
MIT/LCS/TR-252

REX:OVERY OF THE SWALIDW REPOSITORY

Gail C. Arens

This blank page was inserted to presenie pagination.

Recovery of the Swallow Repository

Gail C. Arens

January 1981

© Gail C. Arens 1981

The author hereby grants M.I.T. permission to reproduce and to
distribute publicly copies of this thesis document in whole or in part

This research was supported by the Advanced Research Projects Agency of the Department
of Defense and was monitored by the Office of Naval Research under contract number
N00014-75-C-0661.

Massachusetts Institute of Technology
Laboratory for Computer Science
Cambridge, Massachusetts 02139

2

Recovery of the Swallow Repository

by

Gail Arens

Submitted to the
Department of Elect"ical Engineering and Computer Science
on January 26, 1981 in partial fulfillment of the requirements

for the Degree of Master of Science

Abstract

This thesis presents the design of a set of recovery mechanisms for Lhe Swallow repository.
Swallow is a distributed data storage system that suppons highly reliable long term storage
of arbitrary sized data objects with special mechanisms for implementing multi-site atomic
actions. The Swallow repository is a data storage server that keeps permanent data in write
once stable storage such as optical disk.

The recovery mechanisms provide on-line recovery for the repository's internal data, as the
repository proceeds with its normal operations. In this way, users that wish to access any
data that was not affected by the crash can do so while the damaged data is being recovered.
Included in the repository's recovery mechanisms are recovery epochs and checkpoint
epochs, which facilitate the detection of damage to the data and minimize the amount of
recovery that is necessary. Also included are specialized hash table algorithms that are
immune to repository failures. In addition to describing these mechanisms, this thesis
discusses how they support the global recovery mechanisms of Swallow and analyzes how
they will affect the repository's general performance.

Key Words: distributed data storage system, hash table, recovery, optical disk
computer system reliability

3

Acknowledgments

There are many people who were looking out For my interests throughout my two and a

half years at M.I.T. Since I cannot thank them all individually, let this b~ a general thank

you to all those people who arc not mentioned below.

I would like to thank my thesis ~upcrvisor, Professor Recd, for all of he guidance and

assistance he provided throughoiit the development aij4 · preparation of this thesis.

Whenever I encountered a problem, no matter how insigwficamt. he was always willing to

help resolve it. His suggestions and criticisms were extremely helpful 111 solidifying the

ideas presented in this thesis.

In addition, I would like to express my gratitude to Frank Vallese, not only for his

patience in reading early drafts or this thesis and helping me to express my 'ideas in a more

coherent fashion, but also for being a tme friend.

Thanks are also due to all of the members of the. Swallow design group, in particular,

Professor Svobodova, Dan Theriault and Karen Sollins, who have aided me in my work

through numerous discussions or the various ideas related to this thesis. Furthermore, I

would like to extend my \hanks to Professor Saltzer, who provided the encouragement I

needed when I first came to M.I.T.

Finally, 1 would especially like to thank my parents for the inspiration and guidance they

gave me throughout my entire academic career, and would like to thank Jim Chadwick for

his constant moral support

4

To the memory of my brother, Jesse.

5

This empty page was substih,ted for a
blank page in the original document.

Table of Contents

Chapter One: Introduction

1.1 Related Work
1.2 Goals for Repository's Recovery
1.3 Outline of Thesis

Chapter Two: Overview of Swallow

2.1 Swallow Mechanisms
2.2 Swallow Protocols

2.2.1 Swallow Message Protocol
2.2.2 Request/Response Protocol
2.2.3 Atomic Action Protocol

2.2.3.1 Begin Atomic Action
2.2.3.2 Create Object
2.2.3.3 Delete Object
2.2.3.4 Modify Object
2.2.3.5 Read Object
2.2.3.6 End Atomic Action

2.3 Reliability Requirements for Individual Repositories
2.3.1 Data Integrity
2.3.2 Atomicity of Requests

2.4 Summary of Problems Caused by Failure of a Swallow Node

Chapter Three: Management of Data within the Repository

3.1 Objects
3.2 Commit Records
3.3 Messages
3.4 Global State
3.5 Overview of Storage Organization
3.6 Version Storage
3.7 State Storage
3.8 Object Header Storage

Chapter Four: Recovery of the Repository

4.1 Recovery of Objects
4.1.1 Merged and Cyclic Hash Table Chains

6

10

13
15
16

18

18
23
24
25
25
27
27
29
29
29
30
31
31
31
32

34

34
36
37
38
39
41
45
47

57

57
58

4.1.2 A Modified Set of Hash Table Algorithms
4.1.3 Obsolete, Lost and Duplicated Object Headers
4.1.4 Recovery of Lost and Obsolete Object Headers
4.1.5 Recovery Epochs
4.1.6 OHS Checkpoint Epochs

4.2 Recovery of Commit Recorcs
4.3 Recovery Manager
4.4 Justification for Lack of Recovery of Pending Messages
4.5 Summary

Chapter Five: Evaluation of Recovery Mechanisms

5.1 Cost of Recovery Manager
5.2 Cost of Checkpoint Manager
5.3 Average Cost of Recovery Pt !f Request
5.4 Comparative Cost of Another Type of Recovery
5.5 Summary

Chapter Six: Conclusion

6.1 Summary of Original Goals
6.2 Future Work
6.3 Generalizations

1

69
72
76
77
79
84
85
90
94

95

95
100
104
107
113

114

114
115
116

Table of Figures

Figure l·l: Configuration of Swallow
Figure 2-1: Example of an Object History
Figure 2·2: Creation of a New Version as Described by Reed
Figure 2·3: Creation of a New Version in Swallow
Figure 2·4: Repository Requests and Responses
Figure 2-5: Representation of A Distributed Commit Record
Figure 3-1: Structure of an Objlct Within the Repository
Figure 3-2: Structure of a Comnit Record within the Repository
Figure 3·3: Structure of a Create-Token Mes.sage
Fi1!ure 3-4: Storage Classification
Figure 3-5: Simple and Structured Versions
Figure 3-6: A Representative Hash Table Page
Figure 3-7: Initial State of Pages C and D
Figure 3-8: Page C After Ohl2 is [nserted
Figure 3-9: Page D After Oh77 is [nserted
Figure 3-10: Page C After Oh34 is Inserted
Figure 3· 11: Page D After Oh37 is Deleted
Figure 4· I: A Merged Chain
Figure 4·2: Pages A and B Before Insertion ofOh5
Figure 4-3: Correct Insertion ofOh5
Figure 4-4: Merged Chain with Jnterleaved Buckets
Figure 4-5: A Cyclic Chain
Figure 4-6: Pages A and B Before Cycle was Created
Figure 4-7: Deletion of Ohl
Figure 4-8: Deletion of Ohl0l
Figure 4-9: Insertion of Oh65
Figure 4·10: Insertion of Ohl05
Figure 4-11: Pages A, Band C Before Oh27 is Inserted
Figure 4·12: Pages A, Band C After Oh27 is Inserted
Figure 4-13: Pages A and B Before Oh81 is Inserted
Figure 4-14: Pages A and B After Crash
Figure 4·15: Separation of A Merged Chain
Figure 4-16: Pages A, 8 and C After Insertion ofOh81
J<'igure 4-17: Pages A, B m1d C Before Oh 66 is Inserted
Figure 4-18: Correct Insertion ofOh66
Figure 4·19: Pages A, Band C After Crash
Figure 4-20: Recovery Epochs In VS
Figure 4-21: Checkpoint Tables In VS

8

11
21
22
22
26
28
35
36
38
39
43
49
50
52
53
53
54
60
60
61
61
62
63
64
64
65
65
67
67
68
68
73
73
74
75
75
79
82

Fi~urc 4-22: No Checkpoint L1try for Object A
Figure 4-23: ll,111dling or Rclrnnsmittcd Rcqucst5
Figmr: 5-1: Request Distribution
Figure 5-2: Exlrapolarcd Values for Variables in Cost Equations

9

83
91

107
108

Chapter One

Int reduction

As network communications bcwme faster and cheaper it becomes more praclical for a

single computer, or node, in a distributed computing network Lo maintain only the resources

that it can afford to dedicate, and tf, obtain all other resources that it may need from other

nodes thal provide them through th,~ network. In this way, the 11etwork provides the benefit

of economy of scale through sharin1;. Long term storage and printing devices are examples

of resources that may be shared throughout the network. The nodes that provide the

resources are called servers while the nodes that share and utilize these resources are called

clients.

Swallow [16], being developed at M.I.T., is an integrated system of servers that provides

reliable, secure and efficient storage for clients throughout a network. The components of

Swallow are repositories, authentication servers and brokers. A repository is a server that

provides very reliable storage for client data in Swallow. It is a processor that is connected

to a configuration of storage devices. An authentication server acts as intermediary to ensure

that all communications within Swallow are secure.1 A broker is a module in the client node

that acts as an interpreter for client requests. It mediates interactions between the clients

and servers in Swallow. Figure 1-1 shows the general configuration of Swal1ow in

relationship to its clients.

Swallow has several basic features. First, it provides extremely reliable storage. Thus, the

probability that any client objects will ever be lost is near zero. Second, Swallow enables the

clients to perform any number of accesses (read and write) on an arbitrary set of objects as a

single, indivisible (atomic) operation. Third, Swallow protects all objects from unauthorized

1The authentication server is not direclly relevant to this thesis so it will not be discussed any further. All
future references to the components of Swallow include only brokers and repositories.

10

B = broker AS = authentication server
R = repository

AS

R

Cliont
Network

R

Fit~urc 1-1: Con figuration of Swallow

11

access, using encryption-based mechanisms. Fourth, Swallow, provides a unifonn interface

for accessing the objects, which may be distributed over a local node and/or several remote

repositories. In effect, the clients can specify where they would like each object to be stored,

but need not remember the location in order to access the object. Finally, Swallow supports

objects of any size, and in particular, very small objects. Thus, Swallow gives the client
.

flexibility in structuring and managing its data, since each object is treated as a separate

entity with respect to protection and synchronization as well as with respect to storage and

retrieval.

In order to provide these features, Swallow must preserve consistency between all related

client data (which may be distributed over several nodes). For ex~mple, suppose an

appointment scheduling system is a clielll of Swallow that sets up meetings between people

by reserving time slots in their personal calendars. Regardless of where these personal

calendars are stored (i.e., in one or more repositories), Swallow must ensure that the

calendars are always consistent with one another. In other words, if, as the scheduler is

modifying 2 calendars (in order to set up a meeting), the repository in which one (or both)

calendar is stored crashes, then either both calendars should reflect the appointment or else

neither calendar should reflect the appointment. The state of these 2 calendars, in which

only one of them is modified, is internal to Swallow and should never be exposed to the

appointment scheduler or any other client that accesses the calendars. Swallow ensures this

consistency between related client data by providing a standard set of protocols for all

interactions between the brokers and servers, as well as for global recovery. The underlying

mechanisms for these protocols and global recovery are based on those developed by Reed

(14, 15].

In order for the Swallow protocols and global recovery to be effective, all repositories in

Swallow must survive both their own failures and those of other Swallow nodes. This

means that all data stored wilhin a repository must remain internally consistent, regardless

of any errors that may occur due to an internal failure or the failure of another node. For

example. within the repository, an object consists of an object header plus the object, itself.

Jn order to update a single object, the repository must modify both the object header and

12

the object as well as a commit record, which is used to synchronize accesses to the object

Thus, even if the repository crashes in the midst of making these changes, the repository

lllUSt recover itself to a state in which the object header, object and commit record are

consistent with each other, that is, either the state before the update began or the state after

the update is completed. In addition, the internal recovery of the repository must support

the global recovery mechanisms developed by Recd [14, 15], which restore all related client

objects commit records to a consistent state.

This thesis provides the internal ncchanisms by which the repository restores its internal

state, and integrates these internal mechanisms with the general recovery mechanisms of

Swallow in order to show that the recovery of the repository is complete.

1.1 Related Work

WFS [19]. Juniper [6] and CFS [l] are other systems that are comparable to Swallow.

Each system provides long-term storage in a distributed computing network, but does not

have all of the same basic features a$ Swallow (described on page 10).

WFS was designed to be a more primitive storage system than Swallow. It is a single file

server as opposed to a collection of one or more of various types of servers, as in Swallow.

Unlike Swallow, WFS does not provide a uniform interface to any data distributed over the

local node and the remote file server nor does it restrict access to the data and ensure secure

communications. Also, Swallow provides access to objects of any size that do not have to be

viewed as standard "files", and provides atomic actions for any arbitrary set of these objects.

WFS, on the other hand, provides page level access to files and only ensures atomicity of

operations that arc executed on a single page (although a system that runs at the client node

to provide atomic actions for mulliple page and multiple file operations can coexist with

WFS [11)).

Juniper is more like Swallow in that it is a distributed data storage system (consists of

more than one data storage server) and enables the client to perform atomic actions over

multiple data objects at multiple sites, but it still does not have all of the features that

13

11

Swallow has. First, Juniper does not provide a uniform interface to data distributed over

the local and remote nodes, or to any other types of servers (eg., authentication server).

Thus, in order to obtain additional but related services, the client must interface with a
different system. Note, though, that plans are in the works to make a system, the Cedar file

system, that uses Juniper as a component in a system of structure similar to Swallow.

Second, although Juniper provides access to arbitrary sequences of bytes, it does not

provide atomic actions for multiple arbitrary sequences of bytes, as does Swallow. In

Juniper, the smallest unit that can be treated as a separate entity with re~pect to an atomic

action, is a page. This means that ,-tomic actions can onfy be perfonncd ,)n multiple pages

within a file or throughout several files. In other words, two unrelated data units stored

within the same page cannot be accessed in different atomic actions exe,:uted at the same

time.

The Carnegie-Mellon Central File System project (CFS) is similar to Swallow in that it is

a collection of various types of servers that cooperate in order to provide a single, coherent

system. Also, CFS makes the location of the data distributed over the local and remote

nodes transparent to the clients, as does Swallow. However, the types of servers are not the

same in CFS as those in Swallow, and furthermore, the capabilities provided by each system

as a whole are quite different. The most fundamental dilTerence between CFS and Swallow

lies in the amount of flexibility the client is given for structuring his data (It is the same

fundamental difference that exists between Swallow and both WFS and Juniper). Swallow

supports arbitrarily small objects and allows the client to access these objects in whatever

t:1Shion suits the particular application. CFS, on the other hand, , .forces the client to

structure and access his objects within the confines a file system. Thus, Swallow provides

separate protection for every object whereas CFS only pmvides protection for files a whole.

Furthermore, Swallow provides synchronization for accesses to any arbitrary set of objects

(lacking any file stmcture, within a single file, or within several files) whereas CFS only

provides synchronization for access to arbitrary sets of objects within a single file.

The only similarities that exist between the internal recovery for the data storage server in

WFS, Juniper, or CFS, and that described in this thesis for the Swallow repository, are that.

14

aU of these servers perform their internal operations atomically and maintain any

information diat is deemed integral to the recovery process in atomic stable stor.ige (except

for WfS, whjch does not support any sLabl~ storage). In all other respects, the recovery

mechanisms for the SwaUow repository differ from those in the storage servers of WFS.

Juniper and CFS. Some noted differences are the following. First. the Swallow recovery

mccl1.misms that Jhe repository's internal recovery mechanisms must support are based on

mechanisms developed by Reed [14, 15] whereas the other system's global recovery

mechanisms ure based on other mech~•nisms (8, 5}. Second. the Swallow repository is the

only storage server that uses optical disks as sccovdary storage. Thus, in Swallow

repositories, optimizations in time efficiency arc made at the expense of space efficiency,

since physical storage is cheap. Finally. the Swallow repository is the only server with

append only storage. These, and other differences in the structure and function of the

storage servers and the systems as a whole, lead to different requirements for internal

recovery of the storage servers, thus, resulting in a unique set of internal recovery

mechanisms for the Swallow repository.

1.a GoaJ& for Repository's Recovery

The repository's internal recovery mechanisms that are presented in this thesis were

designed with certain goals in mind. The first and most important goal was to ensure that

the recovery mechanisms return the repository to a state in which its data {client objects.

commit records, and object headers) are both iJ1ternatly and externally consistent2 from

both the clients as well as the Swallow components' perspectives. This is such an important

goal because, as stated before, ·the general Swallow mechanisms and protocols are based on

the assumption that the repositories function prop~rly regardless of failures.

The second goal was to decrease the apparent mean time to repair by minimizing the

recovery that has to be done immediately after the repository crashes. Since clients store

2Inlernal consislency refers lo the consistency between all related data that is fully contained within the
repository. El(Lemal consistency refers to all related data thal is distributed over several repositories.

15,

information in the repositories that they require in order to carry on their regular activities,

it is important to minimize the delay that they experience due to a crash. The immediate

recovery is minimized by taking advantage of the fact that most crashes affect only a small

portion of the repository's data. Thus, the repository restarts as soon as it restores its global

state and recovers all client data while receiving and servicing external requests. In this way,

the repository allows the clients tu access the unaffected data while it is repairing the

damaged data

The final goal was to develop recovery mechanisms that have a minimal eflect on the

response time for satisfying individual requests, above that which is required to perform the

request, since the recovery mechan:sms may be in effect while the repository is processing

requests. The reponse time for individual requests is affected most significantly by

communications and disk transfer delays since the repository is a simple data storage server

and most of its work involves transferring the data between the disks ancl the client nodes.

Since the repository's internal recovery mechanisms have very little need for

communicating with other nodes, the main way in which they increase the response time is

by requiring additional disk accesses. Thus, the recovery mechanisms were designed with

the intention of minimizing the additional disk accesses that would affect the response time

for satisfying individual requests.

1.3 Outline of Thesis

In Chapter 2 we describe the general mechanisms and protocols that make Swallow a

reliable data storage system, and we specify the minimum requirements that individual

repositories must satisfy in order to suppo1t this reliability. In addition, we summarize the

various problems that may affect Swallow·s reliability when one of its nodes crashes.

In Chapter 3 we discuss how the repository structures and accesses th~ data, since it is the

data that requires recovery after a crash. In addition, we describe the organization of the

various types of storage in which this data is kept.

In Chapter 4 we present the mechanisms that the repository utilizes in order to recover its

16

<Jata after ~ crcJ.Sh. For each type of data, we qescribe how (t cram caJl damage it. and then,

how Ole repository implements its recovery. Furthermore, we justify why some data does

not require any recovery at all.

In Chapter 5 we evaluate the recovery mechanisms with respect to p'!rformance. We

analyze the costs of the recovery mechanisms in terms of their effect on the repository's

response time and then compare these effects with the effects that an alternate set of

recovery mechanisms (that we could have chosen to use) would have on the response time.

Finally, in Chapter 6 we look bac ~ at our original goals and review the ;trategies that are

used to fulfill them. Then we point out several areas where these mechanisms may require

improvement and briefly discuss several concepts that can be generalized and used in other

systems.

17

Chapter Two

Overview of Swallow

Swallow is intended to be a very reliable storage system. Basically, it is a set of protocols

that allow for proper management of data that may distributed over the local node and

several remote repositories. There are various underlying mechanisms that are used in

order to implement these protocols. These mechanisms arc based on tLose described by

Reed [14. 15]. In order for these mechanisms and protocols t<) ensure reliability of the

system as a whole. the repositories themselves must function properly in the face of failures

(both their own, and those of other nodes).

This chapter discusses Swallow as it applies to the repositories. Section 2.1 describes the

mechanisms that are used to implement the atomic action protocol. Herein. an atomic

action is defined as well as other terms such as object history, pseudotime and possibility. In

Section 2.2, descriptions of the atomic action protocol and several other protocols, on top of

which the atomic action protocol is built, are presented. These protocols provide for

reliable interactions between repositories and brokers (the two entities that store and

manage the data for the Swallmv clients). Next, Section 2.3 outlines the minimum

requirements that individual repositories must satisfy in order to support the reliability

characteristics that Swallow intends to guarantee. (These requirements provided the

guidelines for developing the repository's recovery mechanisms). Finally, Section 2.4 lists

the general types of problems that can occur when a Swallow node crashes.

18

2.1 Swallow Mechanisms

In Swallow, the functional unit of client data is called an object. Further, the

fundamental requests that a client can submit to Swallow (through a broker) to be

pcrfonncd on an object are:

Create Object: writes a new object into storage.

