
MIT/LCS/TR-167

USING TYPE EXTENSION

TO ORGANIZE VIRTUAL MEMORY MECHANISMS

Philippe Arnaud Janson

September 1976

This research was supported in part by Honeywell Information Systems Inc.,
and in" part by the United States Air Force Information Systems Technology
Applications Office (ISTAO) and the Advanced Research Projects Agency (ARPA)
of the Department of Defense of the United States under ARPA Order No. 2641,
which ~as monitored by ISTAO under Contract No. F 19628 - 74 - C - 0193.

CAMBRIDGE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE
(Formerly Project Mac)

MASSACHUSETT~ 02139

This empty page was substih,ted for a
blank page in the original document.

USING TYPE EXTENSION
TO ORGANIZE VIRTUAL MEMORY MECHANISMS

by

Philippe A. Janson

Abstract.
=========

Much effort is currently being devoted to produ~ing computer systems that
are easy to understand, to verify and to develop. The g!;!neral methodology for
designing such a system consists pf decomposing it' iato a structured set of
modules so tha't the modules 'can be understood, verified. and developed
individually, and so that the unde:rstanding/verHicadon of the system can be
derived from the understanding/verification of its modu).es. While many of the
mechanisms in a computer system have·b~en.~ecOJ.Dposedsuccessfully into a
structured set of modules,. no technique has been pr<;>posed to 'organize the
virtual memory mechanism of a system in such a way.'

The present thesis proposes to use type-. extension for that purpose. The
virtual memory mechanism consists of a set of type manager modules
implementing abstract information containers. The structure of the mechanism
reflects the structure of the containers that are implemented. While using
type extension to organize a virtual memory mechanism is conceptually simple,
it is hard to achieve in practice. All existing or proposed uses type
extension assume the existence of information containers that are uniformly
accessible, can always be grown and are protected. Using type extension
inside a virtual memory mechanism raises implementation problems since such
containers are not implemented. Their implementation is precisely the
objective of the virtual memory mechanism. In addition to· explaining how type
extension can be supported inside a virtual memory mecpanism, the thesis
demonstrates its use in a case study involving a commercial,.general.:..purpose,
time-sharing system. It concludes by providing some insights into the
organization of virtual memory mechanisms for time-sharing systems.

This report reproduces a thesis of the same title submitted to the Department
of Electrical Engineering and Computer Science of the Massachusetts Institute
of Technology, on 9 August 1976, in parti~l:fulfillment of the requirements
for the Degree of Doctor of Philosophy. ·

Thesis Supervisor: Michael D. Schroeder.
Title: Assistant Professor of Electrical Engineering and Computer Science.

2

These lines implement a fundament~L component of an abstract object of
type "doctoral thesis". The type manager for a doctoral thesis is realized by
two interacting processes, calle~_ '_'c,omm)t,t~e:', ~~9 "student". These lines
serve as an information containe1:"'us'ed 1,y1"tne' 'JHu:lent process to express his
gratitude to the committee process as well as to all lower level type managers
who provided the moral and material ingr~~iepts necessary to compose the
thesis.

"A tout seigneur, tout honneur", I ~ould like to thank fir8t \JlY thesis
committee for its coope"tation in managing· tµis tli.e_sis~ -· While an ideal
committee loo!cs. a~ ~- sin_gle: Pf?c,e,s:5~}0.:,!1.1f'.'8l,~,e'1f ,pr?c:es~_, .a'- rear' comtn1t_tee
is realized by th~ee parallel pro~,es,~.s,~ ,~'? _f,?rJl1,~aJ:ftl:,,8:8r.~~si ~pli op~r~Jed
in reasonable synchrony in this case, fll;ld_ I f[\a!l~ t\l,•,.for tltat,, t thanJc. my,.
supervisor proces,s' Professor Michael ~ht~~rr, fgr; hi, intexesting .
suggestions, his accurate criticisms., hls'. en'thysia'sl:1¢. e~couragements and the
many hours of dedicated work he 'devotel

0 '10 tiits °thesis,, pa.r'ticµlarly duJ."tng
the past nine months. t thailk my racier' pr_9ce21~s~'· fl:'ofess:ors David.Jtedell .
and Barbara Liskov, for their highly apprec:Latecf comment's' on the many drafts
of t\lis thesis and for the enric!1}ns,, gj.scµ,ssi9n.~ we __ ~_d ~bo~t tb,e r.~search. I
would also like to thanka virtual, reiiaet' 'process. Professor Jack Deno.is, fQ.r
his comments on early drafts of_ the' .fl.fat chapters·· of. the thesis, apd a . -
remotely cooperating process~ Pr9f~ss6r: Jirot11e. SJit:i:er, who_~. through
occasional short in.terrupts, prov_:!.ded. ~s with. some. crisp an<f in.sight£ ul
remarks on our research. "

Next, I would like to extend my thanks to seyei'al people associated with
Honeywell Information Syt:Jtet'!ls Inc,: .. to Andr~. ~tl~'18Sap. for discussing with
me the high level . issues that presid,d to tlie. design of NSS; to Bernard
Greenberg for helping me discover the marvels an4,'tb,.:surprises_hidden iu NSS;
to Jerry Stern for his comments on the ':t..plemeiit•tion 9f \llilitary security
controls iri Multics; and to. Tom VanVlec~ for.ots r~arks on the:quota
mechanism of Multics~ I would also. like to than~ 'sQDle of my,J~llow studen~s
at M. I. T.: Richard Feiertag and Douglas HQp.t_ for th~ :raud~ discussions we
had, which generated many ideas·and muchtli'lnking; Ai'idrew· Mason for answering
my many questions about the mechanics of NSS; and particularly David Reed for
feeding me information on processor management in Multics, for discussing the
applicability of type extension to it, and for commenting on the final draft
of the thesis.

Perhaps I should thank the Xerox Corporation for having hired 66.7% of my
thesis committee on the West coast starting in August 1976, and the
Commonwealth Fund of New York -- after_ al_l --- for bJvina required that I be
out of the count-ry by September 1976. · Whil,~ ~Q~t~tion of pr9cesses in
physically distributed systems is a faebional,le re~arch topic, the pr<>spect
of experimenting with it on a doctoral th~sis was not -p•r~icularly thrilling
and has certainly been a strong incentive to all of us to wrap up the work
within two years.

Thanks are also due to Ellen Lewis, who typed portions of the thesis, and
to Multics, which did not crash too often on me while I was typing the rest.

3

Last but not least, I express my wholehearted gratitude to those who
supplied the bottom level components that made this whole thesis possible: to
my sweet wife, Catherine, for her patience and her courage throughout these
long years away from the old continent she loves so mu'ch;; to iny little ·
Perrine, without whose distracting interrupts this thesis might have been
completed months later (or earlier?); 'to her expected sibling for not
deciding to be born before the thesis was completedi, which would have messed
up the sequence of events quite a bit; and to my parents, Who not only helped
fuel my wallet but also, through letters and' cassettes and transatlantic
calls, provided me with heaps of encouragements.

P.J.
Cambridge, 21 July 1976.

4

Table of contents.

Chapter I. Introduction. 8

1. Thesis motivations and objective·s. 12
2. Background and related work. 16

Parallel processes to iJnplement sequential algori1;hms. 17
Partitioning, decomposition, and modularity. 18
Total ordering vs. partial ordering. 21
Functional abstractions vs. data abstractions. 25

3. Approach and thesis plan. 30

Chapter II. Type extension in a virtual memory mechanism.

1.
2.
3.
4.
s.
6.
7.

A data abstraction model.
The nature of abstract types.
The nature of maps.
Sharing components.
Protecting internal type objects.
The nature of type managers.
Conclusion.

Chapter III. Use of the type extension technique
to design a virtual memory mechanism.

1.
2.
3.

4.
5.

Use of the type extension concept.
Type extension and modularity.
Type extension and structure.

Causes of dependency.
Construction of the dependency graph.
Conclusion.

Type extension and deadlock prevention.
Conclusion.

5

33

34
36
41
46
49
57
59

60

60
65
68
68
76
80
81
85

Chapter IV. Case study.

1. Introduction.
2. The Multics virtual memory mechanism.

Abbreviations used in chapter IV.
Processes.
Pages.
Segments.
Address spaces.
Directories.
Quota mechanism.
Removable disk packs.

3. Study of NSS.
Mechanical operation of NSS.
Organization of NSS.
Modularity violations in NSS.
Structure violations in NSS.

4. Design of MSS.
Development of MSS type structure~
MSS dependency structure.
Solutions to problem areas.

5. Structural patterns.
Software caches.
Merging hierarchies.
Notifications.

6. Conclusion.
Performance.
Modules as data abstractions.
Horizontal protection of internal objects.
Conclusion.

Chapter V. Conclusion.

1. Summary.
2. Results.
3. Future research.

Bibliography.

Appendix. Military security controls in Multics.

Biographical note.

6

86

86
89
90
90
91
9.1
92
95
97
99

102
103
113
116
117
125
127
139
157
176
176
180
182
183
183
185
186
186

188

188
190
191

196

200

210

4 .1.

4.2.

4.3.

4.4.

4.5.

4.6.

Table of figures.

NSS data bases and interconnections.

Best fit model for the organization of NSS,

Fictitious type structure for NSS.

MSS type structure graph.

USS component dependencies.

HSS dependency graph.

7

112

114

134

140

141

156

I. Introduction.

Research reported in this thesis is concerned with the organization of

virtual memory mechanisms for computing utilities. The thesis does not

explore new algorithms for managing virtual memories but presents a technique

for organizing any virtual memory mechanism given the specifications of its

user interface and the available hardware technology. The objective of this

technique is to organize the virtual memory mechanism into a structured set of

modules so as to make the resulting implementation easier to understand,

verify and maintain. We have reason to believe that the technique that is

presented can be used for organizing the virtual memory mechanism of almost

any kind of computing utility, be it a distributed system, a real-time system

or a conventional time-sharing system. In this thesis, the technique has been

elaborated within the context of and applied to the design of the virtual

memory mechanism of a general purpose commercial time-sharing system of the

kind one might use on a university campus or in a research laboratory, for

information storage, text editing and interactive program development and

scientific calculation. The interest of the thesis is twofold. On one hand,

it presents a technique that we believe is applicable to any sort of computing

utility. On the other hand, it provides insights into the organization of

structured and modular virtual memory mechanisms for conventional time-sharing

systems.

A time-sharing computing utility provides a community of users with the

ability to share access to a set of hardware resources such as processors,

memory and I/0 devices, to a library of programs and services, and to the

information stored in the system. If access to these facilities were not

controlled, abuses might be committed by users of the system. For instance, a

8

user could take over the system and cause it to deny any service to other

users. Or a user could covertly take advantage of programs and services

written by others and avoid the charges for the usage of such facilities.

Much worse than the above two examples would be the uncontrolled access to the

information stored in the system. Such uncontrolled access could result in

unauthorized release and modification of that information [Saltzer75) and

violation of the privacy of certain people. While the usefulness of computing

utilities has been recognized, the need to control access to the stored

infonnation has also been realized. The advent of computing utilities has

thus fostered the desire for computer systems that are accredited secure, i.e.

certified to protect the information they contain.

Much effort is currently being devoted to producing certified secure

time-sharing systems [see for instance Neumann75, Schroeder75]. Producing

such a system involves several operations [Schroeder751 as shown in the

following figure. First, it is necessary to verify that the programs of the

system implement the specifications, i.e. to verify correctness. Second, it

is necessary to verify that the specifications embody the model of information

security that the system must support, i.e. to verify security. Finally, it

is necessary to evaluate the verification of correctness, the verification of

security and the model of security to certify that the implemented system will

meet the security standards demanded by the c01Dmunity of users it serves.

Evaluating the verifications of correctness and security means subjectively

rating the quality and the effectiveness of the proof techniques or the

automatic verifiers that may have been used for the first two steps.

Evaluating the model of security means subjectively rating the formal

description that this model proposes for the security standards that are only

infonnally defined by the user community. Of the certification process, two

9

operations the verification of correctness of the implementation and the

evaluation of that verification -- are of particular concern in this thesis.

implementation (formal)

verification of correctness is the validation of

the formal correspondance between

the implementation and the specifications

specifications (formal)

verification of security is the validation of

the formal correspondance between

the specifications and the model

security model (formal)

security standards

certification is a subjective evaluation

of the two verifications and of the correspondance

between the model and the standards of security

Verifying the correctness of a system and later evaluating that

verification are impossible tasks if one attempts to verify the whole system

as a single unit. First, existing verification techniques are not

sufficiently powerful to establish the correctness of a program of the size of

current time-sharing operating systems. (For certification purposes, it is

actually sufficient to verify the correctness of the security kernel of the

system, that is of the code critical to security. However, even this simpler

task is beyond the capabilities of present verification techniques.) Second,

even if adequate verification techniques were available, the resulting

verification would probably be too long and too complex for any human auditor

to read it, understand it, evaluate it and accept the responsibility for

10

subsequent certification. The purpose of the evaluation is to convince the

community of users that the verification of correctness is adequate. For this

evaluation to be significant and convincing require~ that the human auditor

who will certify the system be able to convince himself of the adequacy of the

verification. Thus, the verification of correctness should be short, simple

and systematic or the task of evaluating it would be hopeless. The uae of

higher level system programming languages may improve the situation somewhat

by making programs more amenable to verification and the resulting

verification easier to evaluate. Yet, new system programming languages will

not suffice to overcome the verification problem.

The alternative to verifying a whole system as a single unit consists of

dividing the system into elements called modules to divide the task of

verifying the system into a set of subtasks of manageable size, each of which

consists of verifying an individual module. This method presumes that:each
'

module is clearly distinct from others and sufficiently small to be v~rified

individually by existing techniques. It also presumes that all modules are

organized in a structured way that allQws the eorrectnees of·the system to be

logically inferred fr.om the -correctness of it• m6dules. The problem ldth this

method is thus to organize the system into a strueturad set of modules that

are distinct and small.

In addition to ease of verification, two significant advantages are

gained from dividing a system into a structured set of modules:

understandability and maintainabili·ty. Even if one were not going to

undertake the verification of a system, dividing it into a set of ~dules

allows analydng and/or lllOdifying modules individually. Purthemore, the

structure of the system may be used to learn about the system in a systematic

fashion (e.g., botto»-up or top-down).

11

l. Thesis motivations and objectives.

The present thesis is concerned with a technique for organizing virtual

memory mechanisms for computing utilities in a structured and modular way.

Such a technique is desirable because the virtual memory mechanism of a system

is, in general, part of its security kernel and therefore should be structured

and modular so it can be verified easily.

Some authors [Popek74] claim it is possible to design a system such that

the virtual memory mechanism is not part of the security kernel and therefore

need not be verified to verify the correctness of the security kernel. We

disagree with this claim for two reasons. First, although we believe that

Popek's design is interesting and has removed a piece of the virtual memory

mechanism from the security kernel, we disagree with the statement that the

whole virtual memory mechanism is outside the security kernel. Second,

although we believe that Popek's design can be applied with great benefit to

simple systems like the PDP-11/45 he has been considering, we believe the

benefit of exploiting it for more sophisticated systems is relatively small.

Let us justify our position. First, according to Popek's design, the policy

decision to bring a piece of data into primary memory -- even security

critical data -- is left to the users and cannot affect the security kernel

but all the mechanisms (space allocation, disk I/0, etc •••) necessary to

implement that decision are provided by the security kernel. Thus, only the

policy for driving the virtual memory operation is outside the security

kernel. The mechanisms, which are secondary in nature but probably larger in

terms of code, must be verified as part of the security kernel. Second, the

design proposed by Popek is fairly interesting for simple systems in which the

functions of multiplexing primary memory and protecting logical information

12

can be supported together. However, in systems where these functions are

decoupled, the relative amount of virtual memory code that can reside outside

the security kernel is very small. Consider the following example. In the

Multics system [Organick72}, protection of information involves mapping

segments into user address spaces while multiplexing of primary memory

involves mapping pages into primary memory. A direct application of Popek's

design to Multics would suggest that, when a user wants to reference a

segment, the entire segment be mapped into the user address space and into the

system primary memory. This is impractical because, in a system supporting

information containers the size of Multics segments, it is imperative that

mapping a segment into a user address space be decoupled from mapping its

pages into the primary memory. The mechanism for paging segments must be part

of the security kernel because it manipulates physical information containers

(pages) that implement the logical information containers (segments) protected

by the security kernel. If paging were not in the security kernel, it could

affect the integrity of the correspondance between logical and physical

information containers, thereby defeating the protection mechanism that the

security kernel is supposedly implementing. Thus, in relation to Popek's

design, the only element of the virtual memory mechanism that should still be

under the responsibility of users is the mapping of segments into user address

spaces. This design has indeed been recOtlllllended for Multics [Bratt75].

However, the amount of code that is removed from the security kernel as a

result is very small relative to what remains in the security kernel. One

could not claim that this design has removed the virtual memory mechanism from

the security kernel.

In summary, we consider that the virtual memory mechanism of a computer

system is a part of the security kernel of the system because security depends

13

on that mechanism in two ways. First, all information secured by the

protection mechanism of the system is stored in containers (pages and/or

segments) that are handled by the virtual memory mechan·ism. Thus, if the

virtual memory mechanism did not operate correctly, it could lose, damage or

interchange information containers, ther_eby violating. ·frecurity. Second,

security critical programs and .data bases themselves are too large to b·e core

resident at all times.. Thus, the s~cµ.rity kernel relies on the virtual memory

mechanism to move them in and out of core when necessary. Consequently, the

virtual memory mechanism of a system must be verified in order to produce a

certified secure system.

The lack of a suitable technique to Qrganize the virtual memory mechanism

of a system motivated this thesis. Our objective was thus to de'1elop such a

technique to make virtual memory mechanisms easier to Uilderstand, verify and

maintain. The technique to be presented is based on a concept of type

extension to be defined in chapter II. The virtual memory mechanism is

regarded as implementing a collection of abstract obj-ec ts (repositories for

data). A different module of the virtual memory mechanism is designed to

support every different type of abstract -object. The fonnalism of type

extension is used to organize the modules of the virtual memory mechanism into

a structure reflecting that of the al,stract objects sup-po.rted by the virtual

memory mechanism. That formalism also contributes to. simplifying the

specifications of the interfaces of the modules that are defined. The task of

the designer consists of choosing abstract data types such that they can be

implemented by modules of a size amenable to human understanding and hopefully

manageable by known verification techniques. The use of a type extension

formalism makes the virtual memory mechanism modular and structured in a way

that simplifies understanding it, verifying it and maintaining it.

14

One original aspect of the thesis resides in the exploitation of the

systematic approach of type extension in an area.of s.yst:em design to which its

applicability has never been demonstrated .before. So ·far, true, formal type

extension mechanisms have been used only in programming languages and in areas

of system d-esign that are at levels higher than the virtual memory mechanism.

To exploit type extension inside a virtual memory mechanism~ one must face the

issues that uniformly accessible and "gro..mble" information containers are· not

available.

The type extension technique proposed in the thesis is more than just a

means to evaluate and enforce the organization of a vir•tual memory mechanism.

With most software organization techniques, all ·the hard design decisions are

left to the designer of a system in that he must choose how to modularize his

system. The organization techniques provide the designer only with rules to

enforce modularity and structure after he has defined the role of each module.

The type extension technique presented in this thesis provides the designer

not only with rules to enforce modularity and structur~ but also with hints

about the possible modularization of his system. In -this respect, the type

extension technique is closer to a design methodology than most existing

organization techniques.

In order to show the use and the ef fee tiveness of the type extension

technique, the thesis will exploit it to reorganize the virtual memory

mechanism of a commercially available, general purpose time-sharing computing

utility, the Multics system [Multics74}. Emphasis will be placed upon the

conceptual aspects and the engineering aspects of the technique. Some

attention will be given to the performance of the resulting system but an

accurate perfonnance evaluation cannot be given since the reorganized. system

bas not been implemented. The modularity and structure of the new design and

15

their impact on the understandability of the new sy$tem will also be

discussed. However, we will not attempt .to verify the -correctness the new

system, again because it has not been impl~nted.

In the remainder of tµis introductory chapter, we will first review some

background notions on the organization of structured and modular systems.

While doing so, we will survey the existing literature on related topics. We

will then present our method of approach to the probl~m of organizing virtual

memory mechanisms. As we do so, we will outline the plan of the thesis.

2. Background and related work.

The literature is not very abundant in the area of the organization of

structured and modular virtual memory mechanisms. However, information on

that subject can be found in numerous papers covering a wider topic: the

design of structured security kernels and techniques for the organization of

structured operating systems. Therefore, we will survey various techniques

used in connection with this wider problem and discuss their applicability to

the design of virtual memory mechanisms. We emphasize the fact that most of

the techniques to be described are compatible with one another and can be used

complementarily within one system. It will be seen that several systems

indeed exploit more than one technique at a time.

Techniques for organizing a system should achieve two goals. First, the

various modules of the system should have the property that they are distinct

and sufficiently small to be amenable to human understanding and hopefully to

existing verification techniques. Second, the organization of the modules and

their interactions must have the property that they allow a verification of
.

correctness of the entire system to be derived from the verification of its

individual modules, i.e. that they allow a structured verification of

16

correctness of the system to be carried out.

A recent paper {Schroeder75] that sur~eyed the techniques used in the

design of a security kernel for the Multics system mentions two techniques

that are of particular interest for virtual memory mechanisms-. The first

technique is based on the use of parallel processes and the second one on

partitioning the security kernel into separate protected subsystems.

Parallel processes to implement sequential algorithms.·

This first technique consists of implementing a mechanism with programs

that can execute in separate parallel processes. A paper [Hoare73] on a

structured paging system used the technique to design a mechanism for moving

pages of information between the paging device and the primary memory of a

computer system. This design is extremely clear and understandable.

Individual parallel processes, called monitors, are used for each separate

function: allocating primary memory space, allocating paging device space,

moving one page into primary memory, moving one page out of primary memory,

etc ••• Each monitor represents a very small amount of code and the

interactions between the monitors (i.e. the structure of the system) are well

defined and would make a structured verification of the system possible.

However, the design is unrealistic in that it requires two monitors for each

page of information. It seems impossible to keep the status information for

all those monitors in primary memory at all times.

Another design [Huber76], which is very realistic and has been

implemented in the Multics system, uses only one process per level of memory

to handle the outward movement of pages. Each such process is responsible for

continually maintaining free space at the memory level it is managing by

purging selected pages to the next outer level of memory. Demand paging is

implemented by each user process for itself. This very elegant technique

17

constitutes a definite step towards the simplification of the design of a

paging system: the inward movement of pages can be analysed and verified

independently from the outward movement; and the outward movement can be

analysed and verified separately for each level of memory. We will retain

this technique as a useful and·efficient one. It will be used in conjunction

with the technique we will present to further simplify the task of

understanding and verifying the virtual memory mechanism of a computer system.

The elegance of the above technique and th~ aimplification resulting from

its use are not accidental. They are the result of considering the true

nature of the mechanism. that is being implemented. It fs often thought that

by implementing all the system functions a user can trigger within the process

representing that user, a simpler system will result since the user process is

strictly sequential. Although often correct,· this attitude should not be

adopted systematically. Using user processes to implement some function may

actually cause more parallelism to occur. As a result of such a design, all

kinds of locks may be necessary to synchronize all user processes. Several

functions, like the removal of pages to secondary storage, should be

considered from a system point of view even though they are perfonued as' a

result of the interactions of individ:ual, users·. Such functions are better

implemented by dedicated system processes t'ban withiri e~h user process.

While looking parallel to a user~ a dedieated systetit process casts a

sequential aspect in the implementation ·of the function it performs. The

resulting implementation is cleaner and mor·e understandable.

Partitioning, decomposition and modularity.

According to Schroeder [Schroeder75], "partitioning is really the same

problem as dividing [a system] into separate procedures and data bases, with

the extra property that the modularity is enforced by the system's protection

18

mechanisms". Feiertag has used the term partitioning more loosely to mean

dividing a system into modules with or wi.thout the protection connotation

suggested by Schroeder. To clarify the situation, we will use the term

partitioning in the sense proposed by Schroeder and we will use the term

decomposition to mean the division of a syste~ into mQdules without any

protection connotation. We will use simply modula~iiing to mean either

decomposition or partitioning. Decomposition is a coa~eptual technique for

defining modules. Partitioning alao includes a practical technique for

enforcing t~t definition.

Partitioning is more desirable than decomposition from a verification

point of view because the enforced protection all-0ws the.designer of a module

to depend on certain security properties of his module that are guaranteed to

be true if the protection mechanism operates correctly. Those security

properties can be helpful in the verificatioq of the module. However. there

may be programming envirornnents -- particularily in a virtual memory mechanism

-- where the protection mechanisms required to support partitioning simply are

not available. In such environments, the designer must satisfy himself with

decomposition.

While partitioning is more helpful. than decoDtposition in v~rifying a

system, both techniques are of e~ivalent-hel,p ia specifying or understanding

the modules of a system. Parnas's specificatiQn technique for software

modules [Parnas72a, Parnas72b] can be u~e4 as well .with partitioning as with

decomposition. The difference between the two techniques will be felt only at

the level of the security properties of a mQdule •. Wi~h partitioning, those

properties are guaranteed to hold because of t,he pratectiQll mechanism. With

decor.1position, they must always be proved, to hold.

Both techniques for modularizing a system co~sist of dividing what would

19

be a complex mechanism into a set of simpler mechanisms, and implementing each

simple mechanism with one module that can· be hardware,; sc,ftware or a

combination of both. In either case; the module is a collection of algorithms

and data bases. Two concepts of modularity can be found in the literature.

Modules in the strict sense [Liskov72b, Parnas72] are isolated collections of

procedures a.ad data bases where no data base can be shared by several modules:

the data bases in one module can be referenced only by the procedures in that

module. Modules in the weak sens.e [Haberma~76, Parnas.76] are collections of

procedures and data bases that are not isQlated. They intersect over data

bases that can be shared and managed by several mod:tJles:. The possibility of

shared data bases belonging in several modules presents two disadvantages.

First, the b~undaries of any individual mod.ule ar:e not clearly defined and

modules are not clearly distinct •. Thus, it is extremely hard to i.dentify and

specify simply, precisely, completely and correctly the interface of a module,

i.e. the set of channels (including potential shared data bases) over which it

interacts with other modules. Second, the formal specification .of the

interface of a module sharing a data ,base must conta,in statements about the

behavior of the module with respect to the srun·e.d data base. Hence,

implementation level information about a shared data base propagates into the·

design level specifications of the modules that share the data base, thereby

making those specifications harder to understand, harder to use in verifying

the modules and harder to maintain when changing the implementation of the

shared data base. Instead, the interface of a strict module.is much easier to

identify and specify because strict modules respeet Parnas's information

hiding principle [Parnas71]. Since there are no shared ,data bases, modules

cannot interact via data bases. Thus, identification of interfaces is easier

because they never include data bases. And specifications of interfaces never

20

contain any information about the implementation of any data base. Based on

these observations, we have chosen to work with strict modules in this thesis.

(More details on the advantages of strict modules will be given in chapter

III.) Unless otherwise stated, the word "module'' will implicitly mean "strict

module".

Partitioning and decomposition are only names for denoting two similar

approaches to replacing what would be a large module by a set of small

modules. There are two problems hidden behirtd those names: how does one

choose modules to implement a system' and bow does one organize them in a way

that makes a structured verification of the system possible? We will consider

various answers to these questions in the next two sections.

Total ordering vs. partial ordering.

One objective of any module organization in a' eystem is the feasibility

of a structured verification of the system. This objective implies that there

b~ an ordering between the modules of the system such that the verification or

the understanding of a set of modules can be inferred systematically ·from the

verification or the understanding of subsets of that set. Parnas [Parnas76)

has suggested that an ordering based on a relation he calls "uses" is adequate

to infer the correctness of a system from the correctness of its parts. A

module B is above a module A with respect to the "use·s" relation if A provides

a service used by B. In this thesis, we will use an ordering based on a

relation of dependency. A module B depends on a· module A if the correct

operation of B depends in any way on the operation of A, i.e. if verifying the

correctness of B requires making any assumption about the operation of A.

(Ifore details on the dependency relation will be given in chapter III.) A

module B that "uses" a module A depends on A because it assumes the

correctness of the service provided by A. However, a module B that depends on

21

A does not necessarily "use" A. For instance, if A and B share a data base, B
~ . ' .

might not "use" A in the sense that it might not ,need the seryice prp:vided by

A but B depends on A for preserving the integrity of the sha~ed data ~ase.

Two modules that interact via a shared data base might not "4se" one another

but are automatically mutually dependent on one. another. And mutual ,.

dependence means a de,pendency loop in the _structure of the system, which. makes

systematic understanding and verification harder. Thus,. the dependenc_y
l ' ' ' ,

relation is preferred to the "uses" relation because it discourages the use of

weak modules, which were deemed undesirable earlier, as they encourage cyclic
. . . '

dependencies. On the other hand, Parnas argues [Parnas76] that considering

the "uses" relation and allowing weak modules enhances system efficiency. As

will be seen in chapter IV, we do not beli~ve that the lo~s of efficiency due

to eliminating weak modules is substantial. In addition, we believ.e it is . '

improper to trade clarity for efficiency of code, particularily in products of

the size and complexity of current virtual memory mechanisms. (1)

Whatever the ordering relation, two particular ways exist to organize.

modules into a structured system: the total orderin~ t~chniqu~ and the

partial ordering technique.

The total ordering technique is based on a total ordering of the modules,

i.e. each module is ordered with respect to every other module. A module can

depend on (use) only primitives provided by lower level modules and is unaware

of higher level modules, In many systems, the expression "level of

abstraction" has been used to mean modules that are totally ordered. Except

(1) In the absence of weak modules, the dependency .rela~ion is equivalent to
the "uses" relation. Since we have decided to not use weak modules, unless
otherwise stated, the phrase "depends on" will mean essentialJ.y the same as
"uses". However, the reader must bear in mind the fact that the meanings are
similar only because we restrict ourselves to strict modules.

22

when talking about such specific systems, we will avoid the expression because

it is confusing. It has been used by too many authors to mean too many

different concepts.

The total ordering technique has been used for the design of numerous

systems. Its use has been very successful in structuring the higher levels of

a security kernel or an operating system. However, it seems to have been less

successful in structuring the lower levels, and particularily the virtual

memory mechanism, of a computer system. For some reason, every published

system design based on the total ordering technique proposes to implement the

virtual memory mechanism of the system with too few modules that are too large

to be verified in most cases.

In the THE system [Dijkstra68] and in a PDP-11/45 security kernel

[Schiller73], the entire virtual memory mechanism is contained in only one

,nodule, called a level of abstraction. Given the relative simplicity of these

systems, a one-level virtual memory mechanism may be sufficiently small to be

tmderstandab le and verifiable by existing techniques. But such an approach

cannot be taken in computer systems with more sophisticated virtual memory

1·1echanisms.

In a virtual memory mechanism designed at Carnegie Mellon [Price73,

Parnas74] and in an operating system designed at Stanford [Saxena75,

Saxena76], the virtual memory mechanism is implemented by two levels of

abstraction. The existence of two levels of abstraction perhaps clarifies the

structure of the system but it does not necessarily simplify its verification.

Instead of each level of abstraction being half the size that a single level

0f abstraction would be, the levels of abstraction largely duplicate each

other. In the Stanford system, the virtual memory mechanism is divided into

two levels to eliminate a cyclic dependency between that mechanism and the

23

_.,..~

virtual processor mechanism, but not to simplify the virtual memory mechanism

itself. The lower level of abstraction implements the virtual memory

mechanism for a fixed small number of system processes while the higher level

of abstraction implements the virtual memory mechanism for a large number of

user processes. This design is very interesting to eliminate the cyclic

dependency but in terms of size and complexity, each level of abstraction is

comparable to what a single combined level of abstraction would be. Both

levels of abstraction have to implement resource control and paging for the

kind of processes they serve. The CMU system is based on a distinction

' ' '

between fixed size segments existing in fixed number and variable size
• ' • • l

segments existing in variable quantity. Clearly, the level of abstraction

supporting the former kind of segments is somewhat simpler than the level of

abstraction supporting the latter kind. However, both levels duplicate one

another in implementing paging for the kind of segments they support.

In the Cal system [Lampson69, Sturgis74, Lampson75] and in the SRI system

[Neumann74, Robinson75, Neumann75], the virtual memory mechanism is also

implemented by two levels of abstraction. The levels of abstraction were

chosen so that they hardly duplicate each other. Even so, each level of

abstraction seems too large to be amenable to human understanding and to

existing verification techniques. In particular, the levels of abstraction

really implement more than one abstraction. This tends to confuse

understanding and verification as the concepts implemented by the virtual

memory mechanism are not clearly separated.

The Mitre Corporation has proposed a redesign of the Multics system

[Ames75] that includes a virtual memory mechanism composed of three

levels of abstraction. The two lower levels of abstraction (core

management and "other storage" management) look like they are sufficiently

24

small to be amenable to human understanding and verification. However, the

higher level of abstraction (segment management) is cluttered with directory

control, access control and information backup mechanisms. These mechanisms

are not part of the segment manager and ideally should be implemented at

higher levels. Unfortunately, the original functionality of these mechanisms,

which Mitre has tried to respect as much as possible, suggests that they all

share with the segment management mechanism the access to the directories of

the file system.

The partial ordering technique has not been exploited as often as the

total ordering technique. As its name suggests, it is based on a partial

ordering, as opposed to a total ordering, of the modules of the system. It

has been exploited in the Venus system (Liskov72aJ. Feiertag has demonstrated

the advantages of partial ordering in a case study involving the Multics

system. The partial ordering technique is more appealing than the total

ordering technique because it is more flexible and more natural. The designer

is not forced to cast every module into an arbitrary, unrealistic and too

constraining, totally ordered structure.

Functional abstractions vs. data abstractions.

The present section will discuss various ways to define the role of the

modules composing a system. One may distinguish two kinds of modules:

functional abstractions and data abstractions.

A module defined as a functional abstraction appears as a primitive (or a

set of primitives) implementing a function that can be applied to data

supplied by the caller to transform it in some specified way. A functional

abstraction module may have internal state information but usually does not.

A module defined as a~ abstraction appears as a collection of

objects. The primitives supported by the module ap?ear as channels to

25

store/retrieve information into/from. the objects. A data abstraction module

always has internal state information: the representation of the objects it

maintains. Any individual primitive (or subset of primitives) of a data

abstraction module constitutes a functional abstraction. It is only all

together that the primitives constitute the data abstraction.

The data abstraction technique has two advantages over the functional

abstraction technique. First, it is the basis of the concept of~

extension. This concept was first defined in the context of programming

languages (e.g.,· SIMULA 6 7). It was then used by various people in the system

design area. Different ways for implementing type extension in this latter

area were proposed by Jones [Jones73] and by Redell {Redell74]. Type

extension mechanisms were first designed for the Cal system [Lampson69,

Sturgis74, Lampson76], the Hydra system [Cohen75, Levin75, Wulf7S] and the SRI

system [Neumann74, Robinson75, Neumartn75]. Very recently, the type extension

concept was used again in the programming language area for CLU [Liskov76], a

language that will be m~ntioned several times in this thesis.

