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Part I: Introduction

" I The H IBOL Lang‘uage A Btch lnlroducuon |

‘ The notion of the data driven |oop arises in connectlon with»our 'work 'nn the Very High ]
. Level Language HIBOL and the automatic programming system (ProtoSystem l) that suppons it.
Although the concept is of general interest outside of VHLL‘s and automatic programmlng we
find it proﬁtable to use HIBOL as a vehtcle for our discusslon and a means of narrowing the
_ scope of our discussion. Therefore we ﬂrst present a brief descﬂption of the domain which

HIBOL treats.

LLI Flows
The HIBOL language concerns a r'estﬂ&ed oot significant “subset ”‘of_‘ all data‘ processing
appucatlons batch oriented systems invalving the: npenttvewtoceswtg of indexed records from
data files. It provudes a concise and- pwerﬁot way of dealing with data’ lggngates HIBOL has a1 '
single data_type, the flow. This comstruct is a (possibly' néfed)'data iggregite and ‘Pépresents a
collection of uniform records that are individually and uniquely indexed by a multifcomponcnt ’
| inde_x. -The components of a ﬂw’svindex are calied kéys and the sehofan index’s keys is called tts
key-tuple.! Each record his a single data field (darum) in #ddition to"the index tnfomanm
(Real -world data- aggregates, such as fﬂes with more than one datom ‘per Ioglcal record are

abstracted in HIBOL as separate ﬂows.«nefol each datw field)

! This term is historical. A more expressive term would be “key set”, but that has historically
been used to indicate the unlverse from which a key may take its values.



112 Flow Expressions

Flow expressions can be formed through the applkanon of amhmeuc operators such as "+ -
" to flows. The meaning of such an application to mo ﬂows is that lhe operation is apphcd to
the data of correspondmg records (tbose with mz(chmg mdkes) ol‘ the argumem ﬂow& Tbe result
is a new flow, havmg a record for each matched pair for \ﬂnch the opentson was performed The
index vatue of such a record is identical to that of the matcbed pah' and the damm value is thev
result of the operation performed on the data of the pair This oonmpt is generaliled to an
arbitrary number of flow arguments. 4
Flow expressions can also be constructed using a conditional operator (similar to a 'CASE';
statement) which evaluates logical expressions in terms of corresponding flow records in order'to
select and then cqmpute an expression-as the individual - records of theﬂwsm proeessed The
| Jogical expressnons are constructed using the arithmetic comparison operators > ?, "=", and °<". In-
| additim;‘theﬁ,MSEm operator may be.used: to. test the M;dra record in a flow for a given
value of the index. of that flow. - These may. besuwdumgh logicil connectives "AND", "OR”
and NOT". |
" Finally, there is a class.of seduction qmampum on flows and flow expressions. The
function of such anopmmumimceaﬂuu»nﬁhv!mniqmmﬂv&'m m-key index,
where m < n, and the key-tuple of the m-key index is 2. subset of the key-uaple of the i-key index..
Al records of the argument flow that cmﬁamr’md the resurlt form @ set 16 which'

a reduction operator {(eg. ;mxim_um', “sum”) can be apptlied to obtain a single value.
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'I.L?{ F Igw‘ Equations
Relation;hips,betweeq flows are are expressed-by flew equations of the form:
<flou-name> IS <flou-expression>
where <Hou—name>' is a named flow and <flou-expression> is a flow expression in terms of

named flows. The right- and left-hand sides must have identical indices. -

114 Example

Consider a chain of stores whose items are supplied from a central warehouse.. The collection
of store orders for item restockiag on a given:day an be thcnght of 8 a ﬂow called, say,
CURRENTORDER. A record of that flow contains the quanmy ordcred by a pamcular store of a
pamcular item. Each record has as its datum the quantity ordered and a 2-component index
identifying the store making the order and the item ordered (the keys of the index are a store-id
and an item-id). Let BACKORDER be the name of a flow (of sitnilar structure) tepnsemlng the _
~collection of (quantities of) previous ordérs that could either net be filled or-filled only partially.
The HIBOL statement

DEMAND IS CURRENTORDER + BACKORDER
describes a new flow DEMAND representing the total demand of each'item by each store. That is,
eachﬁ 'fgcord, in DEMAND contains a 2-component (item-id, store-id) index identifying its datﬁm which
is the sum of the data fér.thgsame item and lstore in the CURRENTORBER and BACKGRDER flows.

The HI.BOI; statement |

ITEMDEMAND 1S THE SUM OF DEMAND -FOR EACH ITEN-ID

illustrates the use of the reduction operator SUN. It describes a:new flow | TEMDEMAND representing
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the total demand of each item from all stores. That is, each of s records has a single-component
index (item-id) identifying 2 particsker itew:; snd s sl i the toti quantity in desiand somemed

across alf stores in the chain.

115 Additional Information

The computational part'of a éaia processing syman.bedacrﬂ)ed by giving a full set of
flow equations of the type shown above. To complete the system’s description additiorial. data and
timing. informatien must be given:

- for each flaw, themmneaud‘ism the type of its data nte,andthe
periodnaty with wluch it lscaw

-forezchkqatstype

-foreachpcrndizsmrehtmmotherpeﬁods

1.2 lteration Sets and Explicit RIBOL

A flow expression, 2 cxplained above, represents & set of records obtained by the record-by-
record application of a formula to the records of the flows that appear as terms in the expression.
In this paper we sh;,n be interested in exactly for Which: index vakes {and thus records) the
indicated formula s applied. The set of these index vakaes'is ferned the temition ser?

The HIBOL bnguage. is ‘rather ‘informal about’ specifying Reration sets. 1t contains

- the HIBOL flow

absence of records in the flows appearing in flow expressions. For €k
| expression
- CURRENTORDER + BACKORDER

2 After Baron (1]
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- describes-a flow that has a record for each indéx value  for which either CURRENTORDER or
BACK‘QB_I:)ER (or both) has a recard:
if both flows have a record for a given index value, the resuktant flow has a record with the
same index value, whose datum is the sum of those of the corresponding records in the two
nOWs_;‘-- .. . PP I R PP R DNEUR S TF- Q-G § S S S+ L AER SIS A P

if only one flow has a record for a given index value, the Tesuliant flow has a record with the
same index value and the same datum value;

~ otherwise there is no reeord in the resuktant flow. S
One way of looking at the semantics'of additien in HIBOL, then, istoconvene that ,,thgesgperation
+ s pserformed if' and only if at least one of its operands is prmm and tha; each mlssi"g operand ’
is treated as if it were the additive identity (0). » L s

. Although such conventions are conventent in writing HIBOL. for the sakes of clarity and
- rigor, we require fully explicit iteration set specrfiatlon& Such an be obtained ,through the
thorough use of the HIBOL primuives IF and PRESENT Thus. the fuuy expliclt form of the

A

above HIBOL flow expresslon would be

CWHENT('R[ER + BACK(RCER IF CURRENTORDER PRE NT
M BACKORDER  PRE

ELSE CURRENTORDER O CURRENTORDER PRESENT "

’ui

ELSE BACKORDER lF BACKMR _4 PHESENT C ey
Here the index values for which the ﬂow expressions iormula is to be applled have been made:
explicit by restructuring it as a three-clause conditional express!on in terms of three sub-’

expressaons each of whose iteration sets is speciﬁed by an associaud conditlon on the _presence of

kkkkkk

records m the ﬂows mvolved Thls is a legal HIBOL ﬂou expresim, although in view of the

existing conventions it is overspecified (redundant). For our purposes we wilt distinguish- 2. '
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~ description is declarative in nature: it describes the relationships among the flows. An implemented
da'ta‘ processing system is | procedural in nﬁtu,re. it must describe in detail how the flows are
computed. The flow equations must be reinterpreted. as-basic computation steps(ﬁith an output
flow and one or more flows as inputs) and cqnsxgints;‘an the order in: which: thesecomputmom
can be performed (the computation. p_rodqging, a flow must. he-pecformed before any computations
using thai flow) must be made explicit.

Design:*

The implementation will make: use of files.of data to be processed by job steps which will in
turn create other files. Each file will confain-the-information:represented by one or more flows;
each job step will perform the processing to satisfy one-or more-flow squations. ‘The design of each
file (information contained, organization, storage device, record sortierder) and ‘of each job step
(equations implemented, loop structure, accessing methods used) should be made in such a way as
to minimize some overall cost measure (eg. do!hrsvandﬂmsxcest time used number of secondary
storage 1/O events) for the execution of the data processmg system Typically this requires dymmic
(behavnorai) analysis of tentative design coni‘iguntions o

Code Generaiipn:,

The system’s design must be coded in a supported high-level language so that it can be

executed.

l4 Data Driven Loobs

Each flow equation represents .a computation whose impiemenution is essemiaily iterative in

“ In ProtoSystem I the design process is performed by the Optimizing Designer module.
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any set of values for a pasticular. index an index set atid we distinguish two sﬁ&iai‘klnds of index
The set of index .va]uq for which a fb;v.Fiaoqnﬁu“a record is called the index set of F-
(denoted 1S(F)). |
The set of index values for which. an input flow F-contaifis a-vecord ‘ﬂli.t'wm be used in
generating a record of the output flow Fthe triisal index et of ¥ witk respect to F (denoted
CISg(F)).
fhese two_ should not be copfused. CISg(E;} for some flew F will often be'a proper subset of
IstFp7 e e | |
The. problem we face is that of fmding some ‘way sﬂfemmiﬁg the critical index sets of
each in»pu.t so.that loop;,cén. be». properly driven.® -4 penerally fhpriictical’ to use the set of ail g
: possiﬁle (legal) index values for which an input might Kwwe &'record: For one thing this set may
be unbounded. Even if it is finite and enumerable, it will often be much larger than the critical
~ index ;r»et and thus grossly inefficient. In the DEMAND flow equation example given above, for
instance, the critical index set of the input flow CURRENTORDER is likely to be orders of magnitude
" smaller than its maximum possible size (the case where every store fm orders for every itcm).
A much miore efficient way of 'c_numeﬁting a set of index values that is assured to cover the

critical index sets of the inputs is to use the union of the index sets of the input flows. This will

work because a record of the output can be produced ouly if there is some input flow in which that

® Unfortunately, this terminology is at variance with that used by Baron in his. thesis [i}
Baron uses the term “critical index set” to mean what we call the “index set”. :

7 On no account, of course, can it be other than a proper or improper subset of IS(F).

® This statement is somewhat oversimplified, but it will suffice for now. A fully precise
statement of the problem is given by the Fundamental Driving Constraint in Part 1V, '



hptﬂm(-&hhnhkmdmi anm;nmnm mmﬁ‘
by ity wpus s s mgswwmwwww s :
'mm (tive set of flows that drive a nmwum;‘nu{‘?ﬁémm

!ﬂwmg —

!muMthMimhmuﬁmgdAMﬂi%iﬁnb

£

coper, C155 1AL 1S h1cTWe: 5:smdconme , #0 v e’
only # there is comresponding record in A mmnaum wn by A alone; that &1’

A i

W‘“%‘ﬁ'ﬂgsM?Mn m%m Bl AS | 'asztw wl salpv Feivy dgenth sidizzog

Garen welb '?3 vonved e sd osita # sidsmnnum biE gignt gf 3 3t o =E s desss ad

ot

s ‘-’*::"éfv;.;ﬁ;gr; w 3t &‘r&‘“‘“} ads pi  ssbhitont sg%zm*g it hng 15 o 1ot ]]
ELSHE BRI u* viadd o o wﬁ.ﬁﬁ%ﬁ} wofd nago e} To tor xshai Ieatitn o sxish

Craed vaws ey rmebnad SR8 MI0R g**"\fs yissiw 9251 sk} 3eev sldinnn mumMixRe i Aad i ot
Cmeb T3ves o DEIML & 18t sy fs?*'zs fol gﬂﬂﬁmmiﬁ fgw mi.éﬁh.ze%}m daum A

Sie o T sweft wom ad! 3o s bRt 56l T folew %ﬁ mos 03 21 gugRi 3 Yo et bl B H A

14

szets st b wolt trges smoz & viesl G gies bapioty od sey wgms odt 1o bno AT § R XI0W

) menddr s nt noccd vd baw feds dlw sasiiay 1 2t fgeémssmxsx z:é) ?Na:‘ﬁi‘:ﬁ“s}i} @
e kb ovit Bay aw dsdw asum of T332 wabed {aoinind mal o e ﬁc*s&
21 T teader TIqUIGG 10 13901 8 ages e 5¢ 1 1Ed agwed o nncose on Al
maizarg ¥l éiﬁ A wor 101 siTus Miw W iud baifilgmitve seriwomos 2 swmstsie T 2
Vi 51z ni imsseroD gaivindd ixmomsbrid adl vd mavig o maif‘mz; sl T msmsjm




Data Driven Loops - n

Part IL: Structure of Data Driven Loops
Before a general treatment of data driven Joops-tan be devefoped it 13 Iecéssary to examine
the structures of .the loops encountered in the HIBOL system. We bejtin by presenting a taxonomy

" of computation types'and their corresponding loop implementations. -

11.1 Loop T erminology

B'efpre discussing loap stractures it is useful-to- establish some terminology. By the term loop
we mean a control construct which somehow enumerates ¥ set of vales feri loop-index and which
performs a fixed sequence of vstalemems (its body), once for each value of the l‘oop-'index. A loop .
may conta.in ‘one .or more ‘loops within its body. The inner foops are said to be nested within the
outer (enclosing) loop and the.structure as a whole Is called a nested loop structure. Each enclosure
defines a different level of the nested ‘bopv-s'tructm. ~The degenerite case of a. nested loop structure,
where there is no loop. in the body of the outer loop, iIs called 4 singlé-level loop, since there is only
one lgop level.

