
MIT/LCS/TR-320

COORDINATING PEBBLE MOTION ON GRAPHS,

THE DIAMETER OF PERMUTATION GROUPS, AND APPLICATIONS

Daniel Martin Kornhauser

This blank page was inserted to presenie pagination.

COORDINATING Pl.~BBLE MOTION ON GRAPHS,
THE DIAMETER OF PERMUTATION GROUPS, AND AJ'PLICATIONS

by

DANIEL MARTIN KORNHAUSER

submitted to the

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May, 1984

© Massachusetts Institute of Technology, 1984

Signature of Author ______________________ _

Department of Electrical Engineering and Computer Science

May 11, 1984

Certified by ________________________ _

Prof. Gary L. Miller
Thesis Supervisor

Accepted by ________________________ _

Prof. Arthur C. Smith

Chairman, Department Uommittee

COORDINATING PEBBLE MOTION ON GRAPHS,
TIIE DIAMETER OF PERMUTATION GROUPS, AND APPLICATIONS

by
Daniel Martin Kornhauser

Submitted to the Department of Electrical Engineering and Computer Science
on May 11, 1984, in partial fulfillment of the requirements for

the degree of Master of Science

ABSTRACT

The problem of memory management in totally distributed computing systems
leads to the following movers' problem on graphs:

Let G be a graph with n vertices with k < n pebbles numbered l, ... ,k on distinct
vertices. A move consists of transferring a pebble to an adjacent unoccupied vertex.
The problem is to decide whether one· arrangement of the pebbles is reachable from
another, and to find the shortest sequence of moves to find the rearrangement when it
is possible.

In the case that G is biconnected and k = n -1, Wilson {1974) gave an efficient
decision procedure. However, he did not determine whether solutions require at most
polynomially many moves. We generalize by giving a P-time decision procedure for all
graphs and any number of pebbles. Further, we prove matching O(n3) upper and lower
bounds on the number. of moves required, and show how to efficiently plan solutions.

It is hoped that the algebraic methods introduced for the graph puzzle will
be applicable to special cases of the general geometric movers' problem, which is
PSPACE-hard {Reif (1979)).

We consider the related question of permutation group diameter. Driscoll and
Furst (1983) obtained a polynomial upper bound on the diameter of permutation groups
generated by cycles of bounded length. By making effective some standard results in
permutation group theory, we obtain the following partial extension of their result to
unbounded vcydes:

If G (on n letters) is generated by cycles, one of which has prime length p < 2n/3,
and G is primitive, then G = An or Sn and has diameter less than 26~1'+4n8• This is
a moderately exponential bound.

Thesis Supervisor: Prof. Gary L. Miller

Title: Associate Professor of Applied Mathematics

2

A ck now ledge m<'n Ls

I wish to thank ~1.1.T. for its financial support during the research and writing of this
thesis.

I thank my advisor Gary Miller for his helpful suggestions and inspiration, and for
teaching me to be persistent aud to think in pictures.

3

TABLE OF CONTENTS

Abstract

Acknowledgements

Table of Contents

1. Introduction .

2. Basic Definitions and Results about Permutation Groups

3. Coordinating Pebble Motion on Graphs
3.1 Preliminary Remarks
3.2 Biconnected Graphs, one Blank

3.2.l Introduction
3.2.2 Proof of Theorem 1 . . .

3.2.2.1 Proof of Theorem 1 for T2-graphs
3.2.2.2 Proof of Theorem 1 for T1-graphs

3.2.3 Proof of Theorem 2
3.2.4 Statements and Proofs of the Lemmas

3.3 Separable Graphs, and Nonseparable Graphs with > 1 Blank
3.3.1 Introduction •
3.3.2 Details of the General Decision Algorithm
3.3.3 Proof of the Main Theorem

· 3.3.3.1 Proof of 5b
3.3.3.2 Proof of 6c . . .

A. Radiating Trees
B. General Trees
C. General Gi . . .

3.3.4 O(n3) Upper Bound
3.4 O(n3) Lower Bound

4. The Diameter of Permutation Groups
4.1 What is not of Exponential Diameter, and what might be
4.2 Results about the Diameter of Permutation Groups
4.3 Proofs of Theorems 1,2,3 and the Corollaries

4.3.1 Proof of Theorem 1
4.3.2 Proofs of Theorems 2 and 3

4.3.2.1 Proofs of the Lemmas
Proof of Lemma 2a • . • • •
Proof of Lemma 3a . . .

4.3.2.2 Proofs of Theorems 2 and 3
4.3.3 Proofs of the Corollaries

5. Conclusion and Open Problems

Bibliography

4

2

3

4

5

8

• 13
. . 13

. 15

. 15
. . 19

. 19

. 21

. 24

. 26

. 28
• 28
. 30
. 35
. 36
. 37

.. 37
...... 38.

. 39
.. 41

. ...• 42

. 43

. 43
• 45
. 47
. 47
. 50
. 51
. 52

. . 55
. 60

.• 64

. 65

. 66

1. Introduction

The management of memory in totally distributed computing systems is an
importanf1ssue in hardware and software design. On an existing hardware network
of devices, there is the problem of how to coordinate the transfer of one or more
indivisible packets of data from device to device without ever exceeding the memory
capacity of a device. Depending on the severity of the memory capacity, a considerable
number of intermediate transfers may be necessary to clear a "path" for the movement
of a data packet along a network. A combination of almost filled devices and a network
configuration with few p1iths can, in fact, make impossible the transfer of the data
packets intact.

Suppose we consider a simplified version of the above problem, where each device
has unit capacity and each packet occupies one unit of memory. Then at any moment
in time, any given device is either empty or is totally filled. Suppose also that at any
time each data packet resides in some device. It is also assumed that only one packet
may be moved at a time, from its current device to any empty immediately adjacent
device. Under these assumptions, it is interesting to know whether it is possible to start
from one given distribution of the packets in the network, and end with another given
rearrangement, and to know how many moves are required when the rearrangement is
possible.

This version of the network problem immediately translates into the following
movers' problem on graphs:

Let Gbe a graph with n vertices with k < n pebbles numbered 1, ... ,k on distinct
vertices. A move consists of transferring a pebble to an adjacent unoccupied vertex.
The problem is to decide whether one arrangement of the pebbles is reachable from
another, and to find the shortest sequence of moves to find the rearrangement when it
is possible.

It is seen that this latter problem is a generalization of Sam Loyd's famous
"15-puzzle". In this puzzle, 15 numbered unit squares are free to move in a 4x4 area
with one unit square blank. The problem is to move from one arrangement of the
squares to another. One can easily show that this puzzle is equivalent to the graph
puzzle on the square grid in Figure l•l, with 15 numbered pebbles on the vertices and
one blank vertex. 't v l ,... , •s •• •

15'-Pllult. ~
Figure 1 • 1 and Figure 1-2

•
•
"

I
I •
•
•

In the case that G is biconnected and k = n - 1, Wilson (1974) gave an efficient
decision procedure. However, he did not determine whether solutions require at most

fi

polynomially many moves. His approach involved deriving a 3-cyclc and 2-transitivity
(these terms are defined later). This basis is known to generate all possible even
permutations on the pebbles, but it is not immediately obvious that the basis is
efficient. Driscoll and Furst {DF] showed that this basis is efficient; we will show how
to use their result to obtain a O(n5) upper bound on the number of moves needed
for solution. However, we achieve a sharper upper bound by deriving 3-transitivity.
This is trickier to prove than 2-transitivity, but it enables us to obtain an O(n3) upper
bound for the number of moves required in the Wilson case.

Then we generalize by giving a polynomial time decision procedure for all graphs
and any number of pebbles, and we show that again at most 0(n3) moves are needed
and can he efficiently planned. Finally, we find an infinite family of graph puzzles for
which it is proved that 0(n3) moves are needed for solutions. Thus the upper and
lower bounds match to within a constant factor.

A topic of related interest, and the second main part of the thesis, is the subject
of permutation groups and their diameter with respect to a set of generators. Briefly,
the diameter of a permutation group G with respect to a set S of generators for G is
defined to be the smallest positive integer k such that all elements·of Gare expressible
as products of the generators of length at most k.

Consideration of the pebble coordination problem leads naturally to questions
about permutation groups. Consider the graph in Figure 1-2, with vertex t1 blank
and pebbles a1, ... , at, c1, ... , er, b1, ... , b8 , and y on the other vertices. It is seen that
any sequence of moves from this position will, upon the first return of the blank to
v, net one of the following permutations on the pebbles: A= (c1c2 ... cr11at·••a2a1) or
B = (ycr•••c2cib1"2 ... b,) or C = (b1"2, •• b.,yat•••a2a1) or A-1 ,B-1, c-1 or the identity

· permutation. Hence the set of rearrangements of the pebbles (with ti blank) is the
group of permutations generated by S = { A, B, C, A-1, B-1, c-1}. Deciding whether
a rearrangement is solvable amounts to testing membership of the corresponding
permutation in the group generated by S;. minimum number of moves is clearly related
to the shortest product of generators yielding the permutation.

We view the introduction of algebraic methods as useful for the solution of
movers' problems. Whereas general geometric movers' problems are PSPACE-hard
(Reif (1879)), it is hoped that the techniques introduced for the solution of the pebble
coordination problem may be applicable to special cases of the general geometric
problem.

We now briefly discuss the state of the art in permutation group membership and
diameter questions. Furst, Hopcrofi and Luks [FHL] give a polynomial time algorithm
for deciding whether a given permutation g is in G(S), the group generated by S.
Thus the analogue of the graph decision problem is in P. One also immediately has a
P-time criterion for deciding solvability of the Rubik's Cube and the Hungarian Rings
puzzles. The situation is not as fortunate when one tries to find the length of the
shortest generator sequence for a given permutation: Jerrum [J] has recently shown
this to be PSPACE-complete! The difficulty may be related to the fact that some
groups may have superpolynomial diameter. For example, the group G generated by
the single permutation {12)(345)(6789 10) ... (... s) wheres is the sum of the first n prime

6

numbers, can be shown to have diameter roughly on the order of zO(.fii) (see figure 1-3
for a mechanical realization of this group). '£his contrasts with the analogous question
for the pebble coordination problem, where no solution can ever require more than
0(n3

) moves. Therefore the group diameter question is in some sense more general,
and probably more difficult, than the corresponding question for pebble motion.

Figure 1-3 A geometrical movers' problem requiring exponentially many moves

There are nonetheless some interesting recent results concerning upper bounds on
group diameter, for special generating sets. Driscoll and Furst {DF] have shown that
if all the generators are cycles of bounded length, then the group has 0(n2) diameter
where n is the number of letters that the group acts on. More recently, McKenzie [M]
obtained the upper hound O(nk) on diameter for groups, each of whose generators
moves at most k letters. This is polynomial if k is bounded.

The foregoing results leave open the question of a group's diameter when the
generators are arbitrary (not of bounded length) cycles. In Chapter 4 we informally
discuss certain generalisations of the Hungarian Rings puzzle, and find sufficient
conditions for the required number of moves to be polynomial. Examples which do
not meet· these sufficient conditions are offered as possible candidates for groups with
superpolynomial diameter. However, this part of the chapter is speculative. The rest
of Chapter 4 consists of a number of new· results in permutation groups, which extend
classical theorems by providing upper bounds on diameter. We obtain the following
theorem as a corollary (all definitions will be given later):

If G (on n letters) is generated by cycles, one of which has prime length p < 2n/3,
and G is primitive, then G = An or Sn and has diameter lea than 26v'PHn8•

This upper bound is only moderately exponential, but is nonetheless super
polynomial. It remains of interest to know whether the bound can be significantly
improved, or whether the diameter really can be this large.

At the end of the thesis we present conjectures, open problems, and suggestions
for further research in movers' problems and permutation group diameter.

7

2. Basic Definitions and Results about Permutation Groups

We introduce some basic definitions and concepts in permutation groups which
will be needed to facilitate later discUEions.

A permutation is a one-to-one mapping from a finite set to itself. The set may
contain any objects, which are often referred to as letters. We often denote a set of n
objects by {1, 2, ... , n }, the first n positive integers.

We think of the integer i as representing a position which is occupied by a letter,
and a permutation as a mapping of positions. Thus a permutation which maps i to
j is thought of as moving the letter at position i over to position j. This distinction
between letter and position is assumed throughout, but usually will not be voiced.
Thus we will often speak of a "permutation on n letters" rather than a "permutation
on n positions" .

Suppose that a permutation p maps 1, 2, ... , n to r1, r2, ... , rn respectively. We can
represent the action of p by the notation

This indicates that a letter i is sent to the letter indicated directly below it. ff
a letter i is fixed by the permutation, it is often omitted for brevity of notation. For
example,

(
1 2 3 4 5 6) . bb . d
2 3 1 4 5 6

1s a rev1ate as (
123) .
231

The permutation on n letters which fixes all the letters is called the identity
permutation. We will abbreviate it here by() or ID.

ff a permutation p moves only letters at positions a1, a2, ... , a1; and sends ai to ai+l

for i = 1, ... , k- 1 and a1; to a1, then pis called a k- cycle. Its notation

is often abbreviated by

{a1a2 ... a1;). This new notation means that each letter that appears is to be mapped
to the letter appearing cyclically to its right, and letters not appearing are to be fixed.
A k-cycle is also called a cyclic permutation of k letters, or a cycle of length k. A
2-cycle is often called a transposition or a awap.

ff p and q are two permutations, then the product pq is defined as the composition
of the permutation p followed by q. It is easy to show that any permutation can be
expressed as a product of cycles, such that no letter appears in more than one cycle.
This is called a product of disjoint cycles. For example,

8

(l
2 3 4 5 6 7

) can ·be wriUen as the following product of disjoint cycles: (1426)(35).
4652317 · .

This product notati~is succinct, and it tends to give a clearer idea of the action
of a permutation on the lftters.

It is not hard to shew that any permutation on n letters can be written as a
product of at most n - 1 transpositions (not necessarily disjoint). For example, (1 2
3) = (1 2)(1 3). A permutation is said to be even if it is expressible as a product of
an even number of transpositions, otherwise it is said to be an odd permutation. For
example, any 3-cycle (a1a2a3) is an even permutation since (a1a2a3) = (a1a2)(a1a3) is
a product of two transpositions. If p is an even permutation, we can abbreviate this
by saying that "p is even,,. It can be shown that a permutation is either even or odd,
but not both.

Let Sn denote the set of all permutations on n letters. It is a group under the binary
operation of composition. Similarly, let An denote the group of all even permutations
on n letters. (It is a group because the product of two even permutations is even, and
the inverse of an even permutation is even.)

A group G of permutations on n letters (i.e. a subgroup of Sn} is said to be
k-transitive if, for any k distinct letters a1, ... , ak and any other (possibly overlapping
set of) k distinct letters b1, ... , b10 there exists a permutation p E G which sends ai to
bi, i = 1, ... , k (and may or may not move other letters). A I-transitive group is simply
said to be transitive. For example, G = {(123), {132), ()} is a transitive group on three
letters but is not 2-transitive.

A useful fact is that for G to be k-transitive, it is sufficient that there exist a (fixed)
set of letters c1, ... , Ck such that any set a1, ... , ak can be sent to c1, ... , c1c respectively.
Proof: to send a1, ... , ak to b1, ... , bk, first send a1, ••. , a1 to c1, ... , ck; then perform
the inverse of a permutation which sends b1, ... , b1 to c1, ... , c1. This sends c1, ... , c1 to
b1, ... , bi, so the composition sends a1, ... , a1 to b1, ... , bi.

It is immediate that Sn is n-transitive. It is also easy to show that A.a is
n - 2-transitive: to send a1, ... , On-2 to b1, ... , bn-2, observe that as

differ by a transposition, one of them must be even, and so must be in A.a.
Let S = {p1, ... ,p1} be a finite set of permutations on n letters. Let G be the

set of permutations formed by products of any elements of S with any number of
repetitions. Then G is clearly a group, called the permutation group generated by S.
We write G = G(S). The elements of S are called the generators. Hg E G, then g
can be written as a product of generators. Such a product is called a word, and the
length of the word is the number of terms in the product (including repetitions). The

diameter of G(S), written diam(G(S)), is the smallest positive integer k such that
every g E G is expressible as a word of length k or less.

We now prove the following important fact used extensively later on:

An is generated by the set of all 3-cycles on n letters, and any element of An is
expressible as a product of at most n - 2 3-cycles.

