
Replication Methods for Abstract Data Types

by

Maurice Peter Herlihy

© Massachusetts Institute of Technology 1984

May, 1984

This research was supported in part by the Defense Advanced Research Projects Agency of
the Department of Defense and was monitored by the Office of Naval Research under
Contract No .. N000_l4-75-C-O661.

Massachusetts Institute of Technology
Laboratory for Computer Science
Cambridge, Massachusetts 02139

. 2.

Replication Methods for Abstract Data Types

by

Maurice Peter Herlihy

Abstract

Submitted to the

Department of Electrical Engineering and Computer Science

on 5 May, 1984 in partial fulfillment of the requirements

for the Degree of Doctor of Philosopf:ly.

Replication can enhance the availability of data in a distributed system. This thesis

introduces a new method for managing replicated data. We propose new techniques to

address four problems associated with replication: (i) the representation and manipulation

of replicated data, (ii) concurrency control, (iii) on-the-fly reconfiguration, and (iv)

enhancing avaiiability in the presence of partitions.

Unlike many methods that support replication only for uninterpreted files, our method makes
use of type-specific properties of objects (such as sets, queues, or directories) to provide

more effective replication. Associated with each operation of the data type is a set of

quorums, which are collections of sites whose cooperation suffices to execute the
operation. An analysis of the algebraic structure of the data type is used to derive a set of

constraints on quorum intersections. Any choice of quorums that satisfies these constraints
yields a correct implementation, and it can be shown that no smaller set of constraints

guarantees correctness.

By taking advantage of type-specific properties in a general and systematic way, our method

can realize a wider range of availability properties, more concurrency, more flexible

reconfiguration, and better tolerance of partitions than existing replication methods.

Thesis Supervisor: Barbara H. Liskov

Title: Professor of Computer Science

Keywords: abstract data types, atomicity, availability, concurrency control, distributed

systems, partitions, reconfiguration, reliability, replication.

. 3.

Acknowledgments

I would like to thank my advisor, Barbara Liskov, and my readers, Dave Gifford and Dave

Reed, for indispensable asa·11ance in clarifying both my ideas and their presentation. I am

grateful to Bill Weihl for many-invaluable suggestions, to Sheng-Yang Chiu for many useful

discussions, and to the other members of the Programming Methodology group for their

companionship and moraJ support.

My term as a graduate student has been rendered easier by the generous financial support

of the GenRad Foundation, the International Business Machines Corporation, and the

Monday Night Poker Gang.

Finally, I would like to thank Ellen Laviana, for hardly ever doubting that I would finish, and

my parents, for everything.

0

- 4 -

CONTENTS

1. Introduction ~ 7

1.1 Motivation 7
1.2 Contributions 8
1 .3 Model of Computation 10
1.4 Related Work 13
1.5 Overview of Thesis 16

2. General Quorum Consensus•...•................. 19

2.1 Introduction 19
2.2 Gifford's.Replication Method ... 20
2.3 A Revised Replication Method 25
2.4 Replicating Objects of Arbitrary Type 35
2.5 Correctness Arguments .. 37
2.6 Examples. ..•...............•..•.....•.•.•.•.......................... 46
2.7 Multiple Levels of Replication ; ... 60
2.8 Discussion ... 61

3. Concu.rrency Control ... 64

3 .. 1 Introduction ... 64-
3.2 Atomici'ty•.. .•. . ..•. 66-
3.3 Local Concurrency Control ... _ 73
3.4 Non-Local Concurrency Control .. 83
3.5 Static Atomicity .. Elf>
3.6 Discussion "" ... 00
3.7 Relatect Work ~ .. 100

4. Reconfiguration ······························~······················· 103

4.1 Introduction .. 103
4.2 Gifford's Reconfiguration Method ... 104
4.3 Reconfigurabl.e Objects .. ,.. 1C>6
4 .. 4 Examples ~ ... 122
4.5 Discussion• •. ..• ••.. 127

- 5 .

5 . Pa rt i ti on s . 1 2 9

5.1 Introduction .. 129
5.2 The Missing Write Scheme ... 130
5.3 The General 1\1ethod 133
5.4 Discussion 145

6. Conclusions .. 148

. 6.

FIGURES

Fig. 1. File Replication using Gifford's Method 23
Fig. 2. A File-based Representation for a Queue ... 26
Fig. 3. File Replication using Timestamps 28
Fig. 4. A Log-Based Representation for a Queue 33
Fig. 5. Paged Files .. 49
Fig. 6. Tables .. , 53
Fig. 7. First Dependency Relation for Double_Buffer .. 58
Fig. 8. Second Dependency Relation for Double_Buffer .. 59
Fig. 9. An Atomic FIFO Queue .. 90
Fig. 10. The Conflict-Based Bank Account .. 92
Fig. 11. First State-Based Bank Account 93
Fig. 12. Second State-Based Bank Account .. 94
Fig. 13. The Reference Counter Type .. 119

1 .1 Motivation

- 7 -

Chapter One

Introduction

A distributed system consists of multiple computers (called sites) that communicate through

a network. One way in which distributed systems differ from more traditional centralized

systems is in the nature of failures. The components of a centralized system typically

depend on one another to the extent that the failure of a single component disables the

entire system. The components of a distributed system, however, are autonomous

computers, and the failure of an individual site need not disable the entire system. One

advantage of distributed systems over centralized systems is that valuable data can be

stored redundantly at multiple locations, a practice commonly called replication.

Replication can enhance the availabiJity of data in the presence of failures, increasing the

likelihood that the data will be accessible when it is needed.

Replication is a useful technique for systems in which availability is important, such as

banking systems, airline reservation systems, authentication servers, and mail systems. As a

simple example, consider how one might manage a file containing extremely valuable

information (perhaps a Ph.D. thesis on the verge of completion). Rather than keeping one

copy of the file at a single site, it might be prudent to keep multiple copies at different sites.

Replication increases the file's availability: if one copy is temporarily inaccessible, work

might progress using a different copy. Replication also increases the file's reliability: if one

copy is accidently destroyed, it might be possible to reconstruct it from the other copies.

Finally, replication can enhance performance by permitting the file's owner to work on the

copy that can be most easily accessed. Of course, care must be taken that the repUcas of

the file are managed properly: enhanced availability will be of little use if the file's owner

erroneously edits or prints obsolete versions of the file.

- 8 -

This thesis introduces a new method for managing replicated data in a distributed system.

We propose new techniques to address four problems associated with replication: {i) the

representation and manipulation of replicated data, {ii) concurrency control, {iii) on-the-fly

reconfiguration, and (iv) enhancing availability in the presence of partitions. Unlike many

methods that support replication only for uninterpreted files, our method makes use of

type-specific properties of objects (such as sets, queues, or directories) to provide more

effective replication. Our method can realize a wider range of availability properties, more

concurrency, more flexible reconfiguration, and better tolerance of partitions than existing

replication methods. The techniques introduced in this thesis are primarily intended to

enhance availability, but many can also be used to enhance reliability and performance.

1.2 Contributions

The first contribution of this thesis is the introduction of a new method for representing and

managing replicated data. Each data object belongs to a type, which characterizes its

behavior by defining a range of possible values and a set of primitive operations that provide

the {only) means of manipulating objects of that type. For example, an object of type File

. provides operations to read and write its contents, and an object of type Queue provides

operations to enqueue or dequeue items. In this thesis, we show how replication can be

performed more effectively by taking into account the type of the data. Most existing

methods support replication only for files, which are treated as containers for uninterpreted

data. Programs that manipulate replicated data typically store each object in a replicated

file, translating the operations that manipulate the item Into read and write operations for the

underlying file. In our method, by contrast, the properties of the type are used to derive the

replication method. For example, a replicated implementation of a queue would differ from a

replicated implementation of a file.

The basic replication method has two novel aspects: a new technique for representing and

manipulating the replicated data, and ·a new method for deriving constraints on correct

. 9.

implementations. Our method is both general and systematic. It is general because it is

applicable to objects of arbitrary type, and it is systematic because the constraints are

derived directly from the specification of the data type in question. The constraints derived

in this way are both necessary and sufficient: any replicated implementation satisfying these

constraints is correct, and no smaller set of constraints guaranteees correctness. Our

method illuminates the relation between the structure of a data type and the kinds of

availability properties that can be realized by replication.

Our second contribution is the investigation of concurrency control techniques for

replicated data. Concurrency control for replicated data is more difficult than concurrency

control for data residing at a single location because the information used to make

schedul_ing decisions may be scattered among multiple sites, and care must be taken that it

is managed properly. We have identified two alternative approaches to implementing

concurrency control for repficated objects: a simple method employing a static

classification of operations into potentially conflicting sets, and a more complex method that

. employs state information to decide when operations conflict. The more complex method

supports a higher level of concurrency, but it may require additional message traffic. For

certain data types, there is a second trade-off between availability and concurrency:

support for a high level of concurrency may impose additional constraints on availability,

and certain kinds of availability properties may restrict the permissible level of concurrency.

Our third contribution is a general technique for on-the-fly reconfiguration: changing how

existing data is replicated. Reconfiguration is useful for adapting to changes in

requirements, improvements in hardware; and as a technique for masking faiJures. We

propose a general method for organizing reconfigurable repficated data in which the ability

to reconfigure can be provided in a way that imposes a one-time cost onty when

reconfiguration is actually carried out.

A partition occurs when sites are divided into disjoint sets such that functioning members of

- 10 ·

different sets cannot communicate for a period of time. Our fourth contribution is a new

technique for enhancing the availability of data in the presence of partitions. Our technique

preserves serializability without introducing static transaction classes or complex protocols

for detecting partitions.

1 .3 Model of Computation

This section introduces our model of computation. We describe our assumptions about the

hardware base, our assumptions about the effects of failures, as well as describing the

logical organization of replicated data.

A distributed system consists of a collection of sites connected (only) by a communication

network. A site consists of one or more processors, one or more levels of memory, and any

number of devices. We assume that any site can communicate with any other when the

network is functioning properly. We make no assumptions about the speed, connectivity, or

reliability of the network.

Our model admits two kinds of failures: site crashes and communication failures. When a

site crashes, its resident data becomes temporarily or permanently inaccessible. We

assume that all communication failures take the form of lost messages: · garbled and

out-of-order messages can be detected (with very high probability) and discarded.

Transient communication failures may be hidden by lower level protocols, but longer-lived

failures can result in situations where functioning sites are unable to communicate. One

such situation is a network partition, in which the sites are divided into disjoint sets such that

functioning members of different sets cannot communicate. Partitions are not the only such

situations that can arise: for example, one site may be able to send messages to another,

but not vice-versa.

A failures is detected when a site that has sent a message fails to receive a response after a

- 11 -

certain duration. Although we assume that site crashes and lost messages can be detected

by the absence of a response, we do not assume that the different kinds of failure can be

distinguished: the absence of. a response may indicate that the original message was lost,

that the reply was lost, that the recipient has crashed, or simply that the recipient is slow to·

respond.

Our replication methods depend on the ability to preserve certain consistency constraints in

the presence of failures and concurrency. These constraints apply not only to individual

pieces of data, but also to distributed sets of data. Our approach to this problem is to ensure

that state transitions are atomic: that is, indivisible and recoverable. By indivisible, we mean

the execution of one state transition never appears to overlap (or contain) the execution of

another, and by recoverable, we mean the overall effect of a state transition is all-or-nothing:

it either succeeds completely, or it has no effect.

We assume that the system provides the ability to make activities atomic. Atomic activities

are called transactions. A transaction that completes all its changes successfully commits;

otherwise it aborts, and the data objects it has modified are restored to their previous states.

The effect of executing multiple concurrent transactions is serializable [Eswaren 76,

Papadimitriou 79]: their overall effect is as if they had been executed in some sequential

order. We assume that failures that prevent a transaction from completing correctly are

turned into aborts using techniques such as commit protocols [Eswaren 76, Skeen 82]. To

simplify our discussion, we focus on single-level transaction systems, although we

occasionally remark on how our techniques can be generalized to a system providing

nested transactions [Reed 83, Moss 81].

Serializability is not the only interesting criterion for evaluating concurrency control

mechanisms. As noted by Lamport [Lamport 78], Reed [Reed 78], Gifford [Gifford 82], and

others, another important property is external consistency, which is informally defined to be

the property that if events do not occur close together in time, then their serialization

- 12 -

ordering as imposed by the concurrency control mechanism agrees with their ordering as

observed from outside the system. The importance of e·xternal consistency can be

illustrated by a simple example; Consider a bank customer who deposits $100 on Monday,

withdraws $50 on the followillg Friday, and is assessed a penalty when the deposit is

serialized after the withdrawal Our basic replication method preserves external consistency

using approximately synchronized clocks, but our technique for coping with partitions

sacrifices external consistency to increase availability.

The basic containers for data are called objects. Each object has a type, which

characterizes its behavior by defining a set of possible states together with a set of primitive

operations that provide the (only) means to create and manipulate objects of that type. Each

type has an accompanying specification that gives the meaning of the operations provided

by the type. A replicated object is an object whose state is stored redundantly at multiple

sites. Following [Bernstein 81], replicated objects are implemented by two kinds of modules:

Data Managers (DM's) and Transaction Managers (TM's). The object's state is replicated

among the DM's and managed by the TM's. DM's serve as long-term repositories for the

object's state, while TM's execute the object•s operations on behalf of the object's clients.

To apply an operation to a replicated object, a client sends a request to a TM for the object.

The TM reads the data from some collection of DM's, carries out a local computation, sends

updates to some collection of DM's, and returns a response to the client. Each operation is

executed atomically.

An operation's availability to a client depends on two factors: the client must first be able to

locate a TM for the object, and the TM must in turn locate enough DM's to carry out the

operation. Because the TM1s do not interact directly with one another, new TM's can be

created without affecting existing ones. Consequently, TM1s can be replicated to an

arbitrary extent, implying that the availability of the replicated object is determined by the

availability of the DM1s.

- 13 -

1.4 Related Work

The replication methods described in this thesis have been primarily influenced by Gifford's

quorum consensus method [Gifford 79, Gifford 82]. Daniels and Spector [Daniels 83] have

adapted Gifford's method to implement replicated directories. Each of these schemes can

be viewed as a specially optimized case of the replication method proposed in this thesis.

These proposals are discussed in more detail in Chapter Two.

Our replication method employs a combination of logs and timestamps to represent

replicated data. We make use of timestamp generation schemes due to Lamport

[Lamport 78], Dubourdieu [Dubourdieu 82], and Chan et· al. [Chan 82]. Logs have been

used to facilitate recovery in databases [Gray 78], and as a technique for achieving reliably

coordinated updates [Lampson 79]. In the Swallow repository [Reed 80], an object is

represented by a sequence of versions, a mechanism with many of the same properties as a

log.

Replication methods for files have been proposed that relax the requirement that the value

read from a file should be the last value written. Replication methods such as the ones

proposed by Thomas [Thomas 78], Johnson and Thomas [Johnson 75], the Grapevine

registry [Birre1 81]., and the Clearinghouse name server (Oppen 81] implement a kind of

non-deterministic file that provides only a probabilistic guarantee that the value read is the

value most recently written. These schemes enhance performance and availability at the

cost of more complex behavior on the part of the replicated file. By treating

non-deterministic fites as a distinct data type, our method can be applied to make the same

trade-off between performance and availability on the one hand, and determinism on the

other. These issues are discussed in Chapter Two.

Minoura et al. [Minoura 79) have proposed a scheme for fully replicated databases in which

the result of merging information from any subset of sites defines a legal,

- 14 -

transaction-consistent state, i.e. one that reflects a subsequence of the sequence of

transactions that actually occurred. This property is useful for recovering from catastrophic

failures, because the surviving state will satisfy any invariants preserved by transactions.

Our replication method can be made to satisfy a similar property. In the basic method, the

result of merging information from a subset of sites defines a legal state (i.e. one satisfying

the type specification) but not necessarily a transaction-consistent state. Our method can

be extended to support transaction consistency for individual replicated objects (which are

analogous to fully replicated databases).

In our discussion of concurrency control in Chapter Three, we make use of locking-based

schemes similar to those proposed by Eswaren [Eswaren 76] and Moss [Moss 81], and

Reed's multi-version timestamp scheme [Reed 83, Reed 78}. We also make use of a general

model of atomicity for objects of arbitrary type due to Weihl [Weihl 83a, Weihl 84], which is

used as a framework for evaluating our techniques.

Our replication method masks failures as long as enough sites remain available. An

alternative technique for fault-tolerance is to employ active measures to detect and

compensate for failures. This approach is taken in existing replication methods such as the

primary copy method [Alsberg 76, Stonebreaker 79) and the true-copy token scheme

[Minoura 79, Minoura 82]. These schemes are discussed in Chapter Four, where we show

that they can be modeled by a simple extension to our method.

A formal model for concurrency control in replicated databases has been proposed by

Bernstein and Goodman [Bernstein 83}. This model is exclusively concerned with replicated

files, which are objects that provide only Read and Write operations. A basic result of this

thesis is that replication methods for files place unnecessary restrictions on availability and

concurrency when used to implement objects of other types. A disadvantage of the

Bernstein and Goodman model is that its basic notions are defined directly in terms of the

particular semantics of Read and Write-operations, and it is not obvious how to generalize

- 15 -

the model to accommodate data types that provide an arbitrary set of operations.

Eager and Sevcik [Eager 83] have extended Gifford's replication method for files to provide

increased availability in the presence of partitions. Transactions executing in distinct

partitions are allowed to use slightly different replication methods for the same file. The

range of permissible replication methods is constrained to ensure that all transactions

executing in one partition can be serialized before any transaction executing in another. In

Chapter Five, we introduce a related, but more powerful technique that applies to objects of

arbitrary type, not just to files, and that provides more effective recovery when partitions are

rejoined.

Both the SDD-1 distributed database [Hammer 80] and the available copies replication

algorithm [Goodman 83] employ a kind of dynamic reconfiguration. In SDD-1 •. messages for

a site that has crashed are redirected to a spooler for later deJivery. In the available copies

algorithm, a crashed site is configured out of the system after it crashes. and is reinitialized

and configured back in when it recovers. These methods are not directly comparable to

. ours because they make very different assumptions about faults. While our methods

tolerate both site crashes and communication failures, these methods tolerate only site

crashes, and they do not function correctly in a model of computation that admits

communication failures such as partitions.

The Locus operating system [Popek 81] provides replicated files and directories. If a

partition occurs, inconsistencies between replicas in different partitions are allowed to

develop, but application-dependent measures are used to reconcile them when the .

partitions are rejoined.

A very different approach from ours is taken by Lamport [Lamport 78a] and by Schlichting

and Schneider [Schlichting 81), in which Byzantine Agreement [Lamport 82] is used to

tolerate arbitrary failures. In Lamport's scheme, processes as weU as data are replicated,

and Byzantine Agreement is used for broadcasts. Schlichting and Schneider's scheme uses

· 16 ·

a similar technique to implement fail-stop processors, which are processors that halt before

taking an incorrect step. The correctness of these schemes depends on the accuracy of
-

predictions about the system's real-time behavior, and each replicated process must be

deterministic.

1 .5 Overview of Thesis

Chapter Two introduces a new replication method called General Quorum Consensus. A

novel aspect of this method is that the object is not represented by a collection of copies;

instead, each site maintains a partial log of the operations that have been applied to the

object. Associated with each operation is a set of quorums, which are collections of sites

whose logs must be observed or updated to execute the operation. An analysis of the

algebraic structure of the object's type is used to derive a set of constraints on quorum

intersections. Any choice of quorums that satisfies these constraints yields a correct

implementation, and it is shown that no weaker set of constraints can guarantee

correctness. By providing direct support for objects of arbitrary abstract type, General

Quorum Consensus imposes fewer constraints on quorum choice than existing replication

methods based on files.

Chapter Three discusses concurrency control for replicated objects. The correctness of

General Quorum Consensus depends on the preservation of certain invariants relating the

data at multiple sites. To ensure that these invariants are preserved in the presence of

concurrency and failures, the activities that manage replicated data must be atomic: each

activity either succeeds completely or has no effect, and each activity appears to take place

instantaneously. Two concurrency control mechanisms are proposed. The first is a

mechanism in which scheduling decisions are made on the basis of a predefined set of

conflicts between pairs of operations. This mechanism is efficient, and it is shown to be

optimal for the amount of information it uses: no mechanism based entirely on predefined

operation conflicts can provide a higher level of concurrency. The second concurrency

- 17 -

control mechanism we propose is one in which scheduling decisiqns may take the object's

state into account. It can suppart a higher level of concurrency than the conflict~based

method because it takes advantage of additional information. It can implement any

concurrency control scheme that preserves serializability, but it requires more message
'

traffic, and it may impose additional restrictions on quorums. By taking advantage of

type-specific properties, both methods can achieve a higher level of concurrency than

existing replication methods based on files.

Chapter Four addresses the problem of reconfiguration: how to change an object's

quorums in response to changes in requirements or changes in hardware. We propose a

reconfiguration technique in which objects employ multiple levels of indirection. Each level

of indirection requires an additional round of messages. The final round manipulates the

· actual data of interest to the client, and each previous round is used to discover the quorum

for its successor. Multiple rounds of logical messages can sometimes be carried out by a

single exchange of physical messages .. Existing replication methods for files such as the

primary copy scheme [Alsberg 76, Stonebreaker 79) and the true-copy token scheme

[Minoura 79, Minoura 82} can be viewed as specialty optimized instances of the multi-round

method.

Chapter Five shows how to extend General Quorum Consensus to provide increased

availability in the presence of partitions, which occur when the sites are divided into two or

more disjoint sets such that functioning members of distinct sets cannot communicate.

Unlike · some replication methods [Hammer 80, Goodman 83, Popek 81] our method

preserves serializability in the presence of partitions, but a client executing in the wrong

partition may be unable to execute certain operations. In Chapter Ave, we propose an

extension to the basic method in which a replicated object may provide a range of

alternative quorums. Each transaction chooses the quorums that are best suited to the

partition in which it is executing. Concurrent transactions executing in distinct partitions

can each progress employing different quorums. Constraints on the quorums an object can

- 18 -

prnvide ensL11e tlii\t tlie effect uf trc111sactio11s executing in distinct pc1rtitions remains

serializable.

Chapter Six summarizes the basic ideas of the thesis.

- 19 -

Chapter Two

General Quorum Consensus

2. 1 Introduction

This chapter introduces General Quorum Consensus, a new replication method for objects

of arbitrary type. Because a top-down presentation of a replication algorithm general

enough for objects of arbitrary type is necessarily rather abstract, we have chosen to

introduce our algorithm through a series of concrete examples. We first review a replication

method for files due to Gifford. We then c<:>nsider how this approach can be adapted to the

problem of constructing a replicated FIFO queue. We observe that a direct application of

the file replication method to queues is not entirely satisfactory, and we propose some

changes to Gifford's method that provide better support for constructing a replicated queue.

In the next step, we show how the revised replication method for queues can be generalized

to construct replicated objects of arbitrary type. We end the chapter with a series of

examples.

We use the model of computation described in Chapter One. A replicated object is

implemented by a collection of Data Manager guardians (DM's) and a collection of

Transaction Manager guardians (TM's). The DM's are repositories for the object's state

information, while the TM's mediate between clients and the data replicated at the DM's.

In this chapter, we use the following criteria for evaluating replicatton methods.

• The range of availability properties that can be realized by the method. For
example, a file replication method that allows the availability of Read and Write
to be traded off is more flexible than one that requires each operation to be
equally available.

- 20 -

• The number and size of the messages needed to execute an operation.

• The amount of data stored at each DM.

In this chapter, we consider replication methods built on top of a transaction system, making

no assumptions- about how transactions are implemented or about the level of concurrency

the transaction system can support. In the next chapter, however, we show that a high level

of concurrency can be achieved if the concurrency control method is designed in

conjunction with the replication method.

2.2 Gifford's Replication Method

In this section, we describe a replicated method due to Gifford [Gifford 79, Gifford 82]. This

method was influential in the development of our method, and it presents a convenient

starting point for our discussion. We first describe how this method can be used to

construct a replicated file, and we then· apply the method to the construction of a replicated

FIFO queue. We finish the section by pointing out some shortcomings of the queue

implementation, which we proceed to remedy in the next section.

2.2.1 A Replicated File Implementation

A quorum for an operation is defined to be any set of DM's whose cooperation is sufficient to

execute that operation. It is convenient to divide a quorum into two parts: a TM executing

an operation reads from an initial quorum and writes to a final quorum. (Either the initial or

final quorum may be empty.) A quorum for an operation is any set of DM's that includes

both an initial and a final quorum.

For our purposes, a File is a container for a string. Files provide two primitive operations:

Read returns the file's current value, and Write sets the file to a new value. To simplify our

discussion, we assume that Write completely replaces the file's previous contents. This

assumption will be relaxed in Section 2.6.

- 21 -

A request is an operation invocation together with its argument values, and a response is a

termination condition and results. An event is a pair consisting of a request and its

associated response. For example, Read{) and Write(x) are requests, Ok(x) and Ok{) are

responses, and [Read();Ok(x)] and [Write(x);Ok()] are events.

In Gifford's scheme, each DM stores a version of the file together with a version number,

which is used to recognize the most recent version. To read from a file, the TM reads the

versions from an initial Read quorum of sites, returning the version with the greatest version

number to the client. (The final quorum for Read is empty.) To write to a file, the TM first

reads the version numbers from an initial Write quorum of DM's. The TM then creates a new

version of the file with a version number greater than any it has observed, and writes out the

new version to a final Write quorum.

Quorums for file operations are subject to two constraints:

1. Each final quorum for Write must intersect each initial quorum for Read.

2. Each final quorum for Write must intersect each initial quorum for Write.

The first constraint ensures that each Read request will observe the effects of the most

recent Write, and the second constraint ensures that each new version created by a Write

request will have a greater version number than its predecessors. As a consequence, each ·

Read quorum must intersect each Write quorum, and each pair of Write quorums must

intersect.

These constraints can be summarized by a quorum intersection graph. The·vertices of the

graph correspond to classes of events. A directed edge from one vertex to another

indicates that each final quorum for operations in the first class must intersect each initial

quorum for operations in the second class. Very informatly, the direction of the arrow can

be considered the direction of information flow.

- 22 -

Figure 1 contains the quorum intersection graph for a file implemented by Gifford's

replication method. One vertex corresponds to the class of Read events, and the other

vertex corresponds to the class of Write events. The directed edge from the Write vertex to

the Read vertex indicates that every final quorum for Write must intersect every initial

quorum for Read, and the directed edge from the Write vertex to itself indicates that every

pair of initial and final quorums for Write must intersect.