Delete Object: eliminates an obj,!ct from storage

Read Object: returns the current value of an object in storage

Modify Object: assigns a new value to an object ~nd writes it into storage

ln addition, a client can submit (through the broker) a series of these requests to be

pcrfonned as a single atomic action {8, 9, 14, 17) by bounding the series with Begin Atomic

Action and End Atomic Action reqm:sts.

An atomic action is a set of operations (requests) that must satisfy the following two

requirements:

1. failure atomicity requirement - the operations of a single atomic action shoold
either be performed to completion or not be perfom1ed at all (i.e., aborted if
completion is not possible).

2. concurrency atomicity requirement - the operations of single atomic action
should behave as if they are executed serially with respect to the operations of
other atomic actions even though atomic actions may be executed concurrently.

To satisfy the failure atomicity requirement, an atomic action 'is structured so that at some

point the atomic action is committed, which means that it is irrevocably required to finish.

In other words, if there is a failure before the commit point and not all of the component

requests have been satisfied then, upon recovery, the system's state must be backed up to

the state it had before any of the requests were fuJ.fiHed. On the other hand, if the failure

occurs after the commit point, then any ofthe component requests that were not satisfied

before the failure occurred must be satisfied upon recovery. To satisfy the concurrency

requirements, it is arranged so that the intermediate state of the system during the execution

of an atomic action (when only some but not all of the requests have been satisfied) is

19

protected from any processes performing a different atomic action.

For example, consider the appointment scheduling system described in the previous

chapter. The system would be implemented so that the scheduler would request that

Swallow read and update several people's calendars as a single atomic action. Then, even if

one or more of the repositories (containing the calendars to be modified) crashes, the

calendars would either all rellect the scheduled meeting (if the crash occurs after the commit

point) or else none of them would reflect the meeting (if the crash occurs before the commit

point). Also, if one or more of the calendars does not have the requesle j time slot open,

then the appointment scheduler c~:n explicitly abort the atomic action and none of the

calendars would be updated to rctl,xt the meeting. Finally, if several su,:h atomic actions

were executed simultaneously, and requested the same time slot in several people's

calendars, then one of these atomic actions would appear to execute first J.Jld thus, succeed

whereas the other would find that the requested slot was filled.

The remainder of this section summarizes the mechanisms developed by Reed [14, 15)

that are used in order to implement the atomic actions defined above.

Pseudotimes are numbers that are used to assign a total ordering of events in Swallow.

Pseudotimes do not directly correspond to real time. A global clock mechanism supplies a

unique, non-overlapping range of pseudotimes, or pseudotempora/ environment, to every

atomic action. Each request that accesses an object is assigned a pseudotime from the

pseudotemporal environment of the atomic action.

Objects are implemented in the fonn of object histories. An object history is a sequence

of versions. Each version is a state that the object has assumed at some point in time. See

Figure 2-1. Each version of an object history is valid for a range of pseudotimes. For

example, version B in Figure 2-1, is valid from pseudotimes 5 to 10.

20

Pseudolime

4 5 10 11 64 65 82

A B C D

Figure 2-1: Example of an Object History

A modify request creates a new version in the object history. The rscudotime of the

modify request provides the start pseudotime, whkh is the lower bom1d for the version's

range of vaHdity. If a version already exists in the object history at the pseadotime specified

in the modify request. then the modify request is denied. F6r example, a version could not

be created at pseudotime 8 in the object history illustrated in Figure 2-1 since version B

exist'> for that pseudotime.

A read request selects the version that has the largest start pseudotime less than the

pseudotime specified in the request Then, the upper :bound of the version's validity is

extended, if necessary, to include the pseudotime of the read. According to Reed (14, 15),

the upper bound of a version is the fast pseudotime at which a request read the version.

This means that there can be pseudotimcs ih the middle of an 'Object history for which no

versions exist. For example, if a modify request wishes to create a version in the object

history shown in Figure 2-1 at pscudotime 90, then version E would be created with a lower

pseudotime of validity of90 and no version would exist forpseudotimes 83 -89, as shown in

Figure 2-2. To simplify matters within Swallow, it has been,decided not to leave any holes

in an object history [18]. Therefore, when a new version is created at a specific pseudotime,

the previously current version's upper pseudotime of validity is extended to the pseudotime

at which the new version is being created. Referring back to the previous example, the

upper pseudotime of validity for version D woutd be extended to 89, as shown in Figure 2-3

instead of leaving a hole, as in Figure 2-2.

21

Pseudotime

4 5 10 11 64 65 82 90

A B C D E

Figure 2·2: Creation of a New Version as Described by Reed

Pseudotime

1 4 5 10 11 64 65 89 90

A B C D E

Figure 2·3: Creation of a New Version in Swallow

An atomic action ensures that a specified sequence of read and modify (as well as create

and delete) requests for one or more objects are performed as an indivisible unit. If any of

the requests are not successfully satisfied, then the atomic action is aborted. Abortions are

made possible by making the versions created by an atomic action tentative until the atomic

action is explicitly committed. These tentative versions are called tokens and are not

readable by other atomic actions. In other words, if some request within an atomic action

attempts to read a token created by another atomic action, then that r~ucst will be delayed

until the atomic action that create it either commits or aborts. Upon commiting, the tokens

made by an atomic action become versions.

All tokens created by a single atomic action are grouped into a set called a possibility.

When all of the component requests of an atomic action are satisfied, the atomic action

22

commits its possibility. This committing converts all of the tokens into actual versions. If,

on the other hand, some of the requests are denied, then the atomic action aborts its

possibility, which deletes the tokens from the object history.

Possibilities are implemented using commit records that record the ~tale of an atomic

action. Initially, the state is unknown. All tokens in a possibility (or versions, once the

possibility is committed) contain a reference (pointer) to the commit record associated with

the possibility. Tokens arc distinguished from versions by the state of their commit record.

When the state of the commit reet rd is changed to committed the token; become versions

and can be examined by other atrn 1ic actions. If the state of the commit record is changed

to aborted then the tokens are deleted. Further, commit records must have timeouts

associated with them so that if a failure occurs that causes the commit records to neither be

committed nor aborted (this could ha1}pen. for example, when a client node crashes), then

the tokens will not become permanent fixtures in object hist01ics, blocking future real

operations on that object. Possibilities enable Swallow to ensure that if an atomic action

cannot be completed then the state of the data will appear as if none of the component

updates were done.

2.2 Swallow Protocols

In order for Swallow reliably to satisfy the requests submitted by the clients, brokers and

repositories must interact in an orderly fashion. The broker must interpret a client request

and, in tum, generate requests that can be understood and fulffled by the repositories. The

brokers and repositories comi:nunicatc their needs to each other by sending and receiving

messages, which contain either requests or responses to ~me feCitUesl. Swallow provides

standard protocols for sending and receiving these requests afld responses under normal

circumstances. In addition, these Swallow protocols specify provisional actions that should

be taken if the status of communications between two .nodes is disrupted by a crash of one

of these nodes.

The Swallow Message Protocol (or SMP) described in Section 2.2.1, provides for the

23

reliable transport of the mes.sages through the network by detecting transmission errors that

may occur. The request/response protocol, discussed in Section 2.2.2, provides a guarantee

to the requestor that its request has been received and fulfilled. The atomic action protocol,

discussed in Section 2.2.3 ensures global consistency of the data distributed over more than

one node as well as ensuring that atomic actions behave as if they are executed serially.

2.2.1 Swallow Message Protocol

.Every Swallow message is sent through the network in the form of one or more packets.

Each packet has.a sequence number that indicates which part of the mes.mge it contains so

that the complete message can be reconstructed at the receiving node. Swallow Message

Protocol, SMP, is a very simple protocol that specifies cX.actly how node A. for example,

must send the packets of a message to node B. The protocol is as fejlows:

1. A sends 1st packet of message

2. B sends back a packet indicating that A can send X number of packets more

3. A sends X number of packets

4. B sends back a packet indicating that A can send Y number of pac}<ets more

5. A sends Y number of packets

6. etc.

This continues until the entire message is sent If either node does not hear from the

other one within a reasonable amoont of time then it abons the me~ge and discards any

remaining packets. Notice that this protocol is very ,simple for single packet messages

because no connection has to be established. For multiple packet messages, though, it

allows the receiving node to exert some flow control so that its buffers don't overflow.

Currently, SMP is built on top of the User Datagram Protocol (UDP) (12). UDP doesn't

resequence the packets of a single message at the recet.Ving node nor does it prevent their

duplication. Therefore, SMP is responsible for reordering them and discarding aH

24

duplicates so that the receiving nodes do not have to perform these t.'5ks. SMP does not

prevent out of sequence or duplicate messages. though, nor does it guarantee delivery of the

messages. These problems are taken care of by the atomic action and request/response

protocols, respectively.

2.2.2 Request/ Response Protocol

Since a requestor can never be certain that its request was received and/or satisfied unless

it receives a confirming response [21, there is an associated response for every request sent in

Swallow. The response either cont irms both the delivery and the fulfillment of the request

or rejects the request. If the req11estor docs not receive a response within a reasonable

amount of time then it can retransmit the original request or abort the transmission. The

table in Figure 2-4 enumerates the various types of requests and associated responses that

can be sent and received by the repository. The next section describes what actions are

taken when these requests are received.

2.2.3 Atomic Action Protocol

The atomic action protocol specifies exactly how the brokers and repositories should

cooperate in order to carry out atomic actions for Swallow clients. The broker manages the

local data, monitors the atomic action as a whole and decides whether to commit or abort
I

the atomic action. On the other hand, the repository stores and manages the object histories

and commit records. That is. it reads and writes the actual data and carries out the final

phase of the atomic action, in which tokens are converted into versions or are deleted.

The objects updated by an atomic action may be entirely contained within a single

repository or distributed throughout an arbitrary nmnber of them. ln order to minimize the

number of external messages that have to be sent to the repositories, committing or aborting

a possibility, each repository that contains tokens whose commit records reside in another

repository, maintains a single commit record representative for each commit record of an

atomic action. A commit record representative contains the state of the atomic action

(unknown, committed or aborted). as well as the references to any tokens (created by the

25

Figure 2-4: Repository Requests and Responses

REQUESTS RESPONSES COMMENTS

1. Create-Object Object-Created Response contains uid

of object (010)

2.Delete-Object Object-Deleted or Can't-Delete rer.ponse indicates

Can't-Delete-Object a synchronization conflict

3. Read-Version Versio ,-Value Response contr.ins version

valid as of given pseudotime

4. Create-Token Token-Created or Can't-Create-ToKen indicates

Can't-Create-Token a synchroni :ation conflict

5. Test-Commit-Record State-ls: Committed or Response contains state of

Aborted commit record

6. Abort-Commit-Record State-ls: Committed or If commit record already

Aborted comitted then returns

State-ls: Committed

7. Commit-Commit-Record State-ls: Committed or If commit record already

Aborted aborted then returns

State-ls: Aborted

8. Add-Reference Reference-Added Request is sent to

commit-record-representatives

9. State-ls: Committed or Delete-Reference Request sent to broadcast

Aborted final state of commit record.

Response confirms that final

state was encached in commit

record representative

26

atomic action) that reside in the same repository in which the eommit record representative

is located. Thus, the actual commit record need only maintain references to each repository

that contains tokens created by the atomic action rather than to each individual token, as

illustrated in Figure 2-5. Further, when a repository bas to broadcast the final state of a

commit record so that the tokens can be converted into versions or deleted from their object

histories, it has to send only one message per repository regardless of how many tokens each

repository contains. Then, each repository can act upon all tokens from that atomic action

that are referenced by the commit record representative.

Sections 2.2.3.l through 2.2.3.6 describe the protocol for each type cf request that the

client may submit.

2.2.3.1 Begin Atomic Action

When a client begins an atomic action, the broker must send a message to some

repository, requesting the creation of a commit record. The repository creates it and returns

a response which contains the name of the commit record. Once the broker receives this

confirmation it can send to any repositories any sequence of create, read, modify or delete

object requests, depending upon the client's needs. All of these subsequent requests must

include the name of the commit record as well as a pseudotime, so that the repositories can

identify the atomic action of which the request is a part and can synchronize all concurrent

accesses to the same objects.

2.2.3.2 Create Object·

When a client wishes to create an object, the broker sends a create-object-history request

to the repository. Upon receiving the request, the repository creates all of the internal

structures needed for the object history in storage. [ncluded is a reference to the specified

commit record or its local commit record representative.3 If neither exists in the repository

3Both the creation and deletion of objects are also requests that belong to a possibility, that is, if the atomic
action creating (deleting) the object fails, then the creation (deletion) is not done.

27

Repository 1

aborted

~0
co~n
representative '\!__)

Repository 2

0

aborted ~
r-------1 ___Jlv

. ~
commit rec_ord \J
representative

E

Repository 3

Figure 2-5: Representation of A Distributed Commit Record

28

at that time, then the repository must create a representative wilh the correct reference to

the version and must send an external request to the remote repository that contains the

commit record, asking it to add a reference in the commit record to the commit record

representative. Once the local repository receives a response confirming that the reference

has been added then it must return a response to the broker, confirming the creation of the

object history.

2.2.3.3 Delete Object

When a client wishes to delete an object, the broker'sends a delete-object-history request

to the repository. When the repos:tory receives the request, it checks whether or not any

versions exist for a pseudotime greater than or equal to the one specified in the request If

any exist, then it returns a negative response indicating that the object cannot be deleted. If

none exist, then the repository creates the final version of the object history that marks it as

being deleted, including a reference to the commit record (or representative) and returns a

response to the broker that confirms the object history's deletion.

2.2.3.4 Modify Object

When a client wishes to modify an object, the broker generates a create-token request and

sends it to the repository. Upon receiving the request, the repository checks to see if a

version already exists at a pseudotime greater than or equat to the one specified in the

request. If one exists, then it returns a negative response indicating that the token can't be

created at the given pseudotime. If none exists, then it creates · the new token, adds a

reference to the commit record or representative and returns a response to the broker,

confirming the token's creation.

2.2.3.5 Read Object

When a client wishes to read an object, the broker sends a read-version request to the

repository. Upon receiving the request, the repository must oheck whether or not the

29

version referenced by the pseudotime in the request is a token, an aborted token, or a

committed version. If it is a committed version or a token that was created by the same

atomic action that sent the read request, then it simply returns that version or token in the

confitmation. On the other hand, if the request is for a token that was created by a different

atomic action than the one that sent the request, then the repository must check the token's

commit record to see whether or not it has been committed. If so, then the repository must

commit the token, extend its validity time to the pseudotime specified in the read request

and return that version in the response to the broker. Otherwise, if the commit record has

been aborted then the repository must abort the token, extend the validity time of the

current version to the pseudotime specified in the broker's request and finally, it must

return that version in the response to the broker.

2.2.3.6 End Atomic Action

If all of the component requests of the atomic action are confirmed then the broker

finishes the atomic action by sending a commit request to the repository in which the

commit record is stored. That repository then commits the commit record and returns a

positive response, marking the completion of the atomic action. On the other hand, if the

broker received any rejections to it'i requests then it may abort the atomic action by sending

an abort request to the repository, which must then abort the commit record and return a

response to the broker, confirming the abortion of the atomic action.

Once the final state of a commit record has been recorded, the repository storing the

commit record must broadcast this state to all of the repositories for which the commit

record has references. When each repository receives the state of an atomic action it must

encache that state in the commit record representative and return a response indicating that

the its reference can be deleted from the commit record's list of references. When the

commit record has no more references it can be deleted.4

4Note, that this description of tJ1e final phase of the atomic action (that is carried out by the repository) has
been simplified by ignoring the commit records of nested atomic actions. (See [Reed78))

30

2.3 Reliability Requirements for Individual Repositories

Now that the global mechanisms and protocols have been described, the two minimum

requirements that indi\ idual rcpo:;itories must satisfy in order to ensure reliability of

Swallow, as a\\ hole, cm be defined :.ts follows. in Sections 2.3.1 and 2.3.2.

2.3.·t Data Integrity

Since the repository stmes tile clii:nts· objects as well as the commit records that arc used

to s) 11chroni1c access tu those obj.:ct, it must protect these objects and commit records

against rn1y damage. loss. ur inconsi~tency that may occur when it crashes. In other words,

the rcrository must protect the integ:ity of all objects and commit records.

In protecting the integrity of the (lient data. the repository must do more than just ensure

that this data isn't lost or damaged. It must also ensure that the objects and commit records

arc managed properly. I his means that a crash should not alter the repository in any way

that would cause it to mcrlook the most current version or token of an object history or

create a version at a pscuc!otime for which a version already exists. It also means that a

crash should not cause a repository to release the value of a token outside the atomic action

in which the token was created.

2.3.2 Atomicity of Requests

In aclclition to protecting the data integrity, a repository must satisfy all requests

atomically. That is. the multiple internal modifications that must be done as part of a single

request. mu:,t be done as an indivisible operation. This internal atomicity supports the more

general atomicity guaranteed by Swallow to its clients. In the same way that Swallow

guarantees not to leave c!irnt data in an inconsistent state. a repository must guarantee not

to leave its internal data in an inconsistent state.

For example. a version of a large object will span over more than one disk page. lf the

repository crashes before it writes out all of the pages to the disk and these pages arc not

written atomically, then the object history of which the incompiete version is a part will be

31

invalid. Thus, upo11 restarting, the repository must ensure that the incomplete version is not

included in the object history.

As another example, a create-token request involves both recording the new version and

adding, to the associated commit record. a rc!crcncc to the new versil,n. If these two

internal tasks arc not perl()rrned atomically then the Swallow mechanisms for providing

clients with the ability to execute a set of rcquesl'.; atomically will not work properly, since

the repository will never know whether the token should be comertecl to a version or

deleted from the object history.

2.4 Summary of Problems Caused by Failure of a Swallo N Node

We have seen how Swallow ensures reliable storage of the data by pnniding the client

with the ability to execute atomic actions and by insisting tlial its repositories satisfy several

requirements. Before getting into the details of the repository. let us briefly list the general

problems that might occur when a Swallow node crashes.

1. Global (or external) inconsistency of data - The related client objects stored
throughout Svvallow may not be current with respect to one another. The
atomic action protocol ensures consistency with the support of the repositories,
which properly maintain and manage all commit records.

2. Internal inconsistency 4 data within the repository - The objects. commit records
and other data supporting these objects and commit records may not be
consistent with each other within the repository. The repository's internal
recovery mechanisms restore internal consistency or the data, as will be
described in this thesis.

3. Out of sequence packets \\Vin a message - Communications delays may cause
packets of a message to arrive in a different order than which they were sent.
SMP resequences these packets.

4. Retransmitted packets w/in a message - A node sending a req11est niay retransmit
packets if it thinks that the original packets were lost. SfYIP discarcls duplicate
packets.

5. Unconfirmed messages - A message may not be acknowledged if the receiving
node crasl1cs. The combination of all three protocols and the repository's

32

im~rnal recovery mechanisms . ensure recovery of any damage caused by
unconfirmed messages. How they ensure this will be clarified in this thesis.

6. Incomplete messages - A repository may not receive all of the packets of a
rnes~,ge if it or the sending node crashes. An incomplete message does not get
confirmed so it is recove.red as,m unconfirmed message. This problem affects
the reposjtory since the data Qf a large object version is written into stable
storage .,1s received, before the complete message is available.

1. Out of sequence mes5ages - Due to the distribution of the nodes and real time
delays, requests may not be received in the same order that they arl! sent The
atomic action protocol serializes all requests by using pseudotime~ instead of
arrival order.

8. Retra11smitted messages - If a node docs not receive a confirmation for a request,
it may retransmit the request. All requests that can be send to the repository are
repeatable; that is, the repository will make the requested modifications in
response to the same request only once (the repository can recognize
retransmi,ted requests). Upon receiving a retransm1tted ~uest:, the repository
simpJ.Y confirms it and dot;s. not repeat the modifications &bat are requested.
This thesis wiU demonstrate how the, repository properly handles retransmitted
requests.

This lh~is deals directly with problems 2, 5. 6 and 8. More discussion on the other

problems above will found in fl4. 15. 16).

33

Chapter Three

Management of Data within the Repository

The repository's data can be classified as follows: object data commit record data,

pending messages data, and data that describes the repository's global state. In order to

understand how the repository reco .rers this data after a crash, il is first necessary to explain

the imernal structure and management of these four classes of data as well as the

organization of the storage in which the data is maintained.

