
A Formal Model of Non-determinate Dataflow Computation

Signature of Author

Certified by

Accepted by

by

Jarvis Dean Brock

A. 8., Duke University
1974

S. M., E. E., Massachusetts Institute of Technology
1979

Submitted to the Department of
Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for

the Degree of

Doctor of Philosophy

at the

Massachusetts Institute of Technology

August, 1983

© Massachusetts Institute of Technology, 1983

Department of Electrical Engineering and Computer Science
August 23, 1983

Jack B. Dennis
Thesis Supervisor

Arthur C. Smith
Chairman; Departmental Graduate Committee

-,4-

Table of Contents

Acknowledgments · 3

1. Introduction .. : 5

2. Dataflow Graphs and Languages ... 11

2.1 Dataflow Streams ..•............................ 13
2.2 A Non-determinate Dataflow Operator ... 16
2.3 Operational Semantics 17

3. Scenarios: A Model of Non-determinate Computation 19

3.1 Fixed Point Semantics for Determinate Networks 21
3.2 Fixed Point Semantics for Non-determinate Computation 24
3.3 The Incompleteness of History Relations ... 33
3.4 Scenarios: An Informal Introduction .. 41

4. The Dataf low Graph Algebra 49

5. The Seen a rio Set Algebra 54

5.1 Operators of the Scenario Set Algebra ... 56
5.2 Generators of the Scenario Set Algebra ... 62
5.3 Operational Consistency ... 64

6. Conclusion ... 69

References ... 75

Biog rap hie Note 79

-10 -·

prove that scenario sets are an abstract representation of non-determinate dataflow networks.

In the conclusion of this thesis, we discuss Pratt's [37] recent generalization of the scenario

model and also enter the ongoing fairness "controversy" by observing the apparent immunity of

the scenario composition rules to the "problem" of the fair merge. Finally, some open problems

for future research are staled.

-12-

Figure 2.1.· An example dataflow graph

through the graph.

Many high-level, algorithmic languages [2, 5, 12, 29) have been designed for the specific

task of programming dataflow computers. These languages are quite conventional in appearance

and would not frighten the average programmer. Perhaps the most "radical" action of dataflow

language designers has been the banishment of side effects, an action increasingly appreciated

for its role in simplifying programming language semantics (42}. Readers interested in learning

-14-

Dataflow graphs exhibiting history-sensitive behavior may be constructed by joining stream

operators together with feedback, that is, in cycles. In Figure 2.2, a graph which receives an input

stream and produces an output stream whose n'th value is the sum of the first n input values is

drawn. Interconnections with feedback can be adapted to a wide range of history-sensitive

computations, including those as complicated as the interaction of a computer system with

terminal input and output streams.

Although we have only discussed how streams are used in dataflow languages,

conventional programs with input/output primitives causing side effects can also be considered

to generate streams. The first use of streams for parallel computation was Kahn's [22] "simple

language for parallel programming." In this language, processes were written in an Algol-like

language with two primitives, get and put, for reading input from and writing output to process

channels. The cons stream operator may be written in language very similar to Kahn's as:

Figure 2.2. A history-sensitive dataflow graph

0

-18-

The operational semantics of dataflow graphs is a global state model of computation.

Because operators may be widely distributed physically and because firings may occur

concurrently, it will in general be impossible actually to observe an executing graph performing a

discrete state transition or even to determine the state of a graph. However, although firings may

be concurrent, they may never conflict (because operator input links are disjoint), and for that

reason token-pushing is a faithful representation of dataflow execution.

In the succeeding chapters of this thesis, we will use token-pushing as a standard to

measure other, more abstract, models of non-determinate computation. We will only invoke

token-pushing informally- to derive the result of executing a dataflow graph so that the actual

result may be compared with those predicted by other models. Although formal properties of

token-pushing will never be used, nonetheless an intuitive understanding of an operational

semantics of parallel computation is essential for the appreciation of the more abstract ones.