. A totally mested loop is a nested bop structufe whoseeompbnem loops are totally ordered |

*_under enclosure (ie. for any two loops L, and L, either L, is inside L, or L Is‘instde L))

- 11.2 Kinds of Computations and T heir Loops

£Ach run (computation, job step, program) in the implementation produced for a HIBOL
description of a dat.a'processing system is essentially a loop that iterates over the records of its input
files to generate records of its output file(s). The structure of this loop depends on the nature of the
computation being performed. We will begin with computations that directly implement single
HIBOL flow equations of various types. Then we will consider computations that _lmplenient more

than one flow equation (aggregated computations) simultaneously.
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for each l(employee-id) from HOURS
get ‘HOURS (empioyee-id)
. PAY (employee-id) «

if. defined (HOURS (emp | oyee-id}]
and not(Hl.RS(enp!ogee id) > 40)

then FﬂﬂSlenplogee-cd) x 3.8 .

else if defmed{mS(elplogee-od)] ‘
then 128.0 + (mS(ellplogee-ld) - 40) x 6 5
else undefmed

if defined [PAV(enplogee-id_)l
“then urite PAY{employee-id)

end
The for-end constnict represents the baSIC iteration overva!ues of the index enelogee-id It
specnfles that the values for the mdex are obtained from the l{l.RS flow For each index value, the
correspondmg record of Hl]RS is read, the correspondmg record of PAY is genented and (ifm
generation was successful) that record is written out Notice that the PAY calcuhtion is a direct

i e R ) U T TS S

translation from the HIBOLM equ:!m

fi.

For reasons of exposmon the Ioop implememation presented here is of the most general form.
An actual |mp|ementat|on would mcorporate various efflciency *énhaﬂciﬂg improvements’ '
Nevertheless, we shall comiiue 0 msuclur forms to show explicitly where 1/O and testing occur

~ conceptually.

9 For .instance, since the for has to read the next record of the driver to get the current index
value, the get could beomilted. .Furthermore, the detined tests ' the PAY calculation could be
omitted since they are testing the presence of record which must be present. Finally, in this.
computation, the check before output could aiso be omitted.

ar
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A matching computation computes a non-reduction flew: expression involving .two or more
flows. Thus it is similar to a simple computation, but instead dmsm asingle-record of a .
single input flow to produce an output record it opuusnraa&-l}mapmding records, one
from each input flow. erespusdmaumbhdndb]mmhthvam The name
matchmg computations” derives Irom the necessuy of matching up ﬂnc mmrds of the inputs by
index valuesbeforc theycan beopentedon N » |

" Two sub-classes of matchmg computations can be distmgmshed dcpending on whether all of

the inputs have indices with identical key-tuples or net.

I11.2.21 Expressions Involving Flows with a Uniform Index

Consider the a pay cakuhtm similar to that gaven m but where employees are pald
various hourly rates. Let RATE be a ﬂo- indexed by (mphyee-id),eadl of vhose reco«!s has as

its datum thehwﬂypaymefortheeuphpchdhmdbynsm vahe. Thepayatuhtion

eheubemmes
PAY IS WORS s RATE  IF  HOURS PRESENT
AND NOT HOURS > 48
EtSE
RBAIE = 48 » Y .
HOURS - tmn.s:w ﬂ-' HOARS PRESENT

- AN ANEE PRESERT
HOURS and RATE have iduumalmdtces.eachmﬁgdthemgkuy “employee-id”. Thth@
vakmmtsmchacuwatmhas:shghm

Mumamd&mawﬁakihkamm&tmme that
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file alone is sufficient to drive the loop. (Alternatively, by similar. reasoning, the RATE file could be
used to drive the loop.) Thrs is-t‘hc‘rimplest case of a matching computation because only one
mput is needed to dnve the loop (The computation of the flow S above is also of this type) On -
each rteranon the next record of the HOURS file is read, the corresponding RATE reoord is fetched
. and the computation of gross pay performed
This loop is represented in the SEAL language thus:
-~ for oach {employee-id) from HOURS
get HJURS(enpfoga&id)
get RATE (employee-id)
PAY lemp l'ogee—'ld') -
if defined[HOURS (employee-id)}]
and defined [RATE (empioyee-id)]
and not (HOURS (emp | oyee-id) > 48)
then iﬂBS(enpl.ogee.-io) -x_RATE (employes-itd

else if defined{HOURS (e'np\ogeo; i d')‘]
_and defmgdlﬂME(oINwem)l

. then RATE {employee-id) x 49 + ;
(HOURS (employee) - 48) x RATE (employee-id) x 1.5~

else undefined -

if defmed[PAY!enplogee-td)l
then urite PAY({employee-id)

end

Again, the defmed checks on the driver, HOURS, are superﬂuoua But thosc on RATE are necessary.
(to determine whether the corresponding get was sucr.cssful) and the doﬁned check on PAY is
necessary (so that a record is written if and only if a datum mgm&ed).

Now consider the HIBOL flow equation for the [EI'WIJ flow glven above
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These details are implicit in the SEAL representation of the foop which is simply:
| for each (item-id, store-id) from CURRENTORDER, BACKORDER
get CURRENTORDER(i tem-id, store-id) -
get BACKORDER(item-id, stors-id)
DEMAND (i tew-id, siiwe—'rd),- oa

i f -defined (DEMAND (i tem-id, store-id}}
then urite DEMAND(item-id, store-id)

end

11.2.2.2 General Discussion of Expressions Involving Flows with Mix ﬁ Indices

‘The treatment of mixed-index flow expressions in this paper will be restricted to those that
are legal in HIBOL. The restrictions that HIBOL imposes are made for good reasons. - A brief
discussion of the varions conceivable types of mixed-index flow expres_sions. is preSented h'ei'e in
order to show the motivation behind these restﬂctiens | | o

Tiie vainous cases where the ﬂows ina ﬂow expfession have mixed imiices (ie their indices
have different key- tuples) can be distmguished by the set interrehtlonships among the key-tuples

 Consider the case where flows have disjomt key tuples (e.g (w, x) and (y. z)). :
Correspondence among records of such ﬂows is meaningless so we do not a“ow them to appear in
»b the same flow expression. | B R |

: qu consider the- more general case where there is inteisection among index key-tuples, bvut‘ )
the union of their pair-wise intersections is w identical to their (simple) union. In this case
correspondence is always ambiguous. For example, consider the two flows: A with index (x, y) and

-B with index (y, z). Suppose that there are records in A for the particular index ﬁlues (x, y9) and



{x2. y,) and that there are secords on B for index ‘vatwes {y;. ;). (y;. 22) and (y), 23). Which of A’s
records correspond te. which of B's records?Z _ |

For correspondence to be meaningful aadmmitm&tliedxtha the union of
the pair-wise intersections of the key-tuples of the indices invoived is identicaf to their union. This
is atways the’case when there exists an index among-the flows involved ‘whose key-tuple is a
superset of all the key-tuples of the other flows.

To be sure, there are other ways of satisfying the condition of the preceding paragraph
These involve conjunctions of three or more indices. Consider, for instance, the three flows: A with
index (x, y); B with index {y, z); and C with index (x, 2). Corresponding triplets are all unique and
unambiguous, of the form: (x. Y. {y; %), {x, 1) For:the suke of stplicity, however, this case is

prohibited in HIBOL.

1.2.2.3 Mixed-Index Flow Expressions Allowed in H!BOL

It is possible in HIBOL to apply operaton to two or more ﬂom having diﬂ'mnt indices as
long as each index is a sub-indcx ofthchndexo(mumqueﬂo\vimdved (ie. as long as the
key-tuple of each mdex is a mbset of the kq—mpk of the ndex o( the unique flow). Clcarly, the
index of this umque now is idcmml to the Mcx of tht flow expussien as a whoie HIBOL
afows a mixed-index flow expression only if its computation can be driven by the set of those ﬂows

involved having indices identical to that of the flow expression.

12 Of course, we could allow all ‘pairs’ to ‘match (in Cartesian’ product: fashion) so that the
expression A + B would represent the six possible combinations of additions for these 5 index
values; but this would change (extend) the semantics of HIBOL.




Data. Driven Loops e

For example, suppose we want to-cakufate the extended prices'® of the ‘current storé ‘ofders
(the flow CURRENTORDER) in our store chain example.- Let: PRIEE-be a flow indexed by (item-id),
each of whose records has as its datum the per-item price associated with Mm idfemified by its
index. The flow equation for EXTENDEDPRICE, indexed by (item-id, store-id) wwld be expressed in
HIBOL thus: . _ et Fa

EXTENDEDPRICE 1S CURRENTORDER x PRICE IF . = CURRENTORDER PRESENT
: AMJ PRICE PRESENT

A RUE S FPRSLE s BNE L I

- The intent here is: for every record in CURRENTORDER: mm mmmm in PRICE and,

_if the latter is present, multiply their respective dap to ca_lculate the datum of a corresponding
record in EXTENDEDRRICE. Notce that;because PRIGE and-SURRENIOROER: Save.differént-indices
((item-id) and '(item-id. store-id), respectively) the notion oﬁ correspendehce must be extended in 2
n/atu:ra!V way. from pure identity of index valwes.- We comvene that-for &Wwamfw M—id
the index (item-id) matches any index (item-id, M>M«m,xmfwmeﬁ:zamﬂ: regardiess -

of the value of store-id. This augmented definition of correspondence is extendedto' the general

casezwberefv*tht *key-tuple of one index is-a subset: of the: key-tuple of wivother. That is, for given
values of k, .., ky, the index (K, .., k) is said to-rhatch-awyinstance’of an Hidex (&, ik Ky
k,) with the same values of k.., k,,,. regardiess.of the values of k., ..o ky.

Since a set of input flows; each- with index identical to the flow expfmlon;s. cin be used to
drive a.mixed-index matching compuwien,':-ittWmffh'ﬁiﬂﬁfﬁ"tht for a uniform-
index matching computation: the sorted éﬂvers'iré read in:such 2 way as to entimerate the ctitical

index sets of all of the input flows; the resulting index values are used o fetch records from the reit '

of the inputs (including all those whose indices are mbéndlces of the flow 'ex'presﬂoﬁ's index).

13.The extended price of a quantity ordered is the product of the' qtiintity aid: the per-item' '
price.
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Basically, the outer loop chooses a value of the sub-iridex (item-id) and fetches the corresponding
PRICE record. Then it performs the inr'ner toop. Within the inner'loop the value.of the item-id key
is held constant. Al corresponding: records “of ‘CURRENFORDER aré read’ and the computation
described in the flow equation is performed: using the data of these recbrds together with the datum
of the PRICE record fetched in the outer loop. : The: resilty-are’ tsed 1o Bkt and output the
'correspondmg records of EXTENDEBPRIEE. This pmss is*repﬂteémm ﬂa‘ ﬂéws are exhausted.