Sections 3.1 and 3.2 describe t.le object and commit record data, which consist of

sequences of versions plus a header that contains a reference to the current version. Next,
I

Section 3.3 discusses the message qata, which consists of sequences of packets. Then,

Section 3.4 briefly describes the global state data, which is a record that describes the status

oft.he repository as a whole.

The remaining sections describe the various forms of secondary storage that the

repository supports as well as their interaction with primary storage. Section 3.5 gives an

overview of the organization of the storage in the repository arid then Sections 3.6, 3. 7 and

3.8 describe Version Storage, State Storage, and Object Header Storage, respectively.

3.1 Objects

Within the repository, an object is represented by the versions of the object history plus

an object header, which contains a reference to the current version and other useful

information about the object. Figure '3-1 illustrates the internal structure of an object.

Thus, in order to create a token (assuming that no token already exists) the repository

creates a version (as depicted in Figure 3-1) in storage, and then modifies the object header,

as follows. The value of the token reference is changed from nil to the newly created

34

010 (object uid)

current version

end pseudolime Commit Re.:ord 4

token

CRref4

REN (for recovery)

delete flag

hash tabl<J link

OBJECT HI ADER

010 OID OID OID

pt1 pt2 pt3 pt4

CRref1 CRref2 CRref3 CRref4

version1 version2 version3 token

CURRENT
VERSION

Figure 3-1: Structure of an Object Within the Repository

token's address in storage, the value of the commit record reference is changed to the

unique identifier of the token '.s commit record, and the end pseudotime value is changed to

the pseudotime at which the token is created. Subsequently, if the token becomes a version,

the repository changes the references within the object header: the value of the current

version reference is changed to the token ·s address in storage, and then the value of the

token reference becomes nil. Alternatively, if the token becomes aborted, then the

repository deletes it by simply changing the values of the token reference and commit

record reference in the object header to nil. Finally, in order to read a version of the object,

the repository obtains the location of the current version in storage from the object header.

35

Since the objects are accessed using the object headers, the repository organizes the

object headers in the form of a hash table, called the object header table. This object header

table will be discussed in more detail in Section 3.8

3.2 Commit Records

Conceptually, a commit record consists of the state of the atomic action that it represents,

and a list of references to the tokens created by that atomic action. Within the repository, a

commit record's structure is similar to that of an object. A commit record (or commit record

representative) is structured as a threaded sequence of versions. Furthermore, the

repository maintains a hash table, called the commit record table, whose entries contain the

state of the commit record and a reference to the current versions of the commit records.

Figure 3-2 depicts a commit record after the atomic action's final state has been decided.

unknown

state
version

token
for

objectA

Commit Record

Table

token
for

objectB

token
for

objectC

Figure 3-2: Structure of a Commit Record within the Repository

36

aborted

state
version

When the q:>111mit record is first created, an initial version is crc&ted. This version contain!$

the ~nique identifier of the commit record, which is assigned by the repository, and t,he state

of the atomic action, which is UNKNOWN. In ijddition, an entry (that points to this

version) is created in the commit record table. Then, as tokens are created within the atomic

actioq, lhey are not only threaded into the sequence of versions for their object, but are also

threaded into tlw sequence of versions of the commit record. As each token is i1dded to the

cornn1it record's list of versions. thl: corresponding commit record table entry is modified to

refer \o thc\t token. Similarly, when a remote site adds a ref"renro to the commit record, the

repository creates a representative version, which cootains tile unique id's of the commit
' !

record and lbc remote site. and then th:reads that version into the commit record's sequence

of versions. FioaHy, when the atomic action is committed or aborted, the repository creates

another com,mit record version that ~onu\ins. the commit record's uid plus the final state.5

ln order to carry out the .final phas~ of the atomic action. in which all tokens are

converted into. versions or aborted form the object history, the repository modifies the

object headers corresponding to each token in the commit record's sequence of versions, to

reflect the finaJ status of these tokens. The repository starts with the most current token, in

the list (which it accesses through the commit record table and then the first version which is

the final state version) and when it reaches the iniiial state version of the commit record, it

deletes the entry for that commit record from the commit record table.

3.3 Me$sages

The various types of messag~s that the repository can send and. receive were listed in the

table in Figure 2-4 in Chapter 2. Of these, all are single packet mcSS3ges with the exception

of create-token or version-value messages, which may contain large objects that cannot fit

into a single packet. In these multiple packet messages. the sender places all of the

information in the first packet, except for the fragments of the actual value of the object that

5Note that no ob,jccl version will ever refer to a commit record that is created later than that object version.
This invariant is used to optimize recovery, as will be seen in Chapter 4.

37

do not flt in this first packet. These fragments are the only data that will be contained in the

subsequent packets. Figure 3-3 depicts both a multiple packet create-token message.

MessagelD

Packet1

010

ComReclD

Pseudo time

VALUE

SMP Header

Jj MessagelD

Packet!

VALl.iE

Swallow Request

MessagelD

Packet3

VALUE

Figure 3·3: Structure of a Create-Token Message

MessagelD

Packet4

VALUE

Thus, when the repository receives a multiple packet create-token message, it does not

have to wait for all of the packets to arrive before it can start writing the fragments of the

object onto the disk. Instead, it can write the fragment contained within each packet as the

packet arrives, and then can discard the packet since it has been processed.

3.4 Global State

There is a small amount of data that describes the repository's global state. Most of this

data consists of the logical mappings of the various types of storage into the physical

devices. The remaining data consists of values such as the last unique identifier that the

repository assigned to an object or commit record, and data that describes certain recovery

events. The nature of this data will become clearer by the end of the chapter.

38

3.5 Overview of Storage Organization

The repository supports several kinds of storage. Two are kinds of atomic stable storage,

one is a kind of careful storage, and the remainder of the repository's storage is volatile. See

Figure 3-4.

Stable Careful Volatile

vs X
State X
cache X

OHS X
Tempo<ary X

Page Buffer X

Figure 3·4: Storage Classification

Atomic stable storage, (hencefott1' referred to as stable storage), is secondary storage that

we assume will never lose a value stored there. ln practice, this means that stable storage

contains multiple copies of these values at aH times. These copies are organized so that it is

unlikely that any one failure (such as a disk head crash) will destroy atl copies of the same

value. Furttletmore, the repository's stable storage is alomic because a write to stable

storage fails in ·ooly two ways - havi-11:g made no change or having completed correctly. In

general, the read and write operations on stable storage are time consuming since the

multiple CQJ!Jies must be accessed and checked to be correct The two types of stable storage

in the repository are characterized as append-only and reusable stable -storage. Append

only stable storage is like a tqpe since data is always,w.rkum at the end. Also, no data is ever

overwriuen .in append-only stable storage. On the other hand, in reusable stable storage,

modi.ftcations made to the same data arc rewritten in place.

Careful storage, is simply secondary storage in which there ·is only a single copy for each

value stored there (not multiple copies as in stable storage). Thus, careful storage has faster

data access time than stable storage. Generally, the data in careful storage survives crashes,

but it is not guaranteed to survive any crashes (as is guaranteed in stable storage). However,

in the repository, the loss of data in careful storage does not cause failure as long as this loss

can be detected, since the data can be recovered from the data in stable storage.

Finally, volatile storage is primary storage that is used as a temporary cache for the long

term information stored in stable and careful storage. Volatile storage has a much faster

access time than either type of secondary storage, but all data that it contains is lost when

the repository crashes.

Thus, all data that is needed to represent the externally visible state of the repository is

stored in stable storage so that if the repository crashes. none of this data will be lost. The

versions of the objects and commit records are kept in append~onJy stal •le storage, called

Version Storage and the global state data is kept in reusable stable storage, called State

Storage.

The rest of the repository's data, which is redundant of information in stable storage or

which does not have to be recovered at all after a crash, is kept in careful or volatile storage.

Since the object header table would be too time consuming to recover in its entirety, it is

kept in careful storage, called Object Header Storage. Then, if the repository crashes, only a

small part of the table, if any, is lost. Thus, careful storage is used to improve the

repository's performance by eliminating excessive accesses to stable storage while reducing

the cost of recovery that would be required if the data were maintained in volatile storage.

The commit record table, though, is smaller and less dense than the object header table, so it

can be reconstructed much more easily after a crash. Therefore, it is only maintained in

volatile storage. Finally, the messages that are pending when the repository crashes do not

have to be recovered at all, since they are processed atomically and the protocols allow for

incomplete mesages. Thus, message data is also kept only in volatile storage.

The remaining sections describe in detail the logical mappings of the repository's

secondary storage (Version Storage, State Storage and Object Header Storage) into the

physical devices as well as the methods used to encache in volatile storage the data that is

40

kept In secondary storage.

3.8 Version Storage

The main form of stable storage that the repository supports is Version Storage (VS)

which contains the versions of objects and commit records as well as two other types of data,

called checkpoint entries and epoch boundaries. (These checkpoint entries and epoch

boundaries contain data that is used for recovery and will be described in Chapter 4).

Abstractly~ VS um be viewed as an infinite, append-only tape, but physica'ly, it consists of 2

sets of write-once optical disks.6 Each set is a backup for the oilier one in case some of the

data is destroyed.

Since VS is append-on1y storage, it is always increasing in size. Thus, only a fraction of it

can be kept on line. VS is managed in such a way that tbe current versions of objects and

com.mil records remain in the portion of VS that is online. This online VS consists of the

two or roore most -current disks of VS. The most current disk is caHed the high space and

the oldest ts called the low space. Onl.ine VS is managed as a circular buffer (S VOB80], as

folllows. When :t:be h~gh sr,ace is fi!Jed up, the current low space disk goes offline and a fresh

disk ·becomes the Rew high 'Sf)ace. Ftfl1b-ermor.e, whenever a version .is accessed in the low

space, it is copied ,into the high space. Thus, when the current low space disk goes offline,

th:e 'version wifl stitl remain online.

All •data is steJrea in VS in units ·called version imag.es. There are 5 different types of

versiOf!I ,images: simple, mot, ·fragment, boundary and .oheclcpoifft ,version images. A version

image;oonsists of'size, type and data fields, and resides woon, within one page of VS. A

version of aJ.1 ,object or commit record that is small enough to flt on a single disk page is

stored as a '.Simple version image, as illustrated in 'Figure 3--5. :How.ever, a version that is

larger than· a ·single· disk page needs a :superatmcture that f)Oints · to all of the pieces of the

version that are interspersed throughout several pages. Therefore a large version is stored as

61n1lially, magnetic disks will be used lo simulate optical disk. They will':be used in a write-once manner,
however.

41

a structure consisting of some number of fragment version images, which make up the

version, plus a root version image, which has pointers to all of the fragments, as illustrated

in Figure 3-5. A large version is written to the disk atomically by writing the root version

image after all fragment version images are written and then, only linking the root into the

appropriate sequence of versions. Thus, fragments of incomplete version images are

ignored since they are unreachable. Finally, boundary and checkpoint version images look

just like simple version images, except for the data field, which consists of an epoch

boundary or checkpoint entry, respectively.

Several version images may be p,icked onto a VS page, which is the unit of physical reads

and writes. In order to pack these v,!rsion images as efficiently as possible, several unwritten

VS pages are encached in a page b1.lfTer in volatile storage (recall that the disks are write

once only). Since VS is stable storage, it docs not return the VS address of a version image

(i.e., confirm the write to the repository process that initiated the write) until both copies of

the VS page (on which the verison image resides) are written correctly from the buffer onto

the two disks.

An unwritten VS page in the buffer is written out to the disks when either of the

following three conditions holds true:

l. The page is full- Once a page is full, there is no need to wait any longer to write
it out since it is only left unwritten in order to pack version images in it as tightly
as possible.

2. The page has been in the buffer for some extended period of time since the first
version image was added to it - Since a repository process cannot confinn
external requests (that modify commit records or objects) until it receives a
confirmation from VS and in turn, VS cannot confirm the write until the VS
page is actually written on the disks, partially full pages are written out to the
disks after a predefined time-out period. Jn this way, when the repository is not
being heavily utilized, external requests will not remain unconfinned for too
long.

42

sjze

tvp~ = simple
·"'"!'(,,., 010 ,::\ .,

pt s

CRref
..

si~ = $iz«J QI vtri,iCIO image

01D = unique identifier ()f object

pt if starting pseudotime of ven1ion

CRref = ppinter to verajon's i;ommit record
VersionRef or commit record representative

VersionRef = pointer to previous version of object

~imple Version

OIP type :::: &:agment

CRref

size

size

Structqred. Version

Figure 3·5: Simple aod Structured Versions

Another unwritten VS page with a higher VS address is full and must be written out to
the disks - This ensures that no version image is written at a lower VS address
than any other version image to which it refers. and thus. preserves the abstract
view of VS as an append-only tape. For example, in order for a process to
create a version image, vi2. with a reference in it to another version image, vil, it
has to know the VS address of vi 1. Since the process gets that VS address when
VS confirms that vil has been written, then when the process requests that vi2
be written, all pages with VS addresses less than or equal to that of vil will
already have been writ.ten on the disk and therefore vi2 cannot be written in any
of them (VS disk pages are write once).

In order to actually write a VS page from the buffer, a copy is wri .ten to the same

addressed page on each of two disks. After each copy is written out, it is r.!ad batk to make

sure that the correct data was written. Then, if a copy was not written crn rccLly, it must be

rewritten (and reread). However. it cannot be rewritten on the same uisk page because the

disk is write-once. Therefore. if either of the copies is written incorrectly, then both copies

must be rewritten on another p"air of pages.

In addition to maintaining several unwritten pages in the buffer, several of the most

recently written or read VS pages are also encachcd in this page buffer so that if these

encached pages arc read again within a short time period, the disks will not have to be

accessed. However, if a process wishes to read a version image on a page that is not in the

buffer, then the disks have to be accessed, aS follows. · First, one copy is read from the disk

and verified to be correct, using a checksum. If that copy is correct, t~en the second copy

does not have to be examined. On the other hand, if that copy is incorrect. then it must be

recovered from the second copy.

In order to implement this recovery, both copies of the page must be rewritten on a new

set of identical disk pages, as is done when the write operation fails. However, all references

to the version images on a page that has been recovered in this way would become invalid:

Thus, in order to preserve the validity of these references, the repository maintains a map

from the bad pages to their replacement pages. Then, when a process attempts to access a

version image on a bad page, VS will find the recovered copies of that page, using this map.

Once a page is determined to be bad, it should never be mistaken for a good page. Thus,

44

-- -~- ----~----------------------~

tbe ~e must be made detectably. bad forever. If VS is implemented using optical disks, as

orjginaJly pl~n11cd. then pages can be made bad permanently by writing on them a second

time, obliterating any marginal data. However, if another type of disk is used, then some

other method, &µch as keeping a table of bad pages, would have to be devised in order to

ma~e p~ts detectably bad forever.

3. 7 State Stprage

The second form of stable stora3e that the repository supports is called State Storage,

which contains the data that describes the repository's global state. Physically, state storage

consists of a small amount of reusatle magnetic disk storage. It is stable due to the fact that

the global state data is duplicated at separate locations on disk that have independent

probabilit\es of decaying. In other words, it is not probable that a single crash can destroy

both copies of the data 7

Th.e repository supports State Storage in addition to VS for the combined reasons that the

location of the global state cannot change and VS is write-once only. If the global state was

kept in VS. then every time it was modified it would be written into a new location in VS.

This woul<;l mean that when the repository was. _booting iIBelf after a crash, it would not

kno\\'.' exactly wnere to find this data becau~ its locat.ion could not be hardwired into the

boots~rapping procedure. By supporting rellSable stable storaget this problem is avoided.

In order to write a State Storage page, each of the copies is written and then read back (to

verify that th~ copy was written correctly). However, since writing a State Storage page

overwrites older copies of the global state. the copies must be written and read back

sequentially instead of in parallel, as in VS. Then, if the repository crashes in the midst of

writing one copy, there will still be another valid copy from which. to recover the data that is

contained on that State Storage page. Furthermore, the copies are always written in the

same order so that if a failure occurs in between writing the two e,-opies (leaving both copies

7 In order to be even more reliable, the actual implementation of State Storage may keep 3 copies of all data.

valid but different), the repository will know which copy is current

In order to read a State Storage page, both copies on the disk must be verified to be

correct and identical to one another before allowing any repository processes to examine the

page. If either one is bad, then the bad copy is recovered from the good copy. Further, if

both copies arc valid but not identical, then the second copy is recovered from the first

copy, which is the current copy. It is not sufficient to vetify the correctness of only one

copy, when reading a State Storage page from the disk, because the repository may have

previously crashed before writing ti1e second copy. If the second copy is not subsequently

updated when read, then another w ·ite of that State Storage page could fail and damage the

first copy, leaving no valid copy from which to recover. (The second cop} would be too far

out of date to be of any use). Thus, when reading a State Storage page, it is necessary to

compare both copies and recover one, if necessary.

Since the global state data is read fairly frequently, it is cncachcd in volatile storage to

eliminate the time consuming accesses to State Storage. Thus, the only time the disk has to

be accessed in order to read tl1e global state is when the repository first comes into existence,

and then, whenever the repository restarts after a crash. On the other hand, since most of

the State Storage data changes fairly infrequently, if at all, it is kept current in State Storage

(that is, every time it is updated in the cache it is also written onto the ~isk). There are two

values, though, that change too often to be practically kept up to date in State Storage.

Thus, they are kept current in the cache, but are only periodically updated in State Storage.

These two values are the VS write pointer, which indicates the current end of VS and the

value of the last unique identifier that the repository assigned to an object or commit record.

The write pointer is only updated in State Storage every Nth time its value changes, where N

is a predefined constant. Similarly, the value of the last uid (unique identifier) assigned is

only updated in State Storage every xth time its value changes, where X is another

predefined constant. The recovery of these two values after a crash will be described in the

next chapter.

46

3.8 Obj~ct Header Storage

Object Header Storage, or OHS, is reusable careful storage in which the object header

table is maintained. The repository keeps this table of object headers so that it does not

have to scan sequentially through VS in order to find the versions of objects. An object

header provides direct mappings to the current version and token as well as a reference to

the token's commit record.

Even though object headers are not required in order for the repository to function

correctly (the repository can always resort to a sequential search thro1gh VS) they are

necessary in order for the repository to function efjicienlly. Therefore, the object header

table must be organized so that the object headers are efficiently accessiule. The two main

ahernatives for the table structure were a 8-tree or a hash table. A non-coalesced chain hash

table similar to the one described in [7] was selected.

This type of hash table was chosen for its simplicity of structure and ease of recovery, as

well as for its efficient search, insertion and deletion algorithms. The average search time of

the hash table is independent of the size of the table (providing that the table does not get

too fullJ while the average search time of a B-tree is directly proportional to the logarithm of

the table size [7, 4}. Also, the fundamental unit of a Mnked list in the hash table (a bucket)

contains only a single object header, whereas that of a linked list in the B·tree (a node) ·

usually contains some number greater than one .. Therefore, there is potential for losing

more information in a B·trec than in a hash table if a link is broken (e.g., when one of the

fundamental units gets lost or becomes obsolete after a crash). Finally, it is easier to

characterize the problems that can arise in the hash table as a result of a crash than in a B·

tree. Therefore, the hash table was more easily adaptable to recovering itself in the

background as the repository fulfills requests.

The basic structure of the hash table is as follows. The OHS pages are divided into fixed

size units, each of which can accommodate a single object header. Each of these units is a

bucket in the hash table and is uniquely identilicd by its OHS address. Further, only three

of the object header fields are relevant to the hash table: the 01D, the delete flag and the

hash table link. The 01D is used as a key in the hash table. Thus, a mathematical function

47

is .used to map or hash every 01D to some bucket in the table. The bucket to which an

object header hashes will be referred to as its home bucket Next, the delete flag is used to

indicate whether the object header is valid or has been deleted. Finally, the hash table link

is used to create linked lists of buckets. The remaining fields of the object header are

ignored by the hash table algorithms.

Even though only one object header can occupy a bucket at any given time, there exists

more than one object header (or more specifically, OIU of an object header) that hashes to

each bucket in the table. Therefore, once a bucket is occupied, all other object headers that

are added to the table. whose home bucket is that bucket. are placed arbitrarily in other

empty buckets and linked together.8 The first bucket in each linked list is the one to which

all ofthe object headers in the othu buckets hash, i.e., it is their home bucket. The linked

lists will be referred to as chains.