In Figure 1 b we display the range of quorum choices for an object replicated among five

identical DM's.1 An entry of the form (m,n) indicates that any m DM's constitute an initial

quorum for the request and any n DM's constitute a final quorum for the event. We define

the quorum size to be max(m,n), the smallest number of DM's that includes both an initial

and a final quorum. In this example, and in subsequent examples, we restrict our attention

to quorum choices whose sizes are minimal. The three columns correspond to the three

minimal quorum choices. (Given n identical DM's, Gifford's replication method permits

rn/21 minimal quorum choices.) For example, the first column corresponds to a quorum

choice in which an initial quorum for Read consists of any one OM and a final quorum for

Write consists of all five DM's.

As discussed in [Gifford 79], one convenient way to characterize quorums is to assign votes

to DM's so that a collection of DM's is a quorum if and only if its votes exceed a chosen

threshold value. Two quorums will intersect if the sum of their threshold values exceeds the

total number of votes assigned to all DM's. Not all quorum choices can be captured by

voting, however. Consider a file replicated among four OM's, where Read quorums must

contain either DM1 and DM2 or DM3 and DM4, and Write quorums must contain either DM1

and DM3 or DM2 and DM4.

1. Neither Gifford's method nor the methods we introduce later requires that all DM's be
treated identically, but it is convenient to do so for examples.

· 23-

Fig. 1. File Replication using Gifford's Method

---------~►•Read

Figure 1 a: the quorum intersection graph.

Read

Write

(1,0) (2,0) (3,0)

(0,5) (0,4) (0,3)

Figure 1b: Minimal quorum choices for five identical DM's.

There are three points about Gifford's method that deserve emphasis. First, it does not

make sense to talk of the level of availability for the object as a whole, because executions of

different operations can have different levels of availability. Instead, an object's

fault-tolerance must be characterized by the availability of each of its events. Second, the

set of quorums for an event completely determine its availability: an operation invocation

will succeed if and only if an appropriate quorum is available. Third, the constraints on

quorum choices completely determine the kinds of availability properties that can be

realized by this method. For example, because each Read quorum must intersect each

Write quorum, their levels of avaitability are inversely related: if the quorums for one event

are made smatrer (rendering it more available) then the quorums for the other event must be

made correspondingly larger (rendering it less available). Similarly, because each pair of

Write quorums must intersect, a Write quorum must encompass a majority of DM's, implying

- 24 -

that Write cannot be more higilly available than Read.

2.2.2 A Replicated FIFO Queue Implementation

A replication method for files can be used to replicate any type of object simply by using a

file to represent the object. For example, one coufd construct a replicated queue by

encoding the queue's state in a bit-string, storing the bit-string in a file, and translating the

Enq and Deq operations into Read and Write operations for the underlying file. In this

section we examine a replicated queue implementation based on exactly this approach. The

purpose of this exampre is to illustrate the benefits of an alternative replication method that

takes advantage of type-specific properties of queues.

A Queue has two operations: Enq places an item in the queue, and Deq removes the least

recently enqueued item, raising an exception if the queue is empty. A replicated queue

might be used as a highly available spooler or as a highly available scheduler for off-line

activities.

Let us consider the constraints on quorum choice imposed by the replication method

described in the previous section. To dequeue an item, the TM reads the versions of the

queue from an initial Read quorum of DM's. If the queue is non-empty, the appropriate item

is removed, and the shortened queue is written out to a Write quorum. If the queue is empty,

an exception is returned to the client, but the DM's need not be updated because the

queue's state is unchanged. Enq is also implemented as a Read followed by a Write.

A normal Deq event is one that returns an item, while an abnormal Deq is one that signals

Empty. The constraints on Read and Write quorums impose the following constraints on

quorums for Enq events and normal Deq events. (Abnormal Deq events have empty final

quorums.)

- 25 -

1. Every initial Enq quorum must intersect every final Enq quorum.

2. Every initial Enq quorum must intersect every final Deq quorum.

3. Every initial Deq quorum must intersect every final Enq quorum.

4. Every initial Deq quorum must intersect every final Deq quorum.

Figure 2a displays the required quorum intersections for Enq events, normal Deq events,

and abnormal Deq events. If we consider only the quorums for Enq events and normal Deq

events, Figure 2b illustrates the only minimal quorum choice for a queue replicated among

five identical DM's 1 In fact, there is exactly one minimal quorum choice for n identical DM's,

because both Enq and normal Deq quorums must encompass a majority of DM's.

These quorum choices appear to be highly constrained, and it is natural to ask whether

these constraints can be relaxed. In the next section we introduce an alternative replication

method that places fewer constraints on quorum intersections for replicated queues. Every

quorum permitted by the file-based approach is permitted by our method, but our method

permits quorums that the file-based method does not. Consequently, the revised method

can provide availability properties that the file-based method cannot.

2.3 A Revised Replication Method

In this section we introduce two technical changes to Gifford's method that support more

flexible quorum choices for replicated queues.

• Timestamps are used in place of version numbers.

1. We are neglecting quorum choices such as Enq = (1,5), normal Deq = (1,5), and
abnormal Deq = (1,0) because we feel that any choice favoring the availability of abnormal
Deq events over normal Deq and Enq events is unlikely to be of practical interest.

. 26-

Fig. 2. A File-based Representation for a Queue

Abnormal Deq

Figure 2a: The quorum intersection graph.

Enq (3,3)

Normal Deq (3,3)

Abnormal Deq (3,0)

Figure 2b: Minimal quorum choices for five identical DM's.

• Logs are used instead of versions.

These techniques are described in the next sections.

2.3.1 Timestamps vs. Version Numbers

In this section, we show how to implement replicated files in a way that eliminates the

constraint that Write quorums must intersect. This improvement is achieved by replacing

the version numbering scheme with a scheme based on timestamps. In addition to reducing

the constraints on quorum intersection, the timestamp-based scheme requires fewer

messages.

----- ------- -----------

- 27 -

The basic idea behind the improved method is quite simple. We assume that it is possible to

assign unique timestamps to transactions in such a way that:

1. Transactions are serializable in timestamp order.

2. Timestamp generation never fails.

The techniques used to assign timestamps to transactions depend on the way the

transaction mechanism is implemented. Timestamp generation is relatively easy for

transaction mechanisms already based on timestamps [Reed 83], and is slightly more

difficult for a transaction mechanism based on two-phase locking [Dubourdieu 82, Chan 82].

We postpone discussion of the techniques used to assign timestamps to transactions to

Chapter Three, where we discuss concurrency control.

The file replication method is modified as follows. Rather than reading the version numbers

from an initial Write quorum, the TM generates a timestamp with the following fields:

1. The transaction's timestamp is used for the timestamp's high-order bits. This
field is used to compare timestamps generated by distinct transactions.

2. A value from an internal transaction clock is used for the low-order bits. This
field is used to compare timestamps generated by a single transaction.

The implementation of the Read operation is largely unchanged: rather than choosing the

version with the latest version number, the TM chooses the version with the most recent

timestamp. The implementation of the Write operation is more interesting: rather than

reading and advancing the most recently generated version number, the TM simply

generates a new timestamp and appends it to the new version of the file.

The timestamp-based scheme imposes fewer constraints on quorum choice. Because a TM

executing a Write request does not need to observe previous version numbers, Write

quorums are no longer required to intersect. The quorum Intersection graph for a replicated

file based on timestamps is shown in Figure 3a. Figure 3b shows the minimal quorum

. 28-

choices for a file replicated among five identical DM's. The number of quorum choices for n

identical DM's has effectively doubled., going from rn/21 to n.1

The ability to define non-intersecting Write quorums implies that the Write operation can be

made more highly available than the Read operation. Such quorum choices facilitate "blind

writes," in which a file is written without first being read. For example, if transactions A and

B write to disjoint final quorums, then a later transaction would choose the version with the

later timestamp. A similar technique has been used for database synchronization, where it

is known as the Thomas Write Rule [Thomas 78).

Because files are typically read before they are written, we do not believe that quorum

choices facilitating blind writes are of significant practical interest for files. Nevertheless,

Fig. 3. File Replication using Ttmestamps

Write ----------~►--Read

Figure 3a: the quorum intersection graph.

Read (1,0) (2,0) (3,0) (4,0) (5,0)

Write (0,5) (0,4) (0,3) (0,2) (0,1)

Figure 3b: Minimal quorum choices for five identical DM's.

1. As before, we are neglecting quorum choices such as Enq = (0,5), normal Deq = (1,5),
and abnormal Deq = (1,0) that favor the availability of abnormal Deq events over normal
Deq and Enq events.

. 29-

when we turn our attention from files to other data types, we will see that there are

interesting types having operations that resemble blind writes,,such as the Enq operation for

queues. The use of timestamps significantly improves replication methods for such types.

For files, a more practical advantage of the timestamp-based scheme is that Write's require

half as many messages as in the version-numbering scheme, because the initial round of

messages needed to ascertain the current version number is no longer needed. Finally, the

improved method is of theoretical interest, as it demonstrates that the requirement that Write

quorums intersect is not really a fundamental constraint, but rather an artifact of a particular

version numbering scheme.

2.3.2 Logs vs. Versions

Instead of replicating versions of the queue, consider the consequences of storing a log of

events at each DM. A log is a sequence of entries, where an entry is a timestamped record

of an event. Individual log entries need not appear at all DM's, and the log at any particular

DM may have arbitrary gaps.

An entry is denoted by:

t0: (op(args};term(results}]

where to is a timestamp, op is the operation name, args are zero or more argument values,

term is the termination condition name, and results are zero or more result values. We use

Ok to denote the normal termination condition.

For queues, an entry consists of an Enq or Deq request, its arguments, termination

condition, and results, together with a timestamp. To enqueue an item x, the TM creates a

timestamped Enq entry naming the item to be enqueued:

to: [Enq(x);Ok()]

(

. 30-

This entry is appended to each log at a final Enq quorum of DM's.

A Deq is carried out in the following steps:

1. The TM reads the logs from an initial Deq quorum of DM's. These entries are
merged in timestamp order, discarding duplicates. The resulting log is called
a view.

2. The state of the queue is reconstructed from the view, and the item to be
returned is ascertained.

3. If the queue is non-empty, the TM records the Deq event by appending a new
entry to the view and sending the modified view to a final Deq quorum of
DM's, where it is merged with the resident logs.

4. Finally, the response (the dequeued item or an exception) is returned to the
client.

To show that this method works, it is necessa_ry to demonstrate that the view defines a legal

state for a queue, and that the view contains sufficient information to determine the correct

response for the Deq.

It should be emphasized that this technique is intended to serve as a conceptual model for

replication, not as a literal design for an implementation. An actual implementation could be

considerably more efficient. For example, it is not really necessary to maintain a complete

. log of all queue events, nor is it necessary to write out the entire view in Step Three. These

optimizations are discussed in Section 2.6. We focus on the unoptimized method for now

because it can be more readily generalized to other data types.

What constraints must we impose on quorum intersections for queue operations? In Section

2.5 we present a systematic method for establishing constraints on quorum intersections,

but for now we rely on informal arguments. If each initial quorum for a request is

constrained to intersect each final quorum for an event, then all prior entries for that event

will appear in any view constructed for the request. To choose a correct set of constraints

on quorum intersection, we must determine how much of an object's complete log must be

_ ..

- 31 -

observed to choose a correct response to the request. To ascertain the item at the head of

the queue, a TM executing a Deq must observe: (i) which items have previously been

enqueued, and (ii) which of these items have subsequently been dequeued. The

requirements translate into the following constraints on quorum intersection for Enq and

normal Deq events:

1. Every initial Deq quorum must intersect every final Enq quorum.

2. Every initial Deq quorum must intersect every final Deq quorum.

The view for an Enq request need not include any prior events, because Enq returns no

information about the queue's state. As a consequence, initial Enq quorums may be empty.

As before, an abnormal Deq has an empty final quorum.

To illustrate this method, let us examine how a queue might be replicated among three DM's.

In this example, initial quorums for Enq are empty, and final quorums for Enq consist of any

two DM's. Initial quorums for Deq consist of any two DM's, as do final quorums for normal

Deq events. Abnormal Deq events have empty final quorums.

Let us trace a short execution for the queue. The queue is initially empty. An item x is

enqueued by appending a tog entry with timestamp t1 to the logs at two DM's, say DM1 and

DM2:

DMl DM2 DM3

tl: [Enq(x}:Ok(}] tl: [Enq(x);Ok()]

To dequeue x, a TM reads the logs from DM2 and DM3, merging the empty log from DM3

with the single-entry log at DM2. The resulting view indicates that x is the only item in the

queue. The TM creates a Deq entry with timestamp t2, and.writes out the entire log to DM2

andOM3:

OMl

tl: [Enq(x);Ok()]

- 32 -

OM2

tl: [Enq(x);Ok()]

t2: [Oeq();Ok(x)]

OM3

tl: [Enq(x);Ok{)]

t2: [Deq();Ok(x)]

In a similar way, Item y is enqueued at OM1 and OM2 with timestamp t3, and z is enqueued at

OM1 and OM3 with timestamp t4. For readability, a "missing" entry at a OM is shown as a

blank space.

DMt

tl: (Enq(x);Ok(}]

t3: [Enq(y};Ok(}]

t4: (Enq(z};Ok(}]

DM2

tl:

t2:

t3:

DM3

(Enq(x) ;Ok{)] tl: [Enq(x);Ok()]

(Oeq(); Ok(x)] t2: (Deq();Ok(x)]

(Enq(y);Ok(}]

t4: (Enq(z};Ok()]

At this point, the log at each OM defines a legal queue, but no single OM contains all the

entries that define the queue's state. Finally, a TM dequeues y by reading from and updating

OM1 and OM3.

DM1 DM2 DM3

t1: (Enq(x);Ok()J t1: [Enq(x}:Ok()] tl: [Enq(x) ;Ok()]

t2: [Deq();Ok{y)] t2: [Deq(); Ok(x)] t2: [Oeq();Ok(x)]

t3: (Enq(y); Ok()] t3: [Enq(y);Ok()] t3: [Enq(y);Ok(}]

t4: (Enq(z); Ok{)] t4: [Enq(z) ;Ok{)]

t5: (Deq();Ok{y)] t6: [Deq();Ok{y)]

Figure 4a shows the quorum intersection graph for the log-based implementation of a

replicated queue, and Figure 4b shows the quorum choices for a queue replicated among

five identical DM's. As one can see by comparing Figures 2 and 4, the log-based

implementation places fewer constraints on quorum intersection than the file-based

implementation, and therefore permits a wider range of quorum choices and hence a wider

range of availability trade-offs. Given n identical DM's, there is only one minimal quorum

. 33.

choice for the file-based implementation (both Enq and Deq quorums encompass a majority

of DM's) but there are r n/21 minimal quorum choices for the log-based implementation (only

Deq quorums require a majority). In each of the new quorum choices, the availability of the

Enq operation is increased at the cost of decreasing the availability of the Deq operation.

This trade-off could be _useful in a highly available printer spooler, where the availability of

the Enq operation used to spool items may be considered more important than the

availability of the Deq operation used by the printer controtler.

This example illustrates an important point: the revised method provides more freedom in

Fig. 4. A Log-Based Representation for a Queue

Enq----------------

Abnormal Deq

Figure 4a: The quorum intersection graph.

Enq (0, 1) (0,2) (0,3)

Normal Deq (5, 1) (4,2) (3,3)

Abnormal Deq (5,0) (4,0) (3,0)

Figure 4b: Minimal quorum choices for five identical DM's.

--- ------- ~~-

- 34-

trading off availability betwee·n the Enq and Deq operations than does the file-based method.

This additional flexibility arises because logs and timestamps permit a finer grain of control

over information flow. In the file-based method, a version of an object is either current or

obsolete. If the version is current, then it contains the object's entire state, while if it is

obsolete, it contains no information about the object's current state. Any operation that

modifies the object's state must locate and modify a current version, because versions that

have diverged cannot be reconciled. By contrast, divergent logs can be reconciled by

merging their entries in timestamp order.

In summary, the additional flexibility of our method requires the use of both logs and

timestamps. Although version numbers could be used to order log entries, the resulting

quorum choices are more constrained. A TM executing an Enq would have to read the

version numbers from enough DM's to ensure that it had observed the version number of the

most recent prior Enq. Consequently, each initial quorum for Enq would have to intersect

each final quorum; otherwise Enq entries might not be ordered correctly. Using timestamps,

each Enq entry is ordered correctly without the need to observe previous Enq's.

Our method has the disadvantage that logs (and messages) continue to grow. This problem

can be alleviated by garbage collection: entries for events that can no longer affect

subsequent events can be discarded. For example, file versions can be viewed as optimized

logs in which each Write entry is discarded as soon as it is superseded. Each OM can

garbage collect its own log, or collections of DM's can cooperate to identify and discard

out-of-date entries. Message sizes can also be reduced if TM's maintain a cache of log

entries, requesting only the missing entries from DM's. These optimizations are

type-specific, in the sense that an optimization that works for queues will not necessarily

work for files. A number of optimizations are discussed in Section 2.6.

- 35-

2.4 Replicating Objects of Arbitrary Type

We are now ready to address the main point of this chapter. In this section, we present an

informal description of how the replication method described above for queues can be

generalized to objects of arbitrary type. In the next section, we present a more formal

description, together with correctness arguments.

The file and queue examples suggest the following approach to analyzing replication

methods for types other than files. A quorum consensus method is characterized by a set of

constraints on quorum intersections. These constraints determine the level of a'1ailability

that can be provided for each individual operation, as well as the trade-offs among the levels

of availability of various operations. Given a set of constraints, we need to determine

whether it is correct and whether it is optimal. By correct, we mean that any quorum choice

consistent with the constraints yields a correct implementation. By optimal, we mean that

there exists no smaller set of constraints that also yields orily correct implementations. Note

that both correctness and optimality are defined with respect to a particular replication

method. For example, Gifford's original constraints on Read and Write quorums are correct

.and optimal for the method based on version numbers; but they are not optimal for the

method based on timestamps. In this section, we propose a replication method that permits

correct and optimal constraints on quorum intersections to be derived directly from the type

specification for an arbitrary data type.

An object may be viewed as an automaton that accepts requests and returns responses. As

before, a request consists of an operation name and argument values, a response is a

termination condition and result values, and an event is a paired request and response. A

computation is characterized by a history of the events that have occurred since the object's

creation. Just as for queues, an object's state is given by a collection of logs residing at

DM's. Log entries are partially replicated; each log entry might be stored at several DM's,

and each DM might store only a fragment of the entire log. Each request is assigned a set of

----- ----------

. 36-

initial quorums, and each event is assigned a set of final quorums. As discussed below, the

object's set of legal histories is analyzed to derive a set of constraints on quorum

intersections. An operation isexecuted in the following four steps.

1. When a TM receives a request from a client, it reads the logs from an initial
quorum of DM's for that request. These logs are merged in timestamp order
to construct a larger tog called a view.

2. The TM chooses a response consistent with the object state as defined by the
view.

3. The TM records the request and response by appending a new. entry to the
view, and sending the modified view to a final quorum of DM's for that event.
Each DM in the final quorum merges the view with its resident log.

4. The response is returned to the client.

The first property desired of this method is the following partial correctness property:

Any response legal for the view is legal for the object as a whole.

This property ensures that every history generated by the replicated object is legal.

Just as for files and queues, correctness is ensured by constraining certain quorums to have

non-empty intersections. Constraints on quorum intersection are derived from a

dependency relation between requests and responses. A precise definition of dependency

is given in the next section, but for now it suffices to say that a request depends on an event

if omitting that event from a request's view might produce an incorrect response. For

example, Read requests depend on Write events, because the correct response to Read

requires knowledge of prior Write's. Write requests do not depend upon prior Read or Write

events, because the response to the Write is afways the same. Similarly, Deq requests

depend on prior Enq and normal Deq events, because knowledge of these events is needed

to determine which item to dequeue. Enq requests do not depend any on prior events,

because Enq, like Write, has only one possible response. In the next section, we show that

- 37 -

General Quorum Consensus is correct if and only if the view for each request is certain to

include all prior events on which it depends. This property can be achieved if each initial

quorum for the request is constrained to intersect each final quorum for the events. The

resulting view does not necessarily contain the entire object state, but it contains enough

information to choose a correct response.

Partial correctness is not the only property of interest. If the view assembled in Step One is

not a legal history, then it would not be possible to choose a response in Step Two. To

ensure this situation never arises, we also demonstrate the following we/1-formedness

property:

Every view constructed for a request is a legal history.

In fact, we ensure a slightly stronger invariant: a history constructed by merging logs from

any collection of DM's is legal. The invariant provides an incidental benefit in the form of

catastrophe insurance: if some set of DM's becomes permanently inaccessible, the

remainder stm define a legal state . that corresponds to a subhistory of the actual (lost)

history. Catastrophe insurance might be useful for large databases or file systems. In

addition to ensuring that the history reconstructed after a catastrophe is legal, it might also

be desirable to ensure that it is transaction-consistent: that all or none of the entries for

each transaction have survived. Transaction consistency can be guaranteed for an

individual object if each transaction records the same set of entries at each OM for that

object, but reconstructed histories for distinct objects may reflect different sets of

transactions.

2.5 Correctness Arguments

This section presents correctness arguments for General Quorum Consensus. We first

define the basic notions of specifications, objects, and logs, and then present a model for

our replication method. We then define the notion of a dependency relation for a data type,

. 38-

and show that a replicated object based on General Quorum Consensus is correct if and

only if the quorum intersection relation is a dependency relation for the object's type.

2.5.1 Specifications

Informally, an object's specification describes its externally observable behavior. Objects

having the same specification are said to belong to the same data type. The specifications

employed in this chapter model serial computations in which steps occur one at a time. The

absence of an explicit model of concurrency is justified by the assumption that replication is

performed on top of a transaction system. Our specifications actually model computations

that have already been serialized by the underlying transaction system. In the next chapter,

we discuss how a high level of concurrency can be achieved if the concurrency control

method is integrated with the replication method.

A specification for an object is a tuple <REQ, RES, LEGAL>, where REQ is a set of requests,

RES is a set of responses, and LEGAL is a set of legal histories tor that object. An event is a

pair [req;res], where req is a request and res is a response.

EVENT = REQ X RES

For example, "Enq(x)" is a request, "Ok()" is a response, and "[Enq(x);Ok()]" is an event of

a Queue object.

A history is a finite sequence of events that corresponds to a computation. The histories

that correspond to valid computations are called legal histories. For example, the following

queue history:

[Enq(x);Ok()]

[Deq() ;Ok(x)]

is legal, but the history:

[Enq{x);Ok{)]

[Deq{);Empty()]

- 39 -

1s not. We assume that every prefix of a legal history is itself a legal history. One way to

characterize a set of legal histories is to use algebraic specifications [Guttag 78]. In this

thesis, we will rely on informally stated specifications.

2.5.2 Logs

Timestamps are chosen from some totally ordered domain TIMESTAMP. A log Lis a map

from some finite set of timestamps to events.

L: TIMESTAMP-+ EVENT

We use the notation L(t) = J.. as shorthand to indicate that the log L has no event associated

with the timestamp t. We say that a log contains an event e if there exists a timestamp t such

that L(t) = e.

A log mis a sublog of L if m{t) = l(t) for every timestamp for which m. is defined.

Two logs l and m. are coherent if they agree at every timestamp for which they are both

defined. The merge operation U is defined on pairs of coherent logs by:

(L U m.)(t) = if L(t) ¢ J.. then l(t)

elsem(t).

Because the merge operation is defined only for coherent logs, it is commutative and

associative.

If L is a log and e an event, we use the notation l = m. 0 e to indicate that l can be expressed

as the merger of the log m and a log containing the single event e, with the additional

property that the latter's timestamp fore is greater than any timestamp in m. Informally, we

- 40-

say that l is constructed by appending e to m. We use the notation L = L7 ° t2 to indicate that

the log L can be expressed as the merger of two logs L7 and L2, where each timestamp for

which L2 is defined is greater than each timestamp for which L7 is defined.

Finally, we define a map H that associates with each log the history constructed by sorting

its entries in timestamp order. Let {t0, ... ,tnJ be the set of timestamps for which Lis defined,

indexed in ascending order. The i-th event of H{L) is defined to be L(t;), for O :$; i :$; n. A log L

is said to be legal if H(L) is a legal history.

2.5.3 Dependency Relations

The correctness condition for General Quorum Consensus is based on the notion of a

dependency relation between requests and events. Any relation >- between requests and

events induces a corresponding relation between pairs of events, also denoted by >-:

[req;res] >- [req';res'] if and only if req >- [req';res'].

Informally, a sublog m of L is said to be closed in L with respect to >- if whenever m contains

an event e of L, it also contains every prior event e' of L such that e >- e'. More precisely, the

sublog m is closed in L if given timestamps t and t' and events e and e' such that t > t', e >- e',

L(t) = e, L(t') = e'. and m(t) = e, then m(t') = e'. c,Ne omit mention of>- and L when they are

clear from context.)

The relation >- is a dependency relation if for all requests req, all legal logs L, all closed

sublogs m of L containing the events e of L such that req >- e, and for all responses res:

(2-1) m 0 [req;res] is legal=> L0 (req;res) is legal.

Informally, this property states that a correct response to a request can be chosen by

observing any closed legal sublog that contains all the events on which the request

depends.

· 41 ·

Perhaps the simplest example of a dependency relation is provided by the File type, for

which Read requests depend on Write events, but Write requests need not depend on any

prior events. If L is a log consisting of Read and Write events, then a correct response to

Read can be chosen from any closed sublog of l that contains all Write events, and the

correct response to Write {i.e. Ok{)) can be chosen from any closed sublog, including the

empty log.

For deterministic types, in which each request has a single correct response, the implication

goes in both directions, but for non-deterministic types, the implication goes in one direction

only: there may be legal responses to req in l that are not evident from m. An example of

such a non-deterministic type is given in the SemiTable example in Section 2.6.

A given type may have several dependency relations. For example, the relation in which

every request depends on every event is a dependency relation, albeit not a very interesting

one. More interesting dependency relations are the minimal relations, relations with the

property that no smaller relation is a dependency relation. We remark that a type need not

have a unique minimal dependency relation. An example of a data type with several distinct

minimal dependency relations is given in the Double...Buffer example in Section 2.6.

We will see that dependency relations completely characterize the constraints on quorum

intersections, in the sense that a replicated object will satisfy its specification if and only if its

quorum intersection relation is a dependency relation.

2.5.4 Replication Schemes

A replication scheme is a tuple <S, DM, INITIAL, FINAL>, where Sis a specification and DM is

a set of DM's. We define the domain QUORUM to be the domain of sets of DM's:

QUORUM= 2DM

INITIAL is a map that defines the correspondence between each request and its set of initial

- 42-

quorums:

INITIAL: REQ _. 20UORUM.

FINAL is a map that defines the correspondence between each event and its set of final

quorums:

FINAL: EVENT _. 20UORUM.

The quorum choices define a quorum intersection relation >- between requests and events:

(2-2) req >- [req';res'] = each initial quorum for the request res intersects each final

quorum for the event [req';res'].