In detail the mpiementatlon is as fo“ows Before either loop is entered a record of
CURRENTORDER is read The outer loop uses this rccord to obtain the first value of the sub-index
(item-id) and fetches the correspondmg record from PRICE Then it pcrforms the inner loop. The
inner loop uses the current record .;ef_ cmm 'and%mtm to read records sequentially
from CURRENTORDER until the sub-index is obsetved ‘teichange or an md-oﬁ-ﬁle“cmdlt‘ion‘d‘c‘wr‘s;
When either of these condi_tians oecurs. it exits to the outer loop. If an-eof -has occurred, the outer
loop . gxits ; Othérwise it iterates, using the mb—indusﬁbe of the current CURRENTORDER recé’rd as
the new value to be held constant in the inner lonp kwhhgahc mrrespmdmg PRICE record and
pcrfonmng the inner loop again. . S AT NS H

The cgrrespmd,ing SEAL code is:



for sach lifes-id) from CURENIONER T :
get m!umm
for each (store-idl from CURRENVORDER(: tew-id)
get CRRENIGROERiten-id, stere-idh. =« =~ -
EXTENDEDPRICE (i ten-id, store-id) =

u def ined [CURRENTORDER Y tem- id, wlore-idl}
and defmed{PRiCEthu—zdﬂ

then wn:mmme.-sa store-idi E PR!II(HQI—M)
else undefined

if defined EXTENDEDPRICE (i ten-id, store-id)]
then write EXTENDEOPRICE (1 ten-id, store-id)

Notice that the outer loap is driven by CURRENTORDER {the whole flow), but that the inner loop i3
* driven by CURRENTORDER (i tew- i) (she sub-flow of CURRENTORDER oomsisting of fust thuse records
whose indices correspond to the value of the sub-imex:(itern-id) fixed by the oister foop). What
| this. means is that for the outer loop the mext value of the: sub-indek {itém-id) wilt be taken from™

the next record of the CURRENTORDER flow. But for the inner loop the hext valiie for the subb-index

(store-id) will be taken from the next record of the sub-flow of CURRENTERDER cerresponding to

current value of (item-id); if there are no further records in CURRENTORDER for this fixed valuwe of
~(itemr-id) this will be treated just like an end-of-file condition and the iteration of the inner loop
will terminate. Thus the inner loop is driven by a succession of 'mb-ﬁows, ane for each iteration of

the oute loop. S . :
' This nested-loop implementation scheme is easily extended to 3 or more loop levels when

appropriate sorting constraints hold among the flows involved. For example, suppose that there
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are 3 flows involved: A with index (ky, kz, kg); B with index (k,, ké), and C withihdcx"(k,). "And
suppose further that B is sorted't.)y k, and that A is sorted first by k; and.'g‘’!B”"lfhatriE Segments
corresponding to a fixed value of k,, the records of A are furthér Sorfed’ by iz “Y'tien the flow
equation can be implemented‘using a nested loop structure involving & bbﬁsg’(iﬁn’ermost loop,
middle loop and outormost foop). The outermost Ioopschooﬁa %%eﬂfr the key‘fii to be held
constant within the middle loop (and perforce in thdinnerm&t* loop, which is contained in the
middle loop). It also fetches the corresponding record ofC mwm% ttie ‘contained loops.
Then it executes the middle loop, whjch. in turn, choose aivalae loiﬂé*key K3 tobe held con‘stans :
within the inner loop. The middle loop also fetches the corr’espo.nding. record of B for use within
the innermost loop. Then it executes the innermost loop. In the innermost loop the valtes‘of the
keys k; and k; are held constant. The innermost loop reads all corresponding records of A, usiitg
thelr data and those of the already read records to perform the alcuhtions ducribed in the ﬂowf .
equation and to build and output the records of the output ﬂow When the Innermost |oop has

' read and processed all records of A correspondlng to the fixed valuu of k, and kz, it exits to the" ‘

W _(lg EERTN

middle Ioop whlch chooses a new value ror kz and iteram When the middie loop has exhausted_ '

AT ',‘ 5 ;"“ ? SMEE U RS St I

all pdsslbllines for the value of k ﬁxed In it It retums to the wtermost loop whk:h chooses a new

}'

value of k; and iterates. This loop structure expressed ln the SEAL hnguage Ioolu like- ,
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trexced‘ as a single flow.

~ Conceptuatly, the argument flow is partitioned into subsets’ (sub-flows) by an equivalence |
refation defiriéd on the sub-indek (a kej or ‘Keys) Iidicated In the FOR'EACH clause; then the
rediuction operater s applied to-the rhembert of edch subiet to generate the value of the datum of
the output record totresponding to that sibset.” For initinés, in the fir?t example gwenabove the
DEFAND flow is conteptuaﬁy ‘partitionied fnto record subsets by item-id. “Thus, all records in DEMAND
whose index contains the vahse item-id, for the item-id kej are in one subset all records for ltem-nd
= item-id, ‘are ii another, and so fbrth {empty subsets are ignored) The datum for the. record in
I TEMDEMAND with' index = (item-id) 1§’ ‘caletifated by sunming alfof the data in the records in the:(-'
subset corresponding to item-id = item-id; : ’ F

Conceptually, the imp}ememing iteration for a simple reducti&uexpression in a single flaw
consists of two loops, one nested inside'the other. T hé thner ioopimpiemems theapﬁlicanon of the
indicated reduction operation to a subset of tﬁé“inpm's: records. Withinthls Ioop the value of the -
sub-inc!ex defining the subset is held constant Remmtngto the §.I1 OF DEMAND example, the
inner loop implements the summation of the data of the records of each subset of DEMAND. That is,
the inner loop is performed for each value of item- nd for whtch there are recos'ds in IIMMJ
Within the inner loop the particular va!ue of the:,’tlge\yl ;tem-id is held constant, all records of DEMAND .
correspondmg to that key value are fetched and theif data are summed |

The outer loop performs clerical work. It chooses a vake the subsetting sub-index (eg. a
* value of item- |d) executes the inner |oop {which fetches records of thetnput corresponding to the.
chosen sub-index and, for exaM."adds them to!he a’g‘:c‘uﬂmhtor), and when the inner loop is
finished, it uses the resulting ca!ce as the datumﬁof the output record ccrresponding to the chosen

sub-index, and writes that record out.
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It may at first seem unnecessaﬂly baroque to mmamc the accumumor sum to undeﬁned in the 5
outér loop test it in the inner loop for deﬁnedneﬁ and then tniﬁﬂiit ‘it if undefined. In this
simple example we could just initialize it to 0 i the omerloop and notbottm wiiﬁ g@e ,dgfinedness )
checks.: We have chosen the Forrﬁ?r cﬁjursé. f;f twor reasons First, Qc wish to make exblicit the
conditions under which the sum (and thus a fe’c;xd of the outputvl‘m i deéfined for a
given value of the key item-id. Second, a-fittle thought Wil show ‘that for other reduction
bpératiqns (vii MAX and HMEN)-initialization of the” sccumbtator “must’ (at least conceptually) be
postponed until the inner loop where the initializing value is obtained by the first:get.” Moreover,
in general, when computations are aggregated (see below) and"more th’in‘; §ne' activity is performed
in the inner loop, it is then possible (if some driver Besides DEMAND is used) tha‘t'fur‘m’;valués of
item-id no sum-is cakulated in the inner-loop and M‘aﬁﬂsam‘m extt from that loop.

If the input ﬂow is not sorted as ;bé;e fhe c(;ntpt;tatlon‘fo.:’ ; re.dluctlon operation becomes
‘somewhat more complex. Qae possibility is to.create: and maitiin sépafite’ decumutators for each

value of the sub-index value occurring in the mput flow. Since the number of accumulators cannot

be known a. puiori (ise. at-compile time). storageifor-thelw thast be aNBIE- on ‘the fly {during
execution of the computanon) In PLIl for example the faﬂmvmg (rougMy omlined) schemc might
be used:

Declare an accumulator array to have C(NTRG.LED storage

Make a pre-pass through the mput flow to count the number of dlfferent sub-lndex
values occurring. = - . _ ‘. : 2oyl

Execute an ALLOCATE statement to define the size oféth‘eiimy; &
Make a second pass over the input flow to perform the accumulation.
. Write all accumulated values out to the oitput flow.
In this scheme there are two separate loops instead of a totally nested loop structure.

Alternatively, a nested loop, multi-pass scheme could be Implemented The outer loop would
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1131 Formal Representatton of Nested Loop Structures

We have seen that the basic control structure ttsed in impiemaiting a computation is the
totally nested loop. Associated with each loop in the nesting is a set of keys that it will fix and
which will remain constant in the loops it contains. It is easy to see that this constraint means that
the set of keys fixed within any loop is necessarily a (prooer) superset of the set of ‘keys fixed within
any of its enclosmg loops. Thus, the set of keys f‘ixed wrthtn a loop is sufﬁcrent to determine its
level in the nesting.

Now notice that the body of every loop (escept the innerntost one) contains exactly one top- .
level loop; thus, the body is naturally divided ints thiee-pantss |

the prolog--those actions performed before the enclosed loop

the enclosed loop

the epilog--those actions performed after the enclosed Ioop

Conceptually, then, a totally nested loop can be represented as a list of loop descriptions, one
for each of the component loops. Each such description would consist of 2 Ievel identifierv
(mdlcatmg at which level of nestrng it occurs) and the prolog and the epilog However, during the
design stage while rmplementattons are berng devehped and, in particuhr, when comput
aggregations are bemg ctmstdered it is useful to distinguish 3 classes of actions within the body of

Prolog--those actions that must be performed before the enclosed loop

Epi | og--those actions that must be performed after the enclosed '

~ General--those actions that could end up in either th-proleg or the epilog

It is also useful to separate 1/Q actions from the other actions.  Thus, we répresent each loop

in the nesting as a structure of the following form:'>

™S This representation, and the theory of computation aggregation assoclated with it are due
largely to the work of R. C. Fleischer [2], who improved on the earlier work of R. V. Baron.
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fLevel, o
{Inputsp, Proiog, Outputsyp)
tInputsg, General, Outputsgl
(Inputsg, Epitog, Outputsegl)
where | |
Leve! indicates mé depth of the Joop in the nesting
lnputsp are the files (mcessamy) read in the Protog section.
Inputsg are the files (necessanty) read in the Goneral section.
Inputsg are the files (necessarily) read in the Epi log section.
Outputsp are the outputs generatad. in the: Prod og:section (possibly used in the encloséd loop
or in the Epv tog section)

Butputsg are the outputs gcnerated in the Genera! sectiun

Outputsg are the outputs genented in tbe Em log section

: "32 Cémpm:iion Implementation

‘The tmplenmnatmofacompmatmasanestedhnpumuduoesmthe probiemof _
detcrmming how rmny and windv levels are to be in thc lotaly nemd bop and \vhere the lIO md
cemputatms go The answers to these quumm are oomtmned by the fornes of necessuy and

efficiency.

H321 Level Positbu,ofgym
~ The levels at which. each input showid be read; each output shoukd be written and each
cakulation should be performed are determined by tie following guidelines:

Inputs: Each input flow of a computation should be read at a loop level whoummd
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key-tuple is identiéal to that of the flow's index (and og this.account the totally nested Joop for a
computation must contain a loop corresponding to the index of each mm),ummbemd
a higher level because at such a level the key information is.incomplete. To-read it at & fowet level
would be inefficient, bgcaugg.it »wonld;qugynm&s%ﬂ re-reads of the flow's records. <
‘;Q_l_l_ggy_‘t‘_;:‘:_ﬁsiimila_ﬂx. each output. ﬂowof; mmmzbumam at ailoop level whose
associated key-tuple is identical to that of the flaw's jndex.. it conmot-be written-at: a-higher-¥vel-
bgcause_qf insufficient key lpfox;_gfx;a;tim. and.to unpuu&at;;mmgsmid ‘cause muiiple writes
of tﬁe records. | ' | ' SRR FCTEN
. WCaltcu_!atiqq‘s: A ﬁow: exp’regiop:;hou]d; alo he calmlated at a:Joop- Jevel whose -assotiated
key-tuple is identical to that of the flow expression's-index. .. Again, the-key information at imtghef’;
 Tevel would be insufficient to calculate the expression,.ang ::mwmwwt lawet ‘level: would ‘be
redundant. Further economy can be realized, howaver, in.2 mixed-index. flow. expréssion if it
comains a sq!g-e;;prgﬁ;ion whose associated index is a.sub-index. ofﬁmﬂowacpmﬁmas a whale;-

such a sub-gxp:essiqn should be split off and cakulated at its approprinin (higherjdevel. - -

- 11.3.2.2 Position of 1/O and Cakulations Within Their Assigned Levels

The"“plécmént'of a read, write or cakulatmswi:hina gwen‘lo;p fevel (.ie In We.ith’er the
Prolog, Epilog or General section) should be done with a view toward imposmg the minimum%.
constraint on implémentation If done in this manner phcement preserves the maximal ﬂexibilityé-
in subsequent aggregation. For instance, if a calcuhtlon could go Imo elther the Prolog ‘or thse/
Epilog it should be placed in the General section. If instead it were arbitrarily phmd;tnm |
Epilog this unnecessary constraint would preclude subsequent.aggregations that would fequ&*lt to

be in the Prolog (loop merging in computation aggregation is discussed below). -
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PAY IS RATE x HOURS IF RATE PRESENT AND HOURS PRESENT
Here, both inputs have the same index (employee-id) so there is only om loop:

Level: (employee-id)
Inputsp: empty
Proiog: empty
Outputspempty

Inputsg: {HOURS, RATE}
General:calculate PAY
OutputsgHPAY}

Inputsg: empty
Epilog: empty
Outputsgempty

As expia;ned above, Vevegéything_: is placed in the general sections..
Now consider a_simple rodq;ﬂ_on ﬂow equation:
ITEMDEMAND 1S THE. SUM OF DEMAND FOR EAGH:1TEM-1D

We have seen that the implementation of such a flow equation will:always have two loop levels:

-~ Level: (item-id)
Inputsp: empty -
Prolog: initialize sum
Outputspempty :

Inputsg: empty
General jempty
.Outputsgempty

Inputsg: empty
Epilog: empty
Outputsg:i] TEMDEMAND}
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Loop 1 {outer loop)
Level: (item-id)
Inputsp: {PRICE!}
Prolog: empty
Qutputspempty

Inputsg: empty
General:empty
Outputsgempty

Inputsg: empty

Epilog: emp ty
Outputsgempty

Loop 2 (inner loop)

Level: (item-id, store-id)
Inputsp: empty
Prolog: empty
Qutputspempty

Inputsg: {CURRENTORDER)
General:calculate EXTENDEDPRICE
OutputsgdEXTENDEDPRICE}.

