis, an optimization techniqu·e known as partial evaluation is explored. 

Though the technique itself is not new, further research is worthwhile for a number 

of reasons: 

1. While partial evaluation has been mentioned many times in the literature, 
it has not yet been fully explored. In particular, the application of partial 
evaluation to a lexically scoped language with full function values is 
new. 

2. Partial evaluation has applications to automatic compiler generation. 
Theory indicates that partially evaluating an interpreter acting on a 
program results in compiled code by specializing the Interpreter to the 
source program. 

The ptimary optimization µan:tdiyrn of partial evaluation is specialization: given 

a general function and some knowledge about •the input, a specialized version can 

be automatically produced. Automatic specialization could have a large impact on 

software engineering (the art of production programming): how much easier it would 

be simply to maintain libraries of very general functions, such as generalized 

mapping and iteration constructs, which would then be automatically specialized to 

the particular input parameters by a partial evaluator! 

Partial evaluation provides a clean conceptual framework for many traditional 

code optimizations [1]: in-line expansion, function specialization, constant 

propagation, loop unrolling, recursion elimination, etc. By expanding function 

bodies in-line, substituting the partially-specified actual parameters for the formal 

parameters, and then eliminating constant computations (or more generally, 

optimizing partially-determined computations), one achieves a very fine grain of 

optimization. 

This thesis is part of a larger project devoted to language extensibility. One 
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problem with present-day production {non-research) languages is that they exhibit a 

serious performance difference between built-in and user-defined constructs. 

Programmers are forced to chose between well-structured programs that are 

inefficient because of the use of user-defined constructs, and efficient programs that 

are ill-structured because of the avoidance of user-defined constructs. The goal 

then, is to provide a truly extensible language, one that can be extended to apply 

easily and naturally to any problem domain, and one that is competitive in 

performance with a conventional, more specialized language. 

1.2 Language Extensibility 

Generally speaking, programming languages are equipped with a certain set of 

built-in constructs {built-in functions, types, etc.) and are extensible in that there 

exist facilities for the user to define additional constructs {user-defined functions, 

types, etc.). However, the built-in constructs usually have certain privileges, which 

include special syntax, more general semantics, and greater efficiency. The less 

distinction between built-in and user-defined constructs, the more extensible the 

language. 

Achieving syntactic and semantic extensibility at the cost of pragmatic factors 

such as performance is uninteresting for a practical language. Pragmatic 

extensibility is achieved when user-defined constructs are roughly as efficient as 

built-in constructs. In a fully extensible language, while the constructs usually built

in to a conventional language might be somewhat less efficient, user-defined 

constructs would be considerably more efficient. The aggregate efficiency of a fully 

extensible language could thus surpass that of the conventional language. 

1.2.1 Examples from Pascal 

Pascal [40] exhibits the usual forms of extensibility, as well as the classic 

limitations. For example, there is a set of built-in functions, and a way of defining 

additional functions. Yet built-in functions are more powerful. Not only do they have 
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more general syntax (infix notation, variable number of arguments), but they have 

more general semantics, in that they are overloaded, i.e. performing different 

computations based on the argument types (e.g. the numeric functions). 

Another example is Pascal's type system. A facility exists for introducing new 

types, but these are just type names, as they lack some fundamental features. Built

in types (such as RECORD and ARRAY) have special syntax for creation and 

selection, and more significantly, they have semantic advantages such as hidden 

representation and parameterization. 

1.2.2 Improvements in CLU 

CLU [24] represents a considerable improvement over Pascal. The generic and 

infix-syntax issues are addressed by de-sugaring (syntactically transforming) all the 

built-in operator symbols to standard functions. (E.g. a + b de-sugars to 

T$p l us (a, b) where T is the type of a.) One cannot, however, define n~w infix 

operator symbols. The type system is also more extensible. The CLUSTER facility 

provides user-defined abstract types, which provide hidden representations, 

parameterization, etc. Yet some problems remain. Some built-in types have speciaJ 

constructor syntax or specialized constructs, which can hamper program 

modification, and prevent the user from defining similar types. Of course, in neither 

CLU nor Pascal can one significantly extend the type system (e.g., to add 

inheritance). 

1.2.3 The Russell Type System 

Russell [5, 11] was designed to illustrate the philosophy that data types should 

be full-fledged values, just as integers or arrays are. As a result, its type system is 

exceptionally flexible and extensible. Operations on types are provided that enable 

one to modify existing types in many ways to produce new types. Among other 

things, one can produce abstract types by controlling the export of operator names, 

and one can produce parameterized types by writing a function that accepts the 

parameter type and returns the desired type. 
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Russell's contribution to extensibility consists of elevating type implementations 

to first-class values. This enables one to use all the facilities of the language in order 

to define new types. Unfortunately, the facilities of the language aren't quite general 

enough for the user to be able to define constructs like the built-in record 

constructor, since this construct takes a variable number of arguments. Nor are they 

general enough to add significantly to Russell's type structure, adding new type 

constructors, for example. 

1.2.4 Extensibility in EL 1 

In all the above languages, however consistent the syntax and semantics of 

various constructs are, the built-in constructs are more efficient. Given a compiler of 

average talent, an attempt to define records (for example) by the user can only result 

in a serious performance degradation. EL 1 [38] attempts to deal with all the issues 

of extensibility (syntax, semantics, and pragmatics) by not only providing very 

general extension facilities, but also using a different execution paradigm: partial 

evaluation. 

By making "type" a type, as does Russell, EL 1 allows one the full power of the 

language to create new types. (It also shares Russell's limitations.) Operations on 

types also permit user-defined type-checking, type-coercion, and type-dispatching. 

At first sight all this user-defined machinery seems to imply a great deal of run-time 

overhead, as run-time type tags, type-checking, etc. appear to be necessary. EL 1 

provides two ways of eliminating this difficulty. First, routines can be compiled with a 

list of known values for certain of the free variables of the routine (including type 

values). The compiler will incorporate these va1ues directly in the code, as well ~ 

executing at compile-time those functions which depend only on known values. 

Second, the compiler treats certain constructs specially. For example, the user

defined type-dispatching construct is recognized by the compiler, and the dispatch 

will be pre-computed, if possible, eliminating the type check and the necessity for 

type tags. 
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This approach to execution is generally known as partial evaluation: the 

execution of as much code as possible before run-time. In particular, any 

computation that depends on only known values can be eliminated and replaced by 

its known value (though side effects must be retained). Unfortunately, EL 1 utilizes 

partial evaluation in a rather ad hoc fashion. Only certain constructs are 

automatically partially evaluated, and the manual specialization of functions by 

binding free variables is a rather clumsy solution to various problems such as 

parameterization. 

1.3 Language Construction 

Our proposed methodology is a generalization of the Russell and EL 1 

techniques: all extensions are implemented in the language, allowing the full power 

of the language to be used, and allowing full user access to the extension 

mechanism. In addition, partial evaluation will be used to optimize the code to the 

point where using the user-defined extension mechanisms is essentially free in terms 

of run-time performance. The base language suggested here incorporates just one 

basic semantic extension mechanism: the closure 1, or lexically-scoped function 

value. 

An example of this technique is the implementation of a Smalltalk-style 

(16] message-passing type system. A Smalltalk object would be implemented as a 

closure whose code consisted of a dispatcher, and whose environment contained a 

method-table (table of operations), as well as a link to the superclass (parent type). 

Each method invocation would normally require the dispatcher to search (at run

time) for the method in the method-table, and then in the super-class's method-table, 

etc. Hopefully, the partial evaluator would frequently decide at partial evaluation 

time which method is to be invoked, and even expand the method's code in place of 

the invocation to achieve further optimization. 

1 A closure can be viewed as a pair consisting of a function's code and its definition-time 
environment, which results in free variables being lexically scoped, as in a block-structured language. 
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Figure 1-1 : The Proposed Extensible Language System 

At a higher level of abstraction, the system can be viewed as a compiler (see 

figure 1-1 ). The front end consists of the various transformations (macro-expansion, 

parsing, etc.) from the source language to the kernel language. The back end Is a 

traditional implementation of the kernel language (an interpreter or a compiler). The 

partial evaluator acts on the kernel language and serves as a "middle end": a global .. 
machine- and source-Independent optimizer [8]. 2 

An advantage of the above approach to language construction over traditional 

compiler Implementations is modularity. To re-source, one writes a new front end, 

which should not be tim~-consuming. To re-target, one changes the machine

dependent portions of the kernel langu~ge implementation, which should not be a 

2 [8] presents a machine-independent optimizer for U-Code • a low-level, stack-oriented 
Intermediate language. Mainly conventional optimization techniques are used, though contributions 
are made In the area of code motion and machine independent register allocation. 
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great deal of work, since the kernel language is quite small and simple. The partial 

evaluator, which would probably be the most complex component, would remain 

constant. 

Code optimization has been split into two major phases: the partial evaluator 

performs global control-flow optimization in a machine-independent fashion. 

Optionally, further local, machine-dependent optimizations can be performed by the 

kernel language implementation. This partitioning of the optimization process is 

shown to be useful in [8]. 

The application of partial evaluation to compilers is not entirely new: similar 

proposals have been reported in [19] and [7] which present IBM's General-Purpose 

Optimizing Compiler project. Their compilation strategy is to transform source code 

into machine code through a series of intermediate languages. At each stage, each 

language construct has one defining procedure in the next lower-level language. 

Instead of special-casing, a partial-evaluation-like approach is used to optimize at 

each step by taking advantage of constraints on program values. 

1 .4 The Remainder of the Thesis 

This thesis is devoted to the middle component of the proposed extensible 

language system: the partial evaluator. The code which the partial evaluator acts on 

will be generated by syntactic transforms from surface language constructs. The 

generated code will preserve all user-specified side-effects but will also include 

applicative constructs for type-checking, etc. We anticipate that applicative 

interpreters will be used to implement certain source language constructs. The 

partial evaluator is designed to optimize this added applicative code while retaining 

all side-effects. 

First the Imagine Base Language (which serves as the kernel language) will be 

presented. This very small language has been designed to provide an adequate 
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implementation base for the proposed extension mechanisms. After various design 

issues are considered, a language definition is given. 

Partial evaluation is then defined in more detail, and some related research is 

explored. To meet our particular needs, our own partial evaluator differs from 

previous designs. The detailed design of the partial evaluator is presented by first 

discussing the structure of the program, and then considering the partial evaluation 

of each of the various constructs of the kernel language. 

As an illustration of the proposed technique of language extension, and as an 

extended example of partial evaluation at work, the implementation of a simple 

message-passing system in IBL will be described. Programs using this user-defined 

package will be partially evaluated and the results discussed. Another example of 

language extension, and a further demonstration of the power of partial evaluation is 

presented next. An interpreter for a simple declarative language is implemented, 

and the partial evaluator is used as a compiler to eliminate all unnecessary run-time 

interpretation. 

Finally, the limitations and further prospects of the above techniques are 

considered. 
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2. The Imagine Base Language 

2.1 Overview 

In this chapter, the Imagine Base Language (IBL) is presented. This small 

kernel language is designed to serve as an implementation language for user

defined extension mechanisms. It is a lexically-scoped dialect of Lisp [39]. After 

discussing various design considerations, the various code forms and built-in types 

are presented. IBL closely resembles Scheme [33], with the addition of a user

extensible parsing mechanism and self-evaluating keywords. 

2.2 Design Considerations 

Imagine Base Language (IBL) is a small "kernel" language which serves as an 

implementation language for the various source languages. In other words, it is not 

intended that users program directly in IBL, but rather that source programs are 

transformed into IBL programs through syntactic transformations. Thus· certain 

standard design criteria, such as readability and type-safety, are less important in 

IBL than in a typical language. IBL is based on Lisp [39] mainly because of the 

program-data equivalence offered by that language (which eases program analysis 

and manipulation), but also to take advantage of the development environment 

offered by Zetalisp [26] running on the Symbolics 3600 Lisp Machine [36]. 

IBL is a small language (for ease of implementation and analysis) but complete 

in the sense that it provides all the constructs necessary to efficiently support source 

language constructs. Such implementation types as words and word-vectors are 

supported, as are other convenient types such as pairs (Lisp cons-cells). The 

control structure must also be complete in this sense, yet it must also be extremely 

simple for the purposes of analysis and optimization. 

The main primitive control structure is the function call. IBL functions are 

actually lexically-scoped closures and are first-class values, so the function call 
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mechanism subsumes such traditional constructs as "own" variablest co-routines, 
• 

etc. Reynolds [27] shows that a lexically-scoped language with function values is 

sufficiently general to implement such constructs as program jumps and mutable 

state {in an applicative language!). 

The astute reader may notice that no iteration construct is provided. Steele and 

Sussman have shown that tail-recursion can be implemented as efficiently as 

iteration, both in space and in time, and both in an interpreter [30, 31, 32, 35] and a 

compiler (34]. 

While a purely applicative language would have been much easier to analyze, it 

was decided that this would have been an over-simplification for practical purposes, 

and thus imperative features such as assignment and structure mutation have been 

included in IBL. 

Several features of traditional Lisp dialects have been omitted. For example, 

users are not allowed to define new special forms, since each special form must be 

handled individually by the partial evaluator. "All-powerful" functions such as eval 

and set limit the usefulness of analysis, since they can invalidate almost any 

assumption about variable values, mutability, and other side effects. For this reason, 

they have not been included in IBL. Since the program jump (goto) greatly 

complicates analysis, it too has been eliminated. IBL has no exception-handling 

mechanism, which while an over-simplification in a real language, simplifies the 

analysis for the purpose of this thesis. 

Since the source language will implement all type-checking, generic operators 

and other complicated constructs, IBL is a bare-bones language with minimal run

time overhead. It should be possible to compile IBL to run very efficiently on 

conventional architectures. 

IBL is clearly very similar to Scheme [33]. This is not accidental, since Scheme 
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provides much of the desired qualities: a small, lexically-scoped language with 

program-data equivalence. 

2.3 Description and Semantics 

IBL (Imagine Base Language) is designed to serve as the kernel language of the 

extensible language system. In surface syntax and in semantics, IBL greatly 

resembles Scheme. IBL is a lexically-scoped dialect of Lisp with self-evaluating 

keywords. A user-extensible syntax mechanism has been included so that syntactic 

sugar can be introduced. 

IBL is an applicative-order language. In other words, all arguments to a 

function are always evaluated. However, the order of argument evaluation is 

undefined. Arguments may be evaluated left-to-right, right-to-left, or in any other 

order. Arguments are passed by sharing, as in Lisp. Call-by-sharing resembles call

by-reference for mutable values, since an argument may be mutated by the called 

function, but resembles call-by-value for immutable values. 

IBL is implemented by parsing the surface syntax, which consists of $

expressions (the Lisp surface syntax of nested lists of atoms), into an internal form 

known as I-code (internal code). This parsing is done by a set of built-in parsing 

functions, augmented by user-defined functions which can transform arbitrary user 

syntax into syntax understood by the built-in parser. These user-defined parsing 

functions are "reader macros," since they act when a program is "read in", or 

parsed. 

The IBL interpreter acts only on I-code structures. Values returned by the 

evaluation of an expression are unparsed before printing. The main loop of the 

interpreter is thus READ-PARSE-EVAL-UNPARSE-PRINT rather than the usual 

READ-EVAL-PRINT (see figure 2-1). 

IBL is a weakly-typed language in that data carry their type with them, but no 
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Figure 2-1: The Interpreter Loop , 
type-checking Is done. The usual complement of built-In types is provided: flxnums 

(small Integers), booleans, pairs (cons-cells), vectors, lambdas (user-defined 

functions), etc. No type extension facilities are provided, since it Is assumed that IBL 

types serve mainly as Implementation types for the source languages, whose type 

systems are Implemented in IBL. 

2.4 I-code and Syntax 

2.4.1 Code Forms 

Internally, an IBL program is a tree with the following types of nodes: 

• definition • consists of a name, a value, and a read-only boolean flag. 
When executed, evaluates value and binds name to the result In the 
current environment. The read-only flag is used by the partial evaluator 
and is described later. The built-in syntax (def name value read-only) 
· creates a definition. 

• lambda-form • consists of a list of required parameters, a rest 
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parameter, a list of assertions, and a body. When executed, creates a 
lambda (see section 2.5.1). The built-in syntax (lambda {required. rest} 
(assert assertions} body), where the assert clause is optional, creates 
a lambda-form. (See section 3.8 for the form of an assert clause.) 

• conditional - consists of a predicate, a consequent, and an alternative. 
When executed, fi~st evaluates the predicate. If the predicate evaluates 
to true, the consequent is evaluated, otherwise the alternative is 
evaluated. The built-in syntax (if predicate consequent alternative} 
creates a conditional. 

• sequence - consists of a list of expressions. When executed, the 
expressions are evaluated sequentially, and the value of the last 
expression is returned. The built-in syntax (sequence expressions} 
creates a sequence. 

• combination - consists of a function and a list of arguments. When 
executed, the function and the arguments are all evaluated, then the 
function is applied to the arguments. The built-in syntax (function 
arguments) creates a combination. To avoid ambiguity, function cannot 
be a symbol which denotes a built-in syntax rule (if, sequence, etc.). 

• variable reference - consists of three components: a name, a closure, 
and a frame-count. When executed, the name is looked up in the 
environment of the closure, skipping frame-count environment frames3• 
If closure is nil, the name is looked up in the current lexical environment 
(the usual case). The built-in syntax (variable name closure 
frame-count) creates a variable reference. For convenience, a symbol is 
parsed as a variable reference with closure nil and a frame-count of 
zero.4 

• assignment - consists of four components: a name, a closure, a 
frame-count, and a value. When executed, the name is looked up in the 

3-rhe closure component is a lambda in whose environment the variable is scoped. An 
environment frame corresponds to a lexical scoping level, i.e. a function definition nesting level. 
Exposing lexical levels unfortunately constrains and exposes the implementation of environments to 
some extent. 