A replicated object is an automaton characterized by a replication scheme. The object's

state is given by a collection of logs {Ld I d E OM}. Each log is initially empty. Given a

request req, the object undergoes a state transition and returns a response res as follows:

1. Choose an initial quorum I from INITIAL(req). Let u be the log constructed by
merging the Ld for all din I. We refer to u as the view.

2. Choose a timestamp greater than any chosen in a previous step, and a result
res such that u O [req;res] is legal.

3. Choose a final quorum F from FINAL(req;res), and merge u O [req;res] with the
log at each d in F.

4. Output the response res.

In summary, after an object whose state is {Ld Id€ OM} inputs a request req, it outputs a

response res, and enters a new state given by {L'd Id E OM}, where:

L'd = if d E F then td U u0 [req;res]

elseLd

A computation involving a replicated object can be characterized by a global log containing

- 43-

each event that has occurred since the object's creation. It is worth pointing out that an

object's global log is not necessarily the log that would be constructed by merging the logs

at all DM's at the end of the computation, because events having empty .final quorums (like

Read events) are contained in the global log but not in the log at any OM.

2.5.5 Well-Formedness and Correctness

We wish to demonstrate the following correctness property:

Every global log generated by a replicated object is legal.

We will show that General Quorum Consensus is correct if and only if the quorum

intersection relation is a dependency relation. We argue by induction, demonstrating the

invariance of certain properties relating an object's global log to the logs kept at the DM's.

We begin with a few simple lemmas.

Lemma 2-3: The result of merging closed logs is a closed log.

Proof: Let m and n be closed sublogs of L, let (m u n){t) = e and L(t') = e', such that t > t'
and e >- e'. Without loss of generality, assume that m(t) = e. Because m is closed in L,

m(t') = e', and. therefore (m U n){t') = e'. □

Lemma 2-4: If m is a closed sublog of L, then mis a closed sublog of L0 e.

Proof: Left to the reader. D

Lemma 2-5: If Lis a log, and u is the view constructed for an event e (Steps 1 and 2 above),

then u contains all events e' of L such that e >- e'.

Proof: The view constructed fore is the result of merging all logs from an initial quorum for

e. If e >- e', then there exists at least one DM that lies in both the initial quorum for e and the

final quorum fore', so e' must appear in the view fore. □

-44-

In the next two theorems, we demonstrate certain relations between an object's global log

and its internal state. Each property clearly holds in the initial state when all logs are empty;

01,Jr arguments demonstrate that the property is preserved by state transitions.

Theorem 2-6: Each DM's log is a closed sublog of the global log.

Proof: Let the global log be L, and let the states of the DM's be given by {Ld Id E OM}. Now

assume that the object undergoes a transition from L to L' == L0 e, and let the new states of the

DM's be given by {L' d Id E OM}. We show that if the Ld are closed in L, then the L' dare closed

in L'.

If dis not a member of the final quorum fore, then L'd = Ld, so the result follows immediately

from Lemma 2-4. Otherwise,

where vis the view used to compute e. The view vis the result of merging logs from DM's,

each of which is closed in L (induction hypothesis). It follows that v is closed in L (Lemma

2-3) and in L' (Lemma 2-4). The log v 0 e is closed in L' because v is closed in Land contains

every event on which e depends (Lemma 2-5). It follows that L' d is closed because it is the

result of merging the closed logs v 0 e and Ld (Lemma 2-3). □

It follows that the result of merging logs from an arbitrary set of OM's is closed, and thus

every view constructed for a request is closed.

Theorem 2-7: If the quorum intersection relation is a dependency relation, then the result

of merging logs from any collection of DM's is legal.

Proof: Let S be an arbitrary set of DM's, and let Ls be the result of merging the logs from the

DM's in S. let L's be the result of merging the logs from S following a transition from L to L' =

L0 e. We show that if Ls is legal, so is L's·

There are two cases to consider: either S intersects the final quorum for the new event e, or

it does not. If it does not, then Ls = L' 5, and the result is immediate. If S does intersect the

final quorum fore, then the new event and its view have been merged with the tog of one or

more DM's in S, yielding:

-45-

where v is the view used to compute e. The view v is the result of merging logs from DM's,

each of which is closed in L by Theorem 2-6. It follows from Lemma 2-3 that v is closed in L.

The log (Ls u u) is legal by the induction hypothesis, since it is the result of merging logs

from a collection of DM's. Because v is closed in l, it is also closed in the sublog (L5 u u) of l,

and it contains every event on which e depends (Lemma 2-5). The view v is also legal by the

induction hypothesis. Because v is a closed legal sublog of (ls U u) that contains every

event of (Ls U u) on which e depends, the legality of u0 e implies the legality of (ls U u) 0 e by

Property 2-1. But (Ls U u) 0 e is the same as Ls U u 0 e = l's· D

The previous theorem has two corollaries of interest. The first is a well-formedness

property: every view corresponds to a legal log. The second is the catastrophe insurance

property: the result of merging the logs from any collection of DM's defines a legal sublog of

the object's global log.

We now prove the correctness result.

Theorem 2-8: If the quorum intersection relation is a dependency relation, then every

transition permitted by quorum consensus carries a legal global log to a legal global log.

Proof: When an object undergoes a transition from a legal log L to L0 e, the view v is closed in

L {Theorem 2-6), legal (Theorem 2-7), and contains every event of L on which e depends

{Lemma 2-5). We know that v 0 e is legal by construction; thus from property 2-1 we deduce

that L0 e is legal. D

We have just shown that General Quorum Consensus is correct if the quorum intersection

relation is a dependency relation. We now show the converse: any quorum intersection

relation that is not a dependency relation permits quorum choices that do not guarantee

correctness.

- 46-

Theorem 2-9: If the quorum intersection relation is not a dependency relation, then there

exist quorum choices that generate illegal global logs.

Proof: We assume that the quorum intersection relation does not satisfy Property 2-1, and

we construct a scenario in which an illegal global log is generated. If the quorum

intersection relation is not a dependency relation, then there exists an event e = [req;res], a

log L, and a closed sublog m containing all events whose final quorums intersect the initial

quorums for req, with the property that:

m 0 e is legal but L0 e is illegal.

To prove the theorem, it suffices to assign quorums in such a way that invoking req when the

global log is L causes m to be constructed as the view, resulting in the illegal global log L0 e.

The logs are replicated at two DM's: DM1 and DM2. Each event in m chooses an initial

quorum of DM1 and a final quorum of both DM1 and DM2. Each event in L but not in m
chooses an initial quorum of DM1 and DM2, and a final quorum of DM2. As a result of these

choices, each event in m observes only the prior events in m, and each event not in m
observes all prior events.

We claim that these quorum choices must satisfy the object's constraints on quorum

intersection. All initial and final quorums intersect except the final quorums for events not in

m and the initial quorums for events in m. If any of these quorums were required to

intersect, then m would not be closed, contradicting the assumption. When a TM

assembles a view for req, it reads the log from DM1, which is exactly the sublog m. DM1 is

an initial quorum for req because it intersects the final quorums for every event in m. The

TM then chooses the response res, which by assumption is legal form, but illegal for L. □

Theorem 2-9 is an optimality result. It shows that a minimal set of constraints on quorum

intersection corresponds exactly to a minimal dependency relation for the type.

2.6 Examples

In this section we examine some examples of replicated objects. Our derivation of the

constraints on quorum intersection is informal. A formal derivation would require

introducing a formal specification method with proof rules strong enough to demonstrate

- 47 -

the properties discussed in the previous section. Working out the details of such a method

lies beyond the scope of this thesis. These examples focus on a number of type-specific

optimizations for reducing the sizes of logs and messages.

2.6.1 Files

- Our previous discu'ssions hawe employed a rather idealized model for files, in which the

Write operation completely owrwrites the contents of the file. A more realistic model would

permit partial updates, in wllich the Write operation modifies only part of the file. One

possibility is to view a file as an extensible array of pages. The me is initially empty, and

pages may be appended to the end of the file. Individual pages may then be read or written.

The Paged_File type provides the following operations:

Write_Page = operation(int, string) signals (bounds)

overwrites the page with the given index, and

Read_Page = operation(int) returns(string) signals (bounds)

returns the current value ot the page with a given index. Both Read_page and Write_page

signal an exception if the index lies beyond the end of the file. The Append operation allows

new pages to be added to the end of the fife:

Append = bperation(string)

and the Size operation returns the number of pages currently in the file.

Size = operation() returns (string)

The view for a Read_page request must include the previous Append events, to detect

whether the page exists, as well as all Write_page events for that page, to determine the

r

- 48-

page's current value. Consequently, a Read_Page request depends on Append events and

on Write_Page events for that same page. The view for a Write_Page request need include

only previous Append events. Consequently, a Write_Page request depends only on Append

events. Size requests depend only on Append events be~ause Append is the only operation

that affects the size of the table.

Figure 5a illustrates some of the required quorum intersections for paged files (to avoid

cluttering the diagram, we have omitted mention of events that terminate with exceptions).

The vertices marked Write_Page(i, *) and Read_Page(i) respectively denote the class of

normal Write_Page and Read_Page events for the page with index i. Figure Sb shows the

range of quorum choices for a paged file replicated among five DM's based on the

assumption that the quorums for ReadYage and WriteYage do not depend on the page

affected. Note that Append always requires a majority of DM's, while Size requires only a

minority. The view assembled to execute a ReadYage request need not contain the

complete state of the file; it need only contain enough information to determine the current

state of that page. Instead of keeping logs at DM's, an efficient implementation of the

Paged...file type might keep a timestamped version of each page.

The Paged...file could be generalized to allow arbitrary sections of the file to be overwritten.

Although such a file could be represented as a log of updates, just as the queue was

represented by a log of Enq and Deq events, it might be more efficient to discard entries for

superseded updates, effectively associating timestamps with variably-sized regions of the

file.

2.6.2 Queues

A log representing a queue can be compacted by taking advantage of the observation that

an item must have been dequeued if an item enqueued with an earlier timestamp has been

dequeued. A OM that is part of a replicated queue implementation need retain only the

- 49-

Fig. 5. Paged Files .

Append ------------1►• WritePage(i, •)

Size ReadPage(i)

Figure Sa: Quorum Intersection Graph

Read_Page (1,0) (2,0) (3,0) (4,0) (5,0)

Write_Page (1,5) (2,4) (3,3) (2,2) (1,1)

Append (0,5) (0,4) (0,3) (0,4) (0,5)

Size (1,0) (2,0) (3,0) (2,0) (1,0)

Figure Sb: Minimal quorum choices for five identical OM's.

following information:

• The Enq timestamp of the most recently dequeued item. This timestamp is
called the DM's horizon timestamp.

• The Enq entries whose timestamps are later than the horizon timestamp.

The OM does not store Deq entries or Enq entries for items known to be dequeued.

An item is dequeued in the following way. The TM reads the horizon timestamps and the

Enq entries from an initial Deq quorum. (The size of these messages may be reduced using

a cache as described below). The Enq entries are merged in timestamp order, and all

entries earlier than the latest observed• horizon time are discarded. The oldest remaining

C

- 50 -

Enq entry indicates the item to be dequeued, and thus the new horizon time. The operation

is complete when the TM installs the new horizon time at a final Deq quorum.

To illustrate the technique, we re-examine the three-site replicated queue example given in

Chapter Two. As before, we start with a queue where x has been enqueued at two sites.

DMl

horizon: 0

tl: [Enq(x);Ok()]

DM2

horizon: O

tl: [Enq(x);Ok()]

DM3

horizon: 0

When x is dequeued, the horizon time for DM2 and DM3 is set to t1, and DM2 discards the

Enq entry for x.

DMl

horizon: 0

tl: [Enq(x);Ok()]

OM2

horhon: tl

DM3

horizon: t1

Item y is enqueued at DM1 and DM2, and z is enqueued at DM1 and DM3.

DMl

horizon: 0

tl: [Enq(x);Ok()]

t2: (Enq(y);Ok()]

t3: [Enq{z);Ok{)]

DM2

horizon: t1

t2: [Enq(y);Ok{}]

DM3

horizon: t1

t3: (Enq(z);Ok()]

When y is dequeued, the horizon time tS set forward to t2 at DM1 and DM3, and DM1

discards the Enq entries for x and y.

DM1

horizon: t2

- 51 ·

DM2

horizon: t1

DM3

horizon: t2

t2: (Enq(y);Ok()]

t3: (Enq(z);Ok()] t3: [Enq(z);Ok()]

As a complementary compaction technique, DM's can periodically broadcast their horizon

times. A DM that observes a later horizon time can advance its own, discarding all Enq

entries with earlier timestamps. Note that propagating Enq entries in the same way does not

aid log compaction, although it might provide better catastrophe insurance.

Message sizes can atso be reduced if each TM maintains a cache that is updated whenever

it executes a Deq. To execute a Deq, the TM sends its horizon timestamp and the timestamp

for the most recent encached Enq entry to each DM in the initial quorum. All DM's with

earlier horizon times advance their own times, discarding Enq entries with earlier

timestamps. Each OM responds with its own horizon time, and with all Enq entries whose

timestamps are later than the Enq timestamp sent by the TM;

2.6.3 Tables

The Table type stores pairs of values, where one value (the key) is used to retrieve the other

(the item). The operation:

Insert = Operation(k: Key, i: Item) signals (Present)

inserts a new key /item pair in the table. An exception is signaled if a pair with the given key

is already present in the table. The operation:

Delete = Operation(k: Key) signals (Absent)

deletes the pair with the given key from the table. An exception is signaled if a pair with the

given key is not present in the table. The operation:

- ------ -------

- 52 -

Change = Operation(k: Key, i: Item} signals (Absent)

alters the item bound to the given key. An exception is signaled if a pair with the given key is

not present in the table. The operation:

Lookup = Operation(k: Key) returns(item) signals (Absent)

returns the item bound to the given key. An exception is signaled if a pair with the given key

is not present in the table. The operation:

Size = Operation() returns(int)

returns the number of key-item pairs currently in the tabJe.

Because Insert signals if the key is present in the table, Insert requests depend on prior

Insert and Delete events. Delete requests also depend on prior Insert events and prior

Delete events. Because Change signals if the key is absent from the table, Change requests

depend on prior Insert events and prior Delete events, but not on prior Change events.

Lookup depends on prior Insert, Delete, and Change events for its result, and Size depends

only on prior Insert and Delete events, because Change and Lookup do not alter the number

of keys in the table.

The quorum sets for Insert, Delete, Change, and Lookup could depend on the key. For

example, operation executions using East Coast employees as keys could have different

quorums than operation executions involving West Coast employees. Of course, the TM's

must be able to tell to which class a key belongs.

Part of the quorum intersection graph for the Table type is shown in Figure 6a. The vertex

marked lnsert(k, •)/Delete(k) represents the class of normal Insert and Delete events for the

key value k. The edge from lnsert(k,.)/Delete(k) to Lookup(k) indicates that Lookup

requests depend on prior Insert and Delete events for the same key value. To avoid

. 53.

cluttering the diagram, events that terminate with exceptions are not shown.

The range of quorum choices for five identical DM's is shown in Figure 6b based on the

assumption that quorums do not depend on key vatues. The dependency relation for Table

is similar to the dependency relation for the Paged_File type.

Because operations involving distinct keys do not affect one another, the relative ordering of

their entries is unimportant. To avoid an inefficient linear search, the log representing a

Fig. 6. Tables

lnsert(k, *)/Delete(k)1-------1►• Change(k, •)

Size Lookup(k)

Figure 6a: Quorum Intersection Graph

Lookup (1,0) (2,0) (3,0) (4,0) (5,0)

Change (1,5) (2,4) (3,3) (2,2) (1,1)

Insert (1,5) (2,4) (3,3) (2,4) (1,5)

Delete (1,5) (2,4) (3,3) (2,4) (1,5)

Size (1,0) (2,0) (3,0) (2,0) (1,0)

Figure 6b: Minimal quorum choices for five identical DM's.

. 54.

table at a DM can itself be represented as a table mapping each key to the sequence of

entries involving that key. The size of the table can be further reduced by the observation

that only the most recent entry for a particular key can affectfuture events; thus it suffices to

bind each key to its most recent (committed) entry. Any key that does not appear explicitly

in the DM's table is implicitly bound to a delete entry with a timestamp of zero, which is older

than any timestamp generated by a normal transaction.

Message sizes can be reduced if a TM executing an operation requests only the entry for a

particular key. If each TM maintains a cache, it can include the timestamp for the key's

cached entry with each request. Each OM in the initial quorum either returns an entry with a

later timestamp, or it returns a confirmation that the cached entry is up to date. If the

timestamp sent by the TM is later than the DM's timestamp, then the DM's entry is out of date

and may be discarded. Out-of-date entries can also be detected if background tasks at DM's

periodically broadcast the timestamp associated with a particular key. Once a OM has

discarded an entry for a key, it responds to later requests with a Delete entry with a zero

timestamp.

A Possible disadvantage of the replicated table representation is that entries for Delete

events may tend to accumulate. An up-to-date Delete entry cannot be discarded as long as

there is a possibility that another OM has an out-of-date Insert entry for that key. ff a DM

unilaterally discards an entry for a deleted key, a later Lookup request for that key may

observe an earlier Insert entry without realizing that it is out of date. Consequently, any

compaction technique that can discard up-to-date Delete entries must be distributed,

because it must preserve an invariant affecting the state of all DM's. One approach to this

problem is a technique proposed by Daniels and Spector [Daniels 83) in which the table

representation is rendered more compact by ordering the entries and merging adjacent

entries for deleted bindings.

A complementary approach is to use long-running low-priority background transactions to

- 55.

remove older entries from all DM's. A background task can be used to detect and discard

out-of-date Insert entries by propagating each key's current timestamp. If the background

task also keeps track of the DM's it has notified, it can detect when all out-of-date Insert

entries for a deleted key have been discarded, and it can then make a second pass

discarding the up-to-date Delete entries.

2.6.4 A Non-Deterministic Table

The specification for the Table type implies that the availability of the Lookup(k) and

lnsert(k,i) events are inversely related: one event can be made more likely to succeed only

at the expense of the other. For example, if a key/item pair is replicated among n

repositories, and if the initial quorum for Lookup consists of a single node, then the final

quorum for Insert must consist of all n repositories. In existing name servers that use

replication, such as Grapevine [Birrel 81] and Clearinghouse [Oppen 81], this trade-off is

considered to be unacceptable. Instead, a key/item pair is added or deleted at a single DM,

and the update is subsequently propagated to the other DM's. This approach has the

advantage that updates are faster and more likely to SIJCCeed, but it has the disadvantage

that the behavior of the server becomes considerably more complex because clients may

observe transient "inconsistencies" in the table. and concurrent conflicting updates must

somehow be resolved.

There are two ways to view the "transient inconsistencies" that arise in systems such as

Clearinghouse and Grapevine. One view is that this approach sacrifices atomicity for

increased availability. The other view holds that the resulting data type continues to be

atomic, but that it can no longer be considered a deterministic map from keys to items.

Although the first view seems to reflect the attitude of the designers of Clearinghouse and

Grapevine, we prefer the second view for its economy of mechanism, as we may still use

serializabillty to characterize the pr<?perties upon which the programmer may rely.

The SemtTable is a map from keys to multisets of items. When the table is created, it

- 56 -

contains (conceptually, at least) a binding between every key and a multiset containing only

the distinguished item Absent. A request of lnsert(k,i) adds the item i to the multiset

associated with k, and a request of Lookup(k) will return some item previously bound to k, or

signal Absent. There is an additional probabilistic guarantee. that any item returned is

"probably" the most recently inserted one.

The interesting attribute of the SemiTable type is that no event depends on any other event;

thus no quorums are required to intersect, and its quorum intersection graph has no edges.

The view constructed for Lookup{k) will include the most recent Insert or Change event for

that key if the initial quorum for Lookup happens to intersect the final quorum for the Insert

or Change event. The probability that Lookup will observe an item is thus the probability

that the quorums will intersect. That probability is unity for the Table type, and would be less

for a non-deterministic implementation. If both Insert and Lookup choose quorums of single

DM's, then the probability of intersection may be small. To cause the probability of

intersection to rise with time, the log entry for Insert can be propagated by a background

activity, effectively causing the final quorum for Insert to grow. In a satisfactory

implementation of SemiTabla, a Lookup request would choose the most recently inserted

item from the view, and insertions would be propagated quickly enough so that the view is

sufficiently likely to contain the most recently inserted item. This is effectively the technique

employed in Grapevine and Clearinghouse, as weH as in an early replication proposal by

Johnson and Thomas [Johnson 75].

2.6.5 The Double_Buffer Type

Files, Queues, Tables, and SemiTables each have a unique minimal dependency relation.

We now consider a data type that has two distinct minimal dependency relations, neither of

which is a subset of the other. An object of type Doubla.JJuffer consists of a producer buffer

and a consumer buffer, each capable of holding a single item. The object is initialized with

an item in each buffer. The Double.JJuffer type provides three operations:

· 57 -

Produce = operation(item)

copies an item into the producer buffer, overwriting any previous contents,

Transfer = operation()

copies the item currently in the producer buffer to the consumer buffer, and

Consume = operation() returns (item)

returns a copy of the item currently in the consumer buffer.

This type supports two distinct dependency relations. The alternatives arise because

Produce events affect subsequent Consume events only if there has been an intermediate

Transfer. Consequently, Produce entries can appear in the view constructed for a Consume

request either because the final and initial quorums of Produce and Consume intersect

directly, or because they intersect indirectly through Transfer. Quorums for this type may be

chosen with two degrees of freedom: one first chooses a dependency relation, and then

one chooses the actual quorums subject to the constraints imposed by the dependency

relation.

In the first relation, illustrated in Figure 7, Consume requests depend on both Transfer and

Produce events. This situation is analogous to a mail program in which a request to deliver

a message simply marks the message for later transmission, and data is not actually moved

until it is requested by the recipient.

In the second relation, illustrated in Figure 8, Consume requests depend on Transfer events,

and Transfer requests depend on Produce events. This situation is analogous to a mail

program in which a request to deliver a message results in immediate transmission.

It is interesting to note that neither dependency relation is strictly better than the other from

- 58-

Fig. 7. First Dependency Relation for Double_Buffer

Produce---------------.. Consume

Figure 7a: the Quorum Intersection Graph.

Consume (5,0) (4,0) (3,0) (2,0) (1,0)

Transfer (0,1) (0,2) (0,3) (0,4) (0,5)

Produce (0,1) (0,2) (0,3) (0,4) (0,5)

Figure 7b: Minimal quorum choices for five identical DM's.

the point of view of quorum size. For example, comparing the right-hand columns of Figures

7b and Bb, we see that the first relation has a minimal quorum choice in which Consume,

Transfer, and Produce quorums respectively consist of any five, one, and one DM's, while

the same quorums for the second relation consist of any five, five, and one DM's. fn this

instance, the first dependency relation is clearly preferable. If we compare the left-hand

columns of Figures 7b and Bb, however, we see that the first relation has a minimal quorum

choice in which Consume, Transfer, and Produce quorums respectively consist of any one,

five, and five DM's, while the same quorums for the second relation consist of any one, five,

and one DM's. In this instance, the second dependency relation is clearly preferable.

The DoubleJ3uffer type illustrates why our replication method requires that the entire view

used to generate an entry must be written out with that entry to a final quorum. Consider the

dependency relation in which Consume depends on Transfer, and Transfer depends on

- 59 -

Fig. 8. Second Dependency Relation for Double_Buffer

Produce

Figure Ba: the Quorum Intersection Graph.

Consume

Transfer

Produce

(5,0) (4,0) (3,0) (2,0) (1,0)

(5,1) (4,2) (3,3) (4,4) (5,5)

(0,1) (0,2) (0,3) (0,2) (0,1)

Figure 8b: Minimal quorum choices for five identical DM's.

Consume

Produce, but Consume does not depend directly on Produce. Any view constructed for

Transfer contains the most recent Produce entry, and any view constructed for Consume

contains the most recent Transfer. Because a TM executing a Transfer records both the

Transfer entry and its view at a final quorum, the view for a tater Consume request will also

include the Produce entry needed to ascertain the item to be returned. If our replication

method did not write out the entire view, then Consume would be forced to depend directly

on Produce, unnecessarily restricting the range of quorum choices.

2. 7 Multiple Levels of Replication

Some interesting sets of quorums can be realized by constructing replicated objects from

other replicated objects. For example, by applying the . quorum consensus method

recursively, a DM for a replicated object could itself be a replicated object. One use for

multiple levels of replication is an optimization we call opportunistic quorum choice.

Because the constraints on quorum choice imposed by dependency relations reflect a

worst-case analysis, it is sometimes possible to take advantage of fortuitously acquired

information to recognize when a full quorum is not needed.

For example, consider a table used to store information about two classes of keys: say, East

and West coast employees, where the quorums for operations involving distinct classes are

disjoint. The table has an Empty operation that tests whether it is empty. Because Empty

depends on all Insert events, each initial quorum for Empty must intersect the final quorums

tor Insert events for both classes of employees. This restriction is stronger than necessary,

however, because a TM that observes the existence of an East coast employee need not

attempt to observe the West coast employees, and vice-versa. If there are no East coast

employees, however, then the TM must look for West Coast employees. In short, the TM

must read from the entire initial quorum if the table actually is empty, but it may suffice to

read from fewer DM's if the Table is not empty.

This behavior can be implemented by keeping East and West coast employees in subsidiary

replicated tables. The TM executing the Empty event makes concurrent calls to each

component. If one call returns False, then the table is empty, and the TM can return a result

to the client whether or not the other call is successful. If one call returns True, the TM can

return a result only if the other call succeeds. Although this protocol employs two message

exchanges, one for each component, these exchanges can be executed concurrently.

- 61 -

2.8 Discussion

This chapter has introduced General Quorum Consensus, a systematic method for

constructing replicated imptementations of objects of arbitrary type. Previous work on

quorum consensus methods has focused on particular types, such as files [Gifford 79],

volumes [Gifford 82], and directories [Daniels 83]. By contrast, General Quorum Consensus

is applicable to arbitrary types; the methods cited above may be considered specially

optimized instances.of our method.

We have shown that a necessary and sufficient condition for General Quorum Consensus to

be correct is that the quorum intersection relation be a dependency relation. The problem

of choosing quorums is thus reduced to the algebraic problem of identifying the minimal

dependency relations for the type in question. The type's minimal dependency relations

define fundamental limitations on the kinds of availability that can be achieved by our

quorum consensus method. No amount of additional optimization can further reduce the set

of required quorum intersections (although such optimizations can certainly affect other

aspects of performance).

These results can be used to identify certain basic trade-offs. If one event depends on

another, their degrees of availability must be inversely related. Because their quorums must

intersect, the quorum for one can be made smaller only if the quorum for the other is made

correspondingly larger. For example, in the replicated Table, if the attempts to look up items

in the table are made faster and more likely to succeed, then attempts to modify the table

must become slower and less likely to succeed.