Inputsg: empty
Epilog: empty
Outputsgempty

35
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‘Data Driven Loops ' 3

If two computations have level compatible loops and if the; ordering: constraints of the two

loops can be mutually satisfied in a single- totally nested loop, aggreéation is'possible.

II1.11 .Level Compatibility Between Loops

ltv is easy to show that two loops are level compatible:if and. only if their level structures are

identical or empty levels (levels at which ro actions are performed) can be inserted to make their

level structﬁrgs identical. Some (exmphsvof level eempnﬂbktmﬂy nested luqu,(INL‘;) and the -

level structures of their aggregated results are:'S

loop
™,

™,

™,

™,

™,

N,

levgl 5 . levels in_aggregate

), KL .
o K, &L
«®,1) |
®,L)

o ®,0, K140
®,L,M ~
W, w0

®), K1), KLm
(‘K.L’, ‘K,L'm i o

It is interesting to note that when aggregation occurs loop levels ire;atlthu-mdded nor deleted; that

is, the set of loop levels in the aggregate is simply the union of the sets of loop levels in the

component computations.

Some examples of loops whose _lc\id structures are incompatible are:

loop

™,
TN,

!évels

K)
w

'6 In this section the symbols K, L and H denote different keys.



g n | “i F’l(,':“
™,  «, %0
™, o, &U, &L.m
™, ), &m, &.L0

1#11.2 Order Constraint Compatibility Betweesi Loaps

[ TENDENAND IS THE ‘SHIY OF DEMAND FOR EACH TTEN-1D

FRACTION 1S DEMAND/ITENDEMAND IF DEMAND PRESENY <
It would seem immanently reasemabie to aggrefate these two cuwﬁons since they have a
common input (DEMAND) and t!:couqmtofthe first is an input 16 the'setbnd. Yet they cannot be

‘aggrega:ed into a totally nested toop! Their nnplunmnon dampm reveal why Recall that

the description of the first is:

Loop | (outer loop)
Level: litem-id)
- Trputsp: empty
Prolog: initialize sum
Dutw's'mtg

Inputsg: euptg
General:empty

= h'wh;: owpty -
Epitog: eq:tg
Outputsg:tl THOOWD)
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Loop 2 {inner loop) v

Level: (item-id, store-id)
Inputsp: empty .
Prolog: empty
Outputspempty

I nput sg: IDEMAND)
General:calculate sum
Outputsgempty

Input sgs.amply
Epilog: empty
Outpu tsgempty

The FRACTION computation also has two nested loops:

Loop 1 (outer loop)
Level: (item-id} :
' - Inputsp: {DEMANDE
Prolog: . empty
~ Outputspempty

Inputsg: empty
General:empty
Outputsgempty

Tnputsg: empty
~ Epilog: empty
Outputsgempty

Loop 2 (inner loop)
: Level: litem-id, store-id)’

~ Inputsp: empty
Prolog: empty

Outputspempty

{nputsg: IDEMANDI
General:do division
OutputsgdFRACTION} -

Trputsg: espty
Epilog: empty
Outputseempty

Clearly these tcmpﬁtations are level compatible since they have identical level structures. But the
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‘Computations whose totally nested- loops are fevel compatible and satisfy the ibove order

constraints are aggregatable..

lll 2 Merging Loog

Because each action and all /O must be performed at the nmﬂevd tn the aggregate as it
. was before aggregation the loop structure of the aggregation of two computations can be obtained
~through a level- by ~level merge of the loop levels of the two computations to be aggregated

Tt'te algorithm for Mmg twototaﬂyne:ﬁbops i |
For each loop in one: |

If the other has no loop at the tbe same level, just add the- npmnoh of that fevel to the
description of the aggregate

If there is a correspondmg loop the two loops must be merged tnto one for the aggregate -
The full details of merging loops ' are complicated but a rough sketch foﬂows Let the
corresponding loops be L, and L,, where no output of L, is an inght fo Ly.'T There are three

cases:

1. Some outputFoftheEpvlogofL. isaninputtol.z
a.F is an tnput to Lzs Prolog sectton aggregatton impowble

b F is used by an action in Lzs General section move that action to the Epilog of

the the corresponding level in: the aggegate; alowg with iy ‘iictions in L,'s General
section which use, as ‘input, some output produced by.the action; all other actionsw

remain in the same sections in the aggregued agtheyweré v Ly and L.

c. All other cases:-all other actions remain in: the same sections in meaggregate as they
were in'L, and L, '

17 Obviously, the case where no output of Ly is an-input to ), wilt be handled exactly the same,
mutatis mutandis. The remain case, where each has some output that is an input to the other. is

impossible.
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2. Some output F, generated by some actio A in-the Gonera! ‘section of Ly, is an #nput to L.
a.F is an input to L,’s Prolog section: move A from the Genérat section to the Prolog
section of the aggregate, along with any actions in the General section which have, as
output, something used as input to that computation; all other actions remain in the
same sections in the aggregate as they were in L, and L, R

b. All other.cases: all actions remain-in the;same sectibng it the aggregate as they were
“in L, and L.

3 Nenther ! nor 2 an actuons remain in the same sectlons in thc zggregate as they were in L .}
and L& 3y

Basically, what this means is that 2 -Gerwral vaction wiust move ‘to the Prolog "qf the
aggregate if it must come before some action in that Prolog or if it must .coﬁc'before another
General action which must-be moved to-the Prolog; a Generat aam mu!t move to the Epi log if
it must come after some acuon in the Epi !og or if tt must come aﬁer another General _action

which must be moved to thc Epu log

l{l.i_Non-tog!&mged.-Lngg L e e o
. ln this report the treatment of data driven loop implementations is restricted to loop
strucmres that are totally ncsted Totally nested lmplemeumkm are not only bfoadly appkcable

but generally simple and efficient as wen ln fact they m provﬂe the mt emcient and

expedltlous implementations, espedaliy when sequemiauy organized ﬁles, soned by key values, are
u;ed For the sake of ample&ems. though. mel!mg Mhe stl!’m am non‘totally-nested

loops lndeed a gl!lt deal could besaid abwt mh Wh. certainy, to make

one or . more. separate reports. - Beause of mmm mumrﬂy brief and
| Most importantly, it sheuld be said thatm«ulrnuadbq>¢nmm are by no m@ns

il
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inefficient or uninteresting. They ire used all the. ti:"neﬂmd for good, solid reasons. Their use is
perhaps most interesting when two or more computations cannot be performed-entirely concurfently'
_(i.e. in the same loop), but they ;canbej.perfem,édawith partial concurrency. The following two

examples illustrate.

131 Exarhple . Aggregating Computations with Incompatible O_rdér Constraints
Recall the flow equations: |
’ ITEMDEMAND 1S THE SUM OF DEMAND FOR EACH ITEM-ID

FRACTION IS UENAND/ 1 TEMDEMAND IF BEMAND PRESENT
' “AND |TEMDEMAND PRESENT ~ -

and their implementing computations. We saw- in Section HLL2 that the implementing
| computations for these flow. cqﬁatidm could not be merged into a totally nested loop structure
because the inner loop for the first had to be completed before the inner loop of the second could
be performed. They can, however, be aggregated into a single loop with a structure like:
for each (iteﬁ—id) from DEHAND
SUM = undefi;aed
for each (store-id) from DEMAND(i tem-id)
- <calculate sum>» - .. e
end ‘
if definedlsum) then ITEMDEMAND(item-id) = sum
for each (store-id) -from DEMAND{i tem-id¥
<caiculate FRACTION>
end | -
end

~ This is a non-totally nested loop structure, since two loops (the inner ones) appear at the same level. .
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It is interesting to compare this aggregate implementation with the unaggregated
implementation-of the two computations involved (as separate Toops in separite job steps). Oh the
one hand, in mmnmmmmmammﬁumwmbem twice, 50 no
accesses are eliminated by aggregation. dn the other hand, accesses of the records of flie
1TEMDEHAND flow are eliminated by aggreganm if the compntatm are hnplememed separately.
every record of HENEWN) must be written into a file by the ﬁrst mpmatmnr ;nd then read back |
| by the second; whereas in the aggregate impmnmion the records are med as th;e‘.y»:a‘rg generated,
50 no re-reading is necessary.“. | o | | | ‘

In general whaﬁmtmm:wbw&@}emmtmmmnanm
which their aggregate cannot be implemented ai: totaﬁy nested Wop 15 where, for some bup level,
the output of theEpilog section of one is an input 16 the'Prolog seetion of the other (a:s"is the case’
' with | TEGENAND above). In sich a case the corvesponding loop level of the aggregate can be
impkmﬁted (as above).as two loops of the same level pefformed ki sequence, ind re-reads of the
flow in questm will be saved. | | ,

=1

lﬂ 3.2 Example 2. Aggregating Oompmamns Tlm Are Net wew%m

In Section 1 we saw that mmﬁhmmmmmmhd
compatible with one another:

™, 0, (KL, LM
™, K, K, KL

Thcfactthatthcyanmhdwtﬁbm&akkmhdevmaml

18 I fact, if these records are not used by any other computation in the data processing system,
it is not necessary to write them out into a file either.
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nesting of loops that will implement their aggregate:. They might, however, be said to be partially
level-compatible, since the 'outermost_ levels have identica) keys. If a common driver set 'ﬁn be
found -for that level, they might be implemented as a: non-totaliy-nested loop structure. The
following is a possible implemenmimskekton: |
for each (K)' from.Og
for each (L) from.D,
for -each (M) from D,
end
- end
fer eaqh M) from Dy
. for _each (L)} from D4
~ end
end
end
wbere the D; are distinct drivers.
| This is another commonly found construct in file e!au processing wlt is the case where, for a
common set of values for the sub-index (K), two or more independem computatlom are to be

~ performed. As in the previous example, there is some lIO saving (over separate implementations

of the computations involved) because each record of Oy bas m be read only once.
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V.1 A Theory of Index Sets and Critical Index Sets for Data Driven Loops

Let us begin with some definitions and.useful consequences of these definitions.

1V 11 Definitions and Useful Lemmas

We .redefine the notions of ‘Lé flow's index sct and critical ;ndex set fom;ally and iqtrdciuce ’the
_operators P?oj., Inj and Restr: . ‘
_ Definition: The i;ldex set of a flow F witt‘\‘“lndex 1 fs‘ deﬁned as
IS(FY = {1 | thereis a record in F for 1}
Definition: The cri?i;al Li;ndex: set of a flow F (wifh ihdei‘i) w‘ith respect to a flow X is deﬁne& as

CiSx(F) = {I | there is a record in F for 1
that is necessary to generate some record in X} -

Definition: The projection of an index set S with index. (ky, ..., ks Kyiyo - - » ky) Onto the sub-
index (k,,..,k,) is defined as

ProjiS, (ky,..,k,)) = R e :
(kg k) | Tk, k) such that €Ky, .., Ke, Kpypo- -2 ke) € S}

_ Definition: The injection of an index set S with index 4ky . ., k,)-by the index set T with super-
index (k,, . ., kg :,u,,,,.’. .+ ky). is defined as .