The formalism of type extension requires that each type of object, that

is each kind of data abstraction, be managed completely and exclusively by one

module, called a~ manager. All the attributes of an dbject are defined

and maintained by the type manager for that object. And any type manager

defines and maintains the attributes of only one type of dbject. It is always

clear which module is responsible for which type of object. Transactions with

a type manager are restricted to operations on objects, i.e. to invocations of

the primitives of the type manager. Thus, a type manager both hides and

protects the implementation of the objects it supports. Since the primitives

defining a data abstraction are grouped so as to hide the implementation of

the data abstraction, the specification of the interface of a type manager

26

contains no knowledge about the implementation of the objects it supports and

is thereby simplified. Since a type manager protects its objects, it

naturally tends to not share its internal data bases with other modules.

Thus, data abstractions lead to modules in the strict sense. This point will

be developed further in chapter III. On the other hand, with functional

abstractions, different modules may be responsible for different attributes of

the same entity or, more generally, it may not be clear what the entities are.

Nothing in the nature of a functional. abstraction suggests that it should not

share a data base with another functional abstraction. Consequently,

functional abstractions may lead to modules in the weak sense, with all the

inconvenience that can result [Habermann76, Parnas76}. In summary, the first

advantage of data abstractions over functional abstractions is that one can

concentrate e~clusively on one module when establishing or verifying the

properties of one type of objects, and the interface of a type manager tends

to define an abstraction more simply, mqre precisely and more completely; than

the interface of a (potentially weak) module based on, a functional

abstraction.

The second advantage of data abstractions is the ease with which the

partially ordered structure of the system can be derived from the structure of

the abstract objects it manipulates. In a sys~em based on type extension,

each data abstraction is defined in terms of more primitive data abstractions

and each abstract object is implemented in terms of more primitive objects.

Thus, if objects of type T are implemented in terms of objects of types Tl to

Tn, the type manager for Twill directly depend on (use) the type managers for

Tl to Tn. The organization of the type managers directly reflects the

structure of the data abstractions they stand for. This organization will be

called an object based dependencx structure because of the underlying

27

existence of abstract objects. In gene}:"al~ i.t correspo,nds. to a .partial

ordering but it may be cast in.to totally ordered modules .fNell{llann75,,

Lampson7 5] •

However, implementations of t.ype extension, under, ,their ct1rrent form,

present two disadvantages that functional abstraction.a (lo not have. First,

not every mechanism in a system can be cast eaijily into a data abstrac-tion.

Many system programs .have an intrinsic fwictional aspect .that is hard to mpdel

properly with d,,ata abstractions. F9r instance,. a loader is best regarded as ~

functional abstraction than as the manager of any type of data abstraction.

Second, all existing type extension mechanisms depend on (use) a memory

managemE:nt and information protection .mechanism,. which !JlaY itself be complex.

Such a type extension mechanism cannot be us~ to structure the underlying

memory management and protection mechanism be.cause .this wouJ.,d create a

dependency loop between the two mechanisms,. which violates the partial

ordering requirement of any module organization. All systems providing a type

extension mechanism to their users do not exploit the mechanism within their

virtual memory mechanism because the v;irtual memory mechani.s:\11. ls the memory

management and protection mechanism used by the typ.e extension mechanism. At

best, one can distinguish the shadow of a type extension concept in the

virtual memory mechanism of certain systems. But this shadow is not supported

by any actual type extension formalism, much less enforced by any type

extension mechanism.

For example, any operating system built around the Hydra kernel can use

the type extension mechanism provided. by the keruel. 9Rwever, the kernel

itself cannot and does not use the type extension mechanism because it

implements the memory management and protection mechanisms that are precisely

required to support type extension. In fact, the abstract objects (pages)

28

protected by the kernel are manipulated by primitives that evoke functional

abstractions more than data abstractions [Levin75].

In the SRI system [Neumann75], most modules above the two levels of

abstraction that implement the virtual memory mechanism strictly respect type

extension. However, modules at and below the virtual memory levels do not.

First, some of the abstractions supported are not data abstractions but rather

functional abstractions (e.g., interrupt handling, masking, access

revocation). Second, even abstractions that look like data abstractions are

net implemented ds data abstractions. Segments and pages are implemented in

terms of lower level functional abstractions rather than being implemented in

terms of more primitive data abstractions like disk records and core blocks,

for instance. Finally, each level of abstraction violates type extension in

that it really i~plements more than one abstraction, as mentioned earlier.

for instance, concepts such dS disk I/0, resource control and information

backup are not recognized as separate abstractions. They are implemented

within the two virtual memory levels of abstraction together with segments and

pages thereby making the two levels of abstraction larger and more complex.

In the Cal system [Lampson75], the two levels of abstraction implementing

the virtual memory mechanism support two different kinds of file: core files

and disk files. As in the SRI system, the formalism of type extension is

violated and some of its advantages are lost because the lower level of

abstraction implements half a dozen data abstractions instead of just one.

Not only does this make that lower level too large for understanding and

verification by existing techniques, but it also increases its complexity

because some of the primitives it provides involve more than one abstract

object.

29

3. Approach and thesis plan.

From the previous discussion, it appears that the partial ordering

technique is more desirable than the total ordering _technique to organize the

modules of a system into a structured program. The partial ordering technique

is more flexible and less restrictive than the total ordering technique.

Therefore, it is easier to use and yields a more understandable system.

It also appears that using type extension and designing modules after

data abstractions rather than functional abstractions simplifies the resulting

system. Not only does type extension naturally lead to a system that has an

object based structure, which is -- in general -- a partially ordered

structure but, in addition, type extension protects and hides all the details

of each abstraction inside a type 10.anager module that embodies that

abstraction. Thus, understanding and verification of any abstraction boils

down to understanding and verifying the single module of the system that

embodies the abstraction (assuming that the abstractions it depends on (uses)

are correct).

Unfortunately, data abstractions are not always easy to use because not

every mechanism in a system can be cast into a data abstraction and because

type extension mechanisms traditionally require the support of a memory

management and protection mechanism that provides uniformly accessible,

"growable" and protected information containers.

The use of a type extension mechanism to structure a virtual memory

mechanism is particularly awkward. First, a virtual memory mechanism may

include mechanisms such as paging and resource control, which have inherent

functional aspects that are hard to model with data abstractions. Second, a

virtual memory mechanism implements the memory management and protection

30

mechanisms required by existing type extension mechanisms. Therefore, a

virtual memory mechanism cannot use a type extension mechanism without

creating dependency loops that violate the partial ordering of the system

structure.

The purpose of this thesis is to present a technique for organizing

virtual memory mechanisms that exhibit an object based structure, that is,

virtual memory mechanisms that are implemented by a set of partially ordered

modules designed on the basis of type extension.

The originality of this technique resides in the use of a new type

extension concept that preserves the advantages of data abstractions over

fun~tional abstractions while overcoming the two problems encountered in

trying to stucture a virtual memory mechanism with a traditional type

extension mechanism. Chapter II will examine in detail the differences

between the traditional and the new type extension concepts.

Chapter Ill will explain how the type extension concept we propose can be

exploited to organize the virtual memory mechanism of a system. It will first

be shown that type extension suggests and greatly helps building modules in

the strict sense. The relation between type extension and dependency will

tlien be studied, It will be demonstrated that the type extension concept

helps choosing a set of data abstractions to implement the virtual memory

mechanism and deriving the dependency structure that ties the data

abstractions together. Finally, the impact of the type extension concept on

deadlock prevention will be examined.

In chapter IV, the usefulness and the applicability of the type extension

concept will be demonstrated by a case study. The type extension concept will

be used to reorganize the virtual memory mechanism of a commercial

time-sharing computing utility, the Multics system. The functionality of the

31

user interface to the virtual memory mechanism will first be described for the

readers who might not be familiar With Multics. The- present implementation of

the Multics virtual memory mechanism will then be examined. The problems

associated with this implementation will be pointed out. Finally, a new

design that respects the functionality of the Multics virtual memory mechanism

and is based on type extension will be presented. Particular care will be

given to showing how the type extension concept helps avoid the problems that

were pointed out in the current implement~tion of the- Multics virtual memory

mechanism. To conclude the chapter, a few observations about the organization

of the new design and the benefits of type extension will be made.

While chapters II and III are crucial to the understanding of the type

extension concept and its impact on the organization of a system, chapter IV

is by far the most important part of the thesis. It represents a

demonstration of the use of the type extension technique and reports on the

bulk of the research that was performed to support this thesis.

32

II. Type extension in a virtual memory mechanism.

This chapter will describe the details of a type extension concept

designed to be used in organizing the virtual memory:111echani.sm of a c0111puting

utility. When we will need to dist:inguisb this concept fr01D all type "

extension concepts proposed earlier, we will refer to it simply as the ~

type extension concept or -2.!!!. type extension concept. We will refer to

earlier concepts as classical or traditional· concepts. These names are used

solely to distinguish various kinds of type extension. We do not imply in any

way that all classical concepts are identical and indistinguishable among

themselves. They are classical or traditional only insofar as they cannot be

used inside a virtual memory mechanism, which distinguishes them from our

concept of type extension. The advantages of using ouT concept inside a

virtual memory mechanism will be discussed. In order to make those advantages

clear to the reader, the differences between our type extension concept and

classical type extension concepts, such as those used in Cal, Hydra and the

SRI system, for instance, will be pointed out in terms of a data abstraction

model. This model will be used as a reference to talk about the features of

various concepts of type extension and their ability or inability to solve the

problems that are encountered in organizing a structured and modular virtual

memory mechanism. Classical type extension concepts and our concept will be

examined from five different viewpoints: the nature of abstract types, the

nature of abstract objects, the possibility of sharing components among

objects, the protection of abstract objects and the implementation of

abstractions.

33

1. 'A data abstraction model.

The basis for any data abstraction lies in the concepts of abstract

objects and abstract types. Our purpose here is to give semi-formal

definitions of these concepts.

The set of all objects in a system is partitioned into subsets called

abstract types. An abstract type has three properties [Liskov76]:

1. An abstract type is defined by a set of operations that can be performed

on all objects of that type and are supported by a program designed for

that purpose $id called the type manager (or the cluster in CLU

{Liskov76)).

2. The users of objects of some abstract type need not be aware of the

implementation of the objects to manipulate them.

3. In fact, it would do the users no good to be aware of the implementation

of the objects, because they are allowed to manipulate them

only by invoking the abstract type operations supported by the type

manager and not by directly accessing their implementation.

Abstract objects are repositories for structured data. Each abstract

object is named by a unique identifier (uid). This uid is the result of the

concatenation of a type identifier defining the type of the object and an

object identifier. An object identifier is unique over all times but only

within each type. Thus, its interpretation is type dependent. A uid is

unique over all objects and all times.

All abstract types (except the most primitive ones) ate defined in terms

of more primitive types (therefore the term "type extension"). An abstract

object O of type Tis implemented in terms of abstract objects 01, ••• ,On of

more primitive types Tl, ••• ,Tn respectively. Objects 01, ••• ,On are called

34

the components of o. The information establishing the co~respondance between

0 and its components is called the map ~f o. The map together with the

components of O is called the representation of O.

object 01

type Tl

Tl manager

object O of type T

manager for type T

object 02

type T2

T2 manager

object 03

type T3

T3 manager

map

representation

compqnent

Thus, the complete structure of an object could be pictured as a (possibly

multi-level) tree rooted at the object an4 branching ~ut through the levels of

components and subcomponents of the object. Only one leyel of this structure

is visible by any type manager since each type manager knows about the

structure of and can access the representation of only the objects it manages.

The structure is nonetheless existant as defined by all type managers

together. The structure of O reflects a.structure embedded in the definition

of T. Any object of type T has a str~cture similar to that of O because type

Tis defined in terms of types Tl, T2 and T3. Similarily, the structure of 0

reflects a dependency structure that exists between the type manager for T and

the type managers for Tl, T2 and T3. Since Tis defined in termsof Tl, T2

and T3, any operation supported by the type manager: for T is expressed in

terms of operations supported by the type managers for Tl, T2 and T3. Thus,

the type manager for T depends on (uses) the type managers for Tl, T2 and T3

35

(therefore ;he term "object based dependency- structure").

With the above model of an abstract ob}eet,,we are in a position to point

out the connections and the differences between the classical type extension

concept and the 012e .we propose to use. for virtual memory mechanisms.

2. The nature of abstract types.

In the rest of the thesis, we will be considering various kinds of

abstract types. In order to help the reader visualize what the various kinds

are, we have tried to capture their relation in the following figure.

in the user enviroament

(classical type extension) {

in the virtual memory environment ◄

(our type-extension)

(C/D) · user types

base level

- (C/D :and A/F)

intermediate level'.

(C/B and A/ F) 1nternal types
• ------------1

bottom level

(A/F)

User types are those visible to the users. Users may invoke user type

managers to operate on user type objects. The most primitive user types will

be called the base level types. Such types are precisely the types of

abstract, virtual information containers (e.g., segments or pages) implemented

by the virtual memory mechanism for the users. The virtual memory mechanism

implements base level types in terms of more primitive types of information

containers called internal types, which are not visible to the users. The

most primitive internal types will be called bottom level types. Such types

of information containers have a direct hardware representation (e.g., disk

36

records or core blocks). Through several layers of intermediate types, base

level objects are ultimately implemented in terms of bottom level objects.

The objective of this section is to discuss the first of five differences

between classical type extension concepts and our type extension concept.

This difference deals with the supply and lifetime, and with the possible

reconfigurability of the objects considered under each concept.

In all existing designs and implementations of the classical type

extension concept, the supply of abstract objects of any type is apparently

unlimited. Users can always create as many objects as they can afford to pay

for. They can never exhaust the supply of objects. After a user has ceased

to use an object, there is no need to ever reuse the object. It is destroyed

and its uid becomes meaningless for ever. Thus, with the classical type

extension concept, there is an essentially infinite supply of objects. And

one can say that the lifetime of an object is bounded by its creation and its

deletion, if such an operation exists. The object does not exist until it is

created and assigned a uid. If deletion is a possible operation, the object

is destroyed and ceases to exist after some user deletes it. The object uid

is discarded for ever. Such objects will be called create/delete (C/D)

objects. The abstract types of information containers provided by the virtual

memory mechanism of a system to its users, i.e. the base level types, are in

general C/D types.

With our type extension concept, it is possible to define C/D types but

it is desirable to define other types as well. The purpose of a virtual

memory mechanism is to implement (simulate) an apparently unlimited supply of

base level objects using a definitely limited supply of information containers

Jike, for instance, core blocks and disk records. Such information containers

are the most primitive types of objects one can conceive. They have a direct

37

hardware representa,tion. They stand for the~.s~lves, have no maps and no

components. They are the bottom level objects. A bottom lev~l type provides

a supply of objects that is limited be~ause it directly corresponds to a

limited amount of physica~ space. Bottom level objects are of course never

destroyed. They are only deallocated and are kept around for later

reallocation. They have a physical existence and stay around as long as the

system operates (except for reconfiguration c_ircumstances to be discussed

soon). Thus, the bott.om level objects exist in limi~ed supply and need to be

reused time after time. They are never created and deleted as are C/D

objects. Instead, they are allocated ~ fr.eed (A/F). While the lif_etime of

a C/D object is finite in the sense. of being bounded by ~he us~r requests to

create and delete it, the lifetime pf an .A/F obj~ct is infinite in the sense

that a user can only request its allocation and its deallocation.

Deallocation does not mean destruction of the object. Nor does it mean

invalidation of the uid of the object. The uid ii:; temporarily out of service

but not meaningless.

Other types envisioned under our type extension concept (intermediate and

base level) may be either C/D or A/F depending on the needs and the

possibilities. For instance, since the base lev.el prov.ides users with a large

suppl}'.' of abstract information containers th~t can be created and deleted,.

some base level objects are obviously C/D. Ho~ver ,, tl}ere may also be

additional A/F types at the base level, as will be seen in the case study of

chapter IV. It will also be seen there that most intermediate types tend to

be A/F types though this is not an absolute rule. SoJUe may be C/D types.

Certain types defined under our type extension concept may differ from·

types defined under a classical type extension con<:ept · in terms of the supply

and the lifetime of the objects they provide, as we have just seen. Certain

38

types considered under our type extension concept may also differ from the

types considered under the classical typ_e extension concept in that the

objects they provide may be dynamically reconfigured. In general, this only

requires that the type managers for such types provide two pri.Di.itives,

"configure" and "deconfigure", of which the purpose is to change appropriately

the state of the objects they are invoked to operate on.

At this point, it is desirable to discuss the relation between the

configure/deconfigure primitives and the allocate/free primitives. To do

this, we will relate our concept of type extension to the model of dynamic

resource reconfiguration proposed by Schell [Schell71].

Schell' s algorithm for recortfiguring resources first makes a distinction

between physical resources and logical resources. An example of a physical

resource is a memory box. A logical resource is a physical resource that is

accessible. The logical resource corresponding to a memory box is a memory

box to which the system is connected. To und~rstand how a physical resource

can be configured into a logical resource, we refer the reader to Schell's

thesis [Schell71].

We are interested primarily in the configuration of logical resources.

Schell's logical resources correspond to pools of our A/F objects. (1) In

terms of Schell's model, logical resources evolve between one of four states

as explained by the following figure.

(1) For readers familiar with Sche11•s terminology, the folldwing
correspondances exist with our terminology:

Schell's
available
unavailable
free
bound

39

ours
configured
deconfigured
free
allocated

free and confi ure free and

deconfigured decpnfigure c onf iglU' ep ·

a)J.qc~te ~lqc.at~d a

fr_ee. .. , cot1figured,

all97 8: t~d an

deconfigured

Consider for ins~ance a logical (connected) core block. Initial~y, a

logical core block is free and deconfigured, i.e. -it may.1;,e co~nected to the

system but it is free in the sense that it contains no useful information and

it is deconfigured in the sense that the system is unaware of it and cannot

store anything into it. After it is configured, the core block becomes

logically accessible to store· information into it. When it is allocated (for

instance, to an address space, a segment or a page), it does contain

potentially useful information. When it is deconfigured and if it was free,

it goes back directly to the initial state. If it was allocated, it is first

marked deconfigured even though it may still contain information and then it

is freed and returned to the initial state.

In connection with our type extension concept, the transition diagram

deserves a comment. It differs from the one suggested by Schell for certain

types of .objects. According to Schell, a resource that is d'eco!)-figured

logically must be freed (emptied of all useful informa.tion) before it can be

deconfigured physically. This is because Schell has envisioned the

reconfiguration of objects like core blocks that cannot retain information

while they are disconnected. However, we want to be more general and consider

removable disk packs, for instance, as in the case study of chapter IV.

40

Resources like removable disk packs are designed. to be kept off-line but

allocated to· useful abstract information containers.' 'With such resources,

regardless of the allocated/free state of an object, that object can be

deconfigured logically and physically without having to return to the initial

deconfigured-free logical state before being deconfigured physically. Thus,

the modified transition diagram for such obj~cis is the following.

l 2 3

free free allocated

" 'configured deconfigured configured

' ' ·r l
allocated

deconfigured

4

In essence, the resources considered by Schell always had to be deconfigured

logically and returned to the free state (1) before ~hey could be deconfigured

physically. In this thesis, we also consider resources that need not return

to the free state as they are deconfigured logically before they can be

deconfigured physically. They can be deconfigured physically from either

state (1) or (4).

3. The nature of maps.

The second difference between the classical type extension concept and

our type extension concept deals with the nature of the maps of objects

supported by the virtual memory mechanism.

Consider the type extension concept in the system design area [Cohen75,

Neumann75). Outside the virtual memory mechanism~ the role of object maps is

41

secondary. The essence of any operation on an: abstract object consists of

operating on the components of the object •. The map itself is affected only

when components are added or deleted.

Within a virtual memory mechanism, we will observe just the opposite

situation. Most of the code of a type manager will be devoted to manipulating

the map of the objects it supports. Very little. will be concerned with

storing/retrieving information into/from the components of the objects. Such

operations are usually.implemented in hardware. This contrast with the

classical type extension concept (in the system des.ign field) is justified by

the fact that our type extension concept is designed to organize virtual

memory mechanisms. The essence of a virtual memory mechanism is to perform a

mapping function from base level objects to bottom level objects. Thus, most

of the informa.tion stored in the representation of an object is information

mapping that object into its components. Most objects implemented by the

virtual memory mechanism consist essentially of their map. (Of course, bottom

level objects have no map and consist only,of user information that was stored

into them.}

With the classical type extension concept, the implementation of object

maps is fairly straightforward. Maps are i111.plemented by base. level objects.

For instance, in Hydra [Jones73], each map is implemented by. an individual

list of capabilities (c-list). In the SRI syste111 [Neumann75], all maps are

collected in a centrally managed segment. Thus, there is a dependency ("uses"

relation} between any type manager and the -type manager that. implements maps.

This dependency does not reflect the structure of any ~batract 9bject.. It is

not a component dependency. It is a d.ependency -resulting solely from the need

to implement maps with some type of information container.

With our type extension concept, the implementation of maps is no trivial

42

problem. It is out of the question to envision using base~ level objects to

implement the maps ,for objects implemented by the virt.ual memory mechanism

since base level objects are themselves implemented by such objects and we

want to avoid dependency, loops in the, st~t.ure of ·d1e systea. The problem

with the new type extension concept is t·hat eaca type manager aust reuiveot

its own type extension. mechanism., that is, it ~ .-decide· what infomation

containers it will use to implement the map of the; .objectai it supports •. · Jn

order to avoid violating the partial ordering of the, abstract types and of the

dependency structure of the virtual memory mechaniam, a given type·manag~r

must implement the maps for its objects_ in ter.ms .of information containers of

an abstract type defined at a lower level. As wil:l be seen in .chapter LY_. if

none of the abstract types defined ;at lower lev.els: ar.e suUable for

implementing the maps as desi-red, an. ~act type 1Day be created· for that

special purpose. ·(1)

A solution that will be exploited in chapter IV for imple!lle!ltilJgthe ~aps

of the objects of some·abstract type consists,of ,collecting the maps of many

objects of that type into one information container that constitutes an

internal data base of the type manager for tnat type.· Maps are in general

ve:r:y small in terms of storage ra_quirements, often too' small, to efficiently

utilize ,the amount of physical storap provided. by an abstract container of,

any available type. Therefore, it is desirable to gather many maps into one

(1) This observation supports our earlier claim that the SRI system does not
really use type extension to organize its virtual memory mechanism. It fails
to specify means to implement the maps C)f the ab.st!ract :obJects (pages and
segments) its virtual memory supports. No data abstractions are defined for
that purpose. Maps are implemented by: so111e -unspecified,.internal aechani•
that is left to the creativity of the system programmer and to the imagination
of the user. If a true type extension appr{)ach, had been taken,,:the problem of
the implementation of maps would have been raised explicitly and would not be
left undefined as it is.

43

abstract con~ainer to achieve more efficient utilization of the physical

storage. The implem,entation of maps is a manifestation of a problem often

referred to as the "small object problem".

This problem is al'so encountered in practice (see chapter IV) for the

implementation of small components of abstract objects. Its solution in this

case is similar to the one suggested for the implementation of maps. Several

small components are collected in one information container. Consider a

hypothetical abstract type called segment. :The s,tructure of a segment is

defined below.

segment.

}map

cur len max len page_l page_2 page_n. } components

The components called page_l, ••• , page_n are repositories for user

information. They are implemented by abstract objects of type "page". The

cur_len and max_len components are repositories for information that is

maintained by the segment manager about the current and the maximum number of

pages in a segment. From the point of view of programming languages, these

components are implemented by objects of type ,11 integer". However, from the

point of view of a virtual memory mechanism, we are not interested in the

abstract information (integers) that represents thes~ components but rather in

the abstract containers that implement them. (1) If there existed abstract

(1) To relate the programming language view of the small components as
integers and the virtual memory view of the small components as information
containers, one can regard information containers as type generators. The
concept of a type geneI'atcn;. has been defined in CLU [Liskov76). Arrays and
stac~s, for instance, are type generators, Le. tll,ey do not define abstract

44

containers that could contain efficiently small amounts of information, they

would be suitable for our purpose. Unfortunately, existing virtual memory

mechanisms do not support small information containers; much to the contrary,

they tend to support containers that are as large as possible. Thus, we are

faced with the problem of implementing small components with large information

containers. To solve this problem, we propose storing the small components of

an object in one container.

In fact, we can solve the problem of implementing maps and small

components even more efficiently by combining these small objects together.

Assuming that small components are not shared by several objects, we can store

the small components and the map of an object together; and we can even

collect the maps and small components of several objects of the same type in

one information container. In our example about segments, we could, for

instance, use one page to implement the maps of four segments, together with

their small components. Irr fact, since the small components of an object are

implemented together with its map, the map need not explicitly contain the

uids (addresses) of the small components. It may directly contain the

components themselves as illustrated below. To this extent, the small

components are better regarded as attributes than as components of the

segment. They are implemented by (stored in) an information container defined

below the level of segments. They are interpreted and used by the segment

manager. They are analogous to what is called the "data-part" of the object

in Hydra [Cohen75].

types per se but they can be used in conjunction with abstract types to
generate other abstract types, e.g., arrays of integers or stacks of reals.

45

map for segment page (own data base of segment typ·e manager)

so

S1

S2

Sl'

••• page_n ... l 'page_n

4. SharinA compOnents.

The third difference between the classical and the new type extension

concepts deals with sharing a component among several objects. Such sharing

is generally regarded as dangerous because of the side-effects it may have.

Yet, use of the new type extension concept for implementing a virtual memory

mechanism has shown that such sharing may be desirable precisely for its

side-effects. A few comments are in order about shared components.

First, consider how sharing can be caused to occur. The following figure

illustrates a sharing situation in a hypothetical virtual memory mechanism.

passive

user segment S {arrows indicate

segment P active segment A component relationships ~-disk record R core block B

Five abstract types are involved in the example: disk records and core blocks

at the bottom level, active and passive segments at the intermediate level and

user segments at the base level. In the quiescent state, i.e. while it is not

used, a user segment is composed of only a passive segment. A passive segment

46

is itself composed of a set of N dililk_ records, "1iere N can- u, set explicitly

by the user for each passive segment when the- cor-r$ponding user segment is

created. A passive segment -is -characterize«C·by the, fact '.that its map resides

in a disk record. When a user segmentl>ecomes"used~ an dpject called an

·-
the property that its map resides ia a core 'b.}.ock and i~r initialized to denote

the same N disk records as the map of the passive segment denotes. Thus, when

a user segment S is used, its components P and A share N.ditK.-Z:~Ql'dl!I as _their

components. When the kth page of Sis referenced, a demand paging mechanism

implemented inside the active segment manager requests the allocation of a

core block B, makes Ba component of A and copies into B the information

contained in the kth disk record (R) of A. Sharing occurs not as a result of

the active segment manager having independently requested the allocation of

the N disk records but as a result of the user segment manager passing from

the passive segment manager to the active segment manager the list of disk

records composing P. Sharing cannot be the result of two type managers

requesting the allocation of the same components because objects can be

allocated only once. Instead, sharing is the result of the uids of the shared

components having propagated-,from the map of one object tq __,~he map of another

as the result of an explicit operation of some module (the user segment

manager in our example) that necessarily executes at a level higher than that

of the type managers for the objects sharing components or is one of these

type managers themselves. This observation will be used in the next section

as we discuss the protection of internal type objects.

A second comment is in order on the use of shared components. The second

property of abstract types states that the module using an object of some

47

abstract type need not be aware of the impl:ementation of the object. This may

seem to contradict the fact that the user $egment manager has caused p and A

to share Rand therefore is aware of R. In fact, there is no contradiction if

one considers the original intent behind the second property of abstract

types. The intent is to relieve the module using an object from worrying

about the details of implementation of the object and to hide from it any

internal feature of the object that it does not need externally to use the

object. That the user segment manager may see the uid for R does not mean

that it must know about the implementation of P and A. It does not have to

know how R is used by the passive segment manager and the active segment

manager. Nor does it have to know how R fits together with other objects to

compose P and A. The active segment manager and the passive segment manager

hide from the user segment manager internal features of P arid A that are of no

interest to it. However, if Pis a passive segment and A an active segment,

there must be a way for modules using such abstractions to talk about the disk

records in the segments. Such features are in no way internal. They are

explicitly specified by the various abstract type definitions as externally

accessible, logical attributes of these abstract types. To compare this to

the programming language area, the disk records in a segment should be

regarded as the integers in an array. Integers in an array are, by definition

of an array of integers, logical attributes that are accessible to the user of

the array via the array indexing operations.

48

5. Protecting internal type objects.

The fourth difference between the new type extension concept and the

classical one deals with the protection they afford to the abstract objects

they consider.

In order to ensure the third property of abstract types, i.e. the

exclusive privileges of a type manager to manipulate the objects it supports,

any type extension mechanism requires the help of a protection mechanism.

}lost existing and proposed type extension mechanisms rely upon a protection

mechanism based on the use of capabilities. The uids of abstract objects are

locked into capabilities. The first purpose of capabilities is horizontal

protection, i.e. the protection of users against each other. A user can

request a type manager to operate on an object only if he has a capability for

the object. The second purpose of capabilities is vertical protection, i.e.

the protection of type managers from their users. A user cannot directly

manipulate the representation of an object because the privilege required to

turn (ampl_ify [Jones73] or unseal [Redell74]) the capability for the object

into a capability for its representation belongs exclusively to the type

manager _for the object. Unfortunately, a capability mechanism (or any other

run-time protection mechanism) appears to be unsuitable and uneconomical to

protect internal type (bottom and intermediate level) objects.

Consider bottom level objects in particular. If capabilities were used,

they would have to be revocable. With bottom level objects, there must exist

a mechanism to guarantee that the user of an object cannot access that object

after it has been deallocated. There exist two classical ways to implement

revocation in a capability mechanism. With the first, every time a capability

is given to a user, its location is recorded in a table. When a privilege

49

must be revoked, the system can chase and destroy all the capabilities that

embody it. This scheme is used in the- Mult,ics system {Organick72]. However,

it would be very impractical to use it in a system where capabilities can be

freely copied. A better scheme {Redell741 consists essentially of maintaining

a list of currently valid capabilities and mat~hing against that list any

capability that is presented to access an object. With either revocation

scheme, a revocation table is required (either to record where capabilities

are or to record currently valid ones). In genel'al, there are DJany objects in

a system. Even though there is a limited supply of bottom level objects, that

supply may be large (e.g., disk records). Therefore, either kind of

revocation table may be very large, possibly too large: to be core resident at

all times. Since bottom level type managers are below the base level of the

virtual memory mechanism, they cannot use baiJe level opjects to implement

revocation tables. Thus, they cannot take advantage of the I/Q mechanism

embedded in the virtual memory mechanism to manage revocation_ tables.

Instead, special purpose mechanisms for I/0 and revocation table manipulation

would have to be provided at the bottom level of the virtual memory mechanism

to enable all bottom level type managers to maintain revoc~tion tables. This

would not only increase the size and the complexity of the virtual memory

mechanism but it might add a sustantial overhead in I/0 time to the system due

to the management of revocation tables. Thus,. using revocable capabilities

for bottom level objects would be inefficient and inco.nvenient. The same

argument holds about the inconvenience,of any run-time protection mechanism at

the bottom level: some potentially large data base is always necessary to

decide what accesses should be authorized.

Furthermore, capabilities are too sophisticated and expensive for the

protection of internal type objects in general. They are not really

50

necessary. As far as the users of the system are concerned, they see only

base level objects. They do not see internal type objects and never own

capabilities for them. The only "users" of internal type objects are the

system programs implementing the virtual memory mechaniS111. Such programs are

very different from user programs in that it can be demonstrated through

compilation and verification that they do not violate-the protection of

internal type objects at run-time. Thus, the protection of internal type

objects from system programs does not require a run-time protection mechanism.

The use of such a mechanism. to keep system programs from hurting one another

seems an expensive solution to solve a problem that has a much cheaper

solution, as is explained below.

In the above discussion, we have tried to suggest that to carry the

philosophy of type extension all the way through the lowe~t levels of a

system, it may be desirable to have a protection mechanism different from

capabilities and other run-time mechanisms. First, it seeurs difficult to

support revocation if a run-time protection mechanism is used and second, it

seems uneconomical to use a run-time mechanism a-t those levels. Yet, in no

way are we suggesting that the use of a run-time proteation mechanism must be

precluded for all internal types. Furthermore, with new technology, the use

of capabilities might become more practical. For instance, the machine

described in [Radin76] contains a built-in capability mechanism for doing type

extension from the bottom level up. Although one may argue about the cost of

manufacturing such hardware today, the proposed machine would grea.tly help

support the type extension concept proposed in this thesis. The protection

mechanism we recommend does away completely with run-time protection for

internal type objects. Vertical protection is _provided by a compile-time

mechanism and horizontal protection partly by the compile-time mechanism and

51

partly by a verification-ti.Bte mechanism, as will be seen. These mechanisms

provide the same pt'oterition as a run--.time m~cbani811l ,woule provide but at a

much lower cost.

Let us first consider vertical protection. We recommend a protection

mechanism similar to the one used in the CLU language (Liskov76]. Instead of

depending on the capability mechanism provided by .,the system to the users at

run-time, the CLU type extension mechanism depends on acaapile-time

protection mechanism based on ~ checking. The CLU system ·conslsts of a se.t

of description units (interface specifications) for clusters (type managers)

and procedures (ftm.ctional abstractions). Every time a aew CLU program is

compiled into the CLU system, the type checking •echanism enforces three

properties. First, it verifies that all clust,ers and procedures invoked

(used) by the program being compiled already belong in ,the CLU system. i.e.

that there exist description units for them. Second, :it verifies that the

type of every argument of every call to every cluster or procedure invoked by

the program being compiled is declared to be the type expec.t~d by the invoked

cluster or procedure, as specified in the CLU system. Third, the type

checking mechanism ensures that the· program bein-g compiled does not (try to)

access the representation of any of the objects it manipulates ·except for the

objects it supports if it is a cluster.

We recommend using such a type checking mechanism to enforce the vertical

protection of'internal type objects. Thus, modules of the virtual memory

mechanism must be formally described to the compiler before compilation takes

place so that type checking can be performed at compile-time. The

implementation of vertical protection for in·ternal type obJects points out one

difference between user and internal type objects. The vertical protection of

an internal type is not guaranteed by its type man~ger because the typ.e

52

manager does not provide capabilities or any other aechan:ism to protect the

objects it implements at run-time. (1) In&tead, vertical ,protection.is

guaranteed by the compile-time type checking mechanism.

Let us now consider the horizontal protection of internal type objects.

Insuring that a module cannot access obj~ts, owned by other modules for which

it has received no privilege can aleo be g-1,aµte_ed by the compiler in most

cases. For instance, the compiler should prevent modules from generating

random references that would cause tbert to access l()C'-l variables in the

activation records of other modules. The CQll.piler should-also prevent modules

from referencillg arrays beyond their bounds, This sort of horizontal

protection issues do not pose any problem. However, t:he following issue poses

a problem. The problem consists of guarante~ing tl)at no module of the virtual

memory mechanism ever uses the uid of an obj~t af.ter. that object has been

deallocated. In CLO, objects cannot be deleted. Therefore, there is no need

to implement revocation of deleted uids. In fact, we suspect that objects are

never deleted precisely because there is no obvious way to revoke deleted uids

in a user environment like CLO. However, the problem is quite different in a

system environment like a virtual memory mechanism.