Such trade-offs can be circumvented only if one can somehow change the rules. One way

to change the rules is to choose a type with fewer dependencies, such as substituting the

non-deterministic SemiTable type discussed above in place of the deterministic Table type.

A comparison of the Table and Sem/Table types illustrates a second basic trade-off between

- 62-

non-determinism and flexibility in quorum choice. The less constrained an object's

behavior, the less constrained its quorum choices. (A similar trade-off is noted in [Weihl 83]

between non-determinism and concurrency.) Of course, a non-deterministic type is only

appropriate for certain applications. A benefit of General Quorum Consensus is that it

supports non-deterministic types, making this trade-off explicit. (Another way to change the

rules is described in Chapter Four, where we discuss reconfiguration.)

An important step in the development of General Quorum Consensus was the realization

that quorum choice and efficient storage management should be treated independently. A

replicated object should be designed in two steps: quorums are chosen on the basis of a

straightforward log-based scheme, and log compaction techniques are then applied to

reduce storage consumption. Related replication methods are complicated by the fact that

fault-tolerance and storage management are considered together, and it is not always easy

to tell which purpose a particular feature serves. One result of our work is the conclusion

that many aspects of these methods are best understood as optimizations that reduce

storage consumption without affecting fault-tolerance. We have not tried to present a

general log compaction method, because effective log compaction techniques seem to be

quite type-specific, and because there is typically a range of techniques available for any

given type, ranging from obvious to subtle, and from cheap to expensive . .

Our method employs two technical innovations: the use of logs instead of versions, and

timestamps instead of version numbers as the basis for replication. Gifford's original

scheme uses quorum intersection for two distinct purposes: to compute responses to

requests, and to order events. The introduction of timestamps eliminates the need to use

quorum intersection to order events, resulting in fewer constraints on quorum choices. In

the replicated queue example, pairs of Enq quorums must intersect if version numbers are

used, but not if timestamps are used. The suggestion that timestamps could be used in

place of version numbers is originally due to Gifford [Gifford 82]; we have worked out the

consequences of this suggestion in detail.

. 63.

We have argued that logs rather than versions should be the basic unit of replication. A

technical problem with versions is that one cannot update a version unless it is already up to

date. In the replicated queue implementation using versions, we saw that the Enq operaUon

must locate and read an up-to-date version of the queue, create a new version that includes

the new item, and write out the modified version. By contrast, in the implementation based

on logs, the Enq operation does not need to observe the queue's current state; it suffices to

send a timestamped entry containing the new item to a final quorum of DM's. The difference

is that partially correct logs can be merged, while there is no analogous way to reconcile

partially up-to-date versions. Because a version of an object represents a prefix of its

current history, while a log represents an arbitrary subhistory, logs can be viewed as

generalizing the notion of versions.

Like Gifford's method, General Quorum Consensus requires an underlying transaction

mechanism, but it is independent of how transactions are implemented. Of course, the level

of concurrency provided by a replicated object does depend on the underlying transaction

system. In the next chapter, we discuss techniques for impiementing highly concurrent

replicated objects.

_We have shown how to establish a set of correct and optimal constraints on quorum choice

for objects of arbitrary type, but we have not addressed the question of deciding which

quorum choice best suits the needs of a particular application. In fact, a strength of our

method is that probabilistic analyses of availability can be conducted independently of the

derivation of quorum constraints. The availability of an object's DM's can be modeled as a

stochastic process [Cox 65) in which transitions between available and unavailable states

are governed by probabilistic laws. One can use quorum information together with a

stochastic model of the underlying hardware to compute figures of merit, such as the mean

time until a particular operation becomes unavailable, or the likelihood that a particular

operation will remain available for a fixed duration.

3.1 Introduction

- 64 -

Chapter Three

Concurrency Control

In the previous chapter we were able to derive constraints on quorum choice assuming only

that transactions are atomic and serializable in timestamp order. The advantage of

considering replication and concurrency control independently is that the basic replication

method is easier to understand. The corresponding disadvantage is that it may be difficult

to provide adequate concurrency for certain applications. In this chapter, we investigate

concurrency control techniques for replicated objects. Concurrency control for replicated

objects is more difficult than concurrency control for objects that reside at a single location

because the information used to make scheduling decisions is itself replicated, and care

must be taken that it is managed properly.

We use the following criteria as a basis for evaluating concurrency control mechanisms.

1. The level of concurrency supported.

2. The level of availability supported (i.e. the constraints imposed on quorum
choice).

3. The amount of message traffic required.

4. The complexity of the local computations needed to make scheduling
decisions.

Perhaps the simplest way to implement atomicity is to treat 109$ as files having Read and

Write operations synchronized either by a locking scheme [Eswaren 76, Moss 81] or by a

multi-version timestamp scheme [Reed 78, Reed 83]. In this chapter we propose two

alternative approaches that provide a higher level of concurrency by integrating the

concurrency control method with the replication method.

- 65 -

The simpler approach is called the local scheme, because scheduling decisions are made

by individual OM's on the basis of local information. When a TM executing an operation

attempts to observe or update the log at a particular OM, that OM may decide to accept,

postpone, or refuse the request. The operation execution proceeds as soon as a quorum of

OM's has accepted the request. The OM makes scheduling decisions on the basis of a

predefined set of conflicts between pairs of events, accepting a request on behalf of a

transaction only, if it has not already accepted any conflicting requests from other

uncommitted transactions. Because scheduling decisions are made by consulting a local

table of conflicts, the local scheme requires no message traffic and hence does not reduce

availability. The local scheme is optimal in the following sense: no other scheme in which

decisions are based entirely on predefined conflicts can provide a higher level of

concurrency. Nevertheless, the local scheme has some disadvantages. Because the log at

each OM typicaUy represents only a fragment of the object's current history, any scheme

based on local information cannot take full advantage of information about the object's

state, and is therefore inherently limited in the level of concurrency it can support

[Bloom 75]. For the same reason, the local scheme does not provide adequate support for

partial operations, which are operations that cannot be scheduled in certain states.

The shortcomings of the local scheme are remedied by a more complex scheme, called the

non-local scheme, in which scheduling decisions are made by TM's on the basis of

information collected from multiple DM's. When a TM attempts to execute an operation, it

first collects information from multiple DM's, and then decides whether the operation can be

scheduled. If not, the TM must try again after the object's state has changed. Each TM

makes its own scheduling decisions, and short-term mutual exclusion locks are used to

synchronize decision-making by different TM's. The non-local scheme is potentially more

expensive in terms of message traffic and reduced availability, but it can support a higher

level of concurrency than the local scheme because scheduling decisions take advantage of

more information. The non-local scheme also provides better support for partial operations.

- 66 -

The non-local scheme can implement any concurrency control scheme that preserves

serializability.

Section 3.2 describes our model of computation, Section 3.3 and 3.4 discuss the local and

non-local schemes for a transaction system in which serialization ordering is determined

dynamically, and Section 3.5 discusses concurrency control for schemes in which

serialization ordering is statically predetermined. Section 3.6 contains a discussion of our

results, and Section 3.7 discusses some related work.

3.2 Atomicity

Objects that support atomicity are referred to as atomic objects. From the point of view of a

single transaction, the state of an atomic object reflects the effects of a .sequence of prior

transactions. From the same point of view, a system consists of a collection of atomic

objects whose states all reflect the effects of the same sequence of prior transactions. The

implementor of an atomic object is free to permit concurrency among transactions as long

as serializability is preserved globally. The level of concurrency to support is an engineering

consideration; the implementor must balance the need for concurrency against the need to

keep the object's implementation simple and efficient. Our model for atomic objects is

based on that of Weihl [Weihl 83a, Weihl 84]; our treatment is less formal, and we have

changed details to facilitate the discussion of replicated objects.

We first discuss a model for individual atomic objects. Following [Weihl 84], an atomic

object is defined by two specifications: its serial specification describes its behavior in the

absence of concurrency and failures, while its behavioral specification describes the level of

concurrency it supports.

A serial event is a paired request and response, a serial history consists of a sequence of

serial events, and a serial specification defines a set of legal serial histories. The notion of

- 67 -

specification employed in the previous chapter corresponds to the notion of serial

specification as used in this chapter. We will use lower-case letters to denote serial histories

(g, h).

Like its serial specification, an object's behavioral specification consists of a set of histories

that correspond to legal computations. We will use upper-case letters to denote behavioral

histories (G, H). Behavioral histories encompass two kinds of events:

1. Operation executions: The event [re q; res ; A] denotes the execution of
request req followed by response res on behalf of transaction A.

2. Transaction events: The event [Commit A] denotes the successful completion
of transaction A, and (Abort A] its unsuccessful completion.

The intuitive interpretation of a behavioral history is that the ordering of operation

executions reflects the order in which the object chooses the responses to invocations (but

not necessarily the order in which the object received the invocations).

We assume that all behavioral histories satisfy the following well-formedness properties.

1. No transaction executes an operation at an object once it has committed.

2. No transaction both commits and aborts.

We say that a transaction A has committed with respect to transaction B if either A has

committed or A is the same as B.

For example, the following Is a behavioral history for an atomic FIFO queue, where the

events of transaction B are indented to improve readability.

[Enq(x};Ok{);A]

[Commit A]

- 68 -

[E nq { y) ; Ok {) ; B]

[Deq() ;Ok(y) ;B]

[Commit B]

Transaction A enqueues item x, B enqueues item y and then dequeues y, B commits and A

commits. Note that events associated with distinct transactions are interleaved.

The atomic object should appear as if the committed transactions that manipulated it were

executed in some serial order. Let > be a total order on committed and uncompleted

transactions. Let H be a behavioral history for an atomic object. The serialization of H in the

order > is the serial history h constructed in the following steps:

• Discard all events associated with aborted transactions.

• Reorder the events so that if A > B then all events of A follow all events of B,
but the ordering of events within a single transaction is unaffected.

• Discard all Commit events, as well as all transaction identifiers in events.

The result is a serial history h consisting entirely of operation executions, with no mention of

transactions. The history H is said to be serializable in the order > if the serialization h is a

legal serial history (i.e. is included in the object,s serial specification). The history. H Is

serializable if there exists an ordering> such that His serializable in the order>. The history

H is atomic if the subhistory of H consisting of events associated with committed

transactions is serializable.

For example, consider the behavioral history given above. If A > B, then the resulting

serialization is:

[Enq(y) ;Ok()].

[Deq(};Ok(y)]

[Enq(x) ;Ok(}]

- 69 -

which is a legal serial history for the queue. If B > A, however, then the resulting

serialization is:

[Enq(x);Ok()]

[Enq(y);Ok()]

[Deq();Ok(y)]

which is not a legal serial history because the wrong item has been dequeued.

Our analysis is concerned with pessimistic rather than optimistic methods for concurrency

control. Under optimistic methods, transactions are allowed to violate serializability, but

potential violations are detected when the transaction attempts to commit [Kung 81]. Under

pessimistic methods, transactions are not allowed to proceed until it can be guaranteed that

they will not violate serializability.

We make the additional assumption that the concurrency control mechanism cannot make

scheduling decisions on the basis of assumptions about the transaction's future behavior.

In particular, a transaction can always commit after executing an event. An outcome of a

behavioral history H is the behavioral history constructed by committing some subset of the

uncommitted transactions in H. A behavioral history His on-line atomic if all its outcomes

are atomic. For example, the following behavioral history is not on-line atomic, because the

history that results if transaction A commits is not atomic.

[Oeq() ;Ok(y) ;A]

- 70 -

(Enq(y} ;Ok(} :BJ

[Oeq(};Ok(y);B]

[Commit BJ

So far we have discussed behavioral histories for individual objects. A behavioral history for

a system consists of interleaved operation executions for multiple objects. For example, the

following history involves transactions A and B, and queues q 1 and q2.

ql: [Enq(x);Ok();A]

q2: [Deq();Ok(y);A]

qt: [Commit A]

q2: [Commit A]

q2: [Enq(y);Ok():B]

q2: [Commit 8]

In this history, A enqueues x at q1, B enqueues y at q2 and commits, and A dequeues y from

q2 and commits. A behavioral history for a system is serializable in the order > if the history

of each component object is serializable in the order>. It is serializable if there exists an

order > such that each object's history is serializable in the order >; and it is atomic if the

subhistory associated with committed transactions is seriafizable. The history shown above

is serializable (only) in the order A> B, and is thus serializable and atomic.

Note that for a system to be atomic, It is not enough to require that each atomic object's

history be atomic, because histories for different objects may be serializable in incompatible

orders. For example, consider the following history:

- 71 -

ql: [Enq(x);Ok();A]

q2: [Enq(y);Ok();B]

q2: [Deq() ;Ok(y) :A]

ql: [Deq();Ok(x);B]

ql: [Commit A]

ql: [Commit B]
q2: [Commit A]

q2: [Commit B]

Here, q1's history is serializable only if A > B, while q2's history is serializable only if B > A.

Although each individual object's history is atomic, the history for the system as a whole is

not atomic. To remedy this problem, it is necessary to ensure that all atomic objects are

serializable with respect to the same order. Weihl [Weihl 83a, Weihl 84] has identified

constraints on histories that ensure atomicity and that are both local and optimal. A

constraint is local if the behavior of the system as a whole is atomic given that each object's

histories satisfy the constraint, and a constraint is optimal if no weaker local constraint

ensures atomicity for the system. In this chapter, we consider two of constraints discussed

by Weihl: hybrid atomicity and static atomicity. For both of these constraints, transactions

are issued timestamps, and are constrained to be serlalizable in timestamp order.

Under hybrid atomicity, uncommitted transactions synchronize dynamically on the basis of

conflicts that arise over shared data. Transactions are issued timestamps as they commit.

The synchronization method and the timestamp generation method must be compatible in

the sense that each object1s history must be serializabte in timestamp order. In this chapter,

we will consider synchronization methods in which transactions choose timestamps using

Lamport clocks [Lamport 78). Each site keeps a logical clock whose value is incremented

whenever a timestamp is generated. Every message contains the sender's current clock

value, and when a site receives a message containing a later clock value, it advances its own

clock to a value later than the value it has observed.

- 72 -

This technique for choosing timestamps interacts with scheduling decisions in the following

way: if a conflict arising over shared data causes one transaction to be delayed until

another commits, then the delayed transaction will choose a later timestamp. For example,

if transactions synchronize through two-phase locking [Eswaren 76, Moss 81], transactions

will be given a timestamp order consistent with the order of lock transfers. The technique of

assigning timestamps to transactions as they commit has been employed for database

synchronization [Dubourdieu 82, Chan 82].

The .scheme we have described so far does not guarantee external consistency because an

observer outside the system may notice that ordering of events imposed by transaction

timestamps may differ from the ordering observed in "real time." For example, one client of

a FIFO queue may enqueue an item x and commit, and some time later another client may

enqueue an item y and commit, yet if the first client is given a later timestamp than the

second, y will be dequeued before x. The effects of these two transactions are serializable,

but their serialization order may be unexpected. External consistency for events that occur

sufficiently far apart in time can be guaranteed if timestamps are generated using

approximately synchronized clocks [Lamport 78).

An alternative to hybrid atomicity is static atomicity, in which each transaction is issued a

timestamp when it is created. Computations are constrained to ensure that transactions

remain serializable In timestamp order. This approach encompasses Reed's multi-version

timestamp scheme [Reed 78, Reed 83).

In Section 3.3 and Section 3.4 we will discuss concurrency control methods for replicated

objects based on hybrid atomicity. Static atomicity is discussed in Section 3.5.

- 73 -

3.3 Local Concurrency Control

In this section, we present a local concurrency control method for replicated objects

employing hybrid atomicity. All scheduling is done at DM's on the basis of local information,

and decisions are made on the basis of a predefined set of conflicts between events. As

before, a TM executes an operation in four steps: (i) it merges the logs from an initial

quorum of DM's, (ii) it conducts a local computation, (iii) it records the results at a final

quorum of DM's, and (iv) it returns the results to the client. When a DM receives a request

from a TM, it compares the new request with the requests it has already accepted from other

uncommitted transactions. If the new request conflicts with an accepted request, the new

request is postponed until the transactions that have executed conflicting requests have

committed or aborted. The replication method ensures that an operation may be scheduled

safely whenever a quorum of DM's have agreed to accept the request.

The local scheme is subject to deadlock. Some deadlocks can be avoided if TM's

communicate with DM's in a canonical order. This approach will avoid certain deadlocks

arising within a replicated object, but it cannot avoid deadlocks that span multiple objects.

Deadlock avoidance also increases delay, because messages must be sent sequentially

rather than concurrently. Another approach is to detect deadlocks after they have arisen,

aborting one of the deadlocked transactions to permit the others to proceed. In the scheme

described in this section, there is no difficulty constructing a "waits-for" graph employed by

many distributed deadlock detection algorithms (see [Kohler 81] for a survey of such

algorithms). A third approach is simply to restart transactions that do not appear to be

making progress.

· 74 ·

3.3.1 Organization

Each DM stores a log of entries, which are timestamped records of events. Unlike the logs

considered in the previous chapter, these logs represent behavioral histories, and therefore

they include interleaved events of different transactions as well as Commit and Abort

entries. (As a simple optimization, DM's can discard all entries associated with aborted

transactions.) As before, timestamps are used to order log entries, permitting logs at

different DM's to be merged. Lamport clocks are used to generate timestamps.

Note that we are employing two kinds of timestamps here. The concurrency control method

assigns a timestamp to each transaction as it commits, and our implementation assigns a

timestamp to each entry that records an event. It is convenient to identify the timestamp

assigned to a transaction with the timestamp assigned to the entry for its Commit event.

Consequently, the serialization ordering of committed transactions can be reconstructed

from the timestamp ordering of their Commit entries.

3.3.2 The Basic Local Method

Transactions synchronize by acquiring locks at DM's. Each transaction holds its locks until

it commits or aborts. A transaction's locks may be broken in the event of a deadlock, crash,

or communication failure, but that transaction must be aborted. There are two kinds of

locks: an initial lock is associated with each request, and a final lock is associated with each

event.

Before a DM sends its resident log to a TM, it must grant the transaction an initial lock for the

request. The transaction is delayed until it acquires initial locks at an initial quorum of DM's

for that request. Once the quorum of initial locks have been acquired, the TM chooses a

response, appends an entry for the new event to the view, and sends the modified view to a

final quorum of DM's. Before a DM merges the modified view with its resident log, it must

--- --------~

· 75 -

grant the transaction a fin al lock for the event. The transaction is delayed until it acquires

final locks at a final quorum of Dfi:f s for that event. A OM will grant a lock to a transaction

only if no other transaction hokfs a conflicting lock at that OM. The correctness condition

for choosing lock conflicts is given below.

The full replication method walks as follows.

1. When a TM receives a request from a client, it forwards the request to an
initial quorum of OM's.

2. As each OM grants initial lock for the request, it responds with the entries for
transactions that have committed with respect to the requesting transaction.

3. When the TM has received the replies from an initial quorum, it merges the
logs, constructs a view, and chooses a response. The TM generates a new
timestamp, appends the new entry to the view, and sends the view to a final
quorum of DM's.

4. As each OM grants a final lock for the event, it merges the updated view with
its resident log. As soon as a final quorum of DM's has acknowledged the
update, the TM returns the response to the client.

In this scheme, an scheduling decisions are made at DM's on the basis of locally resident

information. Note that because the view consists entirely of events that have committed with

respect to the transaction executing the operation, the view can be treated as a serial history

instead of a behavioral history, and consequently TM's may be structured exactly as they

were in the previous chapter.

All lock conflicts are between initial and final locks. Lock conflicts are defined by a lock

conflict relation between requests and events. The correctness condition for a lock conflict

relation is the following:

The intersection of the lock conflict and quorum intersection relations must be

dependency relation.

Recall that an object's dependency relations are defined by its serial specification. We

- 76 -

remark that it is necessary but not sufficient for both relations to be dependency relations,

because the intersection of two dependency relations is not necessarily a dependency

relation (e.g. the Double_Buffer data type in Chapter Two). In practice, however, both the

lock conflict and quorum intersection relations will typically correspond to the same minimal

dependency relation.

We now present an informal correctness argument for the local method. A more precise

argument is given in the next section. We first observe that the correctness of the method is

determined only by conflicts between requests and events whose respective initial and final

quorums are required to intersect. If one transaction's initial quorum for the request does

not intersect another transaction's final quorum for the event, then a lock conflict will not

delay either transaction. On the other hand, if the quorums are required to intersect, then

the transaction that acquires the first set of locks will delay the other, because the later

transaction will encounter at least one lock conflict in every quorum. As discussed above,

deadlocks are possible.

The initial locks guarantee that the response chosen by a transaction cannot be invalidated

by another transaction. A transaction may acquire a quorum of initial locks for a request

only when all other transactions that have executed events on which the request depends

have committed.· Once a quorum of initial locks has been acquired, any transaction

attempting to execute an event on which the request depends will be unable to acquire a

quorum of final locks until the conflicting initial locks are released.

The final locks guarantee that the transaction will not invalidate a response already chosen

by another transaction. A transaction may acquire a quorum of final locks for an event only

when all other transactions that have executed requests that depend on the event have

committed. Once a quorum of final locks has been acquired, any transaction attempting to

execute a request that depends on the event will be unable to acquire a quorum of initial

locks until the conflicting final locks are released.

- 77 -

So far, we have described a scheme that works for single-level transactions. This scheme

can be generalized to nested transactions using lock inheritance rules similar to those of

Moss [Moss 81].

3.3.3 Discussion

It is instructive to compare the local scheme to a scheme in which access to logs is

synchronized by two-phase locking [Eswaren 76, Moss 81]. The log at each OM has an

associated lock which may be held in shared or exclusive mode. A transaction must acquire

a shared lock before reading a log, and an exclusive lock before updating it. A transaction

cannot acquire a shared or exclusive lock if another transaction has an exclusive lock. A

transaction's locks are released when it commits or aborts. We will refer to this scheme as

the simple scheme.

The two schemes are equivalent with respect to availability, message traffic, and the

complexity of the local computations needed to make scheduling decisions. Constraints on

availability are determined by the constraints on quorum intersection, and both schemes

require only that the quorum intersection relation be a dependency relation. In both

schemes, scheduling decisions do not require any message traffic because they are based

on inf.ormation local to each OM. In both schemes, the computations required for

scheduling decisions can be carried simply by consulting a table of lock conflicts. On the

other hand, these schemes are not equivalent with respect to the level of concurrency they

support, as shown by the following examples.

For the file type, the simple locking scheme permits transactions to execute concurrent

Write events only if they can locate disjoint quorums. Otherwise, the exclusive lock acquired

by one transaction will delay the other. The local scheme permits transactions to execute

concurrent Write events regardless of their quorums.

For the Queue type, the simple scheme permits concurrent transactions to execute Enq

- 78 -

events only if they can locate disjoint quorums, while the local scheme permits concurrent

Enq events regardless of quorums.

1For the Table type, the simple scheme allows concurrent transactions to modify the table

only if they can locate disjoint quorums, while the local scheme permits concurrent

modifications that involve distinct keys regardless of quorum choice. The SemiTabte type

' imposes even fewer constraints, because locks events involving the same key need not

conflict. (Nevertheless, it might be convenient to have lnsert(k ,v) conflict with Lookup(k) to

increase the likelihood that Lookup will return the most recent binding for the key.)

In summary, the local scheme imposes the same costs as the simple scheme with respect to

availability, message traffic, and local computation, but it provides more concurrency. In the

next section, we show that the local scheme is an optimal conflict-based strategy: no

concurrency control scheme based entirely on predefined conflicts can provide more

concurrency.

One shortcoming of the local scheme is that it is inherently limited in the level of

concurrency it can support. Although the local scheme is optimal for schemes based only

on predefined conflicts, concurrency control methods that take advantage of state

information can provide a higher level of concurrency. For example, consider a printer

spooler implemented by a replicated FIFO queue. Files are enqueued by clients and

dequeued by a printer controller. Suppose that a transaction A has enqueued a file x and

committed, and that x has tentatively been dequeued by the printer controller transaction B.

[Enq(x) ;Ok() :A]

[Commit A]

[Deq();Ok(x);B]
\'-----J

Under the local scheme, a transaction C attempting to enqueue file y would be delayed until

the printer controller's transaction commits, because the initial lock for Deq conflicts with

- 79-

the final lock for Enq. Note, however, that it is not really necessary to delay C, because the

serial history that results if Bis serialized before C is:

[Enq(x);Ok()]

[Deq();Ok(x)]

[Enq(y);Ok{)]

and if C is serialized before B:

[Enq(x);Ok()]

[Enq(y) ;Ok()]

[Deq();Ok(x)]

and both of these are legal histories. In the printer spooler application, it would be

unsatisfactory to delay clients while the printer controller dequeues files. To recognize that

the Enq may proceed in this instance, the concurrency control method must take the state of

the queue into account, implying that scheduling decisions must employ state information

collected from multiple DM's.

A second shortcoming of the local scheme is that it does not provide adequate support for

partial operations, which are operations that cannot be executed in certain states. For

example, consider a FIFO queue in which Deq invocations are legal only when the queue is

non-empty. Partial operations do not seem to be very useful in the absence of concurrency;

a partial Deq applied to an empty queue would never return. In the presence of

concurrency, however, partial operations can be quite useful; a partial Deq operation

applied to an empty queue would not be scheduled until an item had been placed in the

queue. Such behavior might be useful for printer spooler application where the printer

controller is willing to waitfor files to appear in the queue.

Unfortunately, no local method can postpone Deq invocations when the queue is empty.

. 80-

The problem is that individual DM's cannot ascertain the size of the queue on the basis of

local information; thus it is impossible to recognize when a Deq invocation should be

delayed. For example, consider a queue replicated among three DM's with Enq quorums of

(0,2) and Deq quorums of (2,2). In the following situation DM1 observes the queue to be

empty when it is not:

DMl DM2 DM3

tl: [Enq(x);Ok();A] tl: [Enq(x);Ok();A]

t2: [Commit A] t2: [Commit A]

but in the following situation DM1 observes the queue to be non-empty when it is actually

empty:

DMt DM2 DM3

tl: [Enq(x);Ok();A] tl: [Enq(x);Ok();A] t1: [Enq(x) ;Ok() ;A]

t2: [Commit A] t2: [Commit A] t2: [Commit A]

t3: [Deq() ;Ok(x); B] t3: [Oeq(} ;Ok(x) ;B]

t3: [Commit B] t3: (Commit B]

The only way to determine whether the queue is empty is to observe the logs at an initial Deq

quorum of DM's. Consequently, support for partial operations requires that at least some

scheduling decisions be made in a non-local manner using information collected from

multiple DM's.

3.3.4 Correctness Arguments

As in Chapter Two, our replication method uses logs to represent histories. A serial log is a

map from timestamps to serial events, and a behavioral log is a map from timestamps to

behavioral events. We use lower-case letters to denote serial togs (L, m), and upper-case

letters to denote behavioral logs (L, M). A log is said to be hybrid atomic (resp. static atomic)

if its associated history is hybrid atomic (resp. static atomic).