Inj(S,T)- , -
{tg ke Kpope -2 Rg) | Ry, .., k) € S A

Ky Ky Kppegs o Kgd € T}
Definition: The restfiction of an index set 5 witht'kﬁex Ak . ., ky) Dy the condftion C {whose
truth depends on the values of the keys ky, . ., k,) is defined as

Restr (5,0) = {(k,,.., k) ¢S | C istrue}

From the last three definitions the following simple but useful results (stated without proof)

can be obtained: | o

Lemmal: IfAis an index set with index I, then
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Corollary I: Let F be defined as in Theorem 1. frm for any flewF; with index identical to
that of F . :

CISE(F) = IS(F)

Theorem 2: IfRisa ﬂow (with index I} described by the appiitation of a reduction operator

to a flow expression expr in terms of the flows Fi....Fp where ncﬁ flow F, has index 1, (eg.

the flow equation for R.is: R IS SUk ;v(}' axpr FOR EACH. <igy);then

' ‘Cng,(Fi;.) = P}e;US(expr} S |

(Note that the index of expr must be a super-index of Iq.)
This theorem snmply says that- when a flow (as that dcscﬁhed by expr) is reduced: every record of
that flow is used in calculating the resu!t From Theorem | we have in turn that the critical index
set of each F; with respect to the flow.to be reduced is given by the expression on the right-hand
side of the above equation. | |

quoll;ry 2 1fRis a. ﬂow (with index ln) described- bytheapplhum of a reduction operator

toaflowF (eg. R IS Sm{l: F FOR EACH <kg>), then

CISg(F1 = ISIF} -

The followiné theorems concern the- nature of the{index sets of flow cxpnsﬁons. First, a
simple result about flows describe;i_ by reduction 7 |
Theorem 3: If R is a flow (with. index [}g)‘ described by the application of A reduction operator.
toa ﬂﬁw expf‘e'ssiim expr'-’(e.g. the flow equation f& Ris: R IS SUM OF expr FOR EACH <i§>),,
_then | o

IS(R) = Proj(IS(expr),ig)
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ISR} ni= 1
IS(safelF,,..,F,)) =
. N ISHE) > L

i

As mentidnéd above the only legal arithmetic flow expre;shn in FE-HIBOL is a safe or. a
safe further qualmed by some condition. Thisforther quauﬁuuou ‘must take the form of a Iogical
expression ANDed with the safe. Thus, to complete our treatment of arithmetic flow expression we
_only need the following simple theorem:

Theorem 5: The index set of a simple arithmetic flow expression safe qualified by the
condmon Cis glven by | , | |
o lS(safe AND C) = Restr(lS(safe) C) o
- Consideration of special cases leads to three snmple coro!hrics

~ Corollary 4: By Lemmas 2 and 5

IS(safe AND G PHESENT) = Inj(G, lS(safeH
= [S(safe) N Inj(G,1S(safe))

Corollary 5:
IS(safe AND (C; AND Cp)) = Restr(ts(safe),c.) fi Restr (IS(safe),C,)
Corollary 6: .‘

IS{safe AND (C, OR C,)) = Restr(IS(safe) ,C,} U Restr (IS(safe),C,)

Ay

For conditional expressions with two cases'? we have the following result:
Theorem 6: Let E be a conditional flow expression oftwo terms:

E = ) EXP‘;I 1F _C]
ELSE expra ia Cz

19 The extension of this theorem to more than two cases is trivial.



= | i Do Rk

m""'*“"‘"‘t*ﬂlﬂlﬂhm and Cy a’g'ngnt
) ,...,‘«lsaise;
xprenions.  Define the ""wxﬁ’u E; (wing the e flow and logical
£ wpgdes B EEE YoInMw gw@w #a walt ﬁ,m%‘m el ﬁgim st 3?6{* hanotina 2A

&3t ";é R mgéi > }?M;&% Q\r&mﬂ' Bt &"mm smror o Deitdgup G0t BiE

i el HAR paligtiag

e

3,
P
pe
&
bl
iy
A
P

gas woll ndnie o nE @ v 53‘*‘@ o "wﬁ?
ISE) - ISE) v ISKEY nmonits &gﬁm gestwodled sobi beorr i

3

~asigee woll sitemine shgmiz 5 0o }ag wsbai T F msveed

R

d 3 134 ;3 50 "sf.}fih{ma
To Mustrate the *"m "‘ﬁ"“"’*‘nw and verify
# 3
M&ehqm " * 13, lateel 81y iesdl = 1D % stszied

433 si Ma‘ m sszEy bEppang Y0 noitersbiealy
Esawple £ R IS BE S0 OF £ FOR sgm " B

€ b ¥ zenumad A b oyl TN

mnmm &,3:‘?&:* &;.k;l &ﬂhna-abve&cw
(latge)R1.00ial = (THIZIRT S OMA atoal &

: i tigtnzlel Dtist O wm»h’?f =

for each tk,) from F o iR yrélenaDl

RS - q - s
HNORE T ’E !, gﬁ Hls.p}‘z‘:*%agia;;;*z

s58 = 11D MHA (O (WA sisel ™l

oach Byl frem Fi,) : o S & tralirel
(0, 1sTpa iyl e P 3, tietElisteei = {10 AD jr Ok siseldl
UM =y : . R . ) X

g W JRwOlGE it 37 6 S € sorks owi dhw eI e EnDEEbGSY 107

R e R "s-wawgm woll Isaoiibnes ¢ sd rmd @ mesdT
bogin _ _

Ry ""!"' -

if definediswm]




Data Driven Loeops ' -5

In level | we have the output R and the driver F. The index set D) enumerated by this driver at
this level is?
0, = Pboj(lS(F) (k))) = IS(R) (by Theorem 3)
thus satisfying the dmung constramt for the input R.
In level 2 we have the input F and the driver F. Tﬁ_e index set D, enumerated by this driver
at this level is |
D, = IS(F) = CISp(F) (by Corouary 2)

thus satisfying the driving constraint for the output F.

Example 2:

i

PAY 1S HOURS * 3.08 IF HOURS PRESENT AND
v NOT HOURS > 48

ELSE 128 + (HOURS - 48) # 4.5 IF HOURS PRESENT
We..shall use this example to illustrate Theorem 6. Define E,and E by
E; = HOURS %= 3.88 IF HOURS PRESENT AND NOT HOURS > 48
and ,
‘ E; = 120 + (HOURS - 48) x 4.5 IF HOURS PRESENT AND
- NOT - (HOURS PRESENT
AND NOT HIRS > aa)
By pure logical snmpliﬁmnon the hst eguation can be rewritten:

E, = 120+(Pﬂﬁ$-63)*45 lrmsmssut»n

From Theorem 6 we have that

7""’ Theorem 8 of the next section.provides a formal treatment of enumerated index sets.
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for each (item-id) from C
get Plitem-id)
for each (sfore—id) from Clitem-id)
get Clitem-id," s'tore-fdf o
EP(item-id, store-id) = ...

if definedlEP(iten-id, store-idl)
then urite EP(item-id, store-id)

end
end
In level | the iﬁput is P and the drivq is C Theindexset D, enumerated by this driver at.
this level i | | |

Dy = ProjUISIEY, (item-id)) ,
5 15(P) AProfIFSIT), (Ftemsid)) = ClSgptP) -
In level 2 the input is C, the output is EP and the driver is C. The index set D, enumerated

Syt

by this driver at this level is S
D, = IS{C) _
> InjUIS(P),IS(C))  (by Lemma 3)
= C’S{p“:’ - IS(EP) ‘

Thus we see that thc ﬂow C is (at Jeast) adcquate to drive both level&

1V 1.4 Driving Flow Set Sufficiency

‘We wlsh to 'be able f6' determme whéﬂm 2 set of input ﬂﬁws’ i; mmcient to drive a
computation loop level. Let us begin by defining the notion of the necessary i;;;ex ‘set for a
computation level:

Deﬁnition "The | necessazy index set at !evel i for a compum c (denmed NlS‘(Cl) is deﬁned «s-

the set of index values necessary to drive level i ut the toml;nemd MWG

viosn. Sy
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IV.L5 Minimal Driving Flow Sets

vT_h,e set of all inputs of a computation is sufficient to drive that computation. We ‘are
interested in ftnding the smallest subsets of this set that. will rpmvsdetsoﬁident drivers for each
!evel. This interest sterns from our implementation comstraint that all drivers must be read |
sequentially and mos,t have compatible sort orders. If all.contained: inputs were used to drive“each
leve! of a computati‘on‘vlopy, all inputs to that computation would :have to have compatible sort
orders and.a_" would hnve to be read sequentially.;a;cmstm that is often unnecessarily severe.

Moreover, from an efficiency point of view, we generally-want the set of indices enumerated
by the drivers at any level to be as small as possible (whtle sattsfytng the fundamental drivmg
constraints) so as to minimize the number of itentnons For example lf we are trying to minimile :
IO accesses and we have a loop that reads some (non-driving) ﬂow by random access, the fewer
iterations there are the fewer attempts there wm be to access records from that flow.

Consider, for example, the EP computatlon (Example 3 above) The inputs contalned ln the 3
outer loop are P and C. Both together could have been used as a driving ﬂow set for that level
We were able to show, however, that C alone was sumctent to drtve the outer Ioop Thus. we came

p with an implementatlon in which only the ﬂow C had to be sor;ed and read sequenthlly
Additionally, in this lmplementation only those records of P that can actually be used are fetched

Tt is important to note that the ustng some smallest drwing ﬁow set fore;cn Jevel does not |
always improve efﬁclency In the computatlon above tt can be shown that P abne is sufﬁdent to
_drive the outer Ioop However, such an implementation would be no better than one in which the .
" outer loop is driven by both inputs Since the. inner Ioop must ¢ be. dsiven by c in any case, we .

would still end up using both inputs as drrvers ‘both would have to be sorted compaubly and read

sequentially; and more records of P would be read than would actuaﬂy be used
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A>B @ Buy » Age

‘.rhe expression on the right of the equivakmexgp;m;wls,alﬁi‘muh in the first order
predicate calculus. If this formula can be shown to be a-tautology the corresponding set inclusion is
proved. Show-ihg that a formula is a,tall't_ol,ogf_ris.,m‘ to: showing that it simplifies toT.
Since powerful first erder predicate calculus simplifiers exist, themkof proving sét inclusion. can
be solved by recasting the hypothesls as a predicate calculus formuh md*itying to slmpllfy it. If lt.

can be slmpln‘ied to T inclusion is proved if it slmpliﬂes toF inclusion is dlsproved
When the formula cannot be slmphfied to elther T or F thcmuning ef the result is not
‘dear Either the simplification is cerrect (in which case the-formula is nota tautoldgy. and thus set
mclusnon does not hold) or the simplifier has run up agaimt a ﬁmdamental hmntation” and has
failed to simplty the formula completely In the fatter case the fwaubmy in fat:t be equivalent to
T (implymg set mclusnon) but the simphﬁer is unable to determine it Because of this ambiguity.
the wisest assumpnon is the conservative one: whemm shpmm to I does not occur, set

" inclusion does not hold.

1V.2.l Characteristic Functions for Index Sets

" In this section the pamculars of the syntax and semmd chamm functions for
index sets are presented.
RN

The characteristic function for an index Set is a logm exprm ipredime) in terms of its

- the keys of its index that is true for an assignment of values. te those-keys in exactly those. cases in

2% It is a well-known fact that it is impossible to devise a procedure that will correctly simplify
: ever! formula in the first order predicate cakulus.

5 Because-our work is implemented in the LISP prognmmtng hnguage lhe notation is -
unabashedly LISPish.
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which the index set contains a corresponding index value. Tlﬁﬁﬂ'sgik,.-..k,) denoctes the

| Saethy. .. A = T i Sosmtains anindex valie with k; = Ky, ... ko= &,

L Standard legical aperaters®
a. AD- ABypy..,p) =T m:mwmmmadﬂnp,m

troe for that instance

b. m' fm P:-...l!.i =7 f“‘m'whmﬂmﬁ@mm

<. NOF @0BT p) =7 ﬁrapﬁaﬂakqﬁemmﬁfpt{abefmm
instance

d. FOR-SOME  (FOR-SOME (k. . ., ky) PRy, . . . kge kmpo - Ko)) = T fora
particalar kep-tuple:imstance (K, ;. . -, k}ﬂmﬁmh&ci@x,“.,g
mchdutthepndntep{k,,“.k,)smtﬁsnawm

2 Standard arﬁMwmeWmhaM@m
hmduﬁ&h“ﬂmhﬁmﬁ“mh -
xand /)
a. EQUAL (EQUAL expry expr,) -Iﬂw,aﬁw:hnﬂnsmml
value .

b. GREATERP !ﬂiﬂﬂl’exw, ea@r,i =1ﬂth~unluhedw, is
‘greater than that of ey, : _ .