In a us,er environment, one must expect a user to c;lelete an object but

forget to delete all the uids he has for it or forget t~ tell other users

sharing the object to delete their uids for it. And one must expect a left

over uid to be used after the object that it once den,o,ted has been deleted.

Thus, a protection mechanism is necessary to prevent the usage of uids of

(1) An elementary run-time type checking mechan:ism may be built into the
programming language for union types [Liskov76), which stand for one of
several types, the actual type being determined only at run-time. Noti~e that
we have not felt the slightest need for union types in the particular case
study of chapter IV but we do not mean·· to rule them out in general.

53

deleted objects. Thanks to a capability revocation mechanism, the user can be

prevented from using uids of deleted objects. If he did, he would soon

realize his mistake and could take some appropriate corrective action.

In the system environment of a virtual memory mechanism, the above

situation can and must be prevented from ever occurring. It must be prevented

in any case simply because it would give rise to errors. The users of the

virtual memory mechanism do not see internal type objects. They do not have

any knowledge about internal type objects. Therefore, they could never take

an appropriate corrective action if a module of the virtual memory mechanism

used the uid of a deallocated or deleted object. Thus, virtual memory modules

should simply never put themselves in a situation in which they could use the

uid of a deallocated or deleted object. Using the uid of any deallocated

internal type object is a blatant violation of the protection of some base

level object because the internal type object may have been reallocated in the

meantime. If a core block had been deallocated from one segment and

reallocated to another, the user of the first segment could access a portion

of the other segment if the segment manager had not properly deleted the uid

of the deallocated/reallocated core block from the map of the first segment.

One can prevent the usage of uids of deallocated or deleted virtual

memory objects precisely because they are never used or seen in user modules.

They are confined to virtual memory modules. And unlike user modules, the

correctness of virtual memory modules must be verified prior to their

execution. Part of their verification consists of showing that they are coded

so as to destroy any copy of the uid of any object when it is deallocated or

deleted. We will refer to this property as the conservation of uids: all

copies of a uid must disappear from the modules that used it when the

corresponding object is deallocated or deleted. Thus, the horizontal

54

protection of internal type objects is guaranteed not by any run-time

protection mechanism like capabilities but by the uid conservation that is

checked at verification-time.

The above paragraph points out another difference between internal type

objects and user objects. For internal type objects, the type manager does

not implement capabilities or any other run-time protection mechanism. Thus,

it is not responsible for the horizontal protection any more than for the

vertical protection of the objects it maintains. Horizontal protection is

guaranteed by the fact that the virtual memory modules are verified to

conserve the uids of in tern al type objects. A type manager for an internal

type only guarantees the correct manipulation of internal type objects. It

will never allocate/create an object that is already allocated/created. But

it does not prevent modules having used an object from referencing it after it

is deallocated or deleted. Modules doing so would hurt only themselves or

other modules using the same objects. In practice, they hurt neither

t11emselves nor uther modules because all modules are verified to properly

conserve all uids together. Thus, mutual dependencies that would exist

between two modules if each one needed to assume that the other conserved uids

proµerly are eliminated at run-time because uid conservation was checked at

verification-time, globally for all modules.

The protection of internal type objects deserves a last comment. We know

what a type checking mechanism consists of and we know it can be built. But

\,c~ io not have similar experience for uid conservation. We do not know if we

l'.an verify it systematically, if we can verify it at all. Rather than trying

t,, produce potentially complex rules to write systematically assertions that

would guarantee the conservation of uids in all possible cases, we propose a

pragmatic approach to formulating the assertions. Experience with the type

55

extension concept in the case study of chapter IV has taught us that

formulating the right set of assertions to-guarantee uid conservation in every

particular case was easy while trying to produce rules- to formulate assertions

systematically in all ·possible eases was ·extremely hard. In most cases, the

uid of a internal type object was found to be confined to the module that

requested the allocation of the object. In such casesj one can formulate

easily assertions that guarantee the uid conservation within that! module. It

is simple to require that· all copies of the uid made within the single module

be destroyed when the object is returned to the free pool. In·the few cases

where a uid was found to propagate through several mddules, we noticed that

its propagation was controlled by the module that is highest in the dependency

structure of all modules through wich the uid propagated. Consequently, it

is easy to produce assertions on that one module to guarantee that it controls

the destruction of copies of the uid as well-as it controls their propagation.

Verifying these assertions will automatically suggest to the designer the

assertions that: may have to be verified about the lower level llodules through

which the uid propagates.

For an example of such a situation, consider the hypothetical system used -

to illustrate sharing in the previous section. The ~ids of disk records

propagate through the passive segment manager, the user segment manager and

the active segment manager precisely to cause sharing. Yet, their propagation

is controlled by the user segment manager because the disk records are

ultimately the bottom level components of user segments. The conservation of

those uids is guaranteed as follows. Disk records are deallocated only when

the passive segment they compose is deallocated. This passive segment is

deallocated only when the user segment it is a component of is deleted. At

that time, the semantics of the user segment manager require that the

56

corresponding active segment also be deallocatecf. J~ other words, uid

conservation does not even require verifying any speci~l- P\Jl'lNSe ,asser,t:i.on ..

It is guaranteed by the fact that the user sepent m~aaer aiways deactivates

a user segment before it deletes it. Of coµ1:se, on~ ~an.1vel'ify uid

conservation only if it can be shown tl)at the ac::,tive s~gment _maqager and the

passive segment manager clear (erase) the map of:,~he objects they maintain

when they are requested to deallocate these ~bj~~t1ii"'. ~SQ• copies stored in

working storage must be destroyed. Such assert;i.ons-111,ay ~qt be part of the

original definition of the two type manage,;~ .but they ,r~ easy .to fc;,na\llate

and certainly seem reasonable (not too con~trainil\g)., As wa~ mentio~ec;l in the

section on shared components, sharing is always cqntroll~d exp.lic,itly -~y some

module that depends on (uses) or is one of the type managers managing the

objects that share components. That module also con..trols. the propagation of

the shared uids. Thus, at least in all ~:l.tuations wbere&µ..ds propagate

because of sharing, we suspect it should b~ as easy as in our example to

formulate the assertions guaranteeing uid co~-servatipu,. _. In all ~haring

situations of the case study of chapter IV, verifying uid conservation is not

a problern.

6. The nature of type managers.

A type manager is an isolated collection of procedures and data bases

that constitute a module. In general, an instance of a module is available in

every user process in the form of a callable program. If modules are isolated

by a partitioning technique based on the protection mechanism of the system,

then they are realized by domains that can be invoked only at certain entry

points called gates. If modules are defined by a simple decomposition of the

system, with no enforcement of isolation by any protection mechanism, then

57

they are realized in every user process by what Feiertag has called a region

that is an unprotected collection of callable procedures. However, there is

nothing intrinsic about type managers that implies the above implementation.

Nothing precludes realizing a type manager module with a dedicated process and

its operations with inter-process messages. This kind of implementation is

possible because of the common nature of processes and domains/regions. They

are all made up of procedures and data bases. A domain/region is a set of

procedures that can be executed sequentially with respect to a user

computation. A process is a set of procedures that can be executed in

parallel with a user computation. In practice, modules are often realized

with a domain/region. However, there may be cases where using processes or a

combination of processes and domains/regions is necessary or desirable. The

advantage of using a process is that it can take the initiative of certain

actions and carry them out in parallel to user processes, which would be

impossible with a domain/region that can start operating only upon a

synchronous user request. For instance, to implement the asynchronous but

sequential page removal algorithm described in chapter I, the page manager

would have to be realized by one region that' is synchronous to the execution

of user processes and one process that runs in parallel to them. Both the

region and the process are part of the implementation of the page manager

module for the very reason that they manage the page maps that tell whether

any page is in or out of core. Thus, clarity is gained because the region and

the process perform distinct operations on pages in their own way. However,

the interaction between the region and the process cannot be ignored in the

verification of the type manager. As will be seen in chapter III, the

particular realization of a type manager as a region, a domain, a process or a

combination of these does not matter from the point of view of the modularity

58

of the system because modularity considers only modules and is not concerned

about their nature.

7. Conclusion.

This chapter has first defined a data abstraction model. Then, based on

this model, the features of conventional type extension concepts were compared

to those of the type extension concept we propose to use for virtual memory

mechanisms. In particular, we have examined the lifetime and the supply, and

the reconfiguration of objects. We have also discussed the problems of

implementing object maps, sharing components and protecting objects in the

specific environment of the virtual memory mechanism.

59

III. Use of the type extension technique
to design a virtual memory mechanism.

The present chapter will discuss the impact of using the type extension

concept defined in chapter II on several aspects of the design of a virtual

memory mechanism. First, we will discuss the use of type extension as a

technique to organize virtual memory mechanisms. Second, we will discuss the

impact of type extension on modularity and explain in what sense the type

extension concept fosters strict modules. Third, we will discuss the impact

of type extension on structure, we will examine what situations could cause

violations of the partially ordered structure of a system, and we will see

which of those situations the type extension concept helps avoid or simply

eliminates. Finally, we will discuss the advantages of type extension with

respect to a locking strategy for avoiding deadly embraces on system data

bases.

1. Use of the type extension concept.

It should be kept in mind that the topic of this thesis is not the

presentation of a tool for automating the design of virtual memory mechanisms.

We are not trying to systematically produce "off-the-shelf" virtual memory

mechanisms. (Not because this would be undesirable but just because it is too

hard.) We are concerned primarily with recognizing a well-organized design

once we see it. Thus, the type extension technique is not a tool for

mechanically generating the design. It is mainly a means for evaluating the

organization of an existing system design. The type extension concept is a

context in which the organization of a system can be evaluated and

progressively tuned towards a strictly modular and partially ordered design.

The whole point of the type extension concept is regarding the virtual

60

memory mechanism as a set of modules, most of which are likely to be type

managers, that provide abstract types of information containers. The problem

that must be solved is the choice of an "adequate" set of abstract information

container types. How successful a designer may be at making a good choice of

abstractions depends on his experience and -- shall we say -- his good taste.

There is no single best way to organize a system. There are probably many

good ways to organize it. How fast a designer can arrive at such a good

design depends on his ability to adopt the type extension view, i.e. to

visualize data abstractions providing the functionality he has in mind. This

may require several design iterations in the course of which the designer may

notice modularity and structure problems and should adjust his design

accordingly.

While the design of a system and the choice of abstractions may be very

hard problems and are left entirely to the designer, the type extension

technique more than any other technique provides a few handles on these

problems. On the one hand, it provides feedback such that the organization of

the system may be evaluated and problems may be detected. On the other hand,

it may suggest possible corrective actions for certain problems. In the

remainder of this section on the use of type extension, we review only briefly

the overall process of exploiting type extension to design a system. More

details and specific examples about this process will be giv~n in later

sections of chapters III and IV.

Let us first consider the feedback provided by type extension on the

design of a system. When the designer believes he has worked out a possible

decomposition of his system into modules and before he implements any module,

he can construct two graphs that will provide him with useful feedback to

evaluate the organization of his system. Such graphs can always be drawn,

61

even if the system is not well-organized, which the graphs would precisely

indicate. Parts of such graphs are shown below for a hypothetical

well-organized system.

structure graph dependency graph

file

t
file manager

~
segment

'
segment manager

t
page

+
core block

page manager

t
core block manager

The structure graph of a virtual memory mechanism is a graph that shows

all the abstract types implemented within the mechanism and their component

relationships. The graph contains one node per abstract type and one directed

arc per component relationship, such that the target of an arc denotes a type

that is a component of the type denoted by the origin of the arc. The

structure graph of a system is constructed by examining the mechanical

operation of the system, envisioning the data bases it should contain,

considering the connections between these data bases, and by attempting to

view the data bases as abstract objects and the links that connect them as

component relationships. The process of constructing the structure graph of a

system will become clearer in chapter IV. For the time being, it would be

presumptuous to be more explicit or more formal about it because the type

extension technique would look like an automatic design tool, which it really

is not, and the construction of a structure graph would seem to be a

mechanical task, which it is not in reality.

The dependency graph of a virtual memory mechanism shows the complete

dependency structure of the system. Every node in the dependency graph stands

for one of the modules of the system and every arc indicates that the module

62

at its origin depends on the module at its tip. The dependency graph of a

system is derived from its structure'graph-by considering that each type in

the structure graph corresponds to a type manager module in the dependency

graph and each component relationship in the structure graph corresponds to a

dependency relation in the dependency graph (because if a type Tis composed

partly of a type T', the type manager for T depends ontthe type manager for T'

to manipulate the representation of objects of type T)~ The arcs of the

dependency graph, however, are a superset of those in the structure graph as

they indicate module dependencies generated by many different causes, not just

by component relationships. The various sorts of dependertcy·relati-0nships

represented by dependency graph arcs and the construction ·of the complete

dependency graph will be examined in detail in aection j of this chapter.

The feedback provided by the two graphs we have 'just described is the

existence of directed loops they might contafn. A directed loop in the

structure graph violates the type extension ·rule stating that abstract types

may be defined only in terms of more primitive types, i.e. that the structure

graph must be partially ordered. A directed loop in the dependency graph

should also be eliminated because it means a violation of the partial ordering

of the dependency structure of the system.

Let us now consider the possible corrective actions that are provided by

the type extension technique to eliminate potential loops in the two graphs.

It would be nice to ha'i/e a complete set of rules for eliminating loops

systematically in all cases. Unfortunately, our ~xperience with.the type

extension technique is limited to the design of only one system. Thus, we do

not dare claim that the rules that have proved to be sufficient f0'£

eliminating loops in that particular system would be sufffcient to eliminate

all loops in any system. Consequently, the following are three interesting

63

but only informal examples of how one may look at a loop and its environment

to try to analyze its cause and perceive a way to elillinate it either by

adding nodes to or by subtracting nodes from the graphs.

For instance, a loop may exist between two nodes A and B because A •and B

stand for abstractions that are so tightly coupled that they should be

regarded as a single abstraction. Replacing A and B by a single node X

obviously eliminates the loop. The cost of this change is that the

abstractions represented by A and Bare no longer distinct and will not be

specified by individual internal interfaces in the final design.

As another example, a loop may be due to a node standing for a complex

abstraction that could be split into two simpler abstractions in such a way

that the loop is broken as follows:

This type of action is discussed by Parnas [Parnas76]. It was used by Reed

[Reed76] to split the Multics virtual processor mechanism (A) into two levels

and avoid a dependency loop with the virtual memory mechanism (B). Splitting

abstractions in such a way presents the advantage of separating ideas into

modules that will be specified by their own internal interfaces in the final

design. Of course, it costs the price of maintaining an extra level of

mapping between abstractions. In addition, it may not always be possible to

find a clean split between two abstractions.

As a last example, loops may be due to a failure to recognize several

ideas as parts of the same abstraction (such is the case with the quota

problem discussed in chapter IV) or to provide an adequate abstraction where

64

it is needed (such is the case with the address space problem discussed in

chapter IV). Adding appropriate abstractions to the graphs solves such

problems.

2. Type extension and modularity.

The objective of the designer of a virtual memory mechanism is to

organize his system into a structured set of small and distinct modules. The

next section will discuss the impact of type extension on structure. The

purpose of this section is to discuss the relation between modularity and type

extension.

With the type extension concept, each type manager is a module of the

system. As mentioned earlier, each module is implemented by a set of callable

procedures (domain or region) and/or by a set of dedicated system processes.

While this distinction is important to build the dependency graph of the

system, it is largely irrelevant to the evaluation of modularity because

modularity is defined with respect to the programs that compose a type manager

and not with respect to what process, domain or region type managers are

executed in nor how they are invoked.

As suggested in chapter I, a type manager is said to be strictly modular

if none of its internal data bases are ever shared with other type managers.

Hence, modularity i~plies that type managers can interact with one another

strictly via inter-module calls and/or inter-process signals, depending on how

the module is executed. In fact, most of the data kept by a type manager T is

data pertinent to the representation of the objects it maintains. By virtue

of the definition of type extension, such data may never be accessed by other

type managers. In order to access it, other type managers must invoke the

operations defined for the type implemented by the type manager T. Thus, the

65

rule that a type manager should not share any internal data base with other

type managers does not add much of a constraint on type managers since most

data bases cannot be shared anyway by definition of type extension. Only data

bases not directly pertinent to the representation of cibjects (e.g., metering

and perfo•rmance monitoring information) could be·is-hared but should not

according to the modularity constraint. (1)

The main reason for ruling out interactions via shared data bases is, as

stated earlier, to keep the interfaces of modules as s_imple and easy to define

as possible, according to Parnas~s information hiding princip.le {Parnas71].

Strict modules tend to define abstractions that are more meaningful, more

precise, mo.re complete.

A second reason ,for ruling out share4 data bases ill to keep a tighter

control on the dependencies between modul~s. •As long .tlB type m~nagers can

interact only by calling one another or by sending s.j_gnals t,.., one another, it

is (relatively) easy to keep track of every interaction and to decide whether

it raises a dependency problem, as will .be seen in the next section.

Interactions via shared internal data bases .would make the identificat-ion of

dependencies extremely hard because every shared data base would have to be

studied from the point of view of every module shar:ing. it. This study would

require a huge (and otherwise practically useless) cros4a-reference table that,

for each data item. indicates which module 1:e_ads from it OJ" writes into it.

A third reason for eliminating shared databases .is to ease explicit

recognition of parallel activity when it is present. If data bases can be

shared, the designer of one module may not know whether or not a data base his

(1) One might conceive a situation where several type managers share access to
a common read-only data base. Such a situation is acceptable as reading from
a non-writeable data base cannot mean interacting.

66

module is using may be used at the same time by other modules being executed

in parallel prQcesses. Failing to recognize such. parallelism would. alJnost

certainly lead to a disaster. By insisting that d.ata bases never be shared·

among modules, we make it easier to recognize.parallelism explicitly. Knowing

that his module is the only one.to reference the data bases it uses, a

designer is in full control of parallel activity over these data bases.· He

can code his module so that user and./ or system proceases that may execute

portions of its code in parallel will approprtately synchronize their activity

over the data bases they share as parallel instances or portions of the same

module.

A fourth reason for disallowing shared data bases is because disallowance

helps provide a strategy for avoiding deadly embraces, when locking system data

bases, as will be seen i-n section 4 of this chapter.

Eliminating the possibility of sharing internal data bases among modules

may sound like a drastic measure likely to impair the perfoi;mance of the

system and complicate the task of the designer. Based on our experience with

the redesign of the Multics virtual memory mechanism, we do not think this

measure poses any problem in practice. We do not believe that the performance

of the Multics virtual memory mechanism would be any better if data bases

could be shared. And, we have not encountered a single circumstance in the

virtual memory mechanism of Multics where a shared data base would have been

desirable. In general, we suspect that the desire to, share a data base among

several modules will not occur to the designers of those modules if they

strictly respect the formalism of type extension. Indeed, each type manager

has a natural tendency to be a strict module because its main function is to

manage an isolated collection of objects, a task which does not require

sharing internal data bases.

67

Eliminating shared internal data bases is a sound decision and should

become common practice. If anything, it foster1;1 syst,em. flexibility bec4use it

makes modules independent of one another in the sense that they do not have to

agree on the format and semantics of any shared data.

3. Type extension and structure.

The structure graph of a system indicates what data abstractions are

supported by the system and how they are implemented in terms of one another.

The objective of this section is to discuss the relation between the structure

graph and the dependency graph of a system. First, we will give a definition

of the concept of dependency and we will analyze all possible causes of

dependency. While doing so, we will see how· helpful the type extension

concept is to eliminate or point out dependencies that would violate the

partial ordering of the dependency graph. Second, we will indicate how to

construct the dependency graph of a system, by using the type structure graph.

Causes of dependency.

First of all, it is time to define more carefully the dependency

relation. The fact that a type manager A can influence the operation of a

type manager B does not mean that B depends on A's actions. In particular, if

B implements a service for A, B's operation will obviously be driven by A's

commands to B. Yet, B may be declared independent of A. There is no

connection between the concept of dependency we are interested in and the fact

that the operation of Bis influenced by the actions of A. There is a

dependency, in our sense of the word, only if the correct operation of B

depends on the operation of A, i.e. if some action of A could cause B to

operate in a way different from that stated by its interface specification.

In other words, B depends on A if verifying B's correct operation requires

68

using assertions defined in the interface specification of A.

With respect to the partially ordered'dependency structure of a system,

we define an upward dependency to be one that would violate the partial

ordering. Conceptually, all upward dependencies are of course forbidden as

they make understanding and verifying the system ·more compl'icated.

Practically, however, the designer of a system may enco~nter situations that

could result in upward dependencies. We will see in this section that one can

distinguish three sets of upward dependencies with respect to the type

extension concept. Upward dependencies of the first set, which could

potentially occur in a system not based on type extens.ion, are totally

eliminated by type extension. Upward dependencies of the second set are not

eliminated but are easy to find thanks to type extension and can be corrected.

And type extension is of no help with respect to upward deperdencies of the

third set.

It is interesting to compare in some detail Parnas's "uses" relation,

which was mentioned in chapter I [Parnas76], to the dependency relation to

justify our use the latter relation in this thesis. A module that "uses"

another module depends on it because the correctness of the used module must

be assumed to verify the correctness of the first m9dule. However, a modµle

that does not "use" another module may still depend on it, as was suggested in

chapter I. For instance, assume that two modules share a common data base.

They may not "use" one another in the sense that neither of them ever causes

the other to perform any service on its behalf. Yet, they mutually depend on

one another because verifying the correctness of either one implies verifying

the correctness of the data base they share, which depends on the assumption

that the other module always leaves the data base in a consistent state.

One advantage of the dependency relation over the "uses" relation was

69

mentioned in chapter II: it discourages the use of weak modules (shared data

bases) because they cause dependency loops ~~'.the structure of ~he system.

A second advantage of the dependency .re].ation over the "uses" relation

deals with the maintenance of the system. With the dependency relation, when

a single module is modified, it is sufficient to re'(erify the correctness of

that module and the modules that depend on it to guarantee the correctness of

the entire system. With the "uses" relation, it may be necessary to reverify

any module, whether it uses, is used by or bears no relation to the modified

module, .because any module may share a data ,base _with ~he modified module and

it$ correctness may be affected by changes in the modified module. In other

words, a change in the modified module may atfect the semantics of a data

base, which may implicitly affect the s~ification of the inter.face of any

module sharing, that data base with the modified module, and require that such.

a module be reverified even though its code may not have changed.

Given thedefinition of dependency, we can analyze the possible causes of

depenq.ency between two modules. The first cause of dependency deals with the

way modules interact. We first consider what modul~ interactions are

possible. We have just seen that modules may not interact via data bases. We

have also seen earlier that modules may be. implemented, by callable

domains/regions and/or by dedicated system proe>esses.. Thus, a module may

interact with a callable module only by giv·ing control to it. And a module

can interact with a process module only by exchanging messages with it.

We now discuss.when module interac.tions may give rise to dependencies. A

module A that initiates a transaction with. a module B becomes dependent on B

if its own continued correct operation depends on an ~ssumed responEe of B

within a finite amount of time. If A initiates a transaction with Band

abandons control but does not expect any response from B iri any amount of

70

time, A will be said in the quiescent' state (independent of R). In practice,

the quiescent state of a module implies that all i,ts· internal· data bases are

consistent, that none of them is locked and that there is no pending procedure

invocation in the module.

We finally discuss what forms of interactions yield dependencies, given

the definition of the quiescent state of a module. First~ if a module A

simply sends a message to a module B, does not abandon control' attd' does not

expect any response· from B, then it is not depertd-ent on B, as explained above.

This is a trivial case of module interaction where a module infonns another

module, as it executes, of some situation it has encountered (e.g., some event

to be metered, recor.ded or accoimted for by the recipient of the meffage).

This form of module interaction will not further retaih out-· attention.

Second, if a module A sends a message to a_ modul<e B" and then abandons control,

a form of transaction we will further call siSnkl·lly, A depends on B only if

it abandoned control in a non-quiescent stat-e, thereby implyi.ng that it•

expects some response from B to resume an unfinished ·task. Third, if a module

A transfers control ("go to") 'to a tnodule B, ·:•it aepends• on- B only if it

u·ansferred control in a non-quiescent state, t~reby implying that it expects

to regain control and complete some pending work. Finally, if a module A

calls a module B, it is always dependent on B because a call expects a

matching return. To summarize important situati-ons described in this

paragraphs, we will use the terms "invoking" and ·"notifying" as defined below

throughout the rest of the thesis. A module A that transfers control or

signals an event to a module Bin a non-quiescent state, or calls B will be

said to invoke (1) the service of B. Invoking a aervice is synonymous to

(1) Invocations to certain type managers may take the form of an implicit
hardware operation if the type"manag~r supports an abstraction that is

71

using a service in Parnas's sense [Parnas76]. Invol.q.ng a module implies

depending on it. This is the first cause of dependency. On the other hand, a

module A that transfers control or signals an event to a ~odule Band ~emains

in the quiescent state (independent of B) will be said to notify B of some

event. Notifications are important forms of interactions. In particular,

processor exceptions in a system are notifications by a hardware module to

some software module that an exceptional situation requiring software support

was encountered. In fact, most instances of notificatiqns may be regarded as

error returns from implicit invocat_ions. For instance, 11n implicit invo.cation

of an operation to access a word of a page that is n,ot in primary memory

results in a processor exception that is often called a page fault.

The type extension concept does fOt preve~t upward dependencies due to

upward invocations. Indeed, a designer might conceive t~ modules that invoke

one another. The type checking compiler can eliminate. upward calls because it

knows that they all correspond to upward d~penqen,cie~. But it cannot

eliminate upward invocations corresponding to u~ward transfers oJ .control or

signals because it does not have enough knowledge about modules to distinguish

such upward invocations from upward not.ifications, which are allowed, i.e. it

does not know how to decide whether a module abandons control· in a quiescent

state or not. However, by restricting module interactions to. calls, transfers

of control and signals, type extension makes the Aet;e<!tion of upward

dependencies easier to the designer. For every module interaction, the state

of the module that initiates the tr an sac t.ion should be inspiac ted ,by the

designer, ~~o has sufficient knowledge about his module to decide wh!?ther it

is in a quiescent state or not. If it is not qu~escen.t at the time of the

implemented partly in hardware. For instance, reading· or writing an in core
segment are primitives invoked implicitly by. J1ardware <;>perati~ns.

72

dependencies because it totally ignores types and ranges of values. Argument

validation is a very har:d problem that has to be carefully· dealt with by every

individual module designer. The use of programming languages with built•in

language type checking feat;ures (e.g., CLU) might provide syste'Qlatic type

validation for values but still provides no ,help with respect to range

validation.

The case of references is different. By accepting a reference to an

object, a type mapager might become dependent on the supplier of the reference

(the invoker) and on t.he suppli,er of the object denoted by the re.ference (the

type manager implementing the .obj e_ct). It. becomes dependent on, the type

manager of the object if it uses the object (because using the object implies

invoking the type manager to manipulate the object). It becomes dependent on

the supplier of the reference if it as.sumes that the reference is meaningful,

Le. that it denotes an accessible object. It would also beco~e dependent on

the supp.l~er of, the reference if it assumed anything about the type of the

object denoted by the reference.

Because of the type checking mechanism built into the compiler, a type

manager can never invoke a higher level type manager to operate on a higher

level object. In other words, a type ma.nager c,an never interpret a reference

to a higher level object. We will call this the information level rule: high

level references cannot be interpreted in low.level modules. Thus, the type

extension concept systematically prevents the designer ,from producing modules

that accept as arguments references to higher level objects and use them to

access the objects. (Notice that the type checking CO!Jlpiler does not prevent

a module from accepting and storing references to high. level objects as long

as it does not use them to access the objects. References that are never used

are simply regarded as values and are not .type c:qe~ .;;i~- denoting information

74

containers.)

Because of the type checking feature also, any assumption a type manager

may make about the type of the objects for 1.tlich it receives references as

arguments is validated at compile-time. -Thus, the type extension concept

systematically prevents the designer from producing a module that would be

dependent on its invoker because it failed to validate the type of references

it has received.

Notice that in most virtual memory mechanisms, associated with references

to certain abstract types are certain system everits. For instance, a segment

fault might be an event associated with referencing a segment of which the map

is not in primary memory. A page fault might' be an event associated with

referencing a page that is not in primary memory. An access violation is an

event associated with referencing an object to lmich access has been revoked

or which does not exist. If a type manager A depends on a type manager B, it

must be prepared for the events associated with the ol>j-ects implemented by B

to occur when it references them. On the other hand, if it cannot tolerate

these events, it should not use objects of type B to avoid being dependent on

type manager B. Consider, for instance, the case of access violations in a

virtual memory mechanism. For internal type objects (i.e. objects not visible

to users, below the base level), the uid conservation property that is checked

at verification-time guarantees that while an object is deallocated, no copy

of its uid exists outside the type manager that manages it. Thus, if a type

manager receives a uid of an internal type object as argument, it can rely

upon the fact that that uid denotes an allocated object because that fact was

checked when the system was verified. However, for a base level object, a uid

or a capability may still exist in some module after the possibility or the

right to access the corresponding object has been removed. Thus, if a type

75

manager depends on a base level type manager and .accepts a capability or a uid

for a base level object as argument, it must expect running into access

violations and be prepared to handle them in some appropriate way.

One comment is in order about a situatiott where -ehe two causes of

dependency (invocation and lack of argument valida•tiea} could. frequently cause

dependency loops. By virtue of the first cause o.f -dependency, a.type manager

is always dependent on a type manager it invokes to have a service performed.

This implies that the in:vo k.ed type manager may never depend on its invoker

because a dependency loop violating. the desired partially ordered structure

would occur. Thus, instances of dependency due to the second cause (argument

passing) must be eliminated in all cases of raodule interactions corresponding

to lnvocat:tons'.. An invoked type manager should. nev.er -~,sume anything about.

the input arguments it receives, or if it does, tt must ~~idate its

asswnptions before using the arguments, otherwise it would be depende~t on its

invoker, thereby causing an upward dependency. Therefore, we impose that .the

designer of a moduie performing a service always define'in· th~ specifications

of the serv'ice interface of his module the assumptions it makes about the

arguments it expects and code his module to dynamically validate those

assumptions before perfonning the service. (If it did not validate those

assumptions, it would be incorrect with respect to its specifications.)

Construction of the dependency graph.

Having analyzed wat a.ctions ·cause dependency; we will now examirte the

relation between the dependency graph of a virtual memory mechan·ism and its

structure graph by examining all the possible reasons ~y a ,t.ype manager might

become dependent on another type manager.

The basic relation between the dependency graph and the structure graph

of a system is the one to one correspondance between 'nodes. But there are

76

many more arcs in the dependency graph than in the structure graph. Every

node in the structure graph corresponds.to an abstract type. Since every

abstract type requires its own type manager, there ;must; b,e one node in the

dependency graph for every node in the structure graph. That node stands for

the corresponding type manager. In addition, all arcs in the structure graph

have their equivalent in the dependency graph. Every directed arc in the

structure graph corresponds to a component r.elaticmship. Every operation on

an abstract object is translated by the type manager for that object into

operations on one or more components of the object.. 'U\llS, the type manager

translates invocations .to itself into invocations to the type managers of the

components, of the objects it manages. Since t,qe ~yp~ structure graph sh_puld

correspond to a partially ordered structure of @stract type~, t,he dependency

structure indicates type managers that are partia,l],y -0rd~d by the dependency

relation. The instances of dependency identified above are called component

dependencies.

Component dependencies are not the only arcs in the dependency graph. A

second category of dependencies are _!!!2. dependencies. They were briefly

mentioned in chapter II. Any type manager must maintain a map for each object

it implements. The maps themselves must be implemented out of some type of

information container. Thus, the type manager 4epends on the type manager for

the maps because it invokes it to manipulate the maps.

A third category of dependencies is called program dependencies. Every

type manager (except type managers supported by hard•re operations) is a

program, i.e. a set of procedures and data bases (not including the objects it

manages and their maps). The procedures and data bases must be stored in soae

type of information container. The type manager will be dependent on the type

manager for these information containers because reading, writing and

77

executing its. own programs is equivalent to invoking (usually b1plicitly

through the hardware) t.he typ.e Bl<!lnager !q!pl~nti'1g ~he. program containers.

Like JIUil.p 4ependencies, pr9g.ram depe~de~ie,s $re nQt a problem in a user .

environment. With classical impl~ntatio~ of typ~ extension, maps and

programs can bqth be implemented out_of b~se level objects._(e.g., segments or _, .

pages). However, within the context of the virtual memory mechanism, base

level objects are not defined. Thus, other-types must be found. This task is

not trivial. As in the. case study of chapter IV, special purpose types may

have to be created to implement maps and programs because none of the types

available at a given level may be adequate far this purpose. This is a first

instance of a situation where the construction of the dependency grapn may

point out deficiencies in the structure graph and require a design iteration

to modify the structure graph.

The fourth category of dependencies is called addr_ess space dependencies.

The procedures, data bases and object maps tha:t a type 1nanager uses are

objects. The set of all s~h objects defines the aqd,:ess space of the type

manager. In most systems, the address space in which a callable. subsystem

(domain or reg,ion) or a process executes is implemented by some sort of

information container or set o-f registers that cpl\tains the complete

collection of all uids and capabilities that the subsystem or the process can

reference as part of its address space. Thus, every type manager depends on

some other type manager to implement the information container, materializing

the address space it executes in. Again, in a user environment, some base

level container can be used to collect the capabilities in the address space

of a type manager. (For instaJice, in Multics» a,descriptor segment is used

for that purpose. In Hydra, a local name space (LNS) defin~s the address

space of each procedure.) However, in a virtual memory environment, base

78

level containers cannot be used for that purpose because they are not defined.

Special purpose· information conta:iners may also have to be defined to

implement address spaces. This iS' a second 'instance of a situation where the

construction of the dependency graph·may suggest a design iteration.

The fifth category of dependencies is-called interpreter dependencies.

Whether a type manager is implemented as a callable- subsystem.or as a

dedicated process, it needs a proces-sor to interpret its code and thus run it,

and to control its rate of execution, If each type manager could have a

hardware processor all.to itself, it would depend on.only the correct design

of that processor. However, hardware pcoeessors are:too scarce and expensive

resources to be dedicated to executing any- single type manager. In practice,

type managers, as well as user modules, run on abstract types of processors,

sometimes called virtual processors, among which the physical processors are

multiplexed. Thus, they. depend on the correctness of those virtual processors

and on the correctness of the mechanism ·that multiplexes the physical

processors among them. One can envision using a type extension concept for

multiplexing (bottom level) processors among abstract (base level) processes

that is similar to the concept we use to multiplex bottom level core blocks

among higher level abstract pages. A parallel research project [Reed76} that

was concerned with reorganizing the virtual processor management mechanism of

the Multics system has in fact implicitLy used a concept of type extension.