-22-

and put operators is determinate, and consequently any network of such processes is also

determinate. Kahn [22] used the fixed point methods of Scott [39, 41, 42] to define semantically

the results of executing the networks generated with his programming language.

Any determinate process (operator, network, or even graph) P may be modeled by its

history function ~«PD, When X is the tuple of histories presented on the input ports of P, ~llPD(X)

will be the tuple of histories produced at the output ports of P.

In Chapter 2, we presented a network Sum whose n'th output was the sum of its first n

inputs. In Kahn's language Sum was defined as:

network Sum in (IN) out (OUT) internal (X)

X t- cons(0, OUT)

OUT t- plus(IN, X)

end Sum

The two component processes of Sum have the following very simple history functions:

gffconsD(A, Y) = A

gffconsD(x X, Y) = x Y

gff plusD (A, Y) = A

~ffplusD (X, A) = A
~ff plusD (x X, y Y) = x + y gff plusD (X, Y)

A is the empty history

x, y are single values

X, Y are arbitrary (possibly empty) sequences of values

By replacing each process name within a network definition with its history function, a set of

simultaneous equations is constructed:

X = gff consD(0, OUT)

OUT = gffplusD(IN, X)

When the value of the input history IN is fixed, the least fixed point (solution) of the set of

equations gives, as the value of OUT, the output history generated by executing Sum with input

history IN. Thus may the history function of Sum be determined.

-34-

Figure 3. 1. Keller's Example (with slight modification)

{5}

{6}

{5 6}

{5}

of course, accept Keller's ultimate conclusion; however, we believe that his anomaly

demonstrates at most that history relation interconnection rules which ignore causality fail. It

does not show that the necessary causality relations cannot be inferred from history relations by,

for example, requiring that later output of a merge does not "rewrite" earlier output.1 Keller

shows there are no easy interconnection rules for networks characterized by history relations.

We show there are no interconnection rules.

1. There are several subalgebras of data flow graphs which exhibit Keller's merge anomaly but
which are amenable to analysis by history relations. A very simple one, consisting of only
two-input two-output graphs, may be constructed using a single non-determinate dataflow

· operator computing plus 1 ° first O merge at both output ports (always the same value on both,
that is, the output values are not separately computed) and a single graph interconnection rule of
composing two graphs by placing them side-by-:-side and then connecting the rightmost ports of
the left graph to the leftmost ports of the right graph.

-35-

Let S1 and S2 be the graphs shown in Figure 3.2. Syntactically, S1 and S2 may be written:

Sk(X, Y) = Pk(merge(D(X), D(Y)))

D, P1, and P2 are all determinate processes which produce at most two output values. Process D

produces two copies of its first input value. In Kahn's [22] language, it may be written as:

process D In (IN) out (OUT)

x .- get(IN)

put x on OUT

put x on OUT

end D

Both P 1 and P 2 allow their first two input values to pass through themselves as their first two

output values. However, P1 will produce its first output as soon as it receives its first input, while

P 2 will not produce any output until it has received two input values. In Kahn's language P 1 and

P 2 may be written as:

Figure 3.2. Sk fork E {1, 2}

D D

process P 1 in (IN) out (OUT)

x +- get(IN)

put x on OUT

y +- get(IN)

put yon OUT

end P1

process P2 in (IN) out (OUT)

x +- get(IN)

y +- get(IN)

put xonOUT

put yon OUT

endP2

-36-

As history functions these three processes may be specified as:

D(A) = A

D(x Z) = X x

P1(A) = A
P1(x) = X

P1(X y Z) = X y

PiA) = A
P2(x) = A
P2(X y Z) = x y

A is the empty history

x and y are single values

z is an arbitrary (possibly empty) sequence of values

Despite the difference between P 1 and P 2, networks S1 and S2 have the same history

relation representation. Neither network produces any output unless it receives some input.