Figure 3-6 illustrates a page in the hash table to be used in examples throughout this

thesis. All figures that depict pages of the hash table will be of the same form but will show

only the contenLc; of the pages and buckets that are .relevant to the panicular example.

There are four pages, A through D, in the hash table, each containing five buckets. The

object headers have OID's of the form ohN, where N is the 01D (an integer). Chains are

identified by the address of the home bucket. Also, the two states of the delete flag will be

represented by the letters V (valid) and D (deleted). The remaining fields within the actual

object header are not relevant to the discussion about the organization of OHS, so they will

simply be represented in each bucket as an X mark. Finally, the h&sh function selected for

the examples in this thesis is 01D modulo 20.

The three hash table operations are search, insertion, and deletion. The search operation

finds the specified object header in the object he"'1er table. _The insertion operation is used

for adding newly created object headers to the object header table. Finally, the deletion

operation simply eliminates an object header from the object header table.

8Toe choice of buckets is not completely arbitrary. The algorithm for finding a free bucket first looks for a
bucket on the same page as the home bucket since in this way, most linked lists will be constructed so that they
are fully contained within a page and thus, the amount of paging that must be done will be minimized.

48

Butket # Object
Headfu'
bata

010
~

Flag

Lin k

~ , i , p ,,
•

0

i-: ~

1
,

"

2

3
'

4
i

PageA

Figtire 3~6: A Representative Hash Table 'Page

The search-algorithm is as follows:

1. 'Hash :tne;gi-ven object header to the home, bucket.X.

2. if bucket X is empty or contains ah object header whose 'home bucket is not
'b~et ·x ·(te., hashes to another bucket), ;then ,1em1'inate unsuecessfuHy.
Otherwise continue searching down chain Xuntillhe r,equested object header is
foundorthe endofthechftin is reached.

3. If the end of the chain is reached then terminate unsuccessfully. Otherwise,
return the object header that wasfoo'nd.

An example:

Suppose pages C and D of the hash table are as shown in Figure 3-7 and we wish to find

oh37. Oh37 hashes to bucket 17, so we first check to see if bucket 17 contains oh 37. Since it

does not, we hash the object header in bucket 17 to see whether bucket 17 is the home

bucket for that object header. Since it is, we follow the links through successive bucketc; in

chain 17 and find oh37 in bucket 15.

10 15 oh37

11 16

12 oh42 17 oh1i7

13 18 oh57

4 oh82 19

PageC PageD

Figure 3·7: Initial State of Pages C and D

50

The ihsertion algorithm is as follows:

1. Peiform the search operation on the object header.

2. If the search terminates successfully, lihding an older version of the object
header. in bucket B, then ins~rt the updated version of the object header in B
a11d terminate. Otherwise, hash the object header to the home buck.et, X.

3. Do cl\e ofthe fottowing:

a. If bucket X is empty, or contains a deleted object header whose home
bucket is bucket X, the 1 shnpty insert the new object header into bucket
X.

b. lf bucket X contrnRs av ilid object header whose home buck<et is bucket X,
then check for another bucket on chain X that contains a deleted object
header. Ifone exists them insert the object ,header :there. Otherwise, ·1f1.nd
·another avarlabte bucket, Y, insert the object header in ,it,.and.add itto the
end •of chain X.

c. ff bucket X contains an object header whose home bucket isnot bucket X,
then bucket X must 'be .part of another chain, beginning with bucket
Z. Thus, it is necessary -to move ithe object ·header presently in bucket X to
·some other bucket. If-there is a bucket, D, on chain Z that contains a
·deleted object header, lhen move ,the object header in bucket X to bucket
D. Otherwise move the obje{:t header in bucket K to a Jrae,bucket., F, and
reroute chain Z through ·bucket F. Once tl1e old objectheader h~ been
removed from bucket X, insert the new object header there.

The following is nn example of tluee successive insertions that are executed on the hash

table 'Shown in Figure 3-7. Each inseition demonstrates one of the branches that can be

taken in Step J bf the insertioh algorithm.

Sup-pose we -wish to insert ohl2 into the hash table. We perfom1 the search through

chain12 in page C (Figure 3-7) and it terminates unsuccessfuUy. Next we.check the object

headet' (oh42)in bucket 12 and discover that bucket 12 is 'its home bucket but it is marked

deleted. Therefore we execute step 3a of the insert ·algorithm by discarding oh42 and

inserting oh 12: m its place in bucket 12. See Figure 3"'8 for the state of page C after this

insertion is done.

0

11

12 oh12

13

H oh82

PageC

Figure 3-8: Page C Afier Oh12 is Inserted

Now, suppose we wish to insert oh77 into the hash table. We cannot place it in bucket 17

in page D (Figure 3-7) because it is the home bucket for the object header that it contains

and that object header is still valid. Tllerefore we look for another bucket already on the

chain that contains a deleted object hqader. Bucket 18 satisfies these requirements so we

execute step 3b of the insertion algorithm and insert oh77 in bucket 18 in place of oh57. ·

Figure 3-9 shows what page D of the hash table looks like after this insertion is done.

Finally, supppose we wish to insert oh34 into the hash table. We have to execute step 3c

of the insertion algorithm because bucket 14 in page C (Figure 3-8) is not the home bucket

for the object header that it contains, oh82. Therefore, we move oh82 to another free

bucket, bucket 10, then reroute chain 12 through bucket 10 and finally, insert oh34 into

bucket 14. See Figure 3-10 for the final state of page C after this insertion is done.

The deletion algorithm is as follows:

1. Perform the search operation on the object header.

2. If the search terminates unsuccessfully (i.e. the object header is not found) then
tenninate unsuccessfully. Olherwise change the state of the bucket in which the
object header was found to deleted.

52

15 oh37

16

17 011117

18 oh77

19

Page D

Figure 3-9: Page D After Oh77 is Inserted

10 ohB2

11

12 oh12

13

14 oh34

PageC

Figure 3-10: Page C After Oh34 is Inserted

53

An example (using the hashtable shown in Figure 3-9):

Suppose we want to delete oh37. We find it in bucket 15 and simply mark it deleted as

shown in Figure 3-11.

19

PageD

Figure 3· I I: Page D After Oh37 is Deleted

When an object header is deleted it is not removed from the bucket in which it resides

nor is the bucket removed from the chain of which it is a part. These actions are delayed

until some time in the future when another object header has to be inserted and an empty

bucket is needed. Then, if the deleted bucket is part of the chain to which the object header

to be inserted belongs, the object header can be inserted into the bucket in place of the

deleted object header without making any changes to the chain structure. (This was the case

in the first two examples of insertions). This eliminates the work involved in restructuring

the chain, for both the deletion and insertion algorithms. At worst, if a bucket is needed to

hold another object header that does not belong in the chain of which the bucket is a part,

then the restructuring has to be done anyhow.

The deletion algorithm delays the actual removal of the object header from object header

table in order to alleviate the following problem. Since pseudotimes do not directly

correspond to real time, read requests for an object may arrive after that object has been

deleted with respect to real time but before the object has been deleted with respect to

54

-------------- ------ ----- -----------'----~

pseuclotime. Thus. it is hoped that in most cases where this situation arises, by delaying the

actual removal of the object header from OHS. the object header will still be available so

that the repository does not have to scan sequentially through VS in order to find the

appropriate version.

In OHS, like in VS. the rumbrncntal unit of read and write is actually a page. Also,

se\cral of the most recently read and written OHS pages are encached in the page buffer in

rnlatile storage. I lowc\eL unlike in VS. an object header docs not have tu be written from

the p:1gc buffer to the disk bcrore a ,cpository process can con!irm an external request, since

cLtta may get damaged e\ en if it !us Jcen written on the disk (OHS is not stable storage).

I urtherrnore. the object header table may not be modifiect atomically, s nce the insertion

algorithm sometimes modi!ies object headers 011 several pages, which arc .10t written Lo the

disk in any related order nor all at once. The object header table is not modified atomically

because many independent processes may be concurrently inserting object headers on the

pages in the buffer and thus. there may be no instant in time (except for when the repository

is idle) when all of the object headers on a page or set of pages arc consistent and hence,

atomically writeable.

Therefore, a page that has been modified in the buffer is actually written out from the

buffer to the disk when one of the following conditions holds true:

1. The page is the least-recently-used page in the buffer and another page has to be
brought into the buffer - The OHS page buffer replacement scheme is a Least
Reccntly-Uscd scheme.

2. An extended period of time has passed since the page was modified in the buffer -
This prevents pages that arc frequently being accessed from getting too obsolete
on the disk.

3. lhe repository has no more outstanding requests - At this time. all pages in the
buffer that haven't been written to the disk since they were last modi!ied, are
written. This brings OHS to a consistent state.

However, it would be very rare for the repository to crash in the midst of a non-atomic

insertion operation, for the following reasons. First, the insertion algorithm is only executed

when object headers arc initially created. Whenever they are modified, the repository

55

process requesting the modification would have obtained the OHS address of the object

header when it read that object header. Thus, unless the object header was moved, the

insertion operation wouldn't have to be executed since the object header could be modified

directly, using the OHS address. Second, most chains are completely contained within a

single page, so even if the insertion algorithms modifies several buckets on the chain, the

object header table will still be updated atomically (each page is written atomically).

Thus, in the few cases where a crash causes the object header table to be updated non

atomically, the repository's recovery mechanisms will restore consistency within the object

header table. This, and all other recovery will be described in the next chrpter.

56

Chapter Four

Recovery of the Repository

In order to recover from a crash. the repository must rcstmc iL'> global state. as well as the

state ur the objects and commit records. to a state that is current with respect to that of

Swallow as a whole. On the oth :r hancL the repository docs not have to recover the

messages that were lcrt pending when it crashed. for reasons that will be described in this

chapter.

Since some or the global state cla_a consisLs or recovery information that has not yet been

described. the discussion of the global state data's rccmery will be dcrerred until Section

4.3. at which point the recovery information will have been described. Rut first. Sections 4.1

and 4.2. respectively, discuss how the internal structure of the objects can be damaged by a

crasl1 and also describe the individual recovery mechanisms that arc used to implement

their recovery. Then. Section 4.3, presents the recovery manager, which coordinates all

recovery activities. I his section explains how the global state data is recovered as well as

how the various recovery mechanisms are integrated into a coherent recovery process that

interfaces with the processes that arc satisfying external requests, concurrently. Finally,

Section 4.4 explains why it is unnecessary to recover the pending messages.

4.1 Recovery of Objects

Due to the fact that VS is stable storage, and thus, maintains all of its dat1 redundantly,

all object versions that arc confirmed to have been written there will be found there after a

crash. Furthermore. all incomplete versions arc ignored. Thus VS, in itself', contains the

current state of all objects. Were it not for a desire to improve performance, elaborate

recovery mechanisms would not have been needed. However. to find the most current

version of an object in VS requires a linear search, which would perform very poorly. To

57

overcome this performance problem, the repository accesses the objects' versions in VS

through the object header table, which is maintained in OHS. Since OHS is only careful

storage, a crash may damage the structure and/or contents of the object h~ader table. Thus,

it is this object header table that must be recovered in order for the objects to be consistent

with the general state of Swallow.9

The various types of strnctural damage to which OHS is vulnerable are merged, cyclic

and incomplete chains (Section 4.1.1). The repository uses a modified set of h:L',h table

algorithms (Section 4.1.2) in order u detect and correct these damaged ch:tins. On the other

hand, the contents of the object he; ,der table, that is the actual object hcrtders, get damaged

by becoming lost or obsolete (Section 4.1.3). Most of the infonnation con,aincd in these lost

and obsolete object headers can be recovered from the data in VS, as dc::;cribcd in Section

4.1.4. Furthermore, the repository uses two mechanisms. recovery epochs and checkpoint

epochs (Sections 4.1.5 and 4.1.6, respectively), in order to facilitate the recovery of these lost

and obsolete object headers.

4.1.1 Merged and Cyclic Hash Table Chains

When an object header is inserted into the object header table, several buckets may be

modified. If these buckets are not all located on the same disk page then all of these

modifications may not be atomic, since the OHS page buffer management scheme docs not

write the separate pages out to the disk in any particular orcler nor all at once. If it was

possible to write out the pages so that each bucket is written out before any other buckets

closer to the end of the chain then all problems except for incomplete chains would go

away. However, since many processes may be concurrently accessing buckets on different

chains but on the same OHS pages, it may not be possible to preserve any such order.

Furthermore, since the cost of the OHS operations (and thus. the repository's response

9Note that implementing OJ IS as atomic stable storage would not really alleviate this problem. The lost
ob,icc:L hc:iucr problem would go away but there woulu still be a problem of incon~istcncy bclwecn 01 IS and VS,
since every objcd history opcrntion invoives touching both. The cost of this alternative is discus~cd in Chapter
5.

58

ti111c) woulct increase ii the concurrency of accesses to buckcL.;;; on a single OHS page was

climiiial,:d. the OHS page buffer docs not ensure atomicity of insertions of object headers

into OHS. This nun-,1tomic inscnion of object headers is manifested after a crash in one of

three types of !n:ilf'onned hash table chains: merged, cyclic, or incomplete.

Merged Chains:

A chain j,; cunsidcrcd to be merged wltcn its last bucket contains a link to a bucket that is

parl of another chain. 111 Figure 4-1. chain 1 is merged with chain 5. One way in which

ch:1(11 1 cculd have beco!lle merged with chain 5 is as follows.

,\:;.::;umc that the i11itLil :;tatc oJ' pages, in both the buffer and on the, iisk, is as illustrated

in Figure 4-2 and that uh5 is to be inserted. In ordei- to insert oh5, ohl()l would have to be

moved to another c1npty bucket and chain 1 would have to be rerouted through the new

buckcL. Figure 4- 3 show how pages /\ and B would appear in the page buffer after the

insert was done. 1-lcmT\'Cr, ii' the repository crashed before page A was written on the disk

but ;1fter page fJ w;1.s written. then chain 1 would merge witlt chain 5 as originally illustrated

in Figure 4-1.

Since merged chains arc longer than necessary, they tend to reduce the efficiency of the

hash iable algorithms. Funhermorc, if a merged chain is not corrected before subsequent

operations niodif}' it, then it may become merged with an additional chain each time the

repn:;itory crashes, forming a single long chain. Thus, when merged chains are not

corrected, the original benefit or a hash table is lost, since the efficiency of the algorithms is

reduced.

In addition, the longer the repository waits, the more difficult it becomes to fix a merged

chain. It is easy to fix a duin when it initi:dly becomes merged because all of the buckets

from one ch:iin arc lorntecl at one end of the merged chain and those from the other chain

:ire located at the other end. Thus, only one li11k has to be r.iouified in order to correct the

silllation. However, as additional insertions and deletions arc exernted on the merged

chain, the buckets 01· the two component chains become interleaved, a~ shown in Figure 4-4.

Thus, it would be necessary to break several links and then relink the buckets properly in

order tn reconstruct two separate chains.

59

0 5 oh5

oh1 6

2 7

3 oh21 8

4 9

Page A PageB

Figlire 4· 1: A Merged Chain

0

oh1

2

3 oh21

4 9

Page A PageB

Figure 4-2: Pages A and B Before Insertion of Oh5

60

0

oh1

5 oh5 X V • ~
6

2 7

3 oh21 8

4 oh101 9

--
Page A PageB

Figure 4-3: Correct Insertion of Oh5

0 V

oh1

2

3 oh21

4 oh81

Page A PageB

Figure 4-4: Merged Chain with lntcrleaved Buckets

61

Cyclic Chains:

A cyclic chain contains a bucket whose link points back to another bucket (also in that

chain) that is closer to the beginning of that chain, as illustrated in Figure 4-5. Cyclic chains

are undesirable because they prevent the hash table algorithms from terminating. In other

words, these algorithms become infinite loops when executing on cyclic chains because they

never encounter a null chain fink, which signals that the end of the chain has been reached.

0 5 oh65

oh21 6

2 7

3 oh1 8

4

Page A PageB

Figure 4·5: A Cyclic Chain

For example, assume that the state of pages A and B in the buffer and in OHS is as shown

in Figure 4-6, and that the following sequence of operations is executed.

62

0 5 oh10I

1 oh21 6

2 7

3 oh! 8

4 9

Page A PageB

Figure 4-6: Page; A and B Before Cycle was Created

1. Ohl is deleted from ch.ainl.

2. OhlOl is deleted from chainl.

3. Oh65 is inserted in chain 5. (ln doing so. a collision occurs in bucket5.
Normally, ohlOl would have to be moved to another bucket and chain 1
rerouted th.rough it, but since ohl was deleted. tkis is not necessary. Thus,
ohlOJ is simt}ly removed from the table, oh65 is inserted in bucket 5 and chain 1
is modified so that it no longer includt:s bucket 5.)

4. 0hl05 is inserted in chain 5. (Again, a colHsion occurs but this time with an
object header that belongs on the chain. Therefore, ohl05 has to be inserted
inlo another free bucket. Assuming that bucket 3' is the bucket that ~ found to
be free [ohl is de~tcd and thercfme can, be removed from thehu~et1 ohl05-is
then inserted in bucket 3, which is then added to chain 5.)

Figures 4:-7, 4-8, 4-9. and 4-10 show the pages as they would appear in the buffer after

each step is executed. Now, if a crash occurs at a point when page A (on the disk) is still in

the same state as before any of these operations were executed yet page B has been written

out to the disk in the final state, then chain 1 bei;:omes merged with chain 5, and the

resulting chain contains a cycle, as previously shown in Figure 4~5.

When a cycle is initially created in a chain, it is always accompanied by the merging of

6l.

0 5 oh101

1 oh21 6

2 7

3 oh1 8

4 9

Page A PageB

Figure 4-7: Deletion of Ohl

0 5 oh101

1 oh21 6

2 7

3 oh1 8

4 9

PageA PageB

Figure 4-8: Deletion of Ohl0l

64

0

ol\21 6

2 7

3 Oh1 8

4 9

Page A PageB

Figure 4-9: tnscrtion of OhM

0 5 oh85

1 oh21 .6

2 7

3 Oht05 8

4 9

Page A Pages

Figure 4-tO: ltrscrtion of0hl05

65

two chains, as demonstrated in the previous example. Therefore it would seem that in order

to detect a cyclic chain, one would simply check for a merged chain. However, this

detection procedure would not catch all cyclic chains if they were not always corrected

before allowing subsequent operations to modify them. For example, suppose that oh27 is

to be inserted in the cylic chain illustrated in Figure 4-11. Since bucket 7 is not oh81 's home

bucket but is oh2Ts home bucket, oh81 must be removed from bucket 7 and oh27 must be

inserted in oh81 's place. Furthermore, if possible, oh81 should be moved to another bucket

on chain 1 that contains a deleted ohject header. Since bucket 12 is on chain I and contains

a deleted object header, oh81 is ins~rtcd there after the deleted oh72 is removed. Finally,

oh27 is inserted in bucket 7 and chain l is rerouted around it. The final stale of pages A, B,

and C is shown in Figure 4-12. Sir cc there is no merged chain anymore, the cycle would

not be detected by the simple detection procedure that was proposed above. Thus, as is the

case with merged chains. it is advantageous to correct the damuge in cyclic chains before

allowing further operations to modify it

Incomplete Chains:

An incomplete chain is one in which the tail end of the chain is unaccessible, that is, the

last reachable bucket in the chain contains a pointer to an empty bucket or a bucket on a

damaged page.10 For example, one way in which an incomplete chain could be created is as

follows. Assume that the initial state of the pages is as shown in Figur,e 4-13 and that oh81 is

to be inserted. In order to insert oh8L it is necessary to find a free bucket, insert oh81 in it,

and then add the bucket to chain 1. However. if the only free bucket is bucket 5 and the

repository crashes before writing page B but after writing page A in OHS, then the chain

becomes incomplete, as shown in Figure 4-14.

10Tous, incomplete chains are caused nol only by non-atomic inserlions of object headers, but also by bad
OHS pages.