The type extension concepts used in the virtual memory and virtual processor

contexts are very similar. In particular, they are identical with respect to

the dependency relation. The same problems of implementing components, maps,

programs, address spaces and interpreters arise with virtual memory type

managers as with virtual processor type managers. Virtual memory type

managers depend on other virtual memory type managers to implement everything

79

but their interpreter_s. For their interp;c-eter, they depend on some virtual.

processor type managers. Virtual processor type managers depend on other

virtual procesSO'r type managers to implement,, coinpPnent& and· i.nterpr,e_ters but

they depend on some virtual memory type managers to implement maps, programs

and address spaces. Thus, the virtual memory and virt~l proc~ssor dependency

structures are intimately in,te.rleaved. This can. be observed in the case study

of chapter IV. One must be particularily .careful. not to cause mutual

dependencies of the .sort discussed b:y Saxena JSaxena76] between the virtual

.processor type managers and the vir~ual memory type 1J1..an.ger$. If the

dependency graph indicates dependency J_oops, a de,sign 1,.teration should be

performed to modify the structure graph. In fa~t, such~ dependency lQop is

exactly what prompted Reed [Reed76) to, r~desi.$n F™r p~ocessor multiple~ing

mechanism of Multics.

Conclusion.

The concept of type extension does not. a,~to01atic8:ily;~liminate all upwa!'.d

"

dependencies and guarantee a partially ordered dependency structure. However,

it does eliminate some upward dependencies lllhich are among the most frequently

encountered in existing systems. Accepting reference arguments of an

unexpected type is impossible because the compile-time typ~ checking mechanism

validates the type of all references passed to a type manager. Using objects

.c , ,s,'.. -; ,.

defined at a higher level is impossible because of the information level rule

that is also guaranteed by the type checking mechanism. A second set of

upward dependencies are not eliminated by the type extension mechanism but

they are easy to spot and remove thanks to it. Such is the case for upward

signals and upwards transfers of c·ontrol before which a t&7pe manager should

return to a quiescent state. Finally, certain kinds of upward dependencies

are not considered at all by our type extension concept. Such is the case for

80

the validation of the range of argutnenti3 in geheral. Stich dependencies must

be watched for'·explicitly by the designer o:f every module •.

We have seen how the dependency graph of a syate111 ca\\· be derived from its

type structure graph. By analyzing the implementation of a type ma'nager, one

can identify all the type managers it depends'on to interpret its code, to

implement its addr~ss space, to stor~ it•g prog~a111.1:r and to store the components

and the maps of the objects it manages.

We have tried to suggest how to iteratively design and evaluate a virtual

memory mechanism by inspe·cting its ·type'strticture·graphandits dependency

graph. We have seen how helpful type extension cliti be tn displaying:the

modularity and the struc:ture of the· system without requiring-much more

knowledge about its design than· is elilbedded 'lrt the d(!peiiden~y graph. After

the modularity and the structure of the system are apparent:, the deslgnei- ma:y

produce the formal specifications and the code for the modules.

4. Type extensi'dn and ''deadlock prevention·:

In this section, we will st4dy the impact of type extension on a third
. ' ,, ' .

aspect of the des_ign of a system: de~lock prevention~ ~ea~locks (otherwise

known as deadly embraces) are situations that can occur when several parallel

processes compete for resources that can be used by only one of them at a

time. For instance, if two processes P and Q decide simultaneously to acquire

exclusive usage of two resources A and B, they will need to lock them to avoid

conflicts. However, if P locks A first and Q locks B first, neither P nor Q

will able to proceed because each will see one of the data bases locked (by

the other) and thus temporarily out of service as far as it is concerned.

This is a deadlock situation.

Several algorithms have been designed to help designers make sure that

81

the.ir system is deadlock-free, i.e. that it can nev~r put itself in a deadlock

situation {Bensoussan68, Havender68,. Habermann69J .. These algorithms are

undoubtedly helpful. But verifying that a systew respects .theJ_U and is

deadlock-free may be hard. In general, i.t requires the. designer of every

module of the system to be aware of the dea~Uock prevention algorithm on a

system-wide basis and thus to be aware in some measure of. what designers of

other modules have done with respect to deadlock prevention.

In this section,. we are concerned with a specific kind of deadlocks,

namely those that may occur when several parallel processes compete for

locking of internal system data bases to preset:ve the integrity of these data

bases. We will. show that the type extension concept defined in chapter II,

together with the restriction that modules may.,not share data bases,

guarantees-the prevention of deadlocks due to COlllpetition for locking of

internal systent data bases. The type extension.concept provides a strategy

for orderly locking of internal system data bases that guarantees a

system-wide respect of Havender' s deadlock prevention alg•orithm, while not

requiring any particular attention to or awareness of •the algorithm on the

part of the designers of the system.

Havender's algorithm is summarized here. With every data base that can

be accessed by several parallel processes but by only one of these at a t:ime,

one assoo,iates a lock (semaphore). In order to be allowed to access the data

base, any process must test and set the lock in one atomic (hardware)

operation. If it sees the lock already set, it must wait on it. Havender's

algorithm requires that all the locks in the system be ordered by ass~ciating

a number with them. Furthermore, a process may neither test and set a lock X

nor wait on it if the relation X>Y holds, where Y is the lowest numbered lock

82

that that same process has currently set. (1)

This algorithm guarantees the absence of deadlocks due to competition

over internal system data bases because any process that wants to lock a set

of data bases must lock the1n in a fixed dec-reasing ordi!r that is the same for

all processes. Thus, in our earlier example, if we assume that the fixed lock

ordering is B>A, a deadlock cannot occur because P cannot lock A first and try

to lock B then. Both P and Q must try to lock B fir&t and wn·tchever ,succeeds·

may go ahead, lock A and do its task while the other is waiting on B but not

deadlocked.

The modularity of type maRagers impl-ies that any data base is local to

one type manager. Thus, if it is shared b_y p.n-allel processes, these parallel

processes must be executing parallel instances or portio11S of the same type

manager. Since locks are attached to data bases. they ,are also local to type

managers. In other words, locks, as well as the data bases they protect, are

never shared across type managers. Let us temporarily assU11e that there is

only one lock per type manager.

The dependency stJ;'ucture of the system imposes a partial .ordering on the

type managers. Thus, that partial ordering is also imposed on the locks of

these type managers. It is true that two locks corresponding to two type

managers that are not ordered with respect to one, an~ther may, as a result,

bear the same number. However, if two type managers are not ordered with

respect to one another, they do not depend on one another and in particular,

control cannot leave one in a non-quiescent state and go to the other. In

other words, there is no computation path that could cause a process to

(1) This is stronger than necessary. Bensoussan' s algoiithm states that the
minimal condition for deadlock prevention is only that a process may not wait
on a lock if X>Y but it may always test and set the lock if it can.

83

execute the code of one type manager whi1e'i!iti invocation of the other is

pending in that same process. Pending irtvocatii>ns of the two type managers

can never exist at the same time in any process. At' least one of the type

managers must be in the quiescet'lt state as far as that process is ·concerned,

thereby implying that its associated lock cannbt be set by that process.

Thus, the'fact' that two locks can 'bear the same number does not matter. Thie;

only means that they are on different coi'nputational paths and that no process

will ·ever be able to set them both in any order. What does matter is that on

any single c·omputational (dependency) path, all the lodes that can potentially

be set are ordered.

By virtue of the definition of dependency, if a process is currently

executing in a type manager at a level L, all type managers at lower leyels

are in t~e quiescent stftte as far as that process is concerned, and in

particular, none of their locks can be set by that process. If execution

moves down one level, then a lock at level (L-1) may be set or waited on.

This is safe since the current lowest lock set by the process is numbered L.

If execution backs out of level L into (L+l), then lock L must be released

since the type manager at level L, by virtue of the dependency graph, returns

to the quiescent state.

Hence, provided the designer of each type manager is careful to always

return to the quiescent state before transferring (or returning) control

upward, which we assumed he was to remain independent of higher level type

managers, respect of Havender's algorithm is always guaranteed on a

system-wide basis.

Now, let us release the original assumption that there is only one lock

per type manager. If there may be several locks within one type manager and

if several parallel processes executing parallel instances or portions of that

84

type manager may set them in random order, we again have a deadlock

possibility. What is necessary is a local locking strategy in every type

manager that prevents parallel processes executing within that type manager to

deadlock one another. Type extension does nothing to enforce Havender' s

algorithm at the level of an individual type manager but since the size of a

type manager ideally should be manageable by one person, that person can

easily keep track of all the locks used by the type manager and code the type

manager so that processes executing its code always attempt to set locks in

the same order. In essence, type extension suggests that, from a global point

of view, all the locks in a type manager should be regarded as one lock and

~ust be released to leave the type manager in the quiescent state.

5. Conclusion.

In this chapter, we have fir st examined how and when the type extension

technique can be exploited to organize the design of system. We have then

examined the relations between the type extension concept and three aspects of

the design of a system: modularity, structure and deadlock prevention. We

have seen that type extension was helpful in guaranteeing that the system has

these three properties.

85

IV. Case S~~dy.

1 • In trod uc tion •

The objective of this chapter is to demonstrate the usefulness and to

illustrate the exploitation of the type extension technique described in

chapters II and III by using it to reorganize a real virtual memory mechanism.

Our intent is not to design a new virtual memory mechanism, but to show

how our type extension technique can be exploited to organize a real virtual

memory mechanism. On this basis, there is no point trying to be creative

about the functionality of the virtual memory mechanism to be designed. Such

creativity would present two dangers. First,.it would divert the attention of

the reader from the real purpose of the case study. And second, it could

result in an unconvincing paper design of an unrealistic, too ambitious or too

simplified system.

To avoid these two pitfalls, we have chosen to reorganize an existing and

viable virtual memory mechanism. The specific example we have chosen for our

case study is the virtual memory mechanism of the Multics system that is

offered commercially by Honeywell Information Systems Inc. [Bensoussan72,

Multics74, Organick72].

Our choice of the Multics virtual memory mechanism was motivated by two

reasons. First, Multics is a large, powerful and sophisticated system. Its

virtual memory mechanism is useful and practical but is currently a maze of

programs that is certainly unamenable to verification and hard to understand.

Because of this complexity, the Multics virtual memory mechanism is as good as

any other for our case study. If our type extension technique succeeds in

modularizing and restructuring the Multics virtual memory mechanism, the

chances are high that it could be used successfully for any other system.

86

Second, the Multics system was available· to us, we were familiar with it and

moreover, our case study fitted within the framework of an ongoing research

project aimed at producing a more understandable version of Multics that will

be a prototype for a future certifiably secure system [Schroeder]. Thus, the

design that will result from the case study is of direct interest to the

project concerned with the overall reorganization of Multics.

Throughout the rest of this chapter, we will be concerned with several

different designs of the same virtual memory mechanism. It may be a~propriate

to distinguish them here. The original design of the Multics virtual memory

mechanism described in [Bensoussan72] has been superceded recently by a new

one. The functionality of the original design has been prese;rved by the new

design. However the new design has added several features to the original

virtual memory mechanism, notably the possibility to add and remove disk'packs

from the on-line virtual memory of the system. To distinguish t?e new design

from the original one, the new virtual memory mechanism is called~ Storage

System (NSS). Our case study will not be concerned with the original Multics

virtual memory mechanism. Instead, we will produce a system design with the.

functionality of NSS. Documentation on NSS is not generally available yet.

All we can say is NSS has preserved the functionality of the original design

and is similar to IBH' s OS/360 as far as removable disk packs are concerned.

For lack of adequate documentation, we will devote section 2 of this chapter

to the description of the functionality of the user interface of NSS. This

section may be skipped without loss of continuity by readers familiar with the

functionality of the Multics virtual memory mechanism. Preserving the reverse

alphabetical order after OS/360 and NSS, we will refer to the design presented

in this chapter as~ Storage System (MSS) to distinguish it from the other

designs.

87

Section 3 of this chapter will be dey.oted to.an analyzis of NSS.

Analyzing NSS is interesting for two reasons. First, in designing MSS, we

will use the design of NSS as a starting point and evolve NSS towards a

well-organized system based on type extension. Second, we will describe some

instances of violations of modularity and we will explain how these instances

contribute to the complexity of NSS. We will also list the most important

violations of the dependency structure and we will explain how they are a

source of difficulty in understanding NSS. Isolating these problems will

allow us to study their nature and will tell us where to concentrate our

attention to later evolve NSS towards a well-organized system.

Section 4 will pre.sent the design of MSS. Evolving NSS towards MSS was a

very long and involved process that required many design iterations. It is
.·,

impossible and probably uninteresting to describe all these design iterations

--
here. However, we will briefly describe the evolution from NSS to MSS for two

reasons. First, we hope that showing the connections and the similarities

between NSS and MSS will enhance the credibility of the design of MSS based on

the observation that it is so close to the design of an existing system.

Second, showing a sketch of the evofution of MSS will illustr~te. the thought
... ,.

processes involved in designing a system based on type extension.

Section 5 will conclude the chapter by evaluating the impact of type

extension on certain aspects of the design of a virtual memory mechanism like

MSS. We will summarize observations on particular structural patterns that

are encountered several times in MSS and appear to be fundamental to the use

of type extension at the low levels of an operating system. This summary is

particularly interesting for readers who mi.ght _ read only quickly and

superficially the. :rest of chapter IV· a,n4 for r~~~:r.s who. are interested only

in the general cp,nclu_sions of our case st::udy.

88

2. The Multics virtual memory mechaniS111.

Our purpose here is to outline the functionality of the user interface of

the Multics virtual memory mechanism we are going to design. 'ttlis

functionality is that of NSS. We intend to preserve it in MSS. Someone

familiar with NSS may ignore this section without loss.of continuity.

The level of detail we have adopted and the particular aspects we mention

here to describe the virtual memory mechanism were selected only on the basis

of what we felt -- ex post facto ~osed oiganiJation probl!!llls and deserved

attention in this thesis. Thus, the following description is by no meens a

complete specification of the Multics virtual memory interface: many aspects

of this interface present QO design or implementation- challenge and are

therefore not worth mentioning here. (1) On the other hand, some features of

the virtual memory mechanism are a const4nt source of dtffic1.ilty to the

designer: this explains why certain aspects of the user interface ar•

discussed at great length. As mueh as po•tible, we have eliminated from this

$ec ticm the details of the implementat:!on o~ the lliltic~ virtual •emory

mechanism. Before diving into the descrtption of Multics, it may be us•ful to

inform the reader that the following table provides a brief _and easy to look

up summary of all the abbreviations that are µsed ihroughout t~ rest of this

chapter.

(l} One of the aspects of the Muitics virtual memory liechani• that is not
mentioned here is the n<>n-diacretion_ary mil_itary protecti_o~ •echanl• that ~t
impleinents. This aspect presents no n~v- de•ign cball•g•, rel--ated to the use
of type extension and is omitted from chapter IV. Interested readers will
find a discussion of military security controls· in au appendix.

89

Abbreviations used in chapter IV.

APT
AST
ASTEP
CDSG
CMAP
CRU
CSL
cu
DBR
DSG
DT
DTAM
DTEM
DTM
DTU
FSDCT
KST
LVID
LVRD
MQ
MSL
MSS
NSS
PFT
PLID
PTA
PTW
PVID
PVT
PVTX
Q
QCT
QCTEP
RU
sow
TRP
u
UHT
UID
UPT
VPT
VTOC
VTOCX

Processes.

active process table (describes states of processes in NSS)
active segment table (descri~es all active aegments)
AST entry pointer (denotes an active segment}
core descriptor se.gment (contains SJ)W,s . for ~ystem segments in MSS)
core map- (contains bit map of core) ·
current record usage (of a segment}
current segment length
change usage {operation to update U in a quota cell)
descriptor base register (denotes the base of a user address space)
descripto~ segnient -(contain.& SDWa fQr co~ted segments)
disk table (describes all disk packs) ·
date; and tim~ ac~es-s last modifi~: (in-,directory and VTOC)
date and time entry last modified (in directory and KST)
date and time last modified (a segpie.nt).
date and time last used (a segment)
file system- device- configu.r:'lt.ion ;t_a,l>l~ (con.,ains- bit maps of disks)
known segment table (describes all segments known to a process)
logical voluu.e- idenU.fier- (deno.tes ,a ,set ~t,,cU,sk, packs)
logical volume registration data (describes a set of disk packs)
move quo.ea (operation to move Q- between two quota. cells)
maximum segment length
Multics Storage System (new ~ecltaa~ ,presented in this thesis)
New Storage System (current Multics virtual memory mechanism)
page frame table (contains all-,PTW,,a- tn .MSS) _,
principal identifier (denotes a user in the system)
page table ad~r-en (denotes tlle f:J.rat page of a segmei;,.,t-)
page table word (describes one page of a segment)
physical volume identifier (~notes a disk pack)
physical volume table (describes all motmted packs)
PVT index (denot.e-s a ~ted paclt)
quota (upper bound of U in a quota cell)
quota <r~+l table (contains all (a~tive) quot~ cells_) in MSS)
QCT entry pointer (denotes a quota cell in MSS)
reset, usage. (oper~tion to. extr~c._t an-d, resei -t~ TRP of a quota c,~11)
segment descriptor word (describes a connected segment)
t iqie-record prod\,lC t. _(in tegr_~ of U tP.- ll c(IUQt, ~eil)
usage (in a quota cell)
UU) hash tabl~. (hashes UI.Ds into_ ~TEfs)
unique identifier (denotes a segment)
user process table (describes states of use;r processes J.p MSS).
virtual processor table (describes virtual processors in MSS)
volume table of contents (describes passive segments)
VTOC index (denotes a passive segment)

Eve~y user authorized to use .a Multics system at a:.given site is named

inside that. system by a p1:'i~cipal iden-tif.ier {Pl.ID) •. '.lhi$ _ PLID is used to

90

control the user1 s access to the information stored in the system. While a

user is actually using the system, he is represent;ed internally by and

interacts with a process bearing his PLlD. What a process can reference is

determined by the PLI.D that is tagged on it. "The physical processors are

multiplexed among all processes.

Pases.

Multics supports a demand paged virtual memory. A user never has to

worry about bringing the information he is going to reference int-0 primary

memory or copying an area of primary memory out to secondary storage to make

room for other information in primary memory. When a user -r-eferenc-es a piece

of information, it is brought into primary memory automatically if it is not

already there. Then, if it is not used for a while, the piece of information

is removed automatically by the syetem and flushed out to secondary -storage.

Primary memory and secondary storage are divided into logic-al blocks/records

of a fixed number of sequentially numbered wor~•- The information ~•presented

by any such block/record is called a ..2!8!.• - lnformat.ion is moved autoptically

from primary memory to secondary storage or vtce versa by entire pages. If a

user references a page that is not in· primary memory 9 a processor exception

known as a £!.&!, fault occurs. It causes the user computation to be suspended

temporarily and directs the system to bring in the desired page. A user can

observe page faults insofar as he can see the delays they cause. He is

otherwise unaware of pages.

~l!~

A user never references pages directly. A user references segments. A

segment is a logical collection of pages that are sequentially nwnbered. lbe

location of the pages of a segment are denoted by the words of its .2!&!. table.

Segments have many attributes that a U11er can g_et at or set. Most of these

91

pose no design challenge. Two kinds of attributes deserve some attention here

as they will be referred to later. First, are the date-time-used (DTU) and

date-time-modified (DTM) attributes. They indicate to_ the users the .date and

the time a segment was respec~ively last used and last modified. Second are

the length attributes of. a segment. The maximum-segm.ent:--leng.t;h (MSL) is a

user definable attribute defining the maximum number of pages that a segment

may contain. The cµrrent-segment-length (,GSL) is the.number_ of pages a

segment currently contains.; it is determined on the basis of the highest

numbered page of the segment that is not .. fu:ii of zeroes (null page), as sh_own

in the following figure.

null page CRU = 3

V/1/LZZVii non-null page CSL = 6

MSL = 8
:,---r • ; ~

Finally, the current-record-usag~ (CRU) .of a 15egment ind1.cates how many pages

are not null. The user is charged for the &pace. occupied by his segment on

the basis of this quantity. He pays only -f-0r -non-nu-11 pagea because null

pages are not actually allocated. If a page is null. the-~ tabl.e ~

(PTW) that.describe0s it ·do.es not denote anything.· The. pa.ge has no image and

occupies no. physical .space.. Physical· space. is: allocated _and the user is

charged for it only if and :when the page contains some non-zero bit.

Address Spaces.

Now comes the question of how a user references a segment. Every user

process has its own address· space. This address space is:implemented by a

descriptor segment (DSG) • A descriptor segment, has a :fixed, small MSL. Every

entry in a descriptor segment is called a sepent descr;iptor word· (SDW) and is

92

indexed by segment number. A SDW is represented schenlatically below.

page table address fault tag

current segment length access modes

Every SDW describes one segment. It tells the user about the absolute ~

table address (PTA) and the CSL of the segment. It also indicates the access

modes (read mode, write mode, execute mode. etc •••) that c-0nstrain what the

user can do with the segment. The meaning of -the fattlt tag is examined later.

While the process of a user is running on a physieal ,r--oceseor, the PTA of the

process DSG is loaded into the distinguished descriptor~ 'regfster (DBR) of

the processor. The user pro~ess then references a piece of infOJ'll4tion by a

(segment number, word num.J>er) pair indirectly through the DB~,-,. a .SPW. and a

PTW. The segment number is u~ed to index the DSG and get at the SOW of the

desired segment. The word numQer iJ divided by the page length to obtain the

number of the desired PTW within the page table of the desired segment. And

the remainder of the division is us:ed as an index for tbe,dee-ired woTd within

the desired page. Retrieving. the SDW and the PTW on ever~ reference is

speeded up by the use of hardware as.socia:tive memories that hold -the most

recently used SDWs and PTWs [Schroeder71].·

If a user references a segment beyond its CSL:t a :processor exception

known as a bound fault occurs. AB a result. of it, the CSL attribute of the

segment is increased unless it ·is already equal to. the- MSL. In the latter

case, a bound violation is signalled to the user and the computation is

aborted.

Since there may be very many seg-ments in the system, it is imponib1e to

keep the page table of each of them. at a fi}'ed address in primary. ~ory all

the time. When a segment is- not being used, its page table _is removed from

93

primary memory and stored on secondary storage, where it is called the file -.-
map. This is called deactivating the segment (the inverse operation is called

activation).

It is now time to explain the first role of the fault tag in a SDW. The

first role is to signal changes in the physical attributes of a segment across

processes. If a bound fault or a deactivation occurs, all processes that have

a SDW for the segment must be notified so they can update this SDW if they

care to. To signal bound faults and deactivations, the fault tag is turned on

in all the SDWs that denote the segment that is affected, to cause processors

to trap if they try to access the segment. This is called disconnection (the

reverse operation is called connection). If any of the disconnected processes

later references the segment, it causes a processor exception known as a

segment fault. As a result, that process is made aware that something has

changed. Either it has to update the bound of the segment it referenced in

the SDW it trapped on or it has to retrieve and perhaps reactivate the segment

page table.

The obvious question to ask now is: how does a process reconnect itself

to a segment? It must be able to retrieve the page table of the segment and

to recompute its CSL. For this purpose, the system maintains system-wide data

bases (to be described soon) where it records the CSL and the current PTA of

every segment. On a segment fault, the faulting process must extract from

these data bases the information it needs to perform the connection. This

requires that the process be able to translate the faulting, hardware

interpretable segment number, which identifies the segment within the process

address space, into some sort of unique name that identifies the segment

within the entire system and permits the process to ad.dress the system-wide

data bases. For this purpose, every process owns a table called a known

94

segment table (KST) that maps every segment number into a unique name. In

fact the KST maps each segment number into two unique names that are

synonymous in denoting the same segment but are meaningful at different levels

of the system, as will be seen. (The implementation may confer more functions

to the KST, but these have no effect on the user interface.)

Both the DSG and the KST exist only as long as the user process exists.

Every time a process is created , a new KST and DSG are provided. The

connection operation described earlier fabricates a SDW in the DSG from

infoI'lllation that is in the KST entry with the corresponding segment number.

The next question to answer is: how does that information get into the KST

entry in the first place or, in other words, how 1-s a segment added to the

address space of a process?

Directories.

The file system is composed of a set of system-wide data bases called

directories. Although directories appear different from segments to the user,

they are stored like segments by the system. Directories are used for four

functions: naming, addressing, protection, and resource accounting.

The naming function consists of providing system-wide unique names for

denoting segments. Each directory entry describes either another directory or

a segment. Thus, the file system appears to the user as a hierarchical tree

of directories (nodes) and segments (leaves). (1) The tree is rooted at a

distinguished directory called "root" that is not described in any directory

entry. Every entry in a directory bears two names: a symbolic name (character

string) that is unique within the directory and the (numerical) unique

(1) The Multics terminology is often unfortun«~-:pa..-;:t,1c11,}arly about segaents.
Most of the time, a segment means a logical collection of pages. But in the
context of the- fil~ sy51-tem, a s~pent means a. J.e41f of the, tree.. We will t_ry
to make clear what kind of segment we mean when we use the word.

95

identifier (UID) of the segment or directory described· by the directory entry.

UIDs are unique over the entire system. Thus, a directory entry is uniquely

defined by its path ~ in the tree and uniquely recognized by the UID i't ·

contains. The path name is user oriented; the UID is system oriented. UIDs

are easy to store and use within the system but path names are provided to

users as they are easier to use to name directory entries. Adding a segment

to an address space is called initiating the segment (the inverse operation is

called terminating). (Initiating a segment is somewhat synonymous to opening

a file on other systems.) When a user requests that the segment described by

a given directory entry be initiated, a KST entry is allocated, the symbolic

name of the directory entry and the UID of the segment it describ~s are copied

into the KST entry, and the corresponding segment number is returned to the

user. Notice that path names and UIDs are entirely decoupled ways to identify

a directory entry in the sense that the path-name may change while the UID

remains the same. If a user has initiated a segment with a given UID, he can

still use that UID to refer to the segment even if the name of some directory

entry along the tree path for reaching the segment has changed.

The addressing function of the file system consists of providing.a way

for the user to get at the pbysical attributes of a segment (PTA,· CSL). This

function is required to activate a segment or to recompute its CSL, as

mentioned in the description of the connection operation. The directories are

the system-wide data bases mentioned there.

The protection function consists of providing an access control list for

every segment and for every directory. An aceess ·control list determ'ines what

PLIDs can acquire access to the associated segment or directory and how. The

exact functionality of the access control list mechanism is of no interest

here [see Saltzer' s paper in Multics74]. The only point t!hat d'eserves

96

attention here is the revocation of access. A user A can cause the access of

another user B to some segment to be revoked by changing what the access

control list says. The functionality of Multics .requires that this change be

effective immediately even if user B has init~ated the segment and is

currently connected to it. Access revocation is the seeond purpose of the

fault tag in a SDW. It is turned on if access is revoked. When trying to

reconnect a disconnected segment* the system recomputes the access of the

faulting process and denies reconnection, signalling an access violation if

access has been revoked.

Finally, the resource accounting function consists of providing system

administrators with a means to bill users fox the spaee used by their

segments. It also provides a means to project adminiatrators or individual

users to control their own resource usage. The resource accounting function,

otherwise known as quota mechanism, poses many design problems and is

extremely complex to describe. The following is a simplified descTiption of

the mechanism that preserves the design challenges of the original mechaniam

while trying to eliminate some of the complexity of its functionality.

Quota Mechanism.

Resource accounting is done on a per directery basis.· Every•directory

has associated with it a. quota.£!.!!. The resour1:e- unit: ts one page. (Notice

that users do not pay for directory pages in the current implementation of

Multics.)

There are two kinds of directories: quota d.irectories and non-quota

directories. Although the following restriction does not quite hold ~n theory

in Multics, let us assuae for simplicity that a directo~y can be a quota

directory only if its parent is .a quota directory. Thie restriction appe.ars

to hold in practice, as far as users are concerned. Thus ... quota directories

97

are aggregated at the higher levels of the directory hierarchy as in the

following example.

ROOT (has to be a quota directory)

CSR (quot\ectory for project)

(qu\ directory for user)

.. ~----- segments -
The quota cell of a non-quota directory contains only a running total U of the

number of pages _!!sed by all the segments (sum of their CRUs) described in that

and inferior directories. For example, the quota cell of THESIS-indicates the

number of pages used by segments in subtree STl.. The quota cell of a quota

directory contains resource usage, resource control and. resource accounting

information. The resource usage information, further referred to as usage

{U), consists of the running total of the number of pages used by segments in

that and inferior non-quota directories~ Thus, for CSR, U is the number of

pages used by segments in subtree ST2. The resource contr,ol information, aJso

known as quota (Q), is an upper bound for U. The resour(;e a.ccounting

infonnation,- also known as the time-rec,.or~prod\lct (TRP), is the integral over

time of U •.

The quota mechanism supports three functions: J;'eset usage product (RU),

~ quota (MQ) and change usage (CU).

The RU function performs accounting. It i.s· el~r from the above

.98

discussion that the sum of the TRPs of all quota dlTectories is equal to the

integral of resource usage for the whole system. Thus, by periodically

extracting the TRP of all quota directories and resetting them to zero, system

administrators can bill the owners of those quota directories for the

resources they have used and recover the total cost of pages used during the

elapsed accounting period. This is the purpose of the RU operation.

The MQ operation is intended to allow project administrators and users to

put upper bounds on the amount of pages they ar1:? willing to pay for in any

directory or subtree of directories. The MQ operation moves po.rtions of Q

from a parent directory to its son or vice versa. The parent directory must

be a quota directory. As a result of a MQ operation, the son directory may

change status from quota to non-qu<fl:a or vice versa. In either case, and in

order to preserve the meaning of Q relative to U, the MQ primitive must update

the U value of the parent directory. lf Q is delegated to a son that becomes

a quota directory, then U (son) must be subtracted from U (parent) as it is

now charged against Q (son). If all Q is removed fr0tt1 a son that becotnes a

non-quota directory, then U (son) must be added to U (parent) as it is now

charged against Q (parent) and Q (son) is zero.

Finally, the purpose of the CU operation is to update the U of quota

cells when segments are gro"1tl or shrunk. Again, to preserve the meaning of a

Q with respect to the associated U, when a segment is grown/shrunk, a page

must be added to/ subtracted from the U of the quota cell of every directory

above the affected segment up to and ineluding the lowest quota directory. If

U =Qin that directory, then the segment may not be grown and a quota

overflow condition-is signalled to the user.

Removable disk packs.

We are now almost done with our description of the functiE>nality of the

99

Multics virtual memory mechanism. We must yet describe the removable disk

pack feature. This description will be extremely simplified for two reasons:
. .

as we are writing this thesis, the exact functionality of removing disk packs

is not defined because the implementation of NSS is not completed, and the

functionality as we perceive it does not seem to pose any major design

challenge.

The purpose of having removable disk packs is to be able to not have all

segments on-line all the time, i.e. to extend the available virtual memory to

off-line packs.

The organization of disk packs is governed by t,wo concepts: physical and

logical volumes. Physical volumes are physical packs. Logical volumes are

collections of physical volumes. Two rules apply to the organization of

information on volumes. First, all the pages of a segment must reside on one

physical volume. Every segment has as a tag the physical volume its pages

belong in. Second, all the segments in one directory must reside in one

logical volume. Every directory is tagged with a logical volume attribute

defining the logical volume its son segments belong in. When a segment is

created, its home logical volume is determined from the logical volume

attribute of its parent directory. The home physical volume is selected as

the least full of the physical volumes in the home logical volume. If the

system lacks physical space to grow a segment on its home physical volume

(out-of-physical-volume (OOPV) condition), it may move the entire segment to

the -- then -- least full physical volume of the home logical volume.

The removability of disk packs is governed by two rules. First, they

must be mounted/demounted by entire logical volumes so that all the segments

in one directory are either on-line or off-line at the same time. Second, one

logical volume, which is called the root logical volume and contains all

lOQ

directories and some segments critical to system operation, can never be

demounted. Thus, the skeleton of the file.system hierarchy, i.e. the

directories, is permanently accessible on-line. As a consequence, it is

always possible to find out about the unique names, the secondary storage

address and the access control list of a segment, and to access a quota cell.

However, it is not always possible to access or find out about the attributes

(DTU, DTM, CSL, MSL, CRU) of any segment. This is possible only for segments

stored in logical volumes that are on-line. If a user tries to access the

content or the attributes of a segment that is off-line, he will receive an

error message indicating that the desired logical volume is not on-line. In

order to reference an off-line segment or its attributes, it is necessary to

first request explicitly that the right logical volume be mounted.

For each logical volume, there exists registration data (LVRD). The LVRD

specify which physical volumes are in the logical volume. These physical

volumes cannot be mounted individually. The LVRD also specify what

directories of the file system are master directories for the logical volume.

The segments in a directory Dare normally stored in the same logical volume
- ., ' ··-

as the segments in the parent directory of D. However, if Dis a master

directory for some logical volume, the segments in D are stored in that

logical volume. In other words, a master directory is recognized by the fact

that its LVID attribute was not inherited from its parent but is determined by

some LVRD.
. .•

There is an obvious connection between the space that is physically

available in a logical volume and the fact that that space will be shared by

segments described ·~~ly in the master directories of the logical volume and in

inferior non-master directories. In view of this connection, quota on a

master directory cannot be adjusted by moving it. to/from its parent directory

since the parent directory, by definition, controls resource all~at~on on a

different logical volume. Thus, a master directory is a. boundary fot; the MQ

operation: quota cannot move between_ a master direc.tory and its parent. In

reality, it will be possible to adjust quota on a master d.icectQ~Y by moving

it to/ from the quota pools of a space partitiqn de.fined in the L'{RD -0£ the

corresponding logical volume. However, the funct,ionality pf this mechanism. is

not yet fully defined and the mechanism is not yet implemented. Since the

mechanism does not seem to pose any desigq challenge in a system based on type

extension, we will ignore its details and an<il assume for simplicity in this

thesis that quota on the master direc_tories <?f a logieal volume can be

adjusted externally, in an unspecified way, ijy the executives (see below) of

the logical volume.

For every logical volume, there is also an access con,trol, list. This

access control list specifies the authorized_ ''.users" a,nd ."executives" of the

logical volume. The "users" can mount (use) 1and <lemount .tbe logical volume.

The "executives" can move quota between the I!f.aster directories of the logical

volume and quota pools. defined in the LVRD o~ . the logi~l vohqne. Only th_e

person known as the "owner" of the logical vql:U,llle can set the access control

list of the logical volume.

3. Study of NSS.

• !

The purpose of this section is to examine how the virtual memory

I
mechanism that was described in the previous section is implemented in NSS.

f
While studying NSS, which is not well organized and not based on type

I c.

extension, may sound irrelevant to the topic ~f this thesis, there are two

reasons for doing so. First, MSS will be evolved directly from NSS with

.. -
amazingly few changes. Thus, it is interesting to describe NSS as it is the

102

basis for MSS and is very similar to it in many respects. Second, in studying
-

NSS, we will point out the problem areas in· its organization. This will allow

us to concentrate later on these areas to ·analyze the nature of the problems

and solve them in MSS.

To characterize NSS, we will first describe its mechanical operation by

surveying the data bases it contains and their management. We will then step

back from the detailed mechanical description of NSS to give a somewhat

abstract description of its organization. ffiis will allow us, in a third

step, to point out examples of problems associated with the modularity of NSS.