3. The special operator DEFINED; (DEFINED IV per k,, .. t,ii-l’ﬁi" » isn
mthevanakampemadperaxtheWm!k,,.-,g‘) T’*"&-‘Mwa

. DERINED oprratar-somst be a vaviable.

The terms intseduced here ate explaitved in greater detaif in Ti following soctions.

2% The synﬂn!spandpidenolcpmdm.
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IV .2.11 Variables

A variable is a representation of a HIBOL f‘l'owbwn,h_gg’y and period information attached.
The period uniquely identifies the variable in time (i.. it specifies a particular "incarnation” of:the-: -
| flow). An assignmenr.of values to a variable's mdex and .its period specifies an instance of that
~variable and this instance is said té be d{[ined if there is a datum (an(ithﬂi récord) corresponding
to the key and perlpd vvaluve.s _r.lamed‘in ‘thg assignment. |
The ge_ne;ralk form for a variable is
{flou-name - period keyy ... key,)
where flou-name is the name of the asso;iated ﬂqw” the, slot qgriod: contains. the name of the
period in whlch the variable is generated or input and the slots kay; contain the names of the keys
of the variable.. An example of a variab!e speci!’ication s - |
' (E’MLEU term student subject nu:bcr)
wrnere
ENROLLED is the name of the vm:nable
term is the name of a period
student and subject-number ate the x;ames of the varlables keys
An occurrence of 'a variable.in a- pred:cate is. «M@ wubk rejcmm In-a variable’
reference the form in the period slot 1dennﬁes a partiquhr inamation of the variabk (e.g. if the

period slot contains TERH that means that this’ term’s incamation of the variable is belng referred

to; if it contains (PLUS TERM -1.), last term’s incarnation is referred to).

T ywah

27 The variable and the flow have the same name.
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IV .21.2 (DEFINED variable-reference)

" This expression is true if and only if variable-reference is defined. In particular an
expression like
(DEFINED (ENROLLED term student subject-number))
is true for an assignment .of constant values to each of its keys and !speﬂndif and only if the
variable ENROLLED in.the specified period contaifis a record corresponding b the specified index
\;aluc; Qtﬁcrwise it is false. Thus, for example, t& predicate abu'eis tmefor wbjet:t—W -
33 and term = TERM if and only if in this term's incamation of EAADLLED there is 2 record for the

index value €JOE 33) (ie. #fand only:if-Joe 15 enrofled in subjéc

o3 during the cutrent term).

IV. ZI 3 Wremdm Between Logml and Sct Theotttic Netatim

il

In our characteristic funcuonlmdex set dmuty the genenl W bﬁm ‘fogical |

and set operators is given by::

logical operator

AND . i : : O 0’ ’

(FOR-SOME (k.1 .., %) Spu?* " Projis, ), ..k J}

(AND S, C) - Restr(s c)

AAND Sguq Fo) T “Injes T

(DEFINED (V ...)) - IsM

That is:

the characteristic function of the intersection ol‘ two sets is the kgial AND of their
characteristic functions;

the characteristic function of the union of two sets is the logical OR of t_heir characteristic
functions;

the characteristic function of the projection Proj(S,1°) of an index set S onto the sub-index
I* is the FOR-SOME operator applied mhMWdSM&emW'
keys;
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the characteristic function of the restriction Restr (5,C).iof aw ihdex set S by the condition C
is the logical AND of the charactenstic functlon of S and the conditim C

the characteristic functlon of the mjection ln i (S AL of an index set S by the index set T is
the Jlogical AND, of their characteristic functions; - v :

~ the characteristic function of the index set lSW) of a vsﬂlbie V¥ is the DEFINED operator
" applied to that variable.

This mapping can be used to determine the charar.teristic functimvof any set expression
encoumered above | o |
‘Examgles:
The index set
1StP)
| ’ has the characteristic function

([EFHED {P DAY 1teu-|dH

‘ The index set

IS(P) n ProjlIS(C), litem-id))
. has the chafacteristic function

(Am ((EFUEU w®P DAV ltel—id” '
(FOR-SOME (store-id) (EFIKD i W item=id store-id))))

Tbe index set - - o s
Restr (ISTHOURS), NOT HOURS > 48)
- has the characteristic functio'_l

(AND (DEFINED {HOURS MEEK employee-id}) -
" (NOT (GREATERP (HOURS WEEK emwployee-id) 48)))
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lV.2.2 Ba:k-Subum of Chtmasa: l-‘miau

Wemhkewrmmxmmmm:smmmm asposub\e

i
 soas tobeabkwdaﬂnﬁncasmhasposs&ammﬁ clas Mdmﬂu ‘sets.
The mty:;posﬁb& characteristic fanction for a varkabié: (¥ perk. SHLN that is'a system

input (ie. avarhbbwmm“w:mmdbynnsymhmkawphetﬂst)isthe

trivial one ![EF"EB !Vper k,,.. k,)l bmmeallhaunbcnidisthatkmma reoord
iff it contains a record. ‘

In some cases an mput variable may have the special property that it will always amtama
record for every allowable index value. (mehdgednxhapmyambe_fkﬁm from
the HIBOL specification of a data processing system; it must be supphed sepame!,) Such a
variable is tcrmed denrse or full. An example might be the PRICE nriablq which in every
incarnation shoukd have a record for every possible vabeofthe index htea—nd) ln such a case
the charactenmc function of such a variable is simply T

We could use the trivial characteristic function for a compmed vamble as well, but more
(useful) mformatm can be obtained through the appﬂutim of Tbeorem 3-6 to the defining
HIBOL fbwequzlm Mmmux%lawﬂ!bo&htﬂcﬁﬂchm
functions for critical index sets. Characieristic functions thus obtained are cafled oméisiep
characteristic functiens.

ft shoukd be easy to see that for any characteristic function if ifi occorrérice of (DEFINED
variable) is replaced by the chanaemtkm l‘« variaﬂe ﬂde m m be a logically

T
equivalent characteristic function. This is termed bcc& substitution of characteristic functm& If

back-substitution is applied recursively, the resuk will be a characteristic function mm only
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DEF INED’s whose arguments are non-computed variables. This is called fofa! back-substitution.
Total back-substitution of all characteristic functions has the advantage of making them:all into a

uniform form, thus facilifating comparison and logical manipulation.

1V.23 Example
Consider the flow equations:
S 1S H xR IF H PRESENT AND R PRESENT

X IS (H-48) xR / 2 IF H PRESENT AND R PRESENT AND H > 40

P IS S + X 1IF S PRESENT AND X PRESENT
ELSE S IF S PRESENT
ELSE X IF X PRESENT

where the flows H and R are system inputs, all flow have the index (key) and all computations are

performed daily. The one-step characteristic functions of the necessary input sets are?*

NIS{S)y,, = (AND (DEFINED (H DAY key))
(DEFINED (R DAY key)))

NIS(X),, = (AND (DEFINED (H DAY key))
{DEFINED R DAY key)) -
(GREATERP (H DAY key) 40))

NIS(P)y,, = (ORIDEFINED (S DAY keyl))
(DEFINED (X DAY key)))

From these we deduce (by Theorem 9) the following. resuits

1. Computation S can be driven by either H or R, since both

28 We use the outputs as the computation names and drop the level subscript since there is only
one level.
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NIS(S),y = (DEFINED 6 DAY keyl)
and

NIS(S),,, - (DEFINED (R BAY key))

are troe

2. Computation X can be driven by either H or R, since both

NIS(X) 4y -+ (DEFINED (H DAY key))

and
NISiX} e, =  (DEFINED (R DAY keyl)

are true

a)

@b)

3. Computation P must be driven by both S and X, since neither

NIS(Ply, - (DEFINED (S DAY key))
NISIP},, > (DEFINED (X DAY keyl)

. are true, but

NIS(Pl,, - (OR (DEFINED (5 DAY ¥ey)) -
 (DEFINED 1 DAY Keyd)

is true
However, we know that

1S(S) 4 = (ANDIDEFINED (H DAY keyl)
(DEFINED (R DAY Reylh) -

IS(X) ,, = (ANDIDEFINED @L8AY keyd). -
(DEFINED (R DAY keyl)
(GREATERP (H DAY key} 48))

" so back-substitution of characteristic functions yiekds

(31)

il
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NIS(P) = (OR (DEFINED (S DAY. key})
{DEFINED (X DAY key)))

" - (OR (AND (DEFINED (H DAY key))
. (DEFINED R DAY keyd)) -
(AND  (DEFINED (H DAY key))

.. SDEEINED- AR DAY keyd).
(GREATERP (H DAY key) 40)))

~ (AND (DEFINED (H DAY key))
(DEFINED (R.DAY keghl} -

Thus, formula (3.2)
~ NIS(P) g, » (DEFINED (S DAY key)) -
becomes :
(AND (DEFINED. (H DAY key)) (DEFINED-(R.BAY: key}})
-5
(AND (DEFINED (H DAY key)) (DEFINED R DAY keyh)) -
which is obviously true. Thus, back-substitution has revealed that computation P can be driven by

S alone.
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V11 Stmple Compstions
w*mmw
PAY IS RS = 3-' w mm |

'uﬁumn&ml-ﬂhwm

The busic implraentation of this computisie _;gmmup.mmu
" rend 2 m&m&

a"""“ﬂmmmﬂa; winon,
'-m-gn-eu-suie. M*“*‘**ﬁi,; o of Slind we
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extract the data item (the number of hours worked) - -
mutltiply it by 300, .
assemble the corresponding record ofPA¥ g

whose employee-id key is (hie same a3 the record read

whose data- item‘s value is the resiskl ofmulnplying the value of the data item of
the record readbySOO B T R

write the newly created record to the file PAY

To support this iteration, there must be
declarations of the data objects to be used”
loop initiatization

EOF (end-of-file) checking (to terminate the loop)

V 111 Necessary Data ‘Obgm and Their Declaration

First there must be dectarations for all input and output fites. Assume that the files PAY and
HBURS are known by these names to the PL/I environment UCL code can be gmerattd to make
. this happen). Then the following declarations must appear in the PLJI code:

DECLARE HOURS INPUT FILE SEQUENTIAL REC)
PAY oum FILE SEQUENTIAL ¢

3

There must also be declarations for data structures ancmary to the IIO and control to be
performed. In particular, for every input file there must be a record image data structure into
which a record of that input can be read. Likewise. for every output file there must be a record
~ image data structure into which a record of that output can be buiﬁ sofhaf th can be writteuout.
In our simple example, the HOURS and PAY files must have such associated data objects. The PL/I

structure can be used for this purpose:
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'DECLARE 1 PAY_RECORD,
2 ENPLOYEE FIXED DECIMAL (41,
2 PAY FIXED DECIMAL (4),
1 HOURS_RECORD,
2 EMPLOYEE FIXED u»:cnw. m
2 uns rnm timm ar:

Fmaliy for each iapma ﬂag is needed to indicate the. EQF mgmm Thus, for the

=3 r,';i.f 1 I

I{IRS file we would have the declaration:

i SR SRR LTI & S I

DECLARE 1 EOF ALIGNED, \ .
2 HOURS BIT (1) UNALIGNED INITIAL ("8°B);

When EOF occurs on the associated file this. flag is,m w'l'B L

V.1 Loop Initialization

Before iteration all flags must' be initialized. This can be done by the use of the INITIAL

statement in the declaration (as abave for EOF.HOURS). Aba aR drivers must be read to-establish

tmml vaiues for thm mdm !n gut mmpie,me initi mmm of merely: -

READ FlLE (HOURS) INTO mns_m)- :

V.11.3 EQF Checking and Lotp Términation

 its cprresponding flag. the PLII ON construct
can be used For thel{lﬁs file the approprmecodcmh be: . .

To detect an EOF condition on aﬂku’“ﬂ

CN EM}'ILE (FURSI E(F FﬂRS 1'8;

To enforce rteration termmatm upon EOF of the driver, the loop i3 construcied using the

‘ formDO WILE (- E(F drwer)
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V.11.4 The Loop Itself

Given this supporting structure, the rest of the implementation is eisy. The foop itself can be

written simply as: R
DO WHILE (- EOF.HOURS): . G e
'PAY_RECORD.PAY = HOURS_RECORD, Hﬂms:;m; at e
PAY_RECORD. EIFLOYEE - HOLRS_FECORFIPLONEE: R
WRITE FILE PAY) FROM (PAY_RECORD); o |
READ FILE (HOURS) INJO. (HOURS_RECORR) 5 B
END ;
When the loop terminates, the job step is ended and the mput and output ﬁlesﬂ are‘automatically
¥ 8 T Ak
closed. The complete PL/I program for the pay caiculaﬁon compu::thn :sgiven in Fig L '
I ESE AT L
V 1.2 Uniform-Index Matching CW‘M e TR NN IRERD YA e

Let us extend our treatment of single-leye} loagimplementations 16 these wiW midre #ffan one
input We use as our vehicle the variation of the. mmm o Inthifes ¥ rate fie tindexed
by '-"“Piovee'!d) ' - B SR RTERFE R R EY .