Proof. Let S be the set of all 3-cycles ·on n letters. A 3-cycle is even, so G(S) is
a subgroup of An, To show that G(S) = An, we show that An is a subset of G(S), as
follows. Let p E An send a1, ... ,an to bt,···,bn respectively. The 3-cycle Pt= (a1b1ct)
(for any letter c1 besides a1, bi) sends a1 to b1. If a2 is not sent to b2 by Pl, we multiply
Pt with P2 = {P1(a2)~c2) where c2 is not bi, and then PtP2 takes a1 to b1 and a2 to
bi. Continuing in this way, let Pk = (Pt* ... *Pk-1(ak)bkck) where Ck is not b1, ... , bk-1•
Then by induction Pt * ... *pk sends a1, ... , a1 to b1, ... , bk respectively. This succeeds up
to and including k = n - 2, after which Ck+t cannot avoid b1, ... , b1e. But we have
already have moved all but two letters to their destinations, by a product of n - 2 or
fewer 3-cycles. Now, this product must also take the last two letters to their proper
spots, for if instead they were interchanged we would have an odd permutation, which
is impossible.

This completes the proof, which is in fact an efficient algorithm for representing
a permutation in An as a product of < n - 2 3-cycles. In an exactly similar way we
can show that any element of Sn is a product of at most n -1 swaps.

Let us now define conjugation and give a few of its basic properties. If S and T
are permutations, we define S conjugated by T as the permutation T- 1ST. Property:
If Stakes letter a to b, then r-1sT takes T(a) to T(b). For T- 1ST takes T(a) first to
a, then to b, and finally to T(b). From this property it follows that if

then

That is, to conjugate S by T, simply replace each letter in the cycle structure of
S by its image under T. Hence conjugation may change the underlying set of letters
moved, but does not change the cycle structure of a permutation.

From the property of conjugation just described, it is immediate that the conjugate
of a k-cycle is again a k-cycle. An important fact which we will use often in what
follows is:

If G has a permutation which is a k-cycle, and G is k-transitive, then G contains
all k-cycles.

For if S = (a1 ... ak) E G, then for any distinct letters b1, ... , b1e we can find TE G
which maps a1, ... , a1e to bi, ... , b1e respectively (by k-transitivity). Then by the property
of conjugation given in the previous paragraph, T-1sT = (b1 ... bk)· As r-1sT is in

10

G, so is (b1 ••• bk)• As b1, ... , bk are arbitrary letters, we conclude that G contains all
k-cycles. ·

When /c = 3 we get the useful result that, if G contains a 3-cycle and G is
3-transitive, then G = An or Sn, For G contains all 3-cycles, and therefore contains
An; it follows that G = An or Sn, since it is easy to show that An is a subgroup only
of An and Sn•

We now define the notion of primitivity. A block of a group G on n letters is a
subset B of the letters with the property that for all gin G, g(B) = B or g(B) and B
have empty intersection. Informally, a block is a set of letters that always maps either
exactly onto itself or completely outside of itself. Clearly the empty set, the set of all
n letters, and each set of a single letter, are all blocks of G, no matter what the group
G~ For this reason, these are called trivial blocks~ A group G with no nontrivial blocks
is called primitive.

Some properties of primitive groups:

1. G primitive implies G is transitive. For if G were not transitive, then consider
the set G(a) of places that the letter a is mapped by various permutations of G (where
a is not fixed by all of G). G(a) is clearly a block of G. However, G(a) contains at least
two letters, and G(a) cannot be all n letters because G is assumed intransitive. Hence
G(a) is a nontrivial block, so G is imprimitive, contrary to hypothesis.

2. G 2-transitive implies G is primitive. For let B be any set of two or more, but
less than n letters. Let a1, a2 be in B, and let a3 be outside of B. Then by 2-transitivity
there is a g E G which maps (a1, a2) to (a1, a3). Hence this g maps B onto part of itself,
so B is not a block. Since B was arbitrary, we conclude that G is primitive.

3. The following is an especially useful property:

G is primitive if and only if, for any nonempty proper subset B of the. n letters,
and any distinet letters a, b, there is a permutation in G which maps one letter into B
and the other letter outside of B.

Proof.

The right side of the "if and only if" clearly implies that G is primitive, in the
same way as we proved property 2. For the converse, let G be primitive. Let B be
any nonempty proper subset of the n letters. Say that a is equivalent to b if for all
g E G we have that g(a) E B ilf g(b) E B. This is easily checked to be an equivalence
relation on the n letters. Let B1 = { a1, ... , a1:} be an equivalence class. We will show
that the right hand side of the "iff" holds by proving that k must equal 1. For any
g E G, g maps all of B1 into B or all of B1 outside of B. Since Bis a nonempty proper
subset of then letters, we see that B1 cannot be the full set of n letters. Also observe
that for any equivalence class B1 and any g E G, g(B1) = B2 is also an equivalence
class. For the letters of B1 are equivalent, so the letters of BJ, are also equivalent. H B2
were not an equivalence class but rather a proper subset of an equivalence class Ba,
then the letters of g-1(B3) would be equivalent and contain B1 as a proper subset; this
contradicts the assumption that B1 is an equivalence class. Thus any image of B1 is an
equivalence class, and since equivalence classes are identical or disjoint, we conclude

11

that B1 is a block. Since G is primitive, B1 must be a trivial block; since B1 is not all
n letters, B1 must consist of a single letter. This completes the proof of property 3.

In fact the following slightly stronger property holds, but we do not need it in
what follows.

G is primitive if and only if, for any nonempty proper subset B of the n letters,
and any distinct letters a, b, there is a permutation in G which maps a into B and b
outside of B.

The proof may be found in [Wielandt, p.15}.

A group which is not primitive is called imprimititJe.

We now derive one more useful fact which will be used later, namely:

2-transitivity can be accomplished in wordlength < n2, independent of the
generator set. More precisely, for any generating set S, and any a1 -::/, a2, b1 7'= b2, we
can find a g E G which moves a1,a2 to b1,b2 respectively and has wordlength < n 2•

Proof

Form a directed graph with a vertex for each ordered pair of distinct letters,
and a directed edge from (c1,c2) to (d1,d2) iff some generators takes c1,c2 to d1,d2
respectively.

Now, starting on the vertex corresponding to (a1, a2), we want to find a directed
path to the vertex corresponding to (b1, b2). Such a path exists since we are assuming
that S generates a _2-transitive group. The path can clearly be taken to be simple,
i.e. no vertex is visited more than once; for a nonsimple path can be made simple by
removing the closed "loops" from the path. Since there are n(n - 1) < n2 vertices on
the graph, the path must have length < n2• This yields a word of length < n2 which ·
effects the desired 2-transitive operation, and the proof is complete.

We can effectively find a word shorter than n2 which gives 2-transitivity, as follows:
begin at the start vertex, and follow each directed edge which leads to another vertex.
Then starting at each of these new vertices, follow each directed edge which leads to
a vertex not previously visited. Repeat this until we reach the target vertex. Since
no edge is examined more than once, the running time of this algorithm is at most
IEI < 1v12 < (n2)2 = n•.

In a similar way, we can do primitive operations efficiently. That is, for a proper
subset B of {1, 2, ... , n}, and distinct letters a, b, we can find a g E G with wordlength
< n2 which moves one letter into Band the other letter outside of B. The method is
the same as for 2-transitivity, but now any vertex corresponding to a desired image of
(a, b) is an acceptable target vertex. With more than one target vertex, the length of
the path can only get shorter; similarly the search time can only get less.

The above result on 2-transitivity can immediately be generalized to Jc-transitivity:
a k-transitive operation can be performed in wordlength < nk, and the search time
for finding such a word is < n2k. [DF] gives a proof of this result which is similar to
our proof.

12

3. Coordinating Pebble Motion on Graphs

3.1. Preliminary Remarks

In this chapter we will tackle the pebble coordination problem given m the
introduction:

Let G be a graph with n vertices with k < n pebbles numbered 1, ... ,k on distinct
vertices. A move consists of transferring a pebble to an adjacent unoccupied vertex.
The problem is to decide whether one arrangement of the pebbles is reachable from
another, and to find the shortest sequence of moves to find the rearrangement when it
is possible.

Before describing the details of the decision algorithm and 0(n 3
) upper and lower

bounds on number of moves, we first make the simplifying assumption that the set of
unoccupied vertices of G is the same in both the initial and final arrangements. One
reason for this assumption is that the analysis becomes simpler. Move sequences which
do not change the set of unoccupied vertices induce a permutation on the tokens in
a natural way. The set of permutations induced by such move sequences is clearly
a group, and we can apply notions of permutation groups to the problem. On the
other hand, if the unoccupied vertices are not the same from start to end position,
then it is less natural to assign permutations to actions on the tokens. The other
justification is that any graph puzzle can easily be reduced to a graph puzzle satisfying
the assumption. This follows from the following Lemma.

Lemma

For any connected graph G with n vertices, and a placement of k < n pebbles
on k distinct vertices (with the other vertices blank), it is possible to reach a position
where any k desired vertices are covered by pebbles. The number of moves required is
at most 0(n2).

Suppose we want to get from position P1 to position P2, Use the Lemma to move
from P2 to a position P~ which has the same vertices unoccupied as in P1. Clearly we
can reach P2 from P1 if and only if we can reach~ from P1. Hence we decide arbitrary
puzzles by reducing them to the assumed form, then deciding the puzzle in this form.
Upper and lower bounds 0(n3) are valid for arbitrary puzzles, once we establish these
bounds for puzzles satisfying the assumption, because at most O(n2) moves (which is
absorbed in the O(n3) term} are needed to change to the assumed form.

Hence from now on, we assume without loss of generality that the initial and final
positions of the puzzle have the same vertices unoccupied.

Proof of the Lemma

Perform the following procedure.

A. Find a minimum spanning tree T for G. We will obtain the desired position by
only making moves along edges of T.

B. If T is empty, terminate the procedure. Otherwise, select any "branch end"
of T, i.e. a vertex v with valence 1 in T. If v is desired to have a pebble on it and v

13

already has a. pebble, or if v is desired to unoccupied and v is currently unoccupied,
then "prune" v from T, and go to step B.

Otherwise, suppose vis unoccupied and is desired to have a pebble. Select a pebble
which is the minimum distance from v on T. Then the path from the pebble to v is
clear of pebbles. Move the pebble along the path to u, prune u from T, and go to step
B.

Or, suppose v is occupied and is desired to be unoccupied. Find an unoccupied
vertex u which is the minimum distance from v on T. Then the path from u to v has
pebbles on each vertex except u. Move each pebble on the path one edge towards u
{start with the pebble next to tt., then move each pebble in turn until the pebble on v
moves off of V). This makes " unoccupied. Prune " from T, and go to step B.

Note that each application of step B puts another pebble or space into place,
without disturbing the placements made during previous applications of step B.
Therefore the procedure terminates with tokens on the desired vertices, and the other.
vertices blank. Since clearly at most n moves are made at each application of step
B, and step B is executed n times, the total number of moves required is < n2• This
proves the Lemma.

The Graph Puzzle

We now solve the decision aspect of the pebble coordination problem. It turns
out to be natural to divide the analysis into two cases: 1. Biconnected graphs with
all but one vertex occupied (the Wilson case) 2. All other cases (unconnected graphs,
separable graphs, and the biconnected case with at least two blanks).

We remark that the Wilson case is the more interesting from the group theoretical
point of view. It can be shown tha.t graphs without closed paths need at most O{n2)

moves to solve; it is the loop structure of biconnected graphs which results in some
puzzles requiring O{n3) moves.

In what follows, we will assume that all graphs are simple, that is, no two vertices
are directly joined by more than one edge, and no vertex is joined to itself by an edge.
It is clear that if a graph G is nonsimple, we can remove the "extraneous" edges to get
a simple graph G', and the graph puzzle on G' is exactly equivalent to that on G, both
with respect to solvability and the number of moves needed to solve it. For the extra
edges neither help nor hinder solutions. Hence there is no loss of generality in making
this assumption.

Before we proceed, let us describe precisely how the transformation from one
position to another de.fines a permutation on the pebbles. Denote the vertices on which
pebbles initially reside by v1, ... , Vfi:. Suppose that after a sequence of moves, the pebble
initially on 11, ends up at 11;,, i = 1, ... , k, where 11;1 , ••• , v;,. is the same vertex set as
vi, ... , Vfc but possibly in a different order. Then we define the permutation induced by
the sequence of moves to be

(
123 ... k)
ii ia ... i1c .

14

This is a natural way to define permutations on the pebbles induced by a change
in configuration.

3.2. Biconnected Graphs, one Blank

3.2.1. Introduction

We introduce Wilson's theorem, and prove it in a way which we believe is simpler
than the original proof. This new proof enables us to obtain a 0(n3) upper bound on
the number of moves needed for solution.

A connected graph G is said to be separable if, by removing some vertex v and all
edges incident to v, one obtains two or more connected graphs. Separable graphs are
also called 1 - connected because the deletion of one vertex will disconnect the graph.
A vertex which separates the graph in this way is called a cutpoint. Observe that the .
property that vertex v is a cutpoint, is equivalent to the property that there exist v1, v2
in G such that all paths between them pass through v. A biconnected or nonseparable
graph is defined to be a connected graph which is not separable. At least two vertices
must be removed to disconnect a biconnected graph. Any biconnected graph, except
for the graph consisting of two vertices joined by an edge, has the property that the
removal of a single edge cannot disconnect the graph. For if an edge e separated the
graph, then either of the two endpoints of e with valence > 1 (at least one has valence
> 1 unless we have the graph just mentioned} is a cutpoint.

A path pin a graph G is a sequence p = [xo, xi, ... , xn] of vertices of G s.t. Xi-1

and Xi are adjacent in G, i = 1, 2, ... , n. Such a path pis said to he ''from xo to Zn".

The path pis simple when xo, x1, •.. , Xn are distinct, with the possible exception that
xo = Xn, in which case p is a simple closed path. Define a polygon to be a graph
consisting of a simple closed path containing at least two vertices. A polygon looks
like a "loop" containing two or more vertices. Let Go be the graph consisting of two
vertices joined by an edge. Let To be the graph shown in Figure 3-1.

• •

Figure 3-1 Go, To, and a Polygon

Theorem 1 (Wilson)

Let G be a biconnected graph on n vertices,' other than: a polygon or To, with one
blank vertex. If G is not bipartite, then the puzzle is solvable. If G is bipartite, then
the puzzle is solvable Hf the permutation induced by the initial and final positions is
even.

Bipartitism can be tested in O(E} time, E the number of edges of G. The
permutation can he calculated in product of cycles form in 0(n) time on a random

15

access machine; then the parity can be checked in an additional O(n) time. Hence
Wilson's criterion takes O(E) time.

For G a polygon, only cyt;lical rearrangements of the tokens are possible, so it is
easy to check reachability in this case in O{n) time. For the special graph To, we can
simply precalculate (by exhaustive search) a table of all pairs of positions, indicating
which pairs are mutually reachable. Table lookup is constant time, hence we have a
O(E) decision algorithm for all biconnected graphs with one blank.

It wiU turn out as a special case of the next section, that the biconnected case
with two or more blanks is always solvable.

Theorem 2

Let G be a biconnected graph. Let n = IV(G)I- If labeling g can be reached from
labeling f at all, then this can be done within O(n3) moves, and such a sequence of
moves can be efficiently generated.

First we sketch the proof of Theorem 1; then the full proof will be given. We will
then prove Theorem 2.

Sketch or Proof of Theorem 1

It is a well-known fact in graph theory that a biconnected graph, other than Go,
can be viewed as being "grown", by starting with a polygon graph and successively
adding zero or more "handles". To be precise, let G be a biconnected graph besides Go.
Select any vertex v in G, and any vertex w adjacent to v in G via an edge e. Since G is
biconnected and not Go, removing e will not disconnect G, hence there must be a path
(which can be chosen to be simple) from w to" which does not traverse e. Combining
the path from v tow along e, with a simple return path from w to" which avoids e,
yields a polygon. If this polygon H does not contain all vertices of G, then let w1 be a
vertex in G-H which is adjacent to a vertex u1 in H via an edge e1. Then, reasoning
as before, there is a simple path from w1 to a vertex in H, which avoids the edge e1.
The augmentation of this path to H looks like "adding a handle to H". Proceeding in
this way, we continue adding handles until the augmented graph contains all vertices
of Q; At this point, we have all of G except perhaps for some edges. Add these edges
one by one to the augmented graph till we have the entire graph G (we can think of
these final edges as vertex-free handles).