And finally, we will isolate problems associated with its structure.

Mechanical operation of NSS.

Our objective here is to describe the mechanical operation of NSS in a

way that will prepare the reader to later vbualize data abstractions in NSS,

which was not designed with type extension in mind, and to evolve it towards

MSS, which is explicitly based on type extension. Ft-Oil chapter It, we know

that an abstract object is a repository for data. 1.'hus~ in more common terms,

an abstract object is a data base or a data item. -Therefore, to arrive at a

data abstraction view of NSS, it may be helpful to describe its mechanical

operation from a data base point of view. Adopting ~uch a data base view is

exactly what helped us to produce MSS from NSS in reality. Thus, the

following discussion will gravitate around NSS data bases and their

interconnections. This discussion does not pretend to give a full description

of all data bases. First, it provides only information necessary to gain an

overall understanding of the mechanical operation of the system. And second,

it omits the description of specific operations that cause organizational

problems as these operations are described later in more detail.

103

a. Logical volumes. (1)

When a user wants to operate on a logical volume, he can name it by a

path name. The .path name denotes a segment in the file system hierarcQy that

contains the LVRD for the logical volume to be operated on. This LVRD

contains, first of all, a logical volume identifier (LVID) for the logical

volume under concern •. The LVID of a logic~l volume is a system oriented name

for talking about a logical volume. While users never see LVIDs, the system

never uses path names to denote logical volumes. The LVRD of a logical volu~e

also contains a list of physical volume identifiers (PVID) that specifies

which physical volumes compose the logical volume, _and a list of path names

that specifies which directories of the file system are master directories for

the logical volumes and how much quota these ll).aster direc.tories may have.

Every time a user wants to mount/demount a logical volume, the list of PVIDs

is used to mount/demount the physical volumes. of th~ logical volume. Every

time a user wants to create a master directory for some logical volume, the

list of master directories is used to determine if the directory to be created

may be a master directory for the given logical volume and if so, to set the

quota on it. The LVRD finally specifies if the logj.cal volume is demountable.

b. Physical volumes.

Thanks to a hash table associated with a data base called the~ Table

(DT), every PVID is mapped into an entry of that OT. This entry describes the

corresponding physical v_olume (device type, size, configuration, etc •••). In

particular, the entry indicates if the physical volume is demountable and if

(1) The information in this section may not reflect the .true implementation of
NSS because that implementation does not ye·t exist as ·we "1r·ite these lines.
The implementation that is described here is b~lieved -~o be a. close
approximatiotr to what will everttually ha·ppen ;to be a real implementatiort. At'
any rate, the functionality of the mechanism is respected.

104

it is currently mounted. If the physical volume is currently mounted, the

entry specifies 1'1hich drive it is mounted on by giving the index (PVTX) of the

entry corresponding to that drive in a table called the physical volume table

(PVT).

c. Configured volumes.

The Pvr is a system table that contains one entry for every disk drive.

Thus, a PVTX identifies one drive. A PVT entry indicates if the corresponding

drive is currently used. If it is, the entry indicates whether the configured

volume (the physical volume moun~ed on it) may,be da-ounted. (This

information duplicates what is in the DT and the LVRD.) · The entry also

indicates the PVID of the configured volume and the LVID of the logical volume

of which the configured volume is a component. The PVT contains two more

pieces of information. First, it contains a hash table that allows searching

the Pvr to find out what drive (PVTX) a physical volume with a given PVID is

mounted on. While it is possible to find what drive (PVTX) a PVID is bound to

by looking up the description of the given physical volume in the DT, it is

also possible to find out about this binding by searching for the drive

desc dpt ion in the PVT. (Notice that whife a PVID i.s given and a PVTX is

expected in return, this operation is not an operation on a physical volume.

It does not affect any physical volume in any way. It concerns a configured

volume. This seemingly irrelevant comment will have a> tremendous importance

later.) Second, when a logical volume is mounted, all PVT entries that are

allocated to mount its physical volumes are threaded into a circular list.

Thus, given a PVTX for one configured volume of a logical volume, it is

possible to get the PVTXs fo:r all others. Tile above._~~ pieces of information

are used to create and move {OOPV) segments. ait.d to activate them, as will be

seen soon.

lOS

d. Directories.

A user may refer to ~ directory by its path name. However, as soon as he

has initiated the directory in his process, he will address it by segment

number, as does the system internally. A directory contains three data areas:

an entry name hash table, a UID hash table and directory entries. The entry

name hash table is used to find an entry in the directory, given its symbolic

name. The UID hash table is used to find an entry in the directory, given its

UID.

As mentioned in section 2 of this chapter, every directory is also tagged

with the LVID of a logical volume. That LVID indicates, the logical volume on

which the son segments of the directory should be stored. (Notice that the

LVID is never used to operate on (mount/demount, etc •••) the logical volume.

It is only used as a common tag for all the segments in the diJ;ectory. This

observation will have a fundamental impact on the design of MSS.)

Every entry in a directory describes a file. (The name file is used to

mean either a directory or a segment.) A directory entry associates its own

symbolic name with the UID, the secondary storage,iocation and the access

control list of the file it describes. The access control list is a list

associating PLIDs with the access they should be granted to the file denoted

by the entry. The secondary storage location of a file ts defined as follows.

Every physical volume is divided into two zon~s: the paging zone and the

cataloging zone called tlle volume table, of cont~nt {VTOC)., The paging zone. is

used to store file pages and the cataloging ,.zgae , is uijed to ,store file maps.

A VTOC entry contains one file map. The secondary storage loqation of a file

is dlifined by the PVID of the physical volume where the fi.le is stored and an

index (VTOCX) to the entry where the map of t\le, file is -ator~ in the VTOC.

To .create an entry in a directory, i.e. to create, a f:ile, the LVLD tag of

106

the directory is used to search the PVT until a configured volume with a

matching LVID is found. (If none is found, a logical-volume-not-mounted error

is returned.) The circular list of configured volumes with that LVID tag is

then searched to find the least full configured volume. A VTOC entry is then

allocated on that volume. A new UID is created. And the (UID, PVID, VTOCX)

for the new file are stored in the new directory entry.

e. Processes.

While we are interested in the virtual memory mechanism of Multics, we

need to say a few words about the virtual processor mechanism insofar as it

interacts with the virtual memory mechanism. (More information on the virtual

processor mechanism can be found in {Reed76] .)

Every user attached to the system is represented by a process. The

system maintains a table called Active Process Table (API') of wich each entry

describes the state.of one process. An APT entry bears as a name the PLID of

the user owning the process. It binds the PLID to a DSG and a KST for the

user process. The DSG and the KST are permanently connected segments, i.e.

there always is a SOW to address them in the DSG. If they were not

permanently connected, the system could never connect them because connecting

a segment requires addressing a DSG and a KST, as will be seen.

f. Initiated segments.

In order to address a file by hardware. it is necessary to acquire a

segment number for it. This is the initiation operation mentioned earlier.

It is impossible to initiate a file in a process unless its parent directory

is already initiated in that process because initiating a file requires

addressing the directory entry that describes it. To initiate a file. the

user must supply the segment number of its parent directory and the symbolic

name of the entry describing the-file in the parent directory. An entry is

107

then allocated in the KST, and the segment number of the parent directory, the

UID of the directory entry and the symbolic name of the directory entry are

stored into it. The parent directory segment number in every KST entry binds

that entry to the KST entry for the parent and the (parent directory segment

number, UID, entry name) triple binds the KST entry to the directory entry

both by name and by UID. From then on, the file is said to be known with a

segment number equal to the sequence number of the KST entry allocated to it.

While it is known, it cannot be addressed yet because it_ is not connected

and it may be inactive. When the user first uses the segment numb.er just

allocated to the file, he takes a segment fault. As a result, the system

looks up the faulting segment number in the KST. It follows the (directory

segment number, UID) binding from the KST entry to the directory entry to find

the access control list and the (PVID, VTOCX} of the faulting segment. It

uses these information items to activate the segment if necessary and to

connect it in this process, as explained below. (Notice that the system

follows the UID binding rather than the entry name binding from the KST entry

to the directory entry. Thus, it is not affected by potential changes in the

name of the directory entry.)

g. Segments.

NSS is ambiguous about the definition of segments. In this paragraph, we

mean to talk about stored segments, i.e. logical coll~ctions of pages, as

opposed to file system segments, i.e. leaves in the hierar~hical file system.

In the quiescent state, a segment is materialized by its VT.QC entry. The VTOC

entry contains its UID, its file map and its storage attributes (DTU, DTM,

CSL, MSL, CRU) •

To activate a segment, the system uses the (PVIP,. VTOCX) stored in the

directory entry describing the segment. It first searches the PVT to find the

108

PVTX corresponding to the given PVIO. It then uses the resulting (PVTX,

VTOCX) to access the VTOC entry of the segment. It proceeds to find a free

entry in a core resident table called the Active Segment Table (AST). (If

there is no free entry, it deactivates another segment, as explained later.)

It finally copies the VTOC entry into the AST entry, thereby bringing the page

table of the activated segment in core. It also adds an entry to the !!!Q_ hash

table (UHT) of the AST to map the UIO of the activated segment into a relative

pointer (ASTEP) to its AST entry.

In addition to the page table and the storage attributes of the active

segment it describes, an AST entry also contains the (Pvrx, VTOCX) denoting

the secondary storage home of the segment. If the segment ~age table or its

storag~ attributes change while the segment is active, they are copied back to

the home VTOC entry when the segment is deactivated. Finally, an AST entry

contains a trailer list. A trailer is an (ASTEP, segment number) pair that

identifies a SDW (denoted by its segment number) in.side a DSG (denoted by the

ASTEP to its AST entry). The trailer list of an AST entry denotes all SDWs

in any DSG that are connected to the active segment. It is used to disconnect

these sows if access to the segment is revoked, if its bound changes or if it

is deactivated.

h. Connected segments.

For every KST entry, there is one SDW. (1) Having initiated a segment is

sufficient to address it by segment number. However, a segment fault occurs

when a disconnected SOW is used. On a segment fault, the system follows the

(1) Notice that the inverse is not true. Some SDWs that are permanently
connected permit addressing ~f certain sy,t~ s~_penJ_s th:at are not described
in any KST entry. Segment faults and bound fauf t"s on -s\!Ch segments cannot be
taken because_ they require the existence of a KS? entry to be handl~d
properly. · · · - ·

109

binding from the KST entry with the faulting segment nl.Dllber to the directory

entry describing the segment that must now be connected.. In a way to .be

explained later, it inspects the access control list to determine the access

mode of the faulting process to the faulting segment and it .c-<>pies the

computed mode into the SOW.. It. then uses the (UIO, PVID,. VTOCX) of the

segment to retrieve its CSL and page table. If the segment is active, the UID

hashes directly into an ASTEP. Otherwise, the segment is first activated, by

using the (PVIO, VTOCX), to get an ASTEP for it. In either case, the system

then finds the CSL and the page table in the AST entry denoted by the ASTEP,

stores the PTA and the CSL in the SOW, and turns off the fault tag in the SOW.

(When a bound fault occurs, the system proceeds as for a segment fault to

retrieve the CSL of the segment to be grown.)

i. Pages.

The paging mechanism is based on three data bases: PTWs, the Core Map

(CMAP) and the File System Device Configuration Table (FSDCT). For every

configured volume, the FSDCT contains a bitmap indicating the allocated/free

status of every disk record on that volume. The CMAP contains one entry per

core block. If a core block is used, its assoc:iated. CM.AF .entry points to the

PTW that denotes the core block and to the disk record that is .the home of the

page currently in the core block. A PTW contains the disk or core address of

the page it stands for and a "used" flag and a "modifi~d" flag t~t describe

the state of the page. These flags are maintained by the hardware as the FTW

is indirected through.

The paging mechanism operates as follows. On a page fault, if the PTW

faulted on is null and if the quota mechanism (see later) allows creation of a

page, the system looks in the AST entry containj,ng t~e faulting PTW for the

PVTX of the home volume of the segment being_ ,grown. It searches a free disk

uo

record in the bitmap associated with this volume in the FSDCT. If there is no

free disk record, it signals an OOPV condition (see later). If there is a

free record, it allocates it and cop·ie s its address in the PTW.

If, on a page fault, the PTW faulted on denotes a disk record, that

record must be copied into a core block. The system Bearches the CMAP for a

free entry. If it finds one, it copies the address of the disk record into

the free entry; it copies the absolute address of the faulting PTW into the·

free entry; it copies the address of the associated core block into the PTW;

and it threads the CMAP entry to a circular list of used CMAP entries.

If no CMAP entry could be found, a page must be thrown out of core to

free a core block. The system walks around the list of used CHAP entries.

From each CMAP entry, it follows the binding to th~ PTW that uses the

associated core block. If the "used" flag is on in that PTW, the system turns

it off. 1f it is off, meaning that -the page has not been used since the

system last revolved around the circular list of used CMAP entries, the system

frees the CMAP entry. To do so, it looks at the "nt<>dified" flag in the- PTW.

If it is off, the system restores the PTW to its quiescent state by copying

into it the d-isk address that "'88 earlier saved in the CMAP entry associated

with the core block denoted by the PTW. lt then free·s the CMAP entry. If the

"modified" flag is on, the system first copies the core block it is freeing

back into the disk record home of the page it is removing from core, and it

restores the PTW to its quiescent state. It then fr~s the CMAP entry.

j. Summary.

Figure 4.1 summarizes the data bases involved in the operation of NSS and

their interconnections. Boxes stand for data bases or parts of data basee.

Since these boxes will later be identified with abstra<:t types, we might as

well think of them now as denoting various kinds of objects. Every arc

111

PVT entry

--N

PVID 9 VTOCX

UHT entry

ASTEP

AST entry

disk addres.s

PTA

UID & parent
segment no.

---,KST entry

l4 It(CMAP entry

Figure 4.1: NSS data bases and interconnections.

indicates a binding between two objects of different kinds. Single lines

indicate explicit bindings or stored denotations. For instance, a SOW denotes

a page table. Double lines indicate implicit bi~~gs or correspondances.

For instance, a PVT entry corresponds to a collection of disk records and VTOC

entries in the sense that it describes a corifigured:volume that is composed of

these disk records and VTOC entries. The distinction between single and

double lines is purely informative. It has no stgnificance ftir the later use

of the figure. The dashed line deserves a, special comment~ A (PVID, VTOCX)

in a directory entry binds that entry tQ a VTOC entry only on the Condition

that the physical volume denoted by. the ·PVID is moun:ted, i.e. only if the PVT

maps the PVID into some PVTX. The dashed line stand,s for this fOndition on

the bind iag.

While figure 4.1 is only a summary of what was described in this section, -

adds no knowledge to the description of NSS, and may: seem of little import,nce.

now, we will see in the next section of this chapter ·the interest it presents

for deriving a first approximation of a'type structure graph for MSS.

Organization of NSS.

The purpose of this section is to try to see a modular decomposition and

a dependency structure in NSS, i.e. to try to group the procedures of NSS

around the data bases they manage and se~ how they interact.

Since NSS actually is neither modular nor structured, we cannot see a

'
perfectly modular and structured organizatio~ where ther~ is.none. The

organization discussed here is the one that beat fits tne real organization of

NSS. It will b~, the purpose of later paiqraphs -~o: show ~ti the real NSS

differs from the model we try to see here, thereby causing violations of

modularity and structure.

113

volume control

directory control

address sµace control

segment control

page control

tr:-affic control

LVRD, DT

DIRECTORIES

KSTS

PVT, AST HASH TABLE
VTOCS, AST, DSGS

PTWS, FSDCT, CTlAP

APT

Figure 4.2: best fit model of the organization of NSS.

114

The model that best fits the organization of NSS is given in figure 4.2.

Every line describes one module. For every module, we have indicated a name

and the list of data bases it manages. Every module depends on the modules

below it. The partially ordered dependency structure is thus a total ordering

in the case of NSS.

Volume control manages the LVRD of all logical volumes and the DT. It

implements the operations for creating, deleting, mounting and demounting

logical and physical volumes. It also supports the operations for controlling

the use of master directories, although the management of these directories is

obviously done by directory control. Volume control depends on directory

control because LVRD files and the DT are segments stored in the file system

and the concept of a master directory requires the existence of the file

system.

Directory control manages all directories. It implements the operations

for creating and deleting directory entries, and for managing their names and

their access control lists. Ii depends on address space control because

directories must be initiated by every user in his own process in order for

the system to be able to address them on the user's behalf.

Address space control manages KS Ts. It implements the operations for

initiating and terminating segments and for handling segment faults and bound

faults. It depends on segment control because handling segment and bound

faults requires activating and connecting segments.

Segment control manages the AST and the vrocs, ,the Pvt, and the DSGs. It

implements the operations for creating, deleting, activating, deactivating,

connecting and disconnecting segments. It also controls the allocation of

disk drives by managing the PVT. It depends on page control because most of

115

its code resides in paged segments.

Page control manages page tables and individual PTWs, the FSDCT and the

CHAP. It implements the page allocation, the page fault and the page removal

algorithms. It depends on traffic control because c,ne can.not af-ford to keep a

processor idle, waiting in a loop for an I/0 operation to complete on a page.

Thus, page control depends on traffic control to multiplex processors among

ready processes while other processes wait for I/0 on a page to complete.

Finally, traffic control manages the APT. ·rt supports the creation,

deletion and scheduling of processes and the multiplexing of processors.

Modularity violations in NSS.

Modularity violations occur when a procedure in one module references a

data base in another module. Such violations ar~ innwne~able in NSS. It is

impossible to mention them all here and in addition, .it would be uninteresting

to mention them all as most of these violations are benign. and could easily be

fixed.

Our purpose here is to pick two illustrative examples of violations of

modularity and to discuss them with respect to the understandability of the

system.

Consider the case of the AST. The AST as a whole.~s managed by the

segment control module. Yet, page tables are stored in the AST and are

managed by page control. Thus, we have a case of two modules managing one

data base. The problem would not be too bad if each mo~ule managed only a

distinct area of the AST. In essence, they would be lll.anaging distinct data

bases. Unfortunately, this is not even true. Segment control never touches

PTWs, but page control does touch AST information that belongs in the segment

control module. In particular, for every segment, page control maintains a

"file-modified" switch, a "file-map-modified" swit.ch and a running total of

116

the number of pages that are currently in core. · Tnese pieces of inf-ormation

are used by segment control to deac.tivat:e segments. The "modified" switches

are used by segment control to decide whet-her to update the DTM and the file

map of a segment in its VTOC entry when it deactivates it. 'Dle number of

pages in core is used by segment control as an approxi:aul~e measure of the

segment usage rate. This measure is used to select for deactivation the

segment with the smallest number of pages in core so as to minimize the ·paging

activity that is required to deactivate a segment. 'lbe BhM-ing of the AST

canplicates the understanding and the verificatiorf :of NSS because there is an

implicit interaction between page control and se~t., QQntr<>l over data it~s

they share ·access to. Also, the primary function of page -control is to manage

PTWs but it cannot ignor~ totally the fact that pages :are- logically grouped

into entities called segments at a higher level. Ma result, the interface

between segment control and page control is very hard to define completely and

correctly.

Second, we would like to mention the ca~ of :one procedure whose function

is to translate almost any kind of segilent· i~-tt:fier into any other kind and.

to return any segment attribute given any kind of segment identifier. Such a

procedure really cuts across all modules of NSS. It knows :about the f-ormats

of directories, KSTs, DSGs and the AST. It is not a ·functional abstraction

that is usable at different levels. It is a elus.cer of functions belonging in

different levels and -glued together in one procedure. · Understanding such a

procedure is extremely awkward as it requires a good deal of knowledge about

several levels of NSS.

Structure violatioas in NS~.

In the rest of this section, we will exalline violations of the partial

ordering of the dependency structure i'n NSS. :There are .ooiy a few instances

117

of such violations. Therefore we will study them all. We study them all

because they all constitute major probl~m areas in NSS and we-want to analyze

them to focus on their solution in MSS.

a. Process loading.

As mentioned earlier, page control _dep~n~s on traffic control to

multiplex processors among processes whi.le waiting for 1/0. operations to

complete on pages. Unfortunately, traffic control also depends on page

control to load processes. The address space of a process, as materialized by

its DSG, contains SDWs not only for segments the user has initiated and

referenced, but in addition for all system programs, wltich are thus in every

user address space. (Such programs are of course not accessible in the user

protection environment.) In order for a process to run at all, that page of

the DSG which contains the SDWs for system prog-,:-ams must be wired in. core.

Otherwise, the process could not handle its. page. faul..ts and bring in core any

page it references, including the DSG page, since the progr~s required to

handle page faults are system programs described by Sl>Ws in _the PSG page

itself. Thus, prior to switching a processor _to a n,.w process, tlle traffic

control module (executed in the old proceas) 111µst invoke the page control

module to "load" (read in and wire th_e DSG page of) the new prQ_cess. This
. _- • ·" 't ~- 4~ -- - '

causes a first upward dependency violating .uie struc_ttn:~,,9f figure 4.2. It is

due to an upward call. It is a ~~nif,estatiqn of a, d~,P.eJ?de11.cy loop encountered

in many syst~s between the virtu~l mem?ry tlle~hanj.sm a?d the processor

multiplexing mechanism, and .analyzed in [S.axen,i76] and :J_n [Reed76]. ,
b. Page fault handling.,

When a. process refere!}ces a pa_ge of a se~~~nt that. is not in ~ore, a fl~g

in the PTW.causes a.page fault. As a result, the state of the p_rocessor is

saved to record what caused the fault. The pr.of;:.eJ;$or .abaµd9ns the user

118-

computation and it traps -- within the user process -- to the page control

module of which the function is to bring in the page. Unfortunately, to do

so, page control is dependent upon address space control (and segment control

by transitivity).

Two processes cannot be in page control at the same time.· This is to

preserve the consistency of PTWs as a whole. Synchronization is obtained by

using a global page control lock. Every process must test and set that lock

before entering page control code. Unfortunately, there is always a time

window between the moment a process takes a page fault and the moment it sets

the page control lock. Even if the page control lock is not set when a

process P takes a page fault, it may be set by some other process Q by the

time P gets a chance to test it. In some rare but possibfe cases, the

activity of Q in page control may precisely be pertittent to the PTW that P

faulted on. In particular, Q may have entered page control to deactivate or

simply delete the whole page table containing the PTW that P faulted on. As

soon as Q leaves page control, P may set the page control lock and enter page

control. However, to determine what PTW originally caused the fault, P cannot

use the absolute address of the PTW that may have been saved in the processor

state. That absolute address may now denote a PTW in the page table of

another segment or simply a free PTW. Thus·, to make sure it finds the correct

PTW, page control must repeat the whole address translation operation that was

originally performed by the processor before it took the fault. This includes

interpreting the segment number to get to the SDW and from there to the page

table. (Of course, if the segment has indeed been deleted or deactivated, the

SDW will be disconnected. At that point, page control must quit and restore

the processor state, which Will cause P to retry the opeiation and this time

take a segment fault.) The upward dependency of page control on address space

119

control resides in the fact that page control relies on the meaning of segment

numbers and SDWs to get at a faulting PTW. Yet, page control operates at a

very low level, should not know about segment numbers and should not use SDWs

as they are stored in the paged DSG, which makes possible the accumulation of

page faults. This upward dependency corresponds to a violation of the

information level rule mentioned earlier. Debugging has of course shown that

NSS works, but understanding and verifying the system are more complex due to

the above violation.

c. OOPV conditions.

The next upward dependency is due to OOPV conditions mentioned earlier.

When a segment needs to be grown but the physical vol.ume it is on is full, the

segment must be moved to another physical volume prior to being grown. The

overall mechanism for doing so follows. When a user process touches a zero

(null) page of a segment, it causes a page fault. Page control is invoked to

grow the segment. If it discovers an OOPV condition, it posts it in the AST

entry of the segment (this is another violation of modularity) and it invokes

segment control to disconnect the segment- (this constitutes a first upward

dependency). Page control then restores the processor state. The process

retries referencing the segment and this time takes a segment fault since it

is disconnected. Address space control is entered to process the segment

fault and invokes segment control to reconnect the SOW. Segment control

eventually discovers that an OOPV condition was posted by page control. It

follows the circular list of threaded PVT entries from the original home

configured volume to the currently least full configured volume within the

same logical volume and proceeds,to move the segment from the original home to

the new one. Finally, the move must be reflected at directo11y control level

where the (PVID, VTOCX) of the segment must be changed. To do so, segment

120

control reaches up and writes into the directory entry describing the moved

segment, violating both modularity and depeIJ<lency. Dependency is violated ,in

the following way. In order to write into the directory, segment control

obtains the segment number of the directory and the UID of the appropriate

directory entry from the KST. In doing so, it relies on address space control

for having stored the right parent directory segment nUlllber and the right

entry UID at the right place. Furthermore, a (directory segment nlUllber, UID)

pair denotes a directory entry and should be meaningful only at directory

control level. It can be stored at lower levels, but it should remain unused

because it denotes a directory control data base that should, from• a type

extension point of view, remain unknown t.o lower modules according to the

information level rule. By interpreting the pair, segment control becomes

dependent on directory control as it does not know (or should not know)

anything about a data base like a directory that belongs in a higher level

module. Notice that a low level module touching a high level data base

results in a violation of modularity on top of which there is a violation of

dependency structure due to violating the information level rule. 11iis was

the case both in the handling of page faults and of OOPV conditions.

d. Access recalculation on segment faults.

The main role of the KST is to bind segment numbers to directory entries

so that, on a segment fault or a bound fault, one can go to the directory to

recalculate access or reactivate the segment, or to the AST/VTOC to access its

CSL. On a segment fault, address space control uses the (parent segment

number, UID) pair in the KST entry to acces~ the ,directory entry, obtain the

(PVID, VTOCX) and compute the access mode from the access control list. Since

reading an access control list and .extracting from it the desired information

for one process is an expensive operation, the following mechanism is used.

121

The KST is used as a sort of software cache for the access information

residing in directory entries. The access info;D!lation for one process to one

segment resides in the access control list of the dire,ctory entry. describing

the segment and is stored in a more accessible and readable form in the

corresponding KST entry. In addition, both the directory entry and the KST

entry contain a date-and-time-entry-was-last~modified (DTEM). On a segment

fault, address space control uses the (directory segJ11ent number, UID) pair to

access the directory entry and read its DTEM. If this_.DTEM is more recent

than the DTEM in the KST entry, access must effectively be recqmputed from the

access control list as it may have changed. (The .PTt:M is also UBdated in the

KST entry). Otherwise, the access information in the KST entry is s.till up to

date and can readily b~ used without recomputatioq._. · Address space control

depends on directory control again because .of a violation of the information

level rule on top of a violatio11 of modularity. Address.space control should

not touch directories and should moreover never use (interpret) a (parent

segment number, UID) pai~ because, even though_it knows about segment numbers,

it should in principle not know what directories are and should not assume

anything about their usage or the:i,.r managtlment (format).

e. Tile quota problem.

The implementation of the quota mechanism in NSS is the biggest source of

modularity and dependency violations. The quota mechanism involves every

module from page control to directory control. In short, the.cause of the

problem .is the following. Quota cells are organized into a. hierarchy that is

defined at directory control. level; they are stored in th~ VTOCs and the AST

at segment control level; they are lllanaged at,_page cont.rol_level; and

processing page. faults that require growf_pg soµie segment: ,requires address

space control level information (SDWs) as explained ~~li~. Thus, page

122

control depends on address space control to interpret SDWs (see earlier).

Page control also depends on segment control because that -'is where the quota

cells it manages are stored. And segment control depends on directory control

because it cannot ignore the quota cell hierarchy, which fs in fact defined at

directory control level.

To understand the above implementation, one must consider the CU

operation. The CU operation is invoked in t~o cases. First, when a segment

is deactivated or truncated (on a user request), the pages that (may) have

become null are deleted. Second, wheri a user references a null PTW, a page is

created. In the above two situations the CRU of the segment changes and

therefore the CU operation must be applied to the quota cells of all superior

directories up to and including the lowest quota directory. Unfortunately,

the hardware that supports Multics does ·not distinguish normal page faults

from page faults on null PTWs (further referred to as quota faults). Thus,

page control is entered on a quota fault and page control is responsible for

the CU operation. Since two processes must not update a quota cell at the

same time, quota cells must be protected-by some lock. Since the CU operation

is performed under the protection of the: page control lock, all other quota

operations must be performed under the protection of the page control lock as

well. This is the argument that was used to justify llhy page control actually

manages quota cells.

The next question concerns the storage of quota ceils. In the original

Multics implementation, quota cells were- stored in directories themselves

since each directory has its own quota cell. However,· this implementation was

deemed inefficient because updating' a- potentially' l'arge 1Jet of quota cells on

a CU operation was likely to cause a flurry of page faults on directories,

which is undesirable while a proces11 is 'already processing a page fault. In

123

NSS, it was decided to store a quota cell in the VTOC en.try of !ts directory

rather than in the directory itself. .And in order to. av.oid delays due to I/0

on VTOC entries, it was decided to keep active any directory that has at least

one son active and to copy the quota cell of an active directory into the AST

entry for the directory. (For this and other reasons, any directory with

active sons was also kept active in the origin,al Multics design so that NSS

did not change that aspect of the implementation of the Multics virtual memory

mechanism.) Thus, when a quota fault is taken on some segment, the quota

cells of all superior directories are guaranteed to be in core and readily

accessible. Since segment control must not. arbitrarily deactivate

directories, every AST entry describing a directory must contain a count of

the number of segments below that directory that are active. Also, to allow

page control to walk up the quota cell hierarchy on a CU oper.ation, the AST

entry of any segment/directory is threaded to the AST entry for its parent.

Consequently, page control depends on segment control becquse it uses AST

entry threads that are supplied by segment control and manages quota

information sto·red in segment control data bases •

. Finally, segment control depends on directory control because, for

various reasons that will not be described here as they lack interest, it may

at times operate on inactive quota cells in VTOC entries. Since these

inactive quota cells are not threaded into a hierarchy as are the active quota

cells in the AST, segment control invokes directory. to find out about the

structure of the directory hierarchy.

In addition to being hard to understand, the above design is inefficient

in that it requires many directories to remain active, even though they are

not used, when all that needs to be accessible is their quota cell, which

represents only a few words out of each AST entry.

124

f. Program, address space and interpreter dependencies.

Although NSS is not based on type extensiein, the programs, the address

space and the interpreter of a modute·should still be implemented in terms of

mechanisms defined at or below the level of the module. Yet,' NSS contains

innumerable instances of dependency structure violations r-esulting from

program, address space and interpreter dependencies.

To name only one such instance, consider the case of the page control

module. The page control module contains certain programs stored into

segments that for obvious reasons need to be permanently active and have all

their pages wired in core to avoid infinitely recursive page faults.

Unfortunately, there does not exist an abstraction equivalent to a permanently

active, wired down segment. Thus, page control uses regular segments and

assumes that segment control will not deactivate or otherwise damage the PTWs

of these segments. Also, the page control module runs in the user address

space as materialized by a DSG. That DSG should also be a permanently active,

wired down segment. Short of having such objects, the DSG is implemented by a

paged segment. Thus, again, page control trusts segment control not to

deactivate or otherwise damage the DSG it uses to define its address space.

Finally, the page control module depends on processes implemented by the

traffic control module to interpret its code, while the traffic cont-rol module

depends on the page control module for loading and uttloading (paging in and

out the state of) processes it schedules.

4. Design of MSS.

The objective of this section is to discuss the design i of MSS.
!

In a first step, we will try to visualize data abstracfions in NSS and

I

after briefly discussing the problems associated with these i abstractions, we
I

125

will slightly modify them to yield the type structure graph of MSS. The

transition from .NSS to MSS was a painfully).ong process in reality, which we

cannot afford to retrace completely here. Thus, we will not say in detail how

and why we chose to modify the fictitious type structure of NSS the way we did

to arrive at the real type structure graph of MSS. Ho.wever ,. by giving a brief

summary of the transition, we hope to communicate to the reader the basic

operations involved in designing a well-organized system that is.based on type

extension and we hope to convince the reader that MSS is close enough to NSS

that it could be implemented in practice.

In a second step, we will build the complete dependency graph of MSS. To

do so, as recommended in chapter I II, we will take the type structure graph of

MSS and. add to it dependency arcs correspoJ:?-ding to map, program, address space

and interpreter dependencies for each type manager. We will see that the

graph so constructed is partially ordered .•

In a last step, we will look back at the problem areas encountered in the

organiza.tion of NSS and see how they are no longer problem areas in MSS.

Considering the problem areas last departs from the way we ~onstructed MSS in

reality. In designing MSS, we considered the problems first and in trying to

solve them, we progressively arrived at the type structure graph and the

dependency graph to be presented at the beginning of this ~ection. We have

decided to present the. design of MSS first and to discuss the problems it

solves then for two r.easons. First, some readers might not .be interested in

the specific system. design problems that MSS solves, in which case they may

skip .the end of this section without loss of continuity. Second., talking

about the specific problems first and then discussing f.he. organization would

present the risk of distracting the reader from the ill\{)Ortance of the

pcjlrtial.ly ordered structure of modules.

126

Development of MSS type structure.

In order to develop the type structure graph for MSS, we want to look at

NSS from a type extension point of view to see if we can distinguish abstract

types in it. Of course, such types cannot be formally stuctured and are

probably not well-defined. But they may provide us with a first cut idea of a

type structure graph for MSS. It will then be possible to formalize those

types and to improve their organization to derive a well formed type structure

graph for MSS.

The basic process for evolving NSS towards a system based on type

extension consists of regarding its data bases as abstract objects and their

interconnections as component relationships. We will first associate every

kind of data base in NSS with an abstract type and we will define informally

the sPmantics of every abstract type. We will then examine the

interconnections between the various kinds of data bases in NSS to see how the

different abstract types are related, i.e. what the type structure graph of

NSS is. We will finally discuss the structure violaiions found in that type

structure graph and indicate what can be done about them to arrive at a well

structured graph for MSS.

a. Choice of abstractions.

In this section, we associate every kind of -data base with an abstract

type and we define informally the semantics and the "raison d'~tre" of that

type. Unless otherwise stated, these semantics will be preserved in MSS. We

are not concerned here about the relation bet'Ween the various abstract types.

Logical volumes represent what the user sees as single (logical) disk

packs and associate these atomic (logical) packs with sets of (phys-ical) disk

packs and with master directories controlling the use of space on these di:sk

packs. A logical volume is associated with a LVRD file. A logical volume is

127

named by the path name of its LVRD. It is also named by a LVID tag. However,

this tag only identifieEJ the logical volume. It is insufficient to retrieve

its LVRD and operate on i_t. Logical v.o.lumes are bas_e level, C/D objects.

Logical volumes can be created, deleted, mounted and demounted. In addition,

it is possible to define master directories for logical volumes.

Physical volumes represent the physical disk packs that compose the

logical volume objects defined above. A physical volume is associated with an

entry of the DT. A physical volume is named by its PVID, which, thanks to the

DT hash table, denotes the associated entry in.the DT. Physical volumes are

C/D objects. (There can be very many entries iq the DT.) They can be

created, deleted, mounted and demounte<!. Tl-le oper~tions de(ined on physical

volumes are the .operations used to imple11,1ent .. the op~rations defined on logical

volumes for each of the physical volumes that compose them.