Suppose Sk receives the input stream x X at its leftmost input port and no input at its rightmost

port. Then the leftmost D process will produce the output history x x, while the rightmost D will

produce nothing. The streams x x and the empty stream will be merged into the stream x x.

Regardless of.whether Skis S1 or S2, process Pk (P1 or P2) will receive x x, two input values, and

-38-

Figure 3.3. Tk fork E {1, 2}

operator, to the rightmost input port of Sk. In Kahn's language, this interconnection may be

specified as:

network Tk in (IN} out (OUT} internal (X)

X +- times5(OUT}

OUT +- Sk(IN, X}

end Tk

If history relations are an adequately detailed model of non-determinate dataflow

computation, then networks T 1 and T 2 should have the same history relation as all their

corresponding components do. However, this is not the case, as can be seen by simulating the

execution of these two networks on the input history consisting of the single input one. In

Figure 3.4 we have "removed the cover" from Sk and have reproduced T k with the Internal

components of Sk clearly shown. Let us now examine all possible computations of first T 1 and

-39-

Figure 3.4. Tk fork E {1, 2} (exploded)

I;- -
Tk

- - - - - - --- __ - - - - -,
I
I

I

I

I
I

I
I

I

I
I
I

I
I

I

1 s-:
, _.,.___

I
D

I

I
I

I
I
I
I

I
I

I
I

I _I-----

1

I
I

D

-7
I
I

I
I

I
I
I

I

I
I

I
I

I

I

I

I
I
I

I
I

I

I
I
I

I
I
I
I
I

I
I

I __ , ________ ___,

-47-

In Figure 3.1 O, the value-consistent pairs for T 2 are illustrated both with and without the

merging of the connected ports. However, note that now only one of the merged value-consistent

pairs is causality-consistent. In the other we see a cycle (between the one in Sk's output and the

five in Sk's rightmost input). The scenario composition rule correctly reflects the fact that 1 1 is

the only response of T 2 to the input history 1.

In the beginning of this chapter, we mentioned faithfulness, abstraction, and simplicity as

three goals of a semantic theory. With scenarios, faithfulness to the underlying operational model

results from the manner in which the scenario causality relation reflects the causality implied by

the firing sequences of the operational model. In Chapter 5 we shall make a more formal

assertion of this claim. We have shown that no semantic theory for non-determinate dataflow

computation can be as abstract as history relations, the pure input/ output behavioral

specification for this class of computation. However, scenarios are not so far from this

Flgu re 3.1 O. Value-consistent Pairs for T 2'1)

T2: 1 - 11
S2: (1, 5 5) - 1 1
times5: 1 1 - 5 5

without port merging

1-->5

! !
5 1 1--+5 25

with port merging

T2: 1-+ 1 5

S2: (1,525) -15
tlmes5: 1 5-+ 5 25

5

-48-

unattainable goal. They are just history relations augmented with a notion of causality. The most

striking advantage of the scenario model when compared to other proposed models of

non-determinate dataflow computation must be the simplicity of its composition rule. Scenario

composition does not require the solution of complicated fixed point equations over complicated

mathematical domains. Scenarios can be composed with no more complicated mathematical

machinery than the knowledge of partial orders.

-51-

Figure 4.2. Port relabeling [•,6•]

, I
' I \J

F[a,6.B] , J ' I "
F

a
' I I I I I

p
w " w

The third, and final, dataflow graph operation is port connection. Port connection [•-0 •],

like port relabeling, is a unary operator and is also an operator schema. The port connection

operator [a-all] can be applied only to graphs G with an output port a and an input port fl. The

graph G [a-all], illustrated in Figure 4.3, is formed by connecting output port a to input port fl.

The connected ports become internal 1 to the new graph and may never play any role in future

graph interconnections. Thus lnport(G [a-cJJ]) = lnport(G) - {,8}, and Outport(G [a-all]) =

Outport(G)- {a}. The connection of an output port to two or more input ports is accomplished

by the explicit use of determinate fan-out operators.