PAY IS RATE x HOURS IF RATE PRESENT AND l{lﬁs PRESENT |

Cmp AT gl

Suppose that the input files RATE and HOURS are to be read sequenmliy, that their records are
sorted by emp loyee-id and that I-DI.HS is tised as the lo::p dn;er o

- Again because the loop is driven by a single input file, it is implemented using the form DO
WHILE (- EOF.driver}. However, the computation description dictates that a record of the
output file PAY for a given value of the key employee-id is to be produced if and only if there is a
record for that employee in HOURS and there is a corréfmddhg record in the RATE file. Therefore,
in the body of the loop, before the output record can be calculated, the record (if any) of the non-

driving input that matches the current value of the driver’s index must be found. |
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To find the matching record of the non-driviag input we read: successive records from its file
comparing the index value of each record with_the current loop. index.. The: general matching

algorithm consists of the following loop:

For each non-driving imput: .

1. If FOUND. input is true (indlcatmg tlm the record. currently-held. in the. input’s image
structure has been used) read the next record of the mput.

2 if'an EOF condition has occurred on the input. set F(lm mput to falsc (0) and exit the

3. Otherwise, check the index. of the currat “’MMW the index of ‘the current:

" driver record . :
o . A §un Thg o toIan o N
B rr.squm mputtotfueandexrt

“H'<, read the next record of the input ‘and go to step 2

<
¥ e

If>, ‘there is no corrcsoor';dmg?record in the input Set F(lNJ mput to false (m case
__the index of the record just read may. maich that-of some: substquent mmm

- and exit

. : LR o i G At
e Ly e T IR T R T i :
AR+ SR ES OIS S ? e

To support this algorithm a flag FOUND. input must be declared:fos: each nes-driving input

SN I

and initialized totrue (l)hp!om.un»main leop. oo p et R BT
The imp%mentauon of the rest of ‘the main loop's body (followlng the matching code)

'consrsts of code’ that attempts to compute the omput record u:tug only tlmc nou-drtung inputs

fvm—*:

whose FOUND ﬂags are true. Basrcally. in this code, the PRESENT checks of thc HlBOL descrlption

e

gy

become checks on the corresponding FO.NJ ﬂags\ ‘

This matching process must belimpkmemed for every non-driving loput in a data driven
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PAY_COMP : PROCEDURE ;
{declarations)

ON ENDF ILE (RATE) EOF .RATE = '1'8;

ON ENDF ILE {HOURS) £OF WOURS = '1'B;
READ FILE {RATE) INTO (RATE_RECORD); ‘ R "
LEVEL_1_MININUM.EMPLOYEE = RATE azcem tmovrf. R

PO WHILE { EOF .RATE):
IF  EOF .HOURS
THEN DO:/* THIS READS ITEMS, SEQUENTIALLY, FROM A ruz UNTIL. mgtaf,qytsmp ;
RECORD IS FOUND (SET FLAGS TO TRUE) OR PASSED (SET. nms,n uu\ﬂ */
IF FOUND.HOURS_RECORD 1
THEN READ FILE (HOURS) 1NTO umns ucoui. '

»
0

HOURS_RECORD_COMPARE :
 If -EOF .MOURS
THEN FOURD .HOURS RECORD = '9'B;
'ELSE IF HOURS nccm&;mov:c - gﬁtmwm

mmnanmom)mzsva:c«pm-'ng,.f?.erq g an
ELSE IF HOURS_RECORD. !mom 2 LEVEL ) ! ummmt

B " men rom mm- u.‘,,,
ns; 09; mﬁ FILE (oms) 170 (nms RECORD) ;

END;

wite FILE mvj‘ Fron gm_umx,

Elb;
READ FILE (RATE) INTO (RATE_RECORD);
) LEVEL_1_MINIMUM.EMPLOYEE = IAIE_RECOID.{HLOYEE";
END;
END PAY_COMP;

Figure 2: PL/I code for PAY IS RATE » HOURS
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Firsr. notice that the iteration structure is fundamentally different from: thiat for a single
driver loop. The index value determinatmqaﬁ-wﬁsm is-now perforined: at the beginning
of the loop body3! As always, the feration. is: terminates wien-all drivers are exhairsted (When the
flag EOF_SO_FAR ends.up true sfter-all:drivers-have been read). Thus the teop exit must appear
before .the output calulations.and the form. DB SHILE: ('1'BY is wsed instesd ‘of DOHMLE (-
EOF . driver) (as in the g%&ddﬁggu& “This is. st a minog: vmntim on the bajic stheme. = -

What is interesting in the implementation of Fig. 3 is the use of the PLII ACTIVE structure
i TR CRL LA
.and the ACT]VE_DRIVER CU.,NT variable in determining the proper next index value. The idea is

i?'f.’? i “..x! T

to look through the drivers in succession. The ﬁrst is used to establish a tentative index value for

'}{u; f‘ f* STERES PEenpel nE i 3¥: i ‘
the current iteration. The first dnver is also givcn a number that marks it active {for the time
Bl oy s e’ P s E S B T B Lad oy o RN ok

bemg) s the next ariver has the same mdcx va!ue it is given the same number lncéiﬁr‘rgﬁrat it

will. be autyc when, B:géjrst i1t has o lower Jndiex uhuinw Jdéx 5 peset and’the second’

2ait el 2 gtz wt o brs Dy ol Es il TH

. RIS 2 k3 118
driver is assigned a higher number, meaning that it is tentatively active (and eﬂ'cctively. that the
-«! it IERSEE PSS . & Sy P SEUTEr MG *' CEHE A

flrst is mactive) When all drivers have been examlmd those sharw WN}H’VE number

(held in ACTIVE, DRIYER_COUNT ) are mmasked. detined, *Wtﬂam&dwm

Sy FEIIRGOR 5 Y gefh arenoo s

wnoaget U

V. Z;Mulu !,

Mutiple-tevel bops intraduce the peed .for maintemance of current index” values for: each
- distinct loop "”’ﬁ! and- for. contrp) structures. to implement Joap detving. fromloops at lower:levets. - -
Multiple-level lpops arise from two hasic seusces: Feduction . computstions ‘and - mixed-index

matching computations., Let us examine the i jom.of each Intusi. .

31 1t could be done at the end of the body if the same code were duplicated as an initialization
before the loop were entered. We have refrained from doing this to minimize code. ‘






1 TEMDEMAND_COMP :. PROCEQURE ;
{declarations)

ON ENDFILE (DEMAND) EOF OFMAND.= *1'8; .~ [ . = .
w\o FILE (&ma INTO (DEMAND -RECORD)
rven no LEVEL 2 mum mn * um RECORD . 1TEN;
LEVEES_ 1 THARL2_MINTIVN. LTEM = LEVEL R VRIS TTEN; . -
Ewo: ' ‘ '
ELSE LEVEL_1 = '0'B;

DO WHILE (LEVEL 1): .+ . ol G o
DEFINED. ITEMDEMAND = *0'S; '
" B0 WHILE (LEVEL_2); )
IF_ DEFIHED, 1TEMOEMAND et et s wee R
THEN TEMDEMAND_RECORD . 1TEMDEMAND = mmcam RECORD. I TEMDENAND + DEMAND_RECORD. osmnn.v
ELSE DO; ITEMDEMAND RECORD.1TEMOEMAND 1~ mﬂm ST R SR
DEF INED. I TEMDENAND = *1'8;
3 €W ’

~ 5
[ ol {%‘J‘--‘

READ FILE (DEMAND) INTO (DEMAND_RECORD);
IF  €OF .DEMAND N T I LA PACE N
THEW DO; LEVEL_2 MINIWUM.TTEN » DENAND_RECORD. mﬂ
L TEAGVEL 2 BNINON. [TEN 3 LEVELR:Y weise;Ndimn iven
Csp,  THEW LEYEGLEsctATE;
’ R kEID; )
CELSE DO LEVEL 2.~ 'O > oo s penn DU e
LEVEL 1 = '0'8;
T END; ) : u
. ITEMDEMARD ﬂECOllll ITEM = LEVEL_L nuumn nm
WRITE FILE (ITEMDEMANG) FROM (1TEMDEMAND_RECORD); SR R

IF EOF.DEMAND . .. . e et o
THEN LEVELS_1 THRU_2 MINIWM.1TEN = LEVEL_2 NN 1TEN;
END;
END I1TEMDEMAND_COMP;

SRR L e e
Figure 4: PL/I code for  TEMDEMAND IS THE SUM OF DEMAND Fmﬁm" lTEH—-lDV
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‘a. one is found that has an item-id value matchmg the driver’s item-id value m whjch
case all EXTENDEDPRICE records for that value an be gmerated or

!{

b. one is found that has an item-id value greatcr ‘thin the dfiver's, or the PRICE file is
exhausted, in which case there is no matching vaﬁe?ihd the inner loop can be skipped.

2. (Inner loep) cheum all mpmrecm for Mglm Fién-id vﬂue reading records from the
driver as you go. When a driver record is read that has an f‘te-—td Vvalue greater than that of the-
current PRICE record, or the driving file is exhausted; exit. * * "

3. If neither input file is exhausted go to step | and repeat; otherwise exit.

1n this ~way-each record oﬁht PﬂICE ﬁk is read oniymee
A PL/I implementatmn of thls algomhm is shomﬂn ﬂg 3 Tﬁe reader will notice that this

sy

implememmon is unnecessarily mefflclent becausé‘wﬁcn v miﬁ%ﬁngICE record is not found the
. ST R OE

inner loop is executed anyway Tms is mm m happens in the general case where

there may be cakulat:ons in the mmrluﬁp M«&b stm *beperfomnd without the use of a mlsslng

input.

V.3 Agpregated Computations

The aggregation of two or more computanons into one nested loop introduccs a consideratnon

~ not seen before: the synchromutien *ﬁ‘eumpuﬁfm at M% kvé!t COnsider the two

W HihT

HiBOL computatlons. ‘ LLa L a¥s

EXTENDEDPRICE 1S PRICE # CURRENTORDER IF  PRICE PAESENT -
| AND CURRENTORDER PRESENT

P
R 2

VALUESHIPPED IS PRICE » ITEMDEMAND IF  PRICE PRESENT™ '™ " '
: AND | TEMDEMAND® PRESENT

32 |f CURRENTORDER had been unsorted or - sorted dlffereutly. records from PRICE would-
generally be read more than once. -
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where CURRENTORDER is the same as above (with-index (item-jd, s&e—id&) and 1 TEMDEMAND is
a file with index (item-id). Ase have scenabous, the firsh compatation. can be draplemented as
a _two-!ev_e!;ng;gedy loqp T hese:oudmmatm siterates aver-the: siugle-key .itensid and 50 has '

- When aggregated.the result.is a two-levebioop:> =

" levels htell—uﬂ

y imutq,ailPBLCE,, lmi ;e
Protog: caiculate vaim—ﬂupped
Outputspempty

CoAneutsg ety L
Epidog: empty

;- . : I Seoren

Looep 2 {inner loop) _ _ :
,Lzevg!‘v(i' temajd,. store-dd). .oop o i d o o7 aneihn cpe et e g T

" Inputsp: ICURRENTORDER) ’ :

nglogz 1in -Galouwlale wsteniddeprice oo Fo
Outputsps(EmeCEi

PR Pt

§
lwutsg. enptg .
Epilag: . - .emply . - e Lo e el R R
Dutputsgauptg

o B feua i S Tt

What is slgmflcant here is that the computations in the aggreg;te occur in dmerem levels.
S AV AL s pie e wsft W MWL sy

Suppose that the PRICE file is guaranteed to have a record forevery item-id. Then 1 TEMDEMAND

is the natural choice for a driver for the value-shippgd computation bechuse a ucu’djd‘mw

will be generated if apd only, if, there is.a. ecord in- 1 TERGENAD: fos-the Same key. :As for the

extended-price computation, cmﬂsmmahmmmbm the driver. | |
 Now the outer loop iteraes over i fan-igh values detesained by-bath drivess. Suppose the”

firs record of each driver is read. Thereare three cases, distinguished by the.retative values of the

item-id keys in these records:

33 Notice that in finalized loop description there is no General section.

7







{deciarations)

{ON conditions)

(read CURRENTORDER and initialize LEVEL_2 MININUN.YTEN = CURREHFORDER_RECORD 1TEW;)
(read ITEMDEMAND wn initislize  LEVEL_) MINIWM.ITEN = mnuw- RECORD. ITEN; )

g s 53 SRS 4 3T FE R
[} T A ’ .