Configured volumes represent disk drives. The allocation of configured

volumes to physical volumes is intended to modeJ.. the allocation of disk drives

to mount disk packs. A configured vol.ume is associated with an entry of the

PVT. A configured volume is named by its PyrX. Configured volumes are A/F

objects. A configured volume can be allocated to mount a physical volume and

deallocated when the corresponding physical volume is de_mounted. In addition,

it is possible to search all ~llocated configll;l"~d volt11D.e_s, i.e. all mounted

disk packs, for one that bears _a given PVID. This operation corresponds to

searching the PVT, as explained earlier.

Directoxies are the places where users catalog files. Directories are

the nodes of the file system. A ~ir,e<:to,ry is named by its p_ath l!_am_e.

Directories are b-ase level .. C/D .objects. , The operatio~s defined on directories

are those defined at the interface of the directory control module in NSS

(e.g., create, delete, create entry, del,ete entry,, rename _entry, set access

128

control list, move quota, etc •••). If a directory is initiated in a process,

that process can also name the directory by segment number.

User process objects are the internal representation of users and carry

out inside the system the intentions of the users. The user process con~pt

is associated with an entry of the APT (later renamed the~ Process Table

(UPT) in MSS). A user process is named by the PLID of· its APT entry. User

processes are base level C/D objects. (The system supports a limited number

of processes at a time.) User processes are subject to-synchronization

operations of which one purpose is to multiplex the processors of the system.

A known segment is a slot in the address space of a user process. Every

user process has a finite set of known segments available in his address

space. The user can request the allocation and the deallocation of known

segments but he cannot read or write knowri segments. Such operations are not

defined on this type of abstraction. The known segment toncept is associated

with a KST entry. A known segment is named by the segment number denoting its

KST entry. (Note that a segme.nt number must be interpreted· with respect to

the KST of a specific process. That specific process b1 implicitly defined as

being the one interpreting the segment number.) Known segments are base level

A/F objects. Known segments are allocated/freed in response to a user's

request to initiate/ terminate files. Segment faults and bound faults are

events defined on known segments. (So are quota faul:ts in MSS, as will be

seen later.)

The segment abstraction stands for a log-lcal collection of fixed size

physical information containers. A segment is assoc·i1ft.ed with a UHT entry. A

segment is named by a UID. Segments are C/D object's. -·segments can be

created, deleted, activated and deacti'lfated. Segments iinpl:ement the segments

and directories defined in the file system~

129

A connected segment is also a slot in the ~ddress space of a user

process. Every user proce~s has as many conn~cted s_egments as he has known

segments and they are in a one-to-one correspondance. The allo~ation of

connected segments is implicitly controlled by the allocation of known

segments because _of this one-to-one correspondance. Th\lS, the user cannot

explicitly request the allocation or the deallocation of a conn~cted segment.

However, he can read or write connected segments. The connected segment

concept is associated with a SDW. A connected segment is named by the segment

number of its SDW. (Note that a segment,_ n1,1111ber for a connected segment must

be interpreted with respect to the DSG of a specific process. This specific

process is defined as being the one interpreting the segment number.)

Connected segments are base level A/F objects. In addition to read, write and

execute, two operations defined on connected. segments. are connection and

disconnection. They can be invoked only by the system.

The passive segment abstraction stands for. the disk image of a segment.

A passive segment is associated with a VTOC entry. A passive segment is named

by a (UIP, PVTX, VTOCX) triple denotin$ its VTOC entry. Notice that the

(PVfX, VTOCX) pair is sufficient to ret.rieve the VTOC entry but not to

identify it as corresponding to the right passive _segment. The importance of

this remark will become clear soon. Passive segments are A/F objects. One

can read or write their VTOC entry.

The active segment abstraction stands for the image of a segment of which

the page table is in core. Ao active segment is associated with an AST e~try.

An ac ti;ve segment is named by its ASTEP •. ,Ac,tiv,e. s~gments a~e A/F obj ec~s.

On-e can read or write their associated AS'I' entry and c-ause their CSL, MSL,

CRU, DTM and DTU attributes to be updated. Notice th~t in MSS some active

segments are not the image of any segment. They are stand-alone objects used

130

by the system. Such active segments are not components or subcomponents of

any segment, known segment or directory. Segment, bound 'and quota faults are

not defined on them. They cannot be deact1'1ated (deallocated) because the

segment manager, which multiplexes active segments among passive segment and

implements the segment deactivation algorithm, is unaware of them and has no

ASTEP to name them.

The page frame abstraction stands for a block of contiguous words of

storage. A page frame is associated with a PTW. A page frame is named by the

absolute address of its PTW. Page frames are A/F objects. One can read or

write the PTW of a page frame. Page faults ate events defined on page frames;

We will see in MSS that PTWs are no longer stored in the AST. Instead, they

are stored in a separate table called the PageFrmne Table (PFT). 'l'he PPT is

an array of PTWs. The concept of a segment as a 1ogleal colleeti.on of page

frames is totally lost at this level. All the page frame manager knows about

is a page table, i.e. a collection of page frames with sequential names (the

absolute addresses of their PTWs). It can allocate and free page frames with

sequential names. lt can inspect several page frames' at a time given the name

of the first one (PTA) and the number of page frames to be inspected (CSL) but

it never knows what segment a page frame is part of,.

The concept of a disk record is associated with a block·of storage on

disk and one bit in the FSDCT. A disk record is nasted by its disk address.

Disk records are bottom level A/F objects. They can be allocated, freed, read

and written.

The concept of a core block is associated with a block of'storage in core

and one entry of the CMAP. A core block i-S denoted by its core address. Core

blocks are bottom level A/F objects. ntey can be ·a11ccated, freed, read and

written.

131

b. Type structure of NSS.

We now turn our attention to the reJa,tio.n beiween abstr.~ctions in NSS.

In other words., we want to find out what a type struct,1,1re graph for NSS would

be.

We will say that a data base A is bound to. a data base B if A contains a

name denoting B. The basic technique for constructing the type structure

graph of NSS consists of saying that if ,a data base A is bound to a data base

B then a procedur.e operating on A may follow. t.he biµd.i.ng from A to B and

request that some operation be performed on B. Thus, the abstraction

associated with B should be regarded as a component of the abstracti@

associated with A since operations on A may eventually affeci. B when the

bJnding is followed to it.

In fact, not all bindings sho~ld be viewed as component relationships.

Consider a data base A that is bound to a data base .B.

The binding between A and B can fulfill one of two mutually exclusive roles.

First, it may be there so that the program~ managing A may find Band invoke

the programs managing B to perform some ope.ration <;m, B. In type extension

terms, this means that the management of A may, on occasions, require

operating on B.. The binding exist to record the name of the specific object

(B) that should be operated on as part of operating on A •. T,he type manager of

A may use this binding to request the type manager of B to operate on.B. In

other words, B is a component of A. A binding of this first kind will be

called an inte.rpr~ted binding. Second, the binding .may be stored in A by the

programs managing A only to record so.me ass9.cµtion be,,t~en A and B (not a

componen.t reJationship) but not to ever operclte on B. In type extension

132

terms, either the type manager for A does not care at all about this binding

and the binding is stored there on beha-lf of some other module, ·or the type

manager for A cares about the binding only insofar as it establishes a

relation between A and B but not a component relation. This latter case would

be indicated by the fact that the type manager ·for A never need·s to invoke the

type manager for B to operate on B because it cares about 'B only a-s an object

somehow related to -A but not as a component: o-f A. · A binding that does not

correspond to a component relati.onship will be called an uninterpreted

binding. Examples of interpreted and uninterpreted bindings in a real system

will be discussed soon.

Thus, when considering a binding between t~ data bases in NSS, we must

wonder whether the binding is interpreted or not by the programs managing- the

type of data base at the origin of the binding.

In order to develop a fictitious tYPe structur~'graph for NSS, we

consider figure 4. l, which shows all the data bases in -NSS- -and slD!lmarizes all

the bindings between them. We regard every kind of data base represented in

that figure as corresponding to one of the 'abstract d.ita types de'fined abo'le.

And we must carefully review every binding between any two data bases to

decide whether it is interpreted or not. The result of this process is shown

in figure 4.3. Every box stands for an abstrat.t ·type and every {solid) arc

for a component relationship. We cannot afford to j\lstify here e'lery

component relationship in figure 4. 3. From t'.he description of the mechanical

operation of NSS, the reader may, if he ca'I'es, verif:9' that every component

relationship indeed corresponds to an interpreted bindin:g. However, we will

discuss here the uninterpreted bindings of figure 4.1 that are represented by

dashed lines in figure 4. 3 and are not c0111ponent relationships.

First of all, a comment is necessary to interpret the abstrac-tiori ma-rked

133

....
w
~

/
/

/

/
/

/

/
,,, ✓ I physical volumes

/ /
/ . /

(2((3)/
/ .. .,.

/ ,.
/ /

configured
PVT

logical volumes
all LVRD

segments
UHT

' directories
all directories

(8)

(6 > I I
I I

segments • 1processes
APT

segments Bjoc;ve $egments~ t:~i:ve se~ents} 1 1

disk records

(7)

,.~Me
(5, 1(5)

I

core blocks

Figure 4.3: fictitious type structure for NSS.

X. This abstraction maps the (PVID, VTOCX) stored in a directory entry to the

(PVTX, VTOCX) necessary to access a VTOC entry. In reality, it maps a PVID

into a PVTX. This mapping is determined by the OT and duplicated in the PVT.

As expressed in figure 4.1, this mapping is conditional on the physical volume

with the given PVID being mounted, i.e. on the ~VID beingbo~nd to some PVTX.

Thus, abstraction X implements a mapping that already exists in the PVT. As

will be seen in MSS, abstraction Xis merged with the segpieni abstrac~ion. A

' -----
Begmen twill be named by a (UID, PVID, VTOCX) triple. Every time the segment

manager is invoked to operate on a segment denoted by such a triple, it first

uses the UID alone in the hope that the segment_i.s active and will be f-ound in

the UHT. If this search fails, it invokes a primitive of the configured_

volume manager to examine all configured volumes and see if any corresponds to

the physical volume with the given PVID. If such a configured volume is

found, its PVTX is returned. The segment manager then uses the (PVTX, VTOCX)

it now has to request operations on the corresponding passive segment. In

other words, the segment manager is dependent on the configured volume manager

to map a segment into its passive, component because the mapping relation is

stored in the PVT that is maintained by the configured volume manager. This

will later appear as an appropriate map dependency. It is not the

responsibility of the segment manager to guarantee against the loss of its

ubjects. Its only responsibility is to- guarantee that the integrity of its

objects is always preserved even if they are lost. Notice that losses can be

recovered from if the higher level mechanisms that cause them care to correct

them and retrieve the lost objects.

Now, consider arcs (1), (2) and (3) of figure 4.3. They are all

uninterpreted bindings for the same reason; they are never used by any

135

program to operate on the target objects they denote. Arc (1) is the LVID tag

of a directory. As mentioned earlier, it is never used to operate on the

logical volume it denotes. It is used as a sort of color tag that the

directory manager wants to be common to all segments in a directory. The

directory manager does n-0t care about what logical volume it denotes. In

fact, it does not care about what logical volumes are. All it knows is that

every directory has a color tag and that to create a segment in a directory,

it is necessary to match that tag with a similar tag in the PVT entry of the

configured volume on which the segment is created. In the PVT, arc (2) stands

for this matching tag. Again, it is an uninterpreted binding. In fact, it is

the inverse of a component relationship. The configured segment manager does

not care about what logical volumes are. It only knows that every configured

volume bears a LVID color tag and that all configured volumes with the same

tag are threaded in a circular list. The same sort o~ argument could be made

for arc (3), which stands for the PVID tag of a configured volume, yet another

sort of color tag used to retrieve passive segments as expressed in the

previous paragraph.

One might believe that, in MSS, the directory manager and the segment

manager would depend on the meaning of color tags that are really determined

at the physical volume and logical volume levels. This is not the case. The

directory manager and the segment manager use the tags to group segments into

directories and. pages into segments respectively. Thus, tags provide a

strategy for physically organizing, storing and retrieving information •
. - ~ .

However, the directory and segment managers do not depend on them to guarantee

the integrity of the logical objects they manage because the ultimate item

that associates directory entries to segments and to VTOC entries is a UID.

UIDs are not sufficient to retrieve segments but they are sufficent to

136

identify them. Thus, if tags got mixed up somehow by-the logical or the

physical volume manager, the segment manager would not be able to retrieve its

segments. However, it would never d~age the~ accidentally thanks to the

ultimate integrity check provided by UIDs. Consequently; the segment manager

could signal discrepancies in the associations of color ·tags ii:. sees with

respect to associations it previously saw. But as soon as these discrepancies

would be fixed, for instance, by salvaging some LVRD or the DT, the segment

manager would recover its full capac.ity and no segment would have been damaged

or lost in the meantime. UIDs essentially constitute· a protection mechanism.

that prevents the segment manager from suffering (ram'· mal·f~ctions in the

logical or physical volume managers. The -~emarit:ic.s oi'.the. segment manager

guarantee the integrity of ail segments but do not guarantee .that all segmen·ts

t : '

can always be accessed. This latter property ·may ·be imposed and verifiea only

at the level of the logical volume manager.

Now consider arcs (4) and (5). These bindings are used by the page

removal algorithm, as explained earlier. Since the purpose of this algorithm

is to throw pages out of core when necessary, which requires manipulating the

PTWs that represent the pages, the algorithm is part of what should be called

the page frame manager. (4) and (5) are stored in ·olAP entries by the core

block manager only on behalf of the page removal algorithm. ·The core block

manager never uses these bindings to operate on PTWs or on disk records. (4)

is only a way to save the address of the home of a page (4') while the page is

in core. (5) is only the inverse of the compon~nt relati~riship .(5').

. .

While arcs (6) ciearly establish an identity between. segment numbers of

KST entries and segment numbers of SDWs, they·are not·component relationshipi •

• - • • • ,- • -e: • - ·r · ~ { ! ~ : ' t - - , -- ·_ . -_ .- ,

While operating on a KST entry with segment number N; the KST management

programs never invoke the DSG management progr~s to operate ori tne SDW with

137

number N. Conversely, while operating on an SDW with number N, the DSG

management programs never depend on the KST management programs to operate on

the KST entry with number N.

We now have a fictitious type structure graph for NSS. It is fictitious

in the sense that NSS does not really respect any typ~ extension formalism and

the type structure graph is not well structured. The partial ordering of

abstract types.is violated in two places. First, an ~ST entry is composed of

a collection· of PTWs but its is also possible to get to an AST entry (7) from

any of its PTWs, to operate on it. _This is indeed what the paging mechanism

does to maintain for every segment a "file-modified" switch, a

"file-map-modified" switch and. a number of pages _in core, as described

earlier. Second, there is a loop of c-omponent relationshJps between

directories, processes and known segments.

c. Type structure of MSS.

To construct the type structure graph of MSS by evolving that of NSS, we

consider figure 4.3.

We first consider the dashed lines. Lines (1), (2), (3} and (6) can be

discarded as no module ever interprets them as com(l(ln~nt relationships. Line

(5) can be discarded as it is interpreted by the page frame manager, as the

inverse of a component relationship represented by line (_5'). Line (4) can be

discarded as it is interpreted by the page fra~ manager, as a component

relatio_nship already repres,e,nte-d by line (4'). We then remove line (7} as it

violates partial ordering. This ts t_o say that it is now impossible to go

from a PTW to the containing AST entry. In other words, PTWs are now stored

in a separate table, the PFT, as ~nnounce4 earli~r. We al$o remove line (8)

for the same reason. This is to say that it is now i~possi~le to go from a

KST entry to the corresponding direc,tory ~n;try. In othe.i; ;word~, the known

138

segment manager will not be allowed to invoke the directory manager to operate

on a directory entry or to extract iliformation from it. The impact of the

blunt deletion of the two lines mentioned above will be studied-later.

Finally, we merge abstraction X with the segment abstraction, as explained

earlier. The result of this evolution process is show in· figure 4.4, which

shows the complete type structure graph of MSS. The names- of the data bases

under certain abstract types denote the data base(s) managed within the type

managers for the corresponding types. · As we proceed, we will see that these

data bases really implement the maps of the objects <tf the corresponding

abstract types.

The informal semantics of abstract types defined in NS$ are preserved in

MSS. Some new abstract types are defined in figure 4.4. Their purpose will

be justified and their semantics will be given 1.ater.· as we ,examine the

problem areas in NSS and take care of them in MSS. The details of the

mechanical sequence of operations for handling such events as. page faults,

quota faults, OOPV conditions, bound faults and segment faults will also be

given in the third part of this section on MSS, a& we discuss how MSS handles

situations that caused problems in NSS. Notice that ·two component

relationships have been slightly moved in f'igure·4.4. A UHT entry rather than

the AST entry it points at is designed to· contain the trailer list o'f an

active segment and the (Pvrx, VTOCX) denoti.ng the home: of the segment. These

bindings have been moved from the AST to the tJHT ·because they will yield

component dependencies that would conflict witb the pa,:tiat: ordering of the

dependency graph of MSS if.they were not moved. (Speeifically, they would

conflict with map dependencies to be described later--)

MSS dependency structure.

A basic dependency graph for MSS is given in figure 4.5. 'This graph

139

.....

.p.
0

onfigured volumes
vr

disk sectors

physical
,DT

l.o1?ica1 volumes
all LVRD

Illa 1segments
UHT

cells

aasive segments
TOCs

active segments
AST

~ife

Figure 4.4: MSS type structure graph.

[core segments

K, n_d er l __ i __ n_e_d
1

bcJ.se level
C/,D
A/F

irtual

......

.i:,

......

CVM
PVT

DSM

·QCH
QCT

PSM
VTOCs

LVM
LVRDs

ASM
AST

PFtl
PFT

CBM
CMAP

,------~KSM
KSTs

eSM)

Figure 4.5: MSS component dependencies.

contains only the component dependencies that are derived directly from the

type structure of figure 4.4 by drawing o~e ~ype manager for each abstract

type and one component dependency for each component rela_tionship. Each node

gives the name of the internal data base(s) ·of the type tn~nager.

a. Map dependencies.

The dependency graph of figure 4.5 shows only component dependencies. We

are now concerned with adding t-0 that graph dependenci~s_ due to the

implementation of the maps of obj_ects of each: abstract type. We must design

the system so that none of the map dependencies to be _introduced cause a

dependency loop with any of the component dependencies that we already have

drawn.

The map -0f a logical volume is in its LVRD, which binds the logical

volume to a collection of physical volumes and of master directories. The

LVRD is implemented by a segment that is cat,aloged .. in some directory. Thus,

to implement maps of logical volumes, the logical _volume manager is dependent

on the directory manager.

The map of a physical volume is stored in a DT entry, which binds the

physical volume to a configured volume if it is moun t~d. The DT is also

implemented by a segment that is cataloged in some_directory so it can be
• a " '

backed up like all files of the file system by a mechanism (not described

here) ope.rating above th_e virtu_al memory m~c~a?ism, which -periodically orders

copies of every recently modifi~d file to b~ made on ~ ;_ape. Thus, to

implement maps of physical voluµies,, the pbysiGsJ-1 val,ume _m~~n~ger depends on the

directory manager.

Of course, LVRD segments and the DJ must_be stored on the root logical

volume to be on-line at all times. The root logical volume is guaranteed to

142

be on-line at all times by the configured volume manager. Each configured

volume corresponding to a physical volume of the root logical volume is marked

with a special "rootu tag that is set at system initialization and prevents

that volume from being demounted even if the logical volume manager or the

physical volume manager accidentally requested that it be demounted.

The map of a configured volume is in an entry of the PVT, which specifies

what portion of the configured volume constitutes the disk record pool and

what portion constitutes the disk sector pool (see later). The PVT is

implemented by a core segment. Thus, the configured volume manager clepends on

the core segment manager for implementing maps of configured volumes.

A core segment is a new type of segment that is introduced now for the

first time but will often be needed later at places where NSS used permanently

active, wired down segments. A core segment is an unpaged collection of

contiguous words in core. Core segments are core resident information

containers. They reside in a portion of core that is determined as the system

is initialized and is distinct from the portion of core used by core blocks.

Core segments are used exclusively by system modules, as will be seen. They

are defined and initialized when the system is brought up. They are never

allocated or freed thereafter. They are fixed size information containers.

The only operations defined on core segments are READ, WRITE, and EXECtrrE.

The core segment manager is implemented entirely by hardware operations. Core

segments are named by their absolute core address. They can be addressed in

hardware by SDWs of which a dedicated bit indicates that the field normally

containing a PTA denotes the base of the segment itself rather than the base

of its page table.

The map of a directory is the data tiase that binds the directory to the

set of (UID, PVID, VTOCX) triples of the segments described in the directory

143

and to the set of PLIDs of the users allowed to access th~se segments. This

data base is the segment contain~ng the directory entries._ Thus, the

directory manager depends on the segment manager for implementing directory

maps.

The map of a user process is its UPT entry. A UPT entry occasionally

binds a user process to a virtual pr_ocessor {see later). It also binds the

user process to a collection of 19lown segments and to a collection of

connected segments. {In fact, it binds the user process to the image of a

DBR, i.e. to a DSG. Thus, it indirectly binds the user process to a set of

SDWs and to a set of KST entries. A user process is indirectly bound to a KST

because every DSG contains a SDW with a conventional, fixed segment number

that deno_tes t?e KST of the corresponding pr.oce~s •.. There is no reason to

regard DSGs_and KSTs as abstractions maintained separate~y from connected

segments ~nd known segments beca~se the man~ement of such tables is concerned

solely with management of SDWs and KST entries respectively. In consequence,

figure 4.5, which maps user processes directly into known segments and

connected segm~nts is a simplified, view of the reality bt1t it is absolutely

correct: usE}r proce~ses are bound (indirectly and implicitly) to sets of

known segments and connected segments.) The UPT is implement~d by an active

segment. Thus, the user process manager depends on the acti;ve segment manager

for implementing maps of user processes. An active segment is not catalog_ed

in the file system, which means that it has no secondary storage home and

vanishes when the system is brought down. This poses no proble_m because, when

the system is shut down, all user processes are deleted and the UPT is empty

anyway.

The map of a known segment is contained in a KST entry, which binds the

known segment to a segment UID. (In fact, we will see later that a KST entry

144

binds the known segment to the (UID, PVID, VTOCX) triple of a segment.) A KST

is a connected segment that should never be disconnected because the operation

of connecting a segment requires the presence of a connected KST. Thus, the

known segment manager depends on the connected segment manager for

implementing the maps of known segments.

The map of a connected segment is its SDW. The DSG containing the SDW is

also a connected segment that may never be disconnected for the same reasons

as the KST. Thus, the connected segment manager depends on itself to

implement the maps for connected segments. Although this unquestionably

constitutes a dependency loop, this loop does not pose 'a ctonceptual problem,

as explained below.

In reality, a permanently connectedse'gnient should be regarded as an

abstract type different from other connected segments bn wich segment faults

can be taken. Then, there would be no dependency of the conne-cted segment

manager on itself. Furthermore, the type chec1dng mechan-:tsm could distinguish

permanently connected segments from othet connected segments, which is

important since the system will operate correctly only if it can be verified

that KSTs and DSGs are never disconnected. While regarding permanently

connected segments as an abstract type different from c·onnected · segments is

the only rigorously correct approach to type exi:ensiott, ·we have taken the

liberty to depart from such strict formalism for two reasons. First,

permanently connected segments are very much like connected segments and by

slightly modifying the connected segment manager, it can also support

permanently connected segments. Second; there rieed be on1y three permanently

connected segments per process. Therefore, it is easy to declare and build

into the type checking mechanism that three SDWs with identical, fixed segment

numbers in each DSG are dedicated' to implementing permanently connected

145

segments. The connected segment manager mai b~, co<l~d to never disconnect

these segments even if it were accidentally requested to do so. And the type

checking mechanism may recognize the .three fixed segment numbers as denoting.

the equivalent of permanently connecte,~ segme~ts.. In essence, when a user

process is created, the user process manag~r invokes an initialization

primitive of the connected segment man~ger. This prim;tive first invokes the

active segment manager to allocate ~d. Quild three active .seiments with giv:en

lengths {CSL).. It then manufactures three SDWs for these segments.
. - •- ' ., ··.'. '_ '

It stores

the three SDWs in one of the three ac tiv,e; 5e:gments, to become the DSG, at a

location corresponding to the three reservEld segment numbers. It finally

returns an image of the SDW for the DSG to the user process manager. That

image binds the process to its DSG and implicitly to its KST and will serv~ to

load the DBR of a processor every time the process is scheduled.

The map of a segment is constituted. partly by a {!HT entry, which binds

the segment to its active component, if a1'y, and partly by i_nformation

embedded in the PVT, which binds the PVID tag of the segment to a PVTX tag.

The UHT is implemented as an active segment. Thus, the segment manager

depends on the active segment manager and. on the configu~ed volume manager for

mapping segments into their components.

The map of a passive segment is its file map in its VTOC entry. (In

fact, it is the whole. VTOC entry if .one consid1:,rs that t.he storage attributes

of the segment (DTU, DTM, etc •••) that reside in the yTOC entry are what we

called in chapter II the small compone~ts of t~e segm~nt an,d ,are stored

together .with the map.) A VTOC is imptemented by disk sectors. Thus, the

passive segment manager depends on the disk sect.or ma~ager to implement .the

maps of passive segments.

Altl).ough the, _concept of a disk sec tor a,lready ex!~te.d, in, NSS, it was not

146

recognized as an independent data type. l>isk sectors were m:anaged by the page

control module. Every disk is divided into a paging ~zone and a cataloging

zone, as explained earlier. The paging zone is the disli record pool. The

cataloging zone, i.~. the VTOC~ · is the disk sector: pool. Disk sectors are

containers smaller than disk records. A VTOC- en.try is impl~ented by three

disk sec tors that are contiguous. Since atsk -s~c tora are used solely to

implement VTOC entries, there is no need to keep track of their A/F status.

It is implicitly determined by the A/F status of the corresponding VTOC entry.

All the disk sector manager does Hi READ and WRITE disk sectors and configure

them when told to by the configured volume manager. Configuring disk sectors

consists only in remembering how many sectors are associated with a given PVTX

tag.

The map of an active segment is its AST entry, which contains the small

components of the segment and binds it to a collection of page frames (PTA,

CSL). The AST must be a core segment because the active segment manager would

depend on itself if the AST were an active segment that had to be maintained

permanently active.

The map of a page frame is its PTW. P'tWs are collected in the PFT, which

must be a core segment because the page frame manager may not take a page

fault on the table it maintains to handle ·page :faults.

Disk sectors, disk records, core blocks and core segments are bottom

level objects and have no map. The quota cell table (QCT) and the virtual

processor table (VPT), which serve to store the maps oJ quota cells and

virtual processors respectively, will be discussed lateT. · Let us say ·for now

that the QCT is an active segment and tlie VPT a core·segl!lent.

b. Program dependencies.

Program dependencies are those that make any type manager depend~nt on

147

one or more other type managers for storing the procedures and data bases that

implement it. By examining the implementation of maps, we have answered the

question of the implementation of every data base in figure 4.5 except the

CMAP and the FSDCT. Since these tables are used below the level of the paging

mechanism, they must be core resident. Thus, they are core segments.

We must now discuss the implementation of the procedures and the working

storage for each type manager. In Multics, the working storage is constituted

by an Algol-like push-down stack for storing the local variables and the

argument lists of pending procedure invocations.

For the implementation of procedures in MSS, one must consider two

environments of execution, the core resident environment,an~ the paged,

permanently active (paged for short) environp1ent. The core resident

environment is implemented entirely by core segments. and the paged environment

is implemented entirely by active segments. These active segments are in

practice permanently active because the segment deactivation algorithm, which

operates in the segment manager, can only deactivate (L,e. request. the

deallocation of) active segments that are components of segments. It does not

see and cannot operate on any other active segment because it does not have

any ASTEPs to name them.

The core segment manager is i!nplemented entirely by hardware operations.

Thus, it is in neither the resi~ent nor the paged environment. It is in a

hardware environment below both. The core re.sident envi~onment comprises the

disk sector manager, the disk record manager, the active segment manager, the

page frame manager, the core block manager and the yirtual proces~or manager.

All other type m~nagers are in the paged environment.

The active segment manager must execute in the paged environment because

it would depend on itself if it executed in the other. The page frame

148

manager, the core block manager and the disk record manager must execute in

the resident environment because they implement the mechanism for supporting

non-core resident information containers and cannot depend on this mechanism.

The disk sector manager executes in the resident environment for efficiency

only to avoid taking page faults when READing or WRITing a disk sector. The

virtual processor manager executes in the resident environment by construction

(see later). All other type managers can safely operate in the paged

env iromnent.

Now consider the implementation of stacks. The type managers executing

in the core resident environment obviously'require a core resident stack. The

implication of this statement is that any procedure in the paged environment

that calls a procedure in the resident environment must pass its arguments to

the called procedure on the core resident stack. This is a practical
. ' - .

consequence of the information level rule. Since the resident environment

knows only about core segments, it cannot accept arguments that are not in a

core segment. This constraint is enforced by the type checking mechanism,

which will refuse to compile a type manager that passes non-resident arguments

to a resident type manager.

A priori, one resident stack per user process can be used to pile the

pending invocations of all resident type managers in that process. This stack

must be stored in a core segment that is of a size sufficient to hold the

deepest pile of pending invocations that can possibly occur along any

computation path through the resident type managers. NSS embodies a similar

design constraint in that the resident part of the system (traffic control and

page control) must use a special stack that is stored in a core resident

(actually permanently active and non-pageable) segment. In fact, in NSS,

there need not be one such stack for each process that can execute resident

149

code because, by design, only one process at a time can execute in traffic

control and one in page control. In practice, there is one such stack for

each physical processor. Even though only twu processors may be executing

resident code (one in traf.fic control and one in· page cont.rol) at the same

time, every processor needs its own -stack because, while t:wo processors are

executing resident code, all others might b~ wa.i:ting (e.g., on the traffic

control lock) in an id:le loop to start executing that resident code and. while

doing so need to store. the arguments that will be pa·s.sed to the resident code

as soon as it is entered. Thus, we recommend an analogous design for MSS,

where traffic control isto be read as the virtual pr.oc.essorinanager (see

further) and page control is to b-e read as the other resident type managers.

The implementation ·of a stack for the pa:ged enYir&nment· is somewhat more

tricky. Whatever the type of that stack is-9 every argument passed from the

user environment into the paged environment must be stored in·to the stack for

the paged environment. A type ma-nager (e.g., the connected segment manager)

of the paged envirotllllent cannot access an argument stored in a random segmen.t:

because that segment ma.y be of a type defin-ed at a higher level (e.g. known

segment). This is again an information .level problem. But this time, the

user wo passes the arg,umen-t is not_ subject to the cmupile-time type checking

mechanism that the systetn- programs are subj eet· to. Thus, it may in effect

pass an argument stored ·in a random segment • .Consequently, at the user

interface but inside the: paged (type checked} environment, there must ~xist

conversion routines that a~ce·pt user supplied :argumen~s stored in any type of

segment and copy them into the paged stack. The need for such routines was

not felt in the early days of Multics ,and many_ system problems (including

crashes) resulted from, the absence of such rout'ines.

A prio.ri, one would be tempted to impl.ement one,-paged- stack per user

150

process with an active segment having a number of pages (CSL) sufficient to

hold the deepest pos-sible pile of invocations in that process along any

computation path through the paged envir<>nment_. In fact, it is necessary that

the per process stack be a (permanently) active segment. However, this is not

sufficient. The stack under concern is use&,· among other cases, while

handling segment faults. Thus, a process mu&t never take a segment fault on

its paged stack to avoid infinitely recursive segment faults. In other words,

the paged stack must be implemented by a permanently connected segment (that

is itself implemented by a permanently active segment). With the DSG and the

KST, the paged stack of a process is the third and last permanently connected

segment needed in every process. The obvious question to ask now is: why do

we explicitly state that the stack is a permanentl.y connected segment while we

do not explicitly state that the procedures of the known segment manager,

which handles segment faults, are permanently connected? The answer to this

question will become clear in the next paragraphs •. In short, two kinds of

address spaces are defined: per process address spaces and per processor

address spaces. Since all user processes share the same stored procedures to

implement the paged type managers, SDWs for· such procedures may be stored· in

per processor address spaces, which contain only permanently connected SDWs,

as will be seen. Thus, the procedures of all paged ty4>emanagers are de facto

permanently connected. However, the working ~torage of_ the·paged environment

cannot be shared by all user processes like the procedures are. Every process

may be doing its own computation in the paged envir01U11,ent a-t a given time.

Thus, the SDWs for the paged stacks may not be stored. in per processor a,ddress

spaces because a per processor address space is shared by all the processes

that at one time or another get to execute on the corresponding processor. ·

SDWs for paged stacks must therefore bee stored :in per process add·ress spaces,

151

i.e. in what we have called so far DSGs. We explicitly insist· that SDWs for

paged stacks be permanently con~ec.ted because SDWs in user DSGs normally. are

not.

c. Address space dependencies.

This fourth kind of dependency is due to the iillplementa tion of the

address space of a type man.ager. In NSS, the address space is implemented on

a per process basis. The address space of a user process. is defined by a DSG.

Because DSGs are permanently connected segments in MSS;, at least all type

managers below the connected segment manager cannot use a DSG as the

realization of their address space. This is example of a ,sU:uation where the

dependency graph suggests that the NSS: design: is inadequate and another

abstraction (namely core segments) must be used -to implement the address space

that part ·of the virtual memory mechanism, will be executing in.

To achieve a proper design for MSS. we, recommend the:,following, hardware

architecture. Rather than using only one DBR and consequentiy one. DSG while

it executes, a processor should use two DBR.s, DBRO and DBIU, defining

essentially two domains of, execution. Any sepent numbi!r below a fixed

boundary is interpreted, by the hard.ware as an index denoting a SDW in the DSG

denoted by DBRO. The value of the fixed boundary is ,subtracted from any

segment number superior or equal to it and the result .i,s used as an index

denoting a SDW in the DSG denoted by DBRl. The DBRl is· similar to the DBR in

NSS. It denotes a DSG that is a permanently connected: segment and contains

the map of all connected se.gments. It is us.ed to addressall segments that·

may be connected, the paged stack, the KST and the· DSG itself: within the

running process. The DBRO is not a per process DBR but a per processor &BR

that denotes a~ descriptor segment (CDSG) implemented by a core segment.

The CDSG is a repository for the SDWs of all the. active and core segments

152

implementing all system procedures; data·bases and maps, except the paged

stack, the KST and the DSG of every process, iwecisely--becauee there is one· of

each per process and their SDWs cannot be stored in per processor CDSGs. One

CDSG is defined and initialized for each processor. It contains the SDW for

the core stack of the corresponding processor. -The use of a per processor

CDSG eliminates the need to load and unload pro-ces-ses-· in .MSS. Indeed, SDWs

for the core segments implementing the active segment manager and lower le11el

type managers are in the CDSG that is a core resident segment and ne11er needs

to be loaded and unloaded.

d. Interpreter dependencies.