Obviously it is quite tedious to build up a graph with these operators. In Figure 4.4 a simple

three-operator dataflow graph for computing the dot product of two two-element vectors, (x
0

, yJ

and (x
1

, y
1
), is shown and described in our algebraic notation. We assume that each of the three

1. "Restricted" in the Milne-Milner [30] terminology.

-52-

Figure 4.3. Port connection [•-+0 •)

F [a-+o/1)

F

dataflow operators has input ports labeled ln
1

and ln
2

and an output port labeled Out
1

and that

each input port of the assembled graph should be labeled by the appropriate variable name and

the graph output port should be labeled Result. This rather straightforward interconnection

requires no less than thirteen applications of our operators. However, since we are only

concerned with developing a basis for the formalism of the succeeding chapter, the wordiness of

our notation is of little concern.

-53-

Figure 4.4. Two-Element Dot Product

Result

(times [ln
1

i x
0

] [ln
2

1c, x
1

] [Out
1

1c, Op,Out,] IIG

times [ln
1

la y
0

] [ln
2

la Y,] [Out, la Opput,] IIG

plus [ln
1

la Op)n
1

] [ln
2

i Op
3
1n) [Out, i Result])

[Op
1
0ut

1
-G Op)n) [Opput

1
-G Op)n

2
]

-55-

In Figure 5.1, the scenario for the merge with input history tuple <5 6, 7> leading to the

production of the output sequence 5 7 6 is illustrated. Assuming that the merge has input port

labels In, and ln
2

and output port label Out,, the scenario of Figure 5.1 is represented by the triple

<E, V, C> where:

E = { <tn,, 1>, <tn,, 2>, <ln2' 1>, <Out,, 1>, <Out,, 2>, <Out,, 3>}

V((/n
1
, 1)) = 5

V((/n
1
, 2)) = 6

V((/n2' 1>)=7 V(<Out,, 1 >) = 5
V(<Out,, 2)) = 7
V(<Out,, 3>) = 6

C is represented in Figure 5.2 as a Hasse diagram, the usual pictorial

representation of a partial order. When this relation is enumerated as a subset

of EXE, it contains sixteen ordered pairs.

Figure 5.1. One Scenario for merge(5 6, 7)

Figure 5.2. Hasse Diagram for a merge Causality Relation

-59-

Figure 5.3. Antisymmetry: Cases 2 and 3

<y, m> <8, n>

<P, q> <a, q>

Figure 5.4. Antisymmetry: Case 4

<y, m> <8, n>

<P, p>

l
<P, q> <a, q)

Now only the proof of transitivity remains to establish that c• is a partial order.

Suppose <y, m>, <8, n>, and <e, o> are elements of E such that <y, m> c• <8, n>
and <8, n > c• <e, o >. Once again, from the definition of c•, we have four cases,

the product of the following two: (1), either <y, m> C <8, n> or there is an

element <a, p> in E such that <y, m> C <a, p> and <{J, p> C <8, n>; and (2),

either <8, n> C <e, o> or there is an element <a, q> in E such that <8, n> C <a, q>
and <P, q> C <e, o>.

If <y, m> C <8, n> and <8, n> C <e, o> then <y, m> C <e, o>, and thus

<y, m> c• <e, o>, by the transitivity of C.

Once more, we shall look at only one of the two remaining cases in which the

events of one pair are directly related through C. Suppose <y, m> C <8, n> and

there is an <a, q> in E such that <8, n> C <a, q) and </J, q> C <e, o>. This case

is illustrated in Figure 5.5. As <y, m> C <8, n> and <8, n> C <a, q> then, by

transitivity, <y, m> C <a, q> and, from the definition of c•, <y, m> c• <e, o>.