(code to set the syndwonintlon n.g for each hnl to 'alu if ts drinr hed no morﬁ)'

(cwurism of 1TEM valves tp st synchrentietien ﬂm
1F LEVEL_2_MINTMUN.ITEM > LEVEL_)_MINIWN. TTEN

THEN D0; DOLENRL 8= A8 2 0 e
LEVEL 2 = '9'8; .
LEVELS ] _TRRY: 2 WIRINON, TTEN = LEVEL 1 WINIMUM. ITEW;

3 H ,
ELSE T -LEVEL_ 2 I8 MU, 1EEM  LEVEL Y WINIWN. [TEN
' THER DO; DO_LEVEL_1 = '9'S; ’

CAFVRLR e TR
LEVELS_|_THRU_2_NINIMON. mn - Ltm z nmun mu.
END; wf fdvrere LRGD 7T v e T S et
. ELSE 90; DO_LEVEL 1 = '1'8; i
LEVEL 2 » *1'8; ’ A
LEVELS _1_THRYU_2 M1N5WM. min m&*a M;
£049: ) ' '
DO WHNILE {LEVEL_)); ' SR
{reed PRICE record) SR

IF DO_LEVEL 1 THEN (calculate value- u-mu‘) f"%lﬁ“& 1y

N!ﬂ"t& (LEVEL 2); - ¢ o ow. et Lwewd mnpafngens CAS
IF FOUND.PRICE_RECORD THEN (cﬂcuhtc asnd write utmdci-pﬂu)
v (recd CURRENTORDER sod riset ' LEVELIS VINIWINETEN &thtm avin;y
(check for ¢of) .
IF LEVEL_2 WINIMM. TTEN > REVELS_ 1 THRE.2 MEUMIN. TN TN LEMLE v 208,
_ ‘ ' ELSE LEVEL_2 = '1'8;
END /% LEVEL_ 2 #/; o
IR A SU SRPT SUE S SR R S
* IF DO_LEVEL_1 THEW DO /+ Epileg LEVEL_I #/;
LTI R DEEINED VALOESHIPPED TN {ertiy Veleelskipped riverd)
(resd 1TEMOEMANS snd reset
AR TN TI T NV RECONS 1TEN;)
END /+ Epilog LEVEL 1 o/;

{synchronization code exsctly as above)
END /o LEVEL ] o/,

Figure 6: IHustration of synchronization code for aggregated computations

gty T
= LT
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PAY_COMP: PROCEDURE;

DECLARE DSAGI INPUT FILE SEGUENTIAL RECORD,
PAY OUTPUT FILE SEOUENTIAL RECORD;
DECLARE 1 PAY_RECORD, ,
2 EMPEOVEE FINED DECTMAL (4),
2 PAY FIXED DECIMAL (&),
1 BSAG1_RECORD, _
2 EMPLOYEE FIXED DECIMAL (&),
2 DEFINED ALIGNED,
'3 HOURS BIT 119,
3 QVERTIFE 81T (1),
-2 HOURS FIXED CETIAL (3);
2 OVERTIME FIXED DECIMAL (3);
© 2 EWPLOVEE ‘FIXED OECIPAL (4),
2 HOURS FIXED DECIMAL (3);
DECLARE 1 EOF ALIGNED,
2 DSAGL BIT .{1) uw_lwso INITIAL (°8°8);

© ON ENDFILE (DSAGL) EOF.DSAGI = '1'B;
READ FILE (DSAG1) INTO (DSAGL_RECORD);
. DO WHILE (~ EOF.DSAGL):

1F USAGI . DEF INED. HOURS
THEN DO;

PAY_RECORD.PAY - DSAGI_RECORD.HOURS * 3.8;

 PAY_RECORD.EXPLOYEE = m&maﬁmé
URITE FILE (PAY) FRON. (PAY_FECORD);
READ FILE (DSAGL) INTO (DSAGL_RECORDI

END:
ELSE;

READ FILE (DSAGL) INTQ (0SAG1 _RECORD);

END ;
EMJPkV m

Figure 7: PL/I code for PAY IS HOURS # 3.98 with Aggregated Flow

wget . . FEL
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used. If the sort orders are compatible the method of access |s completely analogous to sequential
- access except that "records” are “read” fmthﬁble mm efset%oﬁary storage (see Fig. 8).

If the input file is randomly orgamzed (regwml (2»%1& -atcess code generates 2 hash index
and then mimics the PL/] access procedure: compare the key value%"d‘*fhclndimed table entry
with the desired ones; if identical stop; ot hermse examine mvéémies i m‘ap—around fashion
until an empty slot is found (end of the bucket) or a complete cyde has been .made. If the sort

orders are not cmnpatlhhm move’ :emp!tcated bxmry seareh iy mmméd

V.53 Random Access

When the records of an input are directly (regional (2)) organized the file is randomly
accessed. Instead of using a loop; as with:sequential access, a single read, using a cakulated key is
executed. For example, if the PRICE file i the EXTENDEDPRICE computation (above) were
randomly accessed, the accessing part of the code would be:

PRICE_RECORD_HASH_VALUE = MOD (5 % (MOD (LEVEL_2_MINIMUM, lTEH 1,5

PRICE -RECORD_HASH_VALUE_STRING = PRICE_RECORD_HASH_VALUE;

PRICE_RECORD_HASH_KEY =

LEVEL _2_MINIMUM. 1 TEN || PRICE_RECORD_HASH_VALUE SIRIM}‘-

FOUND.PRICE_RECORD = "1'B;

READ FILE (PRICE) INTO (PRICE_RECORD) KEY (PRICE_RECORD_HASH_KEY);

The first three stétemen;s cakulate the source key string which has two parts: the region number
(rightmost 8 characters) and the comparison key (the remaining characters). The case where the
record is not present is handled by the statement:

ON KEY (PRICE) IF ONCDDE = 51 THEN FOUND.PRICE_RECORD = @°B;

which resets the FOUND flag if a "keyed record not found™ error occurs.

-
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IF  EOF .PRICE
THER DO IF FOUND.PRICE_RECORD
THER IF PRICE_RECORD_INBEX < = PRICE_RECORD _SIIE
THEN PRICE_RECORD_INOEX = PRICE ucm lm +1;
ELSE EDE .PRICE = *1°8; -

- PRICE_RECORD_COMPARE : .
1F €OF .PRICE
. THEN. FOUND_ PRICE, BECORD = *9'8; ‘
" ELSE IF PRICE_RECOR®.ITEM = LEVELS_1_THRU_2 MININUM. ITEN
TREN FOUND.PRICE_RECORD = '1';
ELSE 1F. PRICE_RECQRD.3TEM > LEVELS_)_THRU 2 MTNINSN.ITGN '

THEN FOUND .PRICE_RECORD = *'9'B;
ELSE DO; IF FOURD.PRICE_RECORD ' o
THEN IF PRICE_RECORD_INDEX ( = PIICE nzcm Size
o THES: PRICE,MECORD_INOER = -
PRICE_RECORS_INDEX + 1;
- ELSE EOF PRICE = ‘B0 o

60 7O PRICE_RECORD_COMPARE ;.
11 B
£ND;

Figure 8: PL/I Code for Reading PRIGE by Cote Table.in the Extanded Price Computation
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V.G The General Case--A Summary

We have seen that the basic code structure for a computation consists of thc fol!qwing four
parts® | | | o |

declarations

on-conditions

loép initiatization

the ne;ted loopss
The basic structure of the body ol‘ each loop in the nested loop is as follows

read & match non-dnvlng mputs |

Prolog cal,cu!atlons

“inner loop (if any)

Epilog calcutations

write outputs

read active drivers

determine new active drivers
and index values for the next iteration

loop synchronization code

exit on EOF or (for inner loop) sub-index change

3% It ‘may be interesting to note that ProtoSystem I's code generator generates these sections
simultaneously as four separate output streams (rather-than sequentiaify} that ave ¢atenated together
when they are all finished.

38 There is no clean-up code following the loop because. the-end of the job stép which is the -
computation does everything necessary, including the closing of files.
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Appendix I: The Simple Expositional Artificial Language (SEAL)

As an aid to discussing loops w!:»ir‘lvenl zn amﬁdalhngmge similar in form to tradlttonal
high-level languages such as ALGOL, PL/l and FORTRAN. The basic constructs of ;&u
language are:

Iteration: expressed by the construct:

for each <loop-index> from <driving-flou-set>

<body>

end
which has the meaning pcrform the actions comamed in the <bo§u> for uch value of the <loop-
index> obtamed from the flows in the <drwm@g-flou-set>”Adoop-—mde» is the enher the
name of the index associated with the flows in the <driving-f lou-seb ot (for reasons that
become evident in this paper) a sub-index of corresponding sub-ﬂo\u The setof values ‘tbat the

<foop-index> takes on is the union of the index sets of the drivers. This set is enumented at

execution time by reading successive records of the drivers.

/O and defined: input (record fetching) is expressed by the get operator.thu&
get «variable-instance> |
where <variable-instance> specifies a flow and a i:anicuhr vatue for its index, represemed as a
variable (see below). A statement like this nm_s-«*&tch—!ﬁe\iiﬂhﬁd Wd_’-lf itexists,
Output is expressed by the ur i te operator, similarly:
write <variable-instance>
The defined operator is a loglcal operator for use iﬂ conditioml exprcssions It is
applicable only to flow. vanable inmm The form |

definedl<variable-instance>]
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evaluates to "true" if the specified resord or the indicatedflow exists. -In particutar, #f the record is
an input (obtajned through a get) it is: "defined™ if-and-only if the! get:subceeded; if the record is

an output it is "defined” if and only if the generating code produced a datum for the record. |

Conditignal Execution: expressed: by the:familiar i f-then-e|se construct:

if <condition> then: <statement-list>;:
else «<statement-list>,

which means that if the logical expression <cond|t|on> evaluates to true perform the statements
in <statement-1ist>,; otherwise, peﬂ'orm the sam ln «vtatmm’ Hsbz

Logical expressions can be fprmed usmg themthmltié comparison operators, the defined

operator, and the logical connectives and or and not

Conditional Expresslons: expressed by the construct:

if <condition> then <expression>,
else <expression>;.

which evaluates to the value of <expreasions if the logial expression <condition> evaluates to

“true” and to the value of <expression>, otherwise.

Variables and Assignment: expressed by the construet:
| <variable> = <expression>
where = is the assigth operator.

A variable can be either a scalar or an indexed variable. Flows ere represented as indexed
variables with Aan index identical to the flow's index. Thus, DEMAND{i tew=id, store-id) is the
vqriable{gorresponding to the DEHAND flow and an.instance of its index: stlects: the dattsm'of the
corre_spo;nding; flow record.. That.is, for example, the statement:

DEMAND (1234, 5678) = CURRENTORDER (1234, 5678) +
: BACKORDER (1234, 5678)



o4 Data Driven: Loops

means that the datum of the record of DEMAND for itern #1234 ordéred By store #5678 is to get the
value obiained by adding: the data of the. corresponding records from CURRENTORDER and
BACKORDER. |
Typi.ca“y. the record-by-record computation imnplied>by a' HRIBOL flow equation would look
like that equation translated into our artificiak language (with a gmaiﬂtzdm.wch as |
mtite--id._ store-id) = S

if defined [CURRENTORDER(item-id, store-idl}
and defined [BACKORDER (i tewm=id,: store~id)] -

- then CURRENTORDER(itew-id, stors=idF &
BACKORDER{i tem-id, store-id}

else ”' ﬁefined[ﬂﬂiﬁNYMR(ité:-id. storg-id)l |
then MNTMR'H&!;H; ;tor;-ﬁﬂ |
else if de(ined(m(;iiu-ié,; »?t&e-idll
" then BACKORDER(itew=id, store-id)
else undefined -
and iwould appear somewhere in the body of loop.
- Sub-flows: A sub-flow (fc-rr use in the for each cmﬁm@) is expressed by
| <flou-variable> (<sub-index>}
For example,
 CURRENTORDER tem-id)
denotes the sub-flow of CURRENTORDER consisting of just those records whose inidices correspond to
the value of the sub-index (item-id). Generally, the valse of 'm'e indicated sibiindex is-fixed by an

enclosing loop.
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