- 81 -

A replicated object is an automaton whose state is given by the locks and logs at each DM.

The following constitute the ollject's atomic state transitions:

.,,,----

1. A DM grants an initial:lock and sends its local tog to a TM.

2. A DM grants a final IOc:k and merges the view received from a TM with its local
log.

3. A DM releases a transaction's initial and final locks, and appends a Commit or
Abort entry to its local log.

Each transaction follows the protocol described above, but transitions associated with

distinct transactions may be interleaved.

The global log associated with a computation contains all the events for which a complete

set of initial and final locks have been acquired, as well as Commit and Abort events. The

correctness condition we wish to show is that the global log is guaranteed to be a legal

behavioral tog if and only if the intersection of the lock conflict relation and the quorum

intersection relation is a dependency relation.

We begin with some lemmas relating lock conflicts and serialization orders. Let >- denote

the intersection of the lock conflict and quorum intersection relations, and let L be a global

tog for an object. Let e and e' be events of L respectively executed by transactions A and B.

We say that a transaction is active if it has not committed or aborted.

Lemma 3-1: If A is active and e >- e', then B has committed (or aborted) with respect to A.

Proof: Otherwise if B is active, some DM in the intersection of the initial quorum for e and

the final quorum fore' has granted conflicting locks. □

- 82 -

Lemma 3-2: If A is active and e' >-- e, then B has committed (or aborted) with respect to A.

Proof: Same as the previous lemma. D

We are now ready to demonstrate the basic correctness property.

Theorem 3-3: Suppose A acquires quorums of initial and final locks-for e, causing the

object's global log to undergo a transition from L to L'. We clair,i that if L is on-line hybrid

atomic, so is L '.

Proof: Let the serial log L1 ° e O L2 be the serialization in timestamp order of any outcome of

L'. Because L is on-line hybrid atomic, L7 ° L2 and hence l 7 are legal serial logs. Let v be the

serialization of the view used to choose e. Because all events of v are committed with

respect to A, the timestamp generation protocol ensures that vis a sublog of L1• In fact, vis

a closed sublog of L7 containing the events on which e depends (Lemma 3-1), therefore L1°e

is legal by the definition of dependency. No events in L2 depend on e (Lemma 3-2), and

therefore L1 ° e O L2 is legal. □

We have shown that atomicity is preserved if the intersection of the lock conflict and quorum

intersection relations is a dependency relation. We now demonstrate the converse: the

local scheme preserves legality only if the intersection of the lock conflict and quorum

intersection relations is a dependency relation. We start with a lemma.

Lemma 3-4: Let>- be a relation between requests and events that is not a dependency

relation; i.e. there exists an event e, and legal serial logs Land m such that mis a closed

sublog of L containing all events e' such that e >- e', and m 0 e is legal but L0 e is illegal. We

claim that there exist m and l such that m is missing exactly one event of l.

Proof: Let P-1 denote the number of timestamps for which Lis defined. Choose m and l so

that Jl-lmJ is minimal. Consider the log m' constructed by restoring the earliest missing

element e' of m. We first show that m' is legal. If m' = m 1°e'om2, then m 1°e' is legal since

it is a prefix of L. Because m is closed, no event in m2 depends on e', thus m 1°e'0 m 2 is

legal. We now claim that m' = L. Otherwise, if m 0 e is legal, then Jl-lm'I < Jl-lml, and if m 0 e

is illegal, then lm'Hml < it-lml, and either case contradicts the assumption that JHml is

minimal. □

-83.

We are now ready to show that the correctness condition given above completely

characterizes the set of correct conflict-based concurrency control methods.

Theorem 3-5: A lock conflict relation preserves atomicity only if its intersection with the

quorum intersection relation is a dependency relation.

Proof: Let>-- be the intersection of the lock conflict and quorum intersection relations. We

assume that>-- is not a dependency relation, and we construct a scenario in which an illegal

log is generated. Let L, m, and e satisfy the properties of the previous theorem, and let e' be

the event of L missing from m. Consider the following scenario; Transaction A executes the

events of m 1 and commits. Transaction B executes e', and C executes m2, followed bye.

The event e' does not appear in any view constructed for C, because B has not committed.

C is not delayed, because the locks fore' do not conflict with the locks for any event of C. If

B and C commit, and C is given the later timestamp, the resulting log will be serialized as
m 1°e' 0 m2°e, which by assumption is not a legal serial log. □

The last theorem is an optimality result. It states that any minimal set of lock conflicts

corresponds exactly to a minimal dependency relation. In a more general context, it states

that the local scheme encompasses any concurrency control method in which predefined

conflicts are used to delay operations as they attempt to observe or modify the object's

state.

3.4 Non-Local Concurrency Control

We have seen that concurrency control methods based on predefined conflicts, although

efficient, have two drawbacks: they are inherently limited in the level of concurrency they

can support, and they provide inadequate support for partial operations. In this section we

propose an alternative concurrency control method, called the non-local scheme, in which

these drawbacks are remedied by allowing scheduling decisions to take advantage of state

information. Because each OM typically contains only a fragment of the object's state,

scheduling decisions are made by TM's on the basis of information collected from multiple

OM's. The object's behavioral specification is used to derive a set of constraints on quorum

. 84-

intersection. Although these constraints appear quite similar to those derived from the serial

specification, the formal similarity hides some interesting differences that arise from the

need to ensure that the TM observes enough of the object's state to make scheduling

decisions as well as to choose a response. As before, we focus on concurrency control

methods based on hybrid atomicity.

The non-local scheme introduces some new problems:

• Low-level synchronization: For example, how can we ensure that two TM's for
an atomic FIFO queue do not simultaneously dequeue the same item?

• Delay: A TM may collect state information from an initial quorum only to
discover that the client's request cannot be carried out until a conflicting
transaction commits, aborts, or executes additional operations. How can the
TM minimize the expense of (i) noticing when the desired state change occurs,
and {ii) collecting new state information?

• Quorum choice: How do scheduling and quorum choice interact? We will see
that deciding whether a request can be scheduled may require more
information than simply deciding what the response should be. Consequently,
atomic objects that support a high level of concurrency may place more
constraints on quorum choice than the atomic objects that support a lower
level of concurrency.

3.4. 1 The Basic Method

We start with a summary description of how an operation. invocation is carried out, and we

then describe each step in detail.

1. When a TM receives a request from a client, the TM requests the logs from a
collection of DM's. Each DM that responds grants the transaction a
short-term request lock for that request. The logs are merged in timestamp
order to construct a view.

2. If the view does not permit a response consistent with the object's behavioral
specification, the TM . releases its request locks at the DM's, waits for the
object's state to change, and restarts the entire protocol. Otherwise a
response is chosen.

. 85.

3. The TM generates a new timestamp, appends the new entry to the view, and
sends the updated view to a final quorum of DM's. Each DM accepts the view
as soon as it has no confficting request locks, merges the view with its
resident logs, and returns an acknowledgment. As soon as the TM receives
acknowledgments from a final quorum, all request locks are released.

4. The response is returned to the client.

We remark that concurrency control for centralized (non-replicated) objects can be viewed

as a degenerate instance of this method in which all quorums intersect. Consequently, this

method can be used to implemented any concurrency control strategy consistent with

hybrid atomicity, although some strategies may impose additional constraints on quorum

intersection.

3.4.2 Low-Level Synchronization

The purpose of low-level synchronization is to ensure that certain events are physically

serialized. One approach is to associate short-term mutual exclusion locks with each DM;

while one transaction holds the lock, no other transaction can observe or update the DM's

log. This section describes an alternative scheme that supports more concurrency.

Low-level synchronization may be accomplished through short-term request locks

associated with each OM. When a transaction reads a DM's log for a request req, the

transaction is granted a request lock for req at that OM. While that transaction holds the

lock, that OM will not accept any updates on behalf of an event on which req depends. For

example, a OM for a queue will not accept requests to append Enq entries while another

transaction holds a Deq request lock.

Unlike the locks in the local scheme, request locks are not held until a transaction commits.

Instead, a request lock is held until either (i) a response has been chosen and recorded at a

final quorum, or (ii) the TM has decided that no response is possible in the current state.

While a transaction holds a request lock at an initial quorum, no other transaction can

append an event on which the request depends; thus request locks have the effect of

serializing events that depend on one another. Request locks are subject to deadlock, and

deadlock resolution methods such as avoidance, detection·, and time-outs may be used.

Because request locks are held for a brief duration, it is to be hoped that deadlocks arise

infrequently. Request locks can be broken in the event of deadlocks, crashes, or

communication failures, but the transaction holding the lock must be aborted.

3.4.3 Partial Operations

After a TM has constructed a view for a request, it may discover that there is no legal

response to the request in the object's current state. This situation might arise because the

underlying sequential type is partial (e.g. a queue with a partial Deq), or because the request

must await the outcome of a concurrent transaction (e.g. attempting to read a file that has

been written by an uncommitted transaction). In either case, the TM cannot retum a

response until the object's state changes.

A naive implementation of a partial operation, say a partial Deq, might employ a kind of

busy-waiting. If a TM merges the logs from an initial quorum for a partial Deq only to

discover the queue is empty, then it releases its request locks, waits for some duration, and

tries again. If this approach is to provide adequate performance, some means must be

found to minimize the resulting message traffic.

Message frequency can be reduced if OM's notify waiting TM's of the commit or abort of

transactions that have executed events on which the blocked request depends. In the

partial Deq example, if a TM is unable to dequeue an item, it can request each OM in its

initial quorum to notify it when a transaction that has enqueued or dequeued an item

commits or aborts. The quorum intersection relation ensures that the TM will be notified as

soon as there is an item to be dequeued. Notification cannot rule out all unnecessary

message traffic, but it can ensure that message traffic occurs only as a result of a state

change. (The TM may still have to poll occasionally to ensure that it is not waiting for

- 87 -

notification from a failed OM).

Message sizes can be kept small if the TM maintains a cache between invocations,

requesting only incremental changes from the OM's. When the TM releases the locks at its

initial quorum, it can ask the OM to keep track of the events it subsequently receives. When

the TM next attempts to construct a view, the OM's need only respond with the changes that

have occurred in the meantime.

Because partial operations require more message traffic than total operations, this

discussion might suggest that data types with total operations are inherently more efficient.

Such a conclusion is misleading, however, as illustrated by the replicated printer spooler

example. If the Deq operation called by the printer controller is partial, then the TM will poll

the OM's for new items to be dequeued. If the Deq operation is total, then the printer

controller would have to poll the queue; thus the level of message traffic is likely to be the

same in both cases.

3.4.4 Quorum Choice

Just as for sequential objects, constraints on quorum choice for atomic objects are

governed by a dependency relation. The formal definition of dependency for behavioral logs

is the same as for serial logs. A relation >- is a dependency relation if whenever M is a legal

sublog of L closed under dependency such that M contains all events of L on which an event

e depends. then:

M 0 e is legal => L 0 e is legal.

The only difference between this definition and the one given in the previous chapter is that

here we are dealing with behavioral logs, white before we were dealing with serial logs.

Because we are dealing with behavioral logs, the view constructed for an invocation may

include the events for uncommitted and aborted transactions.

Since it is always legal for an active transaction to commit or abort, Commit and Abort

requests do not depend on any prior events. When does an operation invocation depend on

a Commit or Abort event? We make the conservative assumption that if an event e of

transaction A depends on an event of transaction B, then e depends on the commit or abort

of B. It is clear that the converse holds: if no event of A depends on any event of B, then no

event of A depends on the commit or abort of B. To ensure that every event that depends

on an event of B observes whether B has committed or aborted, the system distributes

Commit or Abort entries to each DM visited by B.

The interaction of concurrency and dependency can be illustrated by an informal analysis of

an implementation of a highly concurrent replicated FIFO queue. An item in the queue is

said to be committed with respect to a transaction A if the transaction that enqueued it has

committed with respect to A. Transaction A may execute an Enq if and only if all items that

have been dequeued are committed with respect to A. To see why this restriction holds,

consider the following example. Suppose transaction A has enqueued and dequeued item

x:

[Enq(x);Ok();A]

(Deq();Ok(x);A]

If Bis allowed to enqueue an item y, then B might be serialized before A, resulting in the

illegal serial history:

[Enq{y) ;Ok()]

[Enq(x) ;Ok()]

[Deq() ;Ok(x)]

By contrast, if all dequeued items have committed with respect to a transaction, then all Enq

events executed by that transaction wUI appear after the Enq events for the dequeued items,

preserving the queue's FIFO discipline. For example, consider the following behavioral

history:

[Enq{x);Ok():A]

[Commit A]

- 89-

(Deq();Ok(x);B]

If a third transaction C attempts to enqueue an item, it may proceed, because the

(tentatively) dequeued item x is committed with respect to C, and both serialization

orderings of Band C:

and

[Enq(x);Ok()]

[Enq(y);Ok()]

[Deq();Ok(x)]

[Enq(x);Ok()]

[Deq();Ok(x)]

[Enq(y);Ok()]

are legal serial histories.

How does this implementation compare to the local scheme? The local scheme provides

poor support for a printer-spooler application because clients are delayed whenever the

printer controller dequeu·es a file for printing, and the printer controller is delayed whenever

a client enqueues a new file. In an implementation of the printer spooler based on the

non-local scheme, clients are never delayed by the printer controller because the printer

controller dequeues only files enqueued by committed client transactions, and the printer

controller is delayed only when there is no committed file to dequeue.

What are the constraints on quorum intersections for the non-local implementation of the

- 90-

queue? The important point here is that concurrency introduces new dependencies

between events. For a serial queue, Enq events are always legal and always return the same

response, thus Enq events need not depend on other events. For an atomic queue,

however, we have seen that Enq events are not legal if an uncommitted item has been

dequeued. Our (informal) analysis shows that Enq events for atomic queues depend on

prior Deq events, but not on other Enq events. Consequently, each initial quorum for Enq

must intersect each final quorum for Deq, a constraint that did not exist in the local scheme.

The quorum intersection graph for the atomic queue is shown in Figure 9a, and the minimal

quorum choices for five DM's are shown in Figure 9b. Note that although the initial quorums

for Enq events are larger for the non-local scheme than for the local scheme, the availability

of Enq events is the same in both schemes, because a TM executing an Enq can use the

same set of DM's for its initial and final quorums.

Fig. 9. An Atomic FIFO Queue

Enq

Figure 9a: The quorum intersection graph.

Enq

Deq

(1,1) (2,2)

{5,5) (4,4)

(3,3)

(3,3)

Figure 9b: Minimal quorum choices for five identical DM's.

- 91 -

As an example of a type for which an increase in concurrency does affect availability, let us

consider three implementations of a data type representing a bank account. The Account

type provides two operations: Deposit(n) increments the account balance by n dollars, and

Withdraw(n) decrements the account balance by n dollars if the balance is greater than n,

otherwise it signals an exception. We first consider an implementation of a bank account in

which synchronization is based on the local scheme. We then consider a non-local scheme

that increases concurrency without increasing overall quorum sizes. We finally consider

another non-local scheme that further increases concurrency at the cost of imposing

additional constraints on quorum choices.

The quorum intersection graph for a bank account based on the local scheme is shown in

Figure 10a. Withdraw requests depend on Deposit events and on earlier Withdraw events,

but Deposit requests do not depend on any other events because they return no information

about the current account balance. The minimal quorum choices for five identical DM's are

given in Figure 10b.

Now consider a situation where transaction A has successfully withdrawn ten dollars from

an account, and transaction B wishes to deposit ten dollars. Using the local scheme, B

would not be allowed to proceed, because the final lock for Withdraw conflicts with the initiat

lock for Deposit. In this situation however, B could be allowed to proceed, because every

serialization of the following is a legal history:

[Deposit(10};Ok(};A]

[Withdraw(10);Ok{);A]

[Deposit(10);Ok();B]

By contrast, B could not be allowed to proceed if A had observed that the account balance

was less than twenty dollars, because the history that results if B is serialized before A is

illegal:

- 92 -

Fig. 10. The Conflict-Based Bank Account

Deposit

Figure 10a: The quorum intersection graph.

Deposit

Withdraw

(0, 1) (0,2) (0,3)

(5,1) (4,2) (3,3)

Figure 10b: Minimal Quorum choices for five identical DM's.

[Deposit(l0);Ok();A]

[Withdraw(20):Overdrawn();A]

(Deposit(l0);Ok();B]

If B is allowed to execute a deposit in the first situation but not the second, then all Withdraw

entries must appear in the view for Deposit, yielding the quorum intersection graph shown in

Figure 11a.

As illustrated by Figure 11 b, this additional constraint does not change the availability of any

operations because the overall quorum sizes have not changed (each event can use the

same set of DM's for both initial and final quorums). The additional constraint does affect

performance, however, because Deposit now has non-empty initial quorums, and Withdraw

has larger final quorums.

- 93.

Fig. 11. First State-Based Bank Account

Deposit

Figure 11 a: The quorum intersection graph.

Deposit

Withdraw

(1, 1) (2,2) (3,3)

(5,5) (4,4) (3,3)

Figure 11 b: Minimal quorum choices for five identical DM's.

Even more concurrency is possible. Suppose that the account balance is zero, transaction

A has observed that the account balance is less than twenty dollars, and transaction B

attempts to deposit ten dollars. Transaction B could be allowed to proceed, because both

serializations of the following history are legal:

[Withdraw(20);Overdrawn();A]

[Deposit(l0);Ok();B]

On the other hand, if transaction C had previously deposited ten dollars, then B must be

delayed, because the following history has an illegal serialization, i.e. if B and C are
'-

serialized before A.

- 94-

[Withdraw(20);Overdrawn();A]

[Deposit(l0);Ok();B]

[Deposit(l0);Ok();C]

Consequently, if the deposit is to take place in the first situation but not the second, then all

prior Deposit entries must appear in the view for Deposit, yielding the quorum intersection

gra·ph shown in Figure 12a. This additional constraint affects both quorums and

performance. As illustrated in Figure 12b, every pair of quorums for Deposit must now

intersect.

Fig. 12. Second State-Based Bank Account

Figure 12a: The quorum intersection graph.

Deposit

Withdraw

(3,3)

(3,3)

Figure 12b: Minimal Quorum choices for five identical DM's.

3.5 Static Atomicity

Our discussion of local concurrency control methods has assumed that uncommitted

transactions are serialized dynamically. In this section we discuss the implementation of

replicated atomic objects in a model of computation in which transactions are serialized in a

predetermined order. Although static and hybrid atomicity support quite different kinds of

concurrency, they impose the same kinds of trade-offs between concurrency and efficiency

and between concurrency and availability.

In the atomicity mechanism proposed by Reed [Reed 83, Reed 78], each transaction is

issued a pseudotime, which is a timestamp used to establish the transaction's ordering with

respect to other transactions. We do not discuss methods for choosing pseudotimes

because these are discussed in detail by Reed. It is convenient to record the timestamp

assigned to a transaction by placing a Begin entry in the log of each OM visited by a

transaction, using the timestamp for the begin entry as the timestamp for the transaction.

For dynamically serialized objects, scheduling is accomplished by delaying particular

transactions until other transactions commit or abort. For objects employing static

atomicity, scheduling is accomplished by a combination of delays and refusals. For

example, to execute a Read event with a particular pseudotime, it is necessary to observe

the Write event with the most recent pseudotime preceding that of the reader. If necessary,

the reader must wait until the transaction that executed the Write commits or aborts. To

execute a Write, it is necessary to ensure that no transaction with a later pseudotime has

read the value that is being overwritten. If the value has been read, the Write attempt must

be refused. Because each transaction waits only for transactions with earlier pseudotimes,

this scheme is not subject to deadlock. By contrast, under hybrid atomicity requests are

never refused, but deadlocks can occur.

Local concurrency control for static atomicity is based on the notion of a possibility lock.

- 96-

When a new event is appended to a DM's log, that transaction is granted a possibility lock

for the event, which is released when the transaction commits. While the transaction holds

the lock, no transaction executing a conflicting request with a later pseudotime may read the

DM's log. As before, the intersection of the quorum intersection and lock conflict relations

must be a dependency relation. The full replication method works as follows.

1. When a TM receives a request from a client, it forwards the request to an
initial quorum of OM's.

2. Each DM that receives the request checks whether a transaction with an
earlier pseudotime holds a conflicting possibility lock. If so, the request is
postponed until the conflicting transaction commits or aborts. If there are no
conflicts, the OM responds with the entries for committed transactions having
earlier pseudotimes than the requesting transaction.

3. When the TM has received replies from an initial quorum, it merges the logs,
constructs a view, and chooses a response. The TM appends the new entry
to the view, and sends the view to a final quorum of OM's.

4. Each OM checks whether it has an event executed by a transaction with a
later pseudotime that depends on the new event. If so, the update is refused.
Otherwise, the OM grants a possibility lock for the event, and merges the
updated view with its resident log. As soon as a final quorum of DM's has
returned acknowledgments, the TM returns the response to the client.

Step Two ensures that all transactions that can affect the response have committed. Step

Four ensures that the new response cannot invalidate existing events. This technique is not

subject to deadlock, because a transaction never waits for a transaction with a later

pseudotime, and so cycles cannot arise. Some additional optimizations are possible; under

certain circumstances a OM may refuse a request in Step Two, if it can ascertain that any

response to the requ~ will conflict with an event having a later pseudotime.

Like the local scheme for hybrid atomic objects,. this scheme does not permit scheduling

decisions to take advantage of state information, and consequently it is limited in the level of

concurrency it can support. For the FIFO queue, a transaction attempting to dequeue an

item may be blocked unnecessarily because a transaction with an earlier pseudotime has

· 97 ·

enqueued an item, or an attempt to enqueue an item may be refused unnecessarily because

a transaction with a later pseudotime has dequeued an item.

Following our earlier analysis for hybrid atomic objects, these problems can be alleviated

only if concurrency control employs non-local state information. The following is a summary

description of a non-local concurrency control method based on static atomicity.

1. When a TM receives a request from a client, the TM requests the logs from a
collection of DM's. Each DM that responds grants the transaction a
short-term request lock for that request. The logs are merged in timestamp
order to construct a view.

2. If the view does not permit a response consistent with the object's behavioral
specification, the TM releases the locks at the DM's. If a legal response may
become possible in the future (e.g. the client is attempting to read a value
written by an earlier uncommitted transaction), the TM waits for the object's
state to change and then restarts the protocol. If no legal response will ever
be possible (e.g. the client is attempting to overwrite a value already read by a
later transaction), then the TM returns a refusal to the client. Otherwise a
response is chosen.

3. The TM generates a new timestamp, appends the new entry to the view, and
sends the updated view to a final quorum of DM's. Each OM accepts the view
as soon as it has no conflicting request locks, merges the view with its
resident togs, and returns an acknowledgment. As soon as the TM receives
acknowledgments from a final quorum, all request locks are released.

4. The response is returned to the client.

This protocol differs from the non-local protocol under hybrid atomicity only in Step Two,

where a response is chosen on the basis of a static atomic behavioral specification. Like the

earlier method, this non-focal method is also fully general: it can realize any level of

concurrency consistent with static atomicity.

The bank account data type given in an earlier example can be used to illustrate that highly

concurrent implementations may impose additional constraints on quorum choices for static

atomicity as well as for hybrid atomicity. The constraints on quorum choice are the same for

. 98-

both local schemes: Withdraw requests depend on Deposit and Withdraw events, but

Deposit requests do not depend on -any other events. Consider a situation in which the

initial balance of the account is zero, and transaction A has a later pseudotime than

transaction B (indicated here by the relative ordering of their Begin events). A has observed

that the account balance is less than twenty dollars, and transaction B attempts to deposit
~

ten dollars. Transaction B ·could be allowed to proceed, because all outcomes of the

following history are static atomic:

[Begin A]

[Withdraw(20);Overdrawn();A]

[Beg in B]

[Deposit(l0);Ok();B]

_ On the other hand, if transaction C had previously deposited ten dollars, then B must be

refused, because the following history is not static atomic:

(Begin B]

(Begin A]

[Withdraw{Z0);Overdrawn();A]

[Deposit(l0);Ok();B]

[Begin C]

[Deposit(l0);Ok():C]

[Commit CJ

If B and C both commit, these transactions will be serialized in the order A follows B follows

C, yielding the following illegal serial history:

[Deposit(l0);Ok()]

[Deposit(l0);Ok()]

[Withdraw(20);Overdrawn()]

------- -----~---------------

. 99.

Consequently, if B is to proceed in the first situation but not the second, then all prior

Deposit events must appear in the view for Deposit, resulting in a stronger dependency ·

relation and an additional constraint on quorum choice.

3.6 Discussion

We have identified two basic trade-offs in the choice of concurrency control methods for

replicated objects: the level of concurrency is inversely related to the level of message

traffic, and perhaps more surprisingly, the level of concurrency is inversely related to

flexibility in quorum choice.

We first described a simple and efficient local scheme based on predefined conflicts.

Because each OM makes its own scheduling decisions on the basis of locally resident

information, the local scheme introduces no message traffic and hence does not affect the

object's availability. With respect to concurrency, the local scheme is optimal for the

amount of information it uses: no other scheme in which scheduling decisions are made

exclusively on the basis of predefined conflicts can provide a higher level of concurrency.

Because the local scheme does not take state information into account, it has two

shortcomings: it is limited in the level of concurrency it can support, and it cannot provide

adequate support for partial operations.

We next described an alternative concurrency control method, called the non•local scheme,

in which scheduling decisions can take advantage of state information. The non-local

scheme can realize a higher level of concurrency than the local method; in fact It can be

used to implement any concurrency control scheme that preserves atomicity. The non-local

scheme also supports partial operations. The additional power comes at a cost: the

non-local scheme may require more complex local computations and more message traffic.

If a high level of concurrency is desired, the non-local scheme may also place additional
,

constraints on quorum choice. As one increases the concurreAcy provided by an atomic

object, one increases the information needed to make scheduling decisions, and one thus

- 100 -

reduces one's freedom in choosing quorums.

For both hybrid and static atomicity, the same trade-offs arise between concurrency and

efficiency, and between concurrency and availability. In both local methods, scheduling

decisions can be made efficiently, the number of messages needed to execute an operation

invocation is fixed, and the constraints on quorum choice are determined by the serial

specification. Both non-local methods support a higher level of concurrency, but may

require arbitrarily complex local computations, additional message traffic, and additional

constraints on quorum choices.

We have shown that the notion of a dependency relation is central to both quorum choice

and concurrency control. Dependency relations appeared in the definitions of quorum

intersection relations, conflict relations for local locks and short-term locks, as well as

notification techniques. This common structure should not be surprising, because

techniques for replication and concurrency control are both based on notions of events that

affect one another. Very informally, if one event does not affect the other, then those events

can have non-intersecting quorums, and they can execute concurrently. The notion of a

dependency relation provides a precise characterization of what it means for one event to

affect another.

3. 7 Related Work

The model of computation employed in this chapter is essentially the model of computation

provided by the Argus . programming language [Liskov 82). Argus provides nested

transactions and built-in atomic objects employing strict two-phase locking, as well as the

ability for programmers to define their own atomic objects. It is instructive to compare our

approach to constructing replicated atomic objects to the approach to constructing

single-site atomic objects that is supported by Argus [Weihl 83]. Aside from the obvious

difference that our approach encompasses replication, the two approaches have a number

of similarities. Both achieve a high degree of concurrency by employing a non-atomic

- 101 -

representation protected _by short-term synchronization mechanisms. Both employ

representations in which periodic garbage collection of obsolete information may be used to

enhance performance, and both share the shortcoming that scheduling is performed using a

form of busy-waiting.

Although our model of atomic objects is based on a model proposed by Weihl [Weihl 83a,

Weihl 84], it differs from Weihrs model in several respects. Weihl's model treats requests

and responses as distinct events; the ordering of requests and responses models the order

in which requests are received and responses chosen. Our model treats a request and its

associated response as a single unit; the ordering of request/response pairs models the

order in which responses are chosen. The difference is minor, but our model permits us to

use the same formal definition of dependency for both serial and behavioral histories, while

Weihl's model would have required different formulations in each case.

Perhaps a more important difference is that Weihl's model is primarily intended to capture

the behavior of objects that reside at a single location, while ours is explicitly concerned

with objects whose representations are distributed. A computation in a distributed system

can be viewed as a partially ordered set of events [Lamport 78], where events occurring at a

single location are totally ordered, but events occurring at distinct locations might not be

ordered. An observation of a computation is a total ordering of its events compatible with

the partial ordering. If an object resides at a single location, then every observation will

place the same ordering on its events, while if an object resides at multiple locations,

different observations might order the events differently. In Weihl's scheme, constraints on

timestamp generation for hybrid atomicity are expressed in terms of an observation of the

events affecting individual objects. These constraints need to be generalized to deal with

replicated objects, where different observations may order those events differently.

Although this generalization appears straightforward, a formal model of atomicity for

replicated objects has yet to be worked out in detail.

- 102 -

The local scheme presented in this chapter may be viewed as a generalization of the locking

scheme proposed by Moss [Mo~ 81], which is itself a generalization of two-phase locking

[Eswaren 76). Moss's scheme supports non-replicated objects having Read and Write

operations. The local scheme generalizes Moss's scheme in two ways: first, by providing a

systematic method for defining lock conflicts for arbitrary operations in a system based on

hybrid atomicity, and second, by extending the locking scheme to replicated objects.

It is instructive to compare the local scheme to other proposals for conflict-based

synchronization [Bernstein 81, Korth 81, Weihl 84]. These proposals are based on the

notion of commutativity of operations. The local scheme described in this chapter is less

restrictive than the commutativity-based schemes in the following sense: it can be shown

that every lock conflict relation induced by the commutativity-based rules is a correct lock

conflict relation for the local scheme, but the local scheme may permit lock conflict relations

not permitted by the commutativity-based rules. For example, the commutativity-based

schemes require locks for Enq events to conflict, while the local scheme does not. The

additional power of the local scheme i~ due to the use of timestamps to provide a globally

known serialization ordering for transactions. This comparison, together with the optimality

result given above, suggest that that the local scheme is of interest even for objects that are

not replicated.

We have not considered optimistic scheduling methods [Kung 81), in which transactions

execute with no synchronization whatsoever. Each transaction is allowed to commit only

after certifying that the resulting history remains serializable. Because transactions are

never delayed by synchronization conflicts, optimistjc methods promise better performance

if synchronization conflicts are rare and transactions are almost always allowed to commit.

Just as for the other concurrency control methods we have discussed, the challenge in

adapting the optimistic approach to replicated data lies in managing the (replicated)

information needed to make scheduling decisions, in this case certifying that the result of

committing a transaction preserves serializability.

4.1 Introduction

- 103 ·

Chapter Four

Reconfiguration

In the replication methods considered in previous chapters, the quorums for events have

been fixed. In this chapter, we extend General Quorum Consensus to support

reconfiguration: the ability to change the quorums for existing objects. One use for

reconfiguration is to adapt to changes in requirements. For example, a census data base

might be configured to facilitate updates while the census is in progress, and reconfigured

to facilitate queries once the census is complete. Reconfiguration · can also facilitate

changes in hardware by permitting an object to be moved from one set of sites to another.

Perhaps the most interesting use for reconfiguration is as a technique for masking failures.

The quorum structure is an object's first line of defense: as long as a quorum for an

operation remains available, the operation's availability is unaffected by failures. As failures

occur, however, there is an increasing likelihood that subsequent faifures will cause all

quorums to be lost. After a certain number of failures have occurred, it becomes desirable

to reconfigure the object, perhaps by redistributing quorums among the remaining DM's,

perhaps by initializing new DM's to replaced the failed ones.

In Section Two, we review a reconfiguration method for replicated files proposed by Gifford.

A benefit of this method is that the ability to reconfigure does not impose a cost unless it is

actually used. Reconfiguring a file results in a temporary period of decreased availability

and increased message traffic as TM's learn of the new configuration. In Section Three, we

propose a reconfiguration method that generalizes Gifford's technique. Reconfiguration is

accomplished by introducing levels of indirection in the representation of reconfigurable

replicated objects. The use of indirection to implement reconfiguration is not new; our

contribution is to have worked out a general model that takes into account the interaction of

-104 ·

reconfiguration with replication. Like Gifford's scheme, our scheme has the property that

the ability to reconfigure incurs a cost only when reconfiguration actually occurs. We also

propose a replicated reference counting scheme to permit old configuration information to

be garbage-collected when rt is no longer needed. The reference counting scheme does

not decrease the object's avaifability.

Quorum consensus can be used as a building block from which one can construct a variety

of replication methods. In Section Four, we show that existing replication methods for files

such as the primary copy scheme [Alsberg 76, Stonebreaker 79] and the true-copy token

scheme [Minoura 79, Minoura 82] can be viewed as specially optimized instances of the

multi~round quorum consensus algorithm. Section Five contains a discussion of related

work and a summary of our results.

4.2 Gifford's Reconfiguration Method

In Gifford's scheme [Gifford 79], a file's current set of quorums is recorded as part of its

representation. We refer to the file's quorum information as its configuration state. Each

DM keeps a copy of the the configuration state together with a version number, called its

generation number. The file's configuration state can be read or written, and the quorums

for reading or writing the configuration state are the same as the quorums for reading or

writing the file Itself.

A file is reconfigured as follows. The current version of the file is recorded at a new final

Write quorum. A new generation number is then chosen by incrementing the highest

generation number observed among an old initial Write quorum. The new configuration

state is recorded (with the newer generation number) at both an old and a new final Write

quorum.

Each TM keeps a cache containing the most recent configuration state and generation

number it has observed. When a TM reads from an initial Read or Write quorum, it reads

- 105 -

both the file versions and the configuration states. If the TM observes a generation number

later than the one it has cached, it discards the file versions, and starts over using the more

recent set of quorums.

If timestamps are used in place of version numbers, this scheme requires minor changes

because the Write operation may have an empty initial quorum. Each Read or Write quorum

for the file must include a Read quorum for the current configuration state. When a TM

sends a request to a DM, it includes the timestamp for its cached configuration state. If the

DM's configuration state has a later timestamp, the DM rejects the request, and notifies the

TM that its configuration state is out-of-date. A TM attempting to write to a rne would not be

notified of an out-of-date configuration state until it attempts to update a final Write quorum,

but the effect is the same.

The principal merit of this method is that the ability to reconfigure does not incur a cost in
. !

increased message traffic and reduced availability until the file is actually reconfigured.

Because every initial Read or Write quorum is certain to include the most recent generation

number, the currency of the TM's cached configuration state can be checked without

communicating with additional DM's and without sending extra messages. The cost of

reconfiguration is incurred just once per TM. A TM that has not yet learned of the most

recent reconfiguration must locate both an old and a new quorum for the operation it is

attempting to execute, using one round of messages for each. A TM that has missed several

reconfigurations must employ a round of messages to locate a quorum for each successive

configuration state.

A shortcoming of this method is that it does not provide a way to discard old configuration

states when all ™'s have updated their caches. care must be taken that the, old

configuration state is not discarded as long as some TM has not updated its cache, because

otherwise that TM may be unable to locate the current resource state. Consequently, this

method can be used to redistribute quorums among a fixed set of DM's, but it is not

- 106 -

appropriate for moving a file from one set of DM's to another.

In the next section, we present a model of reconfiguration that generalizes Gifford's scheme.

Our model permits reconfiguration for objects of arbitrary type,· and we identify constraints

on quorum choice that ensure that reconfiguration incurs no expense when it is not actually

used. We also propose a replicated reference counting scheme that allows obsolete

quorum information to be discarded when it is no longer needed.

4.3 Reconfigurable Objects

4.3.1 A Very Simple Method

We first describe a simple reconfiguration method that supports a rimited form of

reconfiguration. We then introduce successive refinements that increase the flexibility of

the reconfiguration method while reducing its cost.

A reconfigurable object is impJemented by two component objects, called the resource state

and the configuration state. The resource state contains the information of interest to

clients, while the configuration state contains the quorum information for the resource state.

For example, a reconfigurable queue's resource state identifies the items in the queue, while

its configuration state identifies the quorums for the Enq and Deq operations. Both the

configuration and resource states are themseJves replicated. In subsequent discussions we

will assume that an object's configuration state provides Read and Write operations,

although more sophisticated data types, such as tables, would do equally well.

Each TM is initialized with the Read and Write quorums for the configuration state. To apply

an operation to the object, a TM carries out the following protocol:

1. The TM reads from the configuration state the current initial and final
quorums for the resource state operation.

- 107 -

2. The TM applies the operation to the resource state and returns the results to
the client.

This protocol involves two rounds of messages: one to ascertain the quorum for the

resource state and one to cany out the operation. Each quorum for the operation has two

parts: (i) a quorum for readingthe configuration state and (ii) a quorum for operating on the

resource state.

To describe the quorum for reconfiguration, it is convenient to introduce some new

terminology. An initial (or final) coquorum for an event is defined to be any set of DM's that

intersects every initial (or final) quorum for that event. For example, each initial quorum for

the file Read operation is a final coquorum for Write. To change the quorums for an event, it

is necessary to merge the logs from an old initial quorum, and to write out the resulting view

to a new initial coquorum.

The full protocol for changing the quorums for a resource state operation is given by the

following steps. We remark that because reconfiguration must preserve quorum

intersections, it typically involves the simultaneous alteration of quorums for multiple events.

1. The TM reads from the configuration state to ascertain the current quorums
for the resource state.

2. The TM constructs a view by merging the logs from an initial quorum for each
resource state operation being reconfigured.

3. The TM initializes the new resource state by writing out the view to a new
initial coquorum for each resource state operation being reconfigured.

4. The TM records the new sets of quorums at the configuration state.

This method supports only a limited form of reconfiguration: the quorums for the resource

state can be changed, but not the quorums for the configuration state.

To illustrate this method, let us examine the implementation of a reconfigurable queue. We

use the notation (m,n) to indicate that an event has initial quorums consisting of any m DM's

- 108 ·

from a particular set, and final quorums consisting of any n DM's from that same set. In this

example, the queue's configuration state is replicated among DM1, DM2, and DM3, with

Read quorums of (1,0) and Write quorums of (0,3). When the queue is created, the resource

state is replicated among DM4, DM5, and DM6, with Enq quorums of (0, 1), and Deq quorums

of (3, 1). The configuration state includes a timestamp (here t0), the identities of the DM's

storing the resource state, and the quorums for Enq and Deq.

DMl DM2 DM3

tO: {DM4,DM5,DM6} tO: {DM4,DM5,DM6} tO: {DM4,DM5,DM6}

Enq = (0,1) Enq = (0,1) Enq = (0,1)

. Deq = (3,1) Deq = (3,1) Oeq = (3, 1)

A TM enqueues an item x by first reading the configuration state, say from DM1, and then by

recording an Enq entry at a final Enq quorum (DM4).

DMl DM2 DM3

to: {DM4,DM5,DM6} tO: {DM4,DM5,DM6} tO: {DM4,DM5,DM6}

Enq = (0,1) Enq = (0,1) Enq = (0,1)

Deq = (3,1) Oeq = (3,1) Deq = (3,1)

DM4 DM5 DM6

tl: [Enq(x);Ok()]

Now let us reconfigure the resource state, changing Enq quorums to (0,2) and Deq quorums

to (2,2). The TM conducting the reconfiguration reads the current configuration state, and

constructs a view by merging the togs from an initial quorum for Enq (which is empty) and

Deq (which consists of all three DM's). The TM initializes the new resource state by writing

out the view to a new initial coquorum for both Enq and Deq (DM4 and OMS). Finally, the TM

records the new quorums by updating the configuration state at a final Write quorum (DM1,

DM2, and DM3).

- 109 -

DMl DM2 OM3

t2: {OM4,0M5,0M6} t2: {OM4,0M5,DM6} t2: {OM4,0M5,DM6}

Enq = (0,2) Enq = (0,2) Enq = (0,2)

Deq = (2,2) Oeq = (2,2) Deq = (2,2)

DM4 0M5 DM6

tl: [Enq(x);Ok()] tl: [Enq(x);Ok{)]

Now suppose another TM attempts to enqueue an item y. After reading the configuration

state, it enqueues the item at a new final Enq quorum (DM5 and DM6).

DM1

t2: {DM4,0M5,DM6}

Enq = (0,2)

Deq = (2,2)

DM4

tt: [Enq{x};Ok{)]

DMZ

t2: {DM4,DM5,DM6}

Enq = (0,2)

Deq = {2,2)

DM6

tt: [Enq{x);Ok()]

t3: [Enq{y);Ok()]

DM3

t2: {DM4,DM5,DM6}

Enq = (0,2)

Deq = (2, 2)

DM6

t3: [Enq(y);Ok()]

This example illustrates the costs associated with reading the configuration state before

executing each operation.

1. Each operation invocation requires an additional round of messages to read
the configuration state.

2. Each operation invocation requires locating a quorum for both the
configuration and the resource states, potentially reducing availability.

In addition, this method supports only a very restricted form of reconfiguration: the quorums

for the resource state can be changed, but the quorums for the configuration state are fixed.

In the next sections, we address each of the problems in turn, introducing refinements to

alleviate these costs and to permit the quorums for the configuration state itself to change.

- 110 -

4.3.2 Reconfiguring the Resource State

Message delays can be reduced if each TM maintains a cache containing the value of the

most recently observed configuration state. To execute an operation, the TM carries out the

following steps concurrently, perhaps executing each as a nested transaction:

• It reads the current configuration state to determine whether its cache is
current.

• It applies the operation directly to the resource state using the quorums from
its cached configuration state.

If the TM's cache is found to be current, then the operation has been executed in a single

round of messages. If the cache is found to be obsolete, then the TM must abort the second

step, update its local cache, and start over. Using this scheme, each TM must use an

additional round of messages immediately after each reconfiguration, but a single round of

messages suffices between reconfigurations.

Rather than choosing the quorums for the configuration and resource states independently,

reconfiguration can be rendered more highly available if the quorums for the two

components satisfy the following quorum inclusion property:

Every quorum for a resource .state operation includes a quorum for reading the

configuration state.

(For the moment, let us assume that this property is preserved acrqss reconfigurations; this

assumption is relaxed In the next section.) TM's execute operations using the following

protocol. A TM first attempts to apply the operation directly to the resource state, using the

quorums from its cached configuration state. With each request to read or update the DM's

log, the TM includes the timestamp for its cached configuration state. Each OM compares

the TM's cached timestamp with the timestamp from its own configuration state. If the TM's

timestamp is out of date, the request is refused, and the TM is notified of the new

· 111 ·

configuration state. The TM aborts the invocation, updates its cache, and starts over. The

quorum inclusion property ensures that if the TM can locate a quorum of DM's willing to

execute the operation, then the TM's configuration state is current.

To illustrate this technique, let us review the queue example once again. Both the

configuration and resource states are stored at the same three DM's, and the TM's caches

initially indicate that the quorums for Enq and Deq are (0, 1) and (3, 1) respectively.

DMl DM2 DM3

tO: {DM1,DM2,DM3} tO: {DM1,DM2,DM3} to: {DM1, DM2, OM3}

Enq = (0,1) Enq = (0,1) Enq = (0,1)

Oeq = (3,1) Oeq = (3,1) Deq = (3,1)

To enqueue an item x, a TM sends an Enq entry together with its encached configuration

state timestamp (tO) to a final Enq quorum, say DM1. Because the timestamp in the message

.matches the timestamp for its own configuration state, DM1 accepts the request.

DMl DM2 DM3

tO: {DM1,DM2,DM3} to: {DM1,DM2,DM3} tO: {DM1,DM2,DM3}

Enq • (0,1) Enq :z (0,1) Enq • (0,1)

Deq = {3,1) Deq 11 (3,1) Deq = (3.1)

t1: [Enq{x):Ok()]

As before, the configuration state is then reconfigured, changing Enq quorums to (0,2) and

Deq quorums to (2,2). Note that this reconfiguration preserves the quorum inclusion

property: each quorum for the resource state (any two DM's) includes a Read quorum for

the configuration state (any single DM).

- 112 -

DMl DM2 DM3

t2: {DM1,DM2,OM3} t2: {DMl, DM2, DM3} t2: {DMl, DM2 ,OM3}

Enq = (0,2) Enq = (0,2) Enq = (0,2}

Deq = (2,2) Deq = (2,2) Oeq = (2,2)

tl: [Enq(x);Ok()] tl: [Enq(x);Ok()]

When another TM attempts to enqueue an item y, it sends the Enq entry to DM2 (which it

believes to be a final Enq quorum), together with the timestamp tO from its cached

configuration state. DM2 observes that the timestamp in the message is less than its own

timestamp, and it refuses the request, responding with copy of the new configuration state.

The TM updates its cache and sends the Enq entry to a new final quorum, say DM2 and

DM3, which both accept the request because the timestamps match.

DM1

t2: {DM1,DM2,DM3}

Enq = (0,2)

Deq = (2, 2)

tl: [Enq(x);Ok(}]

OM2

t2: {OM1,DM2,OM3}

Enq = (0,2)

Deq = (2,2)

tl: [Enq{x);Ok()]

t3: [Enq{y);Ok()]

The quorum inclusion property provides two benefits:

OM3

t2: {DM1,DM2,DM3}

Enq = (0,2)

Deq = (2,2)

t3: [Enq(y);Ok()]

• Enhanced availability: Each quorum for operating on the resource state alone
is a quorum for the operation as a whole. Thus the the availability of the
operation as a whole is unaffected by the need to check the currency of the
configuration state.

• Fewer messages: In the absence of reconfiguration, a TM can use the same
physical messages to carry out two tasks: to establish the currency of Its
cached configuration state, and to apply the operation to the resource state.

As long as the quorum inclusion property is satisfied, the ability to reconfigure does not

- 113 -

incur a cost in reduced availability or increased message traffic until the object is actually

reconfigured. Nevertheless, this reconfiguration method is stilt not really satisfactory,

because certain kinds of reconfiguration will not preserve the quorum inclusion property.

For example, it would not be possible to move the queue to a different set of DM's because

there is no provision for changing the quorums for the configuration state. This problem is

addressed in the next section.

4.3.3 Reconfiguring the Configuration State

We now describe a more flexible scheme, in which an object has a chain (or linked list) of

configuration states. Each configuration state has two possible values:

1. Current: it contains quorum information for the resource state.

2. Obsolete: it contains quorum information for the next configuration state in
the chain.

An object has a single (current) configuration state when it is initialized. When the

configuration state is reconfigured, the chain is extended: a new configuration state is

created to hold the quorum information for the new resource state, and the quorum

information for the new configuration state is stored in the old configuration state, which is

then marked obsolete. Once a configuration state has been marked obsolete, it not

subsequently modified. The current configuration state always satisfies the quorum

inclusion property: each quorum for a resource operation includes a quorum for reading the

current configuration state.

Operations are carried out just as before. Each TM includes the timestamp from its cached

configuration state with each message, and each OM refuses requests with obsolete

timestamps. If a TM discovers its cache is obsolete, It must follow the chain, locating a

quorum for each configuration state in tum, until the current quorums for the resource state

are discovered. The operation can be applied directly to the resource state once its

- 114 -

quorums are known. The chain must be followed only once by each TM: when a new

configuration state is observed, it is recorded in the TM's cache.

Reconfiguration is accomplished by the following protocol:

1. Locate the current configuration state and read the quorums for the resource
state.

2. Merge the logs from an initial quorum for the old resource state and write out
the view to an initial coquorum for the new resource state.

3. Initialize the new configuration state with the quorum information for the new
resource state.

4. Update the old configuration state to point to the new configuration state.

To illustrate this technique~·we present a more complicated example of reconfiguration. The

queue initially resides at DM1, DM2, and DM3. As before, the quorums for Enq, Deq, Read,

and Write are (0, 1), (3, 1), (1,0), and (0,3) respectively. Following reconfiguration, the queue

resides at DM4, DM5, and DM6, and the quorums for Enq, Deq, Read, and Write are (0,2),

(2,2), (2,0), and (0,2) respectively.

As before, an item xis enqueued before the object is reconfigured.

OMl OM2 DM3

t0: Current t0: Current tO: Current

{DM1,DM2,DM3} {DM1,0M2,DM3} {DM1,DM2,DM3}

Enq = (0,1) Enq = (0,1) Enq = (0,1)

Deq • (3,1) Oeq = (3,1) Deq = (3, 1)

tl: (Enq(x):Ok()]

To reconfigure the queue, the TM conducting the reconfiguration reads the current

configuration state, say at DM1, and then constructs a view by merging the logs from an

initial quorum for Enq (which is empty) and Deq (which consists of all three DM's). The TM

- 115 -

initializes the new resource state by writing out the view to a new initial coquorum for both

Enq and Deq (DM4 and OMS). It records the new configuration state at a new Write quorum

(DM4 and DM5), marks the old configuration state as obsolete, and records at the old

configuration state the Read and Write quorums for the new configuration state.

DMl DM2 · DM3

tO: Obsolete tO: Obsolete tO: Obsolete

{DM4,DM5,DM6} {DM4,DM5,DM6} {DM4,DM5,DM6}

Read = (2,0) Read= (2,0) Read = (2,0)

Write = (0,2) Write = (0,2) Write = {0,2)

OM4 OM5 DM6

t2: Current t2: Current

{DM4,DM5,DM6} {DM4,DM5,DM6}

Enq = (0.2) Enq = (0.2)

Deq = (2,2) Deq = (2,2)

tl: [Enq(x);Ok()] tl: [Enq(x);Ok()]

The quorum for a subsequent reconfiguration consists of any two out of DM3, DM4, or DM5.
'

When another TM attempts to enqueue an item y, it sends the Enq entry to DM2 (which it

believes to be a final Enq quorum), together with the timestamp to from Its cached

configuration state. DM2 refuses the request, and sends the quorums for · the new

configuration state back to the TM. The TM updates its cache and sends the the new

timestamp and Enq entry to a new final Enq quorum (DM5 and DM6). This request is

accepted because neither OM has configuration state with a later timestamp.

- 116 -

DMl DM2 DM3

tO: Obsolete tO: Obsolete tO: Obsolete

{DM4,DM5,DM6} {DM4,DM5,DM6} {DM4,DM5,0M6}

Read = (2, O) Read= (2,0) Read= (2,0)

Write = (0,2) Write = (0,2) Write= (0,2)

DM4 DM5 DM6

t2: Current t2: Current

{DM4,DM5,0M6} {DM4,DM5,0M6}

Enq = (0,2) Enq = (0,2)

Oeq = (2,2) Oeq = (2,2)

tl: [Enq(x);Ok()] tl: (Enq(x) ;Ok()]

t3: (Enq(y);Ok()] t3: [Enq(y);Ok()]

Once a TM has replaced an obsolete cache, it has effectively reconfigured its own

configuration state. Reconfiguration imposes a penalty on a TM whose cache is out of date,

because it must conduct an additional exchange of messages the next time it attempts to

carry out an operation. To reduce this cost, a TM that reconfigures the configuration state

might attempt to notify as many other TM's as possible. As a further optimization, if the

chain of obsolete configuration states becomes longer than two, early obsolete

configuration states could be modified to point directly to the current configuration state. A

TM with an out-of-date cache that is unable to follow the chain could query DM's and other

TM's, asking for "hints" about the location of the current configuration state. If

reconfiguration is infrequent, then it is unlikely that caches will fall far behind.

- 117 -

4.3.4 Reference Counts

A drawback of all the reconfiguration schemes we have considered so far is that there is no

mechanism for safely discarding obsolete configuration states. For example, if a replicated

object is moved from one set of DM's to another, the configuration states at the old set of

DM's cannot be discarded as long as there is a possibility that some TM's cache contains

the old configuration state. If the old configuration states are discarded before the TM's

cache is brought up to date, then the TM will be unable to locate the new resource state.

This section proposes a simple reference counting scheme that enables the object's

maintainers to detect when all . TM's have updated their configuration states. This scheme

has the desirable property that it does not affect the availability of the replicated object,

although it does require extra messages immediately following a reconfiguration.

The Ref_Count date type provides three operations. The state of the object is given by an

integer value, initially zero. The Inc operation increments the value by one:

Inc = operationQ

and the Dec operation decrements the value by one:

Dec = operation().

The Value operation returns the object's current value:

Value = operation() retums(int)

The quorum intersection graph for the Ref_Count type is shown in Figure 13, together with

the range of quorum choices for five identical DM's. Value requests depend on both Inc and

Dec events, but Inc and Dec requests do not depend on any prior events because neither

returns any information.

· 118 ·

Each configuration state is modified to include a reference count. The reference count is

incremented each time a TM first records that configuration stafe in its cache. The

reference count is decremented each time a TM observes that the configuration state has

been rendered obsolete. Once a configuration state has been rendered obsolete, the

object's maintainers may use the Value operation to detect when the configuration state may

be garbage collected. A configuration state may be discarded when its reference count and

the reference counts of all earlier configuration states have reached zero. (Because there

are no cycles of reference between TM's and DM's, an unneeded configuration state will

always have a reference count of zero.)

By choosing the quorums for a configuration state's Inc and Dec operations to be the same

as the quorums for its Read operation, reference counting can be accomplished without

affecting the object's availability. A TM must locate an initial Read quorum for a

configuration state to discover that it has become obsolete. That same quorum can be used

to decrement the old configuration state's reference counter, although a second round of

messages is necessary. Before the TM can use the new configuration state, it must check

its currency by locating an initial Read quorum. That same quorum can be used to

increment the new configuration state's reference counter.

