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Abstract 

This thesis presents the design of a set of recovery mechanisms for Lhe Swallow repository. 
Swallow is a distributed data storage system that suppons highly reliable long term storage 
of arbitrary sized data objects with special mechanisms for implementing multi-site atomic 
actions. The Swallow repository is a data storage server that keeps permanent data in write
once stable storage such as optical disk. 

The recovery mechanisms provide on-line recovery for the repository's internal data, as the 
repository proceeds with its normal operations. In this way, users that wish to access any 
data that was not affected by the crash can do so while the damaged data is being recovered. 
Included in the repository's recovery mechanisms are recovery epochs and checkpoint 
epochs, which facilitate the detection of damage to the data and minimize the amount of 
recovery that is necessary. Also included are specialized hash table algorithms that are 
immune to repository failures. In addition to describing these mechanisms, this thesis 
discusses how they support the global recovery mechanisms of Swallow and analyzes how 
they will affect the repository's general performance. 

Key Words: distributed data storage system, hash table, recovery, optical disk 
computer system reliability 
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Chapter One 

Int reduction 

As network communications bcwme faster and cheaper it becomes more praclical for a 

single computer, or node, in a distributed computing network Lo maintain only the resources 

that it can afford to dedicate, and tf, obtain all other resources that it may need from other 

nodes thal provide them through th,~ network. In this way, the 11etwork provides the benefit 

of economy of scale through sharin1;. Long term storage and printing devices are examples 

of resources that may be shared throughout the network. The nodes that provide the 

resources are called servers while the nodes that share and utilize these resources are called 

clients. 

Swallow [16], being developed at M.I.T., is an integrated system of servers that provides 

reliable, secure and efficient storage for clients throughout a network. The components of 

Swallow are repositories, authentication servers and brokers. A repository is a server that 

provides very reliable storage for client data in Swallow. It is a processor that is connected 

to a configuration of storage devices. An authentication server acts as intermediary to ensure 

that all communications within Swallow are secure.1 A broker is a module in the client node 

that acts as an interpreter for client requests. It mediates interactions between the clients 

and servers in Swallow. Figure 1-1 shows the general configuration of Swal1ow in 

relationship to its clients. 

Swallow has several basic features. First, it provides extremely reliable storage. Thus, the 

probability that any client objects will ever be lost is near zero. Second, Swallow enables the 

clients to perform any number of accesses (read and write) on an arbitrary set of objects as a 

single, indivisible (atomic) operation. Third, Swallow protects all objects from unauthorized 

1The authentication server is not direclly relevant to this thesis so it will not be discussed any further. All 
future references to the components of Swallow include only brokers and repositories. 
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access, using encryption-based mechanisms. Fourth, Swallow, provides a unifonn interface 

for accessing the objects, which may be distributed over a local node and/or several remote 

repositories. In effect, the clients can specify where they would like each object to be stored, 

but need not remember the location in order to access the object. Finally, Swallow supports 

objects of any size, and in particular, very small objects. Thus, Swallow gives the client 
. 

flexibility in structuring and managing its data, since each object is treated as a separate 

entity with respect to protection and synchronization as well as with respect to storage and 

retrieval. 

In order to provide these features, Swallow must preserve consistency between all related 

client data (which may be distributed over several nodes). For ex~mple, suppose an 

appointment scheduling system is a clielll of Swallow that sets up meetings between people 

by reserving time slots in their personal calendars. Regardless of where these personal 

calendars are stored (i.e., in one or more repositories), Swallow must ensure that the 

calendars are always consistent with one another. In other words, if, as the scheduler is 

modifying 2 calendars (in order to set up a meeting), the repository in which one (or both) 

calendar is stored crashes, then either both calendars should reflect the appointment or else 

neither calendar should reflect the appointment. The state of these 2 calendars, in which 

only one of them is modified, is internal to Swallow and should never be exposed to the 

appointment scheduler or any other client that accesses the calendars. Swallow ensures this 

consistency between related client data by providing a standard set of protocols for all 

interactions between the brokers and servers, as well as for global recovery. The underlying 

mechanisms for these protocols and global recovery are based on those developed by Reed 

(14, 15]. 

In order for the Swallow protocols and global recovery to be effective, all repositories in 

Swallow must survive both their own failures and those of other Swallow nodes. This 

means that all data stored wilhin a repository must remain internally consistent, regardless 

of any errors that may occur due to an internal failure or the failure of another node. For 

example. within the repository, an object consists of an object header plus the object, itself. 

Jn order to update a single object, the repository must modify both the object header and 
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the object as well as a commit record, which is used to synchronize accesses to the object 

Thus, even if the repository crashes in the midst of making these changes, the repository 

lllUSt recover itself to a state in which the object header, object and commit record are 

consistent with each other, that is, either the state before the update began or the state after 

the update is completed. In addition, the internal recovery of the repository must support 

the global recovery mechanisms developed by Recd [14, 15], which restore all related client 

objects commit records to a consistent state. 

This thesis provides the internal ncchanisms by which the repository restores its internal 

state, and integrates these internal mechanisms with the general recovery mechanisms of 

Swallow in order to show that the recovery of the repository is complete. 

1.1 Related Work 

WFS [19]. Juniper [6] and CFS [l] are other systems that are comparable to Swallow. 

Each system provides long-term storage in a distributed computing network, but does not 

have all of the same basic features a$ Swallow (described on page 10). 

WFS was designed to be a more primitive storage system than Swallow. It is a single file 

server as opposed to a collection of one or more of various types of servers, as in Swallow. 

Unlike Swallow, WFS does not provide a uniform interface to any data distributed over the 

local node and the remote file server nor does it restrict access to the data and ensure secure 

communications. Also, Swallow provides access to objects of any size that do not have to be 

viewed as standard "files", and provides atomic actions for any arbitrary set of these objects. 

WFS, on the other hand, provides page level access to files and only ensures atomicity of 

operations that arc executed on a single page (although a system that runs at the client node 

to provide atomic actions for mulliple page and multiple file operations can coexist with 

WFS [11)). 

Juniper is more like Swallow in that it is a distributed data storage system (consists of 

more than one data storage server) and enables the client to perform atomic actions over 

multiple data objects at multiple sites, but it still does not have all of the features that 
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Swallow has. First, Juniper does not provide a uniform interface to data distributed over 

the local and remote nodes, or to any other types of servers ( eg., authentication server). 

Thus, in order to obtain additional but related services, the client must interface with a 
different system. Note, though, that plans are in the works to make a system, the Cedar file 

system, that uses Juniper as a component in a system of structure similar to Swallow. 

Second, although Juniper provides access to arbitrary sequences of bytes, it does not 

provide atomic actions for multiple arbitrary sequences of bytes, as does Swallow. In 

Juniper, the smallest unit that can be treated as a separate entity with re~pect to an atomic 

action, is a page. This means that ,-tomic actions can onfy be perfonncd ,)n multiple pages 

within a file or throughout several files. In other words, two unrelated data units stored 

within the same page cannot be accessed in different atomic actions exe,:uted at the same 

time. 

The Carnegie-Mellon Central File System project (CFS) is similar to Swallow in that it is 

a collection of various types of servers that cooperate in order to provide a single, coherent 

system. Also, CFS makes the location of the data distributed over the local and remote 

nodes transparent to the clients, as does Swallow. However, the types of servers are not the 

same in CFS as those in Swallow, and furthermore, the capabilities provided by each system 

as a whole are quite different. The most fundamental dilTerence between CFS and Swallow 

lies in the amount of flexibility the client is given for structuring his data (It is the same 

fundamental difference that exists between Swallow and both WFS and Juniper). Swallow 

supports arbitrarily small objects and allows the client to access these objects in whatever 

t:1Shion suits the particular application. CFS, on the other hand, , .forces the client to 

structure and access his objects within the confines a file system. Thus, Swallow provides 

separate protection for every object whereas CFS only pmvides protection for files a whole. 

Furthermore, Swallow provides synchronization for accesses to any arbitrary set of objects 

(lacking any file stmcture, within a single file, or within several files) whereas CFS only 

provides synchronization for access to arbitrary sets of objects within a single file. 

The only similarities that exist between the internal recovery for the data storage server in 

WFS, Juniper, or CFS, and that described in this thesis for the Swallow repository, are that. 
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aU of these servers perform their internal operations atomically and maintain any 

information diat is deemed integral to the recovery process in atomic stable stor.ige (except 

for WfS, whjch does not support any sLabl~ storage). In all other respects, the recovery 

mechanisms for the SwaUow repository differ from those in the storage servers of WFS. 

Juniper and CFS. Some noted differences are the following. First. the Swallow recovery 

mccl1.misms that Jhe repository's internal recovery mechanisms must support are based on 

mechanisms developed by Reed [14, 15] whereas the other system's global recovery 

mechanisms ure based on other mech~•nisms (8, 5}. Second. the Swallow repository is the 

only storage server that uses optical disks as sccovdary storage. Thus, in Swallow 

repositories, optimizations in time efficiency arc made at the expense of space efficiency, 

since physical storage is cheap. Finally. the Swallow repository is the only server with 

append only storage. These, and other differences in the structure and function of the 

storage servers and the systems as a whole, lead to different requirements for internal 

recovery of the storage servers, thus, resulting in a unique set of internal recovery 

mechanisms for the Swallow repository. 

1.a GoaJ& for Repository's Recovery 

The repository's internal recovery mechanisms that are presented in this thesis were 

designed with certain goals in mind. The first and most important goal was to ensure that 

the recovery mechanisms return the repository to a state in which its data {client objects. 

commit records, and object headers) are both iJ1ternatly and externally consistent2 from 

both the clients as well as the Swallow components' perspectives. This is such an important 

goal because, as stated before, ·the general Swallow mechanisms and protocols are based on 

the assumption that the repositories function prop~rly regardless of failures. 

The second goal was to decrease the apparent mean time to repair by minimizing the 

recovery that has to be done immediately after the repository crashes. Since clients store 

2Inlernal consislency refers lo the consistency between all related data that is fully contained within the 
repository. El(Lemal consistency refers to all related data thal is distributed over several repositories. 
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information in the repositories that they require in order to carry on their regular activities, 

it is important to minimize the delay that they experience due to a crash. The immediate 

recovery is minimized by taking advantage of the fact that most crashes affect only a small 

portion of the repository's data. Thus, the repository restarts as soon as it restores its global 

state and recovers all client data while receiving and servicing external requests. In this way, 

the repository allows the clients tu access the unaffected data while it is repairing the 

damaged data 

The final goal was to develop recovery mechanisms that have a minimal eflect on the 

response time for satisfying individual requests, above that which is required to perform the 

request, since the recovery mechan:sms may be in effect while the repository is processing 

requests. The reponse time for individual requests is affected most significantly by 

communications and disk transfer delays since the repository is a simple data storage server 

and most of its work involves transferring the data between the disks ancl the client nodes. 

Since the repository's internal recovery mechanisms have very little need for 

communicating with other nodes, the main way in which they increase the response time is 

by requiring additional disk accesses. Thus, the recovery mechanisms were designed with 

the intention of minimizing the additional disk accesses that would affect the response time 

for satisfying individual requests. 

1.3 Outline of Thesis 

In Chapter 2 we describe the general mechanisms and protocols that make Swallow a 

reliable data storage system, and we specify the minimum requirements that individual 

repositories must satisfy in order to suppo1t this reliability. In addition, we summarize the 

various problems that may affect Swallow·s reliability when one of its nodes crashes. 

In Chapter 3 we discuss how the repository structures and accesses th~ data, since it is the 

data that requires recovery after a crash. In addition, we describe the organization of the 

various types of storage in which this data is kept. 

In Chapter 4 we present the mechanisms that the repository utilizes in order to recover its 
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<Jata after ~ crcJ.Sh. For each type of data, we qescribe how (t cram caJl damage it. and then, 

how Ole repository implements its recovery. Furthermore, we justify why some data does 

not require any recovery at all. 

In Chapter 5 we evaluate the recovery mechanisms with respect to p'!rformance. We 

analyze the costs of the recovery mechanisms in terms of their effect on the repository's 

response time and then compare these effects with the effects that an alternate set of 

recovery mechanisms (that we could have chosen to use) would have on the response time. 

Finally, in Chapter 6 we look bac ~ at our original goals and review the ;trategies that are 

used to fulfill them. Then we point out several areas where these mechanisms may require 

improvement and briefly discuss several concepts that can be generalized and used in other 

systems. 
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Chapter Two 

Overview of Swallow 

Swallow is intended to be a very reliable storage system. Basically, it is a set of protocols 

that allow for proper management of data that may distributed over the local node and 

several remote repositories. There are various underlying mechanisms that are used in 

order to implement these protocols. These mechanisms arc based on tLose described by 

Reed [14. 15]. In order for these mechanisms and protocols t<) ensure reliability of the 

system as a whole. the repositories themselves must function properly in the face of failures 

(both their own, and those of other nodes). 

This chapter discusses Swallow as it applies to the repositories. Section 2.1 describes the 

mechanisms that are used to implement the atomic action protocol. Herein. an atomic 

action is defined as well as other terms such as object history, pseudotime and possibility. In 

Section 2.2, descriptions of the atomic action protocol and several other protocols, on top of 

which the atomic action protocol is built, are presented. These protocols provide for 

reliable interactions between repositories and brokers (the two entities that store and 

manage the data for the Swallmv clients). Next, Section 2.3 outlines the minimum 

requirements that individual repositories must satisfy in order to support the reliability 

characteristics that Swallow intends to guarantee. (These requirements provided the 

guidelines for developing the repository's recovery mechanisms). Finally, Section 2.4 lists 

the general types of problems that can occur when a Swallow node crashes. 

18 



2.1 Swallow Mechanisms 

In Swallow, the functional unit of client data is called an object. Further, the 

fundamental requests that a client can submit to Swallow (through a broker) to be 

pcrfonncd on an object are: 

Create Object: writes a new object into storage. 

Delete Object: eliminates an obj,!ct from storage 

Read Object: returns the current value of an object in storage 

Modify Object: assigns a new value to an object ~nd writes it into storage 

ln addition, a client can submit (through the broker) a series of these requests to be 

pcrfonned as a single atomic action {8, 9, 14, 17) by bounding the series with Begin Atomic 

Action and End Atomic Action reqm:sts. 

An atomic action is a set of operations (requests) that must satisfy the following two 

requirements: 

1. failure atomicity requirement - the operations of a single atomic action shoold 
either be performed to completion or not be perfom1ed at all (i.e., aborted if 
completion is not possible). 

2. concurrency atomicity requirement - the operations of single atomic action 
should behave as if they are executed serially with respect to the operations of 
other atomic actions even though atomic actions may be executed concurrently. 

To satisfy the failure atomicity requirement, an atomic action 'is structured so that at some 

point the atomic action is committed, which means that it is irrevocably required to finish. 

In other words, if there is a failure before the commit point and not all of the component 

requests have been satisfied then, upon recovery, the system's state must be backed up to 

the state it had before any of the requests were fuJ.fiHed. On the other hand, if the failure 

occurs after the commit point, then any ofthe component requests that were not satisfied 

before the failure occurred must be satisfied upon recovery. To satisfy the concurrency 

requirements, it is arranged so that the intermediate state of the system during the execution 

of an atomic action (when only some but not all of the requests have been satisfied) is 
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protected from any processes performing a different atomic action. 

For example, consider the appointment scheduling system described in the previous 

chapter. The system would be implemented so that the scheduler would request that 

Swallow read and update several people's calendars as a single atomic action. Then, even if 

one or more of the repositories (containing the calendars to be modified) crashes, the 

calendars would either all rellect the scheduled meeting (if the crash occurs after the commit 

point) or else none of them would reflect the meeting (if the crash occurs before the commit 

point). Also, if one or more of the calendars does not have the requesle j time slot open, 

then the appointment scheduler c~:n explicitly abort the atomic action and none of the 

calendars would be updated to rctl,xt the meeting. Finally, if several su,:h atomic actions 

were executed simultaneously, and requested the same time slot in several people's 

calendars, then one of these atomic actions would appear to execute first J.Jld thus, succeed 

whereas the other would find that the requested slot was filled. 

The remainder of this section summarizes the mechanisms developed by Reed [14, 15) 

that are used in order to implement the atomic actions defined above. 

Pseudotimes are numbers that are used to assign a total ordering of events in Swallow. 

Pseudotimes do not directly correspond to real time. A global clock mechanism supplies a 

unique, non-overlapping range of pseudotimes, or pseudotempora/ environment, to every 

atomic action. Each request that accesses an object is assigned a pseudotime from the 

pseudotemporal environment of the atomic action. 

Objects are implemented in the fonn of object histories. An object history is a sequence 

of versions. Each version is a state that the object has assumed at some point in time. See 

Figure 2-1. Each version of an object history is valid for a range of pseudotimes. For 

example, version B in Figure 2-1, is valid from pseudotimes 5 to 10. 
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Pseudolime 

4 5 10 11 64 65 82 

A B C D 

Figure 2-1: Example of an Object History 

A modify request creates a new version in the object history. The rscudotime of the 

modify request provides the start pseudotime, whkh is the lower bom1d for the version's 

range of vaHdity. If a version already exists in the object history at the pseadotime specified 

in the modify request. then the modify request is denied. F6r example, a version could not 

be created at pseudotime 8 in the object history illustrated in Figure 2-1 since version B 

exist'> for that pseudotime. 

A read request selects the version that has the largest start pseudotime less than the 

pseudotime specified in the request Then, the upper :bound of the version's validity is 

extended, if necessary, to include the pseudotime of the read. According to Reed (14, 15), 

the upper bound of a version is the fast pseudotime at which a request read the version. 

This means that there can be pseudotimcs ih the middle of an 'Object history for which no 

versions exist. For example, if a modify request wishes to create a version in the object 

history shown in Figure 2-1 at pscudotime 90, then version E would be created with a lower 

pseudotime of validity of90 and no version would exist forpseudotimes 83 -89, as shown in 

Figure 2-2. To simplify matters within Swallow, it has been,decided not to leave any holes 

in an object history [18]. Therefore, when a new version is created at a specific pseudotime, 

the previously current version's upper pseudotime of validity is extended to the pseudotime 

at which the new version is being created. Referring back to the previous example, the 

upper pseudotime of validity for version D woutd be extended to 89, as shown in Figure 2-3 

instead of leaving a hole, as in Figure 2-2. 
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Pseudotime 

4 5 10 11 64 65 82 90 

A B C D E 

Figure 2·2: Creation of a New Version as Described by Reed 

Pseudotime 

1 4 5 10 11 64 65 89 90 

A B C D E 

Figure 2·3: Creation of a New Version in Swallow 

An atomic action ensures that a specified sequence of read and modify (as well as create 

and delete) requests for one or more objects are performed as an indivisible unit. If any of 

the requests are not successfully satisfied, then the atomic action is aborted. Abortions are 

made possible by making the versions created by an atomic action tentative until the atomic 

action is explicitly committed. These tentative versions are called tokens and are not 

readable by other atomic actions. In other words, if some request within an atomic action 

attempts to read a token created by another atomic action, then that r~ucst will be delayed 

until the atomic action that create it either commits or aborts. Upon commiting, the tokens 

made by an atomic action become versions. 

All tokens created by a single atomic action are grouped into a set called a possibility. 

When all of the component requests of an atomic action are satisfied, the atomic action 
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commits its possibility. This committing converts all of the tokens into actual versions. If, 

on the other hand, some of the requests are denied, then the atomic action aborts its 

possibility, which deletes the tokens from the object history. 

Possibilities are implemented using commit records that record the ~tale of an atomic 

action. Initially, the state is unknown. All tokens in a possibility (or versions, once the 

possibility is committed) contain a reference (pointer) to the commit record associated with 

the possibility. Tokens arc distinguished from versions by the state of their commit record. 

When the state of the commit reet rd is changed to committed the token; become versions 

and can be examined by other atrn 1ic actions. If the state of the commit record is changed 

to aborted then the tokens are deleted. Further, commit records must have timeouts 

associated with them so that if a failure occurs that causes the commit records to neither be 

committed nor aborted (this could ha1}pen. for example, when a client node crashes), then 

the tokens will not become permanent fixtures in object hist01ics, blocking future real 

operations on that object. Possibilities enable Swallow to ensure that if an atomic action 

cannot be completed then the state of the data will appear as if none of the component 

updates were done. 

2.2 Swallow Protocols 

In order for Swallow reliably to satisfy the requests submitted by the clients, brokers and 

repositories must interact in an orderly fashion. The broker must interpret a client request 

and, in tum, generate requests that can be understood and fulffled by the repositories. The 

brokers and repositories comi:nunicatc their needs to each other by sending and receiving 

messages, which contain either requests or responses to ~me feCitUesl. Swallow provides 

standard protocols for sending and receiving these requests afld responses under normal 

circumstances. In addition, these Swallow protocols specify provisional actions that should 

be taken if the status of communications between two .nodes is disrupted by a crash of one 

of these nodes. 

The Swallow Message Protocol (or SMP) described in Section 2.2.1, provides for the 
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reliable transport of the mes.sages through the network by detecting transmission errors that 

may occur. The request/response protocol, discussed in Section 2.2.2, provides a guarantee 

to the requestor that its request has been received and fulfilled. The atomic action protocol, 

discussed in Section 2.2.3 ensures global consistency of the data distributed over more than 

one node as well as ensuring that atomic actions behave as if they are executed serially. 

2.2.1 Swallow Message Protocol 

.Every Swallow message is sent through the network in the form of one or more packets. 

Each packet has.a sequence number that indicates which part of the mes.mge it contains so 

that the complete message can be reconstructed at the receiving node. Swallow Message 

Protocol, SMP, is a very simple protocol that specifies cX.actly how node A. for example, 

must send the packets of a message to node B. The protocol is as fejlows: 

1. A sends 1st packet of message 

2. B sends back a packet indicating that A can send X number of packets more 

3. A sends X number of packets 

4. B sends back a packet indicating that A can send Y number of pac}<ets more 

5. A sends Y number of packets 

6. etc. 

This continues until the entire message is sent If either node does not hear from the 

other one within a reasonable amoont of time then it abons the me~ge and discards any 

remaining packets. Notice that this protocol is very ,simple for single packet messages 

because no connection has to be established. For multiple packet messages, though, it 

allows the receiving node to exert some flow control so that its buffers don't overflow. 

Currently, SMP is built on top of the User Datagram Protocol (UDP) (12). UDP doesn't 

resequence the packets of a single message at the recet.Ving node nor does it prevent their 

duplication. Therefore, SMP is responsible for reordering them and discarding aH 
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duplicates so that the receiving nodes do not have to perform these t.'5ks. SMP does not 

prevent out of sequence or duplicate messages. though, nor does it guarantee delivery of the 

messages. These problems are taken care of by the atomic action and request/response 

protocols, respectively. 

2.2.2 Request/ Response Protocol 

Since a requestor can never be certain that its request was received and/or satisfied unless 

it receives a confirming response [21, there is an associated response for every request sent in 

Swallow. The response either cont irms both the delivery and the fulfillment of the request 

or rejects the request. If the req11estor docs not receive a response within a reasonable 

amount of time then it can retransmit the original request or abort the transmission. The 

table in Figure 2-4 enumerates the various types of requests and associated responses that 

can be sent and received by the repository. The next section describes what actions are 

taken when these requests are received. 

2.2.3 Atomic Action Protocol 

The atomic action protocol specifies exactly how the brokers and repositories should 

cooperate in order to carry out atomic actions for Swallow clients. The broker manages the 

local data, monitors the atomic action as a whole and decides whether to commit or abort 
I 

the atomic action. On the other hand, the repository stores and manages the object histories 

and commit records. That is. it reads and writes the actual data and carries out the final 

phase of the atomic action, in which tokens are converted into versions or are deleted. 

The objects updated by an atomic action may be entirely contained within a single 

repository or distributed throughout an arbitrary nmnber of them. ln order to minimize the 

number of external messages that have to be sent to the repositories, committing or aborting 

a possibility, each repository that contains tokens whose commit records reside in another 

repository, maintains a single commit record representative for each commit record of an 

atomic action. A commit record representative contains the state of the atomic action 

(unknown, committed or aborted). as well as the references to any tokens (created by the 

25 



Figure 2-4: Repository Requests and Responses 

REQUESTS RESPONSES COMMENTS 

1. Create-Object Object-Created Response contains uid 

of object (010) 

2.Delete-Object Object-Deleted or Can't-Delete rer.ponse indicates 

Can't-Delete-Object a synchronization conflict 

3. Read-Version Versio ,-Value Response contr.ins version 

valid as of given pseudotime 

4. Create-Token Token-Created or Can't-Create-ToKen indicates 

Can't-Create-Token a synchroni :ation conflict 

5. Test-Commit-Record State-ls: Committed or Response contains state of 

Aborted commit record 

6. Abort-Commit-Record State-ls: Committed or If commit record already 

Aborted comitted then returns 

State-ls: Committed 

7. Commit-Commit-Record State-ls: Committed or If commit record already 

Aborted aborted then returns 

State-ls: Aborted 

8. Add-Reference Reference-Added Request is sent to 

commit-record-representatives 

9. State-ls: Committed or Delete-Reference Request sent to broadcast 

Aborted final state of commit record. 

Response confirms that final 

state was encached in commit 

record representative 

26 



atomic action) that reside in the same repository in which the eommit record representative 

is located. Thus, the actual commit record need only maintain references to each repository 

that contains tokens created by the atomic action rather than to each individual token, as 

illustrated in Figure 2-5. Further, when a repository bas to broadcast the final state of a 

commit record so that the tokens can be converted into versions or deleted from their object 

histories, it has to send only one message per repository regardless of how many tokens each 

repository contains. Then, each repository can act upon all tokens from that atomic action 

that are referenced by the commit record representative. 

Sections 2.2.3.l through 2.2.3.6 describe the protocol for each type cf request that the 

client may submit. 

2.2.3.1 Begin Atomic Action 

When a client begins an atomic action, the broker must send a message to some 

repository, requesting the creation of a commit record. The repository creates it and returns 

a response which contains the name of the commit record. Once the broker receives this 

confirmation it can send to any repositories any sequence of create, read, modify or delete 

object requests, depending upon the client's needs. All of these subsequent requests must 

include the name of the commit record as well as a pseudotime, so that the repositories can 

identify the atomic action of which the request is a part and can synchronize all concurrent 

accesses to the same objects. 

2.2.3.2 Create Object· 

When a client wishes to create an object, the broker sends a create-object-history request 

to the repository. Upon receiving the request, the repository creates all of the internal 

structures needed for the object history in storage. [ncluded is a reference to the specified 

commit record or its local commit record representative.3 If neither exists in the repository 

3Both the creation and deletion of objects are also requests that belong to a possibility, that is, if the atomic 
action creating (deleting) the object fails, then the creation (deletion) is not done. 
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Figure 2-5: Representation of A Distributed Commit Record 
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at that time, then the repository must create a representative wilh the correct reference to 

the version and must send an external request to the remote repository that contains the 

commit record, asking it to add a reference in the commit record to the commit record 

representative. Once the local repository receives a response confirming that the reference 

has been added then it must return a response to the broker, confirming the creation of the 

object history. 

2.2.3.3 Delete Object 

When a client wishes to delete an object, the broker'sends a delete-object-history request 

to the repository. When the repos:tory receives the request, it checks whether or not any 

versions exist for a pseudotime greater than or equal to the one specified in the request If 

any exist, then it returns a negative response indicating that the object cannot be deleted. If 

none exist, then the repository creates the final version of the object history that marks it as 

being deleted, including a reference to the commit record (or representative) and returns a 

response to the broker that confirms the object history's deletion. 

2.2.3.4 Modify Object 

When a client wishes to modify an object, the broker generates a create-token request and 

sends it to the repository. Upon receiving the request, the repository checks to see if a 

version already exists at a pseudotime greater than or equat to the one specified in the 

request. If one exists, then it returns a negative response indicating that the token can't be 

created at the given pseudotime. If none exists, then it creates · the new token, adds a 

reference to the commit record or representative and returns a response to the broker, 

confirming the token's creation. 

2.2.3.5 Read Object 

When a client wishes to read an object, the broker sends a read-version request to the 

repository. Upon receiving the request, the repository must oheck whether or not the 

29 



version referenced by the pseudotime in the request is a token, an aborted token, or a 

committed version. If it is a committed version or a token that was created by the same 

atomic action that sent the read request, then it simply returns that version or token in the 

confitmation. On the other hand, if the request is for a token that was created by a different 

atomic action than the one that sent the request, then the repository must check the token's 

commit record to see whether or not it has been committed. If so, then the repository must 

commit the token, extend its validity time to the pseudotime specified in the read request 

and return that version in the response to the broker. Otherwise, if the commit record has 

been aborted then the repository must abort the token, extend the validity time of the 

current version to the pseudotime specified in the broker's request and finally, it must 

return that version in the response to the broker. 

2.2.3.6 End Atomic Action 

If all of the component requests of the atomic action are confirmed then the broker 

finishes the atomic action by sending a commit request to the repository in which the 

commit record is stored. That repository then commits the commit record and returns a 

positive response, marking the completion of the atomic action. On the other hand, if the 

broker received any rejections to it'i requests then it may abort the atomic action by sending 

an abort request to the repository, which must then abort the commit record and return a 

response to the broker, confirming the abortion of the atomic action. 

Once the final state of a commit record has been recorded, the repository storing the 

commit record must broadcast this state to all of the repositories for which the commit 

record has references. When each repository receives the state of an atomic action it must 

encache that state in the commit record representative and return a response indicating that 

the its reference can be deleted from the commit record's list of references. When the 

commit record has no more references it can be deleted.4 

4Note, that this description of tJ1e final phase of the atomic action (that is carried out by the repository) has 
been simplified by ignoring the commit records of nested atomic actions. (See [Reed78)) 
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2.3 Reliability Requirements for Individual Repositories 

Now that the global mechanisms and protocols have been described, the two minimum 

requirements that indi\ idual rcpo:;itories must satisfy in order to ensure reliability of 

Swallow, as a\\ hole, cm be defined :.ts follows. in Sections 2.3.1 and 2.3.2. 

2.3.·t Data Integrity 

Since the repository stmes tile clii:nts· objects as well as the commit records that arc used 

to s) 11chroni1c access tu those obj.:ct, it must protect these objects and commit records 

against rn1y damage. loss. ur inconsi~tency that may occur when it crashes. In other words, 

the rcrository must protect the integ:ity of all objects and commit records. 

In protecting the integrity of the ( lient data. the repository must do more than just ensure 

that this data isn't lost or damaged. It must also ensure that the objects and commit records 

arc managed properly. I his means that a crash should not alter the repository in any way 

that would cause it to mcrlook the most current version or token of an object history or 

create a version at a pscuc!otime for which a version already exists. It also means that a 

crash should not cause a repository to release the value of a token outside the atomic action 

in which the token was created. 

2.3.2 Atomicity of Requests 

In aclclition to protecting the data integrity, a repository must satisfy all requests 

atomically. That is. the multiple internal modifications that must be done as part of a single 

request. mu:,t be done as an indivisible operation. This internal atomicity supports the more 

general atomicity guaranteed by Swallow to its clients. In the same way that Swallow 

guarantees not to leave c!irnt data in an inconsistent state. a repository must guarantee not 

to leave its internal data in an inconsistent state. 

For example. a version of a large object will span over more than one disk page. lf the 

repository crashes before it writes out all of the pages to the disk and these pages arc not 

written atomically, then the object history of which the incompiete version is a part will be 
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invalid. Thus, upo11 restarting, the repository must ensure that the incomplete version is not 

included in the object history. 

As another example, a create-token request involves both recording the new version and 

adding, to the associated commit record. a rc!crcncc to the new versil,n. If these two 

internal tasks arc not perl()rrned atomically then the Swallow mechanisms for providing 

clients with the ability to execute a set of rcquesl'.; atomically will not work properly, since 

the repository will never know whether the token should be comertecl to a version or 

deleted from the object history. 

2.4 Summary of Problems Caused by Failure of a Swallo N Node 

We have seen how Swallow ensures reliable storage of the data by pnniding the client 

with the ability to execute atomic actions and by insisting tlial its repositories satisfy several 

requirements. Before getting into the details of the repository. let us briefly list the general 

problems that might occur when a Swallow node crashes. 

1. Global (or external) inconsistency of data - The related client objects stored 
throughout Svvallow may not be current with respect to one another. The 
atomic action protocol ensures consistency with the support of the repositories, 
which properly maintain and manage all commit records. 

2. Internal inconsistency 4 data within the repository - The objects. commit records 
and other data supporting these objects and commit records may not be 
consistent with each other within the repository. The repository's internal 
recovery mechanisms restore internal consistency or the data, as will be 
described in this thesis. 

3. Out of sequence packets \\Vin a message - Communications delays may cause 
packets of a message to arrive in a different order than which they were sent. 
SMP resequences these packets. 

4. Retransmitted packets w/in a message - A node sending a req11est niay retransmit 
packets if it thinks that the original packets were lost. SfYIP discarcls duplicate 
packets. 

5. Unconfirmed messages - A message may not be acknowledged if the receiving 
node crasl1cs. The combination of all three protocols and the repository's 
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im~rnal recovery mechanisms . ensure recovery of any damage caused by 
unconfirmed messages. How they ensure this will be clarified in this thesis. 

6. Incomplete messages - A repository may not receive all of the packets of a 
rnes~,ge if it or the sending node crashes. An incomplete message does not get 
confirmed so it is recove.red as,m unconfirmed message. This problem affects 
the reposjtory since the data Qf a large object version is written into stable 
storage .,1s received, before the complete message is available. 

1. Out of sequence mes5ages - Due to the distribution of the nodes and real time 
delays, requests may not be received in the same order that they arl! sent The 
atomic action protocol serializes all requests by using pseudotime~ instead of 
arrival order. 

8. Retra11smitted messages - If a node docs not receive a confirmation for a request, 
it may retransmit the request. All requests that can be send to the repository are 
repeatable; that is, the repository will make the requested modifications in 
response to the same request only once (the repository can recognize 
retransmi,ted requests). Upon receiving a retransm1tted ~uest:, the repository 
simpJ.Y confirms it and dot;s. not repeat the modifications &bat are requested. 
This thesis wiU demonstrate how the, repository properly handles retransmitted 
requests. 

This lh~is deals directly with problems 2, 5. 6 and 8. More discussion on the other 

problems above will found in fl4. 15. 16). 
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Chapter Three 

Management of Data within the Repository 

The repository's data can be classified as follows: object data commit record data, 

pending messages data, and data that describes the repository's global state. In order to 

understand how the repository reco .rers this data after a crash, il is first necessary to explain 

the imernal structure and management of these four classes of data as well as the 

organization of the storage in which the data is maintained. 

Sections 3.1 and 3.2 describe t.le object and commit record data, which consist of 

sequences of versions plus a header that contains a reference to the current version. Next, 
I 

Section 3.3 discusses the message qata, which consists of sequences of packets. Then, 

Section 3.4 briefly describes the global state data, which is a record that describes the status 

oft.he repository as a whole. 

The remaining sections describe the various forms of secondary storage that the 

repository supports as well as their interaction with primary storage. Section 3.5 gives an 

overview of the organization of the storage in the repository arid then Sections 3.6, 3. 7 and 

3.8 describe Version Storage, State Storage, and Object Header Storage, respectively. 

3.1 Objects 

Within the repository, an object is represented by the versions of the object history plus 

an object header, which contains a reference to the current version and other useful 

information about the object. Figure '3-1 illustrates the internal structure of an object. 

Thus, in order to create a token (assuming that no token already exists) the repository 

creates a version (as depicted in Figure 3-1) in storage, and then modifies the object header, 

as follows. The value of the token reference is changed from nil to the newly created 
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010 (object uid) 

current version 

end pseudolime Commit Re.:ord 4 
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REN (for recovery) 

delete flag 

hash tabl<J link 

OBJECT HI ADER 

010 OID OID OID 

pt1 pt2 pt3 pt4 

CRref1 CRref2 CRref3 CRref4 

version1 version2 version3 token 

CURRENT 
VERSION 

Figure 3-1: Structure of an Object Within the Repository 

token's address in storage, the value of the commit record reference is changed to the 

unique identifier of the token '.s commit record, and the end pseudotime value is changed to 

the pseudotime at which the token is created. Subsequently, if the token becomes a version, 

the repository changes the references within the object header: the value of the current 

version reference is changed to the token ·s address in storage, and then the value of the 

token reference becomes nil. Alternatively, if the token becomes aborted, then the 

repository deletes it by simply changing the values of the token reference and commit 

record reference in the object header to nil. Finally, in order to read a version of the object, 

the repository obtains the location of the current version in storage from the object header. 
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Since the objects are accessed using the object headers, the repository organizes the 

object headers in the form of a hash table, called the object header table. This object header 

table will be discussed in more detail in Section 3.8 

3.2 Commit Records 

Conceptually, a commit record consists of the state of the atomic action that it represents, 

and a list of references to the tokens created by that atomic action. Within the repository, a 

commit record's structure is similar to that of an object. A commit record (or commit record 

representative) is structured as a threaded sequence of versions. Furthermore, the 

repository maintains a hash table, called the commit record table, whose entries contain the 

state of the commit record and a reference to the current versions of the commit records. 

Figure 3-2 depicts a commit record after the atomic action's final state has been decided. 

unknown 

state 
version 

token 
for 

objectA 

Commit Record 

Table 

token 
for 

objectB 

token 
for 

objectC 

Figure 3-2: Structure of a Commit Record within the Repository 
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When the q:>111mit record is first created, an initial version is crc&ted. This version contain!$ 

the ~nique identifier of the commit record, which is assigned by the repository, and t,he state 

of the atomic action, which is UNKNOWN. In ijddition, an entry (that points to this 

version) is created in the commit record table. Then, as tokens are created within the atomic 

actioq, lhey are not only threaded into the sequence of versions for their object, but are also 

threaded into tlw sequence of versions of the commit record. As each token is i1dded to the 

cornn1it record's list of versions. thl: corresponding commit record table entry is modified to 

refer \o thc\t token. Similarly, when a remote site adds a ref"renro to the commit record, the 

repository creates a representative version, which cootains tile unique id's of the commit 
' ! 

record and lbc remote site. and then th:reads that version into the commit record's sequence 

of versions. FioaHy, when the atomic action is committed or aborted, the repository creates 

another com,mit record version that ~onu\ins. the commit record's uid plus the final state.5 

ln order to carry out the .final phas~ of the atomic action. in which all tokens are 

converted into. versions or aborted form the object history, the repository modifies the 

object headers corresponding to each token in the commit record's sequence of versions, to 

reflect the finaJ status of these tokens. The repository starts with the most current token, in 

the list (which it accesses through the commit record table and then the first version which is 

the final state version) and when it reaches the iniiial state version of the commit record, it 

deletes the entry for that commit record from the commit record table. 

3.3 Me$sages 

The various types of messag~s that the repository can send and. receive were listed in the 

table in Figure 2-4 in Chapter 2. Of these, all are single packet mcSS3ges with the exception 

of create-token or version-value messages, which may contain large objects that cannot fit 

into a single packet. In these multiple packet messages. the sender places all of the 

information in the first packet, except for the fragments of the actual value of the object that 

5Note that no ob,jccl version will ever refer to a commit record that is created later than that object version. 
This invariant is used to optimize recovery, as will be seen in Chapter 4. 
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do not flt in this first packet. These fragments are the only data that will be contained in the 

subsequent packets. Figure 3-3 depicts both a multiple packet create-token message. 

MessagelD 

Packet1 

010 

ComReclD 

Pseudo time 

VALUE 

SMP Header 

Jj MessagelD 
----

Packet! 

VALl.iE 

Swallow Request 

MessagelD 

Packet3 

VALUE 

Figure 3·3: Structure of a Create-Token Message 

MessagelD 

Packet4 

VALUE 

Thus, when the repository receives a multiple packet create-token message, it does not 

have to wait for all of the packets to arrive before it can start writing the fragments of the 

object onto the disk. Instead, it can write the fragment contained within each packet as the 

packet arrives, and then can discard the packet since it has been processed. 

3.4 Global State 

There is a small amount of data that describes the repository's global state. Most of this 

data consists of the logical mappings of the various types of storage into the physical 

devices. The remaining data consists of values such as the last unique identifier that the 

repository assigned to an object or commit record, and data that describes certain recovery 

events. The nature of this data will become clearer by the end of the chapter. 
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3.5 Overview of Storage Organization 

The repository supports several kinds of storage. Two are kinds of atomic stable storage, 

one is a kind of careful storage, and the remainder of the repository's storage is volatile. See 

Figure 3-4. 

Stable Careful Volatile 

vs X 
State X 
cache X 

OHS X 
Tempo<ary X 

Page Buffer X 

Figure 3·4: Storage Classification 

Atomic stable storage, (hencefott1' referred to as stable storage), is secondary storage that 

we assume will never lose a value stored there. ln practice, this means that stable storage 

contains multiple copies of these values at aH times. These copies are organized so that it is 

unlikely that any one failure (such as a disk head crash) will destroy atl copies of the same 

value. Furttletmore, the repository's stable storage is alomic because a write to stable 

storage fails in ·ooly two ways - havi-11:g made no change or having completed correctly. In 

general, the read and write operations on stable storage are time consuming since the 

multiple CQJ!Jies must be accessed and checked to be correct The two types of stable storage 

in the repository are characterized as append-only and reusable stable -storage. Append

only stable storage is like a tqpe since data is always,w.rkum at the end. Also, no data is ever 

overwriuen .in append-only stable storage. On the other hand, in reusable stable storage, 

modi.ftcations made to the same data arc rewritten in place. 

Careful storage, is simply secondary storage in which there ·is only a single copy for each 

value stored there (not multiple copies as in stable storage). Thus, careful storage has faster 



data access time than stable storage. Generally, the data in careful storage survives crashes, 

but it is not guaranteed to survive any crashes (as is guaranteed in stable storage). However, 

in the repository, the loss of data in careful storage does not cause failure as long as this loss 

can be detected, since the data can be recovered from the data in stable storage. 

Finally, volatile storage is primary storage that is used as a temporary cache for the long 

term information stored in stable and careful storage. Volatile storage has a much faster 

access time than either type of secondary storage, but all data that it contains is lost when 

the repository crashes. 

Thus, all data that is needed to represent the externally visible state of the repository is 

stored in stable storage so that if the repository crashes. none of this data will be lost. The 

versions of the objects and commit records are kept in append~onJy stal •le storage, called 

Version Storage and the global state data is kept in reusable stable storage, called State 

Storage. 

The rest of the repository's data, which is redundant of information in stable storage or 

which does not have to be recovered at all after a crash, is kept in careful or volatile storage. 

Since the object header table would be too time consuming to recover in its entirety, it is 

kept in careful storage, called Object Header Storage. Then, if the repository crashes, only a 

small part of the table, if any, is lost. Thus, careful storage is used to improve the 

repository's performance by eliminating excessive accesses to stable storage while reducing 

the cost of recovery that would be required if the data were maintained in volatile storage. 

The commit record table, though, is smaller and less dense than the object header table, so it 

can be reconstructed much more easily after a crash. Therefore, it is only maintained in 

volatile storage. Finally, the messages that are pending when the repository crashes do not 

have to be recovered at all, since they are processed atomically and the protocols allow for 

incomplete mesages. Thus, message data is also kept only in volatile storage. 

The remaining sections describe in detail the logical mappings of the repository's 

secondary storage (Version Storage, State Storage and Object Header Storage) into the 

physical devices as well as the methods used to encache in volatile storage the data that is 
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kept In secondary storage. 

3.8 Version Storage 

The main form of stable storage that the repository supports is Version Storage (VS) 

which contains the versions of objects and commit records as well as two other types of data, 

called checkpoint entries and epoch boundaries. (These checkpoint entries and epoch 

boundaries contain data that is used for recovery and will be described in Chapter 4). 

Abstractly~ VS um be viewed as an infinite, append-only tape, but physica'ly, it consists of 2 

sets of write-once optical disks.6 Each set is a backup for the oilier one in case some of the 

data is destroyed. 

Since VS is append-on1y storage, it is always increasing in size. Thus, only a fraction of it 

can be kept on line. VS is managed in such a way that tbe current versions of objects and 

com.mil records remain in the portion of VS that is online. This online VS consists of the 

two or roore most -current disks of VS. The most current disk is caHed the high space and 

the oldest ts called the low space. Onl.ine VS is managed as a circular buffer (S VOB80], as 

folllows. When :t:be h~gh sr,ace is fi!Jed up, the current low space disk goes offline and a fresh 

disk ·becomes the Rew high 'Sf)ace. Ftfl1b-ermor.e, whenever a version .is accessed in the low 

space, it is copied ,into the high space. Thus, when the current low space disk goes offline, 

th:e 'version wifl stitl remain online. 

All •data is steJrea in VS in units ·called version imag.es. There are 5 different types of 

versiOf!I ,images: simple, mot, ·fragment, boundary and .oheclcpoifft ,version images. A version 

image;oonsists of'size, type and data fields, and resides woon, within one page of VS. A 

version of aJ.1 ,object or commit record that is small enough to flt on a single disk page is 

stored as a '.Simple version image, as illustrated in 'Figure 3--5. :How.ever, a version that is 

larger than· a ·single· disk page needs a :superatmcture that f)Oints · to all of the pieces of the 

version that are interspersed throughout several pages. Therefore a large version is stored as 

61n1lially, magnetic disks will be used lo simulate optical disk. They will':be used in a write-once manner, 
however. 
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a structure consisting of some number of fragment version images, which make up the 

version, plus a root version image, which has pointers to all of the fragments, as illustrated 

in Figure 3-5. A large version is written to the disk atomically by writing the root version 

image after all fragment version images are written and then, only linking the root into the 

appropriate sequence of versions. Thus, fragments of incomplete version images are 

ignored since they are unreachable. Finally, boundary and checkpoint version images look 

just like simple version images, except for the data field, which consists of an epoch 

boundary or checkpoint entry, respectively. 

Several version images may be p,icked onto a VS page, which is the unit of physical reads 

and writes. In order to pack these v,!rsion images as efficiently as possible, several unwritten 

VS pages are encached in a page b1.lfTer in volatile storage (recall that the disks are write

once only). Since VS is stable storage, it docs not return the VS address of a version image 

(i.e., confirm the write to the repository process that initiated the write) until both copies of 

the VS page (on which the verison image resides) are written correctly from the buffer onto 

the two disks. 

An unwritten VS page in the buffer is written out to the disks when either of the 

following three conditions holds true: 

l. The page is full- Once a page is full, there is no need to wait any longer to write 
it out since it is only left unwritten in order to pack version images in it as tightly 
as possible. 

2. The page has been in the buffer for some extended period of time since the first 
version image was added to it - Since a repository process cannot confinn 
external requests (that modify commit records or objects) until it receives a 
confirmation from VS and in turn, VS cannot confirm the write until the VS 
page is actually written on the disks, partially full pages are written out to the 
disks after a predefined time-out period. Jn this way, when the repository is not 
being heavily utilized, external requests will not remain unconfinned for too 
long. 
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Another unwritten VS page with a higher VS address is full and must be written out to 
the disks - This ensures that no version image is written at a lower VS address 
than any other version image to which it refers. and thus. preserves the abstract 
view of VS as an append-only tape. For example, in order for a process to 
create a version image, vi2. with a reference in it to another version image, vil, it 
has to know the VS address of vi 1. Since the process gets that VS address when 
VS confirms that vil has been written, then when the process requests that vi2 
be written, all pages with VS addresses less than or equal to that of vil will 
already have been writ.ten on the disk and therefore vi2 cannot be written in any 
of them (VS disk pages are write once). 

In order to actually write a VS page from the buffer, a copy is wri .ten to the same 

addressed page on each of two disks. After each copy is written out, it is r.!ad batk to make 

sure that the correct data was written. Then, if a copy was not written crn rccLly, it must be 

rewritten (and reread). However. it cannot be rewritten on the same uisk page because the 

disk is write-once. Therefore. if either of the copies is written incorrectly, then both copies 

must be rewritten on another p"air of pages. 

In addition to maintaining several unwritten pages in the buffer, several of the most 

recently written or read VS pages are also encachcd in this page buffer so that if these 

encached pages arc read again within a short time period, the disks will not have to be 

accessed. However, if a process wishes to read a version image on a page that is not in the 

buffer, then the disks have to be accessed, aS follows. · First, one copy is read from the disk 

and verified to be correct, using a checksum. If that copy is correct, t~en the second copy 

does not have to be examined. On the other hand, if that copy is incorrect. then it must be 

recovered from the second copy. 

In order to implement this recovery, both copies of the page must be rewritten on a new 

set of identical disk pages, as is done when the write operation fails. However, all references 

to the version images on a page that has been recovered in this way would become invalid: 

Thus, in order to preserve the validity of these references, the repository maintains a map 

from the bad pages to their replacement pages. Then, when a process attempts to access a 

version image on a bad page, VS will find the recovered copies of that page, using this map. 

Once a page is determined to be bad, it should never be mistaken for a good page. Thus, 
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tbe ~e must be made detectably. bad forever. If VS is implemented using optical disks, as 

orjginaJly pl~n11cd. then pages can be made bad permanently by writing on them a second 

time, obliterating any marginal data. However, if another type of disk is used, then some 

other method, &µch as keeping a table of bad pages, would have to be devised in order to 

ma~e p~ts detectably bad forever. 

3. 7 State Stprage 

The second form of stable stora3e that the repository supports is called State Storage, 

which contains the data that describes the repository's global state. Physically, state storage 

consists of a small amount of reusatle magnetic disk storage. It is stable due to the fact that 

the global state data is duplicated at separate locations on disk that have independent 

probabilit\es of decaying. In other words, it is not probable that a single crash can destroy 

both copies of the data 7 

Th.e repository supports State Storage in addition to VS for the combined reasons that the 

location of the global state cannot change and VS is write-once only. If the global state was 

kept in VS. then every time it was modified it would be written into a new location in VS. 

This woul<;l mean that when the repository was. _booting iIBelf after a crash, it would not 

kno\\'.' exactly wnere to find this data becau~ its locat.ion could not be hardwired into the 

boots~rapping procedure. By supporting rellSable stable storaget this problem is avoided. 

In order to write a State Storage page, each of the copies is written and then read back (to 

verify that th~ copy was written correctly). However, since writing a State Storage page 

overwrites older copies of the global state. the copies must be written and read back 

sequentially instead of in parallel, as in VS. Then, if the repository crashes in the midst of 

writing one copy, there will still be another valid copy from which. to recover the data that is 

contained on that State Storage page. Furthermore, the copies are always written in the 

same order so that if a failure occurs in between writing the two e,-opies (leaving both copies 

7 In order to be even more reliable, the actual implementation of State Storage may keep 3 copies of all data. 



valid but different), the repository will know which copy is current 

In order to read a State Storage page, both copies on the disk must be verified to be 

correct and identical to one another before allowing any repository processes to examine the 

page. If either one is bad, then the bad copy is recovered from the good copy. Further, if 

both copies arc valid but not identical, then the second copy is recovered from the first 

copy, which is the current copy. It is not sufficient to vetify the correctness of only one 

copy, when reading a State Storage page from the disk, because the repository may have 

previously crashed before writing ti1e second copy. If the second copy is not subsequently 

updated when read, then another w ·ite of that State Storage page could fail and damage the 

first copy, leaving no valid copy from which to recover. (The second cop} would be too far 

out of date to be of any use). Thus, when reading a State Storage page, it is necessary to 

compare both copies and recover one, if necessary. 

Since the global state data is read fairly frequently, it is cncachcd in volatile storage to 

eliminate the time consuming accesses to State Storage. Thus, the only time the disk has to 

be accessed in order to read tl1e global state is when the repository first comes into existence, 

and then, whenever the repository restarts after a crash. On the other hand, since most of 

the State Storage data changes fairly infrequently, if at all, it is kept current in State Storage 

(that is, every time it is updated in the cache it is also written onto the ~isk). There are two 

values, though, that change too often to be practically kept up to date in State Storage. 

Thus, they are kept current in the cache, but are only periodically updated in State Storage. 

These two values are the VS write pointer, which indicates the current end of VS and the 

value of the last unique identifier that the repository assigned to an object or commit record. 

The write pointer is only updated in State Storage every Nth time its value changes, where N 

is a predefined constant. Similarly, the value of the last uid (unique identifier) assigned is 

only updated in State Storage every xth time its value changes, where X is another 

predefined constant. The recovery of these two values after a crash will be described in the 

next chapter. 
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3.8 Obj~ct Header Storage 

Object Header Storage, or OHS, is reusable careful storage in which the object header 

table is maintained. The repository keeps this table of object headers so that it does not 

have to scan sequentially through VS in order to find the versions of objects. An object 

header provides direct mappings to the current version and token as well as a reference to 

the token's commit record. 

Even though object headers are not required in order for the repository to function 

correctly (the repository can always resort to a sequential search thro1gh VS) they are 

necessary in order for the repository to function efjicienlly. Therefore, the object header 

table must be organized so that the object headers are efficiently accessiule. The two main 

ahernatives for the table structure were a 8-tree or a hash table. A non-coalesced chain hash 

table similar to the one described in [7] was selected. 

This type of hash table was chosen for its simplicity of structure and ease of recovery, as 

well as for its efficient search, insertion and deletion algorithms. The average search time of 

the hash table is independent of the size of the table (providing that the table does not get 

too fullJ while the average search time of a B-tree is directly proportional to the logarithm of 

the table size [7, 4}. Also, the fundamental unit of a Mnked list in the hash table (a bucket) 

contains only a single object header, whereas that of a linked list in the B·tree (a node) · 

usually contains some number greater than one .. Therefore, there is potential for losing 

more information in a B·trec than in a hash table if a link is broken (e.g., when one of the 

fundamental units gets lost or becomes obsolete after a crash). Finally, it is easier to 

characterize the problems that can arise in the hash table as a result of a crash than in a B· 

tree. Therefore, the hash table was more easily adaptable to recovering itself in the 

background as the repository fulfills requests. 

The basic structure of the hash table is as follows. The OHS pages are divided into fixed 

size units, each of which can accommodate a single object header. Each of these units is a 

bucket in the hash table and is uniquely identilicd by its OHS address. Further, only three 

of the object header fields are relevant to the hash table: the 01D, the delete flag and the 

hash table link. The 01D is used as a key in the hash table. Thus, a mathematical function 
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is .used to map or hash every 01D to some bucket in the table. The bucket to which an 

object header hashes will be referred to as its home bucket Next, the delete flag is used to 

indicate whether the object header is valid or has been deleted. Finally, the hash table link 

is used to create linked lists of buckets. The remaining fields of the object header are 

ignored by the hash table algorithms. 

Even though only one object header can occupy a bucket at any given time, there exists 

more than one object header (or more specifically, OIU of an object header) that hashes to 

each bucket in the table. Therefore, once a bucket is occupied, all other object headers that 

are added to the table. whose home bucket is that bucket. are placed arbitrarily in other 

empty buckets and linked together.8 The first bucket in each linked list is the one to which 

all ofthe object headers in the othu buckets hash, i.e., it is their home bucket. The linked 

lists will be referred to as chains. 

Figure 3-6 illustrates a page in the hash table to be used in examples throughout this 

thesis. All figures that depict pages of the hash table will be of the same form but will show 

only the contenLc; of the pages and buckets that are .relevant to the panicular example. 

There are four pages, A through D, in the hash table, each containing five buckets. The 

object headers have OID's of the form ohN, where N is the 01D (an integer). Chains are 

identified by the address of the home bucket. Also, the two states of the delete flag will be 

represented by the letters V (valid) and D (deleted). The remaining fields within the actual 

object header are not relevant to the discussion about the organization of OHS, so they will 

simply be represented in each bucket as an X mark. Finally, the h&sh function selected for 

the examples in this thesis is 01D modulo 20. 

The three hash table operations are search, insertion, and deletion. The search operation 

finds the specified object header in the object he"'1er table. _The insertion operation is used 

for adding newly created object headers to the object header table. Finally, the deletion 

operation simply eliminates an object header from the object header table. 

8Toe choice of buckets is not completely arbitrary. The algorithm for finding a free bucket first looks for a 
bucket on the same page as the home bucket since in this way, most linked lists will be constructed so that they 
are fully contained within a page and thus, the amount of paging that must be done will be minimized. 
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Figtire 3~6: A Representative Hash Table 'Page 

The search-algorithm is as follows: 

1. 'Hash :tne;gi-ven object header to the home, bucket.X. 

2. if bucket X is empty or contains ah object header whose 'home bucket is not 
'b~et ·x ·(te., hashes to another bucket), ;then ,1em1'inate unsuecessfuHy. 
Otherwise continue searching down chain Xuntillhe r,equested object header is 
foundorthe endofthechftin is reached. 

3. If the end of the chain is reached then terminate unsuccessfully. Otherwise, 
return the object header that wasfoo'nd. 



An example: 

Suppose pages C and D of the hash table are as shown in Figure 3-7 and we wish to find 

oh37. Oh37 hashes to bucket 17, so we first check to see if bucket 17 contains oh 37. Since it 

does not, we hash the object header in bucket 17 to see whether bucket 17 is the home 

bucket for that object header. Since it is, we follow the links through successive bucketc; in 

chain 17 and find oh37 in bucket 15. 

10 15 oh37 

11 16 

12 oh42 17 oh1i7 

13 18 oh57 

4 oh82 19 

PageC PageD 

Figure 3·7: Initial State of Pages C and D 
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The ihsertion algorithm is as follows: 

1. Peiform the search operation on the object header. 

2. If the search terminates successfully, lihding an older version of the object 
header. in bucket B, then ins~rt the updated version of the object header in B 
a11d terminate. Otherwise, hash the object header to the home buck.et, X. 

3. Do cl\e ofthe fottowing: 

a. If bucket X is empty, or contains a deleted object header whose home 
bucket is bucket X, the 1 shnpty insert the new object header into bucket 
X. 

b. lf bucket X contrnRs av ilid object header whose home buck<et is bucket X, 
then check for another bucket on chain X that contains a deleted object 
header. Ifone exists them insert the object ,header :there. Otherwise, ·1f1.nd 
·another avarlabte bucket, Y, insert the object header in ,it,.and.add itto the 
end •of chain X. 

c. ff bucket X contains an object header whose home bucket isnot bucket X, 
then bucket X must 'be .part of another chain, beginning with bucket 
Z. Thus, it is necessary -to move ithe object ·header presently in bucket X to 
·some other bucket. If-there is a bucket, D, on chain Z that contains a 
·deleted object header, lhen move ,the object header in bucket X to bucket 
D. Otherwise move the obje{:t header in bucket K to a Jrae,bucket., F, and 
reroute chain Z through ·bucket F. Once tl1e old objectheader h~ been 
removed from bucket X, insert the new object header there. 

The following is nn example of tluee successive insertions that are executed on the hash 

table 'Shown in Figure 3-7. Each inseition demonstrates one of the branches that can be 

taken in Step J bf the insertioh algorithm. 

Sup-pose we -wish to insert ohl2 into the hash table. We perfom1 the search through 

chain12 in page C (Figure 3-7) and it terminates unsuccessfuUy. Next we.check the object 

headet' (oh42)in bucket 12 and discover that bucket 12 is 'its home bucket but it is marked 

deleted. Therefore we execute step 3a of the insert ·algorithm by discarding oh42 and 

inserting oh 12: m its place in bucket 12. See Figure 3"'8 for the state of page C after this 

insertion is done. 
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12 oh12 

13 

H oh82 

PageC 

Figure 3-8: Page C Afier Oh12 is Inserted 

Now, suppose we wish to insert oh77 into the hash table. We cannot place it in bucket 17 

in page D (Figure 3-7) because it is the home bucket for the object header that it contains 

and that object header is still valid. Tllerefore we look for another bucket already on the 

chain that contains a deleted object hqader. Bucket 18 satisfies these requirements so we 

execute step 3b of the insertion algorithm and insert oh77 in bucket 18 in place of oh57. · 

Figure 3-9 shows what page D of the hash table looks like after this insertion is done. 

Finally, supppose we wish to insert oh34 into the hash table. We have to execute step 3c 

of the insertion algorithm because bucket 14 in page C (Figure 3-8) is not the home bucket 

for the object header that it contains, oh82. Therefore, we move oh82 to another free 

bucket, bucket 10, then reroute chain 12 through bucket 10 and finally, insert oh34 into 

bucket 14. See Figure 3-10 for the final state of page C after this insertion is done. 

The deletion algorithm is as follows: 

1. Perform the search operation on the object header. 

2. If the search terminates unsuccessfully (i.e. the object header is not found) then 
tenninate unsuccessfully. Olherwise change the state of the bucket in which the 
object header was found to deleted. 
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Figure 3-9: Page D After Oh77 is Inserted 
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Figure 3-10: Page C After Oh34 is Inserted 

53 



An example (using the hashtable shown in Figure 3-9): 

Suppose we want to delete oh37. We find it in bucket 15 and simply mark it deleted as 

shown in Figure 3-11. 

19 

PageD 

Figure 3· I I: Page D After Oh37 is Deleted 

When an object header is deleted it is not removed from the bucket in which it resides 

nor is the bucket removed from the chain of which it is a part. These actions are delayed 

until some time in the future when another object header has to be inserted and an empty 

bucket is needed. Then, if the deleted bucket is part of the chain to which the object header 

to be inserted belongs, the object header can be inserted into the bucket in place of the 

deleted object header without making any changes to the chain structure. (This was the case 

in the first two examples of insertions). This eliminates the work involved in restructuring 

the chain, for both the deletion and insertion algorithms. At worst, if a bucket is needed to 

hold another object header that does not belong in the chain of which the bucket is a part, 

then the restructuring has to be done anyhow. 

The deletion algorithm delays the actual removal of the object header from object header 

table in order to alleviate the following problem. Since pseudotimes do not directly 

correspond to real time, read requests for an object may arrive after that object has been 

deleted with respect to real time but before the object has been deleted with respect to 
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pseuclotime. Thus. it is hoped that in most cases where this situation arises, by delaying the 

actual removal of the object header from OHS. the object header will still be available so 

that the repository does not have to scan sequentially through VS in order to find the 

appropriate version. 

In OHS, like in VS. the rumbrncntal unit of read and write is actually a page. Also, 

se\cral of the most recently read and written OHS pages are encached in the page buffer in 

rnlatile storage. I lowc\eL unlike in VS. an object header docs not have tu be written from 

the p:1gc buffer to the disk bcrore a ,cpository process can con!irm an external request, since 

cLtta may get damaged e\ en if it !us Jcen written on the disk (OHS is not stable storage). 

I urtherrnore. the object header table may not be modifiect atomically, s nce the insertion 

algorithm sometimes modi!ies object headers 011 several pages, which arc .10t written Lo the 

disk in any related order nor all at once. The object header table is not modified atomically 

because many independent processes may be concurrently inserting object headers on the 

pages in the buffer and thus. there may be no instant in time (except for when the repository 

is idle) when all of the object headers on a page or set of pages arc consistent and hence, 

atomically writeable. 

Therefore, a page that has been modified in the buffer is actually written out from the 

buffer to the disk when one of the following conditions holds true: 

1. The page is the least-recently-used page in the buffer and another page has to be 
brought into the buffer - The OHS page buffer replacement scheme is a Least
Reccntly-Uscd scheme. 

2. An extended period of time has passed since the page was modified in the buffer -
This prevents pages that arc frequently being accessed from getting too obsolete 
on the disk. 

3. lhe repository has no more outstanding requests - At this time. all pages in the 
buffer that haven't been written to the disk since they were last modi!ied, are 
written. This brings OHS to a consistent state. 

However, it would be very rare for the repository to crash in the midst of a non-atomic 

insertion operation, for the following reasons. First, the insertion algorithm is only executed 

when object headers arc initially created. Whenever they are modified, the repository 
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process requesting the modification would have obtained the OHS address of the object 

header when it read that object header. Thus, unless the object header was moved, the 

insertion operation wouldn't have to be executed since the object header could be modified 

directly, using the OHS address. Second, most chains are completely contained within a 

single page, so even if the insertion algorithms modifies several buckets on the chain, the 

object header table will still be updated atomically (each page is written atomically). 

Thus, in the few cases where a crash causes the object header table to be updated non

atomically, the repository's recovery mechanisms will restore consistency within the object 

header table. This, and all other recovery will be described in the next chrpter. 
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Chapter Four 

Recovery of the Repository 

In order to recover from a crash. the repository must rcstmc iL'> global state. as well as the 

state ur the objects and commit records. to a state that is current with respect to that of 

Swallow as a whole. On the oth :r hancL the repository docs not have to recover the 

messages that were lcrt pending when it crashed. for reasons that will be described in this 

chapter. 

Since some or the global state cla_a consisLs or recovery information that has not yet been 

described. the discussion of the global state data's rccmery will be dcrerred until Section 

4.3. at which point the recovery information will have been described. Rut first. Sections 4.1 

and 4.2. respectively, discuss how the internal structure of the objects can be damaged by a 

crasl1 and also describe the individual recovery mechanisms that arc used to implement 

their recovery. Then. Section 4.3, presents the recovery manager, which coordinates all 

recovery activities. I his section explains how the global state data is recovered as well as 

how the various recovery mechanisms are integrated into a coherent recovery process that 

interfaces with the processes that arc satisfying external requests, concurrently. Finally, 

Section 4.4 explains why it is unnecessary to recover the pending messages. 

4.1 Recovery of Objects 

Due to the fact that VS is stable storage, and thus, maintains all of its dat1 redundantly, 

all object versions that arc confirmed to have been written there will be found there after a 

crash. Furthermore. all incomplete versions arc ignored. Thus VS, in itself', contains the 

current state of all objects. Were it not for a desire to improve performance, elaborate 

recovery mechanisms would not have been needed. However. to find the most current 

version of an object in VS requires a linear search, which would perform very poorly. To 
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overcome this performance problem, the repository accesses the objects' versions in VS 

through the object header table, which is maintained in OHS. Since OHS is only careful 

storage, a crash may damage the structure and/or contents of the object h~ader table. Thus, 

it is this object header table that must be recovered in order for the objects to be consistent 

with the general state of Swallow.9 

The various types of strnctural damage to which OHS is vulnerable are merged, cyclic 

and incomplete chains (Section 4.1.1 ). The repository uses a modified set of h:L',h table 

algorithms (Section 4.1.2) in order u detect and correct these damaged ch:tins. On the other 

hand, the contents of the object he; ,der table, that is the actual object hcrtders, get damaged 

by becoming lost or obsolete (Section 4.1.3). Most of the infonnation con,aincd in these lost 

and obsolete object headers can be recovered from the data in VS, as dc::;cribcd in Section 

4.1.4. Furthermore, the repository uses two mechanisms. recovery epochs and checkpoint 

epochs (Sections 4.1.5 and 4.1.6, respectively), in order to facilitate the recovery of these lost 

and obsolete object headers. 

4.1.1 Merged and Cyclic Hash Table Chains 

When an object header is inserted into the object header table, several buckets may be 

modified. If these buckets are not all located on the same disk page then all of these 

modifications may not be atomic, since the OHS page buffer management scheme docs not 

write the separate pages out to the disk in any particular orcler nor all at once. If it was 

possible to write out the pages so that each bucket is written out before any other buckets 

closer to the end of the chain then all problems except for incomplete chains would go 

away. However, since many processes may be concurrently accessing buckets on different 

chains but on the same OHS pages, it may not be possible to preserve any such order. 

Furthermore, since the cost of the OHS operations (and thus. the repository's response 

9Note that implementing OJ IS as atomic stable storage would not really alleviate this problem. The lost 
ob,icc:L hc:iucr problem would go away but there woulu still be a problem of incon~istcncy bclwecn 01 IS and VS, 
since every objcd history opcrntion invoives touching both. The cost of this alternative is discus~cd in Chapter 
5. 
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ti111c) woulct increase ii the concurrency of accesses to buckcL.;;; on a single OHS page was 

climiiial,:d. the OHS page buffer docs not ensure atomicity of insertions of object headers 

into OHS. This nun-,1tomic inscnion of object headers is manifested after a crash in one of 

three types of !n:ilf'onned hash table chains: merged, cyclic, or incomplete. 

Merged Chains: 

A chain j,; cunsidcrcd to be merged wltcn its last bucket contains a link to a bucket that is 

parl of another chain. 111 Figure 4-1. chain 1 is merged with chain 5. One way in which 

ch:1(11 1 cculd have beco!lle merged with chain 5 is as follows. 

,\:;.::;umc that the i11itLil :;tatc oJ' pages, in both the buffer and on the, iisk, is as illustrated 

in Figure 4-2 and that uh5 is to be inserted. In ordei- to insert oh5, ohl()l would have to be 

moved to another c1npty bucket and chain 1 would have to be rerouted through the new 

buckcL. Figure 4- 3 show how pages /\ and B would appear in the page buffer after the 

insert was done. 1-lcmT\'Cr, ii' the repository crashed before page A was written on the disk 

but ;1fter page fJ w;1.s written. then chain 1 would merge witlt chain 5 as originally illustrated 

in Figure 4-1. 

Since merged chains arc longer than necessary, they tend to reduce the efficiency of the 

hash iable algorithms. Funhermorc, if a merged chain is not corrected before subsequent 

operations niodif}' it, then it may become merged with an additional chain each time the 

repn:;itory crashes, forming a single long chain. Thus, when merged chains are not 

corrected, the original benefit or a hash table is lost, since the efficiency of the algorithms is 

reduced. 

In addition, the longer the repository waits, the more difficult it becomes to fix a merged 

chain. It is easy to fix a duin when it initi:dly becomes merged because all of the buckets 

from one ch:iin arc lorntecl at one end of the merged chain and those from the other chain 

:ire located at the other end. Thus, only one li11k has to be r.iouified in order to correct the 

silllation. However, as additional insertions and deletions arc exernted on the merged 

chain, the buckets 01· the two component chains become interleaved, a~ shown in Figure 4-4. 

Thus, it would be necessary to break several links and then relink the buckets properly in 

order tn reconstruct two separate chains. 

59 



0 5 oh5 

oh1 6 

2 7 

3 oh21 8 

4 9 

Page A PageB 

Figlire 4· 1: A Merged Chain 
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Figure 4-2: Pages A and B Before Insertion of Oh5 
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Figure 4-3: Correct Insertion of Oh5 

0 V 

oh1 

2 

3 oh21 

4 oh81 

Page A PageB 

Figure 4-4: Merged Chain with lntcrleaved Buckets 
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Cyclic Chains: 

A cyclic chain contains a bucket whose link points back to another bucket (also in that 

chain) that is closer to the beginning of that chain, as illustrated in Figure 4-5. Cyclic chains 

are undesirable because they prevent the hash table algorithms from terminating. In other 

words, these algorithms become infinite loops when executing on cyclic chains because they 

never encounter a null chain fink, which signals that the end of the chain has been reached. 

0 5 oh65 

oh21 6 

2 7 

3 oh1 8 

4 

Page A PageB 

Figure 4·5: A Cyclic Chain 

For example, assume that the state of pages A and B in the buffer and in OHS is as shown 

in Figure 4-6, and that the following sequence of operations is executed. 
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Figure 4-6: Page; A and B Before Cycle was Created 

1. Ohl is deleted from ch.ainl. 

2. OhlOl is deleted from chainl. 

3. Oh65 is inserted in chain 5. (ln doing so. a collision occurs in bucket5. 
Normally, ohlOl would have to be moved to another bucket and chain 1 
rerouted th.rough it, but since ohl was deleted. tkis is not necessary. Thus, 
ohlOJ is simt}ly removed from the table, oh65 is inserted in bucket 5 and chain 1 
is modified so that it no longer includt:s bucket 5.) 

4. 0hl05 is inserted in chain 5. (Again, a colHsion occurs but this time with an 
object header that belongs on the chain. Therefore, ohl05 has to be inserted 
inlo another free bucket. Assuming that bucket 3' is the bucket that ~ found to 
be free [ohl is de~tcd and thercfme can, be removed from thehu~et1 ohl05-is 
then inserted in bucket 3, which is then added to chain 5.) 

Figures 4:-7, 4-8, 4-9. and 4-10 show the pages as they would appear in the buffer after 

each step is executed. Now, if a crash occurs at a point when page A (on the disk) is still in 

the same state as before any of these operations were executed yet page B has been written 

out to the disk in the final state, then chain 1 bei;:omes merged with chain 5, and the 

resulting chain contains a cycle, as previously shown in Figure 4~5. 

When a cycle is initially created in a chain, it is always accompanied by the merging of 
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Figure 4-7: Deletion of Ohl 
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Figure 4-8: Deletion of Ohl0l 
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two chains, as demonstrated in the previous example. Therefore it would seem that in order 

to detect a cyclic chain, one would simply check for a merged chain. However, this 

detection procedure would not catch all cyclic chains if they were not always corrected 

before allowing subsequent operations to modify them. For example, suppose that oh27 is 

to be inserted in the cylic chain illustrated in Figure 4-11. Since bucket 7 is not oh81 's home 

bucket but is oh2Ts home bucket, oh81 must be removed from bucket 7 and oh27 must be 

inserted in oh81 's place. Furthermore, if possible, oh81 should be moved to another bucket 

on chain 1 that contains a deleted ohject header. Since bucket 12 is on chain I and contains 

a deleted object header, oh81 is ins~rtcd there after the deleted oh72 is removed. Finally, 

oh27 is inserted in bucket 7 and chain l is rerouted around it. The final stale of pages A, B, 

and C is shown in Figure 4-12. Sir cc there is no merged chain anymore, the cycle would 

not be detected by the simple detection procedure that was proposed above. Thus, as is the 

case with merged chains. it is advantageous to correct the damuge in cyclic chains before 

allowing further operations to modify it 

Incomplete Chains: 

An incomplete chain is one in which the tail end of the chain is unaccessible, that is, the 

last reachable bucket in the chain contains a pointer to an empty bucket or a bucket on a 

damaged page.10 For example, one way in which an incomplete chain could be created is as 

follows. Assume that the initial state of the pages is as shown in Figur,e 4-13 and that oh81 is 

to be inserted. In order to insert oh8L it is necessary to find a free bucket, insert oh81 in it, 

and then add the bucket to chain 1. However. if the only free bucket is bucket 5 and the 

repository crashes before writing page B but after writing page A in OHS, then the chain 

becomes incomplete, as shown in Figure 4-14. 

10Tous, incomplete chains are caused nol only by non-atomic inserlions of object headers, but also by bad 
OHS pages. 
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Figure 4· 11: Pages A, B and C Before Oh27 is Inserted 
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Figure 4-12: Pages A, B and C After Oh27 is liUlerted 
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Figure 4-13: Pages A and Il Before 01181 is Inserted 
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flgure 4·14: Pages A and 8 After Crash 
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4. ·1 .2 A Modified Set of Hash Tc:ible Algorithms 

Herc we describe si111rlc modifications to the insertion. deletion and search algorithms 

that make the liash t:1blc sclf-recm ering with respect to the structural damage that has just 

been described. 1-"irst. str:iiglHfunvarcl consistency checks arc incorporated into the 

alguritlrn1s in order to detect clcl'ccts in a chain before any operations modil'y the chain. 

Then. if a defect is disco\cred. a simple correction procedure is applied in order to return 

tile chain tu a st:1te in ,, hich it clll be safely operated on. 

In order ll) simplil'y the C\plan: lions or the modified algorithms. a defective bucket is 

dcli11d to 111c;1n a h11cht ,, ith one llr tile rullowing properties: 
l. Ille bucket is supposed tti co, lain an object header but instead. is empty. 

2. The bucket cont:1i11s an ohjcc hc~1clcr whose hume bucket is not the first bucket 
ur the chain tu 1, hid1 it is linked, and therefore. docs nut belong in that chain. 

3. The bucket is located on a bad 01 IS page. and thus, cannot be accessed. 

In tile modified algorithms. every chain that is touched is checked to ensure that none of 

:ts bucket-; arc defective. If' a dcl'cctive bucket is found, then the link or the preceding 

bucket (which points to the defective bucket) is changed to nil, thereby separating any 

merged chains, breaking any cycles before the hash table algorithms become trapped 111 

them. and repairing the improper link in any incomplete chains. 

More specifically, the modified search algorithm is as follows (note that all of the changes 

and additions arc italicized): 

1. flash the given object header to the home bucket, X. 

2. Ir bucket X is empty or contains an object header whose home bucket is not 
bucket X. then tcrrni11alc u11s11ccessrully. Otherwise, continue searching 
through chain \ 1111til either the object header in question is round, a cilfective 
bucket isfo1111J. or until the end of the chain is reached. 

J. If the end or the ch:1in is reached then terminate uns11cces-;fully. If a defective 
hucket isJiJ//llcl then c/Jongc rhe link of the preceding bucket to nil, and terminate 
un.1ucces411//y. Otherwise return the object header that was found. 

The search algorithm only checks the buckets that it touches during its normal course of 
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searching. In other words, when the search algorithm finds the object header in question, it 

terminates at that point, instead of continuing to check the remaining buckets towards the 

end of the chain. Any errors that are located further down the chain can be detected and 

corrected just as •easily by the next operation that touches the final part of the chain, since 

the search algorithm does not modify the chain. 

Next, the modified insertion algorithm is as follows (again, all changes and additions are 

italicized): 

1. Perform the search operation 'Jll the object header .. 

2. If the search terminates suc:essfully. finding an older· version of the object 
header in some bucket B, thc'l insert the updated version of the objc ct header in 
Band terminate. Otherwise, hash the object header to the home btcket, X. Do 
one of the following: 

a. If bucket X is empty, or contains a deleted object header whose home 
bucket is bucket X, then simply insert the new object header into bucket 
X. 

b. If bucket X contains a valid object header whose home bucket is bucket X, 
then check for another bucket on chain X that contains a deleted object 
header. If one exists then insert the object header there. Ot~erwise, find 
another available bucket, Y, insert the object header in it, and add it to the 
end of chain X. 

c. If bucket X contains an object header whose home bucket is not bucket X, 
then bucket X must be prut of another chain beginning with bucket 
Z. Thus, it is necessary to move the object header presently in bucket X to 
some other bucket. Starting with bucket 2, search down chain Z until 
either a defective bucket is found. a non~dejectfre bucket containing a 
deleted object header is found, or until the end of the d1.)in is reached. If 
a non-defective bucket, D, containing a deleted object fieadcr is found, 
then move the object header in bucket X to bucket D. If a defective bucket 
is found then change the link of the preceding bucket to nil, and continue as 
(f the end of the chain was reached. If the end of the chain is reached, then 
move the object header in bucket X to a free bucket, F, and reroute chain 
Z through bucket F. Then, once the old object lumder has been removed 
from bucket X, insert the new object header there. 

The insertion algorithm does not need to explicitly include a consistency check for chain 
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X because. as its first step. it executes the search algorithm (v1hich checks for 

inconsistencies) on chain \. On the other hand, it docs have to check through the buckets in 

chain Z. In fact, e\ery bucket in chain / must be checked. regardless of the relative position 

ot· bucket X in the chain (unlike the consistency check pcrforrncd within the search 

algorithm). The reason for this is that chain Z is to be modified in such a way that may 

make a cycle imisible to the current cycle clctectiun proccclllre. as was demonstrated on 

page 63. 

This might lead one to hclic,c tl1,1t when performing an insertion. the check performed 

implicitly II ithin the search alguritl1111 on chain X is not sunicient hccaus( chain X may still 

contain a cycle when the insertion algorithm alter:; it. Howe,cr, it is sufficient because if a 

bucket is found to contain the object header before the encl of L11e chain is reached, no 

structural changes will be made to the hash table since the object header will only be 

rcinscnccl in the same bucket. Thus. since nothing will be done to disturb any cycles or 

merges further clown the chain. the next operation that executes on the chain will still be 

able to detect any inconsistencies. In addition. if the object header is not found to exist 

already in some bucket. then the search algorithm will have checked through the entire 

chain in the process of looking for the object header and will have corrected any 

inco11siste11cies th::it it found. For these reasons, it is not necessary for the insertion 

algorithm to include an explicit consistency check for chain X. 

Furthermore, since the deletion algorithm docs not make any structural changes to the 

hash table. it docs not have to be modified at all. Thus, since it is comparable to the search 

algorithm in ;L') requirements for error detection and correction and includes the search 

algorithm as its first step, the chain that contains the object header to be deleted will be 

implicitly checked and correctcd. 11 

11
The algorithm for finding ,1 free bucket has not been described in detail because it searehc5 through the disk 

p:1gc, in s<1111t' optimum mdn with respect to disk ,1ccess time ;111d is fairly implementation specific. Even 
1h()[1gh it doc, not usc ch:1i11ing to guide its s,\1rchcs for buckcts that can be freed llfl, whenever it actually 
rc111ovcs :1 bucket lrom a ch:1i11. it must do a consistency check on the entire chain (as is done in the insertion 
,ilgorithm) and hreah the d1:1in if any dcl"cctivc buckets me detected. In this way. it will not modify a cyclic 
chain in such a way that \\Uuld make the cycle lr:111sparc11L to the simple dclcction procecture. 
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Cunsiclcr once again. the chain in Figure 4-11 011 page 67. It is a merged chain consisting 

or chains I and 12. and also contains a cycle.If the insertion ofoh27 had been clone using the 

modified algorithms instead of the old ones described in Chapter 3. then the cycle would 

have been broken and the insertion would have proceeded properly. First, the search 

algorithm \\Ould lwvc terminated unsucces,Jully. Thus. oh8 l would ha\ e been moved and 

its chain ,rnuld hme been rethrcaLlcd through the new bucket. !11 the process. e,1ch object 

header in chain 1 woulcl have bee11 checked in order to ensure that it:; home bucket was 

bucket 1. f-lc)\Ve\er. bucket 12 would ha\'e been ftHttlll to contain oh72. Since oh72's home 

bucket is bucket 1. the link from I ucket 7 to bucket 12 would ha\'e been cliangecl to nil. 

Then. once the two chains that were merged had been sep,1mted a11d the cycle had been 

broken. as illustrated in Figure ,i-1:. oh8l would have bec11 moved to a110L11er free bucket 

(since there were no buckets ,ilread 1 on chai11 I \\ ith deleted object headers). r inally. chain 

1 would ha\e bec11 rerouted through the b11ckct co11tai11i11g uh81 and oh27 would have been 

insened into bucket 7. forming a new. separate chai11. as shown in Figure 4-16. Note. that 

even though the cycle was broke11. chain 12 and chain 1 were still lcrt 111er~ed at a second 

link between bucket 12 and bucket 3. It was nm critical to correct this merge during the 

insertion of oh27. since the bad li11k would be broken the ne,\t time an object header was 

inserted in chain 12. 

All other examples that were gi\Cn in Section 4.1.1 would :dso have worked correctly if 

the Jlloclified algorithms were used. Since the changes made to th~ algorithms for searching 

and it1'.,erting object headers in the hash U1ble ensure that the internal structure or the table 

is always correct or detectably incorrect. crashes cannot alter the beha\ior or the hash table 

algorithms. In other words. they c:mnot decrease the efficiency of the algorithms nor can 

they prevent them from terminating. 

4.1.3 Obsolete, Lost and Dup!icntcd OIJjcct I leaders 

There arc two ways in which the object header table can be damaged, making it 

inconsistent with the current state or the object \Crsions in \'S. I irst, an object header can 

become obsolete if it is modified in tile page bufkr but a crash ocrnrs before the page is 
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Figure 4· 15: Separation of A Merged Chain 

0 5 0 

oh1 11 

2 12 oh72 

3 oh101 3 

4 " 
Page8 

Figure 4·16: Pages A.Band C After lnsertkm ofOhBl 
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written out to the disk in the modified state. Even though the object header appears to be 

valid, it contains out of date information about the object. 

Second, an object header can get lost if a failure causes the OHS page on which it is 

located to go bad, or a faHure occurs before all pages that have been modified by the 

insertion algorithm have been written from the buffer into OHS. For example, consider 

chain 1 in Figure 4-17 and suppose oh66 is to be inserted in the hash table. 
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6 oh21 X V - ~ - ... - .... 
., 
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2 7 12 

3 8 h3 

4 9 h4 
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Figure 4· 17: Pages A, Band C Before Oh 66 is Inserted 

Before inserting oh66, oh21 has to be moved to another bucket and chain 1 has to be 

rerouted through that new bucket The final state of the pages in the buffer, after the 

insertion is correctly executed, is illustrated in Figure 4-18. Now, suppose page Bis written 

on the disk in its new state but the repository crashes before page A is written out Both 

oh21 and oh41 become lost by virtue of the fact that they are no longer linked to the chain 

in which they belong, as shown in Figure 4-19. The normal search procedure will not find 

them because it will terminate after searching through buckets I and 6. 
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Figure 4· I 3: Correct Insertion of Oh66 
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Figure 4·19: Pages A, Band C After Crash 
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4.1.4 Recovery of Lost and Obsolete Object Headers 

In order to recover a lust or obsolete object header. the repository must restore the 

current version reference. the token reference. the commit record ref'crcnce and the end 

pseudotime. First, the three references can be determined from the ct11-rent version or token 

in VS, as follows. The repository searches sequentially backwards through VS from the VS 

write pointer until it finds a '.,imp le ur root version image for the corresponding object. This 

version image will either be the current token. an aborted token or the CLi!Tent version. In 

order to determine which or three :t is. the repository must check the sue of the commit 

record that is referenced by the ve1 ;ion image (assuming for now. that tl•e conrn1it record 

has already been recovered). 

lfthe state of the co111111it record is UNKNOWN. then the version i1rn1ge is a token and 

the three references in the ubject header (current version reference. current token reference, 

commit record reference) should be set to the token's VS address, previous version 

reference and commit record reference, respectively. On the other hand, if the state of the 

commit record is ABORTED, then the version image is an aborted token and the object 

header's token and commit record references should both be set to nil. Furthermore, the 

previous version referenced by the aborted token is the object's current version so the 

current version reference of the object header should be set to point to that previous version 

image. Finally, if the state of the commit record is COMM ITT ED, then the version image 

is a version and there is no token. Thus. the three references in the object header should be 

set to the version image's VS address. nil, and niL respectively (using the order above). 

Now. the remaining value that the repository must restore in the object header is the end 

pseuclotime of the current version or token. The repository simply sets this field to the 

pseudotimc of recovery because that pseuclotime is the earliest possible pscudolime at 

which it is guaranteed that no request lws read the version or token. The exact. original end 

pscudotime may have been even earlier but cannot be easily determined by the repository. 

Thus, the pseudotime of recovery is satisfactory since it still ensures tl1:it all atomic actions 

arc properly synchronized in their accesses to the object even though some atomic actions 

may be aborted unnecessarily clue to the arbitrary extension of the end pseudotime. Section 
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4.3 will discuss how the repository determines the pseudotime of recovery. 

Unfortunately. there arc some complications to the recovery of lost and obsolete object 

headers. First of all. the repository cannot discriminate between an obsolete and current 

object header, using only the information in the object header. Second oi' all. the repository 

docs not kl\ c any buuncl on its search through VS. when recmcring a lost or olNilcte object 

hc,1dcr. Since VS is alwa:, s increasing in size. it is not acceptable for the repository to clo an 

unbounded search e,cry time it has lo recmer an Dhjcct header. Thus. we need a means for 

dc1ectio11 of obsolete object headers and an efficient means for corrcctio1; of both obsolete 

and lost object headers. For these reasons. rccovc,y epochs ,md OHS < hcckpoint epochs 

ha\'e been developed. 

4. ·1 .5 F1ecovery Epochs 

A recovery epoch is the time period between two repository crashes. Each recovery 

epoch is distinguishable from the others by its recovery epoch number, or REN, which is a 

rnonot•J1Jically increasing number. Whenever the repository crashe~ and restarts, it 

increases its REN, which it maintains as part of its global state. Also upon restarting, the 

repository marks the beginning of the new recovery epoch in VS by writing (in VS) a 

boundary vers;on image, called a rccove,y epoch mark, or REM, which contains the new 

REN. This REM enables the repository to determine in which recovery epoch any version 

image was created. 

Now, in order to determine whether an object header is current or obsolete, the 

repository must check that the object header contains a reference to the most current simple 

or root version image of the object in VS. If the object he::ider docs not contain a reference 

to the 1110:;t current version image of the object. then the repository must update the object 

header. However, the repository only has to check each object header once per recovery 

epoch, since it marks the object header with its current REN after the first check. Thus, 

whenever an object header is accessed. its REN is compared to the repository's current 

REN. If the two RFN's arc the same then the object header is current. Otherwise, the 

object header is either obsolete or is still current as of the new recovery epoch but has not 
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been accessed since the last time the repository crashed. Therefore, if the REN of the object 

header is not the same as that of the repository, then the object header must be certified to 

be current. 

The recovery manager. which wil 1 be discussed in Section 4.3. is responsible for certifying 

the object headers. In order tu certify an object header, the recovery manager scans 

sequentially backwards through VS, searching for a more current simple or root version 

image of the object than the version image referenced in the object header. If it finds one, 

then it upcbtes the object header's references and encl pscudotime and marks the object 

header to be current by selling the object header's REN tu that of lite repository. If the 

recovery manager does not tine! on(. then it just sets the object header's REN to that of the 

repository. :;ince the object header i~. still current. 

In order to certify a potentially obsolete object header. the recovery manager only has to 

search through the portion of VS that is bounded by the REM of the current recovery 

epoch 12 and the REM of the recovery epoch that corresponds to the object header's REN. 

The recovery manager docs not have to search through the current recovery epoch in VS 

because if the object header lwd been accessed in this epoch its REN would be current. 

Furthermore, the recovery manager docs not have to search pasl the REM that corresponds 

to the recovery epoch of the object header's REN since that REN indicates that the object 

header was last certified to be current in that recovery epoch. Thus. if the recovery manager 

docs not find a version for that object by the time it reaches this REM in VS. then the object 

header is still current, and the recovery manager only has lo update the object header's 

REN. 

The recovery manager"s search through VS can be f urthcr minimized if recovery epochs 

arc artifically created whenever all Ol IS p:1ges that have been modified in the buffer have 

been written out to the disk (i.e .. when the :-cpository becomes idle). and if each REM is 

m:irked as either a crash o:- non-crash REM. Using this scheme, the recovery manager 

12 n1e currenl recovery epoch is the new recovery epoch Lhat began when the repository restarted after the 
Ill(bl recent crash. 
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would only have to scan through the non-crash recovery epoch immediately preceding the 

crash recovery epoch. For example, suppose that the reposilory crashes during recovery 

epoch 8 and upon restarting, writes a crash REM for recovery epoch 9 into VS, as shown in 

Figure 4-20. If an object header with an REN equal to 5 is accessed after the crash, then the 

recovery manager only has to scan through recovery epoch 8 for a more current version 

image because all OHS pages that were modified during recovery epochs 5, 6, and 7 are 

known to have been written oul by virtue of the fact that they all precede another non-crash 

recovery epoch. 

CRASH 
REM #5 

NON-CRA3H 
REM #6 

NON-CRASH 
REM #7 

NON -CRASH CRASH 
ALM #8 REM #9 

i i i -•..---------... ------------------.----.... 

I y 
Recovery Epoch 115 Recovery Epoch # 8 

Figure 4-20: Recovery Epochs In VS 

Thus, the benefits of recovery epochs are twofold. Each object header only has to be 

checked for obsolescence once per recovery epoch and when it docs have to be checked, the 

search through VS for the current version image is bounded. 

4.1.6 OMS Checkpoint Epochs 

Even though recovery epochs exist, there is still a problem in bounding the recovery 

manager's search for the current version image of a lost object header, since there is no 
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object header to provide an REN. For example. if the 010 of a supposedly lost object 

header had never been assigned to any object because of a crash. then there would not be 

any version images in VS with that 010 and the recovery manager would have to search 

through all of VS before it could firdly figure this out. Similarly, if the object 

corresponding to the lost object header is very old. then in order to find the current version 

image, the recovery 111anager would have to search thrrn1gh a large poniun of VS. In order 

to prevent these unbounded searches. a table that checkpoints the object header 

information for every object that i-; current. is periodically created in VS thereby enabling 

the recovery manager to bound its search through VS with the loc:1tio11 o ·· the most rnrrent 

completed table. This table is called a checkpoint table and the period of' time over which it 

is created is called a clzcckpoint epoch. 

Each entry in a checkpoint table consists of the object's OID as well as a reference to the 

version that is current at the time the entry is created. Since the construction of a 

checkpoint table may consume a brge amount of time, it is nol acceptable for the repository 

to temporarily discontinue service in order to take a snapshot of the state of all object 

headers at one specific point in time. Instead, the checkpoint table is created in the 

background by a separate process. called the checkpoint manager while the repository 

accepts and services external requests. Thus, a checkpoint table does not necessarily capture 

the current state of every object header at one particular point in time but instead, it 

captures some state that was current for each object header at some time during the 

checkpoint epoch in which the uible was created. Further, since the checkpoint table is 

created in VS while versions are also being created. iL<; entries may be interleaved with the 

versions. Thus. all of the checkpoint entries arc linked together in order to make it possible 

to search through the version images of the checkpoint table e.\clusivc of the rest of VS. 

Fin:illy, before the checkpoint manager starts to create a new table, it writes a checkpoint 

epoch mar!c or CEM, in VS in order to mark the beginning of the new checkpoint epoch. 

The checkpoint manager has to be sure to include an entry in the checkpoint table for 

every object that existed during that checkpoint epoch. However, the checkpoint manager 

would not necessarily do so if it simply created a checkpoint entry for every object header in 
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OHS since some ohject header:; 111:1y ha\'e been losl. On the other hand, it would clo so if it 

searched L11rough \'S fur all or the current version images ,md created a checkpoint entry for 

l'.ach one it fou11cl. 1-luwe\ er. this would be ,it least as bad as searching through VS for every 

lost object header. if not \\(11se. Since Lile original reason lt)r creating a checkpoint table was 

lo 111ini111i1c and bound thl: recmery rnan,1gcr's search through VS. the checkpoint manager 

shoulcl not ha, e to lll,1kc ;i11 un buumlcJ c;e;1rch in order to cre:tle the table. Therefore. it was 

necessar) tu come up 1'.ith sun1e uther scheme that would accrn1nl for every object that 

existed during a checkpoint epoch. 

The checkpoint 111an,1gn c1-catc, the checkpoint table. as fullows. vVhen each object is 

ffrst created i11 the rcpo'>itory. the ·hcckpoint n1,11wgcr creates a checkpoint entry ror it in 

the current chcckpui11t lalJlc. Then. the checkpDi11t m,rnager accounts for the remaining 

objects c\isting in the checkpoint epoch by updating each entry that c\ist:; in the checkpoint 

tabk of the f)t'evious checkpoint epoch. ancl placing it in the new checkpoint table. 

In orcler to update an old checkpoint table entry, the checkpoint man,1ger examines the 

corresponding object he,1der and C\tracts the reference to the current version or token. 

However, if the object header is lost or obsolete then the checkpoint manager must wait 

until the recovery manager certifies the object header belorc updating the checkpoint entry. 

Also, if the object header indicates that the object was deleted in the previous checkpoint 

epoch, then the checkpllint nwnagcr docs not write any updated entry for it in the new 

checkpoint table. Thus, it can be seen that this method of creating successive checkpoint 

tahlcs from previous ones is guaranteed to include entries for all objects that ever existed in 

each checkpoint epoch. without having to scan through all of the version images in VS. 

When searching for the current version image of an object whose header appears to be 

lost, the recovery manager should either find an actual version or a checkpoint table entry 

cont:iining a reference to the rnrrent version, hy the time it reaches the CEM of the last 

complctecl checkpoint epoch in VS (which will be referred to as the limiting CEM). 

Otherwise, the object has been deleted in some previous checkpoint epoch or il never 

existed. For ex:11nplc. consider the checkpoint epochc; in VS that arc illustrated in Figure 4-

21. Since tl1e table fur cl1cckpoi11L epoch //3 is still being created, checkpoint table //2 is 
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the last completed checkpoint epoch. This means that CEM #2 is the limiting CEM and 

thus, the recovery manager would only have to scan through to CEM #2 before it could 

conclude that an object never existed or was deleted. Thus, CEM's provide the lower limit 

for the recovery manager's search for lost object headers. 

Current 
CEM #2 CEM #3 End of VS 

i~, CPT #1 CPT #2 CPT #3 

~ 
oid aid aid aid aid aid oid aid Jid oid aid oid oid 
39 6 10 2 5 63 42 51 51 42 63 5 01 

CV CV VC CV V C VV CV V V CV V CV CV V CCV CCV 

C = checkpoint table entry 

V = any other type of version image 

CEM # X = beginning boundary of checkpoint epoch # X 

CPT # X = checkpoint table for checkpoint epoch # X 

Figure 4·21: Checkpoint Tables In VS 

In order for CEM's to be valid limits for the recovery manager's searches through VS, the 

repository's processes must never confirm the creation of an object (to an external node) 

until the checkpoint manager confirms that a checkpoint entry has been created in VS, since 

if they did, then it would be possible for a crash to occur after a confirmation was sent out 

but before the entry was made for it in the checkpoint table. In other words, it would be 

possible for an object to exist without having a corresponding entry in the checkpoint table 

and the recovery manager might incorrectly conclude that such an object never existed, if 

the corresponding object header ever got lost. 

For example, assume that the creation of object A is confirmed to an external node 

before the checkpoint manager confirms the creation of the corresponding checkpoint 

entry, and that the repository then crashes before the entry is created. Since each 
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subsequent table is created from the previous table. an entry for object A will never be 

created in any of the checkpoint tables. Now. if the object header for A gets lost at some 

time when the current version of A is located further back in VS than the limiting CEM (see 

Figure 4-22). and the repository receives a request to read A. then the recovery manager, in 

attempting to find its current version in VS. would incorrectly conclude that the object was 

previously deleted or never existed, since it would .not find a version or checkpoint entry by 

the time it reached the limiting CEM. However, if the process that created object A had not 

sent out the confirmation in the first place. then the object still would hav<' been nonexistent 

and no e:-.ternal node would have sent any requests for it 

id 
A 

V 

t 
current 
version 

of A 

:,. ; 

GEM #2 

~ . CPT #2 

Current 
End of VS 

CPT #3 

VC CV V C VV CV V V CV V CV CV V CCV CCV 

C = checkpoint table entry 

V = any other type of version image 

CEM # X = beginning boundary of checkpoint epoch # X 

CPT # X = checkpoint table for checkpoint epoch # X 

Figure 4· 22: No Checkpoint Entry for Object A 

Finally, there is one decision that still ha5 to be made concerning checkpoint epochs, that 

is how often should the checkpoint manager start a new checkpoint epoch? The only 

constraint is that a new epoch cannot be started until the checkpoint manager has made 

updated entries in the current table for all of the entries in the previous checkpoint table. 

As long as this requirement is met then the checkpointing mechanism will work correctly . 
.. 

The discussion of how this decision should be made is deferred until Chapter 5, which 
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analyzes the costs of the necessary tradeoffs. 

4.2 Recovery of Commit Records 

Now that the recovery of objects has been described, it is necessary to explain how the 

commit records are recovered. Recall that the versions of the commit records (as well as 

those of the objects) are mainlaind in VS, which is stable storage. Thus, VS in itself also 

contains the current state of the commit records. However, the repository accesses these 

versions of a commit record throug"1 the commit record table, which is only kept in volatile 

storage. Thus, when the repository crashes, the commit record table is completely lost. 

Upon restarling, the repository ueates an empty table and adds entries as new commit 

records are created. Also, when th.! repository restarts atler a crash, it implicitly aborts all 

commit records that were in the UNKNOWN state at the time of the crash, since there is a 

good probability that the broker that created the commit record would have aborted it 

anyway, due to the crash. However, this abortion is not done explicitly, since the commit 

record table no longer contains entries for any of the commit records that were created 

before the crash. Instead, the abortions are done as follows. 

As the recovery manager scans sequentially through VS in order to recover object 

headers, it creates entries (unless they already exist) in the commit record table for any 

version images that it encounters that contain the final state of a commit record. However, 

it only creates these entries if the actual state is COMM ITTED.13 Thus, when the recovery 

manager is actually recovering an object header, if the corresponding token's commit record 

is not found in the commit record table then that commit record has been aborted. Either 

the recovery manager had found the final state version before it reached the token in VS but 

did not create an entry for it in the commit record table since itc:, state was ABORTED, or 

' else there was no final state version in VS and thus, the commit record was aborted by 

13 Asynchronously. some other process will eventually delete these entries from the commit record table, aller 
rechecking that the object headers of all tokens in the linked list have been updated to reflect the token's 
(commit record's) final state. 
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definition. 

Fu1thermore, the broker that created a commit record that was automatically aborted is 

eventually informed of this automatic abortion when it attempts to retransmit any 

unconfirmed create-token requests, or tries to set the final state of the conu1it record. Upon 

being informed, the broker retries the entire atomic action. Thus, the repository's recovery 

of commit records supports Swallow's atomic action protocol. 

4.3 Recovery Manager 

This section describes how the recovery manager coordinates the rep )sitory's recovery 

activities and interfaces with the other repository processes when they acc1.,;SS object headers 

that have to be recovered. In a nutshell, the recovery manager restores Lie repository to a 

state in which it can resume servicing requests from other Swallow nodes after a crash and 

then runs in the background, during the repository's normal course of actiyities, certifying 

the object headers and temporarily creating entries in the commit record table that facilitate 

the recovery of these object headers. 

Thus, when the repository restarts after a crash, it does not start accepting messages until 

the recovery manager signals that the global state data has been properly updated in State 

Storage and encached in volatile storage. However, once this signal is received, the 

repository resumes its communications with the other Swallow nodes. 

The only values in State Storage that the recovery manager has to update are those of the 

VS write pointer, the last uid assigned to an object or commit record, the latest pseudotime 

specified by any request, and the repository's REN. In order to simplify the description of 

the recovery of the values of the VS write pointer and the last uid assigned, several terms are 

defined as follows: 
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WP value in State Storage of the VS write pointer 

X the number of pages that must be written in VS before WP is updated 
in State Storage 

LUA value in State Storage of the last uid assigned to an object or commit 
record 

Y the total number of uict·s that must be assigned to objects and commit 
records before LUA is updated in State Storage 

Both WP and LUA arc periodically written into State Storage but the active copies are 

updated in volatile storage. The values X and Y above control the frequency and thus the 

cost of State Storage updates. Conversely, they also control the cost of recovery. 

In order to restore the VS write pointer, the recovery manager must search sequentially 

through the region in VS; bounded by the two pages, WP and WP+ X. until it finds the last 

VS page that has been written. Furthermore, in order to restore the current value of last uid 

assigned to an object or commit record, the· recovery manager simply assumes that Y uid's 

were actually assigned before the crash, and increases LUA by Y. Jn this way the repository 

is still guaranteed to assign unique id's to the objects and commit records even though some 

uid's will never be assigned. (Since the uid is a 64 bit number, it is not critical if some uid's 

are wasted.) 

Thus, X and Y are tuning parameters. A large X v-alue increases recovery time and a 

large Y value increases the waste of uid's upon failure. Balancing these costs against the cost 

of State Storage updates should be simple. 

Next, the recovery manager must restore the latest pseudotime specified by any request 

since this pseudotime is used as the pseudotime of recovery. Although the working copy of 

this value is kept in volatile storJge, it is also stabilized by recording, on each VS page, the 

value of the latest end pseudotime of all versions in VS up to and including that page. Thus, 

upon restarting, the recovery manager simply accesses this value from the last VS page 

written into VS. 
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The remaining \,due of tile global :-.talc that the recovery man,1ger must update is the 

repository's R FN, sincL' the REN found in State Storage is obsolete due to the fact that the 

repository just crasl1cd. Tints. the recovery manager increments the value or the REN 

found in State Stor:1re and ,nit es an R FM for the new recovery epoch into VS. 

Furthcr111orc. a \Ol:itilc cupy of the current REN is maintained in primary memory lo speed 

up the process or check ill~ llbjcct headers. 

There is olle fillal task that the recovery mallager must perform before sig11allillg that it is 

safe fm the repository tu ;1ccept e\tcrnal messages. It must restore the checkpoint manager, 

<,incc the checkpoint 111:m;1ger mus( continue creating the current checkpoint t1ble from 

\\ here it left ofT \\ hell the repositur, crashed. To speed recovery. it is arranged that every 

\'S p,1gc contains a pointer tu the n1ost current checkpoint entry written into VS. Thus, in 

order to restore the checkpoint ma11ager. the I\;CU\ cry manager obtains from the last page 

\\Tittcn into VS. the locatioll llf the last checkpoint entry that was written into VS ,incl passes 

it 011 to the checkpoint manager. Thell, the checkpoint man;:iger can actllally access that 

checkpoint entry. find the most current checkpoint entry (in the current checkpoint table) 

that is also in the previous checkpoint table and resume updating the entries in the new 

table. starting with that checkpoint entry in the previous table. 

For example. assume that the repository is recovering after a crash and that the state of 

VS is as depicted ill Figure 4-21 011 page 82. In this case. the recovery manager would pass 

the VS address of the checkpoint entry for object 101 to the checkpoint manager since it 

contains the most current checkpoint entry that was written into VS. Then. the checkpoint 

manager would determine that the checkpoint entry for object 5 is the most current 

checkpoint entry written into VS that is also found in the table created in checkpoint epoch 

#2. and Lillis. would continue cre,1ti11g the table for checkpoint epoch #3, by starting with 

the entry for object 2 found in the table for checkpoint epoch #2. 

Once the recovery manager co111pletcs all tasks. described thus far. the repository begins 

to accept and fulfill external requests. even though some of the repository"s data may still be 

incorrect. Thus. when another repository process accesses an object header that is lost or 

contains an old REN. it must wait until the recovery manager certifies the object header. 
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Once the reco\'ery manager completes the certification or concludes that the object header 

corresponds to a deleted or non-existent objecL it signals the wailing process. That process 

then reaccesses the object header and simply continues with its regular tasks. if the object 

header exists. However. if the object header is still losL then the process (like the recovery 

manager) concludes that the object header corresponds to a deleted or non-existent object 

and takes the appropriate alternate action. 

In order to avoid repetitious scanning through VS. the recovery manager certifies the 

object headers for all version imag,:s that it accesses as it searches seque.1tially backwards 

through VS. In addition. during th s sweep through VS. the recovery ma11agcr temporarily 

creates entries for all commilled coP1111it records that it encounters and re noves the entries 

when the scan passes the initial commit record versions. since earlier vcrsic,ns will not access 

the commit record. Then. when the recovery rnanager is recovering an object header and is 

trying to determine whether the current version image is a token or a version. it knows that 

the version image is a token if there is an entry in the commit record table for the 

corresponding commit record, and conversely, knows that the version image is an aborted 

token if there is no entry in the commit record table. 

However, the recovery manager does not perform its scan through VS continuously in the 

background until it finishes. Instead, it scans through VS, certifying all corresponding 

object headers until there arc no more processes waiting for object headers to be certified. 

Then it halts temporarily, remembering where it left off in VS and resumes either when the 

repository becomes idle (has no pending requests), or when some process needs another 

object header that has not yet been certified. in order to fulfill a request. 

Thus, while the repository has pending requesLs, the recovery manager only has to search 

through the non-crash recovery epoch that precedes the most recent crash recovery epoch, 

providing that there are no lost object headers. Only in the rare cases where an object 

header is lost would the recovery manager have to search through VS up to the limiting 

CFM while the repository has pending requests. Howe,·cr, since the recovery manager 

continues to cccrtify object header during the rcpository·s idle periods, lost object headers 

may be recovered before they arc required in order to satisfy a request, and thus, their 
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recovery will not affect the repository's response time for fulfilling requests. 

Assuming. for now. that disk failures do not occur in OHS while the recovery manager is 

in the midst of certifying the object headers, the object header table will be completely valid 

after the recovery manager has made one scan through all of of VS up to the limiting CEM. 

Thus. it can signal all processes that are still waiting for lost object headers to be certified 

after it completes this scan. and these processes will correctly conclude that the object 

headers correspond to objects that were deleted. 

However. there is a problem with this reasoning due to the fact that clh k failures are not 

controlled events and can occur any time. Usually, when the repository detects a disk 

failure (bad page) in OHS. it crashes itself and restarts all of its recovery mechanisms since 

OHS may no longer be consistent with VS. But while the recovery manager is certifying all 

of the object headers, the repository cannot determine whether a bad page is the result of a 

disk failure from which the repository is presently recovering or whether a subsequent disk 

failure occurred. Therefore, the repository does not crash itself if it encounters a bad page 

in OHS if the recovery manager is still cerlifying the object headers. 

This means that the recovery manager can no longer simply signal any processes that are 

still waiting for lost objecl headers, after it comple~es its..initial search through VS, since any 

of these processes could be waiting for an object header that is on a disk page that was 

destroyed by a disk failure that occurred after the recovery manager certified that object 

header. Thus, if (and only iO there are still processes waiting for lost object headers to be 

certified after the recovery manager makes its initial scan through VS. then the recovery 

manager must recheck the object headers for all of the current objects. That is, it must 

check the object headers that correspond to the checkpoint entries up to the limiting CEM. 

Then, if all of the object headers are still valid, the recovery manager can signal any 

processes that are still waiting. However, if the recovery manager encounters a bad disk 

page in OHS during this second scan, then the repository will crash itself and restart its 

recovery mechanisms so that it can, once again, restore consistency between OHS and VS. 

Furthcnnore, the repository will crash itself if any repository process encounters a bad OHS 

page after the recovery manager makes its initial scan through VS. 
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Thus, the portion of VS through which the recmery manager may have lo scan while the 

repository is servicing external requests. depenus upon the extent or the uamagc that is done 

to Of IS, First. if no object headers arc lost then the recovery 1rnnagcr only has to search 

through the 11011-crash recovery epoch that precedes the most recent crash recovery epoch, 

Second. if surnc object headers arc lost. then the recovery manager has tu scan through to 

the limiting CEM. Finally. if sume prncess tries to access ~111 object header on an OHS page 

that has gone bad since the recovery manager recovered that object header. or tries Lo access 

a non·c\islent or previously deleted object header, then the recovery manager tll)l only has 

to search through to the limiting CLM. but also must reaccess all the checkpoint entries up 

to that limiting CEM (in order to recheck their corresponding object headers). 

4.4 Justification for Lack or Recovery of Pending Messages 

Since all data describing the pending messages is kept in vobtik storage, when the 

repository restarts fler a crash. all this data is lost :ind the repository is lc!'t with no recall of 

the prior state of these messages. However. the repository docs not have to rcrnem ber the 

prior state of pending messages since it does not continue to process these messages from 

where it lcfr off at the time of the crash. Instead. upon restarting, it accepts new messages 

and starts from scratch. 

Now that all of the repository's recovery mechanisms have been described in detail, it is 

possible to explain why the repository cloes not have to e\plicitly recover its pending 

messages after a crash. Basically. there are three reasons. First. since the repository satisfies 

all requests atomically, no data will remain partially modified. The data will either be 

completely modified or not modified at all. Sccnnu, since the protocols irJclude provisions 

for any corn111u11icatio11s errors that might occur. both the sender and receiver of the 

message know exactly how to react when any of these crrnrs occur. Finally. since all 

repository requesls arc repeatable. as demonstrated in the L.tblc in Figure 4-23, 

retransmissions do not cause the same modi!kations to be done twice to the same data. 

The following example. in which the consequences of nol recovering a multiple packet 
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1. CreJte-Object: In order to decide whether or not a create-object request is a 
retransmission. the repository would have to search through VS for a version that 
cont:.iins the sarne pseuclotirne ancl commit record id as those named in the 
request ~lowever, this is tot:1lly uI1necessary, since the original request was 
unconfirrnecl the requestor cloes not have the oid and cannot access tl1e object 
that the repository oriqinally created. Therefore. for all intents and purposes the 
object still does not exist so the repository caI1 create a new object when it 
reci=:ives a rctrarisn1itted create-object request in the s3111e way as if the request 
was not a retransmission. 

2. Delete-Object: If the objPct is already deleted when the request is received 
then repository just confirms tt 1 e deletio11. Otherwise, the deletion is r:-erformed. 

3. f1e,1ll-Ve1sion: Does not moCify d3ta, so retmnsmission is co11firmed in exactly 
same way as original request. 

LI. Create-token When the repository receives the retransmission a11d tries to 
create tl1e token it will find that a token already exists in the objec; history. It 
checks whether or not Hie request is a retransmission by checking the 
psouclotirno and commit record icl of the token. If they are the same as the 
pseudotin10 and commit record id narnecl in the request then it knows that this 
request is a retransmission aml has alre3dy been satisfied. The repository simply 
confirms the creation of the token. 

5. Test-Commit-Recore!: Same as Read-Version 

6. Abort-Commit-Record: Once state of commit record is decided it is never 
changed so repository will simply respond with the final state of the commit 
record. 

7. Commit-CommitRecorcl: Same as Abort-ComRec 

8. /\dd-Heference: Repository will not add a representative version to a commit 
record's reference list if that version is already on the list. Repository will simply 
respond with confirmation that reference has been added. 

9. State-ls: If the repository has not already encached the final state in the commit 
record representative then it does so. Then it returns a delete reference response 
(even if the state had already been encached). 

Figure 4·23: I landling of Retransmitted Requests 
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create-token request arc described. '.,lrnuld de111tmstrate that these reasons arc valid. Since a 

create-token request may be left in one of' four inconsistent states alter the repository 

crashes. the example will consist of four o.planations. one for each possible state. 

Stale I: The repositmy only received the initial packet of' the mc~;sage but had not yet 

begun to process it. Furthermore. the repository clid not send any respon~;e lo the broker. 

Since no clata was modified. there arc no inconsistencies in the repository"s data. 

Furthermore, since a confirmation was never sent to the broker. the SMP module at the 

broker·s node will cvcnlllally time out and abort the message. at which J)( int the broker will 

either abort the atomic action (send an abort-commit-record request) or rctrans111it the 

request. Subsequently. the repository will either start frn111 scratch if the broker retransmiLs 

the request, or will abort the com111it record as usual. if the broker sends an abort commit

record request. 

Stale 2: The repository received some or all of the packets but diJ not write all of the VS 

pages containing the version. Furthermore. the repository did not make the necessary 

modifications to the object header table nor did it send any response to the broker. 

In this case. the token still docs not exist since the root version image, which is always 

located on the most current VS page containing the token. was never written. In addition, 

the token is nol linked into the commit record's list of' tokens since the root version image is 

the only version image of the token that contains the link. h1rthermorc, since the object 

header table was not moclilied, the object header still points to the current version. During 

recovery, the recovery manager will nol change the object header to point to the partially 

written token bcGrnse it will not find a root version image and ignores the fragment version 

images. Finally, since the confirmation was not sent to the broker, the broker will either 

abort the atomic action or retransmit the request and the repository will react in the same 

way as was described for State l. 

State 3: The repository received all packets and wrote all VS pages cont1ining the token. 

Thus. by definition, it also acldccl the token to the commit record's li:;t. I lowever, it made 

some or no modifications to the object header table and did not send a response to the 
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broker. 

In this case. the recovery manager will eventually update the object header to point to the 

newly created token and the hash table algorithms will restore consistency to the object 

header table. Furthermore. since :10 confirmation was sent to the broker, the broker will 

either abort the atomic action or retransmit the create-token request. If the broker sends an 

abo1t-commit-record request, then the repository aborts the commit record (if it has not 

already been aborted by the recovery manager) and confirms the request. On the other 

hand. if the broker retransmits th1: create-token request, then the following sequence of 

events occurs. First, the repository process that is handling the request accesses the 

appropriate object header. If the recovery manager has not yet recovered the object header, 

then the process must wait until tlie recovery manager signals that the object header has 

been certified. Then, when the prc,cess reaccesscs the object header it creates a token since 

the recovery manager deleted the existing one14 and attempts to add the token to the 

appropriate commit record's list of versions. However, in attempting to add the token to the 

commit record's list, the process discovers that the commit record has been· aborted. Thus, 

the process deletes the token and sends a rejection reponse to the broker, specifying that the 

commit record has been aborted. Subsequently, the broker will retry the entire atomic 

action. 

State 4: The repository received all packets and made afi of the necessary modifications, 

but did not send a confirmation to the broker. 

The repository handles this state in the same way as it handles State 3. 

Thus, it can be seen from this example that all inconsistencies in the repository's data 

caused by partially processed create-token requests are eliminated by the repository's 

recovery mechanisms. Furthermore, the broker is not left hanging when the repository fails 

to respond, since the SMp, request/response and atomic action protocols provide alternative 

14When the recovery manager recovers the object header the commit record will have been aborted. Thus, 
the recovery manager tlelctes the Loken lhal wus creitled when the original ci:eale·loken request was received, by 
changing the object header's Loken refercnc Lo nil. 
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modes of behavior. In fact, for all types of messages that may be sent to the repository, the 

combination of the repository's internal recovery mechanisms and the Swallow protocols 

ensure that the global consistency of all clients' objects is restored. 

4.5 Summary 

Thus, the recovery mechanisms used to restore order within the repository were 

presented in this chapter. First it was shown how the structure of the object header table is 

recovered implicitly, using a sped, I set of hash table algorithms, instead of by performing 

an exhaustive consistency check on the entire table structure right after a crash. Next, it was 

shown how the object headers thw1selves arc recovered from the curre,1t versions in VS, 

using the recovery and checkpoint epoch mechanisms in order to determine the need for 

recovery and to bound the linear searches through VS. Then, it was shown how commit 

records are implicitly aborted if their state was not finalized before the repository crashed, 

and how committed commit records are temporarily entered in the new commit record table 

in order to speed recovery of the object headers. Finally, it was shown how the recovery 

manager restores the repository's global state as well as how the recovery manager 

coordinates all of the recovery activities so that it only has to perform a single scan through 

vs. 

... 
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Chapter Five 

Evaluation of Recovery Mechanisms 

The effects of the recovery mechanisms on the performat1cc of the repository are 

evaluated in this chapter. However, since the reposttory has not yet been implemented 

there are no real statistics on how long it takes the repository to sarisfy tt:e various types of 

requests. Still, it is possible to estimate these time costs in terrns e,f the number of 

underl>ying disk accesses that must be done in order to do recovery atld· flit,1lif1 requeslis. This 

is a useful. method of analysis since these disk accesses are litefy to be the most time 

consuming I.asks that the repository performs. 

First, Sections 5.1 and 5.2, derive equations that calculate the total number of disk 

accesses that the recovery and checkpoint managers, respectively, require per recovery 

epoch. Next. Section 5.3, calculat~s the average cost of of these recovery mechanisms per 

request. for a typical example. From this calculation it is possible Lo gain some insight into 

how much of the repository's response time can be attributed to tJ1e recovery mechanisms 

and how sensitive these response time costs of recovery are to the varying characteristics of 

the requests and data sent to the repository. Hnally, in order to put these calculations into 

perspective, Section 5.4 compares the cost of the recovery mechanisms presented in this 

thesis (for the repository) with an alternate set of recovery mechanisms that could have been 

used, which are based upon OHS being reusable stable storage. 

5.1 Cost of Recovery Manager 

The cost of the recovery manager includes the cost of updating State Storage and 

encaching it in Volatile Storage as well as the cost of certifying alt of the object headers. 

Since Lhe significant cost is that of certifying the object headers, this cost will be analyzed in 

detail, but first, a brief description of the other costs is given. as follows. 
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The only noticable cost of recovering ·state Storage (with respect to disk accesses) is that 

of restoring the VS write pointer, since the recovery manager has to search through some 

number of pages in VS in order to find it. This number depends upon how frequently the 

value of the VS write pointer is updated in State Storage: the more frequently the value of 

the VS po111ter is updated in State Storage. the fewer the number of VS pages through 

which the recovery manager must search after a crash will be. However, State Storage 

updates arc fairly costly (in terms or disk accesses) and should not be done too often while 

the repository has pending requests. Thus. a tradeoIT must be made. In the initial 

implemention of the repository. th,.: tradeofT will be made arbitrarily and then, once actual 

costs can be measured, the parameter that specifics the frequency of updating the VS write 

pointer in State Storage will be fine tuned for the optimum tradeotT. 

The remaining costs of restoring State Storage depend on its size and what percentage of 

it must be encached in volatile storage. However, since St.ate Storage will be fairly small 

(less than one page), these costs should be insignificant compared to the cost of recovering 

the write pointer. 
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In order to derive an equation for the total cost of certifying all object headers in OHS 

per crash, ic is necessary to define the following variables: 

C the cost of reading a VS page 
vr 

C the cost of writing a VS page 
vw 

C the cost of reading an OHS page 
or 

C the cost of writing an OHS page 
ow 

X the number of OHS pages that have to be read in order tc find a 
particular object h,~ader (using the hash I.able search algorithm) 

P average number o.~ version images per VS page 

L probability that any object header will get lost dming a cl eckpoint 
epoch 

M 

M 

D 

N 

I 

re 

ce 

N 

V 
N 

0 
N 

E 
N 

the REM (beginning mark in VS) of the non-crash recovery epoch 
that precedes the crash recovery epoch 

the limiting CEM (i.e. the beginning of the last tenninated 
checkpoint epoch) 

the number of pages in the portion of VS between M and M 
re ce 

the number of VS pages in the non-crash recovery epoch that 
precedes the crash recovery epoch 

the number of version images per N 

the number of version images that are simple versions or 
roots of structured versions for objects per N 

the number of distinct objects for which there are version 
images contained within N 

the number of checkpoint entries per N 
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I 
D 

V 
D 

0 
D 

E = 
D 

L\E 
D 

the number of version images per D 
(I «I) 

N D 

the number of version images that are simple versions or 
roots of structured versions for objects per D 
(V « V ) 

N D 

the number of distinct objects for which there are 
version images contained within D 
(0 « 0 ) 

N D 

the number of checkpoint entries per D 
(EN« ED) 

the number of new checkpoint entries that have been 
created between repository restart time and the lime when the 
recovery manager finishes its initial scan through VS (up to the 
limiting CEM) 

Using the above definitions, the basic total cost, C , of the recovery manager per crash 
nn 

assuming that no object headers are lost can be specified: 

C C I /P + XC (V + E ) + C 0 
nnb vr N or N N ow N 

The te1ms of the equation can be explained as follows. The first term in the equation 

reflects the cost of reading and examining every version image within N. Since the recovery 

manager scans sequentially through VS, it examines all of the version images on a single 

page while that page is in the buffer. Thus, the cost of examining the version images is 

reduced by a P factor due to the fact that the recovery manager docs not make a disk acce~ 

every time it examines a version image. 

The second term represents the cost of reading the object headers corresponding to every 

version image that is a simple or root version image of an object, or a checkpoint entry, in 

order to check that the object headers are current. The cost of reading an OHS page is 

multiplied by X because in order to find a particular object header, the search algorithm 

must be executed on the object header table, which might involve reading more than one 

OHS page if the object header being accessed is on a chain that crosses page boundaries or 
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was damaged. However, very few (if any) chains in the object header I.able will have these 

properties since all of the bucket5 on a single chain are &lmost always \ocated on the same 

page. Thµs, the value of X is so close to 1 that for al\ analyses in this chapter it will be 

ar.;sumed to be 1. 

The final term represents the cost of the OHS writes thai rnust be done in order to update 

every object header. This term accounts for every objecl header being written once since it 

is assumed that the recovery manager reaches M before the repository crashes again.15 
re 

Thus, for any recovery epochs for ·vhich this assm\'\pt~n is not \rue. this term will have to 

be adjusted. Furthermore, the cosc of the OHS write in this term is not multiplied by a 

factor similar to X since the recover;· manager retains the loca.tion of the o!Jtct header when 

it first executes the search algorithm and can simply rewrite the object header in place 

without having to perform the insenion algorithm. 

Since object headers sometimes do get lost, C is not the average total cost of the 
nnb 

recovery manager per crash. In order to calculate this cost it is necessary to add to C , 
, nnb 

some percentage of the cost of scanning between M and M . This percentage, L, 
re ce 

represents the probability that a crash will cause object headers to get lost Thus, the 

average tot,al cost, C . of the recovery manager per crash is: 
rmt 

C = C + L{C I /P + XC (V + E ) + C O + 
rrnt nnb vr D or D D ow D 

[(C + XC ){E + ~E )]*16} 
vr or D D 

In the factor multiplied by L, aU terms cxcep\ for the starred term are costs that are 

comparable to the costs in C . The only difference is that the scan through VS is done 
rmb 

15 An object header is never wriuen more than once. even if there is more than one version _ for the object 
contained within the recovery epoch in VS, hecause once an object header has been certified it contains a current 
REN. The recovery manager does not rew1ite any object headers thalconlain curr~nt REN'.s. 

16Throughout the remainder of this analysis, the reader can assurne th;it any tem1. that is marked with an 
asterisk, * , is included in the cost only in the worst case. A very low probui)ility event hm.. to occur for the Lenn 
to be relevant 
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through the region bounded by M and M instead of through tJ1e non-crash recovery 
re ce 

epoch that precedes the lates ~rash recovery epoch. Fmthermore, the starred term 

represents the cost of rechecking (second scan through VS) all of the object headers for all 

of the current objects. Recall that the recovery manager only does this if, after it initially 

checks and certifies all of the object headers, there still remain processes waiting for lost 

object headers to be recovered (see page 89). Only if one or more OHS disk pages decayed 

or if some external request erroneously specified an 01D for a deleted or non-existent 

object will there be proce~es waiting after the initial scan. Tims, since both of these events 

occur very rarely, this starred term ~ ill not usually be calculated into the CO.it. 

Thus, C is not only the averagr total cost of the recovery manager per crash but is also 
nnt 

the average response time cost of the recovery manager per crash. In other words, it 

represents the cost of the work that the recovery manager must do in the lJackground while 

the repository is satisfying external requests. However, keep in mind that C is the worst 
rmt 

case average cost, since the repository may have idle periods in which the recovery manager 

can do some of the object header certification. In Section 5.3 it wilt be shown how C 
rmt 

affects the average response time of a request 
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5.2 Cost of Checkpoint Manager 

The sole cost of the checkpoint manager is that of creating the checkpoint tables. In 

order to derive an equation that specifies this cost per crash, some additional variables must 

first be defined as follows: 

u 

B 

R 

p 
C 

the number of checkpoint entries in the table for the last 
terminated checkpoint epoch that correspond to obja,1S that 
were not deleted in that chcckpoi:nt epoch 

the number of checkpoint entries in the table for the last 
terminated checkpoint epoch that correspond to objects flat 
were deleted in that checkpoint epocll 

the number or new objects that arc created during the 
average checkpoint epoch 

the number of VS pages written since the previous crash 

average number of checkpoint entries per VS page t:hat 
contains at least one checkpoint entry 

Using these newly defined variables and those defmed in the previous section, the 

average total cost, C , of the checkpoint manager per crash can be specified: 
cmt 

C = 
cmt 

[C (U-dO + B)/P + C 110 + XC (U + B) + 
vr I c vr or 

U/P + C L\0){R/D] 
C VW 

Since the updated checkpoint entries are grouped into blocks that occupy a VS page, 

thereby eliminating the need to write one VS page for every checkpoint table entry that is 

written, the costs of the VS page reads and writes of these updated checkpoint entries are 

decreased by a P faclor. However, since the checkpoint entries for newly created objects 
C 

are written as the objects are created, it is not possible to group these checkpoint entries into 

blocks on the VS pages. Thus, the cost of the VS reads and writes of the first checkpoint 

entry created for every object is not reduced by any pageload factor. 

The first two terms, C (U-dO + 8)/P + C 110, reflect the CtN of examining aH of the 
vr c vr 
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checkpoint entries in the previous checkpoint epoch table. The third tenn, XC (U + B), 
or 

reflects the cost of examining the corresponding object. header for every checkpoint entry in 

Lhe previous table in order to obtain the current version ofthe object. The value of X in this 

term is very close to 1, for the same reason as was given in the previous section. The fourth 

tcrni. U/P, reflects the cost of writing an updated entry for every checkpoint entry that was 
C 

not uefcled in the previous checkpoint epoch. The fifth term, C 80, reflects the cost of 
vw 

creating new checkpoint entries for newly created objects. This term docs not include the 

cost of reading an OHS page since that cost is attributed to Lhe creation of the object. 

The multiplier, RID, represents the number of checkpoint epochs that exist in VS per 

crash. Since checkpoint epochs bear no relationship to crash events; this mtio is variable. In 

other words, checkpoint epochs can be created at any arbitrary rate. Thus, since it is 

desirable to minimize the reJXlsitory's response time for satisfying requests, the decision 

about when to create a new checkpoint epoch will probably be made dynamically by the 

repository. It will not be a time dependent decision but instead will depend upon D (the 

distance between the current end of VS and the limiting CEM), and upon the expected 

usage of the repository. 

The decision will depend upon D because the smaller D is, the smaller the values for I , 
D 

V , and O will be. In other words, the faster new checkpoint epochs are created, the 
D D 

smaller the total cost of the recovery manager will be since the recovery manager will have 

fewer version images to examine in VS. Nevertheless, this will only decrease the total 

response time cost if object headers get lost due to the crash, since if none are lost then the 

recovery manager does not scan all the way to the Jimiting CEM. 

However, there is a disadvantage to creating checkpoint epochs at a fast rate: as the rate 

of creation of checkpoint epochs increases, the ratio, RID, increases, and therefore, so does 

the total cost of the checkpoint manager per crash recovery epoch. If the checkpoint 

manager does its work in the background while t11e repository is satisfying external requests, 

the checkpoint epochs should not be created at a very fast rate since the checkpoint manager 

will be sharing the disk resources with the processes that are handling the external requests,· 

and thus, will increase the repository's response: time. However, if the repository has 
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enough idle time so that the checkpoint manager.can do most of it.s work during that time, 

then checkpoint epochs can be created at a foster rate since the only cost of the checkpoint 

manager th,it will affect the request response time is that of creating checkpoint entries for 

newly created objects. 

Thus. the repository decides to create a new checkpoint epoch if either of the following 

two situations arise. First, if the repository expects to be idle for some time. the checkpoint 

manager has finished updating the old table, and some minimum number of new versions 

have been created in the current checkpoint epoch, then the reposito·y creates a new 

checkpoint epoch. Second, there :s probably some maximu,m di~tance over which it is 

desirable for the (ccovery manager to ever have to search (because of the time it takes to do 

all of Lhe necessary disk accesses). so if D reaches half of th.is ma,.,i,mum, the repository 

creates a new checkpoint ef>O'h. 17 Thus, the repository ci:e~es new checkpoint epochs at the 

fastest rate that optimizes the repository's time under. alt conditions. 

The parameters specifying the maximum size of D and t,he minimum number of new 

versions that should ha.ve been created in the current checkpoint epoch wiU. be chosen 

arbitrarily in the initial implementation of the repository. Then. once it is possible to 

measure ~e actual l.'OSt'i and response tjmes of the repository, these parameters will be 

adjusteq. 

17
111e reason why the crucial distance is half of t.hi!i maximum rather lholl I.be act.ual. maximum is because the 

recovery manager has Lo sear{:h through all version ~.iges in, lhe previims cb«kf)0Hlt,ef'9Ch in addiljoB.to the. 
current epoch, (lhe !able for the current epoch is not complete until Lhe epoch is terminated). 
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Since the repository will probably have a reasonable amount of idle time (at least in the 

wee hours of the morning), the checkpoint manager will do most of its work at that time. 

The only work that must be done while the repository is satisfying requests is the creation of 

new object headers. Thus, the average response time cost, C . of the checkpoint manager 
cmr 

per crash is: 

C = (C aO)(R/D) 
cmr vw 

One should observe that only a small percentage of the total cost a;:tually affects the 

repository's response time. 

5.3 Average Cost of Recovery Per Request 

1t would be useful now, to analyze how much the recovery and checkpoint managers cost 

per request that the repository processes because then we can analyze how these managers 

affect the repository's response time per request First, it is necessary to calculate the costs 

of reading and writing VS and OHS pages. 

The costs of VS page reads and writes are: 

C = 1 disk access + [page recovery( 
vr 

C = 4 disk access + [ repeated diskacceses]* 
vw 

Nornially, only one disk access is done in order to read a VS page, since only one copy of 

the page has to be read. However, if a bad VS page is encountered, then there is an 

additional cost, represented by the term [page recovery], which is the number of disk 

accesses that must be done in order to recover the page. Since the probability of disk pages 

decaying is very small, this term will rarely be included in the cost 

In order to write a VS page, at least 4 disk accesses must nom1ally be made, i.e., a read 

and write for each of the 2 copies of the page that are maintained. However, these 4 disk 
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accesses represent the total cost of a VS write, i.e., the total work that must be done. Since 

there will probably be two devices performing the writes of bot~ copies in parallel, the 

response time cost of a VS write will only be 2 disk accesses. Furthemmre. only in the case 

where the read back after a write indicates that the write wus not done properly and has to 

be repeated, will the term [repeated disk accsscs] become a component cost of a VS page 

write. Once again. the probability vf the original write not succeeding is minimal. 

On the other hand, the costs of OHS reads and writes are: 

C = 1 disk access 
or 

C = 1 disk access 
OW 

Since OHS is careful (standard disk) storage, each page that is read or written requires 

only a single disk access.18 

Now, the average total cost of the recovery and checkpoint managers per request 

( excluding all starred terms) is: 

(C + C )/Q = {I /P + V + E + 0 
nnt cmt N N N N 

L[l /P + V + E + 0 } + 
D D D: D 

(R/D](5AO + (2U - AO+ B)/P + U + B]}/Q 
C 

where Q = the total number of requests satisfied per crash 

18Note that the actual cost of the OHS read and write operations wit! be less 1haJ1 or equal lo 1 full disk access 
since lhc OHS page are nol read (written) from (lo) lhc disk every Lime a read (writ&) is done. Often, the page to 
be read (wriucn) will be found in a primary buffer. However, if the object header table is big then the reduction 
in costs will be small. 
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However the average response time cost of the recovery and checkpoint managers per 

request is only: 

(C + C )/Q = [I /P + V + E + L(I /P + V + E ) + 
nnt cmr N N N D D D 

2L\OR/D]/Q 

From this equation one can observe how the response time delay that is attributed to 

recove1y fluctuates with the varying characteristics of the requests and objects that are sent 

to the repository. One thing to rotice is that this response time dcla) decreases as the 

average size of the clients· objects iocrese, since the larger the objects are. the smaller the 

value of V and V will be. A11other thing to notice is that the rc~ponse time delay 
N D . 

increases with the rate of object creation, since the faster new objects are -:reated, the larger 

the value of L\O will be. 

The following example will give the reader a better feeling for what the actual response 

time delay that is attributed to recovery per request might be. By choosing an arbitrary but 

reasonable number of requests that might be processed and a reasonable number of objects 

that might be valid within a single recovery epoch, approximate values can be extrapolated 

for all of the terms in the cost equations. Thus, for this example it will be assumed that the 

repository processes 20,000 requests per crash and that 10.000 objects arc current at any 

given time. The table in Figure 5-1 shows the distribution of request types among the 

20,000 requests that are proces.5ed and the table in Figure 5-2 shows what values were 

extrapolated for the variables used in the equations. 

Using these values, the average total cost of recovery per request will be: 

(C + C )/Q 
nnt cmt 

= 15410 disk accesses/20000 requests 

= .77 disk accesses/request 
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Amount 
Type Processed 

create-object 1000 

delete-object 1000 

create-token 5000 

read-version 5000 

create-comrec 2000 

abort-comrec 200 

commit-comrec 1750 

add-ref 2000 

delete-ref 2000 

test 50 

Figure 5-1: Request Distribution 

On the other hand, the average response time cost of recovery per request will be: 

(C + C )IQ 
nnt cmr 

= 2050 disk accesses.120000 req.uests 

= .1 disk accesses/request 

Thus, in comparison with the average response time costs of processing read-version and 

create-token requests, wl'lich are 2 disk accesses and 1.4 disk accesses, respectively, the 

additional response time cost attlibutable to rerovery in the noflMl· case, .l disk accessces, is 

not very significant 

5.4 Comparative Cost o-f Another Type of Recovery 

To put these costs of recovery into perspective, it is necessary to compare them with 

similar costs of an alternate method of recovery for the repository. The repository using the 

recovery mechanisms described in this thesis will be called R, and the alternative will be 
' ' t called R. Briefly, the design for R is to implement OHS as reusab-le stable storage. In R, 
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Variable Value 

lo 15000 

PC 5 

VO 5500 

~ 10000 

oD 10000 

M 200 

u 9000 

B 1000 

.« 1000 

Rt.:> 1 

PC 50 

NN 10 

VN 50 

IN 35 

EN 5 

Figure 5·2: Extrapolated Values for Variables in Cost Equations 

no request is confirmed until the appropriate changes are written into both OHS and VS. 

Also, all changes made to OHS for a single request are written into OHS from the page 

buffers in an atomic fashion and are not written until the necessary changes have been made 

to VS. 

Using this alternative design of the repository, it is possible to eliminate the checkpoint 

manager since object headers will not get lost. Also, the recovery manager can be greatly 

simplified due to the fact that in fulfilling a request. the repository does not change OHS 

until VS is modified. Thus, if the repository crashes before updating any part of OHS, then 

the request will not have been confirmed, 01 IS will renect the current state of the data, and 

the version(s) added to VS will be ignored since the object headers were not changed to 

include them. Jn other words, object headers will not become obsolete so there is no need 

for the recovery manager to search through VS in order to examine the versions and certify 
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the corresponding object headers. 

Therefore. the only responsibility of the recovery manager in R' is to update State Storage 

before the repository resumes iti; nonnal activity. However, since recovery of State Storage 

is exactly the same for both R and R', its cost will ilol be included in this comparative 

analysis. Furthermore, for this analysis it is assumed that the only differences between the 

two repositories arc those that have been described above. Thus, all other costs, such as 

those for communications. are assumed to be the same in both repositories and will not be 

included in this analysis. 

Supcrlicially, it might appear as i{R' uses a more cfficietH 111ethod of recovery. However, 

the cost of maintaining OHS as stable storage in R' far ·outweighs the costs of the more 

explicit recovery mechanisms used in R. This can best be shown, by conii aring the costs of 

satisfying the same types of requests in both repositories (adding the average cost of the 

recovery mechanisms per request to the cost of satisfying requests in R). 

' In order to compare these costs, the costs of reading and writing VS and OHS pages in R 

must first be calculated. Since there is no difference in the structure of VS for R and R', 

there is no difference in the costs of reading and writing the VS pages for both repositories. 

Therefore, C and C will be used to represent the costs of VS writes and reads for both 
vw vr 

repositories. (However, for all other costs, any symbols with a pntne mark added to them 

apply to R). 
., 

The costs of the OHS read and write operations in R ate greater than those same costs in 

R. These costs in R' are: 

. . . 
C = 2 disk accesses + (1 disk access] 

or 

c' = 4 disk accesses + [repeated disk accesses)* 
ow 

An OHS read in R' requires at least 2 disk accesses since OHS is reusable stable storage.19 

19Note that In R' the cost of an OHS read will prob:\bly be slightly less lhan 2 disk accesses since the page 
might be found in the buffer. However, since OHS in R is stable storage, an OHS page has to be written to the 
disk every time it is modified. Thus, C will not be reduced at all. · 

ow 
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Thus, both copies of an OHS page must be read and compared, since it is possible for both 

copies of an OHS page to be valid but different from one another (if the repository crashes 

in between the writes of the two copies). In this case, where both pages are valid but 

different, or in the case where one of the pages is bad, one additional disk access is required 

in order to write the recovered copy of the page. 20 

On the other hand, the cost of the OHS write in R' requires 4 disk accesses because two 

copies of the page have to be written sequentially and each copy must be read back in order 

to ensure that the writes were done correctly. However. the term, [repeall d disk accesses] is 

only included in the cost if one of the reads (after a write) indicates that the write was not 

done correctly and has to be repeated. 

' Now that the underlying costs of the VS and OHS read and write operations in R are 

understood, it is possible to analyze the comparative costs of processing the same type of 

request in the two different repositories. Two comparisons will be done, one for a create

token request and another for a create-object request 21 The values from the example in 

Section 5.3 will be used as the average costs of recovery per request in R. Thus, .77 will be 

used as the average total cost per request and .1 will be used as tlle average response time 

cost per request. In R', there is no additional cost of recovery per request that has to be 

added into the cost of satisfying a request 

20Note, that in order to simplify this analysis. the (rare) case where a chain crosses page boundaries is ignored. 
TI1us, it assumed that all buckets in a single chain arc fully contained within a single page. 

21n1e difference in costs for read-version or delete-object requests is the same as for create-token requests, 
even though the individual costs difler. Thus, the comparative analysis for these two types of requests will not 
be done in this thesis. 
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The average total cost of processing a create-token request (assuming that the token fits 

on a single page) is as follows: 

C = cost of create-token request in R 
crlkn 

= C + C + (C /P) + 
or ow vw 

average total cost of recovery per request 

= 3.57 disk accesses 

' ' C = cost of create-token request in R 
crtkn 

' ' = C + C + (C IP) 
or ow vw 

= 6.80 disk accesses 

The total work that has to be done is less in R than in R'. Furthem10re, there is an even 

greater dtfference in the average response time costs. la order to obt.,in tile response time 

cost of satisfying a create-token request in R', the total oost is reduced by hatf of the cost of 

the VS page write, since there wm most likely be two devices performing the write and read 

of both copies in parallel. Thus, the response time cost in R' is 6:40 dist acecb'Ses. In R, 

though, the total cost is not only reduced by 1/2 of tke cost of the VS page write, but in 

addition, is reduced by the decrease of .67 in the total recovery cost per request (from .77 to 

.las described in Section 5.3) and by the cost of the OHS page write (which is 1 disk access), 

since the repository doesn't wait for OHS page wtites to complete before responding to 

requests. Thus, the resulting response time cost of satisfying a create-token request in R is 

1.5 disk accesses. This is a significant improvement over the cost of 6.40 disk accesses in R', 

Even for a given crash where object headers are lost, the average response time per request 
' would be 2.42, which is still much better than 6.40 for R. 
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Next, in the case of a create-object request, the average total costs are: 

C = cost of create-object request in R 
crobj 

' C 
crobj 

= C + C + (2C /P) + 
or ow vw 

average cost of recovery per request 

= 4.37 disk accesses 

= cost of create-< bject request in R' 

c· + c· + c IP 
or ow vw 

6.80 disk accesses 

Thus, even though the cost of creating an object in R includes two times the cost of 

writing a VS page (a checkpoint entry has to be created for the new object in addition to 
' writing the version), the total cost of creating an object in R is less than in R . Also, there is 

an even greater difference in the two response time costs since the cost in R drops to 1.90 

disk accesses whereas it only drops to 6.40 disk accesses in R'. 

Thus, in this example, both the total costs and the response time costs are less for each 

request satisfied in R than in R'. Even in a rare case where the recovery manager has to 

recheck all object headers and an additional 2.12 disk accesses must be added to the costs 

(the starred term in the total cost of the recovery manager, given on page 99), the costs are 
' less in R than in R . The response time cost of the create-object request, as well as both 

types of costs of a create-token request are still significantly less in R than in R'. 

' Note, that R is not as sensitive to the average size of the objects and the read-

version/create-token ratio as R is, nor is it sensitive at all to the rate of object creation, since 

it does not include a recovery cost term. However, in R, under normal circumstances 

(where no object headers are lost), the sensitivity of the response time to these variables is 

still not enough to make the recovery mechanisms in R' more efficient than those in R, with 

respect to response time. 
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5.5 Summary 

In summary, it has been shown that on the average, although the total cost of these 

recovery mechanisms is fairly steep. the response time costs of these recovery mechanisms is 

insignificant. However, it is necessary to keep in mind that these costs are averages. These 

delays will vary with the requests. The initial .requests that arrive after the crash will 

experience much more response time delay due to the crash than the average delay costs. 

Nevertheless. once the recovery manager completes its scan, no subsequent requests 

experience any extra delay due to recovery, except for create-object rcque,ts, which require 

that checkpoint entries be created before the response is sent.22. 

It has also been shown that in the example environment, these recovery mechanisms are 

more efficient than those used in R', in almost all respects (total and response time costs of 

all types of requests). Even in the absolute worst case where unassigned or deleted uid's are 
' specified in requests, R is more efficient than R. It is probable, though, that in an 

environment where the repository is utilized very heavily, 24 hours a day, and where the 

objects are fairly large, that R' would provide a more efficient storage service. Although the 

calculations are only valid for our one example, we have erred in a conservative direction 

for the example numbers. In general, the recovery cost will probably be less than that in the 

example. 

Finally, if there is any bottleneck in these recovery mechanisms it will be the checkpoint 

manager since it requires a lot of work to be done just to prevent the worst case from being 

intolerable. It may have to be made more efficient if certain unfavorable conditions prevail. 

22
1t can be arranged so that checkpoint entries of newly created objects are written on lhe same page as lhe 

versions of the objects. Then there will not even be any delay attributable to r-ec(}very for the create-object 
requests 
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Chapter Six 

Conclusion 

In this thesis, a coherent set of recovery mechanisms for the Swallow repository was 

presented. In order to sum things up, this final chapter reflects back on the original design 

goals and then offers suggestions for further work. 

6.1 Summary of Original Goals 

Recall that the most important goals were to ensure that the repository's data is restored 

to an internally consistent state and to support the global recovery mechanisms in order to 

ensure external consistency. The general strategy used to fulfill this goal is to maintain all of 

the essential data (repository's globnl state, values of clients' objects and state of the commit 

records) in stable storage and to restore a1l auxiliary data from this data in stable storage. 

Thus, before any auxiliary data is used in order to satisfy external requests, it is always 

compared with the stable storage data, either explicitly (by scanning sequentially through 

VS) or implicitly (by comparing the R EN's of the repository and the object header), and is 

brought up to date, if necessary. Furthermore, no data is ever released to external nodes 

until the state of the corresponding commit record is known to be committed, thus, abiding 

by and supporting the global recovery mechanisms. 

The next goal was to provide minimal disruption to the ongoing activities in the other 

Swallow nodes by minimizing the immediate recovery that has to be done before the 

repository can begin accepting requests. The strategy used here is to restore the VS write 

pointer, the repository's REN and the last uid assigned (to an object or commit record), then 

to get the checkpoint manager started from where it left off before the crash and finally, to 

encachc the entire global state in volatile storage and start accepting requests. The 

remaining data, consisting of the object header and commit record tables, are recovered 
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gradually during the course of the repository's nontial .activities. TI1us, the immediate 

recovery is trivial. 

Of course, even though the repository begins accepting' requests fairly soon after a crash, 

there still may be further delay in returning a response. since lhe data req11ired to satisfy the 

request may require recovery. However, the third goal was to minimize this respom,'C time 

delay attributable to recovery, Thus. this goal is n\ct by using non-crash. recovery epochs in 

addition to crash recovery epochs, in order to mark the last point in VS when OHS is 

guaranteed to be consistent with VS (providing th~t no object headers are lost). Then, if the 

repository has frequent idle period;, it will only be necessary to scan thr Jugh a very small 

region of VS before a request can be satisfied and confirmed. Fm1h1 :rmore, once that 

region of VS has been scanned, there will be no additiona1 test}Ohse time delay atttib11table · 

to recovery. In other words, all requests wit! be satisfied at full speed. 

6.2 Future Work 

The first step that should be taken, now that the recovery mechanisms have been 

designed, is to use these recovery mechanisms i~ the repository. Once this is done, the 

repository ·s perform~ce can be gauged under various conditions, both normal and 

stressful, so that all parameters can be fine tuned, ' 
I 

,The analysis in Chapter 5 was only intended to give a feel for the costs of recovery. A 

better analysis could be made by measiiring and comparing the actual response time delays 

of requests arriving immediately after restarting and those aitivttig some time later. 

Another interesting measurement would be how the length of time .in which the recovery 

manager perfonns its required scan through the .non-crash recovery epoch preceding the 

crash recovery epoch varies with different levels of rQpository utilization.. These are only 

examples of the various anlyses that can be done once actual ~asurements can be taken. 

In addition, the behavior patterns of the users can be monitored in order to figure out 

what the weaknesses of these mechanisms are. For example, if tl1e repository is more 
heavily utilized than expected, then the checkpoint and recovery epoch mechanisms tnay 

115 



require modification. However if the usage is as expected, i.e., long periods of idle time 

during the early morning hours and frequent short periods of idle time through the rest of 

the day, then these mechanisms should work well. 

Another interesting pattern to observe would be the ratio of retransmissions vs. abort

commit-record requests that the repository receives after a crash. If this ratio heavily favors 

retransmissions then it may be desirable to explore methods for recovering commit records 

whose final state had not been decided before the crash, other than auLomatically aborting 

them. 

Finally, new classes of algorithms have been recently developed for hash tables whose 

size changes dynamically. These algorithms may be incorporated into a subsequent 

implementalion of the object header table in the Swallow repository. If so, then it will be 

necessary to examine these algorithms for potential difficulties that may be caused by 

, failures and then to modify them so that they can detect and correct any errors before these 

errors wreak havoc within the repository. 

6.3 Generalizations 

In a more general sense, the techniques used in the repository for reliably storing, 

accessing and recovering the data may be applicable to other systems. For example, in the 

repository, critical data is maintained in stable storage while the optimized mappings to this 

data are maintained in careful storage. This type of strategy for storing data would be useful 

in any system that contains some data that cannot be lost. The only deterrent to using this 

strategy would be the expense of stable storage. Thus, future work should be directed 

towards reducing the cost of the stable storage read and write operations without decreasing 

the reliability of the storage. 23 

In addition, the hash table algorithms developed here may lead to convenient methods 

231n fac:I. if the stable storage operations could be made sufficiently inexpensive, then there would be no need 
to have careful storage, at all. 
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for keeping database indices, since these algorithms are efficient and self-recovering. The 

essential property of the hash table that allows these algorithms to use trivial error detection 

and correction procedures is that the hash table does not have to be perfectly reliable. In 

other words, it is acceptable to lose data in the hash table, once in a while .. Thus, as long as 

the hash table data can be recovered from mote reliable data sources, if necessary, then a 

database system can use these algorithms, thereby eliminating the need to check the entire 

structure of the table of indices for potential damage after a crash, since the hash table 

algorithms do this check implicitly. 

Finally. the notion of on line rcc,)Very during the nonnal course of operations is one that 

would be extremely useful in alt aimputing environments. In order for online recovery to 

be practical in any given system, cl1eap methods for detecting the need for recovery as welt 

as for implementing recovery must be developed for that particular system. 

In conclusion, there is still work that has to be done in order to fine-tune and perfect the 

recovery mechanisms within the repository. Even so, these mechanisms can be generalized 

and applied to other systems in order to improve the standard recovery procedures. 
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