Although not required for our proof, it's worth noting that the restrictions on

inter-port causality relations imposed by scenarios imply that 8 must be either y

ora.

For the last case of the last property of a partial order, assume that there exist

events <a, p> and <a, q> such that <y, m> C <a, p> and </J, p> C <8, n>, and

<8, n> C <a, q> and </J, q> C <e, o>. Furthermore, without loss of generality,

assume that q is at least as great asp and, consequently, that <a, p> C <a, q> as

shown in Figure 5.6. Then from <y, m
1
> C <a, p>, it follows that <y, m> C <a, q>

and, in turn, that <y, m> c• <e, o>. Again, it's worth noting that the inter-port

causality relation restrictions force 8 to be either a or p.

Having proven that c• is a reflexive, antisymmetric, and transitive relation, we

have established that c• is a partial order.

Figure 5.5. Transitivity: Cases 2 and 3

<y, m>

~
<8, n>

\
<P, q> <a, q>

<e, o>

-61-

Figure 5.6. Transitivity: Case 4

<-y, m>

<P, p> (a, p)

~
<8, n>

\
<P, q> (a, q)

<e, o>

The a-/J connection relation is not only a partial order but also the smallest partial order

which extends C and relates events at output port a to corresponding events at input port p. This

fact is important to note as it makes our formal definition of scenario composition consistent with

the informal one of Chapter 3.

Given an a-P connection relation c• of a scenario sets, it is straightforward to construct a

corresponding scenario for S [a-+sP] by "removing" the histories for a and p. The following

theorem, an easy consequence of the preceding lemma, states more precisely how this is

accomplished.

-68-

G [a-Jl]. Thus there are firing sequences in G [a-all] for every scenario in S [a-sfl]. With

both cases satisfied, the operational faithfulness of scenario sets is established.

The operational faithfulness of scenarios rests in their ability to incorporate physical

causality in system representation. Firing sequences also represent this causality, but in doing so

they include inter-port causalities other than those from input to output ports even though such

causalities cannot be detected when dataflow graphs are connected through unbounded,

time-independent communication channels. By omitting these unobservable causalities, we are

able to develop an abstract, but nonetheless faithful, model of non-determinate dataflow

computation.

-74-

non-determinate computation the situation is quite different: high-level constructs for the

problems of this area have only recently begun to appear. Non-determinate dataflow languages

seem to offer some advantages relative to non-determinate languages with a more conventional

shared-memory multi-processing orientation; for example, with streams it is possible to write

programs which exhibit state without side effects. However, through the merge anomaly we have

already shown that the unconstrained interconnection of processes can result in unexpected

semantic complexity even in the seemingly simple dataflow approach to inter-process

communication. Maybe this particular complexity is unavoidable; maybe it is not. A semantic

theory may not reveal how to avoid complexity, but at least it will reveal complexity.

-78-

(38] Rounds, W. C. and S. D. Brookes, "Possible Futures, Acceptances, Refusals, and
Communicating Processes", Proceedings of the Twenty-second Symposium on
Fo~ndations of Computer Science, October 1981, 140-149.

(39] Scott, D.S., "Data Types as Lattices", SIAM Journal of Computing 5, 3(September 1976),
522-587.

(40] Smyth, M. 8., "Power Domains", Journal of Computer and System Sciences 16,
1 (February 1978), 23-36.

[41] Stoy, J.E., Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory, MIT Press, Cambridge, Massachusetts, 1977.

(42] Tennent, R. D., "The Denotational Semantics of Programming Languages",
Communications of the ACM 19, 8(August 1976), 437-453.

(43] Wadge, W.W., "An Extensional Treatment of Dataflow Deadlock", Theoretical Computer
Science 13, 1(January 1981), 3-15.

(44] Weng, K.-S., Stream-Oriented Computation in Recursive Data Flow Schemas, Laboratory
for Computer Science (TM--68), MIT, Cambridge, Massachusetts, October 1975.