66

0 5 10

1 oh1 X V ... 6 11

2 ~ 7 oh81 X V .. .
12 oh72 X D

i\ ,-...
,__ ___

3 oh101 X V I• 8 113

4 ~ rt4

Page A PageB PageC

-

Figure 4· 11: Pages A, B and C Before Oh27 is Inserted

0 5 10

1 oh1 6 11

2 7 oh27 X V • 1 oh81

3 oht-01 8

4 9 14

PageA

Figure 4-12: Pages A, B and C After Oh27 is liUlerted

67

0 5

1 oh1 6

2 7

3 oh21 8 ---
4 9

Page A PageB

Figure 4-13: Pages A and Il Before 01181 is Inserted

0 ____.. 5

1 oh1 X vi~ 6

2 J 7

X ~

3 oh21 V IA.. 8

4 9

Page A PageB

flgure 4·14: Pages A and 8 After Crash

68

4. ·1 .2 A Modified Set of Hash Tc:ible Algorithms

Herc we describe si111rlc modifications to the insertion. deletion and search algorithms

that make the liash t:1blc sclf-recm ering with respect to the structural damage that has just

been described. 1-"irst. str:iiglHfunvarcl consistency checks arc incorporated into the

alguritlrn1s in order to detect clcl'ccts in a chain before any operations modil'y the chain.

Then. if a defect is disco\cred. a simple correction procedure is applied in order to return

tile chain tu a st:1te in ,, hich it clll be safely operated on.

In order ll) simplil'y the C\plan: lions or the modified algorithms. a defective bucket is

dcli11d to 111c;1n a h11cht ,, ith one llr tile rullowing properties:
l. Ille bucket is supposed tti co, lain an object header but instead. is empty.

2. The bucket cont:1i11s an ohjcc hc~1clcr whose hume bucket is not the first bucket
ur the chain tu 1, hid1 it is linked, and therefore. docs nut belong in that chain.

3. The bucket is located on a bad 01 IS page. and thus, cannot be accessed.

In tile modified algorithms. every chain that is touched is checked to ensure that none of

:ts bucket-; arc defective. If' a dcl'cctive bucket is found, then the link or the preceding

bucket (which points to the defective bucket) is changed to nil, thereby separating any

merged chains, breaking any cycles before the hash table algorithms become trapped 111

them. and repairing the improper link in any incomplete chains.

More specifically, the modified search algorithm is as follows (note that all of the changes

and additions arc italicized):

1. flash the given object header to the home bucket, X.

2. Ir bucket X is empty or contains an object header whose home bucket is not
bucket X. then tcrrni11alc u11s11ccessrully. Otherwise, continue searching
through chain \ 1111til either the object header in question is round, a cilfective
bucket isfo1111J. or until the end of the chain is reached.

J. If the end or the ch:1in is reached then terminate uns11cces-;fully. If a defective
hucket isJiJ//llcl then c/Jongc rhe link of the preceding bucket to nil, and terminate
un.1ucces411//y. Otherwise return the object header that was found.

The search algorithm only checks the buckets that it touches during its normal course of

69

searching. In other words, when the search algorithm finds the object header in question, it

terminates at that point, instead of continuing to check the remaining buckets towards the

end of the chain. Any errors that are located further down the chain can be detected and

corrected just as •easily by the next operation that touches the final part of the chain, since

the search algorithm does not modify the chain.

Next, the modified insertion algorithm is as follows (again, all changes and additions are

italicized):

1. Perform the search operation 'Jll the object header ..

2. If the search terminates suc:essfully. finding an older· version of the object
header in some bucket B, thc'l insert the updated version of the objc ct header in
Band terminate. Otherwise, hash the object header to the home btcket, X. Do
one of the following:

a. If bucket X is empty, or contains a deleted object header whose home
bucket is bucket X, then simply insert the new object header into bucket
X.

b. If bucket X contains a valid object header whose home bucket is bucket X,
then check for another bucket on chain X that contains a deleted object
header. If one exists then insert the object header there. Ot~erwise, find
another available bucket, Y, insert the object header in it, and add it to the
end of chain X.

c. If bucket X contains an object header whose home bucket is not bucket X,
then bucket X must be prut of another chain beginning with bucket
Z. Thus, it is necessary to move the object header presently in bucket X to
some other bucket. Starting with bucket 2, search down chain Z until
either a defective bucket is found. a non~dejectfre bucket containing a
deleted object header is found, or until the end of the d1.)in is reached. If
a non-defective bucket, D, containing a deleted object fieadcr is found,
then move the object header in bucket X to bucket D. If a defective bucket
is found then change the link of the preceding bucket to nil, and continue as
(f the end of the chain was reached. If the end of the chain is reached, then
move the object header in bucket X to a free bucket, F, and reroute chain
Z through bucket F. Then, once the old object lumder has been removed
from bucket X, insert the new object header there.

The insertion algorithm does not need to explicitly include a consistency check for chain

70

X because. as its first step. it executes the search algorithm (v1hich checks for

inconsistencies) on chain \. On the other hand, it docs have to check through the buckets in

chain Z. In fact, e\ery bucket in chain / must be checked. regardless of the relative position

ot· bucket X in the chain (unlike the consistency check pcrforrncd within the search

algorithm). The reason for this is that chain Z is to be modified in such a way that may

make a cycle imisible to the current cycle clctectiun proccclllre. as was demonstrated on

page 63.

This might lead one to hclic,c tl1,1t when performing an insertion. the check performed

implicitly II ithin the search alguritl1111 on chain X is not sunicient hccaus(chain X may still

contain a cycle when the insertion algorithm alter:; it. Howe,cr, it is sufficient because if a

bucket is found to contain the object header before the encl of L11e chain is reached, no

structural changes will be made to the hash table since the object header will only be

rcinscnccl in the same bucket. Thus. since nothing will be done to disturb any cycles or

merges further clown the chain. the next operation that executes on the chain will still be

able to detect any inconsistencies. In addition. if the object header is not found to exist

already in some bucket. then the search algorithm will have checked through the entire

chain in the process of looking for the object header and will have corrected any

inco11siste11cies th::it it found. For these reasons, it is not necessary for the insertion

algorithm to include an explicit consistency check for chain X.

Furthermore, since the deletion algorithm docs not make any structural changes to the

hash table. it docs not have to be modified at all. Thus, since it is comparable to the search

algorithm in ;L') requirements for error detection and correction and includes the search

algorithm as its first step, the chain that contains the object header to be deleted will be

implicitly checked and correctcd. 11

11
The algorithm for finding ,1 free bucket has not been described in detail because it searehc5 through the disk

p:1gc, in s<1111t' optimum mdn with respect to disk ,1ccess time ;111d is fairly implementation specific. Even
1h()[1gh it doc, not usc ch:1i11ing to guide its s,\1rchcs for buckcts that can be freed llfl, whenever it actually
rc111ovcs :1 bucket lrom a ch:1i11. it must do a consistency check on the entire chain (as is done in the insertion
,ilgorithm) and hreah the d1:1in if any dcl"cctivc buckets me detected. In this way. it will not modify a cyclic
chain in such a way that \\Uuld make the cycle lr:111sparc11L to the simple dclcction procecture.

71

Cunsiclcr once again. the chain in Figure 4-11 011 page 67. It is a merged chain consisting

or chains I and 12. and also contains a cycle.If the insertion ofoh27 had been clone using the

modified algorithms instead of the old ones described in Chapter 3. then the cycle would

have been broken and the insertion would have proceeded properly. First, the search

algorithm \\Ould lwvc terminated unsucces,Jully. Thus. oh8 l would ha\ e been moved and

its chain ,rnuld hme been rethrcaLlcd through the new bucket. !11 the process. e,1ch object

header in chain 1 woulcl have bee11 checked in order to ensure that it:; home bucket was

bucket 1. f-lc)\Ve\er. bucket 12 would ha\'e been ftHttlll to contain oh72. Since oh72's home

bucket is bucket 1. the link from I ucket 7 to bucket 12 would ha\'e been cliangecl to nil.

Then. once the two chains that were merged had been sep,1mted a11d the cycle had been

broken. as illustrated in Figure ,i-1:. oh8l would have bec11 moved to a110L11er free bucket

(since there were no buckets ,ilread 1 on chai11 I \\ ith deleted object headers). r inally. chain

1 would ha\e bec11 rerouted through the b11ckct co11tai11i11g uh81 and oh27 would have been

insened into bucket 7. forming a new. separate chai11. as shown in Figure 4-16. Note. that

even though the cycle was broke11. chain 12 and chain 1 were still lcrt 111er~ed at a second

link between bucket 12 and bucket 3. It was nm critical to correct this merge during the

insertion of oh27. since the bad li11k would be broken the ne,\t time an object header was

inserted in chain 12.

All other examples that were gi\Cn in Section 4.1.1 would :dso have worked correctly if

the Jlloclified algorithms were used. Since the changes made to th~ algorithms for searching

and it1'.,erting object headers in the hash U1ble ensure that the internal structure or the table

is always correct or detectably incorrect. crashes cannot alter the beha\ior or the hash table

algorithms. In other words. they c:mnot decrease the efficiency of the algorithms nor can

they prevent them from terminating.

4.1.3 Obsolete, Lost and Dup!icntcd OIJjcct I leaders

There arc two ways in which the object header table can be damaged, making it

inconsistent with the current state or the object \Crsions in \'S. I irst, an object header can

become obsolete if it is modified in tile page bufkr but a crash ocrnrs before the page is

72

0 5 to

oh1 11

2 oh81 12 oh72

3 oh101 13

4 1,4

PageB

Figure 4· 15: Separation of A Merged Chain

0 5 0

oh1 11

2 12 oh72

3 oh101 3

4 "
Page8

Figure 4·16: Pages A.Band C After lnsertkm ofOhBl

73

written out to the disk in the modified state. Even though the object header appears to be

valid, it contains out of date information about the object.

Second, an object header can get lost if a failure causes the OHS page on which it is

located to go bad, or a faHure occurs before all pages that have been modified by the

insertion algorithm have been written from the buffer into OHS. For example, consider

chain 1 in Figure 4-17 and suppose oh66 is to be inserted in the hash table.

0 5 10

1 oh1 X V ~

6 oh21 X V - ~ - ... -
.,

''

11 oh41 X V ...
1

2 7 12

3 8 h3

4 9 h4

Page A PageB PageC

Figure 4· 17: Pages A, Band C Before Oh 66 is Inserted

Before inserting oh66, oh21 has to be moved to another bucket and chain 1 has to be

rerouted through that new bucket The final state of the pages in the buffer, after the

insertion is correctly executed, is illustrated in Figure 4-18. Now, suppose page Bis written

on the disk in its new state but the repository crashes before page A is written out Both

oh21 and oh41 become lost by virtue of the fact that they are no longer linked to the chain

in which they belong, as shown in Figure 4-19. The normal search procedure will not find

them because it will terminate after searching through buckets I and 6.

74

0 5

1 oh1 , oh66

2 7

3 oh21 8

4 3

PageB PageC

Figure 4· I 3: Correct Insertion of Oh66

0 5 10

1 oh1 X V - .
6 X .. ~ - oh66 V 11 oh41 X V ...

2 7 12

3 8 ~3

4 9 tt4

Page A PageB PageC

Figure 4·19: Pages A, Band C After Crash

75

4.1.4 Recovery of Lost and Obsolete Object Headers

In order to recover a lust or obsolete object header. the repository must restore the

current version reference. the token reference. the commit record ref'crcnce and the end

pseudotime. First, the three references can be determined from the ct11-rent version or token

in VS, as follows. The repository searches sequentially backwards through VS from the VS

write pointer until it finds a '.,imp le ur root version image for the corresponding object. This

version image will either be the current token. an aborted token or the CLi!Tent version. In

order to determine which or three :t is. the repository must check the sue of the commit

record that is referenced by the ve1 ;ion image (assuming for now. that tl•e conrn1it record

has already been recovered).

lfthe state of the co111111it record is UNKNOWN. then the version i1rn1ge is a token and

the three references in the ubject header (current version reference. current token reference,

commit record reference) should be set to the token's VS address, previous version

reference and commit record reference, respectively. On the other hand, if the state of the

commit record is ABORTED, then the version image is an aborted token and the object

header's token and commit record references should both be set to nil. Furthermore, the

previous version referenced by the aborted token is the object's current version so the

current version reference of the object header should be set to point to that previous version

image. Finally, if the state of the commit record is COMM ITT ED, then the version image

is a version and there is no token. Thus. the three references in the object header should be

set to the version image's VS address. nil, and niL respectively (using the order above).

Now. the remaining value that the repository must restore in the object header is the end

pseuclotime of the current version or token. The repository simply sets this field to the

pseudotimc of recovery because that pseuclotime is the earliest possible pscudolime at

which it is guaranteed that no request lws read the version or token. The exact. original end

pscudotime may have been even earlier but cannot be easily determined by the repository.

Thus, the pseudotime of recovery is satisfactory since it still ensures tl1:it all atomic actions

arc properly synchronized in their accesses to the object even though some atomic actions

may be aborted unnecessarily clue to the arbitrary extension of the end pseudotime. Section

76

4.3 will discuss how the repository determines the pseudotime of recovery.

Unfortunately. there arc some complications to the recovery of lost and obsolete object

headers. First of all. the repository cannot discriminate between an obsolete and current

object header, using only the information in the object header. Second oi' all. the repository

docs not kl\ c any buuncl on its search through VS. when recmcring a lost or olNilcte object

hc,1dcr. Since VS is alwa:, s increasing in size. it is not acceptable for the repository to clo an

unbounded search e,cry time it has lo recmer an Dhjcct header. Thus. we need a means for

dc1ectio11 of obsolete object headers and an efficient means for corrcctio1; of both obsolete

and lost object headers. For these reasons. rccovc,y epochs ,md OHS < hcckpoint epochs

ha\'e been developed.

4. ·1 .5 F1ecovery Epochs

A recovery epoch is the time period between two repository crashes. Each recovery

epoch is distinguishable from the others by its recovery epoch number, or REN, which is a

rnonot•J1Jically increasing number. Whenever the repository crashe~ and restarts, it

increases its REN, which it maintains as part of its global state. Also upon restarting, the

repository marks the beginning of the new recovery epoch in VS by writing (in VS) a

boundary vers;on image, called a rccove,y epoch mark, or REM, which contains the new

REN. This REM enables the repository to determine in which recovery epoch any version

image was created.

Now, in order to determine whether an object header is current or obsolete, the

repository must check that the object header contains a reference to the most current simple

or root version image of the object in VS. If the object he::ider docs not contain a reference

to the 1110:;t current version image of the object. then the repository must update the object

header. However, the repository only has to check each object header once per recovery

epoch, since it marks the object header with its current REN after the first check. Thus,

whenever an object header is accessed. its REN is compared to the repository's current

REN. If the two RFN's arc the same then the object header is current. Otherwise, the

object header is either obsolete or is still current as of the new recovery epoch but has not

77

been accessed since the last time the repository crashed. Therefore, if the REN of the object

header is not the same as that of the repository, then the object header must be certified to

be current.

The recovery manager. which wil 1 be discussed in Section 4.3. is responsible for certifying

the object headers. In order tu certify an object header, the recovery manager scans

sequentially backwards through VS, searching for a more current simple or root version

image of the object than the version image referenced in the object header. If it finds one,

then it upcbtes the object header's references and encl pscudotime and marks the object

header to be current by selling the object header's REN tu that of lite repository. If the

recovery manager does not tine! on(. then it just sets the object header's REN to that of the

repository. :;ince the object header i~. still current.

In order to certify a potentially obsolete object header. the recovery manager only has to

search through the portion of VS that is bounded by the REM of the current recovery

epoch 12 and the REM of the recovery epoch that corresponds to the object header's REN.

The recovery manager docs not have to search through the current recovery epoch in VS

because if the object header lwd been accessed in this epoch its REN would be current.

Furthermore, the recovery manager docs not have to search pasl the REM that corresponds

to the recovery epoch of the object header's REN since that REN indicates that the object

header was last certified to be current in that recovery epoch. Thus. if the recovery manager

docs not find a version for that object by the time it reaches this REM in VS. then the object

header is still current, and the recovery manager only has lo update the object header's

REN.

The recovery manager"s search through VS can be f urthcr minimized if recovery epochs

arc artifically created whenever all Ol IS p:1ges that have been modified in the buffer have

been written out to the disk (i.e .. when the :-cpository becomes idle). and if each REM is

m:irked as either a crash o:- non-crash REM. Using this scheme, the recovery manager

12 n1e currenl recovery epoch is the new recovery epoch Lhat began when the repository restarted after the
Ill(bl recent crash.

78

would only have to scan through the non-crash recovery epoch immediately preceding the

crash recovery epoch. For example, suppose that the reposilory crashes during recovery

epoch 8 and upon restarting, writes a crash REM for recovery epoch 9 into VS, as shown in

Figure 4-20. If an object header with an REN equal to 5 is accessed after the crash, then the

recovery manager only has to scan through recovery epoch 8 for a more current version

image because all OHS pages that were modified during recovery epochs 5, 6, and 7 are

known to have been written oul by virtue of the fact that they all precede another non-crash

recovery epoch.

CRASH
REM #5

NON-CRA3H
REM #6

NON-CRASH
REM #7

NON -CRASH CRASH
ALM #8 REM #9

i i i -•..---------... ------------------.----....

I y
Recovery Epoch 115 Recovery Epoch # 8

Figure 4-20: Recovery Epochs In VS

Thus, the benefits of recovery epochs are twofold. Each object header only has to be

checked for obsolescence once per recovery epoch and when it docs have to be checked, the

search through VS for the current version image is bounded.

4.1.6 OMS Checkpoint Epochs

Even though recovery epochs exist, there is still a problem in bounding the recovery

manager's search for the current version image of a lost object header, since there is no

79

object header to provide an REN. For example. if the 010 of a supposedly lost object

header had never been assigned to any object because of a crash. then there would not be

any version images in VS with that 010 and the recovery manager would have to search

through all of VS before it could firdly figure this out. Similarly, if the object

corresponding to the lost object header is very old. then in order to find the current version

image, the recovery 111anager would have to search thrrn1gh a large poniun of VS. In order

to prevent these unbounded searches. a table that checkpoints the object header

information for every object that i-; current. is periodically created in VS thereby enabling

the recovery manager to bound its search through VS with the loc:1tio11 o ·· the most rnrrent

completed table. This table is called a checkpoint table and the period of' time over which it

is created is called a clzcckpoint epoch.

Each entry in a checkpoint table consists of the object's OID as well as a reference to the

version that is current at the time the entry is created. Since the construction of a

checkpoint table may consume a brge amount of time, it is nol acceptable for the repository

to temporarily discontinue service in order to take a snapshot of the state of all object

headers at one specific point in time. Instead, the checkpoint table is created in the

background by a separate process. called the checkpoint manager while the repository

accepts and services external requests. Thus, a checkpoint table does not necessarily capture

the current state of every object header at one particular point in time but instead, it

captures some state that was current for each object header at some time during the

checkpoint epoch in which the uible was created. Further, since the checkpoint table is

created in VS while versions are also being created. iL<; entries may be interleaved with the

versions. Thus. all of the checkpoint entries arc linked together in order to make it possible

to search through the version images of the checkpoint table e.\clusivc of the rest of VS.

Fin:illy, before the checkpoint manager starts to create a new table, it writes a checkpoint

epoch mar!c or CEM, in VS in order to mark the beginning of the new checkpoint epoch.

The checkpoint manager has to be sure to include an entry in the checkpoint table for

every object that existed during that checkpoint epoch. However, the checkpoint manager

would not necessarily do so if it simply created a checkpoint entry for every object header in

80

OHS since some ohject header:; 111:1y ha\'e been losl. On the other hand, it would clo so if it

searched L11rough \'S fur all or the current version images ,md created a checkpoint entry for

l'.ach one it fou11cl. 1-luwe\ er. this would be ,it least as bad as searching through VS for every

lost object header. if not \\(11se. Since Lile original reason lt)r creating a checkpoint table was

lo 111ini111i1c and bound thl: recmery rnan,1gcr's search through VS. the checkpoint manager

shoulcl not ha, e to lll,1kc ;i11 un buumlcJ c;e;1rch in order to cre:tle the table. Therefore. it was

necessar) tu come up 1'.ith sun1e uther scheme that would accrn1nl for every object that

existed during a checkpoint epoch.

The checkpoint 111an,1gn c1-catc, the checkpoint table. as fullows. vVhen each object is

ffrst created i11 the rcpo'>itory. the ·hcckpoint n1,11wgcr creates a checkpoint entry ror it in

the current chcckpui11t lalJlc. Then. the checkpDi11t m,rnager accounts for the remaining

objects c\isting in the checkpoint epoch by updating each entry that c\ist:; in the checkpoint

tabk of the f)t'evious checkpoint epoch. ancl placing it in the new checkpoint table.