Every type manager of the virtual·mt!mOry mechanism has to depend on an

abstract code interpreter to execute its. procedur.e.s·.. On the other hand,

modules implementing abstract code interpreters (virtual: processor type

managers) must depen.d on some virtual memory type managers· to implement their

maps, programs and address spaces. One must therefore pay attention not to

introduce any dependency loop in the system·by making a type manager P

implementing a abstract code interpreter depend on a type manager M

implementing an abstract information contai.ne~ and at the same time making M

dependent on P to implement its code interpreter.

This dependency loop between the virtual memory and virtual processor

mechanisms is present in most existing systems in one form or another. In

NSS, it is manifested among· other instances by the loop between traffic

control and page control, where page control depends on-traffic control to do

processor multiplexing while traffic control depends on page control to •load

and unload processes.

Solutions are proposed to solve the problem -of_ mutual dependency between

the virtual memory and virtual processor mechanisms both in [Saxena76] and in

153

[Reed76]. The two solutions are very similar in nature. They consist of

interleaving layers of the virtual memory and virtual processor mechanisms.

Reed's solution is interesting because it implicitly uses a type extension

concept very similar to ours to implement abstract code interpreters in two

layers (see figure 4.5). The top layer implements user processes as we have

defined them in the description of NSS. The bottom layer impleI11ent1? virtual

processors. User processes are implemented in terms of virtual processors and

virtual processors are implemented in terms of physical processors {not

represented in figure 4.5 hecause they are implemen.ted in hardware, entirely

below the virtual memory mechanism described by the figure). The virtual

processor-manager multipJ.exes physical processC!rs alllongvir:tual processors.

The user process manager multiplexes v;i.i;tual processors among user processes.

User processes are bound to virtual processors at the request of the

scheduler, which is a piece of the user pi;-oc-ess manager that executes in a

dedicated (permanently allocated) v:irtual processor. A.user process is

unbound from its virtual processor component whenever_ that component "finishes

its current task", Le •. when it goes blo-C~'ld, w,a,iting for a us_e,r cgenerated

event.

The dependency loop between thevirtual memory and virtual processqr

mechanisms is avoided in the following wa,y. ,_ T\le usef _proc:ess manager freely

takes advantage of virtual memory facilities. However, .no virtual memory type

manager depends on it to interpret its code. Virtual memory type managers can

be entered only-as a result of user initiated calls or as a result of taking a

processor e&ception that always leads to either han4ling the
0
exception and

restoring the processor state or aborting the computation aµ.d signall~n!t an

error to the user. Thus, while executing in the virtual J!lemory mechanism~ ,f1

user process may temporarily lose its physical processor subcomponent (e.g.,

154

while waiting for paging I/0). However, it will never loose its virtual

processor component as all computation paths in the-virtual memory mechanism

are finite and ultimately return control to ltser- modules without ever putting

themselves in a situation of waiting for a user generated event. -. In addition,

the user process manager could not accidentally unbind a. user process from its

virtual processor component while the latter executes system code because the

virtual processor manager refuses to deallocate (unbind) any virtual processor

of which the instruction register currently points to' a SDW in .the CDSG,

thereby indicating that it: is executing- syst8D ,code. '!bus, .. v·irtual memory

type managers depend on the virtual processor manager to interpret their code

and not on the user process manager. In turn, the vl.rtual processor manager

depends only on the core segment managcer to implement ttsmaps, progras and

address space, Le. it is entirely core resident. (As explained earlier, the

core segment manager does not depend on -the virtual processor manager to

interpret its code because it is implemented :etitireliy in hardware. Tnus, the

core segment manager depends only on hardwar-e processors, .whi.ch in tul'n do not

depend on anything because they are bottom· level objects.)

With these last dependencies, we have a complete list of the dependencies

in MSS. Figure 4.6 represents the dependency graph of MSS. The line cutting

across the figure separates the paged environment from the resident

environment. Every box represents a type managu. Solid lines represent

component dependencies.· Dashed lines represent map dependencies. Certain map

and all program, address space and interpreter dependencies.are omitted from

the figure to avoid confusion. The dependencies- tha~ are 0111.tted are- trivial

anywy. The graph summarizes compommt d~pendencie.s and soaie no~trivial

dependencies for m·aps.

155

I"""
\J1
Q\

DSM

QCtf

' ',... -, ..,. - _ ~ .._ __ -map --------

' ' '
/

. I m/ map

' I
I

I

' '

CBM

' ' ' ®
interpreter dependencies: every modulei except the CSM, depends on the VPM
address space aependencies: every modu ~. except the CSM, depends on the CSM

Figure 4.6: MSS dependency graph.

UPM

VPM

Solutions to problem areas.

In this last section on MSS~ we will discuss how MSS handles the

situations that caused modularity and structure probl~s in NSS. While doing

so, we will describe the mechanical sequence of operatiOflS for handling all

system events, i.e. page faults, quota faults, OOPV conditions, bound faults

and segment faults.

a. Page fault handling.

In NSS, the page fault hand.ler was ~equired to· simulate ·the addressing

hardware to get at the PTW that :caused a page fault. The page fault handler

could not use directly the absoLute address of the PTW le-ft in the copy of the

processor state at the time of the fault because that PTW might have been

deallocated between the time it-was faulted on and :the" time the page fault

handler could actually process the fault. 4s a resu!'.t, the fault handler in

page control had to depend upon the meaning of SDWs in address space control.

An apparent solution to the problem 1n·MSs would be for the hardware to

signal page faults to the connected segment manager so that it could interpret)

the SDW and then pass the fault down with the absolute address of the faulting

PTW to the page frame.manager. In fact, this does ~ot solve the problem. It

is still possible for the page frame to he deallocated between the time the

SDW is interpreted in the c-0nneeted --segaent manager and the time control is

given to the page frame manager, for instance, if the segment containing the

page frame is deactivated during that titlle window.

Instead, a way is needed to guarantee that a page frame cannot be

deallocated between the time it is faulted on and the time its disk record

component. is copied into a core block. 'lbus, we TecOlllllend that when a

physical processor faults on a PTW, the PTW be locked so as to indicate that

the corresponding page frame cannot be deallocated until the I/0 operation it

is subject to completes.

This solution is adequate but raises one -problem. By setting a lock by

hardware in a PTW, a virtual processor can prevent the page frame from being

deallocated. But it will not prevent other virtual processors executing on

other physical processors from faulting on the page frame. What strategy must

be used in this case? If a virtual processor faults on a PTW that is locked,

it cannot afford to wait in an idle loop for the lock to be reset -because this

lock will be set for the entire duration of the I/0 operation on the page

frame. Thus, if a faulting virtual processor sees a 'lock: set in a PTW, it

must invoke the virtual processor manager to put itself on a waiting list for

the occurrence·of the I/0 completion event cotresponding to the page frame it

faulted on. When the event occurs, the PTW is unlocked and all virtual

processors waiting for the event are be notified. At this point, these

virtual processors should not lock the PTW but should simply- restore the

processor state that existed before the fault they took to retry referencing

the page frame. Chances are high that the page' frame will be in core.; If so

there is no need to lock the PTW. Or the page frame may have been deallocated

between the time it was unlocked and the time the waiting virtual processors

were notified, which is why these virtual processors should not lock it anyway

and must restart the faulting computation.

Another problem is now raised. This is a traffic control problem

examined by Saltzer [Saltzer66] and called the wakeup waiting problem. Assume

a virtual processor A faults on and locks a PTW. Towards the end of the I/0

operation on·the affected page frame, a virtual processor B faults on the PTW

and firtds the lock set. Assume further that the I/0 operation completes then

and is notified to all waiting virtual processors before B-has had a chance to

158

put itself on the waiting list for the event. If so, B will go blocked and

wait for ever for an event that has already occurred. Saltzer has described

the following solution to this problem.

A so called wakeup waiting switch for the I/0 event is associated with B.

The virtual processor manager first notifies all waiting virtual pro~essors of

the I/0 completion. event and then sets the switch of B. On its part, B first

resets its switch and then calls the virtual processor manager to put itself

on the waiting list. The virtual processor manager will do so only if the

wakeup waiting switch of B is still off. If it were_ on, it would mean that

the event B was going to be waiting for has ~ust occurred and it is not

necessary for B to wait any longer.

The question is: how does the virtual processor manager know what virtual

processors (like B) are interested in an I/0 completi~n event it is

signalling? The answer is simpler than it may see~. Since virt~l processors

cannot be preempted while executing system code~ as explained earlier, a

virtual processor handling a page fault either is currently running on a

physical processor or. is already waiting fo.~ some I/0 completion event. Thus,

virtual processors interested in a specific I/0 c.anpletion event and not yet

on the waiting list for it can only be among the virtual processors that are

currently running on a physical processor. Thus, the wakeup wa_~ting problem

for PTW locks in MSS can be solved with two hardware registers in each

physical processor. When a physical processor takes_,a page fault and finds

the ptW locked, it posts the absolute address of the faulting PTW in the first

register and turns off the wakeup waiting switch in th~ other. register,. all in

one atomic operation, to prepare itself to invoke the wait primitive of the

virtual processor manager. On its part, th~ notify. p~imitive of the virtual

processor manager first notifies waiting v.irt1.lal proce~~Fs an<l then

159

broadcasts to all physical processors the identity of the PTW event it just

notified. If this name matches the one in the first reg·iste·r of a physical

processor, that processor turns on its switch in the second register. This

will indicate to the wait primitive of the 'vfrtual processor manager that the

event the virtual processor wanted to wait on has already occurred.

In fact, the lock in a PTW serves a more general purpose. tt means that

some (any) I/0 operation is going on on the [P'fW, as a result of a page fault

or of a decision of the page removal algorithm. The reader can verify for

himself that the operation of the wakeup waiting switch is not- affected by the

more general meaning of the PTW lock. The page removal algorithm operates, as

recommended by Huber {Ihibe.r76], in· a virtual processor that' is dedicated to

executing just that algorithm. The algorithm 'is impli!mehted as 'part of the

page frame manager even though the circular list of core blocks ·cha:t ts the ,

basis of the algorithm is maintained by thr~ading CMAP entri~s together in the

core block manager. The core block manag~r 'act~ as a'subrout'ine to the page

frame manager both for allocating and deallocating core -blocks. ·However, the

driving procedures both for the page fault and the page removal· algorithms are

part of the page frame manager. This explains why the cote block to page·

frame and core block to disk record binding~ that are kept in CM.AP entries

remain uninterpreted at the core block level. They are kept only on behalf of

the page frame manager.

In the implementation of NSS (and MSS by inferertce), the mechanism for

deactivating a segment is triggered only after the sE!gment is disconnected in

all processes. Since a virtual processor needs ·a SDW to get at a PTW, a

virtual processor could never take a page fault on a segment being

deactivated. Thus, it is not necessary that the page frame deallocation

algorithm, which is irivoked to "deactivate"' the page table of a segment, set

160

the PTW locks while it cleans up th_e page table. However, not setting the

locks is assuming something about the segment disconnection algorithm and thus

depending on the cor.rectness of higher type managers. Hence, we recommend
..

setting PTW locks while deallocating a collection of page frames as desirable

for clarity a1though not necessary for proper operation.

b. The quota mechanism.

The manipulation of quota cells in NSS _is a major f:lOurce of problems

because it occurs at page coo.rrol level while quota cells are stored at

segment control level and related by a hierarchy d_efined at directory control

level.

There are two reasons why quota cells are manipulat~d by page control in

NSS. First, quota faults are not disting~i~hed froJD ea&~ faults by the

hardware. Thus, they are passed to the page fault handler in page control.

Second, in response to a quota fault, a disk record must be allocated and made

a component of a page frame. Since this part of quota fault handling occurs

in page control anyway, NSS implements all of quota handling in page control

so that the manipulation of quota cells is protected by the page control lock.

The above reasons are plausible excuses for manipulating quota cells in page

control but they are not sufficient to warrant doing it that way in a

well-organized system.

In MSS, the hardware is modified so that quota faults are distinguished

from page faults. (The hardware is also modified so as to avoid taking a

quota fault when only reading a zero (null) page. A word of zeroes is simply

returned.) Quota faults should not be regarded as page related events since

no page exists when they occur. Quota faults should instead be regarded as

segment related events. Thus, _quota faults do not involve locking a PTW.

They are directed into the known segment manager and appear as an error return

161

from an operation to write into a connected segment. The known segment

manager translates the segment number of the segment to be grown into a UID

and then invokes the segment manager, which will handle the fault. If the

segment to be grown is deactivated by then, the segment manager simply returns

and the reference that caused the quota fault must be retried.

If the segment to be grown is active, ·the segment manager will drive the

operations to allocate the page frame and manipulate the quota cell. However,

the operations themselves are carried out by the page frame manager on one

hand and by a new type manager, called the quota cell manager, on the other

hand (see figure 4.6).

The quota cell manager manages the QCT, which contains one entry per

quota cell. A quota cell is named by the relative pointer (QCTEP) to the

entry that implements it in the QCT. The quota cell manager supports the-CU,

MQ and RU operations. The quota cell manager is designed' to fulfill the lack

of a type manager dediiated to implementing concepts (quota faults and quota

cells) that are logically related but are sc'attered across several modules in

NSS. Under its quiescent state, the quota.infotmatilin'asso:ctated with a

directory is not called a quota· cell and is stored· as uninterpreted bits in

the VTOC eri:try of the· directory. The quota informati.ot'l is copied· into a quota

cell of the quota cell manager onl-y while it might be· used• i.e. while a

segment bel6w the directory is active. Thus. ~he quota cell manager really.

implements the concept of an active quota cell. The segment manager maintains

the UHT to map UIDs· of· aegmen'ts in to corresponding AS-TEfs and (PVTX, VTOCK)

pairs. It- also tt1aintains, irt a similar way', a hash table associated with the

UHT·, which maps UIDs of segments representing, directories into -corresponding

QCTEPs and (PVTX, VTOCX) pairs. · In essence, this second UID hash table m-a.ps

UIDs of quota cells into•passive quota cells and active quota cells.. The

162

activation of cpota cells is done as follows.

When the segment manager is invoked to activate a segment, it must be

given the (UID, PVID, YfOCX) for that se~ment and the list of similar triples

for all superior directories, in order. (We will see soon that it is always

possible to generate this list because the only type manager to ever request

that a segment be activated is the known segment manager and every KST entry

contains the triple for the corresponding segment as ~11 as the segment

number of the KST entry describing the parent of that segment.) After the

segment is activated, the segment manager searches. the Jable associated with

the UHT for the UIDs of all superior directories to find out what superior

quota cells are already active. It activates those that are not, using the

list of (PVID, v.TQCX) pairs. The procedure for deactivating quota cells will

be explained soon.

At this point, the following has been gained over NSS. First, thanks to

a separate quota fault mechanism and the creation of a dedicated quota cell

manager, the actual allocation of. a page frame occurs in the ~ge frame

manager while the manipulation and the storage of (active) quota cells is

under the responsibil.ity of the quota cell •nag.~r. Second., since (active).·

quota cells are stored in the QCl' of the qu~a ,cell manager as opposed to the

AST, segments and directories can be deactiv~te<l unifonaly, without any

consideration of hierarchy at the segment m-anager level. However, three

problems remain.

First, while the segment manager and the passive:segment manager see

quota information, the quota cell manager is ~e$ponsible for .handling quota

cells. Thus, when a request to access. a quota cell is passed to, the segment

manager, the segment manager may not directly reference the quota infonna_tlon.

A strict type extension view says that the segment m~µ&ger e-0ntains the

163

mechanism to activate segments and quota cells but not to manipulate them.

Thus, the segment manager may rtever· directly upda~e quota information. It

must always actival'.e the quota cell first and then ~r,erate on it via lreqtiests

to the quota cell manager. The quota: cetl manager guarantees the :correct

management C)f a quota cell given the- information· in that cell; But the

segment manager is responsible for the irl:tegtity of that -:information~ (To

parallel this situation, the active segment ihjn.ilg'er guarantees the semantics

of the CSL, MSLand CRU·of an active segment while the segm~rit manager is

responsible for the integrity of th()se itema between activations.)

Second, in order to support the·· CU operatioh?l:n gt'ow and" shrink segments,

every segment that is active (susceptible to grow or shrink) must now be bound

to the quota cell of its pareht direc·tory. ·· E~ety tm1' entry- {1) could contain

the QCTEP of its parertt directory quota cell. On a quota fault, the segment1

manager would then extract this QCTEP from' the UHT entry srid present it to the

quota cell manager to perfonn the CU operation.

Finally, there is the problem of the quota cell hierarchy. This

hierarchy is fundamental to the CU operation and it must be mied to decide how

quota cells may be deact1.,,ated. Indeed, ·dtrectot:·ies and segmen-ts can· be

deactivated uniformly only because quota cells have b~en removed' from the AST.

Howe'7er, the concept· of' a hierarchy must now exist· among quota cells· in the·

QCT to allow a CU operation to walk up the' hierarchy-of quota celis, updating

alr celi.s- up to and including the ·quota ee-11 of the lowest - quota directory,

and to prevent quota cells from being deActivated· as long as·any segment that

is lower in the hierarchy is active. Thus, 'quota· cells· iri the QCT must be

(1) This is true only for UHT entries corresponding to segments that are
charged to a quota· cell. Directory segments: and ev-en' some' Wh!r: aegiaents are
never charged to any quota cell. The UHT entries for such segments point to
no quota-cell. -

164 .

threaded to their parent j~st as AST-entfi.&$ ~re in- NSS and ~hey must co~~a.ia

a count of inf~rior active seg111~n_ts. 'fpis de,{~es 8,,:, ht~~a:rchy"' pf,· quota cells.

The. quota cell de~.tivation algorit1il11t may_,be par;t o,~, tlle:.segment

deactivation alggrithm. Every. ti~ a- segm~t,i.t Js s,icc~ssfu~ly de~ctiv~ted_. the

segment manager calls the quota cell,. m.a~uJger, to .ti~d P\l~ whether. t-e quota.

cell associated w:l.t:h the parent,cU..rfU;tpry qf fb, 4~~e.U:"',.ted segment bas any

other ~gment char::ged J:o. _it curren~ly. aJ:til7e... ,If not.t the. ~,sm.~nt manager

requests the deact!'vat;iJ>n of the ._quo.ta_ cell ~d re~atedly calls the quota

cell manager to walk up", the hier;µ'cby ot .cp.t,Qia c~lls· ',Ult:il a, cell is foun4 ..

that cannot be. deactivated becaus~L i~ ha(:t a -•~g""at cparged ,=o it currently

active.

While this design is plausible, it has sever~ clisa~vaatages. First, the

ability_ to deactivate segm,ents and. di.J'ec~~rws unifonily iii an aq.vaatage but

the price we have paid for thi-s advantage is d.ear. A 1:lst of. 011D, PY:{.D,

VTOCX) triples must be given to a«;.tivate any_sepent so.that the hierarchy of

quota cells above tha,t segment can be rec~tructed. ~cond, the sheer. idea

of ma.intaining a hierarchy of quota ce1,ls: i.s a source of,.complexity for the

quota cell 'laanager. Of course-, the hierarchy is n~essa~J-:~O_!ilU{)port the MQ

operation but it would app~ar redundant to keep a ~uplicate ci;,py of that

hier~rchy in the quota cell mana~er wbile it also exis~s. (in a less accessible

form) in the directory manager. Would it. not be possible to have a quota cell

manager that. can move quota between- any two quota cell.J3 -atid l~t the direetory

manager constrain w~ch two quota cells. can. be. subject to a specific MQ

operation? The following paragraphs explain tiow this j.s possible.

The hierarchy of quota cells is kept in the quota cell manager so that

when a CfJ operation is performed, the U field. of th~_ch~in of
0
affected quqta

cells may be updated. However, the CU operation updates the U in th~,cpain.of.

165

indirect quota cells not for itself but to support the MQ operation. When a

directory changes status from quota to non--quota or vice-"lf'ersa as· a result of

a MQ operation, the U of its associated quota cell has to be added

to/subtracted from the U of the quota cell of its parent. If the CU operation

did not maintain the U for all quota cells, changing the quota status of a

directory on a MQ operation would require computing its U at the time of the

operation. This means adding the CRU of all t:he segmenfs in the subtree below

the affected directory, which may be a very expensive task. In fact, it is an

impossible task because it would require "freezing11 the subtree and the CRU of

every segment in the subtree so that the computation would 'be consistent and

look atomic. "Freezing" would require the use of a lock keeping every process

temporarily out of both the segment manager and the directory manager since

the computation requires adding quantities that are defined at the segment

level but are related by a hierarchy ~efined at the d1rectory level. Such a

lock would violate modularity and is thus ruled ouL

Based on the observation that all quota cell threads and the associated

complexity in the quota cell manager result from the need to support the MQ

operation, we suggest a slight change to the definition·of the MQ operation

that will eliminate these problems. When the directory manager is invoked by

a user to move quota between a parent directory P and one of its sons S, it

passes the call down through· the segment manager to the quota cell manager and

tells the quota cell manager whether S containt, arty entry. If as a result of·

the MQ operation defined in NSS, s would not change quota status (i.e. from

quota directory to non-quota or vice-vetsa)~ the new MQ is defirted to perform

like the original one. But if S would change quota status according to the

original functionality of MQ, the new MQ will leC·the change occur as expected

only if-the directory manager indicated that Sis empty (contains no entry).

166

If Sis not empty, the new MQ operation is defined to abort and return an

error code indicating that the move is illegal. Thu~, the new MQ operation is

identical to the original one except for the fact that one may not move any

quota to a non-quota directory or remove all quota from a quota directory if

that directory contains one or more entries. This modification has two

consequences.

First, when the quota cell manager moves quota down from P to S, which is

assumed empty and non-quota, it need not read the U of S to subtract it from

the U of P because the U of Sis guaranteed to be null since Sis empty. In

other words, it is not necessary to ever maiptain the quota cell of a

non-quota directory because the only useful item it used to contain was the U

field and the new MQ opera.tiol) never looks at it anyway.

Second, in addition to not maintaining the quo:t~ cell of a non-quota

directory, it is not necessary to thread ,quota_cells together. Since a quota

directory can become a non-quota directory only if it is empty, it is

guaranteed to not change status as long as there is any segment charged to it.

Thus, a segment can be charged directly to the ~ quota cell during its

whole life because the e~istence of the segJDent guarantees that all
. - --

directories above it are not empty and therefore cannot change status.

In consequence, when a directory entry is created, it should be tagged

with an integer N indicating bow many levels higher. in the file system

hierarchy the lowest quota directory is. This.integer is incremented by one

at each level of the hierarchy unless a new quota directory is created, in

which case the. integer is reset to o. When. a segment is initiated, the KST

entry should be tagged with the integer N of the corresponding directory

entry. Finally, when the segment is activated, the known segment manager,

which always requests the activation, as _will be seen, need not construct a

167-

whole list of (UID, PVID, VTOCX) triples but need only retrieve the triple for

the lowest quota directory above the segment being activated. Retrieving this

triple·is easy since every KST entry is bound by segment number to the l{ST

entry for· the parent directory of the segment i·t describes, the KST entry of

the segment to be activated contains the integer N telling ho11 many KST

entries "above" the current one must be followed to reach the loliest quota

directory:, and the KST entry for that quota directory cotttains the desired

triple, as will be seen soon •.. To control the deactivation of quota cells, it

is sufficient to have a count in each quota cell of the number o:f segments

charged to it that are currently active.

While the functionality change we recommend fort~ MQ operation may

sound drastic, experience with Multics shows·that it would not b'e in practice.

A data collection experiment on Multics has shown that almost' all quota

directories are so-called project directories or· usf!r directories. (Each'

project on Multics has' its own directory anti ~ach user has its own directory

that is a son of the directory of the 1>roject the user 1.s working on.) Such

directories are quota directories from their creation· to their destruction,

i.e. since a tirae·when they are obviously,empty to a time when they'.have to be

emptied· anyway. Only on the order of a dozen directorie•s were made quota

directories by individual users. · For such users,- it is still possible to

simulate NSS with MSS if they want to move qu6ta to a non-empty non-quota

directory or to remove all quota from a non-empty quotrtl directory. They tan

create an empty directory named X, move quota- to ,it, thQt1,..move the subtree

below the original direc.tory into X, delete th-:e a,ri.ginal directory and rename

X after the original directory. Th.is·is an involved operation that requires

extra quota for the transition state with two directories but, it should

satisfy the need of the few sophisticated users ·wno would ever want to use it.

As we have designed it, the MSS quota mechanism is perfectly clear,

structured and modular. The policy for the_MQ and RU operations, which are

based on the existence of a hierarchy and are conditional on certain directory

attributes, is defined at the directory level. However, the directory manager

does not know anything about the storage and the manipulation of quota cells.

This mechanism is implemented by the quota cell manager, which in turn ignores

everything about the hierarchy. All the quota cell manager needs is a count 9

in each quota cell, of how many inferior seglllents charged- to it are active.

This count is updated by the segment manager every time a segment is activated

or deactivated. The page frame manager is not ,at all involved in the

management of quota cells. It only allocates pa.ge frames upon requests

originating from the segment manager, after the quo_ta cell manager has

authorized such allocation.

c. OOPV conditions and access recalculatiQ-n.

OOPV conditions and access recalculatiQn cause modularity and structure

violations in NSS because th_ey require accessing lnfotmation that resides at

directory control level ((PVID, VTOCX) and access con~rol list) but they are

handled at lower levels (segment control and address space control).

These two problems admit of similar solutiO'PS in MSS. It is tempting to

say that OOPV conditions and segment faults should be reflected as high as the

directory manager since that is where the necessary information is stored to

handle those events. However, OOPV conditions are events detected on only a

very small subset of quota faults. Since .the occurrence of an OOPV condition

can be detected only after some processing has been done, the proposed design

would imply that all quota faults be reflected as high as the directory

manager level. This design is not plausible because quota faults are error

returns from operations on segments, and have nothing to do with directories.

169

As to segment faults, it would be inappropriate to reflect them to the

directory manager. Segment faults are faults involving the address space of a

process and not the whole file system. Thus,. segmen~ faults as well as quota

faults should be reflected no higher than the known segment manager.

In NSS, the address space control moduJe uses the (parent segment number,

UID) pair in the KST entry of a faulting segment to update t~e (PVID, VTOCX)

of the segment on an OOPV condition and to get the (PVID, VTOCX) and the

access control list on a segment fault. Such a design, is ruled out in MSS

since we declared earlier that the lcnQ~ segment manager may never interpret

the binding between a KST entry and a dir~ctory .•ntry to access or operate on

the directory. This would violate the .part.tally ordered structur1:a of the

dependency graph.

In MSS, not only the UID and aecess inf~ma~ion but also the (PVID,

VTOCX) of a segment are stored in its KST e,n,try. Thus, as long. as . th~se

attributes do no.t change~ aegment ,fault (a11d bound fault) hanc:lling is more

efficient than in NSS as it does not require getting at the directory entry
0
at

all for either the (PVID, VTOCX) or the a~cess control list, Activation and

connection of a segment can alway$ be requested directly by the known segment

manager without requiring accessing directo.ries.

Access must be recalculated in NSS when;.~he-, DTEM in the directory entry

is more recent than the DTFJ1 in the KST entry. In, MSS,. the comparison between

two such quantiti.es .cannot be mad.e by the.Jcnown ,segment manager since it

cannot read the directory or invoke the dµectory m~nager to read it. Thus,

instead of using 0'1:~s to decide whether ace-e5;~ mµst be.xecalcul;a.ted, we .

prQpose using a dedicated attribute, called dat&-ti~.acci,s$,,-;tnQdi!if;d _(D'I'.AM),

that is stored in the VTOC entry of every aegment b_elqw the ~wn segment_ .

manager level rather than in the directory ~n_try above the _known s~gme,nt

170

manager level. Every time the access control list of a segment is modified,

the DTEM and the DTAM must be modified. On a-segment fault, the known segment

manager invokes the connected segment·manager through the segment manager to

reconnect the faulting segment. It passes to the segment manager the UID, the

(PVID, VTOCX), the access information and the DTAM that are stored in the KST

entry. If that DTAM happens to be less recent than the DTAM in the VTOC

entry, indicating that the access control list has changed, the segment

manager simply returns an access fault code to the known segment manager. If

the UID that is found in the VTOC entry denoted by the ~PVID, VTOGX) is not

the UID that was given by the known segment manager to the segment manager,

indicating that the segment with the given UID has been moved, the segment

manager returns a move fault code to the segment manager. In ei-ther case,

when the known segment manager rec.eives a fault code., i·t deduces that the KST

entry is no more up to date. It thus returns to the 411descent state and

notifies the directory manager that the KST entry needs to be updated if it

cares to proceed.

One problem remains to be solved. Changing an access control list is the

result of a user call to the directory manager. The directory manager is in a

position to request updating the DTAM in the VTOC· entry and the access control

list in the directory entry without -causing violations· of organization.

Howe'ler, changing a (PVID, VTOCX) is the result of an OOPV condition, which is

detected by the disk record manager when it cannot find a disk record to

satisfy a quota fault. Thus, the disk record manager must return an OOPV code

to the page frame manager, the page frame manager r-eturns the code to the'

active segment manager, the ac t1'te segment manager ·"t<> the segment manager and

the segment manager to the known segment manager that originally inter~epted

the quota fault. Unfortunately, the known segment manager is not in a

171

position to move the affected segment, much' less to update the (PVID, VTOCX)

in the directory entry. Our design specifies tha'.t the known. segment manager

must again return to a quiescent state and notify the directory manager to let

the move happen and the directory be updated.

The MSS answer to both access recalculation and OOPV handling is based on

the comparison of DTAMs or UIDs in KST and VTOC entries and on notifications

from the known segment manager to the directory manager. The known segment

manager transfers to the directory manager en quota faults it cannot handle

because of OOPV conditions and on segment faults it cannot handle because of

an out of date KST entry. In both cases, when it receives control, the

directory manager can move the segment or update the.KST entry as appropriate

by invoking respectively the segment manager or the known segment manager with

information it keeps. After doin-g so, it can invoke the known segment manager

to retry processing the quota/segment fa:ult it was handling and restore the

processor state that existed before the fault. Notke that the known segment

manager does not depend on the directory manager becaus·e it cannot be hurt if

the directory manager fails to call it to finish up its task. The known

segment manager only performs a service for the directory manager. It

notifies OOPV condittons and out-of-date KST entries and, is willing to support

quota and segment fault if the directo-ry manager ~ares to invoke it for that

purpose. The known segment manager is not dependent on the directory manager

any more than the hardware notifying quota and ~segment faults is dependent on

the known segment manager.

d. Segment deactivation.

So far, we have e~amined how dependency stucture violations that existed

in NSS were avoided in MSS. All violations of modularity that existed in NSS,

are fixed in MSS in the sense that every module in MSS manages its own data ·

172

bases. However, the radical decision not to share data -bases may have an

impact on the de$ign in certain ca~es. It:does in the case of the AST. In

NSS, segment control and page control share access to the AST. For every

segment in the AST, page control maintains a r1,m.ning total of the number of

pag~s in core, a "file-modified" switch and a "fUe-map-m~ified" switch that

are used to deactivate segments. Such item$ cannot be maintained by the page

frame manager in MSS because it is totally unaware. of the grouping of pages

into segments. This is indicated by our earlier deqlaration that there is no

binding from a PTW to the segment that contains it.

In MSS, the segment deactivation algorithm is executed as part of the

segment manager but in a dedicated virtual processor that runs in parallel to

virtual processors implementing user processes. Thus, in a way similar to the

page removal activity, the segment· deactiva-tion .activity is a task that is

performed "on the side" and. is .asynchronous with the ,~tivity of user

processes. The segment deactivation algorithm ~onsists of seEpJentially

inspecting all active sepents that are compo-nenta of. segmen.ts to find. those

that have been used the least recently. This is a ao~t of LR.U algorithm for

segments. In order to record the identity of all ac-tive ~gments that are

components of segments, the act;Lve segment manager thre~ds them together in a

circular list on behalf of the segment manager as the core block 111,anager

threads together the core blocks. on behalf of the page frame manag_er. Thus,

the segment manager will never accidentally deactivate an. a~tive segment that

is not a component of a segment (i.e., an active segment used to store the

maps, procedures, or working storage of some type manager) bec~use it simply.

does n-ot have names for them and,-they are ·not threaded ;in the list of

candidates for deactivation. The selection and dea~tivation of a segment are

perfonned as follows .•

173

First, consider the problem of evaluating the usage of a segment, which

was possible in NSS thanks to the count of in-core pages maintained by page

control for each segment. MSS answer to this problem is based on the

observation that it is desirable that the paging activity be heavier than the

segment activation activity, i.e. it is desirable that there always be many

more AST entries than there are core blocks. Otherwise, deactivating a

segment would often require throwing out of core several pages, which makes

deactivation more expensive. Page removal would be driven mainly by segment

deactivation and not so much by the page removal algorithm. The hypothesis

that there should be many more AST entries than there are core blocks in a

system is verified for all existing Multics installations. Under, this

hypothesis, there will always be at least one segment that has no page in

core. Thus, the segment deactivation algorithm that we propose for MSS, which

looks for a segment with no page in core, performs in practice like the NSS

segment deactivation algorithm, which looks for the segment with the least

number of pages in core. The advantage of the algorithm we propose for MSS is

that it does not require keeping a running total of in-core pages for each

segment. Instead, to determine if a segment has any page in core, the page

frame manager can be invoked with the name of the first page frame (PTA) and a

number of page frames (CSL). Determining if any of these page frames is in

core is extremely fast as it only requires "ORing" a collection of sequential

PTWs together and checking if the result of the "OR" operation has the in-core

flag on. To find a segment that has no page in core, the segment deactivation

algorithm must repeatedly invoke the page frame manager until it finds a

collection of page frames of which none is in core. Of course, the "ORing"

operation may still be somewhat less efficient than directly looking up a

pages-in-core count. However, experience with Multics indicates that the

174

average CSL of a segment is between one and two pages. Thus, only one or two

PTWs must. be looked at on the average.

Now consider the problem-of d.eactivatb1g a. sel.ecte4 sepent. In MSS,

like in NSS, seg~ent deactivation is the tilJl,e to update the DTM, BTU and file

map of a segment in its VTOC entry if necessary._ DTU is always updated

(because the segment woµld not have been activated if, it were not to be_ used).

The DTM is upd~ted only if the segment -..as written, in-to. In NSS, this

situation was detected by looking at the "file-modified" switch kept by page

control in the AST entry. For the purpose of detecting this situation in MSS,

each PTW contains not one but two "JD<>dified" bits. They .are both set by

hardware. When the page removal algorit}un copies_ out a page that has b~en

modified, it looks at and resets only one bit,:. The o.ther serves as a -reminder

to tell the segment manager at segment deaetivatioJ1 Ume that the segment

containing that PTW was modified. In NSS, the file map of the segment must be

updated in its VTOC entry if the "file-map-1').pci;j.fieqlf-~itch is on in the AST.

In MSS, there c.an be no such switch. Thus, the segment manager proceeds as

follows. The file map of a segment must be updated if die segment has grown

or if it has shrunk while it was active. A segment grows as the result of a

quota fault. Since the segment manager is i-'volved. in µandling qoota faults,

every time it handles a quota fault on soae segnaent, it can record that fact

in the UUT.entry for the segment to remind itself of later updating the file

map when it deactivates the segment. A s,epent shrink,& ~n the page frame

manager decides to throw out one of its pages and discc;>vers that the page has

become null while it was in core, in whien case tbe page frame manager

requests the deallocation of the home disk record of the page and zerc:>es out

the disk address field of its PTW. When the time comes to deactivat-e a

segment, the page frames of that segaent- that< have- -beeoute null during the

175

latest activity period are recognized to the fact tha.t their PTW contains a

null disk address but has the second "modified11 bit on. Thus~ when the page

frame manager is invoked to deallocate the collection of page frames of a

segment being deactivated, it returns the number of the highest page frame

that is notcnull and the number of page frames that have become null over the

latest activity period. The former number becomes the new CSL of the segment.

If the latter number is not zero, it is subtracted from the CRU of the segment

and the U field of the quota cell to which the segment is charged. The file

map is then updated in the VTOC entry. This overwrites the address of any

disk record that was deallocated by the page frame manager, thereby

guaranteeing horizontal protection of these disk records.

5. Structural patterns.

In producing the design of MSS, we have come across three interesting

structural patterns that appear to be related to the nature of certain

problems they solve. The objective of the present section is to review the

nature of these three patterns and to discuss the problems they solve.

Software caches.

The basic pattern is the following.

176

On several occasions, two kinds of data abstractions are defined to contain

the same sort of information. For one of them, called- the slow container;

only two operations are defined. They are READ and WI.ITE, of. which :,the

purpose is obviously to extract information: frOlll or- to: pour, down, iJ1fomation

into·a slow container. Many opera-tions ••Y be defined on·the.other, called

the cache container. A third abstract·ion is- defined on top of b~th, ·of· which

the purpose is to move information from the· slow· container to · the cache

container and vice-versa to allow operating on. that information while it

resides in the cache container. The top abstraction may be viewed as a

functional abstraction if it impl~ments oBl.y t:he·,move&ent of: information

between the two lower types of containers. On the oth~r hand, it may be

viewed as a data abstraction (as we did in MSS) if it supports for the top

level information containers all the operations that are supported for the

cache information containers and implements them by moving the information to

, '
be operated on from a slow container to a cache container and then invoking

the operations on the cache container, thereby making the encaching/decaching

function transparent to the user.

This basic pattern manifests itself in MSS with disk records (slow), core

blocks (cache) and page frames (top), with passive segments (slow), active

segments (cache) and segments (top). It is also found with passive segments

(slow), quota cells (cache) and aegments (top) from the point of view of quota

cells. In fact, we could have/implemented the concepts of a passive quota

cell, an active quota cell and a quota cell in.dependently from segments, which

would have isolated rlle quota cell cache pattern h;om the-segment cache

pattern totally. Yet, we dee ided not to do so beqaus-e ::th~ ~slow abstractions

{passive segments· and passive quota cells) are very siailat': as far as their

implementation and maintenance are concerned, and the top abstractions

177

(segment and quota cell) are intimately related by the synchrony of their

activations and deactivations. Separating the abstractions would have

increased the complexity of the organization of the system while not reducing

the size of the passive segment manager or the segment manager substantially.

Thus, we estimated that it would be better to merge the abstractions at those

levels.

On occasions, the management of the slow container~ requires so little

data and is so simple that slow containers need not be managed explicitly by

their own type manager. The concept -0f a slow container is collapsed into

that of the top abstraction. The following dependency graph results.

I',,,.--·- ✓

I \
I \
\ I
\ I
' / __ ,,,,

,I'
,I'

,I'
,I'

/

An example of this pattern is the configured volume manager (cache) and the

physical volume manager (top and siow) case where a demounted physical volume

is such a trivial abstraction that i. t is merged with the physical volume

abstraction, i.e. all DT entries are .kept together, whether they correspond to

mo\lllted physical volumes or not. Another example of ~:UCh. collapsing can be

found below.

The .s,oftware cache pattern is not limited to the vir.tual memOFY mechanism

dependency structure. It also shows up in the virtual proce~sor mechanism

dependency structure, as noted in [Reed76]. Here, the pattern involves

178-

abstract code interpreters instead of abstract information containers. The

virtual processor structure is in fact a triple repetition with collapsing of

the software cache pattern.

/
' / --..... /

1
/virtual'~/

I l. processor/
\ I
'- states /
'- -✓

user

,,,.--......... /"
/ physical~

I . \
I processor,
\ I
,scates.,,~ · , ___ ___

/

.,.
/

/

Physical processors are high speed code interpreter&. Physical processor
,~

states are loaded into real processors when possible. 'Ibis represents an

abstraction called a virtual processor. Virtual processors are capable of

interpreting virtual processor states. 'lb.us, virtual processor states are

loaded into virtual processors as these are available, thereby implementing a

user process abstraction. In fact, the management of the user process and

virtual processor state abstracdons is so· simple that these abstractions are

collapsed into the user process concept in MSS.

Interestingly, one notices that the "slow'' type manager tends to depend

on the "cache" type manager in a software cache pattern. This is because it

takes advantage of the· software cache·. abstraction to· iltplement · its own

programs, maps or interpreters. For instance, the passive aegment manager

depends on the active segment manager to implement its ptograms and the user

179

process manager depends on the virtual processor manager to interpret its

code.

The existence of the software. cache pa~t_ern is, an i-ndependent

confirmation of the results observed by Parrias [l'arnas76} who :Iloted that a

series of functions is often cepeated at two lev~ls within a -Etystem in such a.

way that the higher oc.currence has more _abs,trac:t resourc:e.s available to it but

the lower occurrence contains functions th~t are more, effic.ient and are used

more frequently ..

Merging hierarchies.

The second structural pattern that gover~a ~tie Ol'S@:l.zation of_several

modules of MSS is the merging hierarchies pattern._ One can· distinguish two

hier~rchies of abstractions in MSS: physical resources. ,and logical resources.

The physical resources hierarchy is composed of J,.pgic11l .yolumes, physical

volumes, ~9nfigured volu~es and disk records~ A ~ogic•i volllflle is a

collection of physical volumes; a physical,volume is the top abstraction of a

cache pattern of which the cache abstraction is a configured volume; and a

configured volume is a set of disk records. The logical resources hierarchy

is composed of directories, segments, passive segments and disk records. A

directory describes a collection of segments; .~ segment i-e the top

abstraction of a cache pattern of which the slow.abstraction is a passive

segment; and a passive segment is a set of disk records. These hierarchies

merge in the sense that they share, at the bottom level, the disk records,

which can be viewed either .as physical resources Cilr as logical resources.

The tnteresting fact about these merging hiera,rchJes is that .they are not

unrelated. As might be expe(?ted in alm~st any sys,tem.,. th_er.e exi.sts a policy

for grouping logical information containers into physical infomation

containers. Logical resources are grouped in a way dictated by physical_

180

resources. In MSS, all the disk records of one segment must reside on the

same physical volume and all the segments in one directory must reside in the

same logical volume. One might suspect, as we did tmtii we· saw the final

design of MSS, that two situations would result from ~he tight coupling of the

hierarchies. First, directories and segments would be composed of (dependent

on) logical volumes and physical volumes sinc·e these physical· containers

dictate the grouping of those logical containers. (This would not be

outrageous but disappointing since physical containers conceptually contain

several logical containers rather than the other way around.) Second, the

coupling between the two hierarchies m.igh1: ln fact be: so tight that it would

generate some unavoidable dependency l'OOps.

It is interesting to see that directories-and segments are not components

of voltttnes and it is satisfying to observe that there are no upward

dependencies in MSS. This design was achieved by the simultaneous use of UIDs

and of tags, as we called the LVIDs, PVIDs and PffXs earlier. 1be tags serve

as a means to retrieve and associate containers while· tlie UIDs serve for,

naming them and ultimately validating their identity. · Tags are viewed as mere

bit strings on which to associate objects. They are not used for what they

denote but only for what they are. If they get mixed up by rheir managers,

the integrity of information will not be hurt because ft is protected' tiy the

UIDs. In other words the directory manager, the segment manager and the

passive segment manager are not dependent on the logic:al and physical volume

manager because the latter can never cause the fbmer ·to operate in a way

different from that stated in their formal specifications. While these

specifications do not guarantee that a piece of ·,1rifomation cart always be

accessed, they ·do guarantee that if it can be acc~ssed; its integrity is

unaltered.

181

Notifications.

The last interesting pattern that is found in MSS is trivial but very

useful. It consists of a low level module notifying a higher level module and

abandoning control without making itself dependent on the higher level module.

This pattern is of course very frequent in any processor in the form of

hardware processor exceptions. A processor exception is a notification from

the bottom level code. interpreter to some higher level type manager indicating

that interpretation cannot p.roceed becaus~ SOlJle elem,ent necess~ry to proceed

is not accessible to the code interpreter. If executi~g a hardware

instruction is regarded, as it should be, as i~voking an 9peration of the

bottom level c.ode interpreter., a processor exception may be viewed as an error

return from an operation that could not be performed.

The pattern is also used in software in MSS to notify OOPV conditions and

out-of-diite KST entries. In either case, the ,known seg~ent manager notifies

the directory, manager that it canrot proceed with what it is doing. In the

OOPV case. the hardware first notifies the known segment manager that it

cannot write into some page of some segment becaw~e the page does not exist.

This is an indication that a reference to a connected segm~nt could not be

interpreted •. Tile kno~ segment manag~r knows how to cause changes in the
' • <' < ,. • '

connected segment that will make the reference succeed. In a few cases

though, it is told thi:lt the connected Elegment cannot be grown for lack of

physical space. This implies that the segment should be moved and hence that

the directory entry must be updated. Since the known segment manager does not

know mat directories are, it translates the original qu9ta fault on a

co.nnec ted seglllen,t into a move fault on a known ~gment, which the directory

manager intercepts and handles appropriately. The same sort of reasoning can

be proposed for the case of access recalculation. The known segment manager

182

can handle segment faults on connected segments for which access has not

changed. But it cannot handle other segment faults and therefore maps them

into access faults on known segments that the directory manager intercepts and

handles.

6. Conclusion.

At this stage, it is probably unnecessary to review the modularity and

the structure of MSS. It is clear from the preceding sections that none of

the data bases are shared and that the dependency structure contains no

directed loop. It is also- clear that every type manager is substantially

simpler and smaller than the modules defined in NSS. 'ttle purpose of this

concluding section is to discuss a few consequences of having used type

extension to organize MSS.

Performance.

The efficiency aspects of Mss deserve some comments. It is impossible to

rate the efficiency on an absolute -scale as· we hav'e rro unit of efficiency. It

is even inappropriate to dare evaluate the efficiency of MSS versus that of

NSS. MSS has not been implemented. Because it is so similar to NSS, we are

convinced that MSS is a logically plausible system but it would be ambitious

to make any firm statement about its performance versus that of NSS. Not only

is it difficult to distinguish in MSS the areas that might be more or less

efficient than their equivalent in NSS but· it is impo·ssible to predict the

impact of MSS on the performance of the whole operating system. Regardless of

the particular strong or weak points in the performance of MSS itself, certain

design features that are individually more efficient may cause bottle necks in

the overall system because their logical conception causes them to be executed

more frequently. Conversely, certain functions that might be individually

183

less efficient in MSS may in fact not have a negative impact on the overall

design because they are performed less often than in NSS.

However, we would like to risk two comments on the performance of MSS.

First, we believe that it would be comparable to that of NSS. To justify

this, we observe several facts. The overall structure of MSS can be mapped

into the overall structure of NSS so that the higher level type managers of

MSS correspond to the higher level modules of NSS. MSS maintains the same

data bases as NSS, except for the fact that the AST, the QCT and the PFT are .
separated in MSS. Those MSS data bases that have an equivalent in NSS fulfill

the same function as that equivalent except for a few instances (e.g., the

DTEM in a directory entry is no longer used for access recalculation, and the

number of in-core pages is no longer kept for every active segment). The

handling of certain situations in MSS is slower than in NSS (e.g., OOPV

conditions and access recalculations) because more computation goes on before

they are detected. On the other hand, those situations are rare and the

handling of the corresponding situations in NSS (page fault and segment fault)

is more efficient because it is assumed a priori that the rare situations do

not occur normally. (Page faults do not require sorting out quota faults and

OOPV conditions and segment faults do not require fetching the (PVID, VTOCX)

from the directory entry on every occurrence.) In addition, the handling of

the quota problem in MSS has released the constraint that all the directories

above an active segment or directory must be active. This represents a

non-negligible saving of space in the AST, which is bound to be translated

into an improvement in the performance of the system (less paging activity if

the core block pool is increased or less AST activity if the original AST size

is preserved.) The point we are driving at is that the structure and the

modularity are primarily -- though not exclusively -- abstract views of the

184

design. In essence, the resulting implementation is very close -- though not

identical -- to that of NSS. Therefore, we suspect that the performances of

MSS and NSS should be in the same vicinity.

Second, readers might object that the performance of MSS may suffer from

its modularity. Since data bases are never shared, a module can find out

about some information residing in the data bases of some other module only by

asking the other module about it. It cannot directly reference the data base.

Calling the other module would of course be less efficient than directly ..
referencing the data base. In reality, we do not believe that modularity at

the level of the language used to code the system can. affect performance at

the level of the machine language. Indeed, the type checking compiler may and

should include macro expansion and global optimization features. Thus, it is

possible to have strict modules at the level of the coding language, which is

all that counts for understanding, maintaining and verifying the system. And

at the same time, the compiler may compile a module by substituting code

in-line. The resulting MSS object code would no longer be a strict module,

but this does not matter, and its performance could be as good as the

equivalent code in NSS.

Modules as data abstractions.

The nature of all the modules in MSS deserves one comment. All modules

happen to stand for data abstractions (type managers) only because we have

strictly respected the type extension view at all times and have regarded

evety concept from an object based point of view. However, the type extension

technique does not intrinsically rule out functional abstractions. We are

convinced that there may exist systems for which a certain aspect cannot be

properly designed if it is viewed from a data abstraction point of view.

185

Horizontal protection of internal objects.

In chapter II, we made the point that the horizontal protection of

internal type objects, i.e. the objects implemented by the virtual memory

mechanism below the base level, was not guaranteed by their type manager.

Instead, assertions must be verified about the modules using the internal type

objects to show that they never use the uid of a deallocated/deleted object.

We suggested then that, while the task of producing the assertions might seem

hard, it was not in praftice. In most cases, only one module ever sees the

uid of an object provided by some type manager. Thus, assertions can easily

be imposed on that module to guarantee that it destroys all copies of the uid

of an object it releases. One can verify in this way the protection of all

internal types except disk records and page frames, which are used by several

modules in the sense that their uids may at times be seen by several modules.

For the latter internal types, we suggested in chapter II that it nonetheless

would be sufficient, in general, to produce assertions on only one module

because, usually, only one module has caused the propagation of copies of the

uids through several modules, is aware of the distribution of the uids and can

cause their destruction. This is indeed the case of disk records and page

frames. Disk records are shared by page frames and passive segments. The

segment manager controls the propagation of their uids. Page frames are

shared by active segments and connected segments. The segment manager also

controls the propagation of their uids.

Conclusion.

This chapter has demonstrated the applicability of type extension as a

technique for organizing the virtual memory mechanism of a real general

purpose time-sharing system. In a first section of the chapter, we have

presented the functionality of the mechanism as the user sees it. In a second

186

section, we have described the implementation of the mechanism as it exist in

reality. We have pointed out where and why modularity and structure were

violated in this real implementation. In a third section, we have proposed a

new design based on type extension that preserves the original functionality

of the mechanism. We have briefly characterized each module of the mechanism

and we have systematically inspected the structure of the mechanism to

conclude that the design was strictly modular and partially ordered by the

dependency relation. We have then explained how the·organization problems

encountered in the real implementation of the mechanism are eliminated in the

proposed design. In a fourth section, we have discussed three structural

patterns that seem to be fundamental in the design of a well-organized virtual

memory mechanism for a general purpose time-sharing system. The software

cache pattern appears every time a scarce resource is multiplexed among more

abundant abstractions. The merging hierarchies pattern appears where the

organization of logical containers is governed by the organization of physical

containers. The notification pattern appears every time a module notifies an

event upward to implement an error return from an operation that was,

sometimes implicitly, invoked.

187

V. Conclusion.

1. Summary.

This thesis has presented a technique for organizing the virtual memory

mechanism of a computing utility. The technique, is basecl on the concept of

type extension. The virtual memory mechani•nvof a· sy4tem. ia•regarded as a· Bet

of type managers .supporting abstract information containers. Tltese abstract

containers are implemen.ted in terms of more, primd.tive, containers such as core

blocks and disk 'records. Strictly, ap•plied to -a virtual memory mechanism, the

formalism of .type extension helps organize the design of the mechanism into a

structured set of modules. The,moduJzes,are·che:twe dtanagers for the abstract

containers utilized and supported by the virtual memory meehanian. The

structure of,th:e mechanism reflects the seructure,of'the information

containers it i1Uplements.

In addition; to :reviewing some· background notions and existing liter.ature,

on organ.iz.a,tion techniques for computing systt1'lSt,,d\apter I jQstified why :a.

technique, for organizing virtual memory mec\lani•• ·i.s ~-edrable. Such

mechanism-s, c1r:e often cqmplex and require a fairly lal'.ge anto.unt of code. Thus,

it is de$i~able that they be well-organized to facilitate understanding and

maintaining them. In ad.dition, the rise in 'i~terest for certifiably secuTe

systems has fostered the need for systems of whi.ch the security kernel can be

verified correct. A verification ,af ,,cor.rec&:a.esa,,cannat.lJe carried out unless

the security kernel is well~Qrganized.,, Since the·vi:rmtal memory mechanism of:

a system is, in general, part at the. 'sec:urity 1-rael. it i.s necessary to

organize it so it can be verified oorrect.

Chapter I I has defined the meaning of type extension in. the 0environment

of a virtual ~ry mechanbm. It has exarllined the nature of the abstraction.a

188

one may encounter in such an environment. In particular, it has introduced

the idea of abstract types providing a limited supply of objects that have an

essentially unbounded lifetime. Such abstractions are necessary to model the

behavior of storage resources that are scarce and need be multiplexed among

all users over time. It bas also pointed out the difficulty of providing a

mechanism (e.g., capabilities) for protecting abstract infomnation containers

at run-time inside a virtual memory mechanism. Implementing run•time

protection inside a virtual memory mechanism is difficult with, today's

technology because run-time protection depends on addressing potentially large

access control data bases while addressing of large data bases depends on

precisely having a virtual memory mechanism or .a special purpose but then

cumbersome I/0 mechanism.

Chapter III has explained bow the type extension concept can be exploited

as an organization technique in a virtual memory mechanism, and what the

advantages of this technique are. 'l1le usefulness of the technique for

selecting abstractions to modularize a virtual· memory ·mechanism was pointed

out. The property of type extension to foster modularity and structure in a

virtual memory mechanism was discussed. In particular, it was explained how

the environment of execution of a type manager (maps, programs, address space,

code interpreter) should be set up to avoid vfolations 0-.f the partially

ordered, object based dependency structure of the system. Finally, the

advantages of type extension towards providing a strategy for a,,oiding deadly

embraces when locking system data bases were stressed.

In chapter IV, we have demonstrated the applicability and the usefulness

of the type extension technique by exploiting it to (re)organize the virtual

memory mechanism of a real computing utility, the Multics system. This case

study is interesting because it showed the ability of the type extension

189

technique to cope with the complex functionality of a real system. Most

existing techniques have been illustrated by examples of applications

involving "paper" systems. Such examples demonstrate only the conceptual

aspects of the technique that is employed but fail to demonstrate its

applicability to the organization of a real system. The functionality of the

"paper" systems is in some sense built to fit what their organization permits.

In this thesis, we wanted to examine both the conceptual and the engineering

aspects of the type extension technique. Thus, we took the unconstrained

functionality of a viable system as granted and worked from there towards a

clean organization.

2. Results.

The first contribution of the thesis ts a technique for organizing the

virtual memory mechanism of a computing utility. Th.is technique has proved

convenient to use and capable of yielding modular and _structured designs for

virtual memory mechanisms. It was demonstrated useful to organize even real

systems with all the complexity and hardware constraints associated with them.

The second contribution of the thesis is in the area of the design of

general purpose, time-sharing systems. By illustrating the use of the type

extension technique in chapter IV, we have at the same time produced a

well-organized design for the virtual memory mechanism of such a system. To

the best of our knowledge, such a clean design has never before been proposed

for virtual memory mechanisms of the size and complexity of the Multics

storage system. It is satisfying to know that well-organized designs for such

mechanisms exist and could lead to reasonably efficient implementations.

A third result of the thesis, which was not expected as an initial

objective but came as an interesting conclusion, is the demonstration of the

190

analogy between the type extension concept we have used to organize MSS and

the type extension concept that was used implicitly to organize the virtual

processor mechanism of Multics [Reed76]. The two concepts serve somewhat

different purposes. Reed used type extension to break a dependency lo,op

between the virtual memory and the virtual processor mechanisms of Multics.

We used type extension to break the .virtual memory mechanism of Multics into a

set of smaller and simpler mechanisms. However, for all practical purposes,

the two concepts are•equivalent. They deal with the same problem, the

organization of a mechanism in the security kernel. They face the same

issues, designing partially ordered modules in the constrained execution

environment of the security kernel. They are equivalent with respect to the

dependency relation in that the dependency structures that result from using

them are interleaved. And last but not least, the s()ft'ware cache structural

pattern appears to be fundamental to the exploitation of type extension for

multiplexing resources, be they storage or processing resources.

3. Future research.

A first research topic that remains open is the practicality of virtual

memory mechanisms based on type extension. We bel iev.e that a. system like MSS

is conceptually plausible and could achieve a reasonable performance if it

were implemented. However, we cannot assert this until someone will have

built such a system clear through the implementation, so that _the system can

be tested. Even with the type extension technique as it was described in this

thesis, we have a long way to go to implement a system based on type

extension. We lack t_he most elementary tools to achieve a correct and

efficient implementation, namely a compiler that can perform type che~king,

verify uid conservation, do in-line substitution of macros and optimize code

191

across type managers to break the barriers of strict modules at the level of

the object code.

The thesis has developed a technique based on type extension for

organizing the virtual memory mechanism of a system. This technique appears

very similar in nature if not in origin to the technique used elsewhere

[Reed76] to organize the virtual processor mechanism of a system. A question

that naturally comes to the mind is: is the type extension technique used for

virtual memory and virtual processor mechanisms also applicable to I/0

mechanisms? Could it be exploited to organize the external communication

interfaces of a system, including the eventual network interfaces? In our own

mind, we suspect type extension is applicable to this area. Since it proved

applicable to the organization of the virtual memory I/0 of a system, it is

probably applicable to the non-virtual memory (external) I/0 of a system.

However, we have given no further thoughts to the idea and we do not have any

demonstration of its validity.

As technology evolves, we observe a trend towards distributed computing

and very large distributed data bases. Also, we may forecast for the not too

distant future the introduction in the market of personal computers that can

tap into a cable or be hooked to a network to communicate with distant hosts

to access enhanced storage and processing facilities. Because of these

observations, there is little doubt that what is called today the external

network interface of a system will be looked at tomorrow as an internal

interface in some distributed storage system. What looks today like a

transfer of information between physically and logically separate storage

systems might look tomorrow like a transfer of information between two

components of a higher level abstract file in a physically distributed but

logically integrated storage system. One may wonder whether the type

192

extension technique or some variation of it will be u~ea~le for organizing
, . ~ . - _· . , ,

such distributed systems. In particular, will it be capable of ~oping with a

storage system of which some parts may be. i_naccessible at times due to local

failures while other parts must remain accessible and consistent? Will it be

capable of collecting different local storage system architectures into a

single global formalism of type extension? Many more questions could be

formulated along these lines.

Leaving the concept of type extension and returning .to present systems,

further research is necessary to produce certifiably secure systems. While

the type extension technique, among others, represents a step in the direction

of more understandable and reliable systems, it does in no way con'?titute ~he

final answer to all problems. Further research is needed in four directions:

programming languages, specification teclmiques, security standards and

verification techniques.

As far as programming languages are concerned, it is desirable to have

high-level languages with type extensipn features and a system programmi~g

orientation. CLU [Liskov76J includes the dea.ira~le type_ extensi~n features.

However, under its current impl~mentation, it is not adeq~at~ for system

programming purposes. The CLU system assumes the ex~sten,ce of a "heap" for

storing all its variables. One of the mai~ problems o.f. doing type extension

inside the kernel of a system is that such, heap is not available and

variables must be stored in different kinds of containers with different

addressing characteristics.

While module specification techniques such as the one proposed by Parnas

[Parnas72a] or the one used by SRI [N'WQ.~on75] ~eem appealing, they lack

several features. First, they lack adequate semanti~s to express certain

facts dealing with, for instance, parallelism and wh.at i»arnas calls the

193

"global properties" of a module (properties involving several of the functions

supported by the module). Second, they lack an adequate language to formulate

specifications. Neither Parnas nor SRI claim the language they use is

adequate. But the fact that it is not is an indication that we lack a

language that is altogether powerful and readable, yet formal.

Only one concept of security -- the U.S. Department of Defense security

controls -- has been analyzed to the point where formal models could be
.

formulated for it [Bell73). While this concept is interesting for military

purposes, it is not for most civilian applications. Protection mechanisms

such as access control lists and capabilities have been built into various

systems that are designed mainly for civilian use. However, we have no idea

of what formal security models these mechanisms might support. Before we

embark on certifying a system, we should know what we are trying to certify

about it.

Finally, verification techniques will be necessary to prove the

correctness and the security of systems. Some good work has already been

produced in the area. However, we are not convinced that a system like MSS,

for instance, could be verified with existing techniques, even if complete

specifications existed for it. The same problem is encountered with

verification techniques as with specification techniques. There is a lack of

ability to handle problems like parallelism and "global properties".

This thesis has attempted to present a technique for organizing virtual

memory mechanisms to make them understandable and verifiable. Considering the

crucial role played by the virtual memory mechanism of a system with respect

to security, this is not a negligible result. However, it falls far short of

achieving the objectives contemplated in our quest for certifiably secure

194

systems, as indicated by the previous paragraphs. All the tasks evoked

earlier -- choice of a security model, formulation of specifications,

verification of correctness and security, and certification -- are necessary

steps towards a secure system but we do not know how to take most of them.

Yet, it is worthwhile attacking these problems because there will be a need to

solve them for as long as there will be computers. Because of the ever

expanding applications of computers in private and public sectors, and because

of the ever increasing costs of developing and maintaining software, computer

systems that are easy to nnderstand, to maintain and to verify are becoming a

necessity. The times of perhaps efficient but "quick and dirty computer

hacking" are over. Considering what evil computers can do to us, it is time

that we consider what good we could do to them so they will be cheaper to

maintain, they will be safer to use, they will be harder to break and they

will serve us better.

195

Bibliography.
=============

[Ames75] S .R.Ames, "The design of a security kernel'\ M75-212, Mitre Corp.
(Apr.1975).

[Bell73] D.E.Bell, L.J .LaPadula, "Secure e-0mputer syst.ems't, ESD-TR-73-278,
Mitre Corp. (Nov.1973).

[Bensoussan68] A.Bensoussan, "Overview of the locking strategy in the file
system", Multics System Programmers' Manual, section BG.19.00 (Dec.1968).

[Bensoussan72] A.Bensoussan, C.T.Clingen, R.C.Daley, "The Multics• virtual
memory: concepts.and design", CACM 15 5, pp 308-318 (May 1972).

[Bratt75] R.G. Bratt, "Minimizing th~. naming f.aci}.ities requ!ring protection in
a computing utility", S.M.Th., MIT & MAC-TR-156, MIT Lab. for Comp. Sc.
(Sep.1975).

[Cohen75] E.Cohen, D.Jefferson, -"Protection in.the Hydra.operating system",
Proc. ACM 5 Symp. on Oper. Syst. Prine., pp 141-160 (Nov.1975).

[Dijkstra68] E.W.Dijkstra, "The structure of the THE-lllultiprogramming system",
CACM 11 5, pp 341-346 (May 1968).

[Habermann69] A.N.Habermann, "Prevention of-.system,dea4lock9
11

, CACM 12 7, pp
373-377 (Jul.1969).

[Habermann76] A.N.Habermann, L.Flon, L.Cooprider, "Modularization and
hierarchy in a family of operating systems", C.ACU 19 5, pp 266..:272 (May
1976).

[Havender68] J.W.Havender, "Avoiding deadlocks in multi-tasking systems", IBM
SJ 7 2, pp 74-84 (1968).

[Hoare73] C.A.R.Hoare, "A structured paging system", Computer Journal 16 3, pp
209-215 (Aug.1973).

[Huber76] A.R.Huber, "A multi-process design of a pagi,trg.system", S.M.Th., MIT
& to appear as TR, MIT Lab. for Colllp. Sc. 0 976).

[Jones73] A. K.Jones, "Protection in progra,mmed systems",, Ph.D. Th., Dspt. of
Comp. Sc.; CMU (Jun.1973).

[Lampson69] B.W.Lampson, "On reliable and extendable operating systems", 2nd
NATO _Conf. on Softw. Eng. (Oct. 1969) & Infotech State of the Art Report
(1971).

[Lampson76] B.W.Lampson, H.E.Sturgis, "Reflections on an operating system
design", CACM 19 5, pp 25.1-265 (May 1976)-.

196

[Levin75] R.Levin, et al., "Policy/mechanism separation in Hydra", Proc. ACM 5
Symp. on Oper.Syst. Prine., pp 132-140 {Nov.1975).

[Liskov72a] B.H.Liskov, "The design of the Venus operating system", CACM 15 3,
pp 144-149 (Mar .1972).

[Liskov72b] B.H.Liskov, "A design methodology for reliable software systems",
Proc. AFIPS FJCC 41, pp 191-199 (1972).

[Liskov76] B.H.Liskov, "A note on CLU", CSG Memo 136, MIT Lab. for Comp. Sc.
(Feb.1976).

[Multics74] --- "Introduction to Multics", MAC-TR-123, MIT Lab. for Comp. Sc.
(Feb.1974).

[Neumann74] P.G.Neumann, et al., "On the design of a provably secure operating
system", Proc. Intl. Workshop on Prot. in Oper. Syst., IRIA, pp 161-170
(Aug.1975).

[Neumann75] P.G.Neumann, et al., "A provably secure operating system", SRI
Final Report (Jun.1975 partly modified Dec.1975).

[Organick72] E.I.Organick, "The Multics system: an examination of its
structure", MIT Press (1972).

[Parnas71] D.L.Parnas, ,,_Information distribution aspects of design
methodology", Proc. IFIP Cong., pp 340-344 (Aug.1971).

[Parnas72a] D.L.Parnas, "A technique for software module specification with
examples", CACM 15 5, pp 330-336 (May 1972).

[Parnas72b] D.L.Parnas, "On the criteria to be used in decomposing systems
into modules", CACM 15 12, pp 1053-1058 (Dec.1972).

[Parnas74] D.L.Parnas, W.R.Price, "Using memory access control as the only
protection mechanism", Proc. Intl. Workshop on Prot. in Oper. Syst.,
IRIA, pp 177-182 (Aug.1974).

[Parnas76J D.L.Parnas, "Some hypotheses about the "uses" hierarchy for
operating systems", Research Report BS I 76/1, Technishe'Hochschule
Darmstadt, Fachbereich lnformatik (Mar.1976). ·

(Popek74} G.J.Pokek, C.S.Kline, "The design of a verifi'ed protection system",
Proc. Intl. Workshop on Prot. in Oper. Syst., IRTA, pp 183-196
(Aug .1974).

[Price73J W.R.Price, "Implications of a virtual memory lllechanism for
implementing protection in a family of operating systems", Ph.D.Th.,
Dept. of Comp. Sc., CMU (Jun.1973).

[Radin76J G.Radin, P.R.Schneider, "An architecture for an extended machine
with protected addressing", IBM, TR 00.2757 (May 1976).

197

[Redell74] D.D.Redell, "Naming and protection in extensible operating
systems", Ph.D.Th., U.C.Berkeley & MAC-TR-140, MIT Lab. for Comp. Sc.
(Nov.1974).

[Reed76] D.P.Reed, "Processor multiplexing in a layered operating system",
facility'', S.M.Th., MIT & MIT/LCS/TR-164, MIT Lab. for Comp. Sc.
(Jun.1976).

[Robinson75] L.Robinson, et al., "On attaining reliable software for a secure
operating system", Proc. Intl. Con£. on Reliable Software, pp 267-284
(Apr . 19 7 5) .

[Saltzer66] J.H.Saltzer, "Traffic control in a multiplexed computer system",
Sc.D.Th., MIT & t1AC-TR-30, lHT Lab. for Comp. Sc. (Jul.1966).

[Saltzer75] J.H.Saltzer, M.D.Schroeder, "The protection of information in
computer systems", Proc. IEEE 63 9, pp 1278-1308 (Sep.1975).

[Saxena75] A.R.Saxena, T.H.Bredt. "A structured specification of a
hierarchical operating system", Proc. Intl. Con£. on Reliable Software,
pp 310-318 (Apr.1975).

[Saxena76] A.R.Saxena, "A verified specification of a hierarchical operating
system", TR-107, Stanford Electronics Laboratories (Jan.1976).

[Schell71] R.R.Schell, "Dynamic reconfiguration in a modular computer system",
Ph.D.Th., MIT & TR-86, t1Ir Lab. for Comp. Sc. (Jun.1971).

[Schiller73] W.L.Schiller, ''The design and specification of a security kernel
for the PDP-11/45", ESD-TR-75-69 & MTR-2934, Mitre Corp. (republished May
1975).

[Schroeder71] M.D.Schroeder, "Performance of the GE-645 associative memory
while Multics in operation", Proc. ACM Workshop on Syst. Per£. Eval., pp
227-245 (Apr.1971).

[Schroeder? 5] ~1. D. Schroeder, "Engineering a security kernel for Multics",
Proc. ACM 5 Symp. on Oper. Syst. Prine., pp 25-32 (Nov.1975).

[Sturgis74] H.E.Sturgis, "A postmortem for a time-sharing system", Ph.D.Th.,
U.C.Berkeley & Report CSL 74-1, XEROX PARC (Jan.1974).

[Wulf75] W.A.Wulf, R.Levin, C.Pierson, "Overview of the Hydra operating system
development", Proc. ACM 5 Symp. on Oper. Syst. Prine., pp 122-131
(Nov.1975).

198

199

Appendix. Military security controls in Multics.
====================~~===========z=============

Among the various aspects of the functionality of Multics that we have

ignored in the design of MSS is the Access isolation Mechanism (AIM), which is

a protection mechanism capable of supporting isolated compartments for storing

information. The AIM was initially designed to enforce the security controls

defined by the U.S. Department of Defense. This mechanism was purposely

ignored because type extension does neither help nor hinder its design. No

new modularity or structural issues are raised by the AIM with respect to type

extension. There is no interest in discussing the AIM from a type extension

point of view.

However, there are two reasons for discussing type extension from the AIM

point of view in an appendix. First, military security controls are the only

concept of security for which there exists a formