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- 0. Introduction

Thealmofthspapersmnponogthghwmdmlm
of Effective Definitions. One of the main reasons for introducing this. logic
of programs comes from the fact that many existing logics of peograms (cf.
[1, 8, 10, 15, 21, 24, 25, 36, 77, 29) ars by on.n fed che o sructurd
programs, e.g. " flow-chirt ache
general questions such as:

(1 whatpropermdagnnclmdmmMmﬁem“
theresu!tmglogc" T .

(3) what properties such as compactoess, inferpolation, et
of programs? ez L e
(4) what common methodsmightbe pplied ia ¢ [fecent. J

author’s opinion that there should exiﬂ‘l imon | ol
questions can be embedded with a hope of getting % sAhis is o |
intended role of the Logic of Effective m B

LED is based on completely unstructured schemes which are better
called effective definitions rather than programs. The only primitive
relation in LED is rotal equivalence between schemes —- many other
interesting notions are derivable from (expressible using) the primitive ones.
The extremely simple structure of effective definitions together with the
simplicity of LED formuias make model-theoretic methods easier to apply when
attacking problems (1) - (4). On the other hand, many logics of programs can
be retrieved as fragments of LED (cf. Section 5) via the standard wnfolding '
procedure applied to the programs on which the logic is based.

Weemphmuhexethatthroughoutthupaperweoomderonly
deterministic programs. There are no problems in formulating a
non-deterministic version of LED. However, there are confusingly many open
~ questions concerning deterministic programs and their logics. This situation
suggests, in the author’s opinion, a need for better understanding of the
phenomena arising in the deterministic case before passiag to nondeterminism.

Theresultsptmtedinthispapuaremainlymaedwithm
itself. However, the open problems formulated in Section 5 are oriented
towards a better understanding of the behavior of LED fragments.
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To keep the paper a reasonable size,: we.give only brief sketches of
proofs of results which appear elsewhere. Actually, there are three new
results stated in;this paper (3.5:5; 4.2.6, xad:£31.6)—they e mainly
improvements. of: ﬂ&«mrhmam. kﬂn mww prod‘s are giun

The first version of LED (m [31]) wu{fwéfxa mm
logic — the third truth value in this logic corresponded to divergence. A
completengss..theoregy: formawiﬁ[ﬁ%%wmﬁ of LED
based lwnna}nerelg two truth: values js “Mg Wilsittraduce-LED .in- this
paper in essentially.the same. oy ap s LR = - oo s . f o <o

gy n §

I would like to thank Professor Albert R. Meyer for many
valuable Gonversations, for Auis {rvitful eommedis: anthe: enslier :nishlli ot' |
LED, ﬁand @amm mw .
| editing this 10 f“
iting this paper. &

in Aachenforamy.ymputhemtdm
there in 1978/79, whenmoftheideuud,mdu speented in thi
. were fmhu \ , *_2 YR E : g%xh ok AN N ; |
Finally; Mm aueawandy Frignet aému.x.? monm for
Computer Sciepce for. txng.th&m o e e -
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1. Prelmtim Mom m Deﬁnim

m;asmmmmmmwmmm
logic. We concenteate here mainly: on: potation rather :than ‘on totitplete -
definitions of standard concepts — thelawtmbefowdinanytexton
mem(&p&,m‘ SRR
, ll utudem&emm i“ilﬂuu- B
+ equal: wﬂnmdﬂfmﬁm@,l Bni) We'wse @ todeno(e the‘
set » - {0}. Afuute«dmdntakmwﬁ&n(o?tﬂ o
ordmlssmallerthmn.

m&s»u«mmm*u.m maaﬁ
called E-vectors over A;-and: they: are; fanctiod froms ¥ b Al * Por evay

a © A w Tor overy s < 4, Ie 1 m-tl Simpill “"d‘h,ib.
a, = aln).
© Where it'does M mq to confusion wi Meatfy, (65,0, K ¢ », the

: 1.2 Byafdlguagel.wemeanmorderedpm
L =<L, pp>, where L = L~ U Lp U Ly is a union of pairwise

disjoint sets Lay Ly Ly calied the et of vonsiont aambols; funetios

symbols, and predicate symbols, “ank ,E{’E,F"’ U‘Lﬁ‘ii‘..‘ R
is a function called the arity function.

1.3 Let L be a language and let X = {x, : n < @} be a set

disjoint from L. The set X will be fixed throughout the paper. Elements of X
are called individual variables.

Let T(L) denote the set of all terms of L with variables from X,
and L (L) the set of all first-order formulas over L augmeated by the

equahty symbol with variables from X. Finally, let OF(L) denote the set of
all open (i.e. quantifier-free} formulas from L__(L). :

For t € T(L), Var(t) is the set of all variables which occur in t.
‘For a € L__(L), Var(a) is the set of all variables which occur free

in @. For every n < w we define
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T, n) = tt‘M)=Vn(!)§(xl‘f(n}},
Lo, o) = fa € L (L) : v-«.)ch, 1<n}},
OF(L, n) = OFL) A E, tt, :

ThcelemeaaofL (L mmmlbém

FortGT(l.) mly(t)xstheleutn(omhtlm
t € TIL, n). Similarly, for a € L__(L), arityla) is the least
n<esuch thate € L wolls D :

. 1.4 Let L be a language. By an L-strwcture % we mean a set
A called the carrier of %, and an interpretation of symbols in L (i.c. a

function s + s¥, for s € L) which satisfies the following conditions:
141 if c € L then c¥ € A; |
142 if £ € Ly and oy () = o, then ¥ AR » A;
143 if r € Ly and pp() = n, then ¥ ¢ A,

An arbitrary t € T(L) determines in an L-structure W a
function t% : A% + A which is defined inductively in the obvious way
(¥ is said to be the meaning of t in W). The value of this function on
a given a € A% depends only on the first arity(t) components of a.
Therefore we shall sometimes write ambiguously t%(a), where a € AK and

arity(t) < k, viewing t%(a) as the value of t% on any extension of a
to an e-vector over A.

For an L-structure ¥, a € A%, and « € L__(L),
<M, > E a means a is true of W under the valuation of variables a. Just
asforterms,thetmthofcmd 2) depends only on the first n components

of a, where n = arityla). For arityla) < k and a € AK, W & a{2) means
<M, a*> k= a for any extension a* of a to an e-vector over A.

We shall write W E a if foreverya € AY, (M, > E a. If
"% E a then ¥ is said to be a model for . We write k& « if for every
L-structure %, % E a.

We extend the above definitions to sets of formulas. If T <
L (L) and ¥ is an L-structure then we write ¥ k= I if for every
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a €I, ¥ E « holds. If this is-the case: theg ¥ is:smid 0 be a model
for Z. Wewntet:zlfeveryl.-structureluamoddfot!

Fmally,nf!::l. (L)IndaEL (l.) thenwe
wntethanfeverymoddfortsafnoﬂfga

1.5 Formryﬁm&hamei.mdqntmadw
codmgfortheexplmm'l'(l.)ldﬂﬂl.)(d fo:enM[ZD
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2. Friedman's Effective Definitions

The notion of effective definition is due to H. Friedman ([12]). In
section 2.1 we will define effective definitional schemes over a finite
language L. They will be semantically equivalent (in all total
interpretations) to Friedman's effective definitions over L augmented by =, a
binary predicate symbol which is always interpreted as equality. We defer
until later a full discussion of the appropriateness of our definition, but one
pragmatic motivation is that we want our Logic of Effective Definitions to be
similar to Deterministic Dynamic Logic, where tests for equality are allowed.
(cf. 5.2).

Friedman's effective definitions are known to be of universal
(computational) power over total interpretations (cf. [30] for discussion and
further references). Many other classes of program schemes, e.g. flowcharts
with indexed variables ([30]) or flowcharts with a stack and counters [23],
are inter-translatable with the class of effective definitions. This
phenomenon provides a system of finite descriptions which is semantically
equivalent to effective definitions, the latter being infinite objects. We
have decided not to introduce finitary descriptions since they tend to be
distracting. For example, many of our proofs involve constructing a new scheme
from a given one. This construction is often easily described in English, but
a formal description of the construct tends to be complex. Since our entire
development depends only on the schemes involved and not on how they are
described, there is certainly no harm in omitting such a system of finite
descriptions.

2.1 Effective Definitional Schemes

Let L be a finite language and let n € @. By an effective
definitional scheme (eds) § (over L) with variables among {x; : i < n} we

mean a recursive function S : @ » OFL, n) x T(L, n) (S is recursive
with respect to the codings fixed in 1.5). The set of all effective
 definitional schemes over L with variables in {x, : i < n} is denoted by
ED(L, n). The set of all eds’s over L is denoted by ED(L) and is equal
to U, e, EDL, n).

We adopt the following useful notation. If S € ED(L) and m € »,
then @S m is the first component and tSm is the second

component of the pair $(m), i.e. S(m) = @ag m ts m- For
S € ED(L) we define arity(S) to be the least n < @ such that S € ED(L, n).



Let ¥ be an L-structure and let-§ € EB(L., o):for some-n € 0.
TheschemeSdeﬁnesmlapartmlfuncth' A“-'A wh:chs

deﬁnedmtbefabwmgw
T ti,m mtu&&emw |
S iathecaa:u K ag [l

\mdeﬁw E:;fﬂ.;:—':‘ﬂﬂ%,. | e

Wemteﬁa)*&md&mteﬁfﬁ'nﬁndua.

| wim—vmmm'* variable.

Just s in 1.4 nw&%ﬁn&; atiq and wr
s%(a), where 2 € A and asityl®) S k. mwmu»

eodmtmthunk&‘ m&wm&mhmmtﬂ
components of a.

: An eds S CED(L; w is said to be. determinispic if for every -
Lstmctm!adﬁocmsehﬂ hmﬁ-fmrt&w
has at most one clemest. :

Thé next definition is an obvious pnm i d"thcm ion of an
effective definitional scheme.
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2.1.1  Recursively Enumerable Tree-schemes

Let L be a finite language and let n € @. We describe here r.c.
trees which compute n-ary functions in L-structures. (cf. [17]).

The input variables are {x; : i < n}, there is one output variable
z, and a countable set {v; : i € w} of auxiliary variables. We assume
that z £ {x; : i <n} U fv; : i € @},

Test conditions are arbitrary first-order open formulas over L
(with equality) with variables in {x; : i <n} U {v; : i € @},

Assignment statements are expressions of the form y: = t, where
ye€i{x;:i<nfUly, :i€ea}andtisaterm over L with variables

in {x; :i<n}U{v;:i€ew} The variable y is called the Ieft side
expression of the assignment y: = t.

Halt statements are expressions of the form STOP(z: = t), where t is
a term over L with variables in {x; : i < n} U {v, : i € »}. ‘ :

Consider countable rooted trees with the property that every vertex has
at most two successors. Each vertex with two successors is labeled by a test
condition, each vertex with exactly one successor is labeled by an assignment
statement, and each leaf is labeled by a halt statement. Moreover we add a
technical condition: for each path » leading from the root to a vertex labeled
by a test condition a (resp. an assignment statement y: = t or a halt
statement ‘STOP{z: = 1)) if an auxiliary variable v; occurs in ‘a (or in the

term t in the case of assignment/halt statement), then there is a subpath »’

of » leading from the root to a vertex labeled by an assignment statement with
v; on the left side.

Let T be a tree satisfying the above-mentioned,conditions. For any
path » in T let e, be a formal concatenation of all expressions which
label vertices on that path (in the order in which they occur). Call T a
recursively enumerable tree-scheme if the set {(e',, > :xleadsin T
from the root to a leaf} is a r.e. set.

Let ¥ be an L-structure and let T be a r.e. tree-scheme over L
with input variables in {x; : i < n}. The computation of T in ¥ for input

value a € AD js defined naturally. It starts with a being substituted for
the input variables. Then the assignment statements are performed in the
obvious way. If the computation reaches a test condition a (along a path )
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then the next instruction to.be- executed is-the: indtruction datieling: the: vertex
reached either by 0 or by x1, depending on whether or not the test & is
false at this stage in the computation:: Whesn: the-sbmputition-tedches a halt
statement then it-stops. with: the -outpit-compisted: from-the term on~the right

hand side of the statement. LetT':AhAbememfucﬁog
computed"by'!‘m!

Let L be a finife language and lot . €., -

(i) For every eds § € EDIL, n)tlmekadetmmmﬁcedsQGBm. n)
suchthatumyb-ml;!'rﬁl e SR

(ii) Fmemr&mmtmtl#mn{t‘u(n)
there is an § € ED(L, n)suchthatmeveryl.m1 'f‘fs‘f

Proof: Fhe-prdof: of T s ovidhut: : ForMW; Apth i T from
the root to a halt statbmént. Let-e): &W obéastantion of
expressions occurring on that pcth. By
the path:« We' prodcl Wl (é: ﬁ! :
represesity's gt ﬁ-ﬁrﬂ f&*
mﬁfﬁiﬁ% W o

Lewcamamkuu. Dﬁi&n#";ﬂcmv

o st ke T
O M e Sk

Anedsshcﬂmpsnidtobemhimmmiq&u
equal to ™. Finte edi's correspond. bt-ime po \
byanA UK. f

22 Revirsion-theoratic nofions relative 10 a gies sirweture

N .nl;g;;.,i;, =2 MM%( . |
A partmf f‘f‘ 3 Ai - A 5w tO h, A gm s .
anedsStE[Xl. ) with f = S¥, Mwﬁﬁuiytﬂbe
W-semicomipitab "‘fi’wﬁitfkm‘a&ﬁl;__  funct

Let L be a finite language, let ¥,
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Let S, Q € ED(L, n), and let % be a L-structure. Define a
subset (8% = Q¥) ¢ AR, by

¥ = QY = fa € A" : s%(a)s, Q¥(a)+, and $¥(a) = Q¥(a)}.
2.2.1  Proposition ([33])

Let L be a finite language and let n < @. Let S, Q € ED(L, n).
Then there exist Py, Py, Py € ED(L, n) which can be effectively

found from indices for § and Q, such that for every L-structure ¥ and for
every a € Al '

@  aes¥: QM iff PYa)y;

i  S%a) and Qe iff PY(a);

(i)  Either $%a)+ or Q¥(a)¢ iff P¥(a)s.

Proof

() By 2.1.2i) we may assume that § and Q are deterministic. Let
0:0+e

be a pairing function (i.e. a recursive one-to-one mapping of ol
onto w; cf. [28]). Then

Pl((m, k) = “S,m A eQ.k A tS,m = tQ,k , tS,m)’ form, k < @,
is an eds with the required properties.

(i) Again we may assume S and Q are deterministic. Let
Pyllm, k) = (ag i A aq1 t5,0
Then clearly P%(a)* iff S¥(a)+ and Q'(a)*.

(i) Is obvious. W
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2.2.2 Coroliary

For arb-ltrary eds’s S, Q and for an atbltmry L-structure o,

s¥ 2 Q¥ is W-semiconmputsble; Moreover &l |
sets are closed under finite unions and intersections.

22.3  Example

Let ﬂsm&au:MMxmms

successor and:a coastant 0 € . Mﬁtmmm
precmly the partial recursive functions.




13
3. Logic of Effective Definitions
3.1  Syntax-and Semanties
Let L be a finite language. Let LED(LJ:be tite lesst aet of
expressions satisfying 311- 313below BlemuofLEle.)nrecalled
LED formul@ o Er :
3.1.1 IfS, Q € ED(L) then S5 Q €« LEIL). = ~

3.1.2 lfa,ptLED(l)thm"a,(c A’)AM(C Vﬂ)
belong to LED(L).

3.1:3¢" If @ € LED(L) 'and x, chanmdivndualvamblethen
Ix,@ and VJw m to, Lﬂm-) g i W

3.1.1 and" 31?
nepttonm("‘)dounotoccurmc

We m the folkmug abbrmt%m*for%formﬁlu

-’ﬂ’%med*‘for“h V‘ﬂ
aef unseflifot (q,,-'ﬁ) A,(ﬂ '.'q) ~

IfaELED(L)andlfllsal.-stmctu(eandagA“ then
<N, ® F a means that "a is true in ¥ under v '?l“l‘l Okais
deﬁnedbymduct:onputheeomplemtyof:, foﬂqm; ~

314 Euhs=oms,_ié TAL) théhn

3.1.5 If « is —‘ then e S

SRR AU S TR & o BE 2 S
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316 IfaisB AP, then
M,  E « iff both (W, ey and-a:axim §y.
LA B S :lf*l'ﬁ; ¥ ﬂzm w5 -
T @ D ke iff either O, ot-n,ora ol-’z

318 NaisVxfithes - o 00 27
‘d D F « iff for all 2’ € A such that.
=tk"forl¥i <&, 35 & § bolds.

3.1.9 lfauax¢thea<l 0#.:&':&4,0&«’:,1

’“““‘““*ﬁmmhmnm-ﬁma.h R
X, a)dependl‘ onl?wﬁefnuqmvﬁme ; «{rmﬂﬁ
the gromsin g sk it | ot o e Wemirioted s
n, where n'is defined sbove. [ S N SR

We write ¥k « if for evs _3&§A«ﬁrﬂb¥ﬁwm&
case ¥ is said to be a model for . Finally we write & & if for every
L-structure %, !ka,h&M&MMdm

3.2 mwmm o
321 mdm
It follows i “on

hssotffSuannwh
LBDmbevmvedaa

3.2.2 Sirong Eqmdm

: ForS,QGB!XL) mlebnméﬁ;LﬁDm
(S=SVQ:zQ » Sz Q. Itis easy to check that for an L-structure %,
WiSaQiff S% = QF. Therefore =S5 Qiff S and Q are

strongly equivalenat (cf. (14]).
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' 3.2.3  Weak Equivalence

For S, Q € ED(L), Iets QbeanabbrmatnonoftheLEDformula
(S=SAQQ) +»8=Q. Ifltmytoseethatforanl.-;&uctuu! )
% kS ~ Qiff both S¥ and Q¥ can be extended to the same total

function. Therefore k= § ~ oxffsmom*”“‘tj’r Sivalent (cf. [14]).

324 Tmen Prvp’min

meedsSGEmkimamyhthSew :
thepropertythatswmam,u.fop Lestragiy l,lb&:ﬁ»&f
s¥ is total. mmmnm&mwm@m
$= 8. Wcabmp&for'ﬁm&. T,

'.5

- 3.2.5.° First-order Properties =

First-order logic L, (L) is naturally intéépretable in
LED(I..) in the follomq&m for eveey @ € L (1) _tge(c exists
o€ LED(L) which can be effechvely foqd fmm (the code.of) « such that

ot b

.fore'i L-nmtgpgandfaamyaig‘!,w{&nhatﬁ
o, a)ilv. T

»
¥

Foranopgatogmﬂac¢0ﬂl.)wzdefﬁi 0 be S ¢ 8,
where §_ tEﬂL)uafimteedsdef‘medby&(bz(u Wkal&
k<w.

fa€lL (L)lsanarbmnyfotmuht&nf‘mtwetakethe
prenex normal fo?al of «; say [=)a%;' mtﬁ] % 2:black: of ‘quantifiers
and «¥ is an open formula, Thm nm o t0. F[-ba .

~ Therefore we may methlti.“&) &Mﬁdﬂ mmm.)
i.e. if a first-order formulaaoecunuawwig ession .
which is intended to be a LED formula thea corresponding
fmh ’. W ‘m . R B AR S e

3. 2.6 Kmon of Tzems

lfte'l'(l.)thenthef'mlteedsstfml.)deﬁnedby
S(m) = <t=t, © for m Cw; uprmﬁwm t, 1.6 exattly ‘the sal
individual van&lé&;wcur in t and S, 2 and fq' every -stmcturp l and for

every a € A®, t'(a) S't(a)
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If § € ED(L) and t;, ty € TIL) then 8% ¢;, ty ¥ §; snd
tl= tp are abbrevmhomoftbeLEDfomdsss s‘l"‘ S

8,78, and 8, 75

327 Pa'ﬂalCormm

Let L be a finite lmswe. let s?gmqmﬂacwm
leta €L (L, n)andf# €L (L, n+l) be arbi

first-order fm The-LED mw-ﬁﬁ'ﬁi -vafexpim

the partial correcmess of §:withi respect 15 'the ‘input condition « and the
output condition & tef. [ 143, &e. for-amy-E¢steuctore: % umd-fir & € |
CA®, M, Fa V(52 x> f) iff wiiinewr %6 ofagy .0, %, ]

and S%(a, ..., a, ;) terminates with result b € A, then.%. & fag, ..., 2, 5, b).

3.2.8 Totalemm o

ForLSa,ﬁuabnn(mJI.ﬂﬁieLBDfumh
« » 3x (8 x, Kﬂwmmdmdsﬁ&mpectwmempm
condmonaaudtbwmﬁﬁnﬁcfmwwmlm
W and for any a € A%, W, © Fa < Ix (8= x) A §) iff whenever”™
¥k afag, . ,a‘,,},ms‘h& .,a,,_ﬁmmm
b€ A and %k #lag, .., 5, 1, |

3.2.9 Relanonto[. “po

Forammkial-.i,(nm&ﬂd

allformulasoverl.of!ﬁelogk!, L TI8D: -
(L) dﬂmfm L“&Jm M we mmz SERR

WenowshowthatLEDformulummMauﬂemoL.l'
formulas. The only thing we have to deris:to show: liw: i triinslate -2 formula

of the form §< Q,whereSlndeedt mmL‘w

formula. Fnrst,obuemthats-q : m&c.
equnvalentmalll’.-ttmctwg:)mtheiaﬁnu juncts

mmv,,tmwmtsm&&mm'oi m‘j st
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the j-th step and both give the same: result, de. V{jlﬂ

Amei™eg,m A V‘m"‘oﬁ A " A ‘U,J
t5i* Qi

Wemmmﬁmmmmawmm -

Ll in:later sectidns. -

3.3 Normal-form Results for LED Fe omulc L

The following question arises naturally: What W““ °f progri
sre expreasbe-by LD fommuind Tho deahs ele® Wil % pardal
answer to:this questiod! 13 © 5 - wiusiot pak ne siEs s 0 B

£ A, 3
R I L

331 Theorem @)
Sogd b

Letl.beaﬁamhuum

TR LS S B i SEEY

() For crsey pestinisopesforrgih et BORY ere il i o5 e
S € ED(L), which can be found effectively from (the code of) & such thit

B P CrodRLipouL FwRid ;*\. ‘
Sriew 0 < RF ’“ﬁ* [ .k & o Tamg v, 4 3leins FAL 3 S
* ,‘v"f Lol " CI N 7

P . 5 ,\
‘;f 4*¢ g

(2) Foreveryopenfomulactl.mutbreeutn<omded;
QlGED(L)forl-l,.,nsuchth:tu,Ei |(n),n§‘ﬁ?‘i(n}anbe

el LG
‘»,—m‘_w,/}"zx‘4 -

kao AK,,(s Q)

(3) ForeveryopenformuhaCLEIXL)thueentn(omdeds‘
S;, Q; € ED(L) for ;( 2 ‘gtg&be ng ne such that

Ea w: ‘Akn('tﬁ’gq*’ )

(4) For every open forfania a ¢ LEDIL) there tuists & recursively
enumerable set (sm m < @} of eds’s in Em.)(née. the‘Godel numbers of

o st s ged) Eo ot argiy
the S;.'s fonn an ra .ww r&_ A A imﬂ;,ﬁtﬁm vty
a€ A‘ ROV TN B T NPT s

5 1L

G ahctfffetmym'(e;a wws ¥

Proof: (1) follows from Proposmon 221 (3) follom from (l) by using
conjunctive normal form for open formulas. (2) follows from (3); i.e.
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S+ + Q¢ can casily be expressed as S¢ ¥ Qg for some feffectively
found) eds’s Sx, Qx. Fﬂh(ﬁmfmm%&!l@‘mh :
casily expressed as A, P *foranre.set{?m m(o}ofeds' 8

It is peshaps interesting to. motethat inigemersl- the:s:in (D) or in
(3) cannot be bounded by any integer. T&Mfmﬁmm, '

due to J. Bergstra.
3.3.2 Theam(B])

IhcemafiptMidatMIﬁm
fwemyn(o&ueembmmmctwmﬁlﬂa

arbitrary eds’s So *y n.l’QO' Qn-lmmu' 2 g
WkaoA (ﬁno,*)dmmhoﬂ.

Theproofoftheaboveresultumamucmmwhcheds mm‘“y
} t'!'“‘ coox WD sbe

The next result is proved in the same wny as the analogous result (i.c.
thepremmalform)fmﬁm«dulauc.

SR

3 3 3 ’““ “ v,.: |

Letl.beafimtelugmge. ForeveryatLBm.)ﬂmeexim
ax € LED(L) such that .

@ Ea*ay

@ e o of the Tors Qg . Qp g3 10, Whire exch @
is either ¥ or 3, and ¢ is an opem LEDML} farfauls. = -

34 mwymmm

It follows frag 3 zs that rm; structyse.
(up to isdmorphisi) By s tiigle EE?;‘% G sy
formula). Rerewemtethefmm what structures are’
uniquely axiomatizable by a single LED formula? We give a complete
characterization of:stsuotupes which are waiquely atiomatizable’by opea LED(L)
formulas, in the cast that L contains at least one constant.
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Let us start with the following example. - -
34.1 Example

LetLC-{O},LF=(S),pL(S)=1 LR 0 Def'meaneds
Q < EDL, l)byQ(n) ma lg,lg}fulﬂl(q

Itismytoseethatnfam
Q*A(S(xo) ﬂxl)-»xosxl)l\("ﬂxd =0

then for enrybﬂ%cﬁrel, Yp it Y, 8 0, iﬂlcreSls
mterpreted ag successor. :

AnL—stmcturelluthobemquc{ydzrnblcbxasetzof ;
, LBB(UfmifluﬁeWy“ . forphitm) of Z. SmceLED
formulas express program properties (cf. 3 2 lnd 3.3), structures umqne\{
defined in LED can be viewed as those which are nmqudy desctibable
algorithmic properties. For example, STACK can be ted as & c;:tam o '
structure (cf. [29]) whlth can” thei be sHowdl 1d° e definable.” More generally,
it follows from Proposmon 3.4.2 below that Abstract M@(d {13)) cag be
viewed a5 structusés uniquely. de FWLED rin; of
integers, the field of rationals, and the field of recursive cedh tcf. ¥1J). -

3.4.2  Proposition ([4))

‘Let L be a finite language with L ¢'8. Let@besn
L-structure. The following condiuoas are equinlentx

() ois umquely deﬁuable bya iet ef m mem

2 luumquelydeﬁmhlehyalet&*htil}ﬁmﬁm
predicates, where each S F gal.; .

3 lﬁnsufbpropersubcmmum,ne.fongmyatAthqcem?
teTiL, Om@ha-;‘,_, » AE

Proof: (1) + (3) and (2) » (1) see: obvieus: - For-(3) »:2), we show that =~
the property of having no proper substructures can be expressed: by one formuh
oftheformstnndthenweaddformuluducﬁhh;thmme,e.;.,

[7] for a definition) of ¥. |



20

' For an arbitrary finite language L :the following anslogue of 3.4.2 can
“be proved. '
| 3.4.3 Propomion Q)

Foranarbutraryf'mltelanmggl. dmlgstmcmrclu o
unnquelydeﬁnablebyautofopenmm&enlhumproper

substructures, i.e. for every substructure l&ot;lmth l&{_; ?!6 =¥
holds. o . |

Proofi Let ¥ beuniqudydefmabkbya»tzofopéhwﬁl) formulas.

Each substructure ¥ of % satisfies:Z: a8 well, 50 W ¥ % 8ince W

has finitely generated substructures (which must be isomorphic to %), we
concludethatlmelfafwtdy'ewawd. lfgouam E

substructufe: ofl theu nmnmgvg«,, adl.-mmmh that

2

(i) for every n <:‘$, X, uammdlh‘l,

| (ni) for every n < . theu i ag ;_ hism £ ;¥ o8

lsomorphlctol Ontheotherhmd boﬁl*udlgywxﬂnmopen
LED(L) formulas. - ™ 8 =

Cohatr Lawfho of

Inordertogmachancmnmdm deﬁaableby
a single LED formuix we- iitfodwde some ‘standiird défiisitiods”

Letl.beaﬁmhmmgem:cwfwmi,n, -

l..-stmcture without proper su
recursive cotfing fiked ‘in 135, Define a m&?«! to be.a *Lmﬁ:gl) =
Clrg, W), ..., Alry_g, M, O=, M) of relations in w; Wb -

Clr, M) ¢ @'l for i< koand Qv W) Gwh atilying the } T

0 ik oo m s
(lno, ey mni_l) € qfi, ) iff (jmo), seey jmn‘_l) € l"i
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(i  for cmg mp € o,

. (;no’ml)*ta.") iff‘i‘ﬂﬁ!d{,f ‘u:l,l)- V‘ :. o

For a set X, let Z(X) denote the set of all subsets of X. w»{é R
ﬂﬂ% X ges X aqénk"l) %ﬂ‘&) be ithe st ﬁ‘“b&%@h
Cop -~ _, |

coding @ the sese of (id above) of an agivalenss solation.ia, ik, @ fthe
structure T(L, 0) has only operations and cons i .

in a natural way), andforeveryi(kw{u‘nﬂm,pi
:uu‘, nf(ml,pj)thoreveryj(nltheath;ﬂng

‘ substructures, mmwm W‘ X

corresponds in a natural way (Qfac :Gm%‘? “Kid
m”"d!b for eysry, fp.5.€ thets, evists ¥g. & %mm% 40

A subset X & ﬂu*? X,,.X ﬂ§~*g~¥ | *F“!ﬂ ” bg

H?ifthereemﬂarecumve(ae.@fm;(‘t; oy T ,xo.x)

such that <Cy, ..., Cy i, B)Gthfooixma "ck—l'ﬁ"o"l]
_utruemthestmdardmodelofmthm.

TR gk ROV

A subclass X5 < o is T1§- deﬁuueuwsaﬁg“
set. Obcerveﬂut(defmedaboveuangmmﬂtgw

344 ﬂnomn([q)

I.etlbeaﬁmtelanguagemthl.cfﬂind@!ﬂgeau
L-structure. The followmg oondim are equmlent:

(i lnsumquelydeﬁnabiebyaanghfmhot‘theformmforl
certain S € ED(L)

(i) ¥ is uniquely definable by a recursuﬁy M set:.
{a; : i < @} of open LED(L) forromlas = < - ome . ;e

(i) W has no proper substructures and ¥ is n9-deﬁmm

Proof: () -+ (ii) is obvious. For (i) + (ii) we apply Theorem 3.3.1(4)
and transform {a; : i < @} into the semantically equivalent r.e. set
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{S;%: i < w} with S; € ED(L) for i <w. Then from A; §;* we get a 1Y

condition defining l To prove (iii) -+ ()
of (if) - (ii), applying a recumvé
posltlve mtegers. _ .

In theae;ttmm“mmv s
aboutmremofwnbi..‘, ﬂefﬂ!“m%an -

: 3.5 Caupfam M E
Thepurposeofthusecmustoptmtaformalpmofsysmforl.ED

(8 Q'is S7Q, - .
: (-‘.)'k.’ ' 1 RS PR TR ST DA
@«aVvpisa Ap,
(A isa'Vy,
(hna'ivx (a9,

;(Vxni)'ithnfc') ’ |
Nwmmmammwkm

35.2 Axtom:

Wehavethefolbwmgmmwhereatwqumxmdy
areanymdmdﬂlﬂrﬁbb.

A.l Everyuutobgyofﬁmwypropouwm
A.2 a »a

Al s(ll)-.?dl_l) +~§3Q, .
mn(‘,‘ﬂds,Qim;
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A4  Via » a(x/1), :
: where t € T(L), t is free for x in a, and a(x/1) is
obtained by replacing each free occurrence of x in @ by t.
AS x=x
A6 xsy-+y=x
A7  (a At=x = alx/t)
3.5.3 Rules of Inference

In the rules below, a, 8 € LED(L) and x is any individual
variable.

Rl @& asf

[}

R2 a=28
a-VYxf

where x does not occur free in a.

R3  fa-»>=S"0M:n<e)
a5 Q)

where S, Q € ED(L).

Let £ ¢ LED(L) and let a € LED(L). Then a is said to be
provable from Z, in symbols FLED(L) ® if a belongs to the least

set of LED(L) formulas which contains Z, all the axioms obtained from schemes
A.l1 - A.7, and which is closed under the rules of inference R.1 - R.3. We
write T F a if every model for T is a model for a.

3.5.4 LED Over Arbitrary Languages

Our proof of the completeness of the above formal system will require
us to work with countable languages rather than with finite ones, so we define
here LEDXL) for an arbitrary language L to be ULED(Ly : Lo s L
and Ly is finite}. Observe that all the notions introduced in section 3.5

make sense for arbitrary languages, in particular the notion of provability in
the formal system (3.5.2, 3.5.3).



24

The result below has been proved (in [32]) for'a three-valued-logic of
programs, but only for finite sets 2. - &h&llo WW (in [33]))
to LED, but agamodrfo( fipite sets B

3.5.5 Theorem

~ Let L be a countable language. For every:2 ¢ LBDL) and for
every @« € LED(L), ZI-LEuL)ctﬁ'Zka

Toprove355weﬁrstprondeamdforcoustrucun;modehofLBD
formulas, the Model Existence Theorem, an anslogous:result: 45 that for
L Thuﬂmemuwedmthemofammwymy 4

“l' a v g‘f
“The reader may compare the cofislsteicy mﬁfanﬁﬁm&&

corresponding property for L"l" (cf. [16]).
3.5.6  Consistency Property

Let L be a countable language. Let L* denote the | .
obtamedfroml.byaddmgacomubleutCefmm Let U be a

set of countable subsets of LEDIL”). U is said to have the consistency
property iff for each u € U and for arbitrary.«, §-%LERIL),. all the -
following hold.

C.1  (Cousistency Rule) Either « £ uor w f u.
C2 (' - Rule) If'vGutheauU(c').GU,.

C.3  (A- Rul) u(.nncuﬁuuumguud |

wugen | -
C4 (Y- Ruid !tevxudtwwf«ﬁctc,
ud g fyev. |
C5 (V- Rule) n(.vmcummuug.;evoe,
uU{slel. ‘

- C.6 (3 - Rale) Ifﬁxudtn&enformctc
wUfalx /R €U |

€7 (Convergence Rule) For §, Q € EDIL™), i (8 Q) € u

'“tﬁenformn(.,uﬁﬂ%ﬁ!ﬁ
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C8  (Divergence Ruke) For 8, Q € EDIL™), if
~S= Q)Guthenforaﬂn,o,“' '
wU (s ey

By a basic term we mean ei at symbol or a term of the
form Rc,, .. ,cn) wherefGLF p(Qah,,ulel,..,.,cntc. P

C.9  (Equality Rules) m:usmmmsc,uc
uey _

If (c5 ) € u thea w U ¥ ¢} € U.
If ¢4 t, o(x/t) € u thea 3 U jalx/cl). € U..
For some ¢ € C"ﬂ h.’q“" e

357 Mmm'fhumn :
HUhuﬁemmﬁuGU Muhﬂtmodel.

Proof: Theproofueuenhaﬂytheumeuthetof&endmmltfor
,.,(Cfllﬂf) = B o

3.5.8 Preposition BT

iy swut)maewmmrl—m*,nﬂ

Proof: Suppose T+ § in LEDIL®). Since proofs in LED are potticular
instances of proofs in L .o it follows. from cut-elimiparion for -

”l" (cf. [20]) that there is a proof of § from L‘wlﬁﬂl“)
whnch uses no constant symbols from C. Therefore l‘ l- ﬂ in LBD(L) n

_ &59 Nwwarernp&mbwass ﬁzt-cmLBD(L)
then obviously Z £ «. Now suppose Z ¥ a in L ), - Let 3 b the s6t of
all universal closures of formulas in Z. Obviously ¥ ain LEIXL) Let B
-{z"Uu usaﬁmuwruamwnm"rm
Since L is countable, every element of U is also b[e One, can mdy

check that U has the corisistency promﬂy ﬁerefone,hysﬂ
z* U {~a)'has ' model. N i

Remark: We-essentislly needed the cut- “efimination ‘theorem in the proof of
3.5.8 only for the case where there are only ﬁmtely many mdtmual variables
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which do not occur (free of. bound) in the fosmuins, of T .Jan particulsr this
proofdoesnotusecntehmmauoawl!;nl'nm s

3.6 The Hanf Number of LED

In this section we investigate the 15 ﬁeorenu in. LED.
Because the downward- toleny thedre utmefwi.l

(cf. [16]); it semains trye: for LEBD (ef 3.2.9). Flinswoiget
3.6.1  Theorem

Forcveryfmi&laagnptﬁmlfaremych.ﬁm if Z has
an infinite model then it has a: countable model. o

We have already seen in 3.4.1 that the upwasd. Lhwenbeim-Skolem Theorem
fails for LED. Let L be a finite language. The Hanf mumber of LED(L) (cf. [16])
is the. least cardinal x_such that. for.cach-¢ .6 LEDR): # woine s * '
moddofpoweanﬂsenphuublmb;em

Thecardmah:.,foraanmdml,mdeﬁadmdmmdyx

:0 = e, : +] = 2:. : = U (.:‘ when « is a Huiit ordia ’;H\ﬂ S

An ordinal & is-said to 'be s reemidive’ ordinal tcf. 280" if- there
uarmmnhnuyrdmksszmdutkuamdw
.. Letofxbethefimmm

3.6.2 Theorem ([33]) ‘

Let L be a finite language containing at least one constant symbol
two uaary f““‘““wwdwmmm Thén the Hanf
mnbwefl.mt)uﬁ‘fx_

Proof: Let « deaote the Haaf. mumber of LEEAL), Fist we show that
‘53‘13“ Let LK &&mmmm
lsmterpretabk(asm32.9’mLCK &&m_ml

(cf. [16], Thm. 22), which says that the Hanf nwmber dLC§P ul g..

it follows « <'3 ofK: Themequhtyz.FxSufdbnfmthemtrmlt.
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3.6.3  Proposition ([33))

Let L be a language as in 3.6.2. Then for every recursive ordinal a
there is a p € LED(L) which has a model of size ,, and has no model of

size > :a.

Proof: We modify the example due to Morley (cf. [16], p. 70) of a sentence ¢
in L"’l" with the required properties. Details are given in [33]. [ |
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4. Correctness Theories vs. Program Equighedbe - - <"
.. - In this mmwmmtk notions
introduced in 3.2.1, 3.2.2, 3.2.3, 3.27, and 328, 1t torme-opt that this

mvmmm“ questions.
mthamidwlﬁemmm&&yu vhw&ga £ e

mvumatlon

We first introduce some notation. Let L be a finite language. Let
¥ be a class of L-structures. Recall that for « € LED{L),
O k= a means that every ¥ € ¥is 2 model for @. I 2 ¢ LED(L),
then by Mod(Z) we denote the class of all models for 2.

PP

Let S € ED(L, n). By the partial correciness thoory of 8 with
respect to 5¢ we mean the set POS, X) = {m, > €L _ (L, n)
X Log(L, n+1): X @ » Vx (85 x + #)] (this set is
denoted in [6] as MPCy(S).

: By the rotal correctness theory of S with respect to X" we mean the
~aetTCIS,.’X’)=((a,l)tL“(L,u)XL“(l.,nvl/)::!’h.a-o!xn(sixn/\ﬂ)}
(this set is denoted in [6] as MTCop ().

4.1.1 Theorem

For an arbitrary finite language L, n < @, 8, Q € ED(L, n), and a
class O of L-structures, all of the following hold.

@  If 2k 83 Q then TCS, ) = TAQ, X).
(@ TAS, ¥) = TOAQ, ¥) ff X k8= Q.

(i) 2k S = Q then POIS, X) = POIQ, V).
(v  If POB, X) = POQ, ) thea Wk 8 ~ Q.

Proof: Straightforward. |

4.1.2 We now consider the converses of (i), (ii)) and (iv) of
4.1.1. Let LOOP be an eds defined by LOOP(m) = <txg = xp), xp

for m < @. Obviously in every L-structure ¥, LOOFY = . Now, if
¥4 % then the implication in (i) cannot be reversed for trivial
reasons — clearly TOXLOOP, 2¥) = TALOOP, X¥) but |
¢ LOOP = LOOP. For (iv) it is enough to observe that for every § €
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ED(L, 1), 2= LOOP ~ § but <xg = xg ~Xap=Xgh € POS, 2¢) iff

O LOOP = §. This observation gives rise to many counter‘examples The
subsections 4.2 through 4.5 are devoted to i he i
what classes 2f can the implication in (iif) be reversed to hold for arbitrary

S, Q € ED(L)? In 4.1:we shall fee thnt i gosleraP () chnmot be feversed.
On the othes, hand,. in 4.3-we st that-if we alloi wmw s
express partial correctnesyGonditions ithen (i) cum beivevesdedfor an © ©
arbitrary (first-order) elementary class ). Finally, 4.4 shows that for the

class of all L-structures “partial cordeatnéss dedermidies the semantics™.

A class X of L-steyetures wmnwmafh
arbitrary S, Q € EUI;L mm-%mogamnﬂw
XeS5Q ...

4.2 Determinateness on Elmamry Clm
T s TERRCE LN ST
Aclus:Yofl.—nmctumuuidmbemnffame
Z <L, (L), = ModX). In this subsection we iivdstigotethe - -

question: whgn is a pven ehmentuychedu—aw Thedﬁm resylt

421 Theorem C6)

Let.L bs the folloring languages.Le = Lys #,iLy = s

nl_(f) = pp(® = 1...Than the clasg X GMW +:pilixg)) & 5"??9
is not edt-complete.

LR

Proofi Take S to compute the two argumeat pro)ectloa fnnctnon
S(xg» Xp) = X LetuQ &:ED(L;:2) b, sa eds tht dies-shy*Tollowing: . given

two arguments, it checks whether the figyt a finite
subalgebra, or the second argument gen %&, of the first

arguthent: maow iy :
the above conditions hold then

it diverges.

Clearly 5% S = Q. To prove PQl
first that' POYS, 26 ¢ POQ,-¥) obi '
<a, /> € POQ, ) - PCIS, :ﬂﬁm@@n
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Xk la A "a(lequ -#Q'ud

.‘)i’iﬁc*ﬁiz/xg)

Lety u._,u.,aug-mga

’mamwuwww p&ﬁnﬁnda
model % Gxﬁmm:,hf!!““

L ™ :kﬁn&lﬂ’lb%ﬂ

and the subalpehras genprated bya b, care ‘&mﬂm
disjoint. Then from the spacification &FOF it TalliWe thet '

there is an automorphism h : % -+ % such that hia) = a and h(b) = . But this
contradicts (*). B ,v

e v 1»»\-. .

Themamresultofdmwbnctnmuthem

4.2 2 mw s T

L&tfbeammymwm&r
S, Q € ED(L), if PO(S, X) = PQQ..‘X’)MMM:M&IG.‘Y

such that % = § £ Q. "3 et
Proof: Let §; Qi€ EDILK Mmaumim.sfunw )
sets of opes firstxcuder foemmbas it L2 (R -,m,w'“m PO

'“"“s,mv'“s.m ,n))AQQ,nzm(o}.

~ rZwl = Kragu ¥ Vg = A &.s,m(.;.
:.Letzsl..-m&emml-m, i

Let:fanﬂ!beag,abme, K;Qt%m WH«
Z.l)thenthefoﬂomngoﬁmmﬁ yaloats-. N E
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(i) PCS, o) = POQ, x).
(iiy) For every n < w, T locally omits T' .
Proposition B

Let ¥ be an L-structure. If §, Q € ED(L) are deterministic then
the following conditions are equivalent:

(i WES=Q
(iig)  For every n < &, ¥ omits I' .

Now 4.2.2 follows from 2.1.Xi), propositions A and B, and the
Omitting Types Theorem (cf. [7], Thm. 2.2.15). |

In the rest of this subsection we derive some corollaries from 4.2.2.

Call an elementary class 2 of L-structures complere if any two
elements of Jf satisfy exactly the same sentences in L (L).

4.2.3  Corollary ([6))

Let 2 be a nonempty complete elementary class of L-structures.
The following conditions are equivalent for arbitrary S, Q € ED(L).

(i) PO, ) = PAQ, X).
(ii) For some countable ¥ € 2f, ¥ S £ Q.
(i)  -For some countable % € 2f; PC(S, {¥})) = PO(Q, {¥)).
Proof: By 4.2.2 and 4.1.1, (i) » (ii) and (i) - (ii) hold (we have not
yet used the assumption that 2f'is complete). Implication (iii) - (i)
follows from the following easy fact. If 2f'is a complete elementary class of

L-structures then for every § € ED(L) and for every ¥ € Of,
PC(S, o) = PC(S, {U)). |
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4.2.4 Corollary ([6])

Let 2 be an w-categoriest complete- elementary ‘class of
L-structures (i.e. ¥ mmaml-mﬁwm
countable elements of OF are isomorphic). Thea ¥ 'is eds-complete.
Proof:. Foliows immediately from 423 m 3.6.1 w

cmgcmxatmnlﬁbmfﬂm

of O have the same terminstion properties, i.e. ﬁlmySGM)
and for arbitrary %;, Wy € X[ W, b S+ T W) k8o,

4.2.5 Corollary

L"-’”"’“deamyduaﬂfm If Xis
MLED_complete thea: X is eds- ] |

Proof: Follows from 4.2.2 and 3.3.14).: - B. . -

| An L-structure W is said to be algorithmically trivial if for

every S € ED(L), if % k= S+ thea for some n < w; Wi 5 2gi,
Algorithmically trivial structures have beea investigated by many authors (cf.
(10, 17, 18, 19, 34} Ewtmdnﬂ&“wm&,ﬂw
reader should consult (34},

mnmmtmahﬂcmw’d&m’
classes among all clementary complete ones.

42,6 *m

Fmamphudmwydnx’d&emmm
.equivalent: :

()] :Ynedu-om

@ o IYED complete.

(i)  Every ¥ € Ois algorithmsically trivial.

Proof: The only interesting case is whea X'is a class of infinite
m i
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() - (ii). If ¥ € 5 is not algorithmically trivial then. there

exists m with 0 < m C e, and S € ED(L, m)mchthatlkS*butfor

n < w, %6 §M. Without loss of generilit Smibe*chaeﬁsothat B
it cogiputes a partial projection on'the st component. Let -
Q(xo,.,xml)-xﬂbeatotaledswhmhwmpumghupropcnon Since
§ is not equivatént to aiy of fis finite parts iy a standar
compactness arguinent !?iyere‘kﬁ .‘ﬁ‘zgthn'%%not total'onﬂ Here
wegetacontradicnonnncclhle.»by36llm;amwuedtobe
countable. Then by 4.1.1Gi) PC(S, (M)} = POIQ, (X)), and by 4.2.3

PC(S, .'YhPGQ,.‘X’),IOXFAIQQ_M_ mpletegess and B . § 5 Q, a
contndlétm 3 , el

(lii)*(li mﬂ’umﬁﬁeﬂ,
(i) = () follows from 4.2.5. B

- Belowwegwetwoeumpluwh&hmtmm&a&lydeﬁvnblefmmdza

For an L-structure ¥, Thif)-isi (w E‘&WWW‘?* 2L U .
- 4.2.7 Lethetheﬁeldofcomplexnumhen: Then:YzModTHC))

is not mmwmmmwmwamvwm&m

ot G

* algorithuically: teiviall, < ;oo ks ol ¥ Bl o ot B
4.2.8 Letl j)eanl.-stmctwe'i}r" oper substpvctures. Thea - |
Mod( THH' is ot eds: e (by 3.4.2 W is not algorithmica

trivial). |

Let L be # finité Wiguape. r.emufhenw“ oo
arithmetic, i.c. Npas{8, «; % inggf® * 1, W& w;,
Nc = {0} Assume that L and N are disjoliit dnd-let

L(N) be the extension of L by N. is of L-structuges
let 27(N) be the class of iﬁ’éﬂa %?( F‘ﬁmi in oF,

The aim of this witsection . 16 skélch A°proof of the following
ruult wh:ch has been obtpmed independently and at about the same time in [6]
sz} ) p i 3T IR L T «* ; 1 *_ . T




4.3.1 Theorem ({6, 22]

Let.’)l’beanarhmaryclasofmmual.m Then for .
arbitrary 8, Q € ED(L), foqs,mwn m@%&»ma’hsna

Proof: Amomentofreﬂecuonupon&ll(u)lhowthltmordutom
4311tlssufﬁc|ent(‘lndmry)toptmh;5 wing result. .

4.3.2 Thamn

m:xfbeauarhmryduofmablel-mm Thenif .
S € ED(L, n)fonomen(u,andnfformltfudformaeﬂ‘

<M, 2 k St then there exists a formula.g £ L __@E(N), n.such-
that

4 .’X’(N)hv-'SO

(1i) { vucomutentukﬂ’(m;ichm
® < XN), 8 & 33, .

ST

Fnst wewedommtmw Ah D-structare Wis
sandtobe:tmdad:fmreductmmﬂ-mlthewf“
of arithmetic (i.e. Wy = <w, 0, 8, +, ). Form(.,usan

abbreviation ‘for tht tém S"’(OY ‘lhenext mﬁh i:,,the ke
proof of 4.3.2."

4.3.3 Lemma ([6,, 22])

Let {a, : m < »} < OFL, n) be & recursi _,mhbctof
formulas. ThenthewmuacmggeiGWIfQM‘
formulavtL (L(N), mf)nnchthat o

¥ is true in all etindasd LIR) ;jf;i;,.

(ii_) | Fo:mhm(-(,h&*(a

Proof: Thepmofofﬁﬂslemmauanadamﬁonoﬁhewdproofofﬂle
representation of recursive functions in arithmetic. Det& are omitted.

Proof of 4.3.2: Let § € ED(L, n). Apply 4.3.3 to the r.e. set
{~agm : m < el Let# and v be formulas obtained from 4.3.3. Then

¥ A Vx vy satisfies () and (ii) of 4.3.2. |
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To relate 4.3.1 to arbitrary elementary Clllum state the following
auxiliary result.

4.3.4  Proposition

| Let:x/bean ‘ cl&oflemmwhnbconwma
countable structure, M%hmm&dmmmm

¢ Then for an:arbiteasy 8.5 BIXL);; POXS, OF) = PO, Ny
Proof: Follows from 3.6.1. B .

435 Corollary 061, [22)

Let.‘)(’beanelementaryclwofl.-;tmctum. Then for arbitrary
§, Q ©BRAY I PO N} = POQ, aﬁ»s-o |

Onemqukﬁmdirqmﬁummt&emliQ 43er i s
definitional schemes which need not to* % eﬁeeﬁvﬁ,'f’e. the deffnition in”~
21thefunctaon8uarbmary Ittnfmoutm:taﬂmu!tsomedAZ
carry over to this more general abtiod ‘With*“uBchanged proofs.

' ‘method of proving 4.3.5 essentially depends on effectiveness of a given scheme.

The next result shows that 4.3.5 is no longer true for arbitrary definitional
schemes, even for an elementary class which i (cf. i

4.4). Let F be thoRhiteisbtieme in PO, 1 &mw atity, i.e.

Kn) = <xq = xg, % for n < w. F«.rguuwg.,mwu
be the class of all L-structures. '

436 Theorem

Let L beaﬁnmelan;m;emth{fgvjfo.,_,.,,g_l}, .
LR’("O' .rm_l}forcomem,n<a I.zfl.mfyoneofthg

M z“n,,,(fg 2200 . |
(D Zia) 2 1 and zm.,_ug 21
Then there exists’ :mmaﬁmmwsml.

suchthatforaulrbntntyextenﬂonl.:l. the following two
conditions hold
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™) POS, StruclL®) = PO, StraeaL™).
(**)  For some % € Struc(L), ¥ k= 3xyS*.
Proofi We sketch here a proof of 4.3.6 fortheasewberel. contains two
unary functios symbol'f and .- “Fhe proof for othier Cases 1 ‘ in(i).
(ii) is essontinlly* the same. Eet §:be abéhetiéc Sifimed ‘i follows,- *
S(n) = <a, x for @ Cw; where agip 5y t%}%ﬁhiwé’q

~MNxg) = xg), Ep s o

ml

~xg) = ﬂxd) ;f.,,um o

g e C
ot a:z, .»'?ﬂ? N

wherevnnthen—thmdrmfmﬁ-;r NGRS

Towm(’)ktwnkean;ml.sk Jfg{p.nt

Cwim »wwww

a
ey

UIDfor e N € e ';‘.}
B TP O P A

Extend L* by a new constant symbol c. Letvbetkmm
alc) A f(c, ¢). Thus v is consistent and

43.9 kv*"u(dfoi‘tnfiai’n
LetThniv)bethentofﬂlmdedudﬂefrmm %ytlh
completenestheomn,"-(c)t‘!'hnh)foremyn<o Let

P={gfY) =c:n<e VU gMc) = fc) : nurvi-it(dﬂs}
Obviously I' N Thmlv) is a recusively enug
(Cay(0) : n < @) < ' N Thay),” andl e

2 wel, by the comsistency of .., Xbis gives.vs. A-aontradistion, . Condition

(**)uobhous.
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4.4 StruckL) is eds-complete

In this subsection we briefly sketch a proof of the followmg
result (cf. [6]; a similar result appears in [22]). -

4.4.1 Theorem

Let L be an arbitrary finite language 6ih¢r thm the one where
LF= “}r PL(n‘ l ka" and fOf 'lll.egt’ .Lw‘ 1' )
Then StructL) is eds—complete

Proof: The proofuqmetechmﬂymm Hewweomyskud:themaia*
ideas behind the proof -- the details can be found in {6} ;In [6] there is.8
complete proof of 4.4.1 for the languagesl.mth LR°0(:é ’foralgebnlc
signatures), and the netiiix Wiﬂ{df“‘mbeeaﬁty adiptedtoill
languages except the case mentioned in the hyMﬂ’d 41. ‘

~ The proof is essentially divided into two parts wedording to'the cases ™ -
the language L umﬁes

M Lgs " Lpr. i .,_m -

(D (Rmmn; eues} {Emptlead cm}
Actually, for case (D) a stronger result can be proved (Note that

Theoren: 4.2.f shows that the resalt below Fafls for L containing two unary
function symbols).

4.4.2 Theorem ([6])

Let L be a languagesatxsfymg(l) ThenmgycmsI?Vof
L-structures which is closed under su A

Proof There are fio tricks involved, hthMto&dm See
[6] for details. [ | A ,

Proof of 4.4.1 (contmued)

The main difficulties are found in case {ID.: .In this case we
proceed as follows.
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We first prove an auxiliary result (the: Localivation Lemma in [6]) which
makesnpombletorestnctmmmatadodd&

Localtzalm I.anm

Let L be a finite language and let 2 be an arbitrary class of
l.-stmet\ua. mmmuw

@ s ede-complese

(i)  For all finite extensions of L by constaats to LS and for
cach § € EBILS, @, if % i S¢ for some ¥ €A, then there is
a sentence g € L (LS, O which hat s modef in WAL sad
fth*c*s'(m.f(&")ghm&;&mﬁ
structures in ¥ torkSswueturen. o

Proof See[6} fordetsis. .

Let L be a language satisfying (ID, and let LC be any finite
extensaouofl.bymu. We expand: LE: to:a 1wp-semved [omguage
L* by adding to L® a new sort calied SETS, and renaming as DOM the
sort of L. We akso add €; & biitry relilidn o SEYS* SV and MAP, 2
binary relation on SETS x DOM. L (L")nddiggds

'usuﬂ, :ths t\iva txpuofmaﬁu‘mt@e Jing

Every four-tuple of formulas t = «D,cs,cplu)n
(L (LS, M2 x (L o'LS »ﬂmam ,
nf of L cLC") mt.,tt:'—! ia"an obviows way

_Thekcym&thepmfofu.lnm,m‘f

Lemma A
Let GL“(chQMkthuu' .,d

conditions:

(®)  for every S € ED(LS, O} if there is an LS-structure %
suchthat!lzsethmthuemuul.cmﬂm
8#1"5’
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(*%)  for every sentence ¢ € L“ﬂ.c* @, 9N

has a model (in Struct(l.°*)) then H'('r l\ &) lm a model (in
StrueL9). L ‘ '

Then given any edsSQED(Lé O)Whichdi ona R
LC-structure, there ensts 2 Ml ’ I c mlﬂ certain
has a model in Struct(l,q m ﬂm M‘% h-t . ;’Ei

Now, the proof of 44 Wil low oo iy & and the Lox

Lemma-orice we show thigt for each lapuage J.C.

m@egm&nﬂsﬁ an
interpretation H which umfy mwwm&m[ﬂ for desib)’.

- For the proof of Lesmme. A we.ficsh oxtaed " byidbe; lasiguags of
arithmetic N. Let § € BD(L° 0) bm. a8 ot Whijok: diverges e w311 o

certain LC-structure. Then we apply Theorem 4.3.2 to get a lentemep €

L, (L%N), O which is consistent with Straca LN hiPRich -

that StrucL® (N) e @2, 8% - 5 o e e o

SN

ToehmmatethelymbobofNinp we we y and Ht from the
hypothesis of Lemma A and apply the following techaical result in axiomatic set
My. . .

Lemma B

Let L be a finite language and let p € L__(L, O).

Then there exist a sentence p of the first order language of Zermelo-Fraenkel
set theory, L(ZF) and a formula p(x) of L(ZF) such that

(i ZF + p.

(i) If 8 k= p then for b € 8, 8 k= pTb] iff b is isomorphic
to an L-structure which satisfies the sentence 5. |

This completes the sketch of the proof of 4.4.1. The method described
above does not work in the exceptional case mentioned in 4.4.1. We leave as an
open problem (cf. Section 5) the question of ede-compietences of Struc(L) for
languages L which are not covered by 4.4.1.
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4.5 Arithmesic Programs - -

the following question: is the class of ¢Il modd: PoA af Peano
Amhmeac ed:-compkfd' S

" Let L be a lnngs 'é'wrthft.c p;,t,l, "o ,},
Lg = {Sh op(® = 1, pjs) =pf (D= 2 Let M=

@, 0, §, +, *, O be the standard model of arithmetic, . Let. Paf be the
':dassof'ﬂlnio&ehol‘ met ,;,'f; |

Fmapuememmmf tencts The
used. We refcﬁemnmﬁe“ g ’

r "aS-l m({‘p R A ‘:( .'j:,"?é-ézil’»;i": R4 - if,',i ol U w i

For arbitrary S, Q € ED(L), POIS, P} + FOQ, ?i)mhu
:x/psno

el e
PR
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s. Open Problems

 Below we lstspmprobm;m& mwwmnnemd mth topua_
we have discussed in the paper, ;

: :5.1 Frqgrgam af LED

Let /be a clas of progmn schm e.g. ttmght-hne programs, or
flowcharts, or recursive procedures, over-a:gingh ingvegs L. :One can-add
./asanaddmonalpanmeminthedefm(l!)dmwheremul

schemes § and. Q are. aiumed 't swnge: oWs o *Thé rieddiing of = (total

equivalence) remaigs upchanged. ; T this way wesbialii F Woific TED(7 L)
whtchcanbevmweduafumatofwm)ufuu/amadauhkmto
ED(L). There:is-a:teadeacy {cf: PIOR- 16 R "IN

schemes as those of maximal computational

classes: 7, the WWMWQ*W %'"M“ of

LED. o Ay o

S F e -7 1'3 z 3 ol 7

Let LEDI and LEDZ be two fragmemt of LBIXI.) for a fimte language

emuaﬂFLED suchtlut ha*l lng.D.\ig%c bg@t%l.ﬁg:

then we- wite: LED] ztﬁg LEG}% el i i tha ;gg, s;.snmd
LED, < LEY). - Fii 37 LD Geatn LED, < s&“ﬁﬂsﬁmz-
LED, is said’ to be mmﬁcclly eqm’mian to LBDZ i LBDl ~ LBDZ

e ’t hm n’ 3‘ L Gh ‘&3
For example, LED based upon stmght-hne progmn: is semanmlly

| eqmvalent to f‘mt i with. ¢ m! ypon flowchasts
(withi-E4tility ‘test is ‘ m g Liogieowith .

individual and iteration quantifiers (cf. [1] nd (25] for the necessary

definitions) ,a8. well as t g ’Q S g mg‘w
‘on regular progihine gi%mg” | .

Just aﬁiﬁ‘hgia,‘ wecancomparedmofpmgrm achemu(cf [9,
14, 23, 30]) We. !ﬂgsfti/@lﬁo&ﬁ;why? ol
above -/1 ~ ;W/g 4 J@MMgasmﬂf.#»«tﬁzﬁfgm

%

‘.»«s




Q2
7| < S implies LED(/}) < LED\/,)?

A knpﬂﬁf&mwd*mmmm
S < ./2, flowcharts are transiatable into /], sad LEDUF )~ LED(/,)?

3. Is the full LED semantically equivaliit: 85 sty of its fragments
LED(.”) mthﬂmhuum&m/nd.;’(w

52 ﬂebkufﬁ&dﬁym

lnschmtdcu x&-mt wﬂymt*ﬁtmm
can M&ufamm‘“k&%ﬁr“’ 3@;

Thmfore Mfomm“nuwmw

Faamchdfd'mm&f Mth .

chaof/-wbmmmbyﬁeeqﬂtym What is the
rehttomhlp betwua LEH/ ) aad LE!I/F)?

 In particalar, MMLWMWJW -
Remark 1t J' ) t chu of p che dic

mm
(II) LED ouly Wmon over wieaa t M

pomd-ux,m"ﬁﬁmww poursion: theofe nmperfm erties”
of F-schemes. - For ‘esmmple’the formsila V[ V8,38, & 1‘&";%“"84
is a formula of LED* true in ED, aadthemkms.z“uystﬂntlmformh
neednottobetmem./forachs./ogwa ;
equality predicate. To take another
VS)VS,3S3(S;s V §,%) « 53] . This formgula & trye s
in the class of all flow butnmtrieinthedu@ﬂ
flowcharts augmented by ome stack. .
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Problems
6. Given a class ./ of program schemes compare LED(./ ) and LED*(./”).

7. Call two classes ‘{I' Sy of progum schemes :irmla' if for every

sentence a in LED®; '« i tret in’ f;ﬂ"t‘ﬁztﬁfé‘h ./2 "kthe class
of all flowcharts similar to Eﬁ’ 4

8. Given a class ./ of program lchpmu, mvutipte the degdabthty of
the set“of all LED™ senititices ‘true in /.

9. Gwen a class ./ of program ac‘bemu mvempte the mommubahty
oftheletofallLED sentences true in ./ . e

s t'hm 8 class /Gﬁammw smm (up
to lemantnc mter—translaubnhtxj by tog in L7 ;

Casgrs B

5.4 - Bxpressive: Ibnr and W me

11, Let / and./zbeclwugfp;ognmachemusuchthat
LED(/{) < LED(/). I it always possible fo find 3, stowotuce which is-
uniquely definable in- LBD(./z) by a single seatamon it not definable in

LED(./]) by any set of LED(]) sentences? by a single LED(.”}) sentence?

5.5  Unique Definability

12 Characterize structures which are uniquely definable by a
single open LED formula over a language without constants.

13. Characterize structures which are uaiquely definable by a
single LED formula.

14. Characterize structures which are uniquely definable by a set
of LED formulas.

15. Are there any reakomble results concerning unique definability
of structures in fragments of LED (eg. for flowcharts)?

5.6 The Hanf Number for Fragments of LED

16. Isthereaclass./ofprogrmlchemuwchthatLElX/)(
LED, andbothLED(/)mdLEDhavethemHanfnumbeu?
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17. Compute Hanf numbers for various well-behaving fragments’ of LED
(eg. for ﬂowcharts recursive proeedures, flowcharts mth eouuw'l)

5.7 Eds-Complete Clasm

18. Letl. bea ﬁnnte language uhdm&foﬂowmg
conditions: L= i), Lg?é, (D=1, and for.allr € Lp,
pp(n) = 1. Istbeclasofalll.-stmctumedu—coeﬂm?

5 e e o ok o o b
5.8 Tools to Construct Models . -
20. In this paper we have

4.2.2) which can be viewed as tools to el Moges. 11
sesults 'was devived froms - the ‘Model Balstiice i

St 1& S

the second from the Omitting Types’ Tbeom’“fn t Aretheu any results

specific to LED which also. provid
3.5.7 and 4.2.27 -

Thuquesttonleemtohgmpmm
tools tommo&kmaﬁgm . HRT
WMM




43
REFERENCES

(1] Banachowsh, L, Ktmmu‘ A., Mkkmh G mea H. and Salwickl,
A., An Introduction to Algorithmic Logic. M&thmmcal Investigations

in thc'l?&!mgfl’m ummw(wmmw

of Comp. Sc. Bmachw rmwm m m?-‘w

[2] Bell, J. and Machmer, M. A Coamwmaﬂm
-North-Holland Publ. Co., Amsterdam 1977.

{3 Betgsten, J..ond Meyer, J. k&&ﬁ&@uﬁdﬁu!’mmmd
Loslcdﬁffmmm Leiden Uliivarsiey Repovt-(80:%); 1980,

[4]  Besgsira, J. and Tiuryn, J., Tmplicis Defiabiiey>of Wigeblaic
Structures by Means of Program Propenia. Absifiich ﬁﬁmﬁd?
Fundamentals of Comp. Th. Acdem-%rh; Der&: 1979. Tbe full msiou

will appeas in. Fundamwentafaformapiap’. <, ot YR L |
CTERY enetyoar 00 IR
(5]  Bergstra, J., and Tiuryn, J., Algmtlmm quea of Alggbrm B
Structure& Mg Umqm W B °
=1 2&3 Erte bt ‘*t;?f sEvd - ek
(6]  Bergstra, ., Tmy@,} mm«p}mﬁwq Yeoriés ind’ |
Program Equavalence Mathematilch Cmm Rspon aw 119/79) Ammﬂhm .

1979. o <shy ‘2{; gidaerizaar ¥ L v *;% ;
GiiLE in ‘b"-as' s ESRRTNE I
[7] Chang, CC and Ke:sler HJ Modd TM Nou‘tbﬂoﬂaad Publ.

(8] Constable RL, A Constmctm Programmin, i 1,, Gllchmt )
(ed) l"mmmw* "5 oliecs ol I ~ Sodgress 177 aﬂ.m
Publ. Co. Amsterdific 1997, pp. FIRETIL /L o S et e

w?

[9] Constable,-R.L..and Gries, D, Ot Classhs: Wﬁ%m
SIAM Joxmd o Cmnlh: l iiwmm S

ik, }A E34ts0 5 N

et

[10] Engeler, E Algonthm:c [.opc In de Mﬁéﬁed.f m:immal :
Centre Tracts (63) Amsterdnn 1975 pp 57-85.

| ik

[u] Emem&, mem' Cation

Complexity. Besichie des Institass Rir- Suforanutt (3¢ m (mn

* 7
-

f’;g 'l,v 9 3‘, wii B SEEL TR




46

[12]  Friedman, H., Algorithmic Procedures, Generalized Turing
Algorithms, and Elementary Recursion Theory. In Gandy and Yates (eds)
Logic . Colloguium . 69, Nc(tk-ﬂdhﬁ lwh& Cﬂs, m l”l pp. 361 390.-'_

[(13] Gogqen,JA. Tllttehet JW mm&egmmm
Approach to the Specification Wﬁw of: 7
Abstract Data Types. In Yeh (ed.) Current Tremds in Programming
Methodology, (vol.3) mm wwm Ammuc
Computation Senes.

[14] . Greibach, S.A., Theory of Pregram Siructures: Schemes, Sonaitics,
Verification. Lecture Notes in Comp: Se: 36, Springer Verlisg, Bertia 1975.

[15] Hard,D.,WMﬁq&. mmmm&
68, SpnngethdagMaWQ o

[16] Kelsler HJ Modelm”fwlmm Narth—ﬁohnd
Publ. Co., Amsterdam 1972.

(1mn Kfoury, DJ Comparmgwmq‘ﬁw
Equivalence. In NlVlt (ed.) Automata, Languages and Progrmtug
NMWMM %M !ﬁi}" *5151-26('
§22 7 Ao e

[18) Kfoury DJ Trauhtabﬂutyofschemovermmcted
mterpretanons. Joumcl of Camp md Spl. Sc. 8 (1974) pp. 387-408

1z i A oaas
[19) Kreczmar, A. Programmbthtyml’ields. anlm
I, 2. (1977) pp. 195—230.

sentences, Fundmta Matlmnmc LVE; 11989).9p. mrlﬁ.

[213 Mgeyer, AR..sad. Qrisf,.L, Can:Partial Coscectaess Assertious
Specify Programming Language Semssaties? I Weihinuch {od): Theorerical
Comp Sc. 4th GI Conference. Ixmﬂommcaw&.ﬂ Spnnger
Verlag, Betlin (1979 pp. .25-26.: : S

[22] Meyer, AR. andHalpem,JY AmmncMm&ouofPrognmng
~ Languages: A’ i Mﬁm%m :

Symposium -on lkm of. Programmisg Eanguages. -Pp.-203:212, -
January 1980.




47

[23] Moldestad, J., Stoltenberg-Hansen, V. and Tucker, J.V., Finite
Algorithmic Procedures and Computation Theories. To appear in
Mathematica Scandanavia.

[24] . Parikh, R., The Completeness of Propositional Dynamic Logic. In
Winkowski (ed.) Proc. of MFCS ‘'78. Lecture Notes in Comp. Sc. 64, Springer
Verlag, Berlin-1978, pp. 403-415.

[25] Rasiowa, H., Algorithmic Logic. ICSPAS Report 281, Warsaw 1977.

[26] Rasiowa, H., w*-valued Algorithmic Logic As a Tool To
Investigate Procedures. In Blikie (ed.) Proc. of MFCS ‘74 Lecture Notes
in Comp. Sc. 28, Springer Verlag, Beclin 1974, pp. 423-450.

(27]  Rasiowa, H., Logic of Complex Algorithms. In Budach (ed.)
Fundamentals of Comp. Th. Akademie Vering, Berlin 1979. pp. 371-380.

[28] Rogers, H., Theory of Recursive Fudc_tim and Effective
Computability. McGraw-Hill, New York 1967.

[29]  Salwicki, A., On Algorithmic Theory of Stacks. In Winkowski (ed.)
Proc. of MFCS '78. Lecture Notes in Comp. Sc. 64. Springer Verlag, Berlin
1978.

[30]  Shepherdson, J.C., Computation Over Abstract Structures: Serial
" and Parallel Procedures and Friedman's Effective Definitional Schemes.
In Shepherdson and Rose (eds.) Logic Colloguium 73, North-Holland,
Amsterdam 1973, pp. 445-513,

[31] Tiuryn, J., Algebraic Aspects of Logic Based on Term Algebra
of r.e, trees. Warsaw University Report 1978.

[32] Tiuryn, J., Complctenas Theorem for Logic of Effective

Definitions. To appear in Proc. Coll. qu in Programming, Salgotarjan
1978, North-Holland Publishing Co.

[33] Tiuryn, J., Logic of Effective Definitions. R.W.T.H.-Aachen Report
53, 1979. To appear in Fundamenta Informaticae.

{34]  Urzyczyn, P., On Algorithmically Trivial Structures. Warsaw
University Report 1979,