In orcler to update an old checkpoint table entry, the checkpoint man,1ger examines the

corresponding object he,1der and C\tracts the reference to the current version or token.

However, if the object header is lost or obsolete then the checkpoint manager must wait

until the recovery manager certifies the object header belorc updating the checkpoint entry.

Also, if the object header indicates that the object was deleted in the previous checkpoint

epoch, then the checkpllint nwnagcr docs not write any updated entry for it in the new

checkpoint table. Thus, it can be seen that this method of creating successive checkpoint

tahlcs from previous ones is guaranteed to include entries for all objects that ever existed in

each checkpoint epoch. without having to scan through all of the version images in VS.

When searching for the current version image of an object whose header appears to be

lost, the recovery manager should either find an actual version or a checkpoint table entry

cont:iining a reference to the rnrrent version, hy the time it reaches the CEM of the last

complctecl checkpoint epoch in VS (which will be referred to as the limiting CEM).

Otherwise, the object has been deleted in some previous checkpoint epoch or il never

existed. For ex:11nplc. consider the checkpoint epochc; in VS that arc illustrated in Figure 4-

21. Since tl1e table fur cl1cckpoi11L epoch //3 is still being created, checkpoint table //2 is

81

the last completed checkpoint epoch. This means that CEM #2 is the limiting CEM and

thus, the recovery manager would only have to scan through to CEM #2 before it could

conclude that an object never existed or was deleted. Thus, CEM's provide the lower limit

for the recovery manager's search for lost object headers.

Current
CEM #2 CEM #3 End of VS

i~, CPT #1 CPT #2 CPT #3

~
oid aid aid aid aid aid oid aid Jid oid aid oid oid
39 6 10 2 5 63 42 51 51 42 63 5 01

CV CV VC CV V C VV CV V V CV V CV CV V CCV CCV

C = checkpoint table entry

V = any other type of version image

CEM # X = beginning boundary of checkpoint epoch # X

CPT # X = checkpoint table for checkpoint epoch # X

Figure 4·21: Checkpoint Tables In VS

In order for CEM's to be valid limits for the recovery manager's searches through VS, the

repository's processes must never confirm the creation of an object (to an external node)

until the checkpoint manager confirms that a checkpoint entry has been created in VS, since

if they did, then it would be possible for a crash to occur after a confirmation was sent out

but before the entry was made for it in the checkpoint table. In other words, it would be

possible for an object to exist without having a corresponding entry in the checkpoint table

and the recovery manager might incorrectly conclude that such an object never existed, if

the corresponding object header ever got lost.

For example, assume that the creation of object A is confirmed to an external node

before the checkpoint manager confirms the creation of the corresponding checkpoint

entry, and that the repository then crashes before the entry is created. Since each

82

subsequent table is created from the previous table. an entry for object A will never be

created in any of the checkpoint tables. Now. if the object header for A gets lost at some

time when the current version of A is located further back in VS than the limiting CEM (see

Figure 4-22). and the repository receives a request to read A. then the recovery manager, in

attempting to find its current version in VS. would incorrectly conclude that the object was

previously deleted or never existed, since it would .not find a version or checkpoint entry by

the time it reached the limiting CEM. However, if the process that created object A had not

sent out the confirmation in the first place. then the object still would hav<' been nonexistent

and no e:-.ternal node would have sent any requests for it

id
A

V

t
current
version

of A

:,. ;

GEM #2

~ . CPT #2

Current
End of VS

CPT #3

VC CV V C VV CV V V CV V CV CV V CCV CCV

C = checkpoint table entry

V = any other type of version image

CEM # X = beginning boundary of checkpoint epoch # X

CPT # X = checkpoint table for checkpoint epoch # X

Figure 4· 22: No Checkpoint Entry for Object A

Finally, there is one decision that still ha5 to be made concerning checkpoint epochs, that

is how often should the checkpoint manager start a new checkpoint epoch? The only

constraint is that a new epoch cannot be started until the checkpoint manager has made

updated entries in the current table for all of the entries in the previous checkpoint table.

As long as this requirement is met then the checkpointing mechanism will work correctly .
..

The discussion of how this decision should be made is deferred until Chapter 5, which

83

analyzes the costs of the necessary tradeoffs.

4.2 Recovery of Commit Records

Now that the recovery of objects has been described, it is necessary to explain how the

commit records are recovered. Recall that the versions of the commit records (as well as

those of the objects) are mainlaind in VS, which is stable storage. Thus, VS in itself also

contains the current state of the commit records. However, the repository accesses these

versions of a commit record throug"1 the commit record table, which is only kept in volatile

storage. Thus, when the repository crashes, the commit record table is completely lost.

Upon restarling, the repository ueates an empty table and adds entries as new commit

records are created. Also, when th.! repository restarts atler a crash, it implicitly aborts all

commit records that were in the UNKNOWN state at the time of the crash, since there is a

good probability that the broker that created the commit record would have aborted it

anyway, due to the crash. However, this abortion is not done explicitly, since the commit

record table no longer contains entries for any of the commit records that were created

before the crash. Instead, the abortions are done as follows.

As the recovery manager scans sequentially through VS in order to recover object

headers, it creates entries (unless they already exist) in the commit record table for any

version images that it encounters that contain the final state of a commit record. However,

it only creates these entries if the actual state is COMM ITTED.13 Thus, when the recovery

manager is actually recovering an object header, if the corresponding token's commit record

is not found in the commit record table then that commit record has been aborted. Either

the recovery manager had found the final state version before it reached the token in VS but

did not create an entry for it in the commit record table since itc:, state was ABORTED, or

' else there was no final state version in VS and thus, the commit record was aborted by

13 Asynchronously. some other process will eventually delete these entries from the commit record table, aller
rechecking that the object headers of all tokens in the linked list have been updated to reflect the token's
(commit record's) final state.

84

definition.

Fu1thermore, the broker that created a commit record that was automatically aborted is

eventually informed of this automatic abortion when it attempts to retransmit any

unconfirmed create-token requests, or tries to set the final state of the conu1it record. Upon

being informed, the broker retries the entire atomic action. Thus, the repository's recovery

of commit records supports Swallow's atomic action protocol.

4.3 Recovery Manager

This section describes how the recovery manager coordinates the rep)sitory's recovery

activities and interfaces with the other repository processes when they acc1.,;SS object headers

that have to be recovered. In a nutshell, the recovery manager restores Lie repository to a

state in which it can resume servicing requests from other Swallow nodes after a crash and

then runs in the background, during the repository's normal course of actiyities, certifying

the object headers and temporarily creating entries in the commit record table that facilitate

the recovery of these object headers.

Thus, when the repository restarts after a crash, it does not start accepting messages until

the recovery manager signals that the global state data has been properly updated in State

Storage and encached in volatile storage. However, once this signal is received, the

repository resumes its communications with the other Swallow nodes.

The only values in State Storage that the recovery manager has to update are those of the

VS write pointer, the last uid assigned to an object or commit record, the latest pseudotime

specified by any request, and the repository's REN. In order to simplify the description of

the recovery of the values of the VS write pointer and the last uid assigned, several terms are

defined as follows:

85

WP value in State Storage of the VS write pointer

X the number of pages that must be written in VS before WP is updated
in State Storage

LUA value in State Storage of the last uid assigned to an object or commit
record

Y the total number of uict·s that must be assigned to objects and commit
records before LUA is updated in State Storage

Both WP and LUA arc periodically written into State Storage but the active copies are

updated in volatile storage. The values X and Y above control the frequency and thus the

cost of State Storage updates. Conversely, they also control the cost of recovery.

In order to restore the VS write pointer, the recovery manager must search sequentially

through the region in VS; bounded by the two pages, WP and WP+ X. until it finds the last

VS page that has been written. Furthermore, in order to restore the current value of last uid

assigned to an object or commit record, the· recovery manager simply assumes that Y uid's

were actually assigned before the crash, and increases LUA by Y. Jn this way the repository

is still guaranteed to assign unique id's to the objects and commit records even though some

uid's will never be assigned. (Since the uid is a 64 bit number, it is not critical if some uid's

are wasted.)

Thus, X and Y are tuning parameters. A large X v-alue increases recovery time and a

large Y value increases the waste of uid's upon failure. Balancing these costs against the cost

of State Storage updates should be simple.

Next, the recovery manager must restore the latest pseudotime specified by any request

since this pseudotime is used as the pseudotime of recovery. Although the working copy of

this value is kept in volatile storJge, it is also stabilized by recording, on each VS page, the

value of the latest end pseudotime of all versions in VS up to and including that page. Thus,

upon restarting, the recovery manager simply accesses this value from the last VS page

written into VS.

86

The remaining \,due of tile global :-.talc that the recovery man,1ger must update is the

repository's R FN, sincL' the REN found in State Storage is obsolete due to the fact that the

repository just crasl1cd. Tints. the recovery manager increments the value or the REN

found in State Stor:1re and ,nit es an R FM for the new recovery epoch into VS.

Furthcr111orc. a \Ol:itilc cupy of the current REN is maintained in primary memory lo speed

up the process or check ill~ llbjcct headers.

There is olle fillal task that the recovery mallager must perform before sig11allillg that it is

safe fm the repository tu ;1ccept e\tcrnal messages. It must restore the checkpoint manager,

<,incc the checkpoint 111:m;1ger mus(continue creating the current checkpoint t1ble from

\\ here it left ofT \\ hell the repositur, crashed. To speed recovery. it is arranged that every

\'S p,1gc contains a pointer tu the n1ost current checkpoint entry written into VS. Thus, in

order to restore the checkpoint ma11ager. the I\;CU\ cry manager obtains from the last page

\\Tittcn into VS. the locatioll llf the last checkpoint entry that was written into VS ,incl passes

it 011 to the checkpoint manager. Thell, the checkpoint man;:iger can actllally access that

checkpoint entry. find the most current checkpoint entry (in the current checkpoint table)

that is also in the previous checkpoint table and resume updating the entries in the new

table. starting with that checkpoint entry in the previous table.

For example. assume that the repository is recovering after a crash and that the state of

VS is as depicted ill Figure 4-21 011 page 82. In this case. the recovery manager would pass

the VS address of the checkpoint entry for object 101 to the checkpoint manager since it

contains the most current checkpoint entry that was written into VS. Then. the checkpoint

manager would determine that the checkpoint entry for object 5 is the most current

checkpoint entry written into VS that is also found in the table created in checkpoint epoch

#2. and Lillis. would continue cre,1ti11g the table for checkpoint epoch #3, by starting with

the entry for object 2 found in the table for checkpoint epoch #2.

Once the recovery manager co111pletcs all tasks. described thus far. the repository begins

to accept and fulfill external requests. even though some of the repository"s data may still be

incorrect. Thus. when another repository process accesses an object header that is lost or

contains an old REN. it must wait until the recovery manager certifies the object header.

87

Once the reco\'ery manager completes the certification or concludes that the object header

corresponds to a deleted or non-existent objecL it signals the wailing process. That process

then reaccesses the object header and simply continues with its regular tasks. if the object

header exists. However. if the object header is still losL then the process (like the recovery

manager) concludes that the object header corresponds to a deleted or non-existent object

and takes the appropriate alternate action.

In order to avoid repetitious scanning through VS. the recovery manager certifies the

object headers for all version imag,:s that it accesses as it searches seque.1tially backwards

through VS. In addition. during th s sweep through VS. the recovery ma11agcr temporarily

creates entries for all commilled coP1111it records that it encounters and re noves the entries

when the scan passes the initial commit record versions. since earlier vcrsic,ns will not access

the commit record. Then. when the recovery rnanager is recovering an object header and is

trying to determine whether the current version image is a token or a version. it knows that

the version image is a token if there is an entry in the commit record table for the

corresponding commit record, and conversely, knows that the version image is an aborted

token if there is no entry in the commit record table.

However, the recovery manager does not perform its scan through VS continuously in the

background until it finishes. Instead, it scans through VS, certifying all corresponding

object headers until there arc no more processes waiting for object headers to be certified.

Then it halts temporarily, remembering where it left off in VS and resumes either when the

repository becomes idle (has no pending requests), or when some process needs another

object header that has not yet been certified. in order to fulfill a request.

Thus, while the repository has pending requesLs, the recovery manager only has to search

through the non-crash recovery epoch that precedes the most recent crash recovery epoch,

providing that there are no lost object headers. Only in the rare cases where an object

header is lost would the recovery manager have to search through VS up to the limiting

CFM while the repository has pending requests. Howe,·cr, since the recovery manager

continues to cccrtify object header during the rcpository·s idle periods, lost object headers

may be recovered before they arc required in order to satisfy a request, and thus, their

88

recovery will not affect the repository's response time for fulfilling requests.

Assuming. for now. that disk failures do not occur in OHS while the recovery manager is

in the midst of certifying the object headers, the object header table will be completely valid

after the recovery manager has made one scan through all of of VS up to the limiting CEM.

Thus. it can signal all processes that are still waiting for lost object headers to be certified

after it completes this scan. and these processes will correctly conclude that the object

headers correspond to objects that were deleted.

However. there is a problem with this reasoning due to the fact that clh k failures are not

controlled events and can occur any time. Usually, when the repository detects a disk

failure (bad page) in OHS. it crashes itself and restarts all of its recovery mechanisms since

OHS may no longer be consistent with VS. But while the recovery manager is certifying all

of the object headers, the repository cannot determine whether a bad page is the result of a

disk failure from which the repository is presently recovering or whether a subsequent disk

failure occurred. Therefore, the repository does not crash itself if it encounters a bad page

in OHS if the recovery manager is still cerlifying the object headers.

This means that the recovery manager can no longer simply signal any processes that are

still waiting for lost objecl headers, after it comple~es its..initial search through VS, since any

of these processes could be waiting for an object header that is on a disk page that was

destroyed by a disk failure that occurred after the recovery manager certified that object

header. Thus, if (and only iO there are still processes waiting for lost object headers to be

certified after the recovery manager makes its initial scan through VS. then the recovery

manager must recheck the object headers for all of the current objects. That is, it must

check the object headers that correspond to the checkpoint entries up to the limiting CEM.

Then, if all of the object headers are still valid, the recovery manager can signal any

processes that are still waiting. However, if the recovery manager encounters a bad disk

page in OHS during this second scan, then the repository will crash itself and restart its

recovery mechanisms so that it can, once again, restore consistency between OHS and VS.

Furthcnnore, the repository will crash itself if any repository process encounters a bad OHS

page after the recovery manager makes its initial scan through VS.

89

Thus, the portion of VS through which the recmery manager may have lo scan while the

repository is servicing external requests. depenus upon the extent or the uamagc that is done

to Of IS, First. if no object headers arc lost then the recovery 1rnnagcr only has to search

through the 11011-crash recovery epoch that precedes the most recent crash recovery epoch,

Second. if surnc object headers arc lost. then the recovery manager has tu scan through to

the limiting CEM. Finally. if sume prncess tries to access ~111 object header on an OHS page

that has gone bad since the recovery manager recovered that object header. or tries Lo access

a non·c\islent or previously deleted object header, then the recovery manager tll)l only has

to search through to the limiting CLM. but also must reaccess all the checkpoint entries up

to that limiting CEM (in order to recheck their corresponding object headers).

4.4 Justification for Lack or Recovery of Pending Messages

Since all data describing the pending messages is kept in vobtik storage, when the

repository restarts fler a crash. all this data is lost :ind the repository is lc!'t with no recall of

the prior state of these messages. However. the repository docs not have to rcrnem ber the

prior state of pending messages since it does not continue to process these messages from

where it lcfr off at the time of the crash. Instead. upon restarting, it accepts new messages

and starts from scratch.

Now that all of the repository's recovery mechanisms have been described in detail, it is

possible to explain why the repository cloes not have to e\plicitly recover its pending

messages after a crash. Basically. there are three reasons. First. since the repository satisfies

all requests atomically, no data will remain partially modified. The data will either be

completely modified or not modified at all. Sccnnu, since the protocols irJclude provisions

for any corn111u11icatio11s errors that might occur. both the sender and receiver of the

message know exactly how to react when any of these crrnrs occur. Finally. since all

repository requesls arc repeatable. as demonstrated in the L.tblc in Figure 4-23,

retransmissions do not cause the same modi!kations to be done twice to the same data.

The following example. in which the consequences of nol recovering a multiple packet

90

1. CreJte-Object: In order to decide whether or not a create-object request is a
retransmission. the repository would have to search through VS for a version that
cont:.iins the sarne pseuclotirne ancl commit record id as those named in the
request ~lowever, this is tot:1lly uI1necessary, since the original request was
unconfirrnecl the requestor cloes not have the oid and cannot access tl1e object
that the repository oriqinally created. Therefore. for all intents and purposes the
object still does not exist so the repository caI1 create a new object when it
reci=:ives a rctrarisn1itted create-object request in the s3111e way as if the request
was not a retransmission.

2. Delete-Object: If the objPct is already deleted when the request is received
then repository just confirms tt 1 e deletio11. Otherwise, the deletion is r:-erformed.

3. f1e,1ll-Ve1sion: Does not moCify d3ta, so retmnsmission is co11firmed in exactly
same way as original request.

LI. Create-token When the repository receives the retransmission a11d tries to
create tl1e token it will find that a token already exists in the objec; history. It
checks whether or not Hie request is a retransmission by checking the
psouclotirno and commit record icl of the token. If they are the same as the
pseudotin10 and commit record id narnecl in the request then it knows that this
request is a retransmission aml has alre3dy been satisfied. The repository simply
confirms the creation of the token.

5. Test-Commit-Recore!: Same as Read-Version

6. Abort-Commit-Record: Once state of commit record is decided it is never
changed so repository will simply respond with the final state of the commit
record.

7. Commit-CommitRecorcl: Same as Abort-ComRec

8. /\dd-Heference: Repository will not add a representative version to a commit
record's reference list if that version is already on the list. Repository will simply
respond with confirmation that reference has been added.

9. State-ls: If the repository has not already encached the final state in the commit
record representative then it does so. Then it returns a delete reference response
(even if the state had already been encached).

Figure 4·23: I landling of Retransmitted Requests

91

create-token request arc described. '.,lrnuld de111tmstrate that these reasons arc valid. Since a

create-token request may be left in one of' four inconsistent states alter the repository

crashes. the example will consist of four o.planations. one for each possible state.

Stale I: The repositmy only received the initial packet of' the mc~;sage but had not yet

begun to process it. Furthermore. the repository clid not send any respon~;e lo the broker.

Since no clata was modified. there arc no inconsistencies in the repository"s data.

Furthermore, since a confirmation was never sent to the broker. the SMP module at the

broker·s node will cvcnlllally time out and abort the message. at which J)(int the broker will

either abort the atomic action (send an abort-commit-record request) or rctrans111it the

request. Subsequently. the repository will either start frn111 scratch if the broker retransmiLs

the request, or will abort the com111it record as usual. if the broker sends an abort commit

record request.

Stale 2: The repository received some or all of the packets but diJ not write all of the VS

pages containing the version. Furthermore. the repository did not make the necessary

modifications to the object header table nor did it send any response to the broker.

In this case. the token still docs not exist since the root version image, which is always

located on the most current VS page containing the token. was never written. In addition,

the token is nol linked into the commit record's list of' tokens since the root version image is

the only version image of the token that contains the link. h1rthermorc, since the object

header table was not moclilied, the object header still points to the current version. During

recovery, the recovery manager will nol change the object header to point to the partially

written token bcGrnse it will not find a root version image and ignores the fragment version

images. Finally, since the confirmation was not sent to the broker, the broker will either

abort the atomic action or retransmit the request and the repository will react in the same

way as was described for State l.

State 3: The repository received all packets and wrote all VS pages cont1ining the token.

Thus. by definition, it also acldccl the token to the commit record's li:;t. I lowever, it made

some or no modifications to the object header table and did not send a response to the

92

broker.

In this case. the recovery manager will eventually update the object header to point to the

newly created token and the hash table algorithms will restore consistency to the object

header table. Furthermore. since :10 confirmation was sent to the broker, the broker will

either abort the atomic action or retransmit the create-token request. If the broker sends an

abo1t-commit-record request, then the repository aborts the commit record (if it has not

already been aborted by the recovery manager) and confirms the request. On the other

hand. if the broker retransmits th1: create-token request, then the following sequence of

events occurs. First, the repository process that is handling the request accesses the

appropriate object header. If the recovery manager has not yet recovered the object header,

then the process must wait until tlie recovery manager signals that the object header has

been certified. Then, when the prc,cess reaccesscs the object header it creates a token since

the recovery manager deleted the existing one14 and attempts to add the token to the

appropriate commit record's list of versions. However, in attempting to add the token to the

commit record's list, the process discovers that the commit record has been· aborted. Thus,

the process deletes the token and sends a rejection reponse to the broker, specifying that the

commit record has been aborted. Subsequently, the broker will retry the entire atomic

action.

State 4: The repository received all packets and made afi of the necessary modifications,

but did not send a confirmation to the broker.

The repository handles this state in the same way as it handles State 3.

Thus, it can be seen from this example that all inconsistencies in the repository's data

caused by partially processed create-token requests are eliminated by the repository's

recovery mechanisms. Furthermore, the broker is not left hanging when the repository fails

to respond, since the SMp, request/response and atomic action protocols provide alternative

14When the recovery manager recovers the object header the commit record will have been aborted. Thus,
the recovery manager tlelctes the Loken lhal wus creitled when the original ci:eale·loken request was received, by
changing the object header's Loken refercnc Lo nil.

93

modes of behavior. In fact, for all types of messages that may be sent to the repository, the

combination of the repository's internal recovery mechanisms and the Swallow protocols

ensure that the global consistency of all clients' objects is restored.

4.5 Summary

Thus, the recovery mechanisms used to restore order within the repository were

presented in this chapter. First it was shown how the structure of the object header table is

recovered implicitly, using a sped, I set of hash table algorithms, instead of by performing

an exhaustive consistency check on the entire table structure right after a crash. Next, it was

shown how the object headers thw1selves arc recovered from the curre,1t versions in VS,

using the recovery and checkpoint epoch mechanisms in order to determine the need for

recovery and to bound the linear searches through VS. Then, it was shown how commit

records are implicitly aborted if their state was not finalized before the repository crashed,

and how committed commit records are temporarily entered in the new commit record table

in order to speed recovery of the object headers. Finally, it was shown how the recovery

manager restores the repository's global state as well as how the recovery manager

coordinates all of the recovery activities so that it only has to perform a single scan through

vs.

...

94

Chapter Five

Evaluation of Recovery Mechanisms

The effects of the recovery mechanisms on the performat1cc of the repository are

evaluated in this chapter. However, since the reposttory has not yet been implemented

there are no real statistics on how long it takes the repository to sarisfy tt:e various types of

requests. Still, it is possible to estimate these time costs in terrns e,f the number of

underl>ying disk accesses that must be done in order to do recovery atld· flit,1lif1 requeslis. This

is a useful. method of analysis since these disk accesses are litefy to be the most time

consuming I.asks that the repository performs.

First, Sections 5.1 and 5.2, derive equations that calculate the total number of disk

accesses that the recovery and checkpoint managers, respectively, require per recovery

epoch. Next. Section 5.3, calculat~s the average cost of of these recovery mechanisms per

request. for a typical example. From this calculation it is possible Lo gain some insight into

how much of the repository's response time can be attributed to tJ1e recovery mechanisms

and how sensitive these response time costs of recovery are to the varying characteristics of

the requests and data sent to the repository. Hnally, in order to put these calculations into

perspective, Section 5.4 compares the cost of the recovery mechanisms presented in this

thesis (for the repository) with an alternate set of recovery mechanisms that could have been

used, which are based upon OHS being reusable stable storage.

5.1 Cost of Recovery Manager

The cost of the recovery manager includes the cost of updating State Storage and

encaching it in Volatile Storage as well as the cost of certifying alt of the object headers.

Since Lhe significant cost is that of certifying the object headers, this cost will be analyzed in

detail, but first, a brief description of the other costs is given. as follows.

95

The only noticable cost of recovering ·state Storage (with respect to disk accesses) is that

of restoring the VS write pointer, since the recovery manager has to search through some

number of pages in VS in order to find it. This number depends upon how frequently the

value of the VS write pointer is updated in State Storage: the more frequently the value of

the VS po111ter is updated in State Storage. the fewer the number of VS pages through

which the recovery manager must search after a crash will be. However, State Storage

updates arc fairly costly (in terms or disk accesses) and should not be done too often while

the repository has pending requests. Thus. a tradeoIT must be made. In the initial

implemention of the repository. th,.: tradeofT will be made arbitrarily and then, once actual

costs can be measured, the parameter that specifics the frequency of updating the VS write

pointer in State Storage will be fine tuned for the optimum tradeotT.

The remaining costs of restoring State Storage depend on its size and what percentage of

it must be encached in volatile storage. However, since St.ate Storage will be fairly small

(less than one page), these costs should be insignificant compared to the cost of recovering

the write pointer.

96

In order to derive an equation for the total cost of certifying all object headers in OHS

per crash, ic is necessary to define the following variables:

C the cost of reading a VS page
vr

C the cost of writing a VS page
vw

C the cost of reading an OHS page
or

C the cost of writing an OHS page
ow

X the number of OHS pages that have to be read in order tc find a
particular object h,~ader (using the hash I.able search algorithm)

P average number o.~ version images per VS page

L probability that any object header will get lost dming a cl eckpoint
epoch

M

M

D

N

I

re

ce

N

V
N

0
N

E
N

the REM (beginning mark in VS) of the non-crash recovery epoch
that precedes the crash recovery epoch

the limiting CEM (i.e. the beginning of the last tenninated
checkpoint epoch)

the number of pages in the portion of VS between M and M
re ce

the number of VS pages in the non-crash recovery epoch that
precedes the crash recovery epoch

the number of version images per N

the number of version images that are simple versions or
roots of structured versions for objects per N

the number of distinct objects for which there are version
images contained within N

the number of checkpoint entries per N

97

I
D

V
D

0
D

E =
D

L\E
D

the number of version images per D
(I «I)

N D

the number of version images that are simple versions or
roots of structured versions for objects per D
(V « V)

N D

the number of distinct objects for which there are
version images contained within D
(0 « 0)

N D

the number of checkpoint entries per D
(EN« ED)

the number of new checkpoint entries that have been
created between repository restart time and the lime when the
recovery manager finishes its initial scan through VS (up to the
limiting CEM)

Using the above definitions, the basic total cost, C , of the recovery manager per crash
nn

assuming that no object headers are lost can be specified:

C C I /P + XC (V + E) + C 0
nnb vr N or N N ow N

The te1ms of the equation can be explained as follows. The first term in the equation

reflects the cost of reading and examining every version image within N. Since the recovery

manager scans sequentially through VS, it examines all of the version images on a single

page while that page is in the buffer. Thus, the cost of examining the version images is

reduced by a P factor due to the fact that the recovery manager docs not make a disk acce~

every time it examines a version image.

The second term represents the cost of reading the object headers corresponding to every

version image that is a simple or root version image of an object, or a checkpoint entry, in

order to check that the object headers are current. The cost of reading an OHS page is

multiplied by X because in order to find a particular object header, the search algorithm

must be executed on the object header table, which might involve reading more than one

OHS page if the object header being accessed is on a chain that crosses page boundaries or

98

was damaged. However, very few (if any) chains in the object header I.able will have these

properties since all of the bucket5 on a single chain are &lmost always \ocated on the same

page. Thµs, the value of X is so close to 1 that for al\ analyses in this chapter it will be

ar.;sumed to be 1.

The final term represents the cost of the OHS writes thai rnust be done in order to update

every object header. This term accounts for every objecl header being written once since it

is assumed that the recovery manager reaches M before the repository crashes again.15
re

Thus, for any recovery epochs for ·vhich this assm\'\pt~n is not \rue. this term will have to

be adjusted. Furthermore, the cosc of the OHS write in this term is not multiplied by a

factor similar to X since the recover;· manager retains the loca.tion of the o!Jtct header when

it first executes the search algorithm and can simply rewrite the object header in place

without having to perform the insenion algorithm.

Since object headers sometimes do get lost, C is not the average total cost of the
nnb

recovery manager per crash. In order to calculate this cost it is necessary to add to C ,
, nnb

some percentage of the cost of scanning between M and M . This percentage, L,
re ce

represents the probability that a crash will cause object headers to get lost Thus, the

average tot,al cost, C . of the recovery manager per crash is:
rmt

C = C + L{C I /P + XC (V + E) + C O +
rrnt nnb vr D or D D ow D

[(C + XC){E + ~E)]*16}
vr or D D

In the factor multiplied by L, aU terms cxcep\ for the starred term are costs that are

comparable to the costs in C . The only difference is that the scan through VS is done
rmb

15 An object header is never wriuen more than once. even if there is more than one version _ for the object
contained within the recovery epoch in VS, hecause once an object header has been certified it contains a current
REN. The recovery manager does not rew1ite any object headers thalconlain curr~nt REN'.s.

16Throughout the remainder of this analysis, the reader can assurne th;it any tem1. that is marked with an
asterisk, * , is included in the cost only in the worst case. A very low probui)ility event hm.. to occur for the Lenn
to be relevant

99

through the region bounded by M and M instead of through tJ1e non-crash recovery
re ce

epoch that precedes the lates ~rash recovery epoch. Fmthermore, the starred term

represents the cost of rechecking (second scan through VS) all of the object headers for all

of the current objects. Recall that the recovery manager only does this if, after it initially

checks and certifies all of the object headers, there still remain processes waiting for lost

object headers to be recovered (see page 89). Only if one or more OHS disk pages decayed

or if some external request erroneously specified an 01D for a deleted or non-existent

object will there be proce~es waiting after the initial scan. Tims, since both of these events

occur very rarely, this starred term ~ ill not usually be calculated into the CO.it.

Thus, C is not only the averagr total cost of the recovery manager per crash but is also
nnt

the average response time cost of the recovery manager per crash. In other words, it

represents the cost of the work that the recovery manager must do in the lJackground while

the repository is satisfying external requests. However, keep in mind that C is the worst
rmt

case average cost, since the repository may have idle periods in which the recovery manager

can do some of the object header certification. In Section 5.3 it wilt be shown how C
rmt

affects the average response time of a request

100

5.2 Cost of Checkpoint Manager

The sole cost of the checkpoint manager is that of creating the checkpoint tables. In

order to derive an equation that specifies this cost per crash, some additional variables must

first be defined as follows:

u

B

R

p
C

the number of checkpoint entries in the table for the last
terminated checkpoint epoch that correspond to obja,1S that
were not deleted in that chcckpoi:nt epoch

the number of checkpoint entries in the table for the last
terminated checkpoint epoch that correspond to objects flat
were deleted in that checkpoint epocll

the number or new objects that arc created during the
average checkpoint epoch

the number of VS pages written since the previous crash

average number of checkpoint entries per VS page t:hat
contains at least one checkpoint entry

Using these newly defined variables and those defmed in the previous section, the

average total cost, C , of the checkpoint manager per crash can be specified:
cmt

C =
cmt

[C (U-dO + B)/P + C 110 + XC (U + B) +
vr I c vr or

U/P + C L\0){R/D]
C VW

Since the updated checkpoint entries are grouped into blocks that occupy a VS page,

thereby eliminating the need to write one VS page for every checkpoint table entry that is

written, the costs of the VS page reads and writes of these updated checkpoint entries are

decreased by a P faclor. However, since the checkpoint entries for newly created objects
C

are written as the objects are created, it is not possible to group these checkpoint entries into

blocks on the VS pages. Thus, the cost of the VS reads and writes of the first checkpoint

entry created for every object is not reduced by any pageload factor.

The first two terms, C (U-dO + 8)/P + C 110, reflect the CtN of examining aH of the
vr c vr

101

checkpoint entries in the previous checkpoint epoch table. The third tenn, XC (U + B),
or

reflects the cost of examining the corresponding object. header for every checkpoint entry in

Lhe previous table in order to obtain the current version ofthe object. The value of X in this

term is very close to 1, for the same reason as was given in the previous section. The fourth

tcrni. U/P, reflects the cost of writing an updated entry for every checkpoint entry that was
C

not uefcled in the previous checkpoint epoch. The fifth term, C 80, reflects the cost of
vw

creating new checkpoint entries for newly created objects. This term docs not include the

cost of reading an OHS page since that cost is attributed to Lhe creation of the object.

The multiplier, RID, represents the number of checkpoint epochs that exist in VS per

crash. Since checkpoint epochs bear no relationship to crash events; this mtio is variable. In

other words, checkpoint epochs can be created at any arbitrary rate. Thus, since it is

desirable to minimize the reJXlsitory's response time for satisfying requests, the decision

about when to create a new checkpoint epoch will probably be made dynamically by the

repository. It will not be a time dependent decision but instead will depend upon D (the

distance between the current end of VS and the limiting CEM), and upon the expected

usage of the repository.

The decision will depend upon D because the smaller D is, the smaller the values for I ,
D

V , and O will be. In other words, the faster new checkpoint epochs are created, the
D D

smaller the total cost of the recovery manager will be since the recovery manager will have

fewer version images to examine in VS. Nevertheless, this will only decrease the total

response time cost if object headers get lost due to the crash, since if none are lost then the

recovery manager does not scan all the way to the Jimiting CEM.

However, there is a disadvantage to creating checkpoint epochs at a fast rate: as the rate

of creation of checkpoint epochs increases, the ratio, RID, increases, and therefore, so does

the total cost of the checkpoint manager per crash recovery epoch. If the checkpoint

manager does its work in the background while t11e repository is satisfying external requests,

the checkpoint epochs should not be created at a very fast rate since the checkpoint manager

will be sharing the disk resources with the processes that are handling the external requests,·

and thus, will increase the repository's response: time. However, if the repository has

102

enough idle time so that the checkpoint manager.can do most of it.s work during that time,

then checkpoint epochs can be created at a foster rate since the only cost of the checkpoint

manager th,it will affect the request response time is that of creating checkpoint entries for

newly created objects.

Thus. the repository decides to create a new checkpoint epoch if either of the following

two situations arise. First, if the repository expects to be idle for some time. the checkpoint

manager has finished updating the old table, and some minimum number of new versions

have been created in the current checkpoint epoch, then the reposito·y creates a new

checkpoint epoch. Second, there :s probably some maximu,m di~tance over which it is

desirable for the (ccovery manager to ever have to search (because of the time it takes to do

all of Lhe necessary disk accesses). so if D reaches half of th.is ma,.,i,mum, the repository

creates a new checkpoint ef>O'h. 17 Thus, the repository ci:e~es new checkpoint epochs at the

fastest rate that optimizes the repository's time under. alt conditions.

The parameters specifying the maximum size of D and t,he minimum number of new

versions that should ha.ve been created in the current checkpoint epoch wiU. be chosen

arbitrarily in the initial implementation of the repository. Then. once it is possible to

measure ~e actual l.'OSt'i and response tjmes of the repository, these parameters will be

adjusteq.

17
111e reason why the crucial distance is half of t.hi!i maximum rather lholl I.be act.ual. maximum is because the

recovery manager has Lo sear{:h through all version ~.iges in, lhe previims cb«kf)0Hlt,ef'9Ch in addiljoB.to the.
current epoch, (lhe !able for the current epoch is not complete until Lhe epoch is terminated).

103,

Since the repository will probably have a reasonable amount of idle time (at least in the

wee hours of the morning), the checkpoint manager will do most of its work at that time.

The only work that must be done while the repository is satisfying requests is the creation of

new object headers. Thus, the average response time cost, C . of the checkpoint manager
cmr

per crash is:

C = (C aO)(R/D)
cmr vw

One should observe that only a small percentage of the total cost a;:tually affects the

repository's response time.

5.3 Average Cost of Recovery Per Request

1t would be useful now, to analyze how much the recovery and checkpoint managers cost

per request that the repository processes because then we can analyze how these managers

affect the repository's response time per request First, it is necessary to calculate the costs

of reading and writing VS and OHS pages.

The costs of VS page reads and writes are:

C = 1 disk access + [page recovery(
vr

C = 4 disk access + [repeated diskacceses]*
vw

Nornially, only one disk access is done in order to read a VS page, since only one copy of

the page has to be read. However, if a bad VS page is encountered, then there is an

additional cost, represented by the term [page recovery], which is the number of disk

accesses that must be done in order to recover the page. Since the probability of disk pages

decaying is very small, this term will rarely be included in the cost

In order to write a VS page, at least 4 disk accesses must nom1ally be made, i.e., a read

and write for each of the 2 copies of the page that are maintained. However, these 4 disk

104

accesses represent the total cost of a VS write, i.e., the total work that must be done. Since

there will probably be two devices performing the writes of bot~ copies in parallel, the

response time cost of a VS write will only be 2 disk accesses. Furthemmre. only in the case

where the read back after a write indicates that the write wus not done properly and has to

be repeated, will the term [repeated disk accsscs] become a component cost of a VS page

write. Once again. the probability vf the original write not succeeding is minimal.

On the other hand, the costs of OHS reads and writes are:

C = 1 disk access
or

C = 1 disk access
OW

Since OHS is careful (standard disk) storage, each page that is read or written requires

only a single disk access.18

Now, the average total cost of the recovery and checkpoint managers per request

(excluding all starred terms) is:

(C + C)/Q = {I /P + V + E + 0
nnt cmt N N N N

L[l /P + V + E + 0 } +
D D D: D

(R/D](5AO + (2U - AO+ B)/P + U + B]}/Q
C

where Q = the total number of requests satisfied per crash

18Note that the actual cost of the OHS read and write operations wit! be less 1haJ1 or equal lo 1 full disk access
since lhc OHS page are nol read (written) from (lo) lhc disk every Lime a read (writ&) is done. Often, the page to
be read (wriucn) will be found in a primary buffer. However, if the object header table is big then the reduction
in costs will be small.

105

However the average response time cost of the recovery and checkpoint managers per

request is only:

(C + C)/Q = [I /P + V + E + L(I /P + V + E) +
nnt cmr N N N D D D

2L\OR/D]/Q

From this equation one can observe how the response time delay that is attributed to

recove1y fluctuates with the varying characteristics of the requests and objects that are sent

to the repository. One thing to rotice is that this response time dcla) decreases as the

average size of the clients· objects iocrese, since the larger the objects are. the smaller the

value of V and V will be. A11other thing to notice is that the rc~ponse time delay
N D .

increases with the rate of object creation, since the faster new objects are -:reated, the larger

the value of L\O will be.

The following example will give the reader a better feeling for what the actual response

time delay that is attributed to recovery per request might be. By choosing an arbitrary but

reasonable number of requests that might be processed and a reasonable number of objects

that might be valid within a single recovery epoch, approximate values can be extrapolated

for all of the terms in the cost equations. Thus, for this example it will be assumed that the

repository processes 20,000 requests per crash and that 10.000 objects arc current at any

given time. The table in Figure 5-1 shows the distribution of request types among the

20,000 requests that are proces.5ed and the table in Figure 5-2 shows what values were

extrapolated for the variables used in the equations.

Using these values, the average total cost of recovery per request will be:

(C + C)/Q
nnt cmt

= 15410 disk accesses/20000 requests

= .77 disk accesses/request

106

Amount
Type Processed

create-object 1000

delete-object 1000

create-token 5000

read-version 5000

create-comrec 2000

abort-comrec 200

commit-comrec 1750

add-ref 2000

delete-ref 2000

test 50

Figure 5-1: Request Distribution

On the other hand, the average response time cost of recovery per request will be:

(C + C)IQ
nnt cmr

= 2050 disk accesses.120000 req.uests

= .1 disk accesses/request

Thus, in comparison with the average response time costs of processing read-version and

create-token requests, wl'lich are 2 disk accesses and 1.4 disk accesses, respectively, the

additional response time cost attlibutable to rerovery in the noflMl· case, .l disk accessces, is

not very significant

5.4 Comparative Cost o-f Another Type of Recovery

To put these costs of recovery into perspective, it is necessary to compare them with

similar costs of an alternate method of recovery for the repository. The repository using the

recovery mechanisms described in this thesis will be called R, and the alternative will be
' ' t called R. Briefly, the design for R is to implement OHS as reusab-le stable storage. In R,

107

Variable Value

lo 15000

PC 5

VO 5500

~ 10000

oD 10000

M 200

u 9000

B 1000

.« 1000

Rt.:> 1

PC 50

NN 10

VN 50

IN 35

EN 5

Figure 5·2: Extrapolated Values for Variables in Cost Equations

no request is confirmed until the appropriate changes are written into both OHS and VS.

Also, all changes made to OHS for a single request are written into OHS from the page

buffers in an atomic fashion and are not written until the necessary changes have been made

to VS.

Using this alternative design of the repository, it is possible to eliminate the checkpoint

manager since object headers will not get lost. Also, the recovery manager can be greatly

simplified due to the fact that in fulfilling a request. the repository does not change OHS

until VS is modified. Thus, if the repository crashes before updating any part of OHS, then

the request will not have been confirmed, 01 IS will renect the current state of the data, and

the version(s) added to VS will be ignored since the object headers were not changed to

include them. Jn other words, object headers will not become obsolete so there is no need

for the recovery manager to search through VS in order to examine the versions and certify

108

the corresponding object headers.

Therefore. the only responsibility of the recovery manager in R' is to update State Storage

before the repository resumes iti; nonnal activity. However, since recovery of State Storage

is exactly the same for both R and R', its cost will ilol be included in this comparative

analysis. Furthermore, for this analysis it is assumed that the only differences between the

two repositories arc those that have been described above. Thus, all other costs, such as

those for communications. are assumed to be the same in both repositories and will not be

included in this analysis.

Supcrlicially, it might appear as i{R' uses a more cfficietH 111ethod of recovery. However,

the cost of maintaining OHS as stable storage in R' far ·outweighs the costs of the more

explicit recovery mechanisms used in R. This can best be shown, by conii aring the costs of

satisfying the same types of requests in both repositories (adding the average cost of the

recovery mechanisms per request to the cost of satisfying requests in R).

' In order to compare these costs, the costs of reading and writing VS and OHS pages in R

must first be calculated. Since there is no difference in the structure of VS for R and R',

there is no difference in the costs of reading and writing the VS pages for both repositories.

Therefore, C and C will be used to represent the costs of VS writes and reads for both
vw vr

repositories. (However, for all other costs, any symbols with a pntne mark added to them

apply to R).
.,

The costs of the OHS read and write operations in R ate greater than those same costs in

R. These costs in R' are:

. . .
C = 2 disk accesses + (1 disk access]

or

c' = 4 disk accesses + [repeated disk accesses)*
ow

An OHS read in R' requires at least 2 disk accesses since OHS is reusable stable storage.19

19Note that In R' the cost of an OHS read will prob:\bly be slightly less lhan 2 disk accesses since the page
might be found in the buffer. However, since OHS in R is stable storage, an OHS page has to be written to the
disk every time it is modified. Thus, C will not be reduced at all. ·

ow

109

Thus, both copies of an OHS page must be read and compared, since it is possible for both

copies of an OHS page to be valid but different from one another (if the repository crashes

in between the writes of the two copies). In this case, where both pages are valid but

different, or in the case where one of the pages is bad, one additional disk access is required

in order to write the recovered copy of the page. 20

On the other hand, the cost of the OHS write in R' requires 4 disk accesses because two

copies of the page have to be written sequentially and each copy must be read back in order

to ensure that the writes were done correctly. However. the term, [repeall d disk accesses] is

only included in the cost if one of the reads (after a write) indicates that the write was not

done correctly and has to be repeated.

' Now that the underlying costs of the VS and OHS read and write operations in R are

understood, it is possible to analyze the comparative costs of processing the same type of

request in the two different repositories. Two comparisons will be done, one for a create

token request and another for a create-object request 21 The values from the example in

Section 5.3 will be used as the average costs of recovery per request in R. Thus, .77 will be

used as the average total cost per request and .1 will be used as tlle average response time

cost per request. In R', there is no additional cost of recovery per request that has to be

added into the cost of satisfying a request

20Note, that in order to simplify this analysis. the (rare) case where a chain crosses page boundaries is ignored.
TI1us, it assumed that all buckets in a single chain arc fully contained within a single page.

21n1e difference in costs for read-version or delete-object requests is the same as for create-token requests,
even though the individual costs difler. Thus, the comparative analysis for these two types of requests will not
be done in this thesis.

no

The average total cost of processing a create-token request (assuming that the token fits

on a single page) is as follows:

C = cost of create-token request in R
crlkn

= C + C + (C /P) +
or ow vw

average total cost of recovery per request

= 3.57 disk accesses

' ' C = cost of create-token request in R
crtkn

' ' = C + C + (C IP)
or ow vw

= 6.80 disk accesses

The total work that has to be done is less in R than in R'. Furthem10re, there is an even

greater dtfference in the average response time costs. la order to obt.,in tile response time

cost of satisfying a create-token request in R', the total oost is reduced by hatf of the cost of

the VS page write, since there wm most likely be two devices performing the write and read

of both copies in parallel. Thus, the response time cost in R' is 6:40 dist acecb'Ses. In R,

though, the total cost is not only reduced by 1/2 of tke cost of the VS page write, but in

addition, is reduced by the decrease of .67 in the total recovery cost per request (from .77 to

.las described in Section 5.3) and by the cost of the OHS page write (which is 1 disk access),

since the repository doesn't wait for OHS page wtites to complete before responding to

requests. Thus, the resulting response time cost of satisfying a create-token request in R is

1.5 disk accesses. This is a significant improvement over the cost of 6.40 disk accesses in R',

Even for a given crash where object headers are lost, the average response time per request
' would be 2.42, which is still much better than 6.40 for R.

1H

Next, in the case of a create-object request, the average total costs are:

C = cost of create-object request in R
crobj

' C
crobj

= C + C + (2C /P) +
or ow vw

average cost of recovery per request

= 4.37 disk accesses

= cost of create-< bject request in R'

c· + c· + c IP
or ow vw

6.80 disk accesses

Thus, even though the cost of creating an object in R includes two times the cost of

writing a VS page (a checkpoint entry has to be created for the new object in addition to
' writing the version), the total cost of creating an object in R is less than in R . Also, there is

an even greater difference in the two response time costs since the cost in R drops to 1.90

disk accesses whereas it only drops to 6.40 disk accesses in R'.

Thus, in this example, both the total costs and the response time costs are less for each

request satisfied in R than in R'. Even in a rare case where the recovery manager has to

recheck all object headers and an additional 2.12 disk accesses must be added to the costs

(the starred term in the total cost of the recovery manager, given on page 99), the costs are
' less in R than in R . The response time cost of the create-object request, as well as both

types of costs of a create-token request are still significantly less in R than in R'.

' Note, that R is not as sensitive to the average size of the objects and the read-

version/create-token ratio as R is, nor is it sensitive at all to the rate of object creation, since

it does not include a recovery cost term. However, in R, under normal circumstances

(where no object headers are lost), the sensitivity of the response time to these variables is

still not enough to make the recovery mechanisms in R' more efficient than those in R, with

respect to response time.

112

5.5 Summary

In summary, it has been shown that on the average, although the total cost of these

recovery mechanisms is fairly steep. the response time costs of these recovery mechanisms is

insignificant. However, it is necessary to keep in mind that these costs are averages. These

delays will vary with the requests. The initial .requests that arrive after the crash will

experience much more response time delay due to the crash than the average delay costs.

Nevertheless. once the recovery manager completes its scan, no subsequent requests

experience any extra delay due to recovery, except for create-object rcque,ts, which require

that checkpoint entries be created before the response is sent.22.

It has also been shown that in the example environment, these recovery mechanisms are

more efficient than those used in R', in almost all respects (total and response time costs of

all types of requests). Even in the absolute worst case where unassigned or deleted uid's are
' specified in requests, R is more efficient than R. It is probable, though, that in an

environment where the repository is utilized very heavily, 24 hours a day, and where the

objects are fairly large, that R' would provide a more efficient storage service. Although the

calculations are only valid for our one example, we have erred in a conservative direction

for the example numbers. In general, the recovery cost will probably be less than that in the

example.

Finally, if there is any bottleneck in these recovery mechanisms it will be the checkpoint

manager since it requires a lot of work to be done just to prevent the worst case from being

intolerable. It may have to be made more efficient if certain unfavorable conditions prevail.

22
1t can be arranged so that checkpoint entries of newly created objects are written on lhe same page as lhe

versions of the objects. Then there will not even be any delay attributable to r-ec(}very for the create-object
requests

113

Chapter Six

Conclusion

In this thesis, a coherent set of recovery mechanisms for the Swallow repository was

presented. In order to sum things up, this final chapter reflects back on the original design

goals and then offers suggestions for further work.

6.1 Summary of Original Goals

Recall that the most important goals were to ensure that the repository's data is restored

to an internally consistent state and to support the global recovery mechanisms in order to

ensure external consistency. The general strategy used to fulfill this goal is to maintain all of

the essential data (repository's globnl state, values of clients' objects and state of the commit

records) in stable storage and to restore a1l auxiliary data from this data in stable storage.

Thus, before any auxiliary data is used in order to satisfy external requests, it is always

compared with the stable storage data, either explicitly (by scanning sequentially through

VS) or implicitly (by comparing the R EN's of the repository and the object header), and is

brought up to date, if necessary. Furthermore, no data is ever released to external nodes

until the state of the corresponding commit record is known to be committed, thus, abiding

by and supporting the global recovery mechanisms.

The next goal was to provide minimal disruption to the ongoing activities in the other

Swallow nodes by minimizing the immediate recovery that has to be done before the

repository can begin accepting requests. The strategy used here is to restore the VS write

pointer, the repository's REN and the last uid assigned (to an object or commit record), then

to get the checkpoint manager started from where it left off before the crash and finally, to

encachc the entire global state in volatile storage and start accepting requests. The

remaining data, consisting of the object header and commit record tables, are recovered

114

gradually during the course of the repository's nontial .activities. TI1us, the immediate

recovery is trivial.

Of course, even though the repository begins accepting' requests fairly soon after a crash,

there still may be further delay in returning a response. since lhe data req11ired to satisfy the

request may require recovery. However, the third goal was to minimize this respom,'C time

delay attributable to recovery, Thus. this goal is n\ct by using non-crash. recovery epochs in

addition to crash recovery epochs, in order to mark the last point in VS when OHS is

guaranteed to be consistent with VS (providing th~t no object headers are lost). Then, if the

repository has frequent idle period;, it will only be necessary to scan thr Jugh a very small

region of VS before a request can be satisfied and confirmed. Fm1h1 :rmore, once that

region of VS has been scanned, there will be no additiona1 test}Ohse time delay atttib11table ·

to recovery. In other words, all requests wit! be satisfied at full speed.

6.2 Future Work

The first step that should be taken, now that the recovery mechanisms have been

designed, is to use these recovery mechanisms i~ the repository. Once this is done, the

repository ·s perform~ce can be gauged under various conditions, both normal and

stressful, so that all parameters can be fine tuned, '
I

,The analysis in Chapter 5 was only intended to give a feel for the costs of recovery. A

better analysis could be made by measiiring and comparing the actual response time delays

of requests arriving immediately after restarting and those aitivttig some time later.

Another interesting measurement would be how the length of time .in which the recovery

manager perfonns its required scan through the .non-crash recovery epoch preceding the

crash recovery epoch varies with different levels of rQpository utilization.. These are only

examples of the various anlyses that can be done once actual ~asurements can be taken.

In addition, the behavior patterns of the users can be monitored in order to figure out

what the weaknesses of these mechanisms are. For example, if tl1e repository is more
heavily utilized than expected, then the checkpoint and recovery epoch mechanisms tnay

115

require modification. However if the usage is as expected, i.e., long periods of idle time

during the early morning hours and frequent short periods of idle time through the rest of

the day, then these mechanisms should work well.

Another interesting pattern to observe would be the ratio of retransmissions vs. abort

commit-record requests that the repository receives after a crash. If this ratio heavily favors

retransmissions then it may be desirable to explore methods for recovering commit records

whose final state had not been decided before the crash, other than auLomatically aborting

them.

Finally, new classes of algorithms have been recently developed for hash tables whose

size changes dynamically. These algorithms may be incorporated into a subsequent

implementalion of the object header table in the Swallow repository. If so, then it will be

necessary to examine these algorithms for potential difficulties that may be caused by

, failures and then to modify them so that they can detect and correct any errors before these

errors wreak havoc within the repository.

6.3 Generalizations

In a more general sense, the techniques used in the repository for reliably storing,

accessing and recovering the data may be applicable to other systems. For example, in the

repository, critical data is maintained in stable storage while the optimized mappings to this

data are maintained in careful storage. This type of strategy for storing data would be useful

in any system that contains some data that cannot be lost. The only deterrent to using this

strategy would be the expense of stable storage. Thus, future work should be directed

towards reducing the cost of the stable storage read and write operations without decreasing

the reliability of the storage. 23

In addition, the hash table algorithms developed here may lead to convenient methods

231n fac:I. if the stable storage operations could be made sufficiently inexpensive, then there would be no need
to have careful storage, at all.

116

for keeping database indices, since these algorithms are efficient and self-recovering. The

essential property of the hash table that allows these algorithms to use trivial error detection

and correction procedures is that the hash table does not have to be perfectly reliable. In

other words, it is acceptable to lose data in the hash table, once in a while .. Thus, as long as

the hash table data can be recovered from mote reliable data sources, if necessary, then a

database system can use these algorithms, thereby eliminating the need to check the entire

structure of the table of indices for potential damage after a crash, since the hash table

algorithms do this check implicitly.

Finally. the notion of on line rcc,)Very during the nonnal course of operations is one that

would be extremely useful in alt aimputing environments. In order for online recovery to

be practical in any given system, cl1eap methods for detecting the need for recovery as welt

as for implementing recovery must be developed for that particular system.

In conclusion, there is still work that has to be done in order to fine-tune and perfect the

recovery mechanisms within the repository. Even so, these mechanisms can be generalized

and applied to other systems in order to improve the standard recovery procedures.

117

[l]

[2]

[3]

[4]

[5]

[6]

[7]

Bibliography

Accetta. M., Robertson, G., et.al.
The Design of a Network-Based Central File System.
Technical Report CM U-CS-80-134, Carnegie-Mellon University, August, 1980.

Akkoyunlu, E.S .. Ekanadham, K., Huber, R.V.
Some Constraints and Tradeoffs in the Design of Network Communications.
In Proceedings of the Fifth Symposium on Operating Systems Princwles. ACM,

November, 1975.

Bernstein, P.A .. Shipman. D.W., Rothnies, J.B.
Concurrency Conlrol in SDD-1: A System for Distributed Databases; Part I:

Description.
Report CCA-03-79, Computer Corporation of America, Cambridge, Ma., January,

1979.

Comer,D.
The Ubiquitous 8-Tree.
ACM Computing Surveys 11:121-137, June, 1979.

Gray, 1., et al.
The Recovery Manager of a Data Management System.
Research Report R.12623 (33801), IBM Research Laboratory, San Jose, Ca., August,

1979.

Israel, J.E., Mitchell, J.G. and Sturgis, H.E.
Separating Data from Fu-nction in a Distributed File System.
In Proceedings of the Second International Symposium on Operating Systems. IRIA,

October, 1978.

Knuth, D.E.
The Art of Computer Programming - Sorting and Searching, Volume 3.
Addison-Wesley Publishing Company, 1973.

118

[8]

(9}

[11)

[13)

[14)

[15)

Lampson, B. and Sturgis, H.
Crash Recovery in a Distribute~ Data Storage S~stem.
Xerox Palo Alto Research Center, Ca. April, 1979. To appear in CACM.

Linosay, B.G., et. al
Notes on Distributed Dalabases.
Technical Report RJ2571 (3.3471), lBM Research Laboratory,~. Jose, Ca., July,

1979.

Maurer, W. D., Lewis, T.G.
Hash Table Methods.
ACM Computing Surveys 7("):5-19, Marcb, 1975.

Paxton, W.H.
A Client-Based Transaction. System, to, Maintaia. Oata. ~riey.
In Proceedings of the Seventh Symposium Qn OperaJingSysJems Principles. ACM~

December, 1979.

Postel, J.
User Datagram Protocol.
Tec;hnical Report IEN-88, USC-Information Sciences Institute, May, 1979.

Randell, B., Lee, P.A., Trete.we,i. P.C.
Reliability Issues in Computing Sy.stem Design.
ACM Computing Surveys 10(2);123-165, June, 1918.

Reed, DavjdR
Naming and Synchronization in a DeeentrallzwJCompuJN"·S1~
PhD thesis. MJ.T., September, 197&.

Reed, D.P.
Implementing Atomic Actions on Decentralized Data.
Presented at th~. Seventh Symposium~ 0peFatingSystem.sJ~rill£.iples,sponSOf.ed by

ACM. To appear in CACM.

119

(16)

(17)

[18)

(19)

(20)

Reed, D.P., Svobodova, L.
Swallow: A Distributed Data Storage System for a Local Network.
Presented at International Workshop on Local Networks sponsored by IBM Zurich

Research Laboratory in August, 1980.

Svobodova, L.
Reliability Issues in Distributed lnformation Processing Systems.
In Proceedings of the Ninth IEEE Fault Tolerant Computing Symposium, pages 9-16.

JEEE, June, 1979.

Svobodova, L.
Management of O~ject Hisle ries in the Swallow Repository.
Technical Report MIT /LCS/TR-243, M.l.T., July, 1980.

Swinehart, D., McDaniel, G., Boggs, D.
WFS: A Simple Shared File System for a Distributed Environment
In Proceedings of the Seventh Symposium on Operating Systems Principles. ACM,

December, 1979.

Verhofstad, J.
Recovery and Crash Resistance in a Filing System.
In Proceedings of the ACM-Sf GM OD Conference on Management of Data. ACM,

August, 1977.

120

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS . B&FOR& COIIPUtTING FORM '
1. fU!POftT NUM8Eft ' 2. GOVT ACCESSION NO .. ftlCtflltltNT'S CATALOG NUMBIR

MIT/ICS/TR-252
4, TITLE (Md Subtitle) 5. TYPE OF ftEPORT a PEftlOD COVE.RED

Recovery of the &wallow Repository S.M.'lhesis - Jan.1981
I. PERFORMING ORG. REPORT NUMBER

MIT/ICS/TR-252
7, AUTHOR(•) 8. CONTRACT OR GRANT NUMBER(•)

Gail C. Arens N00014-75-C-0661

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

MIT/laboratory far catputer Science AREA 6 WORK UNIT NUMBERS

545 Technology Square
Cambridge, MA 02139

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

ARPA/Depart:mant of Defense January 1981
1400 Wilson Boulevard 13. NUMBER OF PAGES

Arlingtal, VA 22209 122
14. MONITORING AGENCY NAME 6 ADDRESS(lf dlller«rt from Cont,olflq Office) IS. SECURITY Ct,.ASS. (ol thle reporlJ

CNR/Departmant of the Navy
Unclassified Infonnation Systans Program

Arltingi:al,.VA22217 15a. DECLASSIFICATION/DOWNGRADING
·• SCHEDULE

II •. DISTRIBUTION STATEMENT (ol thla Report)

'Ihis doct:unent has been approved for public release and sale;
its distribution is unlimited i

17, DISTRIBUTION STATEMENT (ol the abetrect ente,ed In Bl-le :.JO, II dlllerent t,_, Reporl)

18. SUPPLEMENTARY NOTES .
-.e·

;;;i.,·.··~

I

.. IIEY WORDS (Continue cu, reverH •IH If neceH_,.. Md ldantlly by blocl: number) ' distributed data storage system
1111.sh table
ncovery \ ' \J .

\ q,tical disk CCJiplter system reliability J

-- ..,-~ - -~··••1•• __ . ., _ _..
11111 ... Pf'IIII. die o/ a - o/ NIIVIIJ Pl. It b b .. S••DW PlpCI ,, ...

i
Swallow is I dhtrilMed data 9knge 8'1-" dNlt 811""""9....., big tenll .,..._ ' t
of arbitrary sized data objects with special mechanisms for implementing multi-site ato~ J ~ctions. The Swallow repository is a data storage server that keeps permanent data in write- i
oam apllDIIM. t .

; . -~-~:.,,,;,,,• . ..,,,,,,. , .•. ~., .. t,~.·, .,._r,.•~-~ .,;;i,,_"'1ilP~.:I'?. ,~_.,..,""'-"' • .., ... !II .. -----" ..

..i,"11cuMW RhilPl@WMMW-- •