4Note that the user should always use the latter form of specifying a variable reference, so that 
closure is nil. Only the partial evaluator should create variable references with non-nil closure. 
Frame-count is used both to optimize variable lookup, and by the partial evaluator to dis-ambiguate 
different variables with the same name. The user need never specify a non-zero frame-count. 
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environment of the closure, skipping frame-count frames. As above, 
when the closure is nil, the name is looked up in the current lexical 
environment. Name is then rebound to value, which is the result of the 
assignment. The built-in syntax (assign name contour frame-count 
value) creates an assignment. 

The leaves of the tree are values of the various built-in types, which are covered in 

section 2.5.1. 

2.4.2 Other Syntax 

Another useful built-in syntax rule is (quote literal). While most literals are self. 

parsing, such as strings and fixnums, others are not. For example, a list (generally) 

parses to a combination and a symbol (again, generally) parses to a variable. To 

denote list or symbol literals, one uses the quote form, which when parsed, simply 

returns its argument unchanged. Note that no quote-form is needed in I-code, since 

a list-literal or a symbol can not be mistaken for executable code at the I-code level. 

The last built-in syntax rule is (user-syntax variable-list body). When 

executed, this expression creates a user-defined syntax rule. As an example of the 

use of such a rule, consider the implementation of the usual Scheme syntax for 

defining a function: 

(define (cadr x} 
(car (cdr x))} 

The above syntax will be transformed into the following primitive syntax by the 

parser: 

( def cadr ; ; name 
(lambda (x) ;; value 

· (car (cdr x))) 
true) ,, read-only? 

The appropriate syntax-rule definition which implements the above 

transformation is: 

(def define (user-syntax (form) 
(list 'def (car (car form)) 

(cons 'lambda 
(cons (cdr (car form)) 
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( cdr form))) 
'true)) 

The single-quote character is the usual abbreviation for the quote form. The user

syntax function is passed exactly one argument, which is the cdr, or tail, of the input 

S-expression. 

The syntax mechanism works as follows: if the input S-expression is a list, the 

first element of the list is examined. If this is a symbol and the symbol denotes a 

built-in syntax rule (def, lambda, etc.), that rule is applied. If the symbol denotes a 

user-defined syntax rule, the rule is applied to the tail of the list, and the result is 

recursively parsed. If the head of the list does not denote a syntax rule, each 

element is recursively parsed and a combination is created. Atomic expressions are 

parsed specially, as explained in the next section. (For a more sophisticated 

example of a user-defined syntax rule, see appendix II.) 

2.5 Built-In Types 

The following sections describe the built-in data types of IBL. Since the user 

cannot define new types, all IBL objects are of one of the following types. As 

mentioned above, source language type systems will be built on top of these basic 

implementation types. 

2.5.1 Lambdas 

The most important type is the lambda, or user-defined function. There is only 

one way to create a lambda, and that is by executing a lambda-form. A lambda is a 

first-class IBL value and can thus be an argument to a function and the result of a 

function. Since a lambda contains its definition-time environment, free variables are 

lexically scoped, so a lambda is actually a full closure. 

The Scheme "dotted-tail" notation is used for formal parameter lists to indicate 

required and rest parameters. An example of its use is: ( (lambda ( a b . d) 

(print d)) 1 2 3 4 6 6). Asusual,aisboundto1,andbisboundto2,butd 

is bound to the list of remaining arguments, i.e. ( 3 4 6 6). 
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The function list which creates and returns a list of its inputs can thus be very 

. simp1y defined by: 

(define (list . x) 
x) 

2.5.2 Built-In Functions 

A built-in function is very much like a lambda, except that it is part of the 

implementation of IBL. When IBL starts, certain variables are bound to the built-in 

functions in the global environment. Most of the built-in functions are described 

below together with the type of data with which they are associated. The remainder 

of the functions are described here. 

The function (type value) returns a keyword (see section 2.5.9) describing the 

type of value, either lambda:, built-in-tune:, pair:, nil:, fixnum:, boolean:, 

vector:, string:, symbol:, keyword:, built-in-syntax:, or user-syntax:. This 

function can be used to implement type-checking and -dispatching. 

Various 1/0 functions are provided: 

• (print value)• Unparses a·value and prints it as an S-expression; returns 
the value. 

• (read) - Reads a value as an S-expression. 

• (load file-name)• Evaluates the contents of the file denoted by the string 
file-name; returns nil. 

• (save file-name) - Saves the global environment to the file denoted by 
the string file-name in a format compatible with load; returns nit. 

A basic pointer-equality predicate is provided: (eq? a b), which returns a 

boolean (true if a and b evaluate to the same object, otherwise false). 

The following two functions aid in the implementation of user-defined syntax 

rules: 
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• (apply function arg-list) - The function is applied to the list of 
arguments, e.g. ( app 1 y 1 p 1 us ' ( 1 2)) (which returns 3). 

• (symeval symbol) - The argument is evaluated and then looked up as a 
variable in the current environment, e.g. ( ( symev a 1 ' 1 p 1 us) 1 2) 
(which also returns 3). 

The following functions provide an interface to the partial evaluator: 

• (pe-exp form) - 'Partially evaluates the form and returns the result in 
readable format. 

• (pe-func tune) - Partially evaluates the body of tune and as a side
effect, replaces the body of tune with the optimized version. Returns the 
optimized body. 

• (pe-all) - Performs pe-func on every .lambda in the global 
environment; returns nil. 

2.5.3 Fixnums 

A fixnum is a machine word, which can be used to model small integers, among 

other things. The usual built-in operations are provided: iplus, iminus, itimes, idiv, 

irem, iless?, igreater?, and iequal?. 

2.5.4 Pairs and Nil 

A pair is simply a pair of slots. The following operations are provided on pairs: 

• (car pair) - Returns the first element of the pair. 

• (cd r pair) - Returns the second element of the pair. 

• (cons ab) - Creates and returns a new pair with components a and b. 

• (set!-car pair new-car) - Updates the first component of the pair; 
returns the updated pair. 

• (set!-cdr pair new-cdr) - Updates the second component of the pair; 
returns the updated pair. 
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Nil is a special value which indicates an empty list. The symbol n 11 is parsed as 

nil. Note that nil is not a pair, one cannot take the car or cd r of nil. 

2.5.5 Booleans 

Traditional Lisps use nil for "false" and anything else for "true". IBL instead 

has a true boolean type. The symbol true parses to the boolean true value, and the 

symbol fa l s e parses to the boolean false value. All predicates (generally speaking, 

those functions ending with a"?") return a boolean value and conditionals expect a 

boolean result from their predicates. The following functions operate on boolean 

values (note that all arguments are always evaluated): 

• {and a b) - Boolean AND. 

• {or ab) - Boolean OR. 

• {not a) - Boolean NOT. 

2.5.6 Vectors 

A vector is a heterogeneous linear array of values. The following operations are 

provided: 

• {vector-cons size initial-value) - Creates and returns a new vector with 
size elements, all initialized to initial-value. The vector is zero-based. 

• {vector-ref vector slot) - Returns the component of vector denoted by 
the fixnum slot. 

• {vector-set! vector slot new-value) - Updates the component of vector 
denoted by slot with new-value; returns the updated vector. 

• {vector-size vector): Returns the number of slots in the vector. 
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2.5. 7 St rings 

A string is a linear array of characters. No operations are currently defined on 

strings {except the generic functions such as print, type, etc.) 

2.5.8 Symbols 

A symbol is simply a name. A symbol is parsed as a variable or other value 

unless the quote form is used. For example, { quote true). is parsed as the 

symbol true, whereas true is parsed as the boolean true value. 

2.5.9 Keywords 

A keyword is a symbol whose last character is either ":" or ".",e.g. keyword:. 

Keywords evaluate to themselves, and thus do not need to be quoted. Because they 

can never represent variables, they cannot be assigned. Keywords, which can be 

used in implementing message-passing programs, are also useful for describing a 

small set of options. 

2.6 Utilities 

The extensible syntax mechanism has been used to implement a subset of 

Scheme in IBL. Since the two languages are so similar, only some simple syntactic 

transformations are necessary. The resulting extended language lends itself to 

programming much more than "bare" tBL. 

Among the constructs provided are useful abbreviations such as cadr, cddr, 

first and second; type-checking functions such as fixnum? and lambda?; and 

more complex syntax such as cond· for multi-branch conditionals, let for local 

variable binding, setq for assignment, and back-quote syntax for easy macrQ

creation. (Appendix I contains a complete listing.) 
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2.7 Summary 

IBL is a lexically-scoped dialect of Lisp resembling Scheme. The list-oriented 

surface syntax is parsed to internal code forms. The parsing mechanism is user

extensible to allow syntactic sugar to be introduced. Self-evaluating keywords are 

introduced to_ aid in the implementation of message-passing objects. A utility 

package has been written which implements a useful subset of Scheme. 
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3. The Partial Evaluator 

3.1 Overview 

The partial evaluator is presented in this chapter. Partial evaluation is 

described, and some related work is discussed. The design of the partial evaluator is 

first outlined, and then presented in detail by considering the partial evaluation of 

each of the various constructs of IBL. The difficulties caused by full closures and 

side effects such as mutation and assignment are explored. 

3.2 Introduction 

As mentioned previously, a partial evaluator is an automatic specializer. An 

example is helpful to clarify the concept. Consider the printf function of the C 

language [21]. This function takes a control string and a number of arguments. The 

control string specifies how the remaining arguments are to be printed, e.g. printf 

( "%d %f" , a, b) will print a as a decimal integer and b as a floating point 

number. In normal execution, the control string is interpreted at run-time by the 

printf routine. 

to: 

It is likely that a partial evaluator could specialize the above invocation of printf 

printdecimal 
printspace 
printfloat 

(a); 
(): 
(b): 

The partial evaluator has in a sense compiled the control string interpreter to 

produce optimized code. 

Beckman et al. [4] give a more formal description of partial evaluation which I 

paraphrase here. Imagine that we have a program P which takes two parameters X 

and Y. In general we will want to run P with many different values of X and Y. It is 

likely that in some cases one of the arguments, say X, is known. A possibility then 

exists of replacing the call to the general procedure P by a version which is 
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optimized by replacing references to X by its known value, performing computations 

which depend only on constants, and eliminating code which will not be executed. 

This optimization could be done by hand, a tedious and error-prone procedure in 

general, or we could supply another program R that would accept Panda value for 

X and output an optimized program R{P,X) = Px such that Px{Y) = P(X,Y). 

Presumably Px would be more efficient than P. The program R is then a partial 

evaluator. 

3.3 Related Work 

Partial evaluation is a technique that has appeared in the literature many times. 

Other names have been used: "symbolic evaluation", "symbolic execution", 

"symbolic interpretation", "partial execution", etc. The earliest reference known to 

the author is in Lombardi and Raphael's "Lisp as the Language for an Incremental 

Compiler" [25], from 1964. The literature on automatic programming contains some 

examples of partial evaluation techniques, such as Darlington and Burstall's work 

[10]. Partial evaluation ideas have been used in other automatic specializers. For 

example, Scherlis [29] generates expression procedures (syntactic transformation 

rules) from existing definitions using a small set of basic operations. These 

operations correspond to beta-expansion, closed-specialization, and variable 

elimination. Code is specialized by choosing (in an un-specified manner) from the 

set of syntactic transformations that have been generated by the basic operations. 

Deutsch [12] used partial evaluation to simplify theorems in a program verifier. By 

propagating partially-specified values and folding expressions, many theorems were 

reduced to the boolean constants and were thus "proved" (or disproved) without the 

use of the theorem prover. 

The fundamental tension in any optimization strategy, including partial 

evaluation, is between increased performance {wanting to improve the code as 

much as possible) and correctness {preserving program semantics). Such features 

as assignment of variables and mutation of values complicate the partial evaluator's 
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task, but seem highly desirable in a production environment. By formally defining an 

abstract machine for Prolog, and then extending the abstract machine to do partial 

evaluation while proving that the changes preserve the original semantics, 

Komorowski [22, 23] has described a partial evaluator for Prolog that is provably 

correct. However, Prolog is such a simple language (no assignment, nested 

definitions, etc.) that this approach doesn't seem practical for more powerful 

languages with more intractable semantics. About the best one can do at the 

moment is to argue carefully (and hopefully convincingly), albeit informally, that 

program semantics are indeed preserved for each transformation. 

Ershov [13, 14, 15] calls partial evaluation "mixed computation". His model is 

that a partial evaluator works by interpreting the code, doing what computation can 

be done as soon as possible, and emitting code to perform the portion of the 

computation that must be done at run-time. The partially-determined environment, 

or partial-evaluation-time environment, is constructed in precisely the same way as 

the interpreter builds the fully-specified run-time environment. Since an interpreter 

is simple to write, and the partial evaluator can share the structure of the interpreter, 

and indeed much of the code, this implementation approach. seems simpler and 

more powerful than the general program-transformation model. 

Ershov's papers are largely theoretical, in that the emphasis is more on the 

definition and application of partial evaluation rather than on practical algorithms to 

implement partial evaluation. Ershov mentions many possible applications of partial 

evaluation, including automatic specialization of generic code to produce efficient, 

tailored code, and the partial evaluation of an interpreter (or operational semantics) 

acting on a source program to produce compiled code. 

Haraldsson's work [17, 18] Is the most relevant to the project at hand. He 

describes a simple partial evaluator known as REDFUN (first described in [4]), and 

discusses its various features and failings. Drawing on the REDFUN experience, he 
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then presents the REDFUN-2 system. Haraldsson explores at length many of the 

same issues that this thesis must confront, such as partially-specified values, 

handling of side-effects, etc. His emphasis is of course somewhat different, 

concentrating more on specialization of functions and general optimization than 

language extensibility. 

Haraldsson gives a very complete description of a working partial- evaluator for 

Interlisp [37]. His work has a number of shortcomings (at least from our point of 

view). The design is essentially that of a program manipulator, not that of an 

augmented interpreter. Many of his optimizations are in the form of syntactic 

transformations. This complicates his algorithms considerably, since it is harder to 

deal with semantic difficulties such as arguments with side-effects. Although 

Interlisp is dynamically-scoped by default, it does contain tunargs, which are 

lexically-scoped closures. Haraldsson, though, does not deal with the "disappearing 

environment" problem of beta-expanding closures (see section 3.5.2.2). Nor does 

he deal with the more common problem of variable shadowing in beta-expansion. 

He over-simplifies the issue of the correct code for an evaluated result, simply using 

the quote special form, which is incorrect in the presence of mutation (see 3.5.3). 

On the other hand, he is more ambitious in some areas. His partially-specified 

values contain more information, such as lists of possible values, lists of impossible 

values, datatypes, etc. He attempts to deal with all the (sometimes baroque) features 

of Interlisp, such as jumps, eval, setq, etc. He performs such optimizations as 

deleting unnecessary variables and closed specialization (although he doesn't go 

into detail on the latter). He examines conditionals more carefully, extractin~ 

information from the predicate so that while optimizing the true-branch he can use 

whatever information can be deduced from the predicate evaluating to true and 

similarly for the false-branch. Of course, his program is almost ten times as big as 

our implementation. 
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Good optimization of side-effects requires a rather different approach. For 

example, Cocke [9] keeps track of the program state (memory contents, etc.) in 

order to detect and eliminate redundant side-effects. By noting where the program 

state returns to a previous state, Cocke detects where a simple jump can replace 

more expensive constructs. 

3.4 Design 

In our application, the partial evaluator is intended to work on code that has 

been generated by transformations from some surface syntax. The generated code 

will preserve all side-effects specified by the source c·onstructs, but will also include 

applicative constructs for type-checking, etc. The partial evaluator is designed to 

optimize the added applicative code while retaining all side-effects. The partial 

evaluator is not intended to optimize general user-written code. 

We envision that one of the main applications of the partial evaluator will be 

performing type computations and specializing polymorphic functions. By including 

type-checking code and eliminating it wherever possible, we hope to capture static 

and dynamic type-checking within a single framework. 

A partial evaluator could perform an arbitrary amount of work, including 

sophisticated dataflow analysis, constraint propagation, and theorem proving, in 

order to accumulate information to aid in code optimization. Another option is to 

have the user supply declarations or assertions. These can either be checked for 

consistency or not. For simplicity's sake, we assume that the code generated by the 

above-mentioned front ends will contain automatically generated assertions that are 

guaranteed to be consistent. These unchecked assertions will be used to guide the 

partial evaluation process. 

Among the assertions that have proven useful are: 

• evaluate - to indicate that a function invocation is applicative and 
should be evaluated before run-time if possible; 
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• beta-expand - to indicate that a function invocation should be beta
expanded (expanded inline) if possible; 

• read-only - to indicate that a variable will not be re-bound (e.g. by 
assignment) and that the bound value will not be mutated; 

For a complete list of assertions, see section 3.8. Each assertion will be fully 

described in the following sections. 

Following Ershov's model, the partial evaluator is designed as an augmented 

interpreter. An interpreter is often defined as an expression evaluator with the 

following signature: 

eval-exp: exp x env-+ value 

(ignoring side effects). An expression (exp) is evaluated with respect to an 

environment (env) and returns a result (value). Similarly, an expression-partlal

evaluator has the following signature: 
pe-exp: exp x before-env x after-env-+ value x code 

An expression (exp) is partially evaluated with respect to the partially-determined 

environments ( befo re-env, afte r-env) and returns a partially-specified result 

(value) and the optimized expression which will produce the fully-specified result at 

run-time (code). These last two components are collectively cal'led a partial. As will 

be seen later, a partial also contains other components. 

Two environments are necessary because partial evaluation may change the 

environment in which an expression is evaluated. For example, in normal evaluation 

a function body is evaluated in the function's definition-time environment augmented 

by the formal parameter bindings. However, if the function is beta-expanded 

(expanded inline), the body must be evaluated in the invocation-time environment. 