A biconnected graph which can be "grown" by adding i handles to a polygon,
appears pictorially to consist of i + 1 simple loops joined together in some way. This
number of loops is called the Betti number of the graph, and we denote it by B(G).
It can be shown that for a general graph G, B(G) = IE(G)I - IV(G)I + 1 . We will
often denote a biconnected graph with Betti number i by the term Ti•graph. Wilson's
theorem will be proved by induction on the Betti number of the graph. We skip the
Ti-graphs (the poly_gons) and begin the induction with the T2-graphs (except To).

The main step is to show that the group of possible induced permutations always
contains the alternating group An-1 on the n -1 pebbles. The final step is to determine
whether the group is An-1 or Sn-1· The group will be Sn-1 iff it contains an odd
permutation, and it is easy to see that there is an odd permutation i1f the graph has

16

a closed path of odd length. As a graph _has a closed path of odd length HI it is not
bipartite, we see that the group is An- I if the graph is bipartite, and Sn- I if the graph
is not bipartite. Therefore, to check solva.bility on a bipartite graph, it is necessary and
sufficient that the induced permutation be even; on a nonbipartite graph, the puzzle
is always solvable. -

To show that the group of induced permutations contains the alternating group,
we show how to obtain a 3-cycle and how to obtain 3-transitivity. We know how to
generate the alternating group from this basis, by Chapter 2. ·

A 3-cycle is obtained roughly as follows. A T2-graph looks like that pictured in
Figure 3-2. Let vertex v be blank, and pebbles ai, ... , at, c1, ... , c.,., bi, ... , b0 and yon the
other vertices.

•
•
• •

-

Figure 3-2 A T2-graph; Graph G1

•
•
•

Assume first that r = 0, i.e. the center arc has no internal vertices. A= (yat, .. ai)
and B = (b1 ... b8 y) are permutations induced by moving pebbles around, respectively,
the left or right loops. Then ABA-1 n-1 = (yb.a1), a 3-cycle. If r > 0, then ABA-1 n-1

is a product of two swaps; we will show in the full proof how to obtain a 3-cycle from
this, if the graph induces 4-transitivity. It turns out that the graph To is the only
T2-graph which does not induce a 3-cycle. We then show that all Ti-graphs, i > 2 give
a 3-cycle, because they are formed by adding handles to a Ta-graph which can induce
the 3-cycle. The hole in the induction due to To will be taken care of with no difficulty.

3-transitivity will also be shown by induction. It will be shown that all T2•graphs
except the graph G1 shown in Figure 3-2 are 3-transitive, by a simple Lemma. Then
we show how adding a handle to a 3-transitive graph yields a 3-transitive graph. The
hole in the induction due to G1 will be handled without trouble.

Putting 3-cycle and 3-transitivity together, we will conclude that all ~-graphs,
i > 2, generate at least the alternating group, except To.

In Wilson's proof, a 3-cycle and 2-transitivity are derived. This basis generates
An, but Wilson did not examine how efficiently it does so. [DF] showed that the
diameter is 0(n5) if the 3-cycle is considered to be one of the generators. The proof is
essentially this: 3-cycle + 2-transitivity generates An which, for n > 5, is 3-transitive
(if n < 5, the diameter is 0(1), so we're done in this case). Now, 3-transitivity can be
accomplished in wordlength O(n3) (see Chapter 2), so by conjugation, any 3-cycle has
wordlength O(n3). (On a biconnected graph, we can choose the generators to be cycles
around loops, and their inverses. So the introduction of inverses, due to conjugation,
does not increase the wordlength.) Since any element of An is a product of O(n)

17

i .

3-cycles, this gives A" a. diameter of O(n4). Since (as jwit mentioned) the generators
· can be chosen to be cycles, a.ad. cycles ~ O(a) _,.. ea • l'aph, the total awaber
or me>ves ill O(n1). .

. Incidentally, Theorem 2 of Chapter 4 implies C, == S acl ~m(H(S)) =O(l}}
that a 2-trauitiv.- gre>Gp .wiiJl a 3-eyde u -. Alf NI .,...._.,. mtlllleW O(ti1);

but this bound aAOt u gaoil as the O(n4)jut •••· .
· We achieve t;iie_ Illa-,. apper io1aad et Df-8} ::tty obt.aiaing 3-trall8Kmty

directly from the graplt ia O(n1} movea. Tile.._....._ oMeins J.tru.tit.Wil7 ia
wo~engtlt. 0(111), whidl --••·O(,t•) 1.1- -..1 • • •r _bound it helter .

. Our prootot 1-traaaitirit, oa •aplil•it nJirdnl; .-,, • •hlf>Jia clealiag ·witla· paph
Gi, bat it giVN t.he aharp upper bo~,.. wiU aee·latier ia 6ia dlapter that the 'boui1d
is optimal to within a C'.ODM.aat factor. ·

11

3.2.2. Proof of Theorem 1

We will prove Theorem 1 by induction on the Betti number.

3.2.2.1. Proof of Theorem 1 for T2-graph■

As the basis step, we prove Theorem 1 for biconnected graphs G with B(G) = 2,
the T2-graphs (except To)-

Let G be a T2-graph other than To.

Let x and y be the vertices with valence 3. Let the three arcs from x to y have
respectively t, r, s internal nodes where t > s > r, drawn here with the loop having
t on the left and the loop having s on the right. Note that s > 0 as G is simple. Put
the blank token at :r; (see Figure 3-2).

We wish to show that An-1 is a subset of the possible permutations on then -1
pebbles. The strategy will be to gene.rate a 3-cycle and to obtain 3-transitivity, so that
all other 3-cycles are obtained. This will give us all of An-1, since as is well known,
the 3-cycles generate the alternating group.

Let A be the permutation induced by moving . pebbles around the path
(:r:c1 ... CrYGt,,.a1:r:] . This in effect clockwise "rotates" the pebbles on the left loop.
Similarly let B be the permutation induced by the path (xb1 ••• b,11cr ... c1:r:]; i.e. the
clockwise rotation of the pebbles on the right· loop.

Claim: A and B generate at least An-t•
Proof of Claim

Let K be the group generated by A and B.

a) If r = 0, then ABA-1 n-1 gives the 3-cycle (at11b1). (t ~ 0) b) If r > O, then
ABA-1s-1 gives the permutation (t1t11)(c1b1).

Now if K is 4-transitive, then in case a) we get (using just 3-transitivity) all
3-cycles and so the alternating group. In case b), we can use 4-transitivity to get
all pairs of disjoint transpositions. Using (1 2)(3 4) and (1 2)(4 5) so obtained, their
product gives us (3 5 4), a 3-cycle. Then use 3-transitivity to obtain all 3-cycles and so
the alternating group.

By Lemma 1 (stated and proved at the end of this section), we have 4-transitivity
if t > 3. Hence all that remains is to prove the claim for those T2-graphs with t < 3.
These have t, s, r respectively:

i) (2 2 2)

ii) (22 1) = To

iii) (2 2 0)

iv) (2 1 1)

v) (2 1 0)

vi) (111)

vii) (1 1 0)

19

It will be seen presently that the claim is true for each of these cases; this will
complete the proof of the claim.

'

(i)
Figure 3-3 i,ii,iii,iv

i) (2 2 2} :

'

(.ii) (.. · .) f I I Ov)

ABA-1B"""1 gives (a2y)(c1bi). Let X = A2(BA)2A-2. X fixes a2,Y and takes b1
to c1, a1 to b1 (as well as moving other things). So X(a211)(c1b1)X-1 = (a2y)(a1b1}.
Then (a2y}(c1b1)*(c2y}(a1b1) = (c1a1b1), a 3-cycle. Ast= 2, Lemma 1 implies we have

· 3-transitivity; hence we can get all 3-cycles and.so the alternating group.

ii} (2 2 1):

There is nothing to prove here, since we assume G is not To, However, it can be
shown by exhaustive calculation that in this case K does not contain a 3-cycle.

iji) (2 2 0):

A= (a1a2y) is a 3-cycle. t = 2 implies by Lemma 1 that K is 3-transitive. So we
· get all 3-cycles a.I\d so the alternating group. ·

!:iv) (2 1 1):

A-1(B-1A-1BA)B = (a211), a tr~sposition. t = 2, so Lemma 1 gives 3-
transitivity. Using just 2-transitivity, we get the symmetric group, and a fortiori the
alternating group.

Cv>
Figure 3-4 v,vi,vii

v) (2 1 0):

B = (b1y), a transposition. t = 2 gives 3-transitivity by Lemma 1. Using just
2-transitivity, we get the symmetric group, and a fortiori the alternating group.

vi) (1 11):

A= (a1yc1); B = (yb1ci); BA= (a1ybi); BAB= (a1c1b1). These four 3-cycles
and their powers comprise all possible 3-cycles on { a1, b1, c1, y }, so we have the
alternating group.

20

vii) (1 1 0):

A= (a1y) is a transposition. t = 1 gives 2-transitivity by Lemma 1; this yields
the symmetric group, and a fottiori the alternating group.

Hence Theorem 1 is true for T2-graphs.

3.2.2.2. Proof of Theorem 1 for Tk-graphs, k > 3

We will show by induction that biconnected graphs G with B(G) > 2 have a 3-cycle
and that we have 3-transitivity. This will yield all 3-cycles and so the alternating group.
Since we have already proved that the alternating group is generated by T2-graphs
other than To, the theorem will be completely proved.

We will use the result for T2-graphs as a basis for proving the result for Ta-graphs.
Then we use induction to prove the theorem for all higher graphs. The reason we don't
base the induction on T2-graphs is that our basic tool, 3-transitivity, does not hold for
all T2-grap1ls (the exception is G1 = (1 1 1})~

Obtaining a 3-cycle

As we have seen above, all Ta-graphs are obtained by adding a "handle" to a
T2-graph. Since T2-graphs except To yield 3-cycles, a fortiori Ta-graphs formed by
adding a handle to a T2-graph other than To yield 3-cycles (just move tokens within
the T2-graph, to get the 3-cyele). Now, it can be seen by adding a handle to a T2-graph
in all possible ways, that any Ta-graph is a subdivision of one of the four graphs shown
in Figure 3-5.

(c..)

Figure 3-5 a, b ,c,d

It can easily be shown by exhaustive case analysis that in each of these four
graphs, no matter what the subdivision, we can pick a handle so that the remainder of
the graph is a T2-graph other than To, Hence any Ta-graph can be obtained by adding
a handle to a T2-graph other than To. It follows that all Ta-graphs yield 3-cycles.

Using the Ta-graphs as a basis for induction, it then clearly follows that all
biconnected graphs G with B(G) > 3 yield 3-cycles. For if B(G) > 3, G is obtained
by adding a handle to a graph H with B(H} = B(G)-1. By the induction hypothesis,
H has a 3-cycle; hence a fortiori so does G.

Obtaining 3-transitivity:

We will use an inductive argument to obtain 3-transitivity for Tk+l -graphs, given
3-transitivity for Tk-graphs. This induction has a hole when k = 2, because the graph
G1 = (1 1 1) is not 3-transitive. However, we will patch this hole. · ·

21

Induction: suppose that all Tk-graphs are 3-transitive. Let Ghea Tk+L-graph. G
= a Tk-graph JI + a handle A. There are three cases to consider.

1. The handle has two or more internal nodes. Lemma 1 gives 3-transitivity.

H "

y
Figure 3-6 One internal node

2. The handle has exactly one internal node (see Figure 3-6). Let A join H at
vertices x and y. Let z be in H, z not x, y. We will show that any three pebbles can
be moved to x,y,z respectively; 3-transitivity then follows easily. Let the three ,pebbles
start at a, b, c ; call these pebbles the start pebbles. If a, b, or c is the internal vertex of
A, first use transitivity of H to move a non-start pebble to :z:; consider a simple path
from x to y in H, not passing through z (exists by nonseparability of H). Then rotate
the loop formed by A plus this path so that the start pebble on the internal vertex
of A moves to y (and the nonstart pebble moves onto the internal node of A). Now,
since all three start pebbles are in H, use the 3-transitivity of H to get them to x, y, z
respectively.

3. There are no internal nodes on the handle. Use the induction hypothesis to
immediately get 3-transitivity.

As we said before, there is a hole in the induction: graph (111) is not 3-transitive.

We resolve this as follows. A Ta-graph is a subdivision of one of the graphs (a)-(d)
in Figure 3-5. Let us see whether we can decompose the graph into a T2-graph other
than (11 1), plus a handle.

Graph (b):

we can avoid (1 1 1) because some handle must have 2 or more internal nodes
(otherwise G would not be simple); include this handle in the T2-subgraph.

~raph (c):

we can avoid (1 1 1) because, as in graph (b), some handle will have 2 or more
internal nodes; include this handle in the T2-graph.

Graph (d):

we can avoid (1 11) because graph (d) itself does not have (1 1 1) as a subgraph,
and any refinement of (d) will cause some handle to have at least 2 internal nodes
(include this handle in the T2-graph).

22

,.
I

Graph (a):

The reliMment of graph (a} shown in Fipff 3-7 it tM only one for which we
c&llllOt avoid (1 1 1). Call this graph G1, .

. Figure 3-7 Graph G2

Hence the graph G2 • tile QD)y Ta:-grapa. for we..,.ot chdaee S-transitivity
by uaiq th apove W.Ctioa .,,...,,. • r.., :.JI.: • .,, ... ~ we see
directly tliat G2 • 3-•~-peW. caa he• at• •lll'•t. __. to interul aedea ·
of haaclles, without. diMfWac peltl,he Cm tie lilU l II _..al • atJaer laMla ...

Therefor. all Ta-..,__. 3-trnaitiw; ... ddt••_ incluctiea met.hat
prOWI th.a • r , ~ 3, .,. 3-trau I SW..

Combiaina ._ 3-qclit _, 3-tm:rriti!J•~ ii ••• •11 __. TJuiorem 1 kolcla for all
T,:.;grapu, k. ~ 3. Siw •• a1rw1J pro,- ii 1 •-- 1-ftr· T......., t.he proof of
Tlaeorm 1 it complete. · · · ·

21

3.2.3. Proof of Theorem 2

Sketch of Proof

First we sketch the proof. We can show that a 3-cycle can always be obtained in
0(n2) moves (either ABA-1B-1 gives a 3-cycle in O(n); or we get a product of two
swaps, in which case we can do 4-transitivity in O(n2) moves to get a 3-cycle), and
that 3-transitivity requires at most O(n2) moves. Then by conjugation we obtain any
3-cycle within O(n2) moves. Since any element of An is a product of O(n) 3-cycles, the
total for An is O{ n3). If the group is Sn, then any permutation is a product of an odd
permutation and an element of An- An odd permutation is generated by a closed path
of odd length in O(n) moves. Hence Sn also requires at most O(n3) moves.

Complete Proof
Obtaining a 3~cycle:

For T2-graphs other than the exceptional cases i)-vii), we had a 3-cycle for r = 0
via ABA-1 n-1• Since A, Bare permutations induced by simple closed paths of length
0(n), we get a 3-cycle in O{n) and so a fortiori O(n2) moves. For r > 0, we used the
pair of transpositions due to ABA-1 B-1 (O{n) moves), plus 4-transitivity which can
be done in O(n2) moves by Lemma 2 (proved at the end of this section). Hence also
for r > 0 we get a 3-cycle in O(n2) moves. Cases i - vii (except To) give a 3-cycle in
0(1) moves. Therefore all T2-graphs aside from To give a 3-cycle in O(n2) moves.

Now any G is either 1) a T2-graph other than To or 2) obtained by adding
successive handles to a T2-graph not equal to To. In the first case, we have a 3-cycle
in 0(n 2) moves. In the second case, let the T2-subgraph have k < n vertices. Then as
we have a 3-cycle in O(k2) moves on the subgraph, this is a fortiori a 3-cycle on Gin
O(n2) moves.

Hence any G other than To can generate a 3-cycle in O{ n2) moves.

Obtaining 3-transitivity:

By Lemma 2, we see that for T2-graphs besides i-vii {Figures 3-3 and 3-4) we
have 3-transitivity in O(n2) moves. i-vii besides vi are 3-transitive in 0(1) moves. So
T2-graphs besides (111) are 3-transitive in O{n2) moves.

Then, using the induction method, we get for Ta-graphs besides G2:

case 1. O(n2) 3-transitivity by Lemma 2.

case 2. For some c1 > O, it takes at most c1 n moves to get a nonstart pebble to z,
plus rotate the loop to get the start pebble to y. And for some c2 > c1, we can obtain
3-transitivity in H in at most c2(n -1)2 moves because H is a T2-graph other than
(1 1 1), with n -1 vertices. Then a total of at most c2n2 moves are involved, which is
O(n2).

case 3. 0(n2) by the induction hypothesis

Hence Ta-graphs besides G2 are 3-transitive in O(n2) moves. But G2 is 3-transitive
in 0(1} moves, hence all Ta-graphs are O(n2) 3-transitive.

Repeating the induction analysis for all higher graphs, we conclude that all
biconnected graphs G with B(G) > 2, except (111), are 3-transitive in O(n2) moves.

24

Generating the alternamg· group in O(n3) move.:

Using the 3-cycle plua,auitivity, ea.cit in O(n2) ..._.., we get that ea.ch 3-cycle
on is .obtainable in O(n2) ~ except for the arapla (l l 1). · Bllt.. we obtained each
of the 3-cycles for·thia ~ 0(1}.aovea. -Hence lat -, a;-ach 3-cyde ia obtainable
in O{n2) xncm,e. Siace a,: ~ ia tlte pitlp. is a:preetible • a
product of O(n) 3-cyclea, •moat O{n3) -ll&Offl· Jn reqail'e4akeptlaer. ··

. .

H we have the full .,._etric. gr011p: any ~ • a product of aa odd
permutation and an elem.ea« the altemaling .,,... Aa ... ,penntation is generated
by a closed path of odd leaph{wluch exilt,s,.--.. ia no& bipartite when
we have the vmmetric ..-.) in O(n) ma¥M~ .,._ die .,_.ewic group requir-ee at
moat O(n3) mOYts altogetlier. · ·

This completes the proof of Theorem 2.

We note here tkat Wilaon thowed how to ---• a ·a.cycle, and ltow to get
2-transitivit.y. It ia well bowa that ~• ...,.._ al Gt A.; but we do not know if
this gives a polynomial ·apper -bond.

3.2.4. Statements and Proofs of the Lemmas

Lemma 1

Let H be a nonseparable graph, and G be the result of adding a handle to H. If
the handle has k internal nodes, then G is k + 1-transitive.

Proot

Let the handle (call it A) join Hat.vertices x and y. Let the vertices of the path
from x toy along A be, in order, x, a1, a2, ... , ai, y. Lett E V(H), t ::/= x, y. Now as H
is nonseparable, there is a simple path p from x to s, E H which does not pass through
t. Let the simple closed path {xa1a2 ... akf1)p-1 (p-1 is the reverse of path p) from x to
x be called L. ·

We now indicate how to move any k + 1 pebbles to respective positions a1, .•. , ak, x.
This will imply k + 1-transitivity, since to get pebbles from vertices b1, ... , bi+t to
c1, ... , c1+1 resp., first move b1, ... , b1+1 to a1, ... , ak, x, and then do the inverse of any
permutation that takes c1, •.. , c1+1 to ai, ... , a1, z.

First we claim that G is transitive. To prove this, we use induction on the Betti
number of a graph. T2-graphs are easily seen to be transitive, by rotating one or other
of the loops to get the pebble to where one wants it to go. Induction: If B(G) > 2,
look at the last handle added to obtain G. Let it join nonseparable subgraph H at z
and y. To move pebble to x: if pebble is in H, just use the inductive hypothesis. If
pebble is not in H, rotate the loop consisting of the handle and a. simple path from x
to y in H, until the pebble on the handle moves to :z:. This completes the proof of the
claim.

Now to show k+l-tra.nsitivity, we show that we can move i pebbles to ai-1, .. ,,a1,
x respectively, 1 < i < k + L We have !-transitivity by the claim above. Induction:
suppose that we have i-transitivity. To get i + I-transitivity: move the first i pebbles
to targets Gi-l, .•. , a1, z resp. Suppose the next pebble is not on A. Then rotate L
so that the i pebbles are at ai, ... , a1 respectively. Use I-transitivity of H graph to
get the next pebble to x. On the other hand, if the next pebble is on A, then rotate
L until the pebble is at y. Then use transitivity of H to get the pebble to t (this
doesn't disturb A's internal nodes). Then rotate L back, so that the first i pebbles are
at ai, ... , a1 respectively (this does not disturb the pebble at t, since p does not pass
through t). Finally, move the pebble at t to z, using transitivity of H. This completes
the inductive step, and the Lemma is proved.

Lemma 2

For any bounded k, the k + I-transitivity guaranteed by Lemma 1 can be done in
O(n2).moves.

Proof

We basically make estimates on the number of moves used at ea.ch stage of the
proof of Lemma 1.

First we show O(n2) for !-transitivity, by induction on the number of loops in G.
T2-graphs are !-transitive in O(n2), by rotating loops. Induction: if B(G) > 2, look at

26

3.3. Separable Graphs, and Nonseparable Graphs with > 1 Blank

3.3.1. Introduction

We now consider all cases of the graph puzzle not covered by the Wilson case,
and will combine our results with those just obtained.

We begin with an informal discussion to motivate the rigorous analysis which
follows.

The basic element which distinguishes separable graphs from biconnected graphs
is the existence of isthmuses (of length > 0), which if severed will separate the graph.
One can think of a separable graph as being a tree, or a tree structure connecting one
or more biconnected graphs (see Figure 3-8 for an example).

Figures 3-8, 3-91 and 3-10

Much of what follows is motivated by the example shown i_n Figure 3-9. This graph
consists of a simple non closed path of length m (= 3 in the figure) which connects
subgraphs A and B. Suppose we wish to move pebble T from v tow. Since A has no
blank vertices, it is clear that T _can reach w if and only if B has m or more blank
vertices. Therefore, the number of blanks has a direct effect on the ability of pebbles
to cross isthmuses. Conversely, the lengths of the isthmuses will determine whether or
not certain pebbles can cross from one component into another.

It turns out that we can naturally divide a graph Gin this way into subgraphs Gi
connected by isthmuses, with the property that pebbles can move freely within each
Gi but cannot leave Gi. Each pebble in its initial position is assigned in a natural way
to the Gi (if any) to which it is confined, otherwise it is confined to an isthmus. This
decomposition induces subpuzzles on the Gi.'s and their pebbles, and it will be shown
that the original puzzle is solvable iff all the subpuzzles are solvable and the tokens
trapped on isthmuses do not change order. Figure 3-10 shows the Gi subgraphs for
the graph of Figure 3-8 with 3 blanks (exactly how the Gi's are determined will be
explained below).

The final step in the analysis is to study solvability of subpuzzles on the Gi. When
there is one blank, the Gi's turn out to be biconnected and so the Wilson criterion
applies. We will show that when there are two or more blanks, the Gi subpuzzles are
always solvable (subject to the condition that the Gi contains the same pebble set
before and afterwards). Informally, one reason is that the Gi's were defined in such a
way that pebbles ca.n cross all isthmuses in Gi, and so get from any vertex to any other
vertex (see Figure 3-11 for a.n illustration); we will show how to achieve 2-transitivity

28

in this way, by moving one pcbblt! a{icr another to its destination. The other reason
is that two blanks are sufficient to achieve a swap of a pair of pebbles near a vertex
of valence three {see Figure 3-12). Combining 2-transitivity and the swap yields all
permutations of the pebbles.

Figures 3-11 and 3-12

The General Criterion

Here is an outline of the general solvability criterion for graph puzzles, which
combines the Wilson case of the previous section with the results for the remaining
cases considered in this section. Details of how to determine the subpuzzles and the
pebbles confined to isthmuses will be given later.

Let G be a graph with k tokens and m = n - k blanks. Let f, g be the starting
and ending positions. Move blanks in f to form a labeling J' whose blanks are in the
same locations as in g. Then f and g are mutually reachable iff f' and g are mutually
reachable.

So without loss of generality assume that / and g have blanks in the same places.

If G is nonsimple, remove extra edges. This will neither hurt nor h,1lp solvability.

If G is not connected, check that the token partition induced naturally by the
connected subgraphs is consistent, and that each connected subgraph puzzle is solvable.

If G is connected:

If G is nonseparable: if m = 1 use the criterion in Theorem 1; if m > 1,
then the puzzle is solvable, unless G is a polygon, in which case only cyclic
rearrangements a.re possible.

Otherwise, determine the subpuzzles and check that the pebble sets in
each subpuzzle match before and after. Also determine the pebbles confined to
isthmuses, and check that they are the same before and after, and in the same
order. If all this is satisfied, then if m ::::p 1 check that each subpuzzle is solvable
(for m = 1, all components a.re nonseparable, so use Wilson's criterion). If m > 1,
then each subpuzzle will be solvable, so the puzzle is solvable in this case.

This completes the criterion.

It will be easy to show based on the analysis of case 1, that solutions with at most
O(n3) moves exist and can be efficiently planned. In the final section of this chapter,
we construct an infinite family of graph puzzles which are proved to require O(n3)

moves for solution.

29

3.3.2. Details of the General Dcdsion Algorithm and the Proofs

Suppose G is a simple connected graph with n vertices, and k < n pebbles on
distinct vertices. m = n - k vertices will be unoccupied ("blank").

a. Dividing a graph into maximal biconnected components

First assume G is a connected simple graph. We will divide G into its maximal
biconnected components as folJows: Say that edges e1 and e2 of G are "equivalent"
iff e1 = e2 or there is a simple closed path in G containing ei and e2. This is seen to
be an equivalence relation; the equivalence classes, together with incident vertices, are
the maximal biconnected components ("components" for short) of G.

We will call components with one edge "trivial"; otherwise they are called
"nontrivial". See Figure 3-13 for the components of the graph of Figure 3-8 .

':-.
f f •

c~.,,"'t s ..f 11,t G'"'P~
Figures 3-13, 3-14, and 3-15

b. Defining the subpuzzle graphs Gi

1) If the number of blanks mis 1: define the Gi's. to be the nontrivial components
of G in some order.

2) If there are m > 1 blanks:

If there is only one component,_ and it is no_ntr_ivial,_ then assign G 1 = G. If there
is only one component, and it is trivial, then assign no subpuzzle graphs Gi..

If no vertex has valence > 2, then we have the graph pictured in Figure 3-14.
Assign no subpuzzle graphs Gi..

Otherwise, consider the set S of vertices with valence > 2 which are common to
more than one component (i.e. a Join of valence > 2 between two or more components).
S is nonempty: For, if all components are trivial, then any vertex with valence > 2 is
a join of components; if there is a nontrivial component, any vertex which joins with
the rest of the graph has valence > 2 and joins components.

Say that elemen~ s1, s2 of S are equivalent iff' s1 = s2 or s1 and s2 are in the
same nontrivial component, or there is a unique path between s1 and s2, and its length
is < m - 2. The transitive closure of this relation is an equivalence relation (which
roughly describes reachability of one "critical" vertex from another by a pebble). Let
the equivalence classes be S1, ... , S,. Figure 3-15 shows the equivalence classes.

For each 1 < i < l let Xi be the set of t1 E G such that t1 is in the same nontrivial
component as some element of Si or there is an element Bi of Si such that there is
a unique path from v to Bi, and its length is < m -1. Let Gi be the subgraph of

:10

G consisting of vertices Xi and edges incident only on these vertices. Remark: Xi
contains Si, and may be thought of as the "completion" of Si to include all points of
the subgraph Gi. Figure 3-10 shows the G, subgraphs for the graph of Figure 3-8.

c. A look at how the Gi are interconnected

Suppose it turns out that the G/s number more than one. We will now see that
if G; and Gi are joined, it is by means of ·a simple nonclosed path. This is done by
analyzing the connections of Gi with the rest of the graph.

Let w be a vertex not in G;, but adjacent to a vertex tJ in G;.

If v E S;, then as m > 2 we have w E G; (For if the path from v to w is not
unique, then v and ware in the same nonseparable component. If the path is unique,
then as it has length 1 and m > 2, we have by definition that w E G;). This is a
contradiction!

So v is not in S;. If v has valence > 2, then v not in Si implies v is not a
join between components, so all edges incident to v must be in the same nontrivial
component. So v gained membership in X; by being in the same nontrivial component
as some s; E Si. (For if there was a unique path from some Bi to v, then the vertex :.r;

on the path just before v would also have a unique path to v. But this contradicts the
fact that :t and v are in the same nontrivial biconnected component.) Hence w, being
in the same nontrivial component with v, is in the same nontrivial component with Bi,

sow E Gi, This is a contradiction!

So v has valence < 2. u cannot have valence 1, because then Gi is a single vertex
of valence 1; by the definition of Gi, some vertex must have valence > 2 .

. ,
Hence tJ has valence 2.

The "Plank"

Now, v cannot be in a nontrivial component. (For if v was, then there would be
a simple closed loop through v, and the neighbor w would have to be in the loop also.
v must have gained membership in Xi by being in the same nontrivial component
as some Bi, because in a simple closed loop, paths are not unique. So w is in the
component with Bi, implying w E Xi. This is a contradiction.)

Hence w must be one step off a "plank,,, that is, a simple nonclosed path of length
at least 1, none of whose edges belong to a loop. A plank is part of all of an isthmus;
we use the term to avoid confusion with isthmuses. The internal vertices of a plank
have valence 2.

Length of the Plank

Going from w through tJ and· along the plank until we reach a vertex s of valence
> 2 (Gi has at least one such vertex), s must be in Si since the plank is not in the
same component as other edges out of s. The distance from v to s must be exactly
m -1. (For there is only one path from , tow. H s to vis less than m -1, then by
definition w E Gi, a contradiction. Ifs to u is more than m -1, then u could not have
gained membership in Xi via a path from s, so v must have gained membership via a
unique path from an Bi on the w side. But then 'W was also approached uniquely from
Bi and was closer than v, sow E Xi, a contradiction.)

31

Summing up, we can say that the "exits" from Ci, i.e. the vertices of Ci which are
adjacent to vertices not in Gi, are precisely the ends of m -1 long planks which begin
with a Bi E Si. The vertices adjacent to the ends of these planks are the connections
of Gi with the rest of the graph. Note that therefore the G/s connect with each other
via their planks, and it is possible for the Gi's to overlap on part or all of the isthmus
joining them (see Figure 3-16). Points not in any Gi must reside on a plank, because
they are reached by leaving a Gi.

Figure 3-16 Planks connecting Gi's

d. Assigning pebbles to the confining G;, or plank

Let P be a pebble in the start position, to be assigned to the appropriate part of
G.

1) If Pis not on a plank, then Pis in some Gi and is confined to Gi (although P
may be able to visit the intersection with another Gi)- For to leave Gi, P has to get
onto the inside end (i.e. the end attached to a Si E Gi) of a plank, ''walk the plank",
and "jump oil''. To get to the inside end requires at least one blank, which is left
behind when P gets onto this end. Now m additional blanks are required for P to walk
the plank and exit (since the plank ism - 1 long). But since there a.re only m blanks
altogether, this cannot be done.

2) If P is on a plank:

a) If enough blanks a.re on the subgraph to one side of P to take P off the plank
in that direction, then P would be trapped in the Gi which it enters, by 1).

We define the set Ui to be the set of all pebbles in the initial position of the puzzle
which a.re confined to Gi. U;, contains pebbles satisfying condition 1) or 2a).

b) If P cannot leave the plank as in a), then P is clearly confined to the plank.
Furthermore, Pis not confined to any G;,. (For if Pis a distance r > 0 from one end
of the plank, and cannot leave the plank from that end, then there must be at most
r blanks in the subgraph to that side. of P. So there a.re at least m - r blanks on the
other side of P, which is enough to carry P the distance m - 1 - r and one further,
to leave that Gi, Similarly P can leave the Gi on the other end of the plank.)

For a pebble P confined to a plank, we observe which vertex v; P was on in
the start position, and define a set V; = {P}. For those plank vertices Vi which a.re
initially blank, or whose initial pebble is not confined to the plank, we define the set
¼ to be the empty set.

3) Observation: a pebble P cannot be confined simultaneously to two Gi's ·
(remember that the G;,'s can partially overlap on a plank). For then P would be

32

trapped on the intersection of the two G/s1 which is part or all of the plank joining
them. So P is confined to the plank, which by 2b) implies that P belongs to no Gi, a
contradiction.

In summary, nonplank pebbles are confined to exactly one Gi. Plank tokens are
either confined to exactly one Gi, or else they are confined to the plank and are
confined to no Gi. Figure 3-17{a) shows the assignment of pebbles in a typical start
position to G/s and to plank vertices.

Assume for the moment that the pebbles in the end position are the same set as
the pebbles in the start position, and that they reside on the same set of vertices as at
the start (but probably in a different order). Then we define sets U~ for each Gi and
V~- for each plank vertex Vj for the end position, in the same way that we defined the
U/s and V/s for the start position. We will show how to easily handle the case where
the assumption is not true.

A "subpuzzle" consists of a starting position on Gi and an end position on Gi..
The start position consists of Gi, with pebble Pon vertex v; iff P is- on v; at 8tart of
the whole puzzle on G, and P is in Ui. Another way to say this, is that in the start
position, Gi has as pebbles those which reside on Gi at the start of the whole puzzle,
and which are also confined to Gi. Those vertices in Gi. which are occupied by pebbles
at the start of the whole puzzle, but whose pebbles can leave Gi., are considered blank
at the start of the subpuzzle. Similarly we define the end position for the subpuzzle on
Gi. The subpuzzle consists of Gi and its start and end positions; the questions on the
subpuzzle are whether the subpuzzle as defined has a solution, and in how many moves
if possible. These questions are asked, now that the subpuzzle has been defined, as if
Gi were the entire playing space; the relation of Gi to G is ignored for the moment.
The subpuzzle start positions for the pebbling in Figure 3-17(a) are shown in Figure
3-17(b).

33

b

~b pv.?...Je.. s ¼~+ pos~ tiMS
~r publi~j ;"' ~-11(1)

Q,)

The Main Theorem

We now present the complete decision algorithm for the pebble coordination
problem on general graphs.

Theorem 3

Let G be a graph with n vertices, w~th k < n pebbles numbered it, .. ,, i1c on
distinct vertices vi, ... , Vfc respectively. To decide whether a legal sequence of moves
will result in pebbles ji, ... , it on distinct vertices wi, ... , w, respectively, perform the
following algorithm:

1. If G is not simple, remove the excess edges from G to get G', and test solvability
of the puzzle on the simple graph G'. The original puzzle is solvable iff the new one is
solvable.

2. If G is not connected, check that the subpuzzles induced in the obvious way on
the connec~d components of G are solvable. The puzzle is solvable ifI the subpuzzles
are all solvable.

3. Check that k =land that the sets {i1, .. ,,i1c},{j1, ... ,Ji} are equal. If not,
output "not solvable".

4. If the sets {v1, .. ,,v1c}, {w1, ... ,w1c} are not equal, then move the final position
to a position where i1, ... , i1: are on v1, •• ~, VA: in some order. The modified final position
has the same vertices occupied as the starting position. The puzzle is solvable ifI the
modified puzzle is solvable.

5. Compute the G/s and U/s to get the subpuzzles, and the V;'s.

a. If there are not any Gi's, then we have the graph pictured in Figure 3--14. The
puzzle is solvable ifI V; = Vi for each j (this is equivalent to requiring that the start
and end position be identical).

b. If there are subpuzzles, check whether each subpuzzle is solvable. The puzzle
is solvable iff the subpuzzles are all solvable and V; = Vi for each j.

6. To test the solvability of a subpuzzle:

a. Petf orm step 3. If it passes, then continue to b,c. Otherwise the subpuzzle is
not solvable.

b. If m = n - k is 1, then all G/s will be nontrivial biconnected components of
G. Use the Wilson criterion to decide solvability.

c. If m-:- n - k is >1: the subpuzzle is solvable, unless the subpuzzle graph is
a polygon (this can only happen if the whole graph G is a polygon). In this case, the
subpuzzle is solvable ifI the start and end positions differ only by a cyclic permutation.

7. This completes the algorithm.

34

3.3.3. Proof of the Main Theorem

Most of the above steps are almost trivial to prove; 5b and 6c are more substantial.

1. : the removal of extra edges clearly does not help or hinder the solution of the
puzzle. Therefore this step is valid.

2. : if G is not connected, then pebbles cannot travel from one connected
component to another. Therefore the puzzle is solvable iff the natural projections of
the puzzle onto the connected components are all solvable subpuzzles.

3. : this merely checks that the set of pebbles on the graph does not change.
Clearly this is necessary for solvability.

4. : this step has the purpose of putting the puzzle into the form assumed earlier
in this chapter. Justification was given then.

5a.. : if there are no G/s, then we get the graph of Figure 3-14, as discussed earlier.
It is clear that no rearrangements are possible on this graph, hence the procedure of
checking V; = v1 gives the correct decision.

5b. : this is one of the essential points of the algorithm. It states that the puzzle is
solvable iff the V;'s match and the subpuzzles are all solvable. This is the justification
for the careful definition of the subpuzzles. The proof will be given below.

6a. : this is clearly needed, for the same reason as for step 3.

6b. : it is easy to show that the G/s are nontrivial biconnected graphs when
m = 1. Then Wilson's criterion clearly applies.

6c. : this is the other essential point of the algorithm, and gives justification for
defining the subpuzzles in the way that they were defined. The proof will be given
below.

35

3.3.:l.L Proof of 5b

If the puzzle is solvable, the solve the puzzle and watch what happens in the
various G/s. Sets Ui must re~ai in Gi, with perhaps also some pebbles visiting and
leaving Gi, When the solution is mplete, each subpuzzle is in its end position. Clearly
if the subpuzzle.can be solved eve with extra visitors around, then the subpuzzle can
be solved in its isolated form. Hen e the subpuzzles are all solvable. Also note that the
pebbles confined· to pfanks canno change their ordering. Hence V; = v1 for each j.

The converse is a bit less trivi I. Suppose V; = Vi for each j I and each subpuzzle is
solvable: We will solve the puzzle y solving each subpuzzle in turn, without disturbing
the other subpuzdes. The pebbles confined to planks cannot change in their ordering,
and so all parts -of the puzzle will match the final position.

To solve a subpuzzle on Gi ithout disturbing another subpuzzle: Note that the
pebbles on Gi which can leave G · reside on planks, and reside closer to the ends of
the planks than any plank token which cannot leave Gi. Also note, because of the
overall tree structure ofG, that re oving pebbles from one plank of Gi does not etlect
the ability to remove pebbles fro any other plank of G1 (by using blanks outside
Gi)- Hence we can remove all pe hies in G1 which are not in Ui, by moving blanks
from outside Gi onto the planks G1; and this does not disturb the other pebbles of
Gi. Remember the sequence of m es which accomplishes this. Now the configuration
on Gi looks exactly like the star position of the subpuzzle on G1• For use in the
proof of 6c, note that a subpuzzle always has exactly m blanks. (For it follows by the
definition of an escapable plank ebble of G1, that if all pebbles on a. plank cannot
leave, then all blanks in the part of G off that plank had to be used to remove the
plank pebbles that could leave. He ce either all blanks outside of Gi enter G1, or some
plank of Gi becomes devoid of peb les (i.e. m blanks). In either case, the subpuzzle has
all m blanks in it.) Solve the sub uzzle on G;, (assumed ·to be solvable), then reverse
the above memorized sequence of oves to return escaped tokens to their planks and
otherwise restore any change to e configuration outside of Gi. In this way, we can
solve each subpuzzle in turn with t disturbing the rest of the puzzle, and so get each
Ui set in the desired order. With all U/s in order and the V/s matching, the entire
puzzle is solved.

36

3.3.3.2. Proof of 6c

We now prove that when there are m > 2 blanks, then each subpuzzle is solvable.
First note by the remark in the proof of 5b, that each subpuzzle has exactly m blanks
in it.

The result will be proved in stages. First we prove it for the case that Gi is a
tree having exactly one vertex of valence > 2 (called a "radiating tree" because "free
branches", i.e. paths with all internal vertices of valence 21 ~nd an end vertex of valence
1, radiate out from a central vertex; see Figure 3-18}. Then the result is extended to
general trees. Finally the most general case, where Gi is a tree structure connecting
nontrivial biconnected components, is handled.

A. Radiating Trees

We will show how to get a swap, and 2-transitivity. This gives all possible orderings
of the pebbles.

Figure 3-18

1. Swap

"Cram" pebbles as far as possible to the ends of the branches. Move the pebble
(if any) onto any branch, crammed against the other branch pebbles. Remember the
sequence of moves thus far. Now the central vertex and at least one adjacent vertex
are blank (since m > 2); if at least two branches are nonempty, we can perform a
swap with the nearest pebble of one branch and the nearest pebble of the other. If
only one branch is nonempty, we can swap the two pebbles of that branch which are
nearest the central vertex. Then reverse the memorized sequence of moves. The net
result is a swap.

2. 2-transitivity

As in 1., cram the pebbles to the ends of the branches. We will move any two
pebbles P1,P2 to two furthermost occupied branch ends, in order. By a remark in
Chapter 2 on permutations, this suffices to get 2-transitivity.

Move P1: First get P1 from its current branch onto the nearest (to center) vertex
on another branch (this is possible, because there are enough spaces to clear off the
branch on which P1 resides). Now move all pebbles off the branch with the first target
vertex. If this cannot be done, it is only because P1 's current branch contains some
blanks. In this case, move P1 to the nearest vertex on another branch, if one such
vertex is blank (if not, then swap P1 with a pebble on the nearest vertex of another
branch), fill in the blanks in the branch P1 just left, using pebbles from the destination

37

------- -----------------------

branch, Lhen rcLurn Pi to the branch it just lcfl. In any case, we c:in now vacaLe the
first destination branch; do so, and move P1 to the destination vertex at the end of
this blank branch.

Move P2: Prune the first destination vertex, along with P1, off of G,, to get a new
Gi. Now move P2 to its destination, just as done for Pi. The only possible problem
occurs in the special case where the pruned vertex was on a branch of length 1, and
the central vertex had valence 3. Then the resulting tree no longer has a center of
valence > 2. However, this cannot happen since this situation implies that the furthest
occupied branch end was on a branch of length 1; then the original radiating tree must
have had three branches, two of length 1 with pebbles on their ends. But then the
third branch must be blank because it contains all m blanks. Hence the two pebbles
on the short branches must be P1 and P2; either they are on their destination vertices,
or swapping P1 and P2 will achieve this. Hence 2-transitivity holds in this special case
also.

Finally, restore the blanks to their positions when the branches were "crammed";
this can clearly be done without moving P1, P2 from their destinations. Then reverse
the sequence of moves which crammed the branches. The net result is a desired
2-transitive permutation on the pebbles.

B. General Trees

l~his case, more than one vertex has valence > 1. We ca.n think of the general
tree as being made up of radiating trees connected by isthmuses. An "end" radiating
tree is one which is connected directly to only one other radiating tree. Clearly a·
general tree contains at least one end radiating tree; otherwise it would contain a cycle.
Define a "free branch" to be a path with one end of valence 1, inner vertices of valence
2, and the other end of valence > 2; define a "free end" to be the vertex of valence 1
on a free branch. See Figure 3-19 for examples of these objects.

Figure 3-19 General tree; end radiating trees; free branches

1. Swap

Move blanks so as to vacate the nearest vertices (to the central vertex) of two free
branches of an end radiating tree. Remember the move sequence which accomplished
this. Now we can swap the two pebbles in G; nearest the central vertex of this radiating
tree, by moving them to this central vertex, swapping, and returning them. Finally,
reverse the memorized sequence of moves; the net result is a swap.

2. 2-transitivity

38

We will show how to move any two pebbles P1, P2 to the .spots currently occupied
by any two pebbles P3 , P4 respectively. First we describe in general terms how this
will be carried out. Select any end radiating tree, and any two free branches. We will
move any pebble P1 to the end of the longer free branch {if lengths are unequal), then
any pebble P2 to the end of the other free branch. Call the position we reach the
"intermediate position". Similarly, we could have instead moved P3 and P4 to these
two free ends, and then moved the blank~ (without disturbing P3 and P4) so that
the same vertices are occupied as in the intermediate position. Then the following
procedure produces the desired 2-transitive permutation: Move P1, P2 to the two free
ends (intermediate position). Then reverse the sequence of moves which takes P3, P4 to
the same two free ends and puts the blanks at the same vertices as in the intermediate
position.

Now we must show how to move P1, P2 to the above-mentioned free ends. We will
first move P1 to its destination, prune the destination vertex off of Gi, then move P2
in the same way. (The only situation to watch for, is when the pruning reduces the
valence of the center vertex (of the end radiating tree) to 2. However, in this case all
free branches were of length 1, so the free branch created by this operation is 1 longer
than than the isthmus connecting to this end tree, or at most length m - 1, so that
its end is reachable; hence the pruned tree preserves reachability of all its vertices.)

To move P1, we will move it from radiating tree to radiating tree, until we reach
the target radiating tree. This is done as follows: move Pi to the nearest vertex to the
center, of an isthmus besides the one connecting to the neighbor we want to reach. Clear
all pebbles off this connecting isthmus and one vertex farther, so P1 can now be moved
to a nearest-to-center vertex of an isthmus (other than this connecting isthmus) of
the neighbor. Now we can clear the connecting isthmus to the next neighbor radiating
tree, and continue to advance P1 towards its goal. {If there are not enough blanks to
clear the isthmus, then P1 's isthmus must have some blanks. We can move P1 aside
momentarily, fill some of these blanks; then put P1 back; now the connecting isthmus
can be cleared). Once P1 reaches the target radiating tree, we can move enough blanks
to this tree so that P1 can be moved to the target vertex {by case A. : radiating trees).

Similarly, after pruning, we can move P2 into place.

C. General Gi

This is the most general form of a subpuzzle graph, and consists of a tree structure
connecting one or more nontrivial biconnected components. An example was shown in
Figure 3-8. The procedure for obtaining a swap and 2-transitivity is almost the same
as for trees, with a few modifications to account for the biconnected component(s).

1. Swap

If there is an end radiating tree, perform the same swap as done in the tree case.
Otherwise, pick any end biconnected component and vacate a vertex which joins to
the rest of the graph, and an adjacent vertex. Then we can perform a swap in the
same way as done for the tree case.

2. 2-transitivity

39

If there is an end radiating tree, then we use the tree case to move P1, P2 to
furthermost free ends, followed by the inverse of the moves which would take P.1, P4
there. The only modification is that, along the way, the pebble we are moving may
pass from a radiating tree into a biconnected component. But we saw in the Wilson
case that biconnected components are transitive, so the pebble can move through the
component to the next radiating tree, and so on.

If there is no end radiating tree, then select an end biconnected component B. We
will move P1 to a vertex of B farthest from the junction by which P1 entered, and P2
to the next most distant vertex (distance here means length of shortest path). Then
we perform the inverse of the sequence of moves which take P3 and P,1 to these two
locations (and check correspondence of blanks). Because P1, P2 are most distant from
the junction, moving P3, P4 need not disturb them. First move P1 to a vertex of B,
just past the junction with the rest of the graph. Then move P2 to the junction vertex,
after making sure B contains at least one blank. Then use 2-transitivity of B to get
P1, P2 to the two most distant vertices just described. (The only exception to this is
when B is a polygon. Now B is not 2-trausitive. However, in this case, once Pi, P2
are on the junction and one vertex away from the junction, we can cycle the pebbles
around B until P1, P2 reach the desired most distant vertices.) Similarly we can move
P3, P4 to these locations, a.nd so obtain 2-transitivity.

This completes the demonstration of case C, and thus 6c is entirely proved. Hence
the main theorem has been proved.

40

3.3.4. O(n3) Upper Bound

Another main result is the following upper bound on the number of moves required
to solve a graph puzzle. The proof is relatively short, because the main work was
establishing this result for the Wilson case.

Theorem 4

If a pebble coordination problem on a graph G of n vertices has a solution, then
there is a solution requiring at most 0(n3) moves, and it can be efficiently planned.

Proof

We solve the puzzle by solving each subpuzzle. To solve a subpuzzle, we (as in the
proof of 5b of the main theorem) "set up" the subpuzzle by removing pebbles from G,
which are not in Ui, actually solve the subpuzzle, then return the removed pebbles.

The pebbles were removed by moving in blanks; by the Lemma at the beginning of
this chapter, this takes 0(n2) moves. Since there are clearly at most 0(n) subpuzzles,
the total number of moves for removing and restoring pebbles is at most 0(n3).

This leaves us the task of proving that the subpuzzle solutions themselves total at
most 0(n3) moves. We will first show that if a subpuzzle graph has ni vertices, then it
can be solved in 0(nn moves. Then we claim that the sum of the n;'s totals at most
4n. Using this claim, the total number of moves is 0(Ei nn = 0(Ei ni)3 = 0(n3).

If there is one blank, then subpuzzles are on biconnected graphs, so by the Wilson
case we have an 0(n~) upper bound. If there are more than one blank: As we saw in the
proof of the decision algorithm, a subpuzzle can be solved by a swap plus 2-transitivity.
The swap is seen to take 0(ni) moves (0(ni} to bring two blanks to a swap site, 0(ni)
to do the swap, and 0(ni) to restore the blanks to their original places; total is 0(ni)).
2-transitivity: This is easily seen to be 0(ni} for a radiating tree. For general trees,
we get 0(nn. (To move P1, P2 to two destination vertices requires 0(ni)i moving Pa,
P4 to the same two locations is 0(n;}; putting the blanks in corresponding locations
is 0(n1) by the Lemma at the beginning of this chapter. Hence, total is 0(nf).) For
general graphs, the analysis is almost the same, but total passage of pebbles through
biconnected components takes as much as (but no more than) 0(n!} moves. However,
the total is still 0(nf). Armed with a swap and 2-transitivity, conjugation yields any
swap in 0(nn moves. Since any permutation is a product of at most ni - 1 swaps, we
get a total upper bound of 0(nt) moves for the subpuzzle.

Proof of Claim: The sum of the ni equals n plus the total number of times
vertices are counted more than once. If there is one blank: the biconnected components
overlap pairwise by at most one vertex. Form a minimum spanning tree connecting the
components, thinking of the components as points for now. Each edge represents two
components meeting at a vertex, and so represents a vertex being counted one extra
time. Since the tree contains at most n edges, the total "overcount" is at most n; hence
Ei ni < 2n < 4n. If there are more than one blank: overcounting occurs on isthmuses
connecting the subpuzzle graphs. Interior points of isthmuses are counted at most
twice, and since the total number of such points is < n, the interior points contribute
at most n to the overcount. End points of isthmuses: Each isthmus contributes at most

41

2 to the ovcrcount, at its endpoints. The number of isthmuses is < n, because the
minimum spanning tree has at most n edges, and isthmuses are part of the minimum
spanning tree. Hence the overcount due to the endpoints is at most 2n. Therefore
E, n, < n + n + 2n = 4n. Hence the claim holds no matter what the number of blanks.

Solutions with 0(n3) moves therefore exist and, by following the constructions
outlined above and detailed in the proof of. Theorem 2, they are efficiently plannable.

3.4. 0(n3) lower bound

We now complement the above result with a lower bound which matches, to within
a constant factor.

Theorem 5

There exists a constant c > 0 and an infinite sequence of graph puzzles Puz, on
increasingly large graphs G, with n, vertices, such that for each i, Puz, requires at
least cnf moves for solution.

Proof

Figure 3-20 Start and end positions for lower bound Puz1

Let Puz, consist of graph G, shown in Figure 3-20, with 2i + 1 vertices and 2i
pebbles, and starting and ending positions as shown. We will show that Puz., requires
0(i3) moves, as follows. A move sequence that does not waste moves (by retracing move
sequences just made) is seen to consist of cycles A, B and their inverses, interspersed in
some order {e.g. ABAAAABA-1 B). It would be wasteful to do B twice in succession,
since this would cancel itself. Hence a move sequence can be represented by the form
A'1BA'2 B ... A'1oBA'-+1 where i; is a nonzero integer (positive or negative), except i1
and it+ 1 may be 0.

Now consider the "entropy function" of position

E = E;•=o (shortest circular distance from pebbles j to i + i)
where circular distance is either clockwise or counterclockwise. Initially, E = i2

;

at the end, E = i. Change in E is i2 - i.

It is seen that A does not change E, and B changes Eby O or by 2. Hence to effect
the change in E requires 0(i 2) occurrences of B in the move sequence. But because
occurrences of Ai; and B alternate, this implies that A occurs at least O(i2) times.
Since the number of moves to perform the cycle A is 0(i), we need at least O(i3) moves
for solution.

Tl1is completes the proof of the lower bound.

42

4. The Dian1eter of Perrnutation Groups

As mentioned in the introductioa,. thi:t, chapter is concerned with the diameter
of permutation groups generated by sets of cyclic permutations. We begin with some
examples of generator sets which yield groups of polynomial diameter, then speculate
on some conditions on the generator set which might give groups of superpolynomial
diameter. The main part of the chapter consists of theorems which give information
about the diameter of a group under v:arious conditions. They imply the result given
in the introduction, which is a moderately exponential upper bound on the diameter
of groups generated by cycles which satisfy a few conditions.

4.1. What is not of Exponential Diameter, and what might be

The Hungarian Rings puzzle consists of two intersecting circular rings in which
distinguished marbles circulate. The problem is to obtain a desired rearrangement of
the marbles by a sequence of operations, where an operation consists of circulating the
marbles in one of the rings. This problem immediately translates into the permutation
problem of determining membership in the group generated by two intersecting cyclic
permutations. By (HFL], we can decide membership in polynomial time; however, it
is of interest to know how many "moves" are required, i.e. the length of the shortest
word which gives the desired permutation.

O.k~.i . q.l(+f+J __ .._

.. ,

~~--'°\ R..i~S
. Figures 4-1 and 4-2 (flnd id, t-_ "E.lCf--tl\ \;.. \f'p--. i.z..(t

In Figure 4-1 is shown schematically two cyclic permutations which intersect at
two points. This corresponds to the commercial version of the Hungarian Rings. Note
that this is not like a pebble puzzle on a Ta-graph, because only A and Bare possible,
and not the third loop; the Hungarian rings is a physical movers' problem which
imposes this restriction mechanically. This gives reason to expect that the number of
moves may need to be larger in some permutation puzzles than in the pebble puzzles.

What is the diameter of the group generated by these two cycles? It is first useful
to observe that, if some arc C contains at least r internal nodes, and an arc D on the
other cycle contains at least one internal node, then we can get r + 1-transitivity in
O(rn}-long moves. This is done, roughly speaking, by moving one desired marble after
another to a1, then rotating it onto arc C. The cycle not containing arc C is rotated
to bring the next desired marble to a1, leaving the contents of C undisturbed. Arc
D serves as temporary "storage" of a marble which, already on arc C, needs to he
removed from C and then placed onto C at the right place.

43

Suppose that in the Figure, l > 6 and m > 1. Then we have eIIicienl 6~iransitivity.
Now ABA- 1B-1 = P = (a.1aktl+m+qak+1)(a1:at+iak+l+m}· Using 6-transitivity, we
ca.n find a permutation P1 which sends a1,a&:+1+m+q,a&:+l to a1,a&:+1,a&:+l+m+q
respectively and fixes a1;, a&:+J, a&:+l+m· Then conjugating P by P1 gives P2 =
(a1a&:+ta&:+l+m+q)(a&:ak+lak+l+m)- P2 is a product of two 3-cycles, one the inverse of
the one in P, the other the same as the other in P. So PP2 = (a1:ak+t+ma&:+1), a
3-cycle. Then, using 3-transitivity, we get the alternating group. Hence l > 6 and
m > 1 implies a polynomial diameter for the Hungarian Rings puzzle with the rings
intersecting at two places.

What happens if the number of intersections of the two cycles is some number k
greater than 2? By similar reasoning to the above, we get ABA-1 n-1 to be a product
of k 3-cycles. Then a conjugation argument similar to the above yields that, if we have
3k-transitivity, then we can get a single 3-cycle. How do we get efficient 3k-transitivity?
Well, an arc of 3k - 1 nodes and another arc with one n~de would suffice for efficient
3k-transitivity. Without this assumption, 3k-transitivity can be done in words of length
O(n3&:) (see Chapter 2), which is polynomial if k is bounded. However if k is large, then
this bound is exponential. If no arc has enough nodes in it, there might be no efficient
way to get the desired degree of transitivity.

The foregoing considerations suggest that a good candidate for a Hungarian Rings
puzzle with superpolynomial diameter is one with lots of crossings and no long arcs
(see Figure 4-2). To be more quantitative, suppose that there are k equally spaced
crossings. Then the arcs have length on the order of n/ k. We wa.nt this to be less than

3k. So: n/ k < 3k, i.e. k > Ra- This suggests that we should use at least on the
order of ,In crossings to create a likely exponential puzzle. It would be of great interest
to establish an exponential or moderately exponential lower bound for some of these
"candidate" puzzles.

We now leave these examples and speculations, and prove some results about the
diameter of permutation groups.

11

----------·----· --------------~-----------------------

4.2. Results about the Diameter of Permutation Groups

The following are classical theorems in the theory of permutation groups.

Theorem A

If the group G on n letters is k-transitive and k > n/3 + 1, then G = A,. or S,..

It is actually the case that 6-transitivity implies that the group is A,. or S,..
This surprising result was a long-standing conjecture until very recently (CJ; the proof
makes use of the recent classification of the finite simple groups, which required about
30 years of effort by hundreds of mathematicians, in about 500 journal articles totaling
approximately 10,000 pages!

Theorem B

If G is primitive on n letters, and a subgroup H moves only m < n letters and is
primitive on them, then G is n - m + I-transitive.

We prove the following versio.ns of these theorems, which give information about
the diameter:

Theorem 1

If group G on n letters is k-transitive in words of length < L, the generator set
S is closed under inverses, and k > n/3 + 1, then G = A. or S,. and Diam(G(S))
< 4n2L.

We do not know how to make effective the aforementioned result on 6-transitivity.

Theorem 2

If G is primitive on n letters, and H is the primitive subgroup generated by a cyclic
permutation of prime length p < n, and the generator set S is closed under inverses,
then G is n - p + !-transitive using words of length < 26v'P+1n3(n2 + diam(H(S))).

Theorem 8

If G is primitive on n letters, and H is a 2-transitive subgroup which moves
only 2 < m < n letters, and the generating set S is closed under inverses, then G is
n..:;. m + !~transitive using words of length < 29v'm+1n3(n2 + diam(H(S))).

We were not able to prove an effective version of theorem B for arbitrary primitive
H, but did obtain the special cases contained in theorems 2 and 3.

These theorems imply the following corollaries

Theorem 'JI

If G is primitive on n letters, and H is the primitive subgroup generated by a
cyclic permutation of prime length p < 2n/3, and the generator set Sis closed under
invers_es, then G is An or S,., and Diam(G(S)) < 26v1'+3n5(n2 + diam(H(S))).

Theorem 31

If G is primitive on n letters, and His a 2-transitive subgroup which moves only
2 < m < 2n/3 letters, and the generating set Sis closed under inverses, then G is A,.
or S,., and Diam(G(S)) < 29v'm+3n5(n2 + diam(H(S))).

45

'l'l1corcm

If a primitive group G on n letters is generated by a set S of cyclic permutations,
one of prime length p < 2n/3, Lhen G is An or Sn, and Diam(G(S)) < 21ifa+1n 8•

This last theorem provides a partial extension of [DF'] 's upper bound for bounded
cycles to unbounded cycles. It would be desirable to generalize the result to apply to
all cycles, and to find a matching lower bound on diameter.

4.3. Proofs of Theorems 1,2,3 and t.he Corollaries

4.3.1. Proof of Theorem 1

Following the classical proof, we find a nonidentity permutation which moves at
most k letters. Then using k-transitivity, we will get a 3-cycle and then easily get An
or Sn. Our centribution is .an estimate of the wordlength at each step of the derivation.

Suppose S is a nonidentity permutation which moves r > k letters. Write S as a
product of disjoint cycles, and number the letters in the order that they appear in the
expression: S =(b1 ... bi1)(bit+l--·bi2) ••• (bi.,._ 1+1···bi,,.)· Hno i; is equal to k-1, then we
have case 1, otherwise case 2.

case 1

S = (b1,-,bi1) ... (bi,_ 1 +1--•b1c-1b1c .. ,bi,)--·· Since we have k-transitivity, let T be a
permutation which fixes b1, ... , b1c-I and moves b1c to c1c, where c1c is a letter moved by
s, but Ck is not b1, ... ,or b1c. Then T- 1sT = (b1 ... bi1} ... (bi,-1+l-.. b1c-1c1c ••• b,)

Note that r-1 ST has the same effect as S on the first k - 2 letters. However,
r- 1sT is not equal to S, so T- 1sTs-1 is nontrivial. The letters P moved by
T- 1sTs- 1 are those letters moved by r-1sT which are not "cancelled" by 5-1, plus
those letters not moved by T- 18T which are moved by s-1 , 80

P = ((domain r-1ST)-(domain T- 1sT cancelled by 5-1)) U (domain s-1 -

domain T-1 ST)

= ((domain T-1sT U (domain s-1 - domain T-1ST))-(domain r-1sT cancelled
by s-1)

= (domain T- 1sT U domain s-1)-(domain T- 1ST cancelled by s-1)

-:- (AUB)- 0.
Now, IAI = ! Bl - IS I = r. But A and B overlap at least on the letters

b1,,' .bfc-1, c,. So IAU Bl < 2r - k. 101 > k - 2 since T-1srs-1 fixes b1, •.• , bk-2· So
IPI < (2r- k)-(k- 2) = 2r- 2k + 2.

case 2

In this case, some i, is equal to k- 1. S = (b1 ... bi1) ... (bi,_1+1 ... b1;-1)(b1; ...) Using
k-transitivity, let T fix b1, .•. , b1c_1 and move b1; to d1c, where S does not move d1;. Then
T- 1sT = (1'J. ... bi1) ... (bi,-1+1•·•bk-l)(d1; ...)

Note that r- 1 ST and S do the same thing to b1, ..• , bk-I· However, T-1 ST is not
equal to S.

As in case 1, the set P of letters moved by T- 1STS-l is

(domain T-1 ST) U domain s-1)- (domain T-1 ST cancelled by s-1) = (AU B)-0.

IA! = IBI = fSI = r. But A and B overlap at least in b1, ... , bre-1, so l,AUBI <
2r....; (k-1). 0 contains at least 61, ... , bre-1 80 IOI > k-1. Therefore IP! < {2r-{k-
1)) - (k -1) = 2r - 2k + 2.

Under what conditions is !Pl < r? Well, 2r - 2k + 2 < r iff r < 2k - 2. By
k-transitivity, we can select a nonidentity permutation S which fixes k - 1 letters

17

and moves another letter. Then the number of letters r moved by S satisfies r <
n-(k-1) = n- k + I < 2k- 2 (since k > n/3 + 1 by hypothesis). Hence for this S,
the condition is satisfied for r- 1 ST s-1 to move less letters than S.

Repeating the procedure by setting S: = r-1srs-1, we finally obtain a permuta
tion S which moves at most k letters b1 1 ••• ,bi,,i1 < k. S = (b1 ... bi.) ... (bi,_ 1+t···bi,)·
Let T fix b1, ... ,bi1+i-t and move oi,+1 to a different letter c. Then r-•sr =
{b1 .. ,bi1) ... (bi,_1+l···c), and s-1r-1sr = (bi,Cbi,-1+1), a 3-cyde. Since k > n/3+ 1, we
have k > 2, so using the 3-cycle and 2-transitivity, it is known that we have all of An,
and perhaps Sn,

This completes the classical portion of the theorem, and its proof.

Quantitative analysis

Let us first determine how many iterations were used to get !Pl < k. We started
with a permutation S moving r < n - k + 1 < 2k - 2 letters. Let t = 2k - 2.
Then r < t. Now after one iteration, the number of letters moved is r1 = IPI <
2r ...: 2/c + 2 = 2r - t = r - (t - r). After another iteration, the number of letters
moved is r2 < 2r1 - t = 4r - 3t = r - 3(t - r). In general, after i iterations r i <
r - {2i - l)(t- s) (as long as r, s1, ••• , r,_1 are all >k). Note that this is an exponential
rate of decline: r - r, > 2i - 1. Since S started by moving r < n - k + 1 letters, we
have r - k < n - 2k + 1 < n/3 - 1. If after i iterations, 2' - 1 > n/3 - 1, then we
attain ri < k, which is the goal. Hence IPI < k is achieved in i or fewer iterations,
where i is the smallest integer such that 2i > n/3; this is logarithmic in n.

Now to compute the diameter. Suppose, as in the hypothesis, that we get
k-transitivity in wordlength < L. So the starting Scan be picked to have wordlength
< L. We next form S1 = r-1srs-1, where T has length < L. Using the assumption
that the generator set is closed under inverses, S1 has length < 2L + 21S1 (where ISi
is the length of S). On the next iteration,

In general, after i iterations,

ISil < (2i+l - 2)£ + 2'1S1.
We go for i iterations, where i is the least integer s.t. 2i > n/3; then 2' < 2n/3.

We get

1s,1 < (4n/3 - 2)£ + (2n/3)ISI

< (4n/3 - 2)£ + (2n/3)L = (2n - 2)£.

Then the final·step s;1r-1SiT gives a 3-cycle, and wordlength is < {4n- 4)L +
2L = (4n-2)L.

Now suppose n > 5,

so that (as k > n/3 + 1) k ~ 3.

48

So, using 3-transitivity and the 3-cycle, we. get any 3-cycle (by conjugation) in
wordlength < L + (4n - 2)L + L = 4nL. Thea we aeaerate anything m A.a uaing at
most n - 2 3-cyclea, so anything in A;'la Hdleagta

~,,,,;:,.,. . ,, .. · .

< 4n(n- 2)L < 4n2L-L, when n > 5.

(For n < 5, the group hu

diameter < nl < 4n2 - l ~· 4n2 L - L,

so the wordlength of any element satisfies the same bound in this cue aleo.)
If the group is s .. , then aome generator •i · ii odcl. Bxpraa an element of . S.

by dividing by Bi, then expreuiag the resultina element of A.. · by a word of length
< 4n2 L - L. Hence total wordleagth is ~ 1 + (fn2£ £) S 4n2 L. Tlus is then an
upper bound on the diameter of the resaltiag gro.p, whetlaer it be A.. or Sn, and the
proof is complete.

41

4.3.2. Proofs of Theorems 2 and 3

We recall the statements of Theorems 2 and 3.

Theorem 2

If G is primit-ive on n letters, and H is the primitive subgroup generated ·by a cyclic
permutation of prime length p < n, and the generator set S is closed under ·inverses,
then G is n - p + !-transitive using words of length < 26v°P+1n3(n2 + diam(H(S))).

Theorem 3

If G is primitive on n letters, and H is a 2-transitive subgroup which moves
only 2 < m < n letters, and the generating set S is closed under inverses, then G is
n - m + 1-transitive using words of length < 29v'm+ln3(n2 + diam(H(S))).

First we will prove the following preliminary Lemmas.

Lemma 2a

If G is primitive on n letters, and H is the primitive subgroup generated by a
cyclic permutation of prime length p < n, and the generator set S is closed under
inverses, then there exists a g E G which takes D = Domain(H) to D', such that D and
D' overlap on exactly m - ! letters, and g has wordlength < 26v'P(n2 + diam(H(S))).

Lemma 3a

If G is primitive on n letters, and His a 2-transitive subgroup which moves only
2 < m < n letters, and the generating set Sis closed under inverses, then there exists
a g E G which takes D = Domain(H) to D', 811.Ch that D and D' overlap on exactly
m -1 letters, and g has wordlength < 29v'm(n2 + diam(H(S))).

· The purpose of the Lemmas is roughly as follows. By making a set of letters
overlap itself by all but one letter, and repeating this process, it is possible to build a
tower of conjugates of H whose domains look like the diagram in -Figure 4-3. It is then
possible to achieve n - k + 1 transitivity by using the fact that the domains. intersect,
to move any ·letter to the right end of the bottom row (as pictured in the figure), then
move any letter to the right end of the next to bottom row without disturbing the
prevfous element, and so on to get n - k + l transitivity. The details will be given
later, as well as an analysis of the wordlength needed to do these operatio111. This,
combined with Lemma 2a, gives Theorem 2, and with Lemma 3a it gives Theorem 3.

4.3.2.1. Proofs of the Lemmas

We first motivate the proofs of the Lemmas. Roughly speaking, we will first find
a permutation which maps D to a D1 which overlaps D partially but not totally. Then
a clever device is repeated, which increases _the overlap with each iteration, but never
reaches total overlap. Naturally, we must reach a D' where overlap is all but one letter.

Let us be more explicit. Let g E G take D partly, but. not entirely, to itself. Let
Ho= g-1Hg, with Do= dom(Ifo) = g(D). Let A= DnDo,B·= Do-D,C = D--Do
(see Figure 4-4 for a crude Venn diagram). Then IAI + IBI = m and IBI = lGI.

Oo o,
p" -- __ _,.. ...

• •
•

D~ ..--~ - ,....

A -hwe..r of. C•~\A_,,ft.~
Figures 4-3 and 4-4

D

C. A B

Now if 90 E Ho takes B to Bo, such that BnBo is nonempty but not entire, then
H1 = 9o1 H go has domain

D1 = 90(CU A) = go(C) U go(A) = CU go(A).

Ai= DnD1 = CU(Ango(A)),

Bi= D1 -D = go(A)-A = go(A)nB,
and 01 = D -Di has, as before, the same size as Bi. As B is not a subset of

go(A), we have that B1 is a proper subset of B.

And B-B1 = B-(go(A)nB)

= the part of B not mapped into by A .

= the pa.rt of B mapped into by B = Bflgo(B).
Hence the amount by which B decreases in size by going to B1 is the size of B n go(B),

which is nonempty. Therefore the overlap has been increased by IB n go(B)I > 1 and
the overlap is not entire since IB ngo(B)l < IBI.

Our aim will be to pick 90 to map B as much at possible into B (and so decrease
the size of B), but not entirely (so that there is a new nonempty B). Then we repeat
the scenario with H and H1, picking 91 in Ht to get H2, and so on, decreasing B till
it contains just one letter. The object is to use as few iterations as possible, to keep
word length from growing too much (it approximately doubles with each iteration). In
the proofs which follow, we will show that the properties of H are sufficient to ensure

that only 0(JiBI) iterations are needed to get B down to size 1. The upper bounds
on wordlength wiU follow in a straightforward way.

51

Proof of Lemma 2a

We want to see how much B can be decreased when H is generated by a cyclic
permutation h 1 of prime order p.

For simplicity, let- the domain of H be {l, 2, ... , p} and let hi -:-- (12 ... p). Let B be
a proper subset of dom(H), IBI = r < p-. We wish to find a power k (0 < k < p) of
h1 which maps B onto much of itself, but ·not entirely. (Note that the latter cannot
happen, so we do not need to be careful to avoid this case. For any b E B has orbit
(the set of iterated images of b under a mapping) under ht of length l where l divides
p. l is not 1 because ht(b) is not b. Hence l = p. If ht took B to B, then it follows that
b's orbit is all in B. But then !Bl= p, a contradiction.)

Let S1: = the number of unordered pairs of elements of B whose elements are k
apart in the shortest "circular" direction. Then hf maps exactly S1c elements of B into
B, and so IBI decreases by S1c.

Let us determine how large max(l < k < (p - 1)/2)S1c must be. Note that

E~,:f >l2 S1c

is equal to the number of unordered pairs of elements of B, which is r(r -1)/2.
So some S1: must be at least

(r(r - 1)/2)/((p - 1)/2) = r(r - 1)/(p - 1).

Hence in one step we can decrease B's size from r to r-r(r-1)/(p-1)1 or perhaps
an even faster decrease.

Let us examine the mapping r: = r - r(r -1)/(p-1).

(r -1)/(p-1) > r/(2p)

ill 2rp - 2p > rp - r

ill rp > 2p- r

iffr>2-r/p.

We have r > 2, which implies the latter inequality and so the first inequality
holds. This implies that

r: = r-r2/(2p)

is a mapping which reduces more slowly. However, we will show that repetitions
of even this mapping will reduce r to 0(ylr) in only 0(y'r) iterations; once r is this
small, we can afford 0(y'r) additional conjugations, each of which reduce r by at least
1, to finally reach r = 1 (the goal).

Therefore let us examine the mapping r1+1 = r1c - ri/(2p). First make the scale
change of variables Zk = r1c/ Jp. Then we get

z1c+1 Jp = z1c,Jp- (z1c,Jp)2 /(2p)

SO Zk+l = Zk - zif (2Jp).

52

Note that z0 = ro/ ✓i> < ..ff> (since ro < p), so the start value zo is down at level
Jp rather than as high as p {in the original variable).

Let us see how many iter3:tions it takes to decrease zo by 1. Now during the range
of iterations for which Zi > zo -1, i = 0, ... , k_- 1, we have

ZJt = Zk-1 - zf_if(2y"p) < ZJt-1 - (zo -1)2 /(2./f>). _

So Zk < z0 - k(zo -1)2/(2y'p).

Then Zk becomes < zo -1 when k(zo - 1)2 > 2y'p, i.e. when k > 2J'P/(zo -1)2
•

So l(2J'P/(zo - 1)2)J + 1 iterations reach zo -1 or lower.

Therefore we can reduce zo successively by 1 until LzoJ = 0 {corresponding to
r < Jp) in at most

(l2J'P/(J'P-1)2J + 1) + (l2.jp/(J'P- 2)2J + 1) + ... + {l2.jp/12J + 1)

< 2J'P(pi2)/6 + J'P < 5J'P steps,

since 1/12 + 1/22 + 1/32 + ... = pi2 /6.

We have thus proved the following Lemma

Lemma

The mapping r: = r-r2 /(2p) started at ro < p, requires less than 5J'P iterations
to reach a value · of r less than ./f>.

Using this result, we can now take at most vf> additional conjugation steps
(reducing B by at least one letter per iteration) to reach !Bl = 1 in a total of < 6./f>
iterations.

Wordlength analysis

We described above how, by forming a suitable conjugate g-: 1 Hg of H, we could
get the domains of H and of g..., 1 Hg to overlap by all but one letter. What is the
wordlength of the permutation g obtained by conjugating as many as 6./P times? Well,
let

. 1
Ho=g0 Hgo

be the first conjugate, to get some overlap in domains. Then we picked ho E Ho,
so

for some h.h E H, to get

H (-1h,)-in(-11.,_) (-1h,-1)H(-1h,) 1 = go o9o 9o 1"{190 = go o 9o go ogo •

Then we picked h1 E Ht, so

h1 = 9o1h6-19oh~go1h~go

53

for some_ hi EH, to get H2 = h11 H hi which is a cumbersome expression when
written out! And so on.

Now the permutation go which conjugates H to get Ho can be chosen to have
wordlength Lo < n2 (see Chapter 2). ho had length

Li = wordlength of (g01~go) < 21.o + diam(H).

h1 had length

£.i = word length of 9o 1 kf>- l goh~ go l hbmi

< 2L1 + diam(H). (Note that we are using the assumption that the generators
are closed under inverses.)

In general, hi has wordlength. less than 2i Lo+ (2i - l)diam(H), which is less than
2i(n2 + diam(H)). Since only i ~ 6Jp iterations are needed at most, we get the upper
bound length < 26v'P(n2 + diam(H(S))). This proves Lemma 2a.

S4

Proof of Lemma 3a

Now we want to see how much B can be decreased when H is 2-transitive. We
will use an interesting probabilistic argument which yields, in the end, a similar bound
to that obtained in the proof of Lemma 2a.

Let Ho be a conjugate of H, ,with domain Do which partially overlaps with domain
D of H. Let A, B, and C be the sets defined in the proof of Lemma 2a.

IDI = !Doi = m.

As Do= AU B, where A and Bare disjoint, let

IAI = Lm, IBI = (1 - L)m, 0 < L < 1.

We will define some functions which formally look like probability random
variables, distribution functions, expectations, and variances. However, we will treat
them formally so that there is no suggestion that chance enters the discussion; it is
nevertheless enlightening to informally think in terms of probability.

For a E A and p E Ho, let

Xci(P) = 1 if p(a) EB, 0 otherwise.

Let X(p) = EaeAXa(p).

Define E(Xa) to be E,eHo 1/IHofXa(p).
This is equal to

I {p E Ho which takes a into B }I / f {p E Ho} I•

As there are m cosets (of equal size) of Ho, each of which takes a to a different
place, we have that

E(X0) = I{ cosets moving a into B }I / I{ cosete }I

= IBl/m·= 1-L.

Define E(X) to be E,eHo 1/IHol*X(p).
This evaluates to

E,eH0 1/IHol* EcieAXa(p)

= LciEA L,eH0 1/IHolXo(p)

= LaEA E(Xo)

= IAl(l - L) = L(l - L)m.

In general, we will use the symbol E(Z) to mean

55

Epf;llo 1/JHolZ(p), if Z is a function of p.

Define V ar(X) to be E((~ - E(X))2). This evaluates to

E(X2 -2XE(X) + E(X)2
)

= E(X2) - 2E(X)2 + E(X)2 = E(X2
) - E(X)2•

The latter term, -E(X)2 , is equal to L2(1- L)2m2 •

The first term is E(X2) which evaluates to

E(Ea1ra2EA Xa1Xa2)

= E(EaeA X!) + E(Edi6tincta1 ,a2EA Xa1Xa2)

=Ti +T2.

Ti = EaeA E(X!)

= EaeAE(Xa)

= E(X) = L(l - L)m.

T2 = Ea1,a2EA,a1~a2 E(Xa1Xa2)·
Now, for distinct al,a2 we have

= LpEH0 l/lHol*Xa1(p)Xa2(p)

= l{P E Ho taking both ai and a2 out of A}I/IHol-

Since His 2-transitive, there are m(m -1} equal sized cosets, each of which takes
(a1, a2) to a different pair of places. (1- L)m((l - L)m - 1) of these take (a1, a2) out
of A.

So E(Xa1Xa2) = ((1- L)m((l -L)m -1))/(m(m -1)}

= (1-L)((l -L)m - l}/(m-1)

= ((1 -L)2m - (1- L))/(m -1).

So T2 = Lm(~ -1)((1 - L)2m - (1 - L))/(m -1).

Then V ar(X) = Ti + T2 - £2(1 - L)2m 2

= L{l - L)m + Lm(Lm -1)((1 - L)2m - (1 -L))/(m -1) - L2(1 - L)2m2

56

=F1.

We claim that F1 reduces to L2(1 - L)2(m + 1 + 1/(m - 1)) = G1,

Proof:

zero.

Ft/(Lm(l - L)) = F2 = 1 +(Lm -1)((1- L)m -1)/(m -1)-L(l - L)m.

Gt/(Lm(l - L)) = G2 = L(l - L)(m + 1 + 1/(m - 1))/m

= L(l -L)(m2/(m -1))/m

= L(l-"- L)m/(m - 1).

F2(m - 1) =Fa= (m -1) + (Lm -1)((1 - L)m - 1) - L(l - L)m(m -1),

and G2(m -1) =Ga= L(l -L)m.

We claim that Fa= Ga is an. identity,

i.e. C = Fa - Ga= (m -1) + (Lm -1)((1-L)m - 1)- L(l - L)m2 is identically

Well, expanding C yields

C = (m -1) + L(l - L)m2 - (1-L)m -Lm + 1-L{l - L)m2

= (m - 1) - (1 - L)m - Lm + 1

which is identically zero. Hence Fa= Ga, so F1 = G1 and we conclude that

Var(X) = L2(1-L)2{m + 1 + 1/(m - 1)).

Now, if (X - E(X))2 were > s*Var(X) for a fra.ction O < f < 1 of the
permutations of Ho ands> 1, then

E(X - E(X))2 > f s*V ar(X),

which is a contradiction if J s > 1. So, for example (pick f = .5, s= 2) at most
half of the p E Ho can make the value of (X - E(X)}2 over 2V ar(X). So, for at least
half of the p E Ho,

(X -L(l -L)m)2 < 2L2(1-L)2{m + 1 + 1/(m - 1)),

i.e. IX - L{l - L)ml < v'2.L(l - L)..j(m + 1 + 1/(m -1)),

i.e. (as m > 2 implies that m + 1 + 1/(m-1) < 2m)

IX - L(l - L)ml < L{l - L)v',im,

57

so we conclude that

L{l - L)(m - 2yrn) < X .< L(l - L)(m + 2./m)

for at least half of the p E Ho.

Now, recall that X(p) = number of letters of A leaving A under p

= number of letters of B leaving B under p.

Then (1 - L)m -X = number of letters of B mapping into B

= amount by which B becomes smaller on next iteration of conjugation.

{1)

We want this latter quantity to be large, but not to be all of B. By the above
inequality (1) on X, we have that B decreases by at least

(1 - L)m - X > {1 - L)m - L{l - L)(m + 2./m)

= {1 - L)2m - 2£{1 - L)ym

= IBl*IBl/m - {1 - IBl/m)*2vmlBl/m

> IBl*IBl/m - 2JmlBl/m

= (IBI - 2./m)(IBl/m)

for some p E Ho (in fact, for at least half of the p E Ho)- Hence some p E Ho
causes M = IBI to reduce at least as fast as the mapping

M: = M-(M-2vm)(M/m)

= M(l +2/ym-M/m).

Let us examine the behavior of this mapping in the range M > 4.,/m. Then

2/ym-M/m < -M/{2m}, so

M(l + 2/y'm- M/m) < M{l-M/(2m)) = M-M2/{2m).

Hence in the range M > 4y'm, M: = M - M 2 /(2m) decreases at least as slowly
as the original mapping. If we show that this new mapping decreases at some rate, then
we know that the original mapping decreases at that rate or faster. But the Lemma
proved in the proof of Lemma 2a applies precisely to this mapping. Therefore, after
less than 5Jm iterations, we have M < 4Jm. Since we can reduce M to 1 in another
4y'm or fewer iterations, we get the result that less than 9ym iterations will reduce
B to exactly one letter.

We must take care to check that B does not vanish entirely. Inequality {1) says
that M decreases by at most

58

(1- L)2m + 2L(l -L),/m

= M /mM + 2./m(l - M /m)M /m

= M(M /m + 2/ vfm(l - M /m))

< M (so that decrease is not entire)

if and only if M /m + 2/ ytm(l - M /m) < 1

if and only if M + 2/m(l - M/m) < m

if and only if M{l - 2/ y'm) < m - 2,/m

if and only if M < (m - 2y'm)/{1- 2/y'm) = m.

But since M < m, all these inequalities hold, so the decrease is not entire for
those p E Ho which satisfy the inequality {1).

Therefore less than 9Jm iterations will reduce B to exactly one letter. Then,
proceeding to analyze the wordlength (of the composite permutation which achieves
this) in exactly the same way as done for Lemma 2a, we get that the wordlength is

< 29vlm(n2 + diam(H(S))). This completes the proof of Lemma 3a.

59

4.3.2.2. Proofs of Theorems 2 and 3

Theorems 2 and 3 will follow in precisely the same way, now that the important
step has been accomplished of. getting B to overlap itself by all but one letter.

We started with H with domain D, and showed in the Lemmas 2a and 3a how to
{in semiexponential wordlength) get a conjugate H1 with domain D1 which contains
exactly one _letter not in D.

Now, suppose {induction hypothesis) that we have built a tower of such conjugates
H,H1, ... ,Hk, with domains Do,Dt,·•·,Dk such that Di has exactly one letter not in
(Dou ... UDi-d for each i = 1, ... ,k (the above Lemmas give us a tower up to H1)- See
Figure 4-5 for a schematic picture of this situation.

Figure 4-5

Do J
01 , l d
02.. ----,_ ~

D' •._!... ~~-,
A

A Tow1.r 0 .f
Let g E G map Do partially into D = (Do U ... UDk) and partly outside D. This

is possible because IDol > 2, so we can pick distinct a, b E Do and use the primitivity
of G to map one of a, b into D and the other outside of D.

Let D' = G(Do). Define A= D'nD, and for i = O, ... ,k define~= D'nPi·
Also define B = D' - D.

Now let H' = g-1 Hog. By the Lemmas, there exists an h in H' of "moderately
exponential" wordlength which maps A partly to B, and causing a significant reduction
in the size of B.

h(Do) = h(Do -Ao) U h{Ao) = Do -Ao U h(Ao).

As (Do -Ao) n B is null, we see that Ao is the only part of Do that can map
into B. If in fact h·takes Ao partly outside of A, then h- 1Hoh gives a new H' with a
significantly reduced B (new Bis h(Ao) n(old B)), which is at most as large as h(A) n(
old B); the. latter we know can be made small, by the Lemmas).

Keep repeating this step until B reduces to exactly one letter, or until the condition
(that h take Ao partly out of A) is not satisfied. If the condition is always satisfied,
then we get H1+1 , the next level of the tower.

Let us look at the case that some point in the iteration, h(Ao) is entirely in A. Then
find the first ~ which has something that leaves A (something in A= (Ao U ... UAk)
leaves A). Then nothing in (Ao U ... U ~-1) leaves A, so something in

~ - (Ao U ... U.A.-1)
= (Di nA) - {(Do nA) U ... U(Di-1 nA))

= (Di nA)-((Do U ... UDi-1)nA)

60

= (Di - (Dou ... u Di-d) nA

leaves A.

But (Di-(DoU ... LJDi-d) by hypothesis is a single letter bi, say. So since the
intersection in the last expression is not empty, it must be bi. Hence A-i-(Ao U ... UA-i-1)
is a single letter bi, and h(bi) EB. Therefore, if we fall out of the iteration, the single
additional step of conjugating Ai by h brings B down to exactly one letter. Hence this
case yields H 1c+ 1 with little extra work.

How to get n-m+l transitivity

Build the tower till we reach Hn-m with domain Dn-m• As the tower is being built,
construct the graph consisting of a point for each Di, and an edge connecting Di, D; if
and only if Di n D; is nonempty. As the next level Di is added, add a point labeled Di
and draw appropriate edges to previous points. Clearly this graph is connected at each
stage of its construction, and remains connected when each new point Di is added,
since D., intersects with at least one previous domain.

Let do be any letter in Do, and let di, ... , dn-m be respectively the letter in
D1, ... , Dn-m which is not in any previous domain. We will show how to get n - m + 1
transitivity by showing how to send any ao, ... , "n-m to do, d1, ... , dn-m respectively.
First move an-m from a domain which it is currently in, to domain Dn-m, by moving
along edges of the graph. At most n-m edges need be traversed. Each edge is traversed
by moving an-m, currently in some domain Di, to the intersection of Di with another
domain Dj, using a permutation~ E Hi. Now an-mis in the domain D;. Once an-m

is in Dn-m, use a permutation hn-m E Hn-m to put an-mat location dn...;m• In the
same way, we get the other letters into place. Suppose tZn-m, an-m-1, ••• , a;+1 have all
been put into place without disturbing any of the previous placements. Then put a;
into place as follows: a; is not in any of the locations d;+1, ... , dn-m (since they have
been filled already), so a; is in one of the domains Do, ... , or D;. Since the subgraph
involving only Do, ... , D; is connected, we can get a; to D; in at most :i edges, and then
finally move a; to di. Since edge traversals mean using permutations in Ho, ... , or H;,
and since these groups do not move any of the letters d;+t, ... , dn-m, we do not disturb
the previous placements in the process of placing aj. Thus we have demonstrated how
to obtain n - m + 1-transitivity.

Quantitive analysis of wordlength of n-m+ 1 tranaitivity

We will now analyze the wordlength of the permutation contructed above, which
sends ao, ··~, tZn-m to do, ... , dn-m respectively. Then the wordlength for n - m + 1- ·
transitivity wiU be at most twice this amount (send ao, ... , an-m to do, ... , dn-mi then
perform the inverse of the permutation which sends the target letters bo, ... , bn-m to
do, ... , dn-m),

For simplicity of notation, we will derive the bound on wordlength, in the case
where H = Ho is 2-transitive (Theorem 3). The bound for Theorem 2 is proved in
exactly the same way.

Since

H1 = h-1Hoh

61

where domain(H1)-domain(llo) = 1 letter, and Lemma 3a gives an upper bound
of

L = 29v'm(n2 + diam(Ho))

for the wordlength of h, we get that (using the assumption that the generator set
is closed under inverses) ·

Diam(H1) < 2L + Diam(Ho),

Now to get additional levels of the tower:

to get Hi, first we make Do overlap itself partially, using the primitivity of G;
this takes at most wordlength n2 (see Chapter 2). This gives H'. Then after less than
9y'm iterations, IBI becomes 1.

In the case that h(~) always mapped partly outside of A, then we a.re performing
the exact same type of construction as for Hi, so Diam(Hi) < 2L + Diam(Ho).

If this is not the case, then a~er < 9ym' - 1 iterations we perform a special final
step. Before the final step, H' has diameter < L + Diam(Ho), The final step consists
of conjugating one of Hi, ... , Hi-1 by a properly chosen element of H'. So in this case,

Diam(Hi) < 2Diam(H') + max(Diam(H1), •.. , Diam(Hi-1)).

Letting L1 = 2L + Diam(Ho) be an upper bound on the diameter of Hi, and
similarly letting Li be an upper bound on the diameter of H,;,, then

Diam(H2) < 2(L + Diam(Ho)} + max(Diam(Ho), Diam(H1))

= Li + Diam(Ho) + max(Diam(Ho), Diam(H1))

< L1 + Diam(Bo) + L1

= 2L1 + Diam(Ho).

This upper bound for Diam(H2) is higher than the upper bound 2L + Diam(Ho)
for the first case (when h(Ao) always has something outside of A), so to be conservative
we use this higher bound, and set ~ = 2L1 + Diam(Bo),

In the same way, Diam(Ha) is in either case

<' {L1 + Diam(Bo)) + LJ

= 3L1 + 2Diam(Ho).

By induction,

Diam(Hi+1) < (Li + Diam(Ho)) + ~

<(Li+ Diam(Ho)) + (iL1 + (i- l)Diam{BO))

= (i + l)L1 + iDiam(Ho)

62

= (i + 1)2£ + (2i + l)Diam(Ilo)-

Now, to move ao, ... ,an-m to do, ... ,dn-m:

Moving ai into place at most requires using one permutation from each of Ho, ... , H,.
So total wordlength is less than

Er~o E~·=o[U + 1)2L + (2j + l)Diam(Ho)l

= E;::;0((i(i + 1)/2 + (i + 1))*2L + (i{i + 1) + {i + 1))* Diam(Ho)]

which is (since i(i+ 1)/2 + (i + 1) < (i + 1)2 and i(i + 1) + (i + 1) = (i + 1)2)

< Ef;0(i + 1)2(2L+ Diam(Ho)).

Now,

EZ:0(i + 1)2

= (n-m + l){n-m + 2)(2n-2m +3)/6

< n*n*2n/6 = n3 /3 since m > 2.

So wordlength is < n3 /3*{2L + Diam(Ho))

< n 3/3*(3L)

=naL.

Finally, to get n - m + I-transitivity, as explained above we double this to get
the upper bound n3*2L = 29v'm+ln3(n2 + diam(H(S))), and Theorem 3 is proved. In
exactly the same way, we get the upper bound in Theorem 2.

63

4.3.3. Proofs of the Corollaries

Theorem 'i and Theorem 3' are proved immediately by substituting n-m+l fork
and the upper bound on wordleng\11 for n-m+l-transitivity for Lin Theorem 1 (whose
hypothesis k > n/3 + 1 is satisfied because m < 2n/3 implies n - m + 1 > n/3 + 1).

The proof of the final corollary is as follows. The generator h of the cyclic subgroup
H = Ho of order pis (by hypothesis) in the generator set of G. So Diam(Ho) < p.
We are not assuming that the generators are closed under inverses, but because they
are cyclic of order < n, the inverse of a generator is at most the n-th power of
that generator. Hence the word length is at most a factor of n longer than obtained
previously, where we assumed closure under inverses. Therefore, n-m + I-transitivity
requires wordlength

< 26v1P+ln4(n2 + p)
< 26yp+2n6.

Then, as m < 2n/3, we have n - m + 1 > n/3 + 1, so using Theorem 1, we get
an additional factor of 4n2, giving Diam(G) < 26./P+4n8, which proves the corollary.

64

5. Conclusion and Open Problems

We have obtained some results in pebble coordination problems and the diameter
of permutation groups. Specifically, we derived:

1. An efficient decision algorithm for the general pebble coordination problem on
graphs.

· 2. O(n3) matching upper and lower bounds on the number of moves to solve pebble
coordination problems.

3. 26v1'+3n8 upper bound on diameter of An or Sn when generated by cycles, one
of which has prime length p < 2n/3.

We see 1. as being a complete and satisfactory result as it stands. It would be
of interest to apply the algebraic methods used in the pebble movers' problem to
special cases of the general geometric movers' problem which may admit an algebraic
approach.

2. could stand a number of refinements.

a. Find exact constants in the O-terms.

b. It would be useful to at least have an efficient algorithm which approximates
the number of moves required. For it seems that only a small fraction of the graph
puzzles actually require O(n3) moves. As an exaniple, it is not hard to show that the
"15-puzzle" generalized to square grids of arbitrary size (with one blank) requires only.
O(n312) moves (where n is the number of vertices).

c. We do not even know how to solve b. for the case of Ta-graphs with one blank.
It is easy to generalize the lower bound result to show that, if one loop has bounded
length, then O(n3) moves are required. However, it is not clear what happens when
both loops are about the same length: Since there are two generators A, B which yield
An or Sn (groups of order O{n!)), it follows that some orderings will require O(nlogn)
words in A,B, which yields a O(n2logn) lower bound on number of pebble moves. We
do not know whether or not there is a. matching upper bound.

3. is only a first step towards understanding the diameter of groups generated by
arbitrary cycles. A number of related questions are open:

a. Is. the upper bound in 3. tight? Is there a corresponding lower bound of O(2°v'P)
for some instances of 3. ? This would settle the following well-known open problem:

b. Can a transitive group have larger than polynomial diameter for some generator
set? Can this be the case for An or Sn?

c. Can the upper bound in 3. be generalized to less restrictive conditions on the
generating cycles? Is it even true that the following conjecture holds?:

d. Is the diameter of a group, relative to any generating set, always bounded above
by O(nYR)? E.g. the group generated by S ={{12)(345) ... (... [sum of first n primes})}
has diameter 0{2VR), which satisfies the conjecture.

-----·--------------------

Bibliography

(CJ Peter J. Cameron, "Finite permutation groups and finite simple groups", Bull.
London Math. Soc., vol. 13, part 1, Jan. 1981, pp. 1-22.

[DF] J.R. Driscoll and M.L. Furst, "On the diameter of permutation groups", 15th
STOC, 1983, pp. 152-160.

{DSY] C.O'Dunlaing, M. Sharir, C.K. Yap, "Retraction: A new approach to motion
planning,,, 1983 ACM pp. 207-220.

[FHL] M. Furst, J. Hopcroft, E. Luks, "Polynomial-time algorithms for permut&tion
groups", 21st FOOS, 1980, pp. 36--41.

[HJWl) J.E. Hopcroft, D.A. Joseph, $.H. Whitesides, ''Movement problems for 2-
Dimensional linkages", Tech. Rep. 82-515, Comp. Sci. Dept., Cornell Univ.,
August 1982.

[HJW2} J.E. Hopcroft, D.A. Joseph, S.H. Whitesides, "On the movement of robot arms
in 2-dimensional bounded regions", Tech. Rep. 82-486, Comp. Sci. Dept., Cornell
Univ., March 1982. Also, 23rd FOOS, 1982, pp. 280-289.

[HJW3] J.E. Hopcroft, D.A. Joseph, S.H. Whitesides, "Determining points of a circular
region reachable by joints of a robot arm", Tech. Rept. 82-516, Comp. Sci. Dept.,
Cornell Univ., October 1982.

[J] Mark Jerrum, "The Complexity of Finding Minimum-Length Generator Sequences",
Internal Report CSR-139-83, Dept. of Comp. Sci., Univ. of Edinburgh, Aug. 1983.

[M] Pierre McKenzie, ''Permutations of Bounded Degree Generate Groups of Polynomial
Diameter", manuscript, Dept. of Comp. Sci., Univ. of Toronto, Jan. 1984.

[R] J; Reif, "Complexity of the mover's problem and generalizations", 20th FOCS,
1979, pp. 421-427.

[SSlJ J.T. Schwartz and M. Sharir, "On the piano movers' problem: I. The special
case of a rigid polygonal body moving &midst polygonal barriers", to appear in
Comm. Pure Appl. Math.

[SS2] J. T. Schwartz and M. Sharir, "On the piano movers' problem:· II. General
techniques for computing topological properties of real algebraic manifolds';, to
appear in Adv. Appl. Math.

[SS3] J.T. Schwartz and M. Sharir, "On the piano movers' problem: m. Coordinating
the motion of several independent bodies: The special case of circular bodies
moving amidst polygonal barriers", Tech. Rept.~ Courant Institute, N.Y.U., 1983.

[SY) Paul Spirakis and Chee Yap, "On the combinatorial complexity of motion
coordination)), Tech. Rept., Courant Institute, N.Y.U., April 1983.

[SYl) Paul Spirakis and Chee Yap, "Moving many pebbles in a graph is polynomial
time", Tech. Rept., Courant Institute, N.Y.U., September 1983.

[Wie} Wielandt, ''Finite permutation groups", Academic Press, New York, 1964.

66

[\V] H..M. \\Tilson, "Graph puzzles, homotopy, and the alternating group", Journal of
Comb. Theory (B) 16, 86-96 (1974).

[Y] C.K. Yap, "Motion coordination for two discs", Tech. Rept., Courant Institute,
N.Y.U., January 1983.

li7