To illustrate the use of replicated reference counts, let us review the previous example one

last time. Initially, the queue resides at DM1, OM2, and DM3. The quorums for Read and

Write are (1,0) and (0,3), the quorums for Enq and Deq are (0, 1) and (3, 1), and the quorums

for Inc, Dec, and Value are (0,1), (0,1), and (3,0). The item xis enqueued at DM1 as before.

There are two TM's: TM1 and TM2, thus the reference count is initialized to two by recording

two Inc entries at DM1.

· 119 ·

Fig. 13. The Reference Counter Type

Inc Dec

Figure 13a: The quorum intersection graph.

Inc (0, 1) (0,2) (0,3) (0,4) (0,5)

Dec (0, 1) (0,2) (0,3) (0,4) (0,5)

Value (5,0) (4,0) (3,0) (2,0) (1,0)

Figure 13b: Minimal quorum choices for five identical DM's.

DM1 DM2 DM3

tO: Current t0: Current t0: Current

{DM1.DM2,DM3} {DM1,DM2,DM3} {DM1, DM2, DM3}

Enq • (0,1). Enq = (0,1) Enq = (0,1)

Oeq = (3,1) Deq = {3,1) Oeq • (3, 1)

t1: [Inc(): Ok()]

t2: (Inc)() ; Ok()]

t3: (Enq(x) ;Ok()]

As before, the queue is reconfigured to reside at DM4, OMS, and DM6, with Read and Write

quorums of (2,0) and (0,2), Enq and Deq quorums of (0,2) and (2,2), and Inc, Dec, and Value

----- -----

- 120 ·

quorums of (0,2), (0,2), and (2,0) respectively. Note that each quorum for either Enq or Deq

is also a quorum for the configuration state's Read operation, as well as the reference

count's Inc and Dec operations. When TM1 reconfigures the object, it updates its cache,

decrements the counter at the old configuration state (by recording a Dec entry at DM2),

and increments the counter at the new configuration state (by recording an Inc entry at DM5

and DM6).

DMl

tO: Obsolete
(

{DM4,DM5,DM6}

Read= (2,0)

Write = (0,2)

tl: [Inc(); Ok()]

t2: (Inc(); Ok()]

DM4

t6: Current

{DM4,DM5,DM6}

Enq = (0,2)

Deq = (2,2)

t5: [Inc(); Ok()]

t3: [Enq(x);Ok()]

DM2

to: Obsolete

{DM4,DM5,DM6}

Read = (2, 0)

Write = (0,2)

t4: (Dec(): Ok()]

DM6

t6: Current

{DM4,DM5,DM6}

Enq = (0,2)

Oeq = (2,2)

[Inc(): Ok()]

t3: [Enq(x);Ok()]

DM3

to: Obsolete

{DM4,DM5,DM6}

Read = (2,0)

Write= (0,2)

DM6

At a later point, TM1 checks the value of the old configuration state's reference count by

merging the Inc and Dec entries from DM1, DM2, and DM3. The resulting view indicates that

the reference count still has the value one, and so the old configuration state cannot be

discarded. As before, when TM2 attempts to enqueue y at DM3, it detects that its

configuration state is obsolete. The TM updates its cache, records a Dec entry at DM3, and

sends Inc and Enq entriJs' to a final quorum for both Inc and Enq (DM5 and DM6).

DMl

to: Obsolete

{DM4,DM5,DM6}

Read = (2, 0)

Write = (0,2)

tl: [Inc(); Ok()]

t2: [Inc(); Ok()]

OM4

t6: Current

{DM4,0M5,0M6}

Enq = (0,2)

Oeq = (2,2)

t5: [Inc(); Ok{)]

t3: [Enq(x);Ok()]

· 121 -

DM2

tO: Obsolete

{OM4,DM5,DM6}

Read = (2 ,0)

Write = (0,2)

t4: (Dec{); Ok()]

DM5

t6: Current

{OM4,0M5,DM6}

Enq = (0,2)

Oeq = {2,2)

t5: [Inc(}; Ok{)]

t8: [Inc(); Ok()]

t3: [Enq(x);Ok()]

t9: [Enq{y);Ok()]

DM3

tO: Obsolete

{DM4,DM5,DM6}

Read= (2,0)

Write = (O, 2)

t7: [Dec(); Ok{)]

DM6

t8: [Inc(); Ok()]

t9: [Enq{y);Ok{)]

When TM1 next checks the old configuration state's reference count, it observes that the

counter value has reached zero, and the obsolete configuration state can now be discarded.

4.3.5 Summary

,-, This section first introduced a simple technique that employs a level of indirection to support

a limited ability to reconfigure. · Using this technique, each operation execution requires two

rounds of messages instead of one, and there is a potential decrease in availability resulting

from the need to communicate with additional sites.

A combination of cache management, careful quorum choice, multiple levels of indirection1

- 122 -

and a replicated reference counting scheme are used to transform the simple technique into

a more powerful and flexible scheme, in which the ability to reconfigure incurs a cost only

when reconfiguration actually takes place.

4.4 Examples

In this section, we show how two replication methods from the literature can be modeled by

the reconfiguration method described in the previous section. We examine the primary

copy scheme [Alsberg 76, Stonebreaker 79] and the true-copy token scheme [Minoura 79,

Minoura 82]. The purpose of this section is both to illustrate the flexibility of multiple-round

quorum consensus and to provide additional insight into the other replication methods.

4.4.1 The Primary Copy s·cheme

We first consider a variant of the primary copy scheme [Alsberg 76, Stonebreaker 79]. The

scheme described here is not exactly the same as the one originally proposed by Alsberg

and Day because we make use of an underlying transaction system.

A replicated file is said to be n-site resilient if the file continues to be available for both

reading and writing after the simultaneous failure of n-1 DM's. The following scheme

achieves n-site resiliency. Timestamped versions of the file are kept at d DM's. One DM is

designated as the primary, and the rest are backups. A current version of the file always

resides at the primary OM, and at n-1 backups. The resource state is the current version of

the file, and the configuration state is the identity of the primary OM. A Read quorum for the

resource state consists of the primary, and a Write quorum consists of the primary and any

n-1 backups. The configuration state is represented at each DM by a timestamped ~rd

indicating the identity of the primary DM. A read quorum for the configuration state consists

of any n DM's, and a Write quorum consists of any (d-n) + 1 DM's.

To read the file, a TM must locate the current primary (read the configuration state) and read

· 123 •

its version (read the resource state). As described in the previous section, each TM keeps a

cache containing the identity of the most recently observed primary. To execute the Read,

the TM sends a Read request including the timestamp for its cached configuration state to

the cached primary and to n-1 backups. If any of these DM's has a configuration state with a

later timestamp, it refuses the request and informs the TM of the new primary's identity.

Otherwise the primary returns the current version of the file, and the backups return a

confirmation that the TM's configuration state is current. We emphasize that it is not

enough to read directly from a DM that considers itself to be the primary, because a new

primary may have been chosen by a quorum of backups executing in a distinct partition. An

example where this problem arises is shown below.

Write operations are executed in a similar manner. The TM locates the current primary by .

sending a Write request to the cached primary and to n-1 backups, and each DM either

installs the new version or informs the TM that its cached configuration state is obsolete. To

choose a new primary, the TM conducting the reconfiguration reads the file versions from

(d-n) + 1 backups, writes the version with the latest timestamp to the new primary and to n-1

backups, and then records the identity of the new primary at (d-n) + 1 DM's.

The following example illustrates a two-site resilient file replicated among three DM's. The

quorum for locating the primary consists of any two DM's. Once the primary Is known, it

suffices to read from the primary and to write to the primary and one backup. Initially, DM1

Is the primary and the value x has been written to DM1 and DM2.

DM1

to: Primary: DMt

t1 : Version: x

DM2

to: Primary: OM1

tl: Version: x

DM3

tO: Primary: DM1

If a partition isolates DM1, then the file may be reconfigured by reading the versions from

DM2 and DM3, writing the version with the later timestamp to both DM2 and DM3, and

_)

· 124 -

recording the identity of the new primary (here DM2) at both DM's. The resulting state is:

DMl

tO: Primary: DMl

tl: Version: x

DM2

t2: Primary: DM2

tl: Version: x

DM3

t2: Primary: DM2

tl: Version: x

Now suppose the partition is rejoined, and a TM with an obsolete configuration state to:

Primary: DM t attempts t<;> read the file. The TM sends a Read request with its configuration

timestamp to DM1 (which it believes to be the primary) and to DM3. DM1 accepts the Read

request, believing itself to be the primary, but DM3 informs the TM that it has a more recent

configuration state indicating thatDM2 is the primary. The TM must then abort the previous

attempt, update its cached configuration state, and try again. This example illustrates why it

is not sufficient to read directly from a OM that believes itself to be the primary.

The availability properties of the primary copy scheme can be analyzed in terms of its

quorum structure. A weak point in this scheme is that a new primary can be chosen only as

long as fewer than n DM's have become unavailable. Once n DM's have failed, the file can

no longer be reconfigured, and the file will become unavaUable if the primary fails, resulting

in a level of availability equivalent to that of a single-site file.1 The problem Is that the

scheme we have described is a single-level scheme: a1though one can change the quorums

for the resource state by electing a new primary, one cannot change the quorums for the

configuration state by changing how the primary is elected.

A more robust version of the primary copy scheme can be defined as follows. The

configuration state is extended to include the identities of the backups as well as the identity

of the primary. To execute an operation, a TM must communicate with n current backup's to

1. The availability is actually marginally worse than a singJe-site file, because the failure of
all remaining d-2 backups will also render the file unavailable.

- 125 •

verify that its configuration state is current. The TM either reads the version from the

primary OM, or writes new versions at the primary and at n-1 current backups. As before, if a

TM's cache is current, both steps can be carried out in a single exchange of messages by

including in each request the timestamp for the TM's cached configuration state. This

scheme is more robust than the single-level scheme because failed DM's can be configured

out completely. As long as failed DM's can be reconfigured out quickly enough to ensure

that fewer than n have failed at any time, the file remains n-site resilient as long as n or more

DM's are available. The file will be even more robust if the resiliency factor n can be

adjusted in response to failures and repairs.

4.4.2 The True-Copy Token Scheme

We now consider the true-copy token scheme of Minoura, Owicki, and Wiederhold

[Minoura 79, Minoura 82]. A replicated file is represented by a collection of versions stored

at OM's. Versions that reflect the file's current state are called true copies. There are two

kinds of true copies: there may be a unique exclusive copy, used for both readi~g and

writing, or there may be multiple shared copies, used only for reading. The exclusive true

copy can be reconfigured into multiple shared copies, and the set of shared copies can be

reconfigured into a single exclusive copy. A true copy is indicated by the presence of a

true-copy token, which also indicates whether the copy is shared or exclusive.

Minoura and Wiederhold have described techniques for regenerating true-copy tokens that

have been destroyed by site failures (Minoura 82]. Nevertheless, under our assumption that

site failures cannot be distinguished from partitions, the failure of a OM containing a

true-copy token will limit further reconfiguration. lf an exclusive copy token becomes

unavailable, the file can neither be read nor written, and if a shared copy token becomes

unavailable, then the file can be read but cannot be reconfigured for writing. Consequently,

the true-copy token scheme serves to enhance performance rather than availability.

The true-copy token scheme can be viewed as an instance of multi-round quorum

- 126 -

consensus. The reso·urce state is just the set of true copies. If there exists a unique

exclusive copy, the Read and Write quorums each consist of the OM at which the exclusive

copy resides. If there exist multiple shared copies, a Read quorum consists of any DM at

which a shared true-copy token resides, but there are no Write quorums; the file must be

reconfigured before it can be written.

The current configuration state is the set of true copy tokens. Reconfiguration can take any

of the following forms:

1. A exclusive copy token can be moved from one DM to another.

2. An exclusive copy token can become a shared copy token.

3. A shared copy token can be copied or moved from one OM to another.

4. The entire set of shared copy tokens can be replaced by a single exclusive
copy token.

Although the authors do not describe in detail how to locate the current set of true-copy

tokens, it is not difficult to adapt the configuration state chain scheme for this purpose. If

each OM makes a record whenever a token is copied or moved, a TM attempting to locate

the set of true-copy tokens can follow the chain of records until it locates the token(s). As

described above, reference counts can be used to discard these records when they are no

longer needed.

As an example of reconfiguration, let us consider how to transfer an exclusive copy from

one DM to another. We note in parentheses how each step corresponds to a step in

multi-round General Quorum Consensus.

1. Find the OM holding the exclusive copy token (locate the current
configuration state).

- 127 -

2. Copy the file version from the source OM to the target OM (reconfigure the
resource state).

3. Create a new exclusive copy token (initialize a new configuration state).

4. Replace the old token with a pointer to the OM containing the new token
(update the old configuration state to point to the new configuration state).

Note that we assume that the underlying atomicity mechanism ensures that the transfer

either succeeds completely or has no effect, and the resulting state is therefore consistent.

4.5 Discussion

This chapter has shown how to extend General Quorum Consensus to permit

reconfiguration by introducing levels of indirection in an object's representation.

Operations on such objects may require multiple rounds of messages, although we have

shown that message traffic can be reduced by an appropriate choice of quorums. A

replicated reference counting scheme is proposed to permit obsolete quorum information to

be discarded. Some existing replication methods for files that employ reconfiguration can

be viewed as· special cases of· multi-round quorum consensus: the primary copy scheme

[Alsberg 76, Stonebreaker 79], the true-copy token scheme (Minoura 79, Minoura 82], and

Gifford's reconfiguration method [Gifford 79].

Not all replication methods can be modeled by quorum consensus. The available copies

algorithm for databases [Goodman 83] uses a level of indirection to support a kind of

reconfiguration. The database is divided into two parts: each file is represented by a

replicated set of copies analogous to the resource state, and the set of copies in current use

is indicated by a replicated set of directories analogous to the configuration state. The

available copies algorithm differs from ours in an impOrtant respect: as noted by its authors,

it fails to preserve consistency in the presence of partitions. SDD-1 [Hammer 80] employs a

similar replication scheme in which sites that have crashed are configured out of the system.

It, too, does not tolerate communication failures or partitions. These examples are

- 1 :>8 -

discussed f urtller i11 tile next ch,ipter, where we propose a method for enhancing availability

in the pr,esence of partitions.

5.1 Introduction

- 129 -

Chapter Five

Partitions

A partition occurs when an obieet's OM's are divided into two or more disjoint sets such that

functioning members of distinct sets cannot communicate with one another. This chapter

shows how to extend General Quorum Consensus to provide increased availability in the

presence of partitions. Unlike some replication methods [Hammer 80, Goodman 83,

Popek 81], quorum consensus preserves serializability in the presence of partitions. A TM

can execute an operation if and only if it can locate an appropriate quorum within its

partition. For example, if a file has a Read quorum of one and a Write quorum of n, then

Read operations can be executed in distinct partitions, but Write operations cannot. The

availability provided by General Quorum Consensus is limited by the constraint that

operations whose quorums are required to intersect cannot be executed concurrently in

distinct partitions. For example, one cannot execute a Read in one partition and a Write in

another, or a Deq in one partition and an Enq or a Deq in the other.

This chapter introduces a reconfiguration technique that permits operations whose

quorums are otherwise required to intersect to be executed in distinct partitions. Instead of

providing a single set of quorums for each operation, an object may provide a range of

alternative quorum sets. Each transaction chooses the quorum set that is best suited to the

partition in which it is executing. Transactions in distinct partitions can each make progress

by employing different quorum sets. Constraints on the range of quorums an object can

provide ensure that transactions executing in distinct partitions remain serializable. Our

scheme takes an approach similar to the one taken by Eager and Sevcik [Eager 83). Our

scheme makes two improvements: It is applicable to objects of arbitrary type, not just to

files, and it provides a more practical mechanism for restoring normal operation when the

- 130 -

partition has been repaired.

5.2 The Missing Write Scheme

Eager and Sevcik [Eager 83] have proposed a replication method for files that allows Read's

and Write's to take place concurrently in distinct partitions. In this section we describe their

method in several stages, starting with a very simple description, and successively

introducing complications. We outline correctness arguments for some of the techniques

described; the reader is referred to [Eager 83] for more complete arguments.

Transactions execute by reading from and writing to replicated files. Each transaction

executes in one of two modes: either normal or partitioned. In normal mode, a transaction

writes to all copies of a file and reads from a single copy. In partitioned mode, the

transaction reads and writes from a majority of copies, using Gifford's quorum consensus

method [Gifford 79, Gifford 82]. The Read operation is more available for normal-mode

transactions, and the Write operation is more available for partitioned-mode transactions.

Let us assume that all transactions serialized before a certain point execute in normal mode,

and that all transactions serialized after that point execute in partitioned mode. We claim

that each replicated file continues to satisfy the fife specification: the value read is always

the value most recently written. Suppose the file has been written by transaction A, and is

subsequently read by transaction B. There are four cases to consider. If both A and B

executed in normal mode, then all copies reflect A's value, and the result is immediate. The

same property holds if A executed in normal mode but B executed in partitioned mode. If

both A and B executed in partitioned mode, then B is certain to observe at least one copy

containing A's value, and that copy will have the most recent version number. Finally, it is

not possible for A to have executed in partitioned mode and B in normal mode, because we

have assumed that normal mode transactions are never serialized after partitioned mode

transactions.

- 131 -

We now describe a simple technique that ensures that normal mode transactions are never

serialized after partitioned mode transactions. When a transaction in partitioned mode

reads or writes a copy of the file, it leaves a missing write token with that copy. When a

transaction in normal mode attempts to read from or write to a copy with a missing write

token, the transaction is aborted and restarted in partitioned mode. This mechanism

ensures that if a transaction in normal mode executes to completion, then it will not have

read any values written by partitioned-mode transactions, nor will it have overwritten any

values read by partitioned-mode transactions, and therefore it may be serialized before any

partitioned-mode transactions.

What do these modes have to do with partitions? If a transaction in normal mode cannot

update all the copies of a file, the transaction might still be able to make progress by

restarting in partitioned mode and updating only a majority of copies. If a partition occurs, a

normal-mode transaction in a partition containing a minority of copies can execute Read's

but not Write's, while a partitioned-mode transaction in a majority partition can execute both

Read's and Write's. Consequently, Eager and Sevcik's method permits Read and Write

operations to be executed concurrently in distinct partitions by ensuring that

partitioned-mode transactions are serialized after normal-mode transactions.

One shortcoming of this method is that it works only for files. It cannot be used to provide

increased availability for, say, FIFO queues, because both Enq and Deq must be treated as

Write's and therefore cannot execute in distinct partitions. We will show how the approach

taken by Eager and Sevcik can be combined with the mechanisms we have developed for

General Quorum Consensus to provide increased availability for objects of arbitrary type.

A second shortcoming of Eager and Sevcik's method is that once a transaction has entered

partitioned mode, it may be quite difficult to restore the system to normal mode. Once

missing write tokens have been created, transactions that encounter such tokens will be

restarted in partitioned mode, causing the tokens to propagate throughout the system.

- 132 -

Eventually, the likelihood that a normal-mode transaction will be able to execute to

completion may become quite small. Once the partition is rejoined, however, it is desirable

to allow transactions to run in normal mode.

Two steps are needed to restore the system to normal mode:

1. The "missing writes" must be carried out; all updates executed in partitioned
mode must be propagated to all copies of the file.

2. The missing write tokens must be located and discarded.

In their paper, Eager and Sevcik describe the bookkeeping necessary to carry out these

steps. A transaction's missing write tokens cannot be discarded until all of the missing

writes associated with that transaction and with all previously serialized transactions have

been carried out. As long as any missing write tokens continue to exist, they are likely to

propagate, and therefore the system wilt have been restored to normal operation only when

all missing write tokens have been located and discarded. Eager and Sevcik propose that a

systematic network traversal be used for this purpose.

The problem with this technique is that restoration is not a local process. Because tokens

created by partitioned-mode transaction can be propagated to an arbitrary extent, the

number of sites whose cooperation is needed both to carry out the missing writes and to

discard the tokens cannot be bounded in advance. If this technique is viewed as a race

between a restoration transaction and token propagation by other transactions, then it is

clear that token propagation has a formidable advantage. A transaction may propagate a
-

token by communicating with only a few sites, but the restoration transaction may require

the cooperation of every site in the system to make progress. A restoration transaction

based on a systematic network traversal might be feasible in a small, administratively

centralized database, in which it is possible to shut down the system for periodic

maintenance, but it is not feasible for larger, administratively decentralized distributed

systems such as one might find in a campus or in a corporation.

- 133 -

In this chapter we propose an alternative technique for restoring the use of normal quorums

after a partition has been repaired. Unlike the method of Eager and Sevcik, our method is

local; each replicated object acts independently to restore its own normal quorums. Not

only does local restoration simplify the bookkeeping, it makes restoration more likely to

succeed, and probability of success can be analyzed and predicted in advance.

5.3 The General Method

We begin with a few observations on some basic limitations governing the level of service

that can be provided in the presence of partitions. We adopt Guttag's terminology

[Guttag 78] classifying operations as mutators and observers. A mutator is an operation that

changes the object's state, such as Write tor files, and both Enq and Deq for queues. An

observer is an operation that returns information about the object's state, such as Read for

files, and Deq for queues. Observers have non-trivial initial quorums, and mutators have

non-trivial final quorums. An operation may be both an observer and a mutator (e.g. Deq).

If all initial quorums for an observer operation have become unavailable, the ability to

execute that operation cannot be restored, because it is not possible to reconstruct enough

information to choose subsequent responses. For example, once it is no longer possible to

locate an initial Deq quorum, then it is no longer possible to reconstruct the items in the

queue, and therefore it is not possible to restore the ability to execute Deq events.

Consequently, the best we can hope for is to facilitate the execution of mutator operations

by reducing the sizes of final quorums, possibly by increasing the sizes of initial quorums. In

Eager and Sevcik's scheme, if the unanimous Write quorum cannot be located, a

transaction can still write to a file only a majority Write quorum, but the transaction cannot

read from the file if a Read quorum becomes unavailable, because there is simply not

enough information to ascertain the file's current state. Applying this observation to the

FIFO queue example, we might be able to restore the ability to execute an Enq, but it cannot

restore the ability to execute a Deq.

· 134 ·

5.3.1 A Simple Method

We initially describe a very simple scheme, and successively introduce complications. In

this section we discuss a scheme that supports increased availability for arbitrary data types,

but that permits transitions in one direction only: from normal to partitioned mode. We then

present a more general scheme employing an arbitrary number of modes, and in the final

section, we consider how to restore the system to normal operation after a partition is

repaired.

Each replicated object provides two sets of quorums: the normal quorums and the

partitioned quorums. These quorums are related by the following constraints:

1. The quorum intersection relations of both sets of quorums must be
compatible with the same dependency relation.

2. Every partitioned initial quorum for an event must contain a normal initial
quorum for that event.

The important point about these constrain~s is that although partitioned initial quorums are

larger than normal initial quorums, partitioned final quorums may be smaller. Because pure

mutators such as Write or Enq have empty initial quorums, their partitioned quorums are

more available than their normal quorums.

The quorums for files in Eager and Sevcik's scheme satisfy these constraints. A file

replicated among n DM's has a normal Read quorum of one, and a normal Write quorum of

n. The partitioned quorums for both operations each consist of a majority. Each partitioned

initial quoru·m for Read (a majority) contains a normal initial quorum (an individual DM), but

the partitioned final quorum for Write (a majority) is smaller than the normal final quorum (all

DM's).
'

Transactions operate in one of two modes: normal or partitioned. A transaction in normal

mode uses the normal quorums for each object on which it operates, while a transaction in

· 135 ·

partitioned mode uses the partitioned quorums. Just as for Eager and Sevcik's method, we

claim that if all normal-mode transactions are serialized before all partitioned-mode

transactions, then all replicated objects continue to satisfy their specifications. The

correctness argument is the same. Each entry that has been recorded at a normal final

quorum has also been recorded at a partitioned final quorum, and therefore any view

constructed by a transaction executing in partitioned mode is certain to include all earlier

entries on which it depends.

The requirement that every transaction in normal mode,must be serialized before every

transaction in partitioned mode is enforced by the following techniques. A flag is associated

with each OM; the flag is initially setto normal, but it is reset to partitioned when the DM's

log is read or updated by a transaction in partitioned mode. (Techniques for restoring DM's

to normal mode are discussed in a later section.) Transactions observe the following rules:

1. A OM whose flag has been set to partitioned rejects all requests from
transactions in normal mode.

2. Every timestamp generated by a transaction in partiUoned mode is greater
than any timestamp generated by a transaction in normal mode.

The timestamp property may be implemented using the high-order bit of each timestamp as

a "mode bit" . which is set to zero for transactions in normal mode, and to one for

transactions in partitioned mode. These rules ensure that transactions running in

partitioned mode are serialized after transactions running in normal mode. The first rule

ensures that a transaction in normal mode never observes an entry generated by a

transaction in partitioned mode, and the second rule ensues that entries generated by

partitioned-mode transactions always appear to follow entries generated by normal-mode

transactions.

As before, if a normal-mode transaction discovers that it cannot locate a quorum for an

operation, the transaction might stilt be able to make progress by by aborting and restarting

· 136 ·

in partitioned mode. As illustrated in the example given below, an object's availability can be

enhanced by allowing transactions to choose whether to run in normal or partitioned mode.

An informal correctness argument for replicated objects implemented on top of a

transaction system can be summarized as follows. We wish to show that an object's global

log is always legal; consisting of a prefix consisting of events executed by normal-mode

transactions, followed by a sequence of events executed by partitioned-mode transactions.

We argue by induction. Assume that the object state is given by the log nap, where n

consists entirely of events executed by normal-mode transactions, and p consists entirely of

events executed by partitioned-mode transactions. If an event e is executed in partitioned

mode, the resulting state is napae. The initial quorum fore intersects the final quorum for

every event in both n and p on which it depends, thus napae is legal. If e is executed in

normal mode, the resulting state is naeap, because e is given a timestamp earlier than any

event in p. Because the initial quorum for e intersects the finat quorum for every event in n

on which it depends, nae is legal. No event in p can depend on e, because otherwise e

could not have located a quorum of normal-mode DM's, thus n°e0 p is legal.

This technique is independent of the object's concurrency control methods. When a

transaction attempts to execute an event in normal mode, the concurrency control

mechanism schedules it on the basis of the other events executed by uncommitted

transactions in normal mode. When a transaction attempts to execute an event in

partitioned mode, the concurrency control mechanism schedules it on the basis of the other

events executed by uncommitted transactions in both modes.

We remark that when this method is applied to files, the resulting scheme is slightly more

flexible than that of Eager and Sevcik, because the use of timestamps supports minority

Write quorums. In Eager· and Sevcik's scheme, transactions in the majority partition may

read and write the file, but transactions in a minority partition may read the file but not write

it. Our scheme supports an alternative configuration in which the transactions in a minority

- 137 -

partition may write the file, but may not read it.

To illustrate this method, let us examine the implementation of a FIFO queue replicated

among three DM's. We use the notation (m,n) to indicate that an operation has initial

quorums consisting of any m DM's from a particular set, and final quorums consisting of any

n DM's from that same set. In normal mode, Enq has quorums of (0,2), and Deq has

quorums of (2,2). In partitioned mode, Enq has quorums of (0, 1), and Deq has quorums of

(3,1).

This choice ensures that the Enq operation will remain available in both majority and

minority partitions, although Deq will remain available only in the majority partition. This

scheme might be useful in the implementation of highly available spooler, permitting clients

to spool files for printing even though the files will not actually be printed until the partitions

are rejoined.

The status of the mode flag for each OM is shown at the top of each column. The queue is

initially empty, and an item a is enqueued at DM1 and DM2 in normal mode with timestamp

t1.

DMl DM2 DM3

Mode: Normal Mode: Normal Mode: Normal

tl: [Enq(a);Ok()] tl: [Enq(a);Ok()]

The DM's are partitioned into two groups: one consisting of DM1, and the other consisting

of OM2 and DM3. A transaction in DM1 's partition attempts to enqueue item b, discovers it

cannot locate a quorum~ and enqueues the item at OM1 after restarting in partitioned mode.

Timestamps generated in normal mode are written in lower-case, and those in partitioned

mode are written in upper-case.

Partitions: {DM1}.{DM2,DM3}.

DM1

Mode: Partitioned

tl: [Enq(a);Ok()]

Tl: [Enq(b);Ok()]

- 138 -

DM2 OM3

Mode : Norma 1 Mode: Normal

tl: [Enq(a);Ok()]

In the other partition transactions operate using the normal quorums. Here, a transaction

has enqueued an item c and dequeued a.

Partitions: {DM1}.{DM2.0M3}.

DMl

Mode: Partitioned

tl: [Enq(a);Ok()]

Tl: [Enq(b);Ok()]

OM2

Mode: Normal

tl: [Enq(a);Ok()]

t2: [Enq{c);Ok())

t3: [Deq();Ok(a)]

DM3

Mode: Normal

tl: [Enq(a);Ok()]

t2: [Enq(c);Ok()]

t3: [Deq():Ok{a)]

Note that the timestamp T1 generated in partitioned mode is later than the timestamp t2

generated in normal mode. After the partitions are rejoined, a transaction in partitioned

mode executes a Deq by merging the logs from all three DM's, choosing the item to be

dequeued, and writing out· the resulting view to DM1. Because the partitioned-mode

transaction has read the logs at all three DM's, their mode flags have been set to partitioned.

------------- ---------- ------~

n

Partitions: {DM1,DM2,DM3}.

DMl

Mode: Partitioned

tl: [E nq { a) ; Ok ()]

t2: [Enq(c);Ok()]

t3: [Deq{);Ok(a)]

Tl: [Enq{b);Ok{)]

T2: [Deq();Ok{c)]

5.3.2 Multiple Levels

- 139-

DM2

Mode: Partitioned

tl: [Enq{a};Ok()]

t2: [Enq{c);Ok(}]

t3: [Deq();Ok{a)]

DM3

Mode: Partitioned

tl: [Enq(a};Ok(}]

t2: [Enq(c);Ok{}]

t3: [Deq();Ok(a)]

In this section we generalize the method described above from two sets of quorums to an an

arbitrary number of different quorum sets. These generalizations further enhance

availability, and they are needed for the restoration technique to be introduced in the next

secl1on. Each object provides a sequence of quorum sets, one for each non-negative

integer. The quorum set associated with different levels need not (and indeed cannot) be

distinct. The integer associated with each quorum set is called its /eve/. We adopt the

convention that level zero is initially used for normal unpartitioned activity, and that higher

level modes are used in the presence of partitions.

Quorum sets are subject to the following constraints, which are direct generalizations of the

constraints imposed by the two-level technique.

1. The quorum intersection . relation at each level must be compatible with the
same dependency relation.

2. Every initial quorum for an event at level n > O must contain an initial quorum
for that event at level n-1.

These constraints imply that if a log entry is recorded at a final quorum for level n, then it has

also been recorded at a final quorum for all levels N > n, but not vice-versa.

- 140 -

Each transaction operates at a fixed level, using the quorums for that level for each object

on which it operates. Just as before, we claim that if all level n-1 transactions are serialized

before all level n transactions, then all replicated objects continue to satisfy their

specifications. Transactions observe the following rules:

1. Each OM has a counter indicating the highest level transaction that has read
or updated its log. A OM whose counter has been set to n will reject all
requests from transactions in tesser modes.

2. Every timestamp generated by a transaction in mode n is greater than any
timestamp generated by a transaction in mode n-1. The timestamp property
is implemented by reserving enough high-order bits in each timestamp to
indicate the level of the associated transaction.

These rules ensure that transactions running in mode n are serialized after transactions

running in mode n-1. If a transaction cannot locate a quorum for a desired operation, it may

restart at a higher level.

For example, consider a file replicated among three OM's that supports the following

sequence of quorums.

Read Quorum Write Quorum

LevelO 1 3

Level 1 2 2

Level2 3 1

Level3 3 1

In this example, levels two and higher are bound to the same quorums. Following a

partition, transactions executing in the majority partition can execute Read and Write

operations at level one. A transaction executing in the minority partition has a choice: if it

- 141 -

executes at level zero, it can read the file, but cannot write it, while if it executes at level two

or higher, it can write the file, but cannot read it.

5.3.3 Restoring Normal Mode

The basic idea underlying our restoration scheme is the following. Each object has its own

binding between levels and quorum sets. Initially, transactions execute at level zero, which

is bound to the normal set of quorums. When a partition occurs, some transactions may

choose to execute at a higher level, say level n, which is bound to a different set of quorums.

When the partition is rejoined, the use of the normal set of quorums is restored at a

particular object not by lowering its level, but by altering the binding between its current

level and its quorum sets. By rebinding level n to the normal set of quorums, subsequent

transactions executing at level n will use the normal quorums for that object, and for all

objects that have carried out a similar rebinding. Because the binding between levels and

quorum sets is local to each object, restoration is a local process involving only the DM's for

the object being restored.

We are now ready to describe the restoration scheme in detail. Restoration has the effect of

rebinding level n to the quorums for level n-1, preserving the constraint that every initial

quorum at level n include an initial quorum at level n-1. Just as In Chapter Four, information

about quorums is stored In the object itself. Each OM for an object stores a quorum

assignment table containing the bindings between each level and its quorum set. Each

binding has its own timestamp. The quorums for observing and altering the binding for level

n are chosen in conjunction with the quorums for the operations at level n. Each quorum for

a level n operation must include a quorum for reading the binding for level n.

Restoration is carried out by the following three steps, which must be executed as a

transaction:

- 142 -

1. Construct a view containing all level n entries by reading from from a level n
initial quorum for every event.

2. Write out the level n entries to a level n-1 final quorum for every event.

3. Change the binding for level n in the quorum assignment table. (This step
requires updating the quorum assignment table at a level n coquorum for
every event.)

Each TM maintains a cached copy of the quorum assignment table. Whenever the TM

sends a message to a OM on behalf of a level n transaction, it includes the timestamp for

level n's binding in the cached table. Whenever a OM receives a message with an

out-of-date timestamp, it notifies the TM of the new bindings. The requirement that every

quorum for a level n operation include a quorum for observing the binding for level n

ensures that the TM cannot locate a level n quorum without being notified that its cache is

out of date. When a TM receives such a notification, it updates its cache, and writes out its

view to the larger final quorum.

To illustrate this technique, let us review the queue example presented in the previous

section. Instead of a mode flag, each OM maintains a counter, 1nitialized to zero, recording

the highest level transaction that has observed or updated its log. When the queue is

initialized, level zero is bound to Enq quorums of (0,2} and Deq quorums of (2,2}, and level

one is bound to Enq quorums of (0, 1) and Deq quorums of (3, 1 }. The absence of explicit

bindings for levels higher than one indicates that they are bound to the same quorums as

level one. The constraints on qu_orum inclusion imply that the quorum for reading the level

zero bindings consists of any two DM's, and the quorum for reading the level one bindings

consists of any single OM.

-------~ ------- --

- 143 -

DMl DM2 DM3

Max: 0 Max: 0 Max: 0

tO: Level 0 to: Level 0 tO: Level 0

Enq = { 0, 2) Enq = {0,2) Enq = (0,2)

Deq = (2,2) Deq = (2,2) Deq = (2,2)

tO: Level 1 to: Level 1 tO: Level 1

Enq = (0,1) Enq = { 0, 1) Enq = {0,1)

Deq = {3,1) Deq = {3,1) Deq = {3,1)

After the computation described in the previous section has been carried out, the state of

the queue is shown in the following picture, where timestamps generated by level zero

transactions are written in lower-case, and those generated by level one transactions are

written in upper-case.

DMl DM2 DM3

Max: 0 Max: 0 Max: 0

tO: Level 0 tO: Level 0 to: Level 0

Enq = (0,2) Enq = (0,2) Enq = (0,2)

Deq = (2,2) Deq = (2,2) Deq = (2,2)

to: Level 1 tO: Level 1 tO: Level 1

Enq = (0,1) Enq = (0,1) Enq = (0,1)

Deq = (3,1) Deq = (3,1) Deq • (3,1)

t1: [Enq(a);Ok()] tl: [Enq(a) ;Ok()] t1: [Enq(a);Ok()]

t2: [Enq(c);Ok()] t2: [Enq(c);Ok()] t2: [En q (c) ; Ok()]

t3: [Deq() ;Ok(a)) t3: [Deq();Ok(a)] t3: [Deq();Ok(a)]

Tl: [Enq(b) ;Ok()]

T2: [Oeq(); Ok(c)]

To restore normal operation, it is necessary to rebind level one to the normal set of quorums.

----------- ------- --

- 144 -

The fjrst step is to collect the level one entries from a level one initial quorum for both Enq

and Deq, here consisting of all three OM's. The level one entries are then written out to a

level zero final quorum for both Enq and Deq, here consisting of any two OM's, say OM1 and

OM2. The final step is to update the level one binding at all three OM's.

DM1

Max: 0

tO: Level O

Enq = (0,2)

Oeq = (2 ,2)

T3: Level 1

Enq = (0,2)

Deq = (2,2)

tO: Level 2

Enq = (0,1)

Deq = (3,1)

tt: (Enq(a);Ok()]

t2: [Enq(c);Ok()]

t3: (Oeq();Ok(a)]

Tl: [Enq(b);Ok()]

T2: [Deq();Ok(c)]

DM2

Max: O

tO: Level 0

Enq = (0,2)

Deq = (2,2)

T3: Level 1

Enq = (0,2)

Oeq = (2, 2)

tO: Level 2

Enq = (0,1)

Deq = (3,1)

t1: (Enq(a);Ok()]

t2: [Enq(c);Ok()]

t3: (Deq();Ok(a)]

Tt: [Enq(b);Ok()]

T2: [Oeq();Ok(c)]

DM3

Max: 0

to: Level O

Enq = (0,2)

Oeq = (2,2)

T3: Level 1

Enq = (0,2)

Deq = (2,2)

tO: Level 2

Enq = (0,1)

Deq = (3,1)

tt: [Enq(a);Ok()]

t2: [Enq(c);Ok()]

t3: [Deq();Ok{a)]

Now suppose a TM with an out-of-date cache attempts to enqueue an entry on behalf of a

level one transaction. When the TM sends an Enq entry to a OM, the OM detects that the

timestamp for the TM's cache is out of date, and responds with an up to date binding for

level one. Upon observing that the new final Enq quorums, the TM updates its cache and

sends the Enq entry to two DM's.

The normal course of events can be summarized as follows. Initially, all transactions use the

normal set of quorums for each object. Following a partition, some transactions choose to

- 145 -

execute at a higher level, using a different set of quorums. The higher level gradually

propagates through the ot>;ects in the system, causing lower level transactions to be

restarted at the higher level. Eventually, all transactions execute at the higher level. When

the partition is rejoined, each object in the system individually restores its own normal

quorums to the current I~ and eventually all transactions will be using normal quorums

again ..

5.4 Discussion

We have demonstrated a way to extend General Quorum Consensus to provide a higher

level of availability in the presence of partitions. Transactions in distinct partitions may use

different quorums for the same object. Each transaction chooses the quorum best suited to

its current partition. The method preserves consistency, it is independent of any particular

concurrency control method, and it imposes negligible costs when it is not used. Unlike

some methods discussed below, it does not require explicit partition detection, static

transaction classes, or undoing of committed · transactions. The increased availability

provided by our method is purchased at the cost of external consistency: events that are

widely separated in time occurring in distinct partitions may be serialized in an order

different from the order in which they are observed to occur from outside the system.

Our scheme was originally motivated by consideration of a file replication method proposed

by Eager and Sevcik [Eager 83). Both our scheme and their scheme increase availability in

a manner that preserves serializability but not external consistency. Both methods incur a

negligible overhead when not used. Our method makes two improvements: it is applicable

to arbitrary data types, not just to files, and it provides a more practical way to restore

normal operation once partitions are repaired.

As noted in the previous chapter, the available copies replication algorithm for databases

[Goodman 83] fails to preserve consistency in the presence of partitions. If a partition

- 146 -

should occur, each partition's directories would mark the others as unavailable and

continue processing, causing the database states in the two partitions to diverge. The

difficulty here is that the method used to manage the replicated directory does not tolerate

communication failures. If a more robust algorithm were used to manage the directory, the

re:sult would resemble the single-level reconfiguration method described in the previous

chapter.

SDD-1 [Hammer 80] is another example of a replication method that does not tolerate

partitions. If a site is up, then it is operating normally and able to communicate with all other

sites, and if it is down, then it cannot communicate with any other sites. A message intended

for a site that is down may be stored for later delivery at a replicated FIFO queue associated

with that site. The correctness of the replicated queue (as well for other components of

SDD-1) relies on the assumption that a site that does not respond to a message is down.

This assumption is invalid in the presence of partitions and similar communication failures;

The Locus distributed operation system [Popek 81] implements replicated files and

directories that continue to provide service during partitions. Inconsistencies between

replicas in different partitions are allowed to develop, but application-dependent measures

are used to reconcile them when the partitions are rejoined. For example, a transaction in

one partition may observe that file a exists but file b does not, while a transaction in another

partition observes that b exists but a does not. Both tnes might be observed to exist after the

partitions are reconciled. The file system's state Is internally consistent, but it is not

compatible with the observations made by all committed transactions. This approach is

suitable for some applications, but not for others.

Wright (Wright 83] has developed a method for maki!1g progress in the presence of

partitions that-requires transactions to be placed in classes with fixed read and write sets. A

static analysis is used to determine which transactions classes can run in the presence of

particular partitions. Cycles of dependency are broken by allowing transactions to read

- 147 -

older versions of files. Unlike our scheme, in which a partition is detected implicitly when a

DM is unable to locate a quorum, this scheme requires an explicit mechanism for

determining the extent of a transaction's partition. Wright also discusses optimistic

methods, in which transactions are allowed to execute to completion. If inconsistencies are

revealed by an after-the-fact analysis, committed transactions are undone to restore a

consistent state. Like the approach taken by Locus, transaction classes and optimistic

methods are suitable for some applications, but not for others.

- 148 ·

Chapter Six

Conclusions

This thesis has proposed new techniques for managing replicated data in a distributed

system. We :assume that replication should be transparent: its only effect should be to

enhance availability in the preaence of failures. Our model of computation admits two kinds

of failures: communication interruptions and site crashes. We assume that these failures

can be detected, but not necessarily distinguished. Our techniques make use of an

underlying transaction system to help preserve invariant properties of the replicated data.

We have proposed techniques to address four problems associated with replication: the

representation and manipulation of replicated data, concurrency control; on-the-fly

reconfiguration, and techniques for increasing availability in the presence of partitions. A

summary of our results follows.

• We introduce a new type-dependent method for representing and managing
replicated data. A replicated data object is not represented by a collection of
copies; instead each site keeps a timestamped log of the operations that have
been applied to the object. By taking advantage of type-dependent properties
in the replication method itself, our method can realize a wider range of
availability properties than existing replication methods (Chapter Two).

• An analysis of the algebraic structure of the data type is used to derive
necessary and sufficient constraints on correct implementations, and hence
on realizable availability properties. This analysis technique is both systematic
and general. It is applicable to arbitrary data types, including types having
partial and non-deterministic operations (Chapter Two).

• Although our method permits replication and concurrency control to be
implemented independently, a higher level of concurrency can be supported If
the concurrency control method is integrated with the replication method. We
first propose a simple and efficient concurrency control method based on
predefined operation conflicts. This method is optimal for the amount of
information it uses: no concurrency control method based exclusively on
predefined conflicts can support a higher level of concurrency. Nevertheless,
the method has two disadvantages: because it does ~not take advantage of

- 149 -

state information, it is inherently limited in the level of concurrency it can
support, and it provides poor supp09 for partial operations (Chapter Three).

• To remedy these shortcomings, we also propose a more powerful concurrency
control method employing state information. This method is general: it can be
used to implement any concurrency control scheme that preserves
serializability, but at the potential cost of increased message traffic and
additional constraints on availability {Chapter Three).

• We present a reconfiguration technique that allows the availability properties
of replicated data to be changed dynamically. The ability to reconfigure incurs
a negligible cost when it is not used. When the object is actually reconfigured,
the technique imposes a cost in the form of a temporary period of increased
message traffic and reduced availability. A replicated reference counting
scheme is introduced to discard information rendered obsolete by
reconfiguration (Chapter Four).

• We also propose an extension to our method that increases availability in the
presence of partitions. This technique preserves serializability, but not
external consistency. It does not require explicit partition detection or static
transaction classes, it is independent of the concurrency control method, and
it imposes negligible costs when it is not used (Chapter Five).

Perhaps the single most important characteristic that distinguishes our work from most

earlier work in this field is that our techniques take advantage of type-specific properties of

the replicated data. The traditional approach to replication is to treat the data as an

uninterpreted file whose contents may only be read or written. While this approach is

capable of representing data of arbitrary type, we have seen that it places unnecessary

constraints on availability, concurrency, flexibility of reconfiguration, and tolerance of

partitions. The major contribution of this thesis has been the development of systematic and

general techniques for taking advantage of type information to derive more effective

replication methods.

- 150 ·

References
[Alsberg 76]

Alsberg, P. A., and Day, J. D., "A principle for resilient sharing of distributed
resources," in Proceedings, 2rid International Conference on Software Engineering,
October 1976.

[Bernstein 81]
Bernstein, P. A., and Goodman, N., "A survey of techniques for synchronization and
recovery in decentralized computer systems," ACM Computing Surveys 13,2, June
1981, 185-222.

[Bernstein 81]
Bernstein, P., Goodman N., and Lai, M.-Y., Two-part proof schema for database
concurrency control. In proceedings of the Fifth Berkeley Workshop on Distributed
Data Management and Computer networks, February, 1981.

[Bernstein 83]
Bernstein, P.A., and Goodman, N., "The failure and recovery problem for replicated
databases," Technical Report, Harvard University Center for Research in Computing
Technology

[Birrel 81)
Birrel, A. D., Levin, R., Needham, R., and Schroeder, M., "Grapevine: an Exercise in
Distributed Computing," Communications ACM 25, 14, April 1982, 260-274.

[Bloom 75]
Bloom, T., "Evaluating Synchronization Mechanisms," In Proceedings of the Seventh
Symposium on Operating Systems Principles, December, 1979.

[Chan82]
Chan, A., Fox, S., Lin, W. T., Nori, A., and Ries, D., .. The implementation of an
integrated concurrency control and recovery scheme," in Proceedings 1982 SIGMOD
Conference.

[Cox65]
Cox, D. R., and Miller, H. D., The Theory of Stochastic Processes, John Wiley and
Sons, New York, 1965.

[Daniels 83]
Daniels, D., and Spector, A., "An Algorithm for Replicated Directories," in
Proceedings, 2nd Annual Symposium on Principles of Distributed Computing, August,
1983.

- 151 -

[Dubourdieu 82]
Dubourdieu D. J., "Implementation of Distributed Transactions," in Proceedings, 1982
Berkeley Workshop on Distributed Data Management and Computer Networks 81-94.

[Eager83]
Eager, D., L., and Sevcik, K. C., "Achieving robustness in distributed database
systems," ACM Transadions on Database Systems 8,3, September 1983,354-381,
September 1983.

[Eswaren 76)
Eswaren, K.P, Gray, J.N; lorie, A.A., and Traiger, I.L., "The Notion of Consistency and
Predicate Locks in a Database System ... Communications ACM 19, 11, November 1976,
624-633.

[Gifford 79)
Gifford, D. K., "Weighted Voting for Replicated Data." In Proceedings of the Seventh
Symposium on Operating Systems Principles. December 1979.

[Gifford 82]
Gifford, D. K., "Information Storage in a Decentralized Computer System", Technical
Report CSL-81-8, Xerox Corporation, March 1982.

[Goodman 83]
Goodman, N., Skeen, D., Chan, A., Dayal, U., Fox, S, and Ries, D.,
algorithm for a distributed database system," in Proceedings,
SIGACT-SIGMOD Symp. on Principles of Database Systems, March, 1983.

[Gray78]

"A recovery
2nd ACM

Gray, J. N., Notes on database operating systems. in Operating Systems: an advanced
course, Vol. 80, Lecture Notes in Computer Science, Springer-Verlag, New York, 1978,
·393.,481,

[Guttag 78]
Guttag, J. V., and Horning, J. J., "The Algebraic Specification of Abstract Data Types,"
Acta lntormatlca 10, 1978, 27-52.

[Hammer BO]
Hammer, M. M., and Shipman D. W. "Reliability Mechanisms in SDD· 1, a System for
Distributed Databases", ACM Transactions on Database Systems 5,4, December 1980,
431-466.

[Johnson 75]
Johnson, P. R., and Thomas, R. H., "The maintenance of duplicate databases,"
Network Working Group RFC 677 NIC 31 &J7, January 1975.

- 152 -

[Kohler81]
"A survey of techniques for synchronization and recovery in decentralized computer
systems." ACM Computing Surveys 13,2, June 1981, 149-185.

[Korth 81]
Korth, H.F., A deadlock-free, variable granularity locking protocol. In proceedings of
the Fifth Berkeley Workshop on Distributed Data Management and Computer
networks, February, 1981.

[Kung 81)
Kung, H. T., and Robinson, J. T., "On optimistic methods for concurrency control,"
ACM Transactions on Database Systems 6, 2, June 1981, 213-226.

[Lamport 78)
Lamport, L., "Time, clocks, and the ordering of events in a distributed system,"
Communications ACM 21, 7, July 1978, 558-565.

[Lamport 78a]
Lamport, L., "The implementation of Reliable Distributed Multiprocess Systems,"
Computer Networks 2 i 1978, 95-114.

[Lamport 82]
Lamport, L., Shostak, R., and Marshall, P., "The Byzantine Generals Problem," ACM
Transactions on Programming Languages and Systems 4,3, July 1982, 382-401.

[Lampson 79)
Lampson, B., "Atomic transactions", Distributed Systems: Architecture and
Implementation, Lecture Notes in Computer Science 105, Goos and Hartmanis editors,
Springer-Verlag, Berlin, 1981, 248-265.

[Llskov82]
Liskov, B. H., and Scheifler R. W., "Guardians and Actions: Linguistic Support for
Robust, Distributed Programs." In Proceedings of the Ninth Annual ACM Symposium
on Principles of Programming Languages, ~nuary 1962, 7-19.

[Minoura 79]
Minoura, T., Owicki, S., and Wiederhold, G., "True-copy token scheme for a
distributed database system," Technical Report 83-60-1, Oregon State University
Computer Science Dept., July 1983.

[Minoura 79)
Minoura, T., Owicki, S., and Wiederhold, G., "Consistent Distributed Database State
Maintenance," Technical Report 83-60-2, Oregon State University Computer Science
Dept., July 1983.

- 153 -

[Minoura 82)
Minoura, T., and Wiederhold, G., "Resilient extended true-copy token scheme for a
distributed database system," IEEE Transactions on Software Engineering 8, 3, May
1982, 173-188.

[Moss81]
Moss, J. E. 8., "Nested Transactions: An · Approach to Reliable Distributed
Computing," Technical Report MIT /LCS/TR-260, MIT, 1981.

[Oppen 81)
Oppen, D., Dalal, Y, K., "The clearinghouse: a decentralized agent for locating named
objects in a distributed environment," Xerox technical report OPD-T8103, October,
1981.

[Papadimitriou 79]
Papadimitriou, C.H., "The serializability of concurrent database updates", Journal of
the ACM 26,4, October 1979, 631-653.

[Popek81]
Popek, G. J., Walker, 8., Chow, J., Edwards, D., Kline, C. Rudisin, G., and Thiel, G.,
"Locus: a network transparent high reliability distributed system," In Proceedings of
the Eighth Symposium on Operating Systems Principles, December 1981.

[Reed 78]
Reed, D. "Naming and synchronization in a decentralized computer system,"
Technical Report MIT /LCS/TR-205, MIT, 1978.

[Reed80]
· Reed, D. P., and Svobodova, L., SWALLOW: a distributed data storage system for a

local network. In Proceedings of the International Workshop on Local Networks.
Zurich Switzerland, August 1980.

[Reec:183]
Reed, D. "Implementing atomic actions on decentralized data," ACM Transactions on
Computer Systems 1, 1, February 1983, 3-23.

[Schlichting 81]
Schlichting R. D., and Schneider, F. 8., "An approach to designing fault-tolerant
computing systems," ACM Transactions on Computer Systems 1,3, August 1983,
222-238.

[Skeen.82]

Skeen, M. D., "Crash Recovery in a Distributed Database System," Memorandum No.
UCB/ERL M82/45, University of California, Berkeley, May 1982.

- 154 -

[Stonebreaker 79]
Stonebreaker, M., "Concurrency control and consistency of multiple copies of data in
distributed INGRES," IEEE Transactions on Software Engineering 5,3, May 1979,
188-194.

[Thomas 78]
Thomas, R. H. "A solution to the concurrency control problem for multiple copy
databases," in Proc. 16th IEEE Comput. Soc. Int. Cont. (COMPCON), Spring, 1978.

[Weihl 83]
Weihl, W., and Liskov, B., "Specification and implementation of resilient, atomic data
types", In Proceedings, SIGPLAN Symposium on Programming Language Issues in
Software Systems, June, 1983.

[Weihl83a)
Weihl, W., "Data-Dependent concurrency control and recovery," in Proceedings, 2nd
Annual Symposium on Principles of Distributed Computing, August, 1983.

[Weihl84]
Weihl, W., "Specification and implementation of atomic data types," Ph.D. Thesis, in
preparation.

[Wright83]
Wright, D., D., "Managing Distributed Databases in Partitioned Networks," Technical
Report 83-572, Cornell University, Ithaca, New York, September 1983.

-- - ------------------------