Before-env corresponds to the original or pre-partial-evaluation environment and is 

used to look up variable values. After-env corresponds to the post-partial

evaluation environment and is used to calculate the code for a variable reference. 

(See section 3.6 for more details.) 
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In order to denote partially-specified values, the value space of the interpreter 

must be augmented with a distinguished "unknown" value, which will be printed 

here as unknown.5 More complex partially-specified values are constructed using 

the standard combining forms such as· pairs and vectors. For example, ( 1 

• unknown) denotes a pair whose car is 1 and whose cd r is unknown. 

3.5 Partially Evaluating Invocations 

Function invocation represents a fertile area for optimization. Constant 

propagation can replace an invocation by the partial-evaluation-time computed 

result. Beta-expansion can replace an invocation by the function's body expanded 

in-line with the arguments substituted for the formal parameters. Specialization can 

replace a call to a generic function by a call to a specialized version of the function. 

In the following two sections, the partial evaluation of built-in and user-defined 

function invocations is discussed. 

3.5.1 Built-In Functions 

The only way to optimize a built-in function invocation is to replace the 

invocation by its value. Beta-expansion is inapplicable since there is no function 

body, and specialization is impossible since there are no "generic" built-in functions 

in IBL (this might, of course, not hold for other languages). The easiest way to 

replace an invocation by its value is to evaluate it at partlat-evaluation-time. For 

example, ( i pl us 1 2) can be replaced by 3. Evaluation is possible only if the 

function is applicative and all the arguments are both known and applicative. Since 

these are very restrictive conditions, an optimizer cannot stop there. 

If the function has side effects, the invocation cannot simply be evaluated. Any 

side-effects must be retained, but it may still be possible to return a value. For 

example, the imperative function print is defined to return its argument. While a call 

5Actually, unknown values are typed, e.g. one can have unknown fixnum or unknown 
keyword. An unknown value with unknown type is represented as just unknown. 
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to (print 1) cannot be replaced by the result 1, the partial evaluator can note that 

the value of this expression is 1. 

If the function is applicative, but the arguments are not, all side-effects must be 

retained, though it may still be possible to do some optimization and return a value. 

As an example, the expression ( i p 1 us (print 3) 1) is replaced by ( sequence 

( pr i n t 3) 4), which has the value 4. The partial evaluation of an expression (in 

this implementation) also returns a list of side-effect forms, which aids in the 

cascading of such expressions. For example, ( i p 1 us (print 3) ( it i mes 4 

(print 6))) isreplacedby(sequence (print 3) (print 6) 23). Notethat 

all applicative arguments have been eliminated. Note also that IBL does not 

guarantee the order of argument evaluation, so ( i p 1 us (print 1) (print 2)) 

might well be replaced by (sequence (print 2) (print 1) 3). 

If not atf the arguments are known, it may still be possible to return a value. For 

example, if a is bound to a partial with value (1 • unknown fixnum), (car a) 

could be replaced by 1. Though nothing could be done with (cdr a), (type (cdr 

a)) could be replaced by fixnum:. Each built-in function must have a distinct 

partial evaluation routine in order to take advantage of any special characteristics of 

the arguments. 

The interaction of constructor functions (such as cons) and accessor functions 

(such as car and cdr) deserves special attention. Consider (car (cons a b)), 

where neither a nor b is known. It would be desirable to replace this form with just a, 

but it appears that the partial evaluation of ( cons a b) (which will return a partial 

with value (unknown. unknown) and code ( cons a b)) does not return enough 

information. While some optimizers would use syntactic transformations in this 

situation, a more general solution is preferred, since more difficult situations arise. 

For instance, b could be a form with side-effects. 

Our current solution is for the partial evaluation of ( cons a b) to return not 
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only the value and code, but also a partial-code component, which is essentially a 

pair of two partials: one each for the car and cdr of the form.6 The partial-code can 

be (and usually is) nil, indicating that no partial-code information exists. The partial 

evaluation of rest parameters and list literals also uses the partial-code mechanism. 

The partial-code mechanism could be extended very simply to include vectors, by 

allowing a vector of partials to appear as the partial-code component. 

The partial-code component is created during the partial evaluation of an 

invocation of cons (for example), and is used in the partial evaluation of invocations 

of car and cdr. If the argument has a non-nil partial-code component, the 

appropriate part of the partial-code component can be returned as the result of the 

partial evaluation. 

3.5.2 User-Defined Functions 

Optimizing a built-in function invocation is simply a matter of repiaping an 

invocation by the value that it will return (while preserving side-effects). The 

optimization of user-defined function invocations is more interesting, as there are 

usually a number of different optimization techniques available. Following 

Haraldsson's lead, we have the following choices: 

1. evaluation • The invocation is evaluated and replaced by the result. 

2. beta-expansion • The invocation is replaced by the function body, with 
the actual arguments substituted for the formal parameters. The body is 
specialized to the actual arguments. 

3. open specialization - A lambda-form is used to create an anonymous, 
specialized function which replaces the original function in the 
invocation. 

6Actually, instead of a pair of partials, the current implementation uses a pair of nullary closures 
(essentially delays), which when invoked create the appropriate partial. The motivation is to reduce 
construction of unneeded structure, as the partial corresponding to a component is only created if 
that component in needed. 
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4. closed specialization - A new function is defined that is a specialized 
version of the original. The original invocation is replaced by an 
invocation of the specialized version. 

The final choice is of course to do nothing and simply return the invocation as is. 

Even if no optimization is done, it may still be possible to return some information by 

including a (returns type-keyword) form in the assert clause to indicate that the 

function returns a certain type of value. 

We can illustrate these options more fully by considering an example: 

(define (foo a b) 
(iplus a b)) 

Consider the partial evaluation of (foo 1 (print x)) where xis unknown. One 

of the following could occur: 

• Using beta-expansion would result in ( i p 1 us 1 (pr 1 n t x)). 

•Using open specialization would result in ((lambda (b) (iplus 1 
b)) (print x)). 

• Closed specialization would result in (fool (print x)) where foo1 
is defined as: 

(define 
(iplus 

(foot b) 
1 b)) 

The following sections consider the above optimizations in more detail. The 

conditions under which they are applicable are discussed, and examples are given 

of their use. 

3.5.2.1 Evaluation 

Evaluation is only performed if the arguments are known {fully-specified) and 

the function is applicative. (Side-effects of the arguments can be taken care of by 

using a sequence form, as in section 3.5.1.) Even if· evaluation is possible, it may not 

always be desirable. For example, the function may be extremely expensive, 

computationally or otherwise. Evaluation is controlled by including the symbol 

evaluate in the assert clause of the function definition. 
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3.5.2.2 Beta-Expansion 

Beta-expansion is a very useful transformation, since it eliminates a function 

call. Even if function calls aren't particularly expensive, beta-expansion improves 

the quality of optimization, since removing the function call interface allows more 

specialization. Beta-expansion is not universally applicable, however. One problem 

is that code size can increase, since beta-expansion implies giving up the code

sharing advantages of function calls. Recursive functions demonstrate this problem 

at its extreme. Code size can also increase in the process of substituting actual 

arguments for formal parameters. If a single formal parameter is referenced many 

times, the code of the actual argument will be repeated. If this argument code has 

side-effects, the side-effects would also be repeated, thus changing the program 

semantics. For this reason, beta-expansion is usually restricted to invocations with 

only applicative arguments. 7 Scheifler (28] discusses inline expansion in some 

detail. 

Including the symbol beta-expand in the assert clause of a function definition 

will cause all invocations of this function with all-applicative arguments to be beta

expanded. Conditional beta-expansion can be achieved by using instead 

(beta-expand expression), in which case an invocation will only be expanded when 

the the value of the expression is known at partial evaluation time (and all the 

arguments are applicative), e.g. in a recursive definition, to prevent unbounded beta

expansion. This mechanism is more powerful than it may appear at first glance. 

Consider ( beta-expand ( type b)) where bis a parameter of the function, which 

indicates beta-expansion only where the type of b is known. 

Including the symbol macro-like in the assert clause will cause unconditional 

beta-expansion, which is useful for "ideal" functions that mention each formal 

parameter exactly once, e.g .. 

7 Another option is to introduce local variables to hold the arguments, eliminating the above 
problems. Unfortunately, these local definitions would tend to accumulate in recursive beta
expansion, and the partial evaluator does not eliminate dead (un-used) variables at the moment.' 



(define (caddr x) 
(assert macro-like (read-only x)) 

(car (cdr (cdr x)))) 
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Beta-expansion is more than just replacing an invocation by the definition with 

the arguments appropriately substituted for the formal parameters: we wish to 

specialize the code to take advantage of any partial knowledge concerning the 

arguments or the environment. The above formulation of the partial evaluator makes 

this quite simple: the definition is partially evaluated as an expression in the after-env 

with the formal parameters bound to constructs indicating substitution. 

Substitution has to deal with the problem of name conflict. Consider for 

example (foo a) where foo is defined by: 

(define (foo b) 
(let ((a (baz b))) 

(1plus ab))} 

If b is replaced by the code a in ( i p 1 us a b), then a is caught by the a introduced 

in the let form. In the lambda calculus (which is lexically scoped) this problem Is 

handled by re-naming inner variables so as not to conflict with outer-level names. 

Another solution is to extend variable names with traversal paths, which are 

constructs which indicate where in the environment a value ·is to be found, i.e. 

counts of how many environment frames (lexical levels) to traverse before looking up 

the name. Traversal paths contain enough information to dis-ambiguate distinct 

variable references with the same name. In the above example, (foo a) will 

partially evaluate to: 

(let ((a (baz (variable a nil 0)))) 
(iplus (variable a nil 0) {variable a nil 1))) 

Actually (var i ab 1 e a n i 1 0) would be unparsed as a since the variable form 

indicates a name to be looked up in the current environment (closure component is 

nil), skipping no frames (frame-count component 0). Traversal paths are thus both 

an optimization of variable lookup and an extended naming mechanism. 

IBL functions can take a rest parameter, which is the list of remaining 

arguments after the required arguments. Substituting a rest parameter during beta

expansion requires a bit more work. Consider the following function: 



{define {foo . 1st) 
{assert beta-expand {read-only 1st)) 

{sequence {print 1st) 
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{print{* (first 1st) {second 1st))))} 

If the expression (foo 1 2) is beta-expanded, (print 1st) should be replaced 

by(print (cons 1 (cons 2 nil))),but(first lst)shouldbereplacedby 

1. The partial-code mechanism mentioned earlier handles this by setting the partial

code of a rest parameter to return the appropriate constructs when the car or cd r of 

the replacement are needed. 

Consider beta-expanding an invocation of a function with free variable 

references,e.g. (let ((foo (make-counter))) (foo)) where make-counter 

is defined as: 

{define (make-counter) 
{let ({count 0)) 

{lambda () 
(setq count{+ count 1))))) 

If ( foo) is beta-expanded, the reference to count within the body of foo is un

resolvable since foo's definition-time environment is inaccessible. The solution is to 

introduce a construct (the closure parameter in a variable reference) which looks up 

a name in the indicated closure. The expression ( f oo) would thus be expanded as 

(setq (variable count foo 0) (+ (variable count foo 0) 1)). 

Notice that the above variable form violates lexical scoping by referring to a 

variable in an arbitrary closure's environment. The existence of such a form implies 

that variables can be mutated outside of their local scope and thus complicates 

certain types of program analysis. 

3.5.2.3 Open Specialization 

Open specialization is useful where beta-expansion is impossible or 

undesirable, for example where actual arguments have side-effects or are very large. 

Since open specialization preserves the function call mechanism, imperative and 

computation-intensive arguments present no problem. An invocation is open

specialized by partially evaluating the function definition in the after-env augmented 
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by binding the formal parameters to the partially evaluated actual arguments, and 

creating a lambda-form with the returned code. As is the case with beta-expansion, 

the body will be optimized to take advantage of any partial information. Open 

specialization is signalled by including the symbol open-specialize in a function's 

assert clause. 

A possible optimization of open-specialized functions {and lambda forms in 

general) is the elimination of lambda variables that are not needed because the 

optimized body contains no references to these variables {dead-variable 

elimination). This simple optimization has not been implemented. 

3.5.2.4 Closed Specialization 

Closed specialization is useful where the same open specialization would be 

performed many times and one would prefer simply to define a new function. The 

partial evaluator does not presently implement closed specialization. For closed 

specialization to be useful, very fine control would have to be provided. For 

example, a separate specialization might be desired for each value of a certain 

argument or each data-type of a certain argument, or even the number ·of 

arguments. 

3.5.3 Evaluated Results 

A point that has been glossed over in the preceding discussions is the code that 

is reported for an evaluated invocation, in which the value is fully-specified. Ideally 

one would wish to replace the form by an appropriate literal. Unfortunately, several 

problems arise. 

Some values have no literal forms, such as vectors and closures. Even if a 

literal form were to exist, we might not want to use it, for example in the case of a 

very large list structure. For example, in partially evaluating (make-empty-11st 

10000), though the value would be an empty list of ten thousand elements, the code 

should be the generating expression. 
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Another difficulty arises when the value of the form is subject to mutation, e.g. 

the form returns a component of a shared data structure. In this case, using a literal 

would be incorrect, since it would create a new value where the original (shared) 

value is needed to preserve program semantics. Yet another issue is preserving 

pointer identity: if two variables (say a and b) contain the same value (say ' ( 1 2)), 

the expression ( eq? a b) should return true, but the expression ( eq? a ' ( 1 2)) 

will return false, since the literal will create a different list, albeit with the same 

structure. 

The present solution to the above problems is to only use literals for small, 

immutable values, such as fixnums and booleans. Otherwise the returned code is 

simply the original expression (though the returned value is the evaluated result). 

Another solution is to introduce new variables to hold evaluated values and thus 

preserve sharing and pointer identity. Large numbers of new variables may need to 

be introduced, however. 

Perhaps the best solution would be to define an external representation for 

values of each type. Herlihy [20] shows that it is possible to define such a 

representation that preserves sharing and identity. To preserve the readability of the 

output code, external representations of values could be "commented" with the 

code that would generate the value. This generating code can then be edited 

instead of the external representation of the value. 

3.6 Partially Evaluating Variable References 

The interpreter, when presented with a variable reference, simply looks up the 

name in the environment as described in the last chapter. The partial evaluator 

follows a more complicated strategy: it looks up the variable, and then decides what 

value and code to return. 

In the simpler case, the name is to be looked up in the environment of a 
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particular closure. First the code denoting the closure {in the variable form) is 

partially evaluated. If the closure is known, the lookup is performed. The lookup 

returns a value, a frame-count, and the value's read-only flag. A case analysis is 

done in order to return the appropriate code and value: 

• If the read-only flag is true, and the value is a simple, immutable value, 
then the variable can be replaced by the appropriate literal. The literal 
serves as both code and value. 

• If the read-only flag is true, but the value is a compound value, then the 
value is returned, but the code returned is (variable name closure 
frame-count), where closure is the optimized closure-code, and 
frame-count is the count reported by the lookup. 

• If the read-only flag is false, then the value returned is unknown, and 
the code returned is as above. Returning an unknown value 
guarantees that the code will incorporate no assumptions that could be 
invalidated by non-local code. 

In the other case, the closure-code is nil and the name is to be looked up in the 

"current" environment. The name must be looked up in the before-env, but the code 

must be calculated relative to the after-env, as mentioned previously. The name 

lookup returns not only a value, a frame-count, and a read-only flag as above, but 

also a handle (which is the code of the variable's enclosing closure, or nil), and an 

argument flag (which indicates that the value is a partial representing an actual 

argument to be substituted for a formal parameter reference). To calculate the code, 

the after-env is searched for a binding containing the value. As above, a case 

analysis is necessary: 

• If the read-only flag is true, and-the value is a simple, immutable value, 
then the variable can be replaced by a literal, as discussed above. 

• If the argument flag is true, then the value is returned, after 
compensating for any change in lexical position, as discussed in the 
section on beta-expansion. 

• If a binding was found for the value in the after-env, then the code 
returned is (var 1 able name nil frame-count) where frame-count is 
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relative to the after-env. The value returned is the value found in the 
before-env if the read-only flag is true, otherwise unknown. 

•Otherwise, the code returned is (variable name handle 
frame-count), and the value returned is either the value found in the 
before-env if the read-only flag is true, otherwise unknown. 

Note that the after-env is only used to calculate the code for a variable reference: all 

values are looked up in the before-env. 

As an example, consider the beta-expansion of ( bar b) where bar is defined 

by: 

(define (bar a} 
(assert beta-expand} 

(- a x}} 

A in ( - a x) is replaced by b8 since b is an actual argument to be substituted and 

so argument flag will be true. Assuming x Is not read-only, it will be replaced by 

(variable x bar 1) (say). 

Including a (read-only vars) form in the assert clause of a function definition 

introduces a list of read-only variables. The programmer (or the generator of the 

code) bears the responsibility for ensuring that values asserted to be read-only do 

not get mutated. For example, in 

(let {(a '(1 2 3))} 
(assert (read-only a}) 
(sequence (mung a} 

(• (first a) (second a)})) 

the programmer must ensure that mung does not perform a set!-car or other 

mutation on a. 

8whichisactually(var1able b n11 0) 
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3. 7 Partially Evaluating Other I-code Forms 

3. 7.1 Definitions 

The interpreter, upon encountering a definition, evaluates the value and inserts 

the result in the current frame under the name. The partial evaluator analogously 

partially evaluates the value and inserts the returned partial into the environments 

(both the before- and after-env). The code returned is a definition with the same 

name, but the value component is the code component of the returned partial (i.e. 

the optimized code that will produced the desired result). 

3. 7 .2 Lambda-Forms 

When the interpreter encounters a lambda-form, it creates a lambda closure. 

The partial evaluator does the same, first partially evaluating the body of the form 

with the formal parameters bound to unknowns in order to (partially) optimize the 

body of the lambda. 

3. 7 .3 Sequences 

The sequence form is provided only for side-effects: all but the last expression 

in the form are executed only for the side-effects they produce. Thus only the side

effects of each expression (except the last) need be retained. A common use of the 

sequence form is to introduce local definitions. If, in the partial evaluation of the rest 

of the expressions in the form, the name of the local function is no longer used, then 

the definition could potentially be eliminated {though this is not currently 

implemented). Finally, if only one expression remains, the entire form can be 

replaced by the final expression. 

3. 7 .4 Assignments 

The value is partially evaluated, and the result returned. The remaining 

parameters (the name, closure, and frame-count) are partially evaluated in a fashion 

similar to variables. 
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3.8 List of Assertions 

As described earlier, assertions are used to guide the partial evaluator. Here is 

the complete list of possible assertions and their meanings: 

• evaluate - Invocations of this function should be evaluated if all the 
arguments are known. 

• applicative - Invocations of this function are applicative and can be 
eliminated if only side-effects are needed. 

• macro-like - Invocations of this function should be beta-expanded. 

• beta-expand - Invocations of this function should be beta-expanded if 
all of the arguments are applicative. 

• (beta-expand expression) - Invocations of this function should be beta
expanded if all of the arguments are applicative and the value of the 
expression is known at partial evaluation time. 

• open-specialize - Invocations of this function should be open
specialized. 

• (read-only names) - The variables with the given names are read-only, 
i.e. they contain immutable values and will not be re-bound. 

• (returns type-keyword) - The function returns values of the indicated 
type. 

3.9 Summary 

A partial evaluator is defined as a program R that takes a binary function P and 

its first argument X such that R(P,X)(Y) = Px(Y) = P(X,Y). Px is an optimized 

version of P that has been specialized to the particular value of X. The partial 

evaluation of an expression returns both a partially-specified value and the optimized 

code that will produce the fully-specified value at run-time. Optimizations presented 

include constant folding and propagation, beta-expansion and open specialization. 

The partial evaluation of variable references is complicated by the possible change 

of an expression's enclosing environment before and after partial evaluation. User

supplied assertions are used to guide the partial evaluation process. 

------------- --- - -
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4. Examples of Partial Evaluation 

4.1 Overview 

We intend to use partial evaluation as a tool in implementing language 

extension mechanisms. The two examples of partial evaluation presented in this 

chapter correspond to two methods of implementing language extensions. First, a 

simple message-passing system is implemented by means of syntax macros. In the 

second example, a declarative programming construct is implemented by an 

interpreter written in IBL. 

4.2 Implementing Extension Mechanisms 

As mentioned previously, this thesis forms part of a larger project. A 

component of the proposed system is a "front-end" which is a collection of 

transformations from various surface language constructs to IBL constrcuts. Since 

this front-end does not yet exist, some sample transformations were implemented to 

test the capabilities of the partial evaluator. The extension mechanisms described 

here are unrealistically simple, but were helpful in understanding the functionality 

necessary of a useful partial evaluator. 

The first example is an implementation of a message-passing construct using 

syntax macros. A module definition is transformed into the definition of an instance

creating function. An instance is a message-handling function whose code 

dispatches to the various operations that the module supports. The partial evaluator 

can optimize an instance invocation by repeated beta-expansion. 

In the second example, a simple declarative programming construct is 

implemented by writing an interpreter in IBL. The rules-interpreter (as this example 

is known) takes a list of formulae {rules), lists of input and output variables and a list 

of input values, and displays the output values. The partial evaluator is used to 

specialize invocations of the rules-interpreter with some of the above parameters un-
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specified. The experiment was designed to explore to what extent a partial evaluator 

can act as a compiler. 

4.3 The Optimization of Message-Passing 

As an example of how to implement type systems in IBL, the implementation 

and partial evaluation of a simple message-passing type mechanism will be 

presented in this section. First a simple no-inheritance version will be shown, and 

then a multiple-inheritance [6] version will be discussed. 

4.3.1 Simple Types 

Though many different semantic models of type definition are available, a 

simple static definition model is used below for ease of exposition. In this model, a 

type is declared with all its operations at once, e.g. 

(defmodule ext (var1 var2) ; module "ex1" has instance variables 
; "var1" and "var2" and operations 
; "1n1t:", "var1:", and "var2:" 

(init: (ab) ; initialize the instance variables 
(sequence (setq vart a) 

(var1: () 
var1) 

(var2: () 
var2)) 

( setq var2 b))) 
return the value of "var1" 

; return the value of "var2" 

It is not possible to change the operation set except by re-defining the type. Note 

that other semantics are quite feasible, e.g. a dynamic definition model in which the 

set of operations is mutable after definition-time~ 

The essential idea is to use a syntactic transformation (see appendix II) to 

convert the above module definition into: 

(define (exl type-keyword . args) : module creator 
(assert evaluate (read-only type-keyword args)) 

(cond ((eq7 type-keyword create-instance:) 
(let ((varl nil) 

(var2 nil)) 
(sequence 

(define (self instance-keyword . args) : newly created module 
(assert (beta-expand instance-keyword) 

(read-only instance-keyword)) 
(cond ((eq7 type-keyword init:) 

(apply (lambda (self ab) 
(assert beta-expand (read-only self)) 
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(sequence (setq varl a) 
(setq var2 b))) 

(cons self args))) 
((eq? type-keyword varl:) 
(apply (lambda (self) 

(assert beta-expand (read-only self)) 
varl) 

(cons self args))) 
((eq? type-keyword var2:) 
(apply (lambda (self) 

(assert beta-expand (read-only self)) 
var2) 

(cons self args))) 
((eq? type-keyword type:) 

'ext) 
(true "unknown instance-keyword"))) 

self))) 
((eq7 type-keyword type:) 

'module) 
(true "unknown module keyword"))) 

Self is passed as an argument to the methods so that the method bodies can send 

messages to their own instances. Note that each instance will share code but 

replicate the environment frame that holds the instance variables, so that each 

instance has separate variables. 

To create a type instance, a form such as 
(defconst x (ex1. create-instance:)) 

is evaluated. The partial evaluation of 
(x init: 1 2) 

proceeds as follows: 

1. xis a read-only variable (since ( def con st a b) is just syntax for ( def 
a b true)), so x partially evaluates to a partial with value ( l amb d a 
(instance-keyword . args) . . . ) . The arguments are all 
constant, so they partially evaluate to (essentially) themselves. 9 

2. Since x is a lambda, its assert clause is checked. The 
instance-keyword is indeed known, so the invocation is beta
expanded, and reduces to the cond form. 

3. Cond is actually syntax for the equivalent nested if forms, so the 
expression to be partially evaluated is actually 

(if (eq7 instance-keyword init:) (apply ... ) 
(if (eq7 instance-keyword varl:) (apply ... ) 

9 Actually 1 partially evaluates to a partial with value 1 and code 1. 
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. . . ) ) 

Partially evaluating an if form involves first partially evaluating the 
predicate, in this case ( eq? instance-keyword init: ). 

4. Eq? partially evaluates to a partial with the applicative built-in function 
eq? as value. Since all the arguments are known (instance-keyword 
is replaced by in it: through beta-expansion, and in it: is a constant), 
the invocation is evaluated and the result is true. 

5. The if form thus reduces to its consequent: (apply (lambda (self 
a b) ••• ) (cons self args)). Apply partially evaluates to a 
partial with the built-in function apply as value. The first argument 
partially evaluates with a closure as value. 

6. The second argument, ( cons self args ), is an invocation of the 
built-in function cons. Se 1 f partially evaluates with the same value as x 
(the original instance), and code (variable self x 0). Args is 
replaced through beta-expansion by a partial with value ( 1 2) and 
code '(1 2) (since args was a rest parameter). 

7. Since all the arguments are known and applicative, the partial evaluation 
of the apply invocation reduces to the partial evaluation of 
(approximately) 

((lambda (self ab) 
(beta-expand (read-only self)) 
{sequence {setq vart a) 

{ setq var2 b))) 
(variable self x O} 1 2) 

The arguments are "unspread" by partially evaluating the car, cadr, 
etc. of the second argument to apply. The partial-code mechanism 
ensures that ( car ' ( 1 2) ) is replaced by 1. 

8. The above form is now partially evaluated, and beta-expansion is again 
performed, with ( sequence ( setq varl a) ( setq var2 b)) 
being the residual expression. First the sub-forms of the sequence form 
are partially evaluated. 

9. (Setq varl a) is syntax for (assign varl nil 0 a). A partially 
evaluates with value 1, and the remaining parameters are partially 
evaluated as would be (variable varl nil 0). Varl is first looked 
up in the pe-env. The variable is not read-only, so the value reported is 
simply unknown. The va1ue does not exist in the run-env, so the code 
reported is (variable varl x 0). The assign form thus partially 
evaluates with value 1 and code (assign var 1 x 0 1). 
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1 O. The code of the partially evaluated sequence form is the sequence of 
the side-effects of its sub-forms, so the resulting code is ( sequence 
(assign varl x O 1) (assign var2 x O 2)).Sincesideeffects 
are preserved at each step, this form is the final resulting code for ( x 
init: a b)I 

4.3.2 Multiple Inheritance 

Multiple inheritance is defined here not as dynamic method lookup (which is 

possible, but messier), but rather as static inclusion. That is, when a type is defined, 

the super-types are queried for their instance variables and method definitions, 

which are then syntactically incorporated into the sub-type. An example is: 

(defmodule superl (varl) () 
(init: (a) 

(setq varl a)) 
(varl: () 

varl)) 

(defmodule super2 (var2) () 
(init: (a) 

(setq var2 a)) 
(var2: () 

var2)) 

(defmodule exl () (superl super2) . 
( init: {a b) 

(sequence (setq varl a) 
( setq var2 b))}) 

The static inclusion implies that for any change In a type to be reflected in a sub

type, the sub-type must be redefined. 

The last module definition is transformed into: 

(define (exl type-keyword . args) ; module creator 
(assert evaluate (read-only type-keyword args)} 

(cond ((eq? type-keyword create-instance:) 
(let ((var! nil) 

(var2 nil)) 
(sequence 

(define (self instance-keyword . args) ; newly created module 
(assert (beta-expand instance-keyword) 

(read-only instance-keyword)} 
(cond ((eq? type-keyword init:) 

(apply (lambda (self ab} 
(assert beta-expand (read-only self)) 
(sequence (setq varl a) 

(setq var2 b))) 
(cons self args}}) 

((eq? type-keyword var!:) 
(apply (lambda (self) 

(assert beta-expand (read-only self)) 
varl) 
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(cons self args))) 
((eq7 type-keyword var2:) 
(apply (lambda (self) 

(assert beta-expand (read-only self)) 
var2) 

(cons self args}}} 
((eq7 type-keyword type:} 

'exl) 
(true "unknown instance-keyword"}}) 

self})) 
((eq? type-keyword type:) 

'module} 
((eq7 type-keyword ivars:) 
'(varl var2)) 

((eq? type-keyword methods:) 
'((init: (ab) 

(sequence (setq varl a) 
( setq var2 b))) 

( varl: () varl) 
(var2: () var2))) 

(true "unknown module keyword"))) 

The definition, usage, and partial evaluation of type instances are the same as 

the no-inheritance case. 

The instance variables and methods are collected using code such as the 

following: 

(append-all (mapcar (lambda (super-name) 
((symeval super-name) 1vars:)) 

(third form))} 

Append-all concatenates the lists together, eliminating duplicates in some 

order. The algorithm used by append-all to eliminate duplicates determines the 

priority rules by which two methods with the same name from different classes are 

dis-ambiguated. 

The above mechanism could quite easily be improved to include such feature 

as method extension, initialization options, etc. By adding dynamic method 

definition and lookup, one could simulate the 4etalisp flavor system [26] quite 

closely. 
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4.4 Compiling by Partial Evaluation 

Partial evaluation can in theory be applied to compilation. Say R is the partial 

evaluator, X is a program in language A, and Y is the input to X. Say P is an 

interpreter for language A and written in language 8. R(P,X) = Px is then a program 

in language 8, which when given Y, computes X(Y). Px is then a compiled version of 

X, and the partial evaluator has acted as a compiler. One can thus think of a partial 

evaluator as a compiler-schema, which when given an interpreter (or equivalently, 

an operational semantics), becomes a compiler. 

According to the above definition of partial evaluation, R(P,X) = R(R,P)(X). 

R(R,P) = Rp is thus a compiler, translating programs in language A to programs in 

language 8. One can go one step further, and write R(R,R)(P)(X)(Y) = P(X,Y) = 

X(Y). Thus R(R,R) = RR is a compiler generator, which when given an interpreter P 

produces a compiler. 10 

Partially evaluating an interpreter together with a partial specification of its 

input is thus equivalent to compilation. This is an important property of partial 

evaluation, since arbitrary extensions to a language can be implemented by writing 

interpreters for the extensions. This chapter illustrates the idea by implementing a 

simple extension to 18L as an interpreter: a declarative programming construct that 

accepts a list of input variables, a list of input values, a list of formulae, and a list of 

output variables. 

10rhe above discussion is taken from [4). While the authors do not mention the application to 
compiler generation, they have written a version of A(R,A) to act as a "partial evaluation compiler", 
i.e. to speed up the partial evaluation of the same program with different inputs. Ershov 
[13, 14, 15) does mention the possibility of generating compilers from operational semantics by 
partial evaluation. 
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4.4.1 The Rules Interpreter 

The rules-interpreter (called ri) creates a dependency graph on the formulae, 

sets the input variables to the input values, evaluates the formulae in the appropriate 

order, and finally prints out the values of the output variables. An example of its use 

is: 

(define (test-ivals) 
(let ((ivals (read))) 

(ri '(ab c) ivals '((d 
(e 
(f 
(g 
(h 

'(f g h)))} 

(• a b)) 
(+ b d)) 
(- e c)) 
(• h e)) 
(- d b)}) 

The partial evaluator converts the above function definition to: 

(define (test-ivals) 
(let ((ivals {read))) 

(sequence (print (iminus (iplus (cadr ivals) 
(itimes (car 1vals) 

(cadr ivals))) 
(caddr ivals))) 

(print (itimes (1minus {Him&ii (i:.or ivals) 
(cadr 1vals)) 

(cadr ivals)} 
(iplus (cadr ivals) 

(itimes (car ivals) 
(cadr 1vals))})) 

(print (iminus (itimes (car ivals) 
(cadr ivals)) 

(cadr ivals)))))) 

Note that all run-time interpretation and type-checking has been eliminated. 

This example illustrates both the strengths of partial evaluation (the optimizing 

power of multiple beta-expansion and partial knowledge propagation) and a major 

weakness (common subexpression introduction). See Appendix Ill for a complete 

listing of the code. 

4.4.2 Partially Evaluating the Rules Interpreter 

The partial evaluation of the above example proceeds as follows: 

1. Ri's definition is: 

(define (ri invars invals rules outvars) 
(assert beta-expand (read-only invars invals outvars rules)) 

(display outvars (calculate invars invals rules (tsort rules nil)))) 

so the call to ri is beta-expanded. 

--,-~--------
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2. The call to tsort is then partially evaluated. The definition is 

(define (tsort rules cl1st) 
(assert evaluate (beta-expand rules) (read-only rules clist)) 
(if (nil? rules) clist 

(tsort (cdr rules) (insert (car rules) clist)))) 

Since all the arguments are known and applicative, the invocation is 
evaluated. The partial evaluation results in a partial whose value is the 
dependency graph and whose code is ( tsort rules n i 1 ), since the 
value may be mutable. 

3. Next to be partially evaluated is the call to calculate, whose definition 
Is: 

(define (calculate invars 1nvals rules clist) 
(assert beta-expand (read-only invars invals rules clist) applicative) 

(let ((env (init-env invars invals))) 
(assert beta-expand (read-only env)) 
(calculatel env rules clist))) 

The invocation is beta-expanded, as is the let-form, so after the call to 
init-env has been handled, the partial evaluation reduces to that of the 
call to calculate1. 

4. The definition of init-env Is: 

(define (init-env vars vals) 
{assert (beta-expand vars) (read-only vars vals) applicative) 

(if (nil? vars) nil 
(cons (cons {car vars) (car vals)) 

{init-env (cdr vars) (cdr vals))))) 

Since the vars are known, the invocation is beta-expanded. The value 
returned is: 
(cons (cons 'a (car ivals)) 

(cons (cons 'b (cadr ivals)) 
(cons {cons 'c (caddr ivals)) 

nil))) 

5. Calculate1 is defined by: 

(define (calculatel env rules clist) 
(assert (beta-expand clist) (read-only env rules clist applicative) 

applicative) 
(if (nil? clist) env 

(let ((name (car clist)) 
{formula (lookup {car clist) rules))) 

{assert beta-expand {read-only name formula)) 
{calculatel {cons (cons name {evaluate formula env)) 

env) 
rules (cdr clist))))) 

Clist (the dependency graph) is known, so the invocation is beta
expanded. Since the function is recursive, the beta-expansion will result 
in code replication. The let-form is also beta-expanded, so the partial 
evaluation reduces to the partial evaluation of the recursive call to 
calculate1. 
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6. First the arguments must be partially evaluated, most crucially 
(evaluate formula env). evaluateisdefinedby: 

(define {evaluate exp env) 
(assert (beta-expand exp) applicative (read-only exp env)) 

(if (atom? exp) (if (symbol? exp) (lookup-fixnum exp env) 
exp) 

(let ((func (car exp)) 
(args (eval-list (cdr exp) env))) 

(assert beta-expand open-specialize (read-only func args)) 
(cond ((eq? func '+) (+ (first args) (second args))} 

((eq? func '-) (- (first args) (second args))} 
((eq? func '*) (• (first args) (second args))) 
(true "Unknown function."))))) 

Since exp {the formula) is known, the invocation is beta-expanded. 
Again the definition is recursive (through eval-list), so there will be 
code replication. The recursion bottoms out where exp is a symbol, in 
which case the invocation of evaluate reduces to an invocation of 
lookup-fixnum. 

7. The definition of lookup-fixnum is: 

(define (lookup-f1xnum name env) 
(assert (beta-expand name (caar env))) (read-only name env) 

(returns fixnum:) evaluate applicative) 
(cond ((nil? env) unknown:) 

((eq? (caar env) name) (cdar env)) 
(true (lookup-fixnum name (cdr env))))) 

The invocation is beta-expanded, and env is (eventually, using the 
partial-code mechanism to take apart init-env's value) reduced to a 
form involving ivals, so a call to lookup-fixnum reduces to a form such 
as (cadr ivals). Lookup-fixnum has a (return.s fixnum:) 
clause, so the type checks in + , etc. can be eliminated. The final result 
of partially evaluating the original invocation of evaluate is a partial 
whose value is unknown, but whose code is the compiled version as 
above. 

8. Finally, the invocation of display is partially evaluated. Display is 
defined by: 

(define (display outvars env) 
(assert beta-expand (read-only outvars env)) 

(sequence 
(mapcar (lambda (outvar) 

true)) 

(assert (beta-expand outvar) (read-only outvar)) 
(print (lookup-fixnum outvar env))) 

outvars) 

The call is beta-expanded, so the side-effects of the invocation of 
· ma pear are incorporated into a new sequence form. 

9. Mapcar is defined by: 
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(define (mapcar func 1st) 
(assert (beta-expand 1st) (read-only func 1st)) 

(if (nil? 1st) nil 
(cons (func (car 1st)) 

(mapcar func (cdr 1st))))) 

Using the partial-code mechanism, the result of partially evaluating 
calculate1 (1st) is broken up through the calls to lookup-fixnum 
(func). Since only the side-effects of this invocation are needed, only 
the final print statements remain. 

Note the power of beta-expanding recursive functions: not only is automatic 

loop-unrolling achieved, but even more general recursion-elimination is possible. 

Conditional beta-expansion is used to guard against the possibility of infinite 

recursion while beta-expanding recursive function calls. 

4.4.3 Other Examples 

The rules interpreter can be partially evaluated with different arguments left 

unknown. For example, consider leaving the output variables unknown while 

completely specifying the rules and the input variables and values. The output 

values can be calculated by the partial evaluator; all that is necessary is to display 

the appropriate results. 

(define (test-ovars) 
(let ((ovars (read))) 

(sequence 
(mapcar 

(lambda (outvar) 
(~ssert (beta-expand outvar)) 
(print (lookup-fixnum 

outvar 
(cons 

(cons 'f t) 
(cons 

(cons 'g 0) 
(cons (cons 'e 4) 

(cons (cons 'h 0) 

ovars) 
true))) 

(c~ns (cons 'd 2) 
(cons (cons 'a 1) 

(cons {cons 'b 2) 
{cons (cons 'c 3) 

nil))))))))))) 

A great deal of time and space is wasted by re-creating the association list of 

variables and values for each output variable, though the optimized program is still 

quite a bit faster than the original version. 
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Leaving the input variables unknown results in: 

(define (test-ivars) 
(let ((ivars (read))) 

(sequence 
(print 

(iminus (iplus (lookup-fixnum 'b (init-env ivars '(1 2 3))) 

(print 

(itimes (lookup-fixnum 'b (init-env ivars '(1 2 3))) 
(lookup-fixnum 'a (init-env ivars '{1 2 3))))) 

(lookup-fixnum 'c (init-env ivars '(1 2 3))))) 

(itimes (iminus (itimes (lookup-fixnum 'a (init-env ivars '(1 2 3))) 
(lookup-fixnum 'b (init-env ivars '(1 2 3)))) 

(lookup-fixnum 'b (init-env ivars '(1 2 3)))) 
(iplus (lookup-fixnum 'b (init-env ivars '{1 2 3))) 

(print 

(itimes (lookup-fixnum 'a (init-env ivars '(1 2 3))) 
(lookup-fixnum 'b (tnit-env ivars '(1 2 

3))))))) 

(iminus (itimes (lookup-fixnum 'a (init-env ivars '(1 2 3))) 
(lookup-fixnum 'b (init-env ivars '(1 2 3)))) 

(lookup-fixnum 'b (init-env ivars '(1 2 3)}}}})}} 

The list relating the input variables and input values (( init-env ivars '(1 

2 3) ) ) is re-created for each reference to an input variable, which is highly 

inefficient, though this optimized function still runs faster than the original version. 

While the rules interpreter could probably be redefined somewhat to ameliorate the 

problem, the large-scale introduction of common sub-expressions is a frequent 

problem in partial evaluation. 

4.5 Summary 

In the extensible language project of which this thesis is a part, it is planned that 

partial evaluation will be used to implement language extensions in two ways: 

1. to optimize (in the classical sense) the results of simple syntactic 
transformations, and 

2. to "compile" by partially evaluating an interpreter. 

Examples of the above techniques have been implemented, and the resulting code 

partially evaluated. Though the examples are unrealistically simple, the results are 

encouraging. Some obviou~ problems of the present partial evaluator are excess 

code replication and structure creation. 
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5. Summary and Conclusions 

5.1 Recapitulation 

The following list briefly summarizes the contents of this thesis. 

• A partial evaluator has been designed and implemented which optimizes 
applicative code while retaining all side-effects. Unchecked assertions 
are used to guide the partial evaluator. The partial evaluator operates 
on a lexically-scoped dialect of Lisp. 

• This thesis is part of a larger project devoted to language extensibility. 
We propose implementing language extension mechanisms on top of 
the language. Surface language constructs will be transformed into 
kernel language constructs which will then be optimized by the partial 
evaluator. The transformations will preserve user-specified side-effects 
and will add applicative code for type-checking, etc. 

e In order to test the proposed language extension techniques and the 
partial evaluator, two simple examples of extension mechanisms were 
implemented. Though these examples were extremely simple, the 
preliminary results were quite encouraging. 

• To be effective, the partial evaluator must be able to represent and 
carefully propagate partially-specified program values. Sp~cial attention 
must be devoted to component access from partially-specified 
structures. 

• Another problem encountered in the design of the partial evaluator was 
the difficulty of efficiently representing evaluated results. The existence 
of mutation and the possibility of structure sharing often preclude the 
simple use of literals and force the retention of the generating code. 

5.2 Future Work 

The present partial evaluator suffers from a number of limitations. Some major 

missing optimizations are closed specialization and dead variable elimination. 

Introducing these optimizations would eliminate much of the current common

subexpression introduction problem. Closed specialization would enable function 

calls to replace code repetition, and dead variable elimination would allow the 
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introduction of new local variables to hold temporary results without fear of variable 

build-up. 

The partial evaluator presently takes a very conservative approach to side

effects: all side-effects are preserved, even though some may conceivably be 

eliminated without changing program semantics. Another problem is that the partial 

evaluator does not keep track of the values of assignable variables. These two 

limitations imply that code must be largely applicative for effective optimization to 

take place. The value-numbering scheme mentioned in [8] may be useful in this 

area. 

The user-supplied assertions are quite critical to the operation of the partial 

evaluator. At the moment, these assertions must be carefully hand-tuned to achieve 

good optimization. The reliance of the partial evaluator on some of these assertions 

could be eliminated by giving it more powerful inference capabilities. Another 

improvement would be the Incorporation of facilities for automatically deciding 

between various optimizations in order to replace assertions such as beta-expand 

and evaluate (see Scheifler's paper on inline expansion [28] for an example). A 

mitigating factor is that only the implementor of extension mechanisms need deal 

with assertions, as they are invisible to the surf ace language. 

Partially-specified values are fairly limited in the present partial evaluator. Some 

of the extensions mentioned by Haraldsson [17] might be worth incorporating. His 

partially-specified values include value ranges, which have also been found useful in 

[2]. Other possibilities include impossible values and the implications of the value 

evaluating to certain values (e.g. if (eq? a 1) is true, then a is 1). A recent paper 

by Babad and Hoffer [3] explores the use of partially specified values in other 

contexts. 

At the moment, the handling of evaluated results is inadequate. Code must 

frequently be emitted to generate structures that are fully-known at partial-
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evaluation-time. Herlihy's scheme [20] for an external representation of values that 

preserves sharing should be incorporated to alleviate this problem. 

The partial evaluator is currently quite inefficient. A major performance 

problem is the frequent construction of structures that are never used. Another 

source of inefficiency is the frequent re-optimization of code that has already been 

processed. The use of lazy evaluation might improve performance by avoiding 

partial evaluation until the result is actually needed. 

5.3 Conclusion 

The partial evaluator provides a simple, coherent framework for many 

traditional optimization techniques such as constant folding and propagation, in-line 

expansion, dead code elimination and function specialization. The power of this 

approach is indicated by the excellent optimization achieved by our very small partial 

evaluator (which is implemented in just a few hundred lines of code). 
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I. The I BL Utilities 

;;; -•- Mode: LISP-•-

;;; A collection of utility syntax rules and functions to make life easier. 

(def add-syntax (user-syntax (form) 
(cons 'def 

( cons ( car form) 
(cons (cons 'user-syntax 

(cdr form)) 
(cons 'true nil))))) 

true) 

(add-syntax define (form) 
(cons 'def 

(cons (car (car form)) 
(cons (cons 'lambda 

;; List-processing functions: 

(define (caar x} 

(cons (cdr (car form)) 
(cdr form))) 

(cons 'true nil))))) 

(assert evaluate applicative macro-like) 
(car (car x))} 

(define (cadr x) 
(assert evaluate applicative macro-like) 

(car (cdr x))} 

(define (cdar x) 
(assert evaluate applicative macro-like) 

(cdr (car x))} 

(define (cddr x) 
(assert evaluate applicative macro-like) 

(cdr (cdr x))) 

(define (list . x) 
x) 

{define (first x) 
(assert evaluate applicative macro-like) 

(car x)) 

(define (second x) 
(assert evaluate applicative macro-like) 

(cadr x)) 

(define (third x) 
(assert evaluate applicative macro-like) 

(car (cddr x))) 

(define (fourth x) 
(assert evaluate applicative macro-like) 

(cadr (cddr x)}) 

(define (length 1st) 
(assert evaluate applicative (returns fixnum:)) 

(if (nil? 1st) O 
(+ 1 (length (cdr 1st})))) 
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(define (mapcar func 1st) 
(assert (beta-expand 1st) (read-only func 1st)) 

(if (nil? 1st) nil 
(cons (func (car 1st)) 

(mapcar func (cdr 1st))))) 

;; Type-checking functions: 

(define (fixnum7 x) 
(assert evaluate applicative macro-like) 

(eq? (type x) fixnum:)) 

(define (pair? x) 
(assert evaluate applicative macro-like) 

(eq7 (type x) pair:)) 

{define (atom? x) 
(assert evaluate applicative macro-like) 

(not {eq? (type x) pair:))} 

{define {nil? x} 
(assert evaluate applicative macro-like} 

(eq7 (type x} nil:)) 

(define (keyword? x) 
(assert evaluate applicative macro-like} 

(eq7 (type x) keyword:)} 

(define (symbol? x} 
(assert evaluate applicative macro-like) 

(eq? (type x) symbol:)) 

(define (vector? x} 
(assert evaluate applicative macro-like} 

(eq? (type x) vector:}) 

{define (string? x) 
(assert evaluate applicative macro-like) 

(eq7 (type x) string:}) 

{define (built-in-func? x) 
(assert evaluate applicative macro-like) 

{eq? (type x) built-in-func:)) 

(define (lambda? x) 
(assert evaluate applicative macro-like} 

(eq? {type x) lambda:}) 

(add-syntax cond (form} multi-way conditional 
{1 ist 'if 

(first (first form)) 
(second {first form)) 
{if (eq? {cdr form) nil) nil 

(cons 'cond {cdr form))))) 

{add-syntax let {form) ; local variable binding 
(cons {cons 'lambda 

{cons {names {first form}) 
{cdr form))} 

{values (first form))}} 

{define {names let-list) 
{mapcar first let-list)) 

(define (values let-list) 
(mapcar second let-list)) 
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;; "Careful" arithmetic functions. 

(define(+ ab) 
(assert evaluate applicative beta-expand) 

(if (and (fixnum7 a) (fixnum7 b)) 
( iplus a b) 
unknown:}) 

(define (-ab) 
(assert evaluate applicative beta-expand} 

( if (and (fixn.um7 a) (fixnum7 b)) 
(iminus ab) 
unknown:}) 

(define(• ab) 
(assert evaluate applicative beta-expand) 

(if (and (fixnum7 a) (fixnum7 b)) 
( itimes a b) 
unknown:)) 

(define(< ab) 
(assert evaluate applicative beta-expand) 

(if (and (fixnum7 a) (fixnum7 b)} 
(1less7 ab) 
unknown:}) 

(define (> a b) 
(assert evaluate applicative beta-expand) 

(if (and {fixnum7 a) {fixnum7 b}} 
{ igreater7 a b} 
unknown: ) ) . 

{add-syntax back-quote {form} ; syntax template 
{sequence 

(define (transform exp} 
(cond ((atom? exp) (list 'quote exp)) 

((eq? (car exp) 'comma) (second exp)} 
((tree-memq? 'comma exp) (11st 'cons 

(transform (car exp)) 
(transform (cdr exp)))) 

(true (list 'quote exp)))) 
(transform (first form)))) 

(define (memq? elt 1st} 
(cond ((nil? 1st} false) 

((eq? (car 1st) elt) true) 
(true (memq? elt (cdr 1st))})} 

(define (tree-memq? elt tree} 
{cond ({atom? tree) {eq? elt tree}) 

((tree-memq? elt (car tree)} true) 
(true (tree-memq? elt (cdr tree))))) 

(add-syntax setq (form) ; assignment 
(let ((var (first form)) 

(value (second form))) 
(if (atom? var) '{assign ,var nil O ,value) 

'(assign ,(second var} ,(third var} ,(fourth var) ,value)))) 

(define (append ab) 
{ if (nil? a} b 

(cons (car a) (append (cdr a} b}))} 

(add-syntax defvar (form) ; global variable definition 
'(def ,(first form) ,(second form} false)) 
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(add-syntax defconst (form) ; global constant definition 
'(def ,(first form) ,(second form) trus)) 
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II. A User-Defined Syntax Macro 

This is the definition of the syntax macro that implements the no-inheritance 

version of the def module form mentioned in section 4.3.1: 

;; Lexically scoped module definition syntax. 

(add-syntax defmodule (form) 
(let ((name (first form)) 

(ivars (second form)) 
(method-list (cddr form))) 

(sequence 
(define (make-let-list vars) 

(mapcar (lambda (var) 
' (, var nil)) 

vars)) 
(define (make-cond-list method-list) 

(append 
(mapcar 

(lambda (method) 
'((eq? instance-keyword ,(first method)) 

(apply (lambda (self . ,(second method)) 
(assert beta-expand 

(read-only self)) 
, (third method)) 

(cons self args)))) 
method-list) 

'(((eq7 instance-key111orrt type:) 
,(list 'quote name)) 

(true "unknown instance keyword")))) 
'(define (,name type-keyword . args) 

(assert evaluate (read-only type-keyword args)) 
(cond ((eq? type-keyword create-instance:) 

(let ,(make-let-list ivars) 
(sequence 

(define (self instance-keyword . args) 
(assert (beta-expand instance-keyword) 

(read-only instance-keyword)) 
(cond . ,(make-cond-11st method-list))) 

self})) 
((eq7 type-keyword type:) 

'module) 
(true "unknown module keyword")))))) 
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Ill. The Rules Interpreter 

,, Rule-based interpreter. 

.. RI - Rules-interpreter . . .. INVARS - list of input variables. . . .. INVALS - list of input values. 

; ; RULES - List of formulae. .. .. OUTVARS - List of output variables. 

{define (ri invars invals rules outvars) 
{assert beta-expand {read-only invars invals outvars rules)) 

{display outvars {calculate invars invals rules {tsort rules nil)))) 

;; TSORT - Topologically sort the constraint set. 

(define (tsort rules clist) 
(assert evaluate (beta-expand rules) {read-only rules clist)) 
(if {nil? rules) clist 

(tsort {cdr rules) (insert {car rules) clist)))) 

,, INSERT - Insert a value in a list maintaining dependencies. 

{define (insert head clist) 
(sequence 

{define (dependencies exp) 
{if {atom? exp) {cond ((nil? exp) nil) 

{{f1xnum7 exp) nil) 
((eq? exp'+) nil) 
{{eq? exp'-) nil) 
((eq? exp'*) nil) 
{true {list exp))) 

(append (dependencies (car exp)) 
(dependencies (cdr exp))))) 

(if {overlap? (dependencies (cdr head)) clist) 
(cons (car clist) (insert head {cdr c11st))) 
(cons (car head) clist)))) 

;; OVERLAP? - Does a formula depend on later formulae? 

(define (overlap? deps clist) 
(cond ((nil? clist) false) 

((nil? deps) false) 
((memq? (car deps) clist) true) 
(true (overlap? (cdr deps) clist)))) 

;; CALCULATE - Calculates the results. 

(define (calculate invars invals rules clist) 
(assert beta-expand (read-only invars invals rules clist) applicative) 

(let ((env (init-env invars invals))) 
(assert beta-expand (read-only env)) 
(calculate1 env rules clist))) 

,, INIT-ENV - Initialize the environment with the input variableJ and values. 

(define (init-env vars vals) 
(assert (beta-expand vars) (read-only vars vals) applicative) 

(if (nil? vars) nil 
(cons (cons (car vars) (car vals)) 
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(init-env (cdr vars} (cdr vals})}}) 

(define (calculate! env rules clist} 
(assert (beta-expand clist} (read-only env rules clist) applicative} 

(if (nil? clist) env 
(let ((name (car clist}) 

(formula (lookup (car clist} rules)}} 
(assert beta-expand (read-only name formula)) 
(calculate! (cons (cons name (evaluate formula env)) 

env) 
rules (cdr clist})))) 

;; LOOKUP - Lookup a formula in a rules-list. 

(define (lookup name rules} 
(assert (beta-expand (cons name (caar rules))) 

(read-only name rules} evaluate applicative) 
(cond ((nil? rules) unknown:) 

({eq? {caar rules) name) {cdar rules)) 
{true {lookup name (cdr rules))))) 

;; LOOKUP-FIXNUM - Lookup a value in an a-list. 

(define (lookup-fixnum name env) 
(assert (beta-expand (cons name (caar env))) 

(read-only name env) (returns fixnum:) 
evaluate applicative) 

(cond ((nil? env) unknown:) 
((eq? (caar env) name) (cdar env)) 
(true (lookup-fixnum name {cdr env})))) 

;; EVALUATE - Evaluate a formula. 

(define (evaluate exp env) 
(assert (beta-expand exp) applicative (read-only exp env)) 

(if (atom? exp) (if (symbol? exp) (lookup-fixnum exp env) 
exp) 

(let ((func (car exp)) 
(args (eval-list (cdr exp) env))) 

(assert beta-expand open-specialize (read-only func args)) 
(cond {(eq? func '+) {+ (first args) (second args))) 

((eq? func "-} (- (first args) (second args))) 
((eq? func '•)(•(first args) (second args))) 
(true (list "Unknown function." func args)))))) 

(define (eval-list exps env) 
(assert (beta-expand exps} applicative {read-only exps env)) 

(mapcar (lambda (exp) 
(assert (read-only exp) beta-expand) 
(evaluate exp env)) 

exps)) 

,, DISPLAY - Display the results. 

(define (display outvars env) 
(assert beta-expand (read-only outvars env)) 

(sequence 
(mapcar (lambda {outvar) 

true)) 

(assert (beta-expand outvar) (read-only outvar)) 
(print (lookup-fixnum outvar env))) 

outvars) 

(define (test-ri) 
(let ({ivals (read))) 

(ri '(ab c) ivals '{(d . (• ab)) 
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b d)) 
e c)) 
h e)) 
d b))) 
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(,. 11 e)) 
( - d b))) 

a b)) 
( + b d)) 
(- e c)) 
(,. h o)) 
(-db))) 
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IV. The IBL Implementation 

;;; -•- Mode: LISP; Base: 10.; Package: (iblc) -•-

... 
;;; PARSER•••••••••••••••••••••••••••••••••••••••••••••••••• 

;; PARSE - Parses an expression. (S-expression -> I-code) 

(defun parse (exp) 
(if (atom exp) (cond ((eq exp 'true) (make-boolean t)) 

((eq exp 'false) (make-boolean nil)) 
((symbol? exp) (make-variable exp nil 0)) 
( t exp)) 

(let ((head (first exp)) 
(tail (restl exp))) 

{let {(parse-func (send global-environment :get-value head))) 
(selectq (typep parse-func) 

(built-in-syntax (funcall (send parse-func :code) tail)) 
(user-syntax (parse (apply-lambda (send parse-func :code) (list tail)))) 
(otherwise (make-combination {parse head} (parse-list tail)})))))} 

,, PARSE-LIST - Parses a list pf expressions. 

{defun parse-list {exps) 
(mapcar #'parse exps)) 

;; UNPARSE - Unparses an expretsion. (I-code-> S-express1on) 

(defun unparse (exp) 
(selectq (typep exp) 

(def-form '(def ,(send exp :name) ,(unparse (send exp :value)) 
,(unparse (send exp :read-only?)))) 

(lambda-form '(lambda (,&(send exp :required). ,(send exp :rest)) 
(assert ,&(send exp :asserts)) 
,{unparse (send exp :body)))) 

(sequence-form '(sequence ,8(unparse-list (send exp :forms)))) 
(if-form '(if ,(unparse (send exp :predicate)) 

,{unparse (send exp :consequent)) 
,(unparse (send exp :alternative)))) 

(combination '(,(unparse (send exp :function)) 
,8(unparse-list (send exp :args)))) 

(variable (let {(name (send exp :name)) 
(closure (unparse (send exp :closure))) 
(contours (send exp :contours))) 

(if (and (null closure) (zerop contours)) name 
'(variable ,name ,closure ,contours)))) 

(assignment '(assign ,(send exp :name) ,(unparse (send exp :closure)) 
,(unparse (send exp :contours)) 
,(unparse (send exp :value)))) 

(lambda '(lambda {,&(send exp :required) . ,(send exp :rest)) 
(assert ,&(send exp :asserts)) ,(unparse (send exp :body)))) 

(built-in-func '(bif ,(send exp :name))) 
(user-syntax (let ((code (send exp :code))) 

'(user-syntax ,(send code :required) 
,(unparse (send code :body))))) 

(built-in-syntax 'built-in-syntax) 
(boolean (if (send exp :true7) 'true 'false)) 
(partial '(value ,(unparse (send exp :value)) 

code ,(unparse (send exp :code)) 
side-effects ,(unparse-list (send exp :side-effects)) 
known7 ,(unparse (make-boolean (send exp :known7))) 
applicative? ,(unparse (make-boolean 
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(send exp :applicative?))))) 
(frame '(handle ,(unparse (send exp :handle)) 

args? ,(unparse (send exp :arguments?)) 
alist ,(send exp :alist))) 

(unknown '(unknown ,(send exp :type))) 
(:list '(quote ,exp)) 
(:symbol (if (symbol? exp) '(quote ,exp) exp)) 
(:array 'vector) 
(otherwise exp))) 

,, UNPARSE-LIST - Unparses a list of expressions. 

(defun unparse-list (exps) 
(mapcar #'unparse exps)) 

;; !NIT-SYNTAX - Loads the built-in parsing functions into the global environment. 

(defun init-syntax () 
(mapcar #'(lambda (clause) 

(rec-augment global-environment (first clause) 
(make-built-in-syntax (second clause)) 
t)) 

'((def ,#'{lambda (form) 
(make-def-form {first form) 

(parse (second form)) 
(parse {third form))))) 

(lambda ,#'(lambda (form) 
(make-lambda-form (get-required (first form)) 

(get-rest {first form)) 
(get-asserts (restl form)) 
(parse (get-body (restl form)))))) 

(sequence ,#'(lambda (form) 
(make-sequence-form (parse-1 i st form)))) 

(if ,#'(lambda (form) 
(make-if-form (parse (first form)) 

(parse (second form)) 
(parse (third form))))) 

(quote ,#'(lambda (form) 
(first form))) 

(bif ,#'(lambda (form) 
(send global-environment :get-value 

(first form}))) 
(user-syntax ,#'(lambda (form) 

(make-user-syntax 
(make-lambda (first form) nil nil 

(variable ,#'(lambda (form) 

nil (parse (second form)) 
global-environment)))) 

(make-variable (first form) 
(parse (second form)) 
(third form)))) 

(assign ,#'(lambda (form) 
(make-assignment (first form) 

(parse (second form)) 
(third form) 
(parse (fourth form)))))))) 

;; GET-REQUIRED - Get the list of required variables from a lambda-list. 

(defun get-required (lambda-list) 
(if (atom lambda-list) nil 

(cons (car lambda-list) 
(get-required (cdr lambda-list))))) 

,, GET-REST - Get the rest-variable (if any) from a lambda-list. 



(defun qet-rest (lambda-list) 
( if (atom lambda-I ist) la111bda-l ist 

( c d r ( last lambda - l is t} } } ) 
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GEJ-ASSERfS - Get the assertion-] ist from a function definition. 

(defun get-asserts (def) 
(if (null (cdr def)) nil 

(cdar def})) 

GH-flODY - Get tlrn body from a function def i 11 it ion. 

(defun got-body (def) 
(if (null (cdr def)) (first def} 

(socond def))} 
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TYPES•••••••••••••••••••••••••••••••••••••••••••••••••• 

(defun nil? (exp) 
(null exp)) 

(defun fixnum? (exp) 
(numberp exp)) 

(defun pair? (exp) 
(listp exp)) 

(defun string? (exp) 
(stringp exp)) 

(defun vector? (exp) 
(and (arrayp exp) 

(not (stringp exp)))) 

;; SYMBOL? - Is exp a non-keyword symbol? 

(defun symbol? (exp) 
(and exp 

(symbolp exp) 
(not (keyword? exp)))) 

;; KEYWORD? - Is exp a self-evaluating keyword? 

(defun keyword? (exp) 
(and (symbolp exp) 

(member (aref (string exp) 
(subl (string-length exp))) 

'(#/. #/:)))) 

;; BOOLEAN - A true-or-false value. 

(defflavor boolean (true?)() 
:gettable-instance-variables 
:initable-instance-variables) 

(defun make-boolean (true?) 
(make-instance 'boolean :true? true?)) 

(defun boolean? (exp) 
(typep exp 'boolean)) 

,, VARIABLE - A program variable. 

NAME - The print-name or the variable. 

not NIL 

CLOSURE - The code of the closure whose environment contains the variable, or 
NIL if the containing environment is the current one (the usual case). 

CONTOURS - The number of environment frames to skip before searching for the 
name-value binding. 

(defflavor variable (name closure contours) () 
:gettable-instance-variables 
:initable-instance-variables) 

(defun make-variable (name closure contours) 
(make-instance 'variable :name name :closure closure :contours contours)) 

(defun variable? (exp) 
(typep exp 'variable)) 
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,, ASSIGNMENT - A code-form denoteing assignment to a program variable. 

;; NAME - The print-name of the variable. 

; ; 

CLOSURE - The code of the closure whose environment contains the variable, or 
NIL if the containing environment is the current one {the usual case). 

CONTOURS - The number of environment frames to skip before searching for the 
name-value binding. 

VALUE - The value to which the variable is to be assigned. 

{defflavor assignment {name closure contours value) () 
:gettable-instance-variables 
:initable-instance-variables) 

{defun make-assignment {name closure contours value) 
{make-instance 'assignment :name name :closure closure 

:contours contours :value value)) 

;; BUILT-IN-FUNC - A bu1lt-in function. 

(defflavor built-in-func {name eval-func pe-func arg-types return-type){) 
:gettable-instance-variables 
:initable-instance-variables) 

{defun make-built-in-func {name eval-func pe-func arg-types return-type) 
{make-instance 'built-in-func :name name :eval-func eval-func :pe-func pe-func 

:arg-types arg-types :return-type return-type)) 

(defun built-in-func7 (exp) 
{typep exp 'built-in-func)) 

;; LAMBDA - A user-defined function. 

(defflavor lambda {required rest asserts read-onlys body env) {) 
:gettable-instance-variables 
:settable-instance-variables 
:initable-instance-variables) 

{defun make-lambda (required rest asserts read-onlys body env} 
(make-instance 'lambda :required required :rest rest 

:asserts asserts :read-onlys read-onlys :body body :env env)) 

(defun lambda? {exp} 
{typep exp 'lambda)) 

;; DEF-FORM - An internal definition form. 

(defflavor def-form (name value read-only?} {) 
:gettable-instance-variables 
:initable-instance-variables) 

(defun make-def-form (name value read-only?) 
(make-instance 'def-form :name name :value value :read-only? read-only?)) 

;; LAMBDA-FORM - An internal function~value form. 

(defflavor lambda-form (body asserts required rest) () 
: get tab 1 e- i ns-tance-var iab las 
:initable-instance-variables) 

(defun make-lambda-form (required rest asserts body) 
(make-instance 'lambda-form :required required :rest rest 

:asserts asserts :body body)) 
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;; COMBINATION - An internal function-invocation form. 

(defflavor combination (function args) () 
:gettable-instance-variables 
:initable-instance-variables) 

(defun make-combination (function args) 
(make-instance 'combination :function function ·:args args)) 

;; SEQUENCE-FORM - An internal sequence form. 

(defflavor sequence-form (forms) () 
:gettable-instance-variables 
:initable-instance-variables) 

(defun make-sequence-form (forms) 
(make-instance 'sequence-form :forms forms)) 

;; IF-FORM - An internal conditional form. 

(defflavor if-form (predicate consequent alternative) () 
:gettable-instance-variables 
:initable-instance-variables) 

(defun make-if-form (predicate consequent alternative) 
(make-instance 'if-form :predicate predicate 

:consequent consequent :alternative alternative)) 

;; FRAME - An environment frame. 

(defflavor frame (next alist handle arguments?) () 
:gettable-instance-variables 
:initable-instance-variables) 

; ; INSERT - Inserts a (name value read-only?) -triple into the frame. 

(defmethod (frame :insert) (name value read-only?) 
(setq alist (cons {cons name (cons value read-only?)) 

alist)}) 

;; GET-VALUE - Given a name, returns (VALUE FOUND? READ-ONLY?). 

(defmethod (frame :get-value) (name) 
(let ((slot (assq name alist))) 

(if (null slot) (values nil nil nil) 
(values (cadr slot) t (cddr slot))))) 

,, SET-VALUE - Given a name and a value, overwrites name's old value. 

(defmethod (frame :set-value) (name value) 
(let ((slot (assq name alist))) 

(rplacd slot (cons value nil}))) 

; ; GET-NAME - Given a value, returns (NAME F°OUND?). 

{defmethod (frame :get-name) (value) 
(let ((slot (get-triple value alist))) 

(if (null slot) (values nil nil) 
(values (car slot) t)))) 

(defun get-triple (value alist) 
(cond ((null alist) nil) 

((eq value (cadar alist)) (car alist)) 
(t (get-triple value (cdr alist))))) 

(defun make-frame (next handle args?) 

♦ 
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(make-instance 'frame :next next :alist nil :handle handle :arguments? args7}} 

;; GLOBAL-FRAME - The top-level environment frame , implemented as a hash table. 

(defflavor global-frame (name->value value->name} () 
:gettable-instance-variables 
:initable-instance-variables} 

(defmethod (global-frame :insert} (name value read-only?} 
(send name->value :put-hash name (cons value read-only?}} 
(send value->n~me :put-hash value name}) 

(defmethod (global-frame :get-value} (name} 
(multiple-value-bind (pair found?} (send name->value :get-hash name} 

(if found? (values (car pair} t (cdr pair}) 
(values nil nil nil}))} 

(defmethod (global-frame :set-value} (name value) 
(send name~>value :rem-hash name) 
(send value->name :rem-hash value) 
(send self :insert name value nil)) 

(defmethod (global-frame :get-name) (value) 
(send value->name :get-hash value)) 

(defmethod (global-frame :next) (} 
nil) 

(defmethod (global-frame :arguments?)() 
nil} 

(defmethod (global-frame :handle) () 
nil) 

(defun make-global-frame() 
(make-instance 'global-frame :name->value (make-hash-table) 

:value->name (make-hash-table))) 

;; PARTIAL - A partially-specified value. 
; ; 

; ; 
; ; 

; ; 
; ; 

VALUE - The partially-specified value: a structure of IBL values 
and possibly •UNKNOWN values. 

PARTIAL-CODE - A structure of nullary lambdas which when invoked return the 
PARTIAL corresponding to the component of the VALUE. 

CODE - The code necessary to produce the side effects (if any) and the 
fully-specified value at run-time 

SIDE-EFFECTS - The list of forms necessary to produce the side-effects 
(if any} at run-time. 

KNOWN? - A flag indicating that VALUE is an IBL value. 

(defflavor partial (value partial-code code side-effects known?){} 
:gettable-instance-variables 
:initable-instance-variables) 

(defun make-partial (value partial-code code side-effects known?) 
(make-instance 'partial :value value :partial-code partial-code :code code 

:side-effects si4e-effects :known? known?}) 

(defmethod {partial :applicative?) () 
(null side-effects)) 

(defun partial? (exp} 



(typep exp 'partial)) 

; ; UNKNOWN - An unknown value. 

(defflavor unknown (type) () 
:gettable-instance-variables 
: initable-instance-variables) 

(defun make-unknown (type) 
(make-ins ta nee 'unknown : type type)) 

(defun unknown? (exp) 
(typep exp 'unknown)) 
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; ; BUILT-IN-SYNTAX - A built-in parsing function. 

(defflavor built-in-syntax (code) () 
:gettable-instance-variables 
: in itable-instance-variables) 

(defun make-built-in-syntax (func) 
(make- instance 'bui It-in-syntax :code func)) 

(defun built-in-syntax? (exp) 
(typep exp 'built-in-syntax)) 

; ; USER-SYNfAX - A user-defined parsing function. 

(defflavor user-syntax (code) () 
:gettable-Instance-variables 
:initable-instance-variables) 

(defun make-user-syntax (func) 
(make-instance 'user-syntax :codo Fune)) 
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INTERPRETER•••••••••••••••••••••••••••••••••••••••••••••••••• 

;; START - Initializes everything and starts the interaction loop. 

( defun start () 
(pkg-goto 'iblc) 
(let ((global-env (make-global-env)) 

(readtable (copy-readtable))) 
(set-syntax-from-description#/: 'si:alphabetic readtable) 
(set-syntax-macro-char#/' #'(lambda (list-so-far instream) 

(list 'back-quote (read instream))) 
readtable) 

(set-syntax-macro-char#/, #'(lambda (list-so-far instream) 
(list 'comma (read instream))) 

readtable) 
(read-oval-print standard-input global-env))) 

,, READ-EVAL-PRINT - The user-interface to the interpretor. 

(defun read-oval-print (in-stream env) 
(do ((input nil (progn 

( terpri) 
(princ "ibl ->") 
(parse (read-for-top-level in-stream "quit"))))) 

((equal input "quit") nil) 
(terpri) 
(grind-top-level (unparse (•catch 'error (ibl-eval input env)))))) 

,, IBL-EVAL - The IBL expression evaluator. 

(defun ibl-eval (exp env) 
(selectq (typep exp) 

(def-form (let ((value (ibl-eval (send exp- :value) env))) 
(rec-augment env (send exp :name) value 

(send (send exp :read-only?) :true?)) 
value}} 

(lambda-form (let ((required (send exp :required}) 
(rest (send exp :rest)) 
(asserts (send exp :asserts)}} 

(make-lambda required rest asserts 
(make-read-onlys required rest asserts) 
(send exp :body) env))) 

(sequence-form (car (last (eval-list (send exp :forms) env}))) 
(if-form (if (send (ibl-eval (send exp :predicate) env) :true?) 

(ibl-eval (send exp :consequent} env} 
(ibl-eval (send exp :alternative} env)}) 

(combination (let ((func (ibl-eval (send exp :function) env)) 
(args (eval-list (send exp :args) env))) 

(if (typep func 'built-in-func) 
(apply-built-in func args env) 
(apply-lambda func a~gs)))) 

(variable (lookup (send exp :name) (send exp :contours) 
(let ((closure (send exp :closure))) 

(if (null closure) env 
(send (ibl-eval closure env) :env))))) 

(assignment (let ((value (ibl-eval (send exp :value) env))) 
(update (send exp :name) (send exp :contours) 

(let ((closure (send exp :closure))) 

value)) 
(otherwise exp))) 

(if (null closure) env 
(send (ibl-eval closure env) :env))) 

value) 



;; EVAL-LIST - Evaluate a list of forms. 

(defun eval-list (exps env) 
(if (null exps) nil 

(cons (ibl-eval (first exps) env) 
(eval-list (rest1 exps) env)))) 
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,, APPLY-BUILT-IN - Evaluate a built-in function invocation. 

(defun apply-built-in (func args env) 
(type-check args (send func :arg-types) {send func :name)) 
{funcall {send func :eval-func) args env)) 

;; TYPE-CHECK - Type-check the actual arguments against the signature. 

{defun type-check {actuals types name) 
{cond ({null types) {if (null actuals) nil 

{*throw 'error '{too many arguments to ,name)))) 
{{null actuals) {*throw 'error '{too few arguments to ,name))) 
{(or {eq {car types) 'IANY:I) 

{eq {car types) {get-type {car actuals)))) 
(type-check {cdr actuals) (cdr types) name)) 

{t (•throw 'error '(type mismatch in ,name 
,(get-type {car actuals)) should be 
,(car types)))))) 

;; APPLY-LAMBDA - Evaluate a user-defined function invocation. 

(defun apply-lambda (func args) 
(ibl-eval (send func :body) 

(lambda-augment {send func :env) (send func :required) 
{send func :rest) (send func :read-onlys) 
args}}) 

;; REC-AUGMENT - Add a variable binding to the current environment frame. 

{defun rec-augment (frame name value read-only?) 
(send frame :insert name value read-only?)) 

;; LAMBDA-AUGMENT - Add a new frame with lambda-bindings to the environment. 

{defun lambda-augment {env required rest read-onlys args) 
(augment-frame (make-frame env nil nil) required rest args read-onlys)) 

(defun augment-frame (frame required rest args read-onlys) 
(if (null required) (if (null rest) frame 

(progn 

{progn {send frame :insert rest args (first read-onlys}) 
frame)) 

{send frame :insert {first required) {first args) (first read-onlys)) 
{augment-frame frame (restl required) rest {rest1 args) 

{restl read-onlys})))) 

;; LOOKUP - Lookup a name in an environment. 

(defun lookup (name contours env) 
{cond {{null env) (*throw 'error '(unbound var ,name))) 

{{zerop contours) {multiple-value-bind {value found?) 
{send env :get-value name) 

{if found? value 
~lookup name O (send env :next))})} 

{t {lookup name (- contours 1) {send env :next))))) 

,, UPDATE - Update a slot in an environment. 

(defun update (name contours env value) 
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(cond ((null env) (*throw 'error '(unbound var ,name))) 
((zerop contours) (multiple-value-bind (old-value found?) 

(send env :get-value name) 
(if found? (send env :set-value name value) 

(update name O (send env :next) value)))) 
(t (update name (- contours 1) (send env :next) value)))) 

;; GLOBAL-ENVIRONMENT - The global environment frame. 

(defvar global-environment nil) 

;; MAKE-GLOBAL-ENV - Create and initialize the top-level environment. 

(defun make-global-env () 
(setq global-environment (make-global-frame)) 
( init-built-ins) 
( in it-syntax) 
global-environment) 

;; INIT-BUILT-INS - Load built-in function definitions into the global environment. 

(defun init-built-ins () 
(mapcar #'(lambda (clause) 

(rec-augment global-environment (first clause) 
(make-built-in-func (first clause) 

(second clause) 
(third clause) 
(fourth clause) 
(fifth clause)) 

t)) 
'(~load ,#'(lambda (args env) 

(with-open-file (in-stream (first args)) 
(read-eval-print in-stream env))) 

,#'pe-built-in-noeval-default 
(!STRING: I) 
nil) 

(save ,#'(lambda (args env) 
(with-open-file (out-stream (first args) :direction :output) 

(send (send global-environment :name->value) :map-hash 
(let-closed ((out-stream out-stream)) 

#'(lambda (name pair) 
(let ((value (car pair)) 

(read-only? (cdr pair))) 
(if (not (or (built-in-func? value) 

(built-in-syntax? value))) 
(progn 

(grind-top-level 
'(def ,name ,(unparse value) 

, (unparse 
(make-boolean read-only?))) 

nil out-stream) 
(terpri out-stream) 
(terpri out-stream))))))))) 

,#'pe-built-in-noeval-default 
( jSTRING: I) 
ni 1) 

(apply ,#'(lambda (args env) 
(ibl-eval (make-combination (first args) (second args)) 

env)) 
,#'pa-apply 
(IANY:I IPAIR:I) 
nil) 

(symeval ,#'(lambda (args env) 
(lookup (first args) 0 env)) 

,#'pe-built-in-eval-default 
( I SYMBOL: I) 
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nil) 
(car ,#'(lambda (args env) (car (first args))) 

,#'pe-car 
( IPAIR: I) 
nil) 

(cdr ,#'(lambda (args env) (cdr (first args))) 
,#'pe-cdr 
( IPAIR: I) 
nil) 

(cons ,#'(lambda (args env) (cons (first args) (second args))) 
,#'pe-cons 
( IANY: I IANY: I) 
I PAIR: I) 

(setl-car ,#'(lambda (args env) (rplaca (first args) (second args))) 
,#'pe-built-in-noeval-default 
(IPAIR:I IANY:I) 
I PAIR: I) 

(setl-cdr ,#'(lambda (args env) (rplacd (first args) {second args))) 
,#'pe-built-in-noeval-default 
(IPAIR:I JANY:I) 
nil) 

(eq? ,#'(lambda (args env) 
(make-boolean (eq (first args) (second args)))) 

,#'pe-built-in-eval·default 
( I ANY: I I ANY: I ) 
IBOOLEAN:I) 

(and ,#'(lambda (args env) 
{make-boolean (and (send (first args) :true?) 

(send (second args) :true?)))) 
,#'pe-and 
{ I BOOLEAN: I I BOOLEAN: I) 
I BOOLEAN: I) 

(or ,#'{lambda (args env) 
(make-boolean (or (send (first args) :true?) 

· (send (second args) :true?)))) 
,#'pe-or 
(IBOOLEAN:I IBOOLEAN:I) 
I BOOLEAN: I ) 

(not ,#'(lambda (args env) 
(make-boolean {not (send (first args) :true?)))) 

,#'pe-built-in-eval-default 
(IBOOLEAN:I) 
IBOOLEAN:I) 

(iplus ,#'(lambda (args env) (+ (first args) (second args))) 
,#'pe-built-in-eval-default 
(IFIXNUM:f IFIXNUM:I) 
IFIXNUM:I) 

(iminus ,#'(lambda (args env) {- (first args) (second args))) 
,#'pe-built-in-eval-default 
( I FIXNUM: I I FIXNUM: I) 
I FIXNUM: I) 

(itimes ,#'(lambda (args env) (• (first args) (second args))) 
,#'pe-built-in-eval-default 
(fFIXNUM:f IFIXNUM:f) . 
I FIXNUM: I) 

(idiv ,#'(lambda (args env) (// (first args) {second args))) 
,#'pe-built-in-eval-default 
( I FIXNUM: I I FIXNUM: I) 
IFIXNUM: I) 

(irem ,#'(lambda (args env) (\ (first args) (second args))) 
,#'pe-built-in-eval-default 
( IFIXNUM: I IFIXNUM: I) 
I FIXNUM: I) 

(iless? ,#'(lambda (args env) 
(make-boolean(< (first args) {second args)))) 

,#'pe-built-in-eval-default 



( I FIXNUM: I I FIXNUM: I) 
I BOOLEAN:!) 

(igreater7 ,#'(lambda (args env} 
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(make-boolean(> (first args) (second args}))} 
,#'pe-built-in-eval-default 
(IFIXNUM:I IFIXNUM:I) 
I BOOLEAN: I) 

(iequal7 ,#'(lambda (args env) 
(make-boolean(= (first args) (second args)))) 

,#'pe-built-in-eval-default 
( I FIXNUM: I I FIXNUM: I} 
I BOOLEAN: I} 

(vector-cons ,#'(lambda (args env) 
(make-array (first args) 

:initial-value (second args)}) 
,#'pe-built-in-eval-default 
(IFIXNUM:I IANY:I) 
I VECTOR: I) 

(vector-ref ,#'(lambda (args env) 
(aref {first args) (second args))) 

,#'pe-built-in-eval-default 
(IVECTOR:I IFIXNUM:I} 
nil) 

(vector-size ,#'(lambda (args env} (array-length (first args})) 
,#'pe-built-in-eval-default 
(IVECTOR:I) 
I FIXNUM: I) 

(vector-set! ,#'(lambda (args env) 
(aset (third args) (first args) (second args})) 

,#'pe-built-in-noeval-default 
( I VECTOR: I I FIXNUM: I IANY: I} 
nil) 

{print ,#'{lambda (args env) 
{print (unparse (first args))}) 

,#'pa-print 
(IANY: I) 
nil) 

{read ,#'(lambda (args env) 
( read)) 

,#'pe-built-in-noeval-default 
() 
nil) 

{type ,#'(lambda (args env) (get-type (first args))} 
,#'pa-type 
( IANY: I) 
I KEYWORD: I) 

(pe-func ,#'(lambda {args env) (pa-function-body (first args})) 
,#'pe-built-in-noeval-default 
( IANY: I} 
nil) 

{pa-exp ,#'(lambda (args env) {pa-exp {parse (first args)) env env)) 
,#'pe-built-in-noeval-default 
{ IANY: I) 
nil) 

{pa-all ,#'(lambda {args env) 
(send (send global-environment :name->value) :map-hash 

#'{lambda (name pair) 
(print name} 
(let {{value {car pair))) 

(cond {{typep value 'lambda) 
(pa-function-body value)) 

({typep value 'user-syntax) 
{pa-function-body 

(send value :code)}})))}) 
,#'pe-built-in-noeval-default 
{) 
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nil) 

;; GET-TYPE - Get the type of a value, NIL if unknown. 

(defun get-type (value) 
(if (null value) 'INIL:I 

(selectq (typep value) 
(lambda 'ILAMBDA:I) 
(built-in-func 'IBUILT-IN-FUNC:I) 
(built-in-syntax 'IBUILT-IN-SYNTAX:1) 
(user-syntax 'IUSER-SYNTAX:1) 
(boolean 'IBOOLEAN:I) 
(unknown (send value :type)) 
(:array 'JVECTOR:I) 
(:string 'ISTRING:I) 
(:symbol (if (keyword? value) 'IKEYWORD:I 

I I SYMBOL: I)) 
( : , is t • I PAIR: I ) 
(:fixnum 'IFIXNUM:J) 
(otherwise nil)))) 

,, MAKE-READ-ONLYS - Make a boolean list to indicate read-only variables. 

(defun make-read-onlys (required rest asserts) 
(make-read-only-list required rest (cdr (find-name 'read-only asserts))}) 

;; MAKE-READ-ONLY-LIST 

(defun make-read-only-list (required rest read-onlys) 
(if (null required} (list (memq rest read-onlys}) 

(cons (memq (car required) read-onlys} 
(make-read-only-list (cdr required} rest read-onlys)))) 
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PARTIAL EVALUATOR•••••••••••••••••••••••••••••••••••••••••••••••••• 

;; PE-FUNCTION-BODY - Partially evaluate a function body. 

{defun pa-function-body (func) 
(let ((required (send func :required)) 

(rest (send func :rest))) 
(let ({envl (lambda-augment (send func :env) required rest 

(send func :read-onlys) 
(make-unknowns required rest)))) 

(send func :set-body (send (pe-exp (send func :body) envl envl) 
:code))))) 

;; PE-EXP - Partially evaluate an expression with respect to the 
partial-evaluation-time environment {PE-ENV). RUN-ENV is the 
eventual run-time environment. 

: ; 

(defun pe-exp (exp pe-env run-env) 
(selectq {typep exp) 

{variable 
(let {(name {send exp :name)) 

{closure {send exp :closure)) 
(contours (send exp :contours))) 

(if closure (pa-var-in-closure name closure pe-env run-env) 
(pe-var name contours pe-env run-env)))) 

{combination 
(let ((func (pe-exp {send exp :function) pe-env run-env)) 

(args (pe-list (send exp :args) pe-env run-env))) 
(let ((func-value (send func :value)) 

(func-code (send func :code))) 
(selectq (typep func-value) 

(built-in-func (funcall (send func-value :pe-func) 
func-code func-value args run-env)) 

(lambda (pa-lambda func-code func-value args run-env)) 
(otherwise (let ((code {make-combination func-code (get-codes args)))) 

{make-partial (make-unknown nil) nil 
code (list code) nil))))))) 

(if-form 
(let ((predicate (pe-exp (send exp :predicate) pe-env run-env))) 

(if (send predicate :known?) 
(if (send (send predicate :value) :true?) 

(pe-exp (send exp :consequent) pe-env run-env) 
(pe-exp (send exp :alternative) pe-env run-env)) 

{let ((consequent (pe-exp (send exp :consequent) pe-env run-env)) 
(alternative (pe-exp (send exp :alternative) pe-env run-env))} 

(let ((code (make-if-form (send predicate :code) 

(def-form 

(send consequent :code) 
(send alternative :code))) 

(applicative? (and (send predicate :applicative?) 
(send consequent :applicative?) 
(send alternative :applicative?}}}) 

(make-partial (make-unknown nil) nil code (if applicative? nil 
(list code)) 

nil)))))) 

(let ((name (send exp :name)) 
(value (send exp :value)) 
(read-only? (send exp :read-only?))) 

(let ((pa-value (pe-exp value pe-env run-env))) 
(rec-augment pe-env name pe-value read-only?) 
(rec-augment run-env name pa-value read-only?) 
(let ((code (make-def-form name (send pa-value :code) read-only?))) 

(make-partial pa-value nil code (list code) t))))) 
(lambda-form 



(let ((required (send exp :required)) 
(rest (send exp :rest)) 
(asserts (send exp :asserts)) 
(body (send exp :body))) 
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(let ((read-onlys (make-read-onlys required rest asserts))) 
(let ((pa-value (pe-exp body 

(lambda-augment pe-env required rest read-onlys 
(make-unknowns required rest)) 

(lambda-augment run-env required rest read-onlys 
(make-unknowns required rest))))) 

(make~partial (make-lambda required rest asserts read-onlys 
(send pa-value :code) run-env) 

nil (make-lambda-form required rest asserts 
(send pe-value :code)) 

nil t))))) 
(sequence-form 
(let ((forms (pe-list (send exp :forms) pe-env run-env))) 

(optimize-sequence (butlast forms) (car (last forms))))) 
(assignment 
(let ((name (send exp :name)) 

(closure (send exp :closure)) 
(contours (send exp :contours)) 
(value (send exp :value))) 

(let ((variable (send (if closure (pa-var-in-closure name closure 
pa-env run-env) 

(pe-var name contours pe-env run-env)) 
: code)} 

(value (send (pe-exp value pe-env run-env) :code))) 
(let ((code (make-assignment (send variable :name) 

(send variable :closure) 
(send variable :contours) value))) 

(make-partial (make-unknown nil) nil code (list code) nil))))) 
(:list (make-list-literal exp)) 
(otherwise (make-constant exp)))) 

;; MAKE-LIST-LITERAL - Make a PARTIAL for a list literal. 

(defun make-list-literal (lit) 
(make-partial lit (if (atom lit) nil 

(cons (let-closed 
#' (lambda 

(let-closed 

lit nil t)) 
#' (lambda 

((lit (car lit))) 
() (make-list-literal 
((lit (cdr lit))) 
() (make-list-literal 

;; UP-ENV - Go up the environment CONTOURS frames. 

(defun up-env (env contours) 
(if (zerop contours) env 

(up-env (send env :next) (- contours 1)))) 

;; PE-LIST - Partially evaluate a list of forms. 

(defun pe-list (forms pe-env run-env) 
(if (null forms) nil 

(cons (pe-exp (car forms) pe-env run-env) 
(pe-list (cdr forms) pe-env run-env)))) 

lit))) 

lit))))) 

,, PE-LAMBDA - Partially evaluate a user-defined closure invocation. 

(defun pa-lambda (proc-code proc-Nalue pe-args run-env) 
(let ((asserts (send proc-value :asserts)) 

(code (make-combination proc-code (get-codes pe-args)))) 
(cond ((and (memq 'evaluate ~sserts) 

(all-known? pe-args)) 
(let ((value (apply-lambda proc-value (get-values pe-args)))) 
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(cond ((i11111utable7 value) 
(optimize-sequence pe-args (make-constant value))) 

((in-env7 value run-env) 
(optimize-sequence pe-args 

(make-variable-partial value run-env))) 
(t (make-partial value nil code (get-imp-codes pe-args) 

t))))) 
((or (memq 'macro-like asserts) 

(and (beta-expand? asserts (lambda-augment 
run-env (send proc-value :required) 
(send proc-value :rest) 
(send proc-value :read-onlys) pe-args)) 

(all-applicative? pe-args))) 
(beta-expand proc-code proc-value pe-args run-env)) 

((memq 'open-specialize asserts) 
(open-specialize proc-code proc-value pe-args run-env)) 

(t (let ((applicative? (memq 'applicative asserts))) 
(make-partial (make-unknown (result-type asserts)) 

nil code (if applicative? (get-imp-codes pe-args) 
(11st code)} 

nil)))))) 

;; RESULT-TYPE - The result-type of the function, as declared in the ASSERT 11st. 

(defun result-type (asserts) 
(second (find-name 'returns asserts))) 

;; BETA-EXPAND? - Should the invocation be beta-expanded? 

(defun beta-expand? (asserts env) 
(and asserts 

(or (memq 'beta-expand asserts) 
(let ((test (cadr (find-name 'beta-expand asserts)})) 

(and test 
(cond ((atom test) (send (pe-exp (parse test) env env) :known?)) 

((eq (car test) 'b-or) · 
(one-known? (pa-list (parse-list (cdr test)) env env))) 

((eq (car test) 'b-and) 
(all-known? (pa-list (parse-list (cdr test)) en~ env))) 

(t (send (pa-exp (parse test) env env) :known?)))))))) 

;; FIND-NAME - Find the list corresponding to a keyword. 

(defun find-name (keyword 1st} 
(and 1st (if (and (11stp (car 1st)) 

(eq (caar 1st) keyword)) 
(car 1st) 
(find-name keyword (cdr 1st))))) 

;; BETA-EXPAND - Beta-expand a function invocation. 

(defun beta-expand (proc-code proc-value pe-args run-env) 
(pe-exp (send proc-value :body) 

(pa-lambda-augment (send 
(send 
(send 
( send 

run-env)) 

proc-value 
proc-value 
proc-value 
proc-value 

:env) 
:required) 
:rest) pe-args 
:read-onlys) proc-code t) 

;; OPEN-SPECIALIZE - Open-specialize a function invocation. 

(defun·open-specialize (proc-code proc-value pe-args run-env) 
(let ((env (send proc-value :env)) 

(required (send proc-value :required)) 
(rest (send proc-value :rest)) 
(read-onlys (send proc-value :read-onlys))) 
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(let ((pa-body (pe-exp (send proc-value :body) 
(pa-lambda-augment env required rest pe-args 

read-onlys proc-code nil}' 
(lambda-augment run-env required rest 

read-onlys pe-args)))) 
(let ((value (send pa-body :value)) 

(applicative? (send pa-body :applicative?)) 
(known? (send pa-body :known?))) 

(if (and known? (immutable? value) applicative?) 
(optimize-sequence pe-args (make-constant value)) 
(let ((code (make-combination 

(make-lambda-form required rest 
(send proc-value :asserts) 
(send pe-body :code)) 

(get-codes pe-args)))) 
(make-partial value nil code (if applicative? 

(get-imp-codes pe-args) 
(list code}) 

known?)})))}) 

;; PE-LAMBDA-AUGMENT - Augment the environment for expansion or specialization. 

(defun pa-lambda-augment (env required rest pe-args read-onlys handle args7) 
(pa-augment-frame (make-frame env handle args?) 

required rest pe-args read-onlys)) 

(defun pa-augment-frame (frame required rest pe-args read-onlys) 
(if (null required) (if (null rest) frame 

(progn (send frame :insert rest (rest-list pe-args) 
(first read-onlys)) 

frame)} 
(progn (send frame :insert (first required) (first pe-args) 

(first read-onlys)) 
(pa-augment-frame frame (rest1 required) rest (rest1 pe-args) 

(resti read-onlys))))) 

;; REST-LIST - Make a partially-specified object denoting a list of REST args. 

(defun rest-list (pe-args) 
(make-partial (get-values pe-args) 

(if (not (all-applicative? pe-args}) nil 
(cons (let-closed ((args pe-args)) 

#'(lambda() (car args))) 
(let-closed ((args pe-args)) 

#'(lambda() (rest-list (cdr args)))))) 
(make-list-code (get-codes pe-args)) 
(get-imp-codes pe-args} (all-known? pe-args)}) 

;; MAKE-LIST-CODE - Make the code for a list of codes. 

(defun make-list-code (codes) 
(if (null codes) nil 

(make-combination (parse '(bif cons)) 
(list (car codes} · 

(make-list-code (cdr codes)))))) 

;; PE-VAR - Partially evaluate a variable reference. 

(defun pa-var (name skip pe-env run-env) 
(multiple-value-bind (value contours read-only? argument? handle) 

(pa-lookup name skip pe-env O nil) 
(cond ((and read-only? ( immutable? value}) 

(make-constant (get-value value))) 
(argument? (if (zerop contours) value 

(pe-exp (send value :code) 
(up-env run-env contours) run-env))) 
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(t (let ((code (find-variable name value handle run-env))) 
(if read-only? (make-partial (get-value value) nil code nil 

(if (partial? value) (send value :known?) 
(not (unknown? value)))) 

(make-partial (make-unknown nil) nil code nil nil))))))) 

,, PE-VAR-IN-CLOSURE - Partially evaluate a variable reference within a 
closure's environment. 

(defun pa-var-in-closure (name closure pe-env run-env) 
(let ((pe-closµre (pa-exp closure pe-env run-env))) 

(let ((closure-value (send pa-closure :value)) 
(closure-code (send pa-closure :code))) 

(if (send pa-closure :known?) 
(multiple-value-bind (value contours read-only?) 

(pa-lookup name O (send closure-value :env) 0 nil) 
(if (and read-only? (invnutable? value)) 

(make-constant (get-value value)) 
(let ((code (make-variable name closure-code contours))) 

(if read-only? (make-partial (get-value value) nil code nil 
(if (partial? value) (send value :known?) 

(not (unknown? value)))) 
(make-partial (make-unknown nil) nil code nil nil))))) 

{make-partial (make-unknown nil) nil 
(make-variable name closure-code 0) 
nil nil))))) 

,, PE-LOOKUP - Instrumented version of LOOKUP, returns 
ii (VALUE CONTOURS READ-ONLY? ARGUMENT? HANDLE}. 

(defun pa-lookup {name skip env num-contours handle) 
(if (null env) (values (make-unknown nil) num-contours nil nil nil) 

(multiple-value-bind (value found? read-only?) 
(if (zerop skip) (send env :get-value name) 

(values nil nil nil)) 
(if found? (values value num-contours read-only? 

(send env :arguments?) handle} 
{pa-lookup name (if (zerop skip) 0 {- skip 1)) (send env :next} 

(1+ num-contours) 
(let {(new-handle {send env :handle})) 

(or new-handle handle))))))) 

;; FIND-VARIABLE - Makes the appropriate variable code for a value by looking 
up the value in the RUN-ENV. 

{defun find-variable (name value handle run~env) 
(multiple-value-bind (new-name found? contours) 

(reverse-lookup value run-env 0) 
(if found? (make-variable new-name nil contours) 

(make-variable name handle 0)))) 

ii REVERSE-LOOKUP - Given a value, tries to find a name, returns 
(NAME FOUND? CONTOURS), 

(defun reverse-lookup (value env contours) 
(if (null env) (values nil nil nil) 

(multiple-value-bind (name found?) 
(send env :get-name value) 

(if found? (values name t contours) 
(reverse-lookup value (send env :next) (1+ contours)))))) 

;; IN-ENV? - Is a value in the environment? 

(defun in-env? (value env) 
(multiple-value-bind (name found?) 

(reverse-lookup value env 0) 
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found?)) 

,, MAKE-VARIABLE-PARTIAL - Make a variable for a value in the environment. 

(defun make-variable-partial (value env) 
(make-partial value nil (find-variable nil value nil env) n11 t)} 

;; PE-BUILT-IN-EVAL-OEFAULT - Partially evaluate a built-in function, 
, , eval if possible. 

(defun pe-built-in-eval-default (proc-code proc-value pe-args run-env) 
(let ((value (if (all-known? pe-args) 

(apply-built-in proc-value (get-values pe-args} run-env} 
(make-unknown (send proc-value :return-type))})} 

(cond ((invnutable7 value} 
(optimize-sequence pe-args (make-constant value)}} 

((in-env7 value run-env) 
(optimize-sequence pe-args (make-variable-partial value run-env})) 

(t (make-partial value nil 
(make-combination proc-code (get-codes pe-args}} 
(get-imp-codes pe-args} (all-known? pe-args)}})}) 

PE-BUILT-IN-NOEVAL-OEFAULT - Partially evaluate a built-in function, 
don't eval because of side-effects. 

(defun pe-built-in-noeval-default (proc-code proc-value pe-args run-env} 
(let ((code (make-combination proc-code (get-codes pe-args}})} 

(make-partial (make-unknown (send proc-value :return-type}} nil 
code (list code) nil}}) 

;; PE-PRINT - Partially evaluate an invocation of PRINT. 

(defun pe-print (proc-code proc-value pe-args run-env) 
(let ((arg (first pe-args)} 

(code (make-combination proc-code (get-codes pe-args}))} 
(make-partial (send arg :value) nil code (list code) (send arg :known?)))) 

,, PE-ANO - partially evaluate an invocation of AND. 

(defun pe-and (proc-code proc-value pe-args run-env) 
(cond ((send (first pe-args) :known?) 

(if (send (send (first pe-args) :value) :true?} 
(optimize-sequence (list (first pe-args)} (second pe-args}) 
(optimize-sequence pe-args (make-constant (make-bool~an nil})}}) 

((send (second pe-args} :known?) 
(if (send (send (second pe-args} :value} :true?) 

(optimize-sequence (list (second pe-args)} (first pe-args}) 
(optimize-sequence pe-args (make-constant (make-boolean nil))))) 

(t (let ((code (make-combination proc-code (get-codes pe-args)))} 
(make-partial (make-unknown 'IBOOLEAN:I) nil code 

(get-imp-codes pe-args) nil)}))} 

;; PE-OR - Partially evaluate an invocation of OR. 

(defun pe-or (proc-code proc-value pe-args run-env} 
(cond ((send (first pe-args) :known?) 

(if (send (send (first pe-args) :value) :true?} 
(optimize-sequence pe-args (make-constant (make-boolean t))) 
(optimize-sequence (list (first pe-args)) (second pe-args)))) 

((send (second pe-args) :known?} 
(if (send (send (second pe-args} :value) :true?) 

(optimize-sequence pe-args (make-constant {make-boolean t})) 
(optimize-sequence (list (second pe-args}} (first pe-args)))) 

(t (let ((code (make-combination proc-code (get-codes pe-args)))) 
(make-partial (make-unknown 'IBOOLEAN:I} nil code 

(get-imp-codes pe-args) nil))))) 



;; PE-CAR - Partially evaluate an invocation of CAR. 

(defun pa-car (proc-code proc-value pe-args run-env) 
(let ((arg (first pe-args))) 

(if (listp (send arg :partial-code)) (funcall (car (send arg :partial-code))) 
(let ((value (if {listp (send arg :value)) {car (send arg :value)) 

(make-unknown nil)))) 
(cond {{invnutable7 value) 

(optimize-sequence pe-args {make-constant value))) 
((in-env? value run-env) 
(optimize-sequence pe-args {make-variable-partial value run-env))) 

{t (make-partial value nil 
(make-combination proc-code (get-codes pe-args)) 
{send arg :side-effects) (send arg :known?)))))))) 

;; PE-CDR - Partially evaluate an invocation of CDR. 

(defun pe-cdr (proc-code proc-value pe-args run-env) 
(let ((arg (first pe-args))) 

(if (listp (send arg :partial-code)) (funcall (cdr (send arg :partial-code))) 
(let ((value (if {listp (send arg :value)) (cdr {send arg :value)) 

(make-unknown nil)))) 
(cond ((invnutable? value) 

(optimize-sequence pe-args (make-constant value))) 
((in-env? value run-env) 
{optimize-sequence pe-args (make-variable-partial value run-env))) 

{t (make-partial value nil 
(make-combination proc-code (get-codes pe-args)) 
(send arg :side-effects) {send arg :known?)))))))) 

;; PE-CONS - Partially evaluate an invocation of CONS. 

(defun pe-cons (proc-code proc-value pe-args run-env) 
(let ((argl (first pe-args)) 

(arg2 (second pe-args))) 
(make-partial (cons (send arg1 :value) {send arg2 :value)) 

{cons (let-closed {(largl argl) 
{larg2 arg2)) 

#'(lambda() {optimize-sequence {list larg2) largl))) 
(let-closed {{larg1 argt) 

{1arg2 arg2)) 
#'{lambda() (optimize-sequence (list larg1) larg2)))) 

{make-combination proc-code {get-codes pe-args)) 
(get-imp-codes pe-args) side-effects 
{all-known? pe-args)))) 

;; PE-TYPE - Partially evaluate an invocation of TYPE. 

(defun pe-type {proc-code proc-value pe-args run-env) 
{let {{arg (first pe-args))) 

{let {{result (get-type {send arg :value)))) 
{if result (optimize-sequence pe-args {make-constant result)) 

(make-partial (make-unknown 'IKEYWORD:I) nil 
(make-combination proc-code {get-codes pe-args)) 
(send arg :side-effects) nil))))) 

;; PE-APPLY - Partially evaluate an invocation of APPLY. 

{defun pa-apply (proc-code proc-value pe-args run-env) 
(let ({func (first pe-args)) 

{nospread-args {second pe-args))) 
{if (and (send func :known?) 

(send nospread-args :known?) 
{send nospread-args :applicative?)) 

{let ((func-value {send func :value)) 
(func-code {send func :code)) 
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(args (spread-args (send nospread-args :value) nospread-args run-env 
(lookup 'car 0 global-environment) 
(lookup 'cdr 0 global-environment)))) 

(selectq (typep func-value) 
(built-in-func (funcall (send func-value :pe-func) 

func-code func-value args run-env)) 
(lambda (pa-lambda func-code func-value args run-env)) 
(otherwise (let ((code (make-combination func-code {get-codes args)))) 

{make-partial (make-unknown nil) nil coda 
{list code} nil}}))} 

{let (Cc.ode {make-combination proc-code (get-codes pe-args)))) 
{make-partial {make-unknown nil) nil code {list code) nil))))) 

SPREAD-ARGS - Given a PARTIAL representing an argument-list, and 
the value of the argument-list, create a list of PARTIALS corresponding 
to that argument-list. 

{defun spread-args {args nospread run-env car-value cdr-value} 
{if (null args) nil 

(cons {pe-car car-value car-value {list nospread) run-env) 
(spread-args {cdr args) 

{pa-cdr cdr-value cdr-valua (list nospread) run-env} 
run-env car-value cdr-value))}} 

;; OPTIMIZE-SEQUENCE - Make an optimized SEQUENCE form by eliminating applicative 
; ; sub-forms. 

(defun optimize-sequence (forms result) 
(let ((imp-codes (get-imp-codes forms))) 

(if (null imp-codes) result 
(make-partial (send result :value) nil 

(make-sequence-form '(,@imp-codes ,(send result :code))) 
'{,@imp-codes ,8(send result :side-effects)) 
(send result :known?))))) 

;; GET-IMP-CODES - Get the list of imperative expressions from a list of 
partially-evaluated forms. 

{defun get-imp-codes (forms) 
{apply #'append {mapcar #'{lambda (form) 

{send form :side-effects)) 
forms))) 

;; MAKE-UNKNOWNS - Makes a· list of unknown values corresponding to the input. 

{defun make-unknowns {required rest) 
{if (null reqvired) (make-unknown nil) ; for the REST parameter (if any) 

{cons (make-unknown nil} 
(make-unknowns (cdr required) rest}))) 

,, COLLECT - Collect all items from a list that pass a predicate. 

{defun collect (1st pred) 
(cond {{null 1st) nil) 

({funcall pred {car 1st)) {cons (car 1st) (collect (cdr 1st) pred))) 
(t {collect (cdr 1st) pred)))) 

;; ALL? - Checks if all elements of a list pass a predicate. 

{defun all? {1st pred) 
{if (null 1st) t 

(and {funcall pred {car 1st)) 
{all? {cdr 1st) pred}))) 

,, ONE? - Checks if at least one element of a list passes a predicate. 



(defun one? (1st pred) 
(if (null 1st) nil 

(or (funcall pred (car 1st)) 
(one? (cdr 1st) pred)))) 
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GET-CODES - Get the code part of a list of partially evaluated values. 

(defun get-codes (values) 
(mapcar #'(lambda (value) (send value :code)) values)) 

;; GET-VALUES - Get the value part of a list of partially evaluated values. 

(defun get-values (values) 
(mapcar #'(lambda (value) (send value :value)) values)) 

;; ALL-KNOWN? - Checks if all values are known. 

(defun all-known? (values) 
(all? values #'(lambda (value) (send value :known?)))) 

; ; ONE-KNOWN? - Checks if at least one value 1s k.nown. 

(defun one-known? (values) 
(one? values #'(lambda (value) (send value :known?)))) 

;; All-APPLICATIVE? - Checks if all values are applicative. 

(defun all-applicative? (values) 
(all? values #'(lambda (value) (send value :applicative?)))) 

:; MAKE-CONSTANT - Make a partially-specified value that d~notes a constant. 

(defun make-constant (value) 
(make-partial value nil value nil t)) 

; ; GET-VALUE -

(defun get-value (exp) 
(if (typep exp 'partial) (send exp :value) 

exp)) 

,, IMMUTABLE? - Is a value immutable? 

(defun immutable? (value) 
(or (fixnum? value) 

(nil? value) 
(boolean? value) 
(string? value) 
(built-in-tune? value) 
(symbol? value) 
(keyword? value))) 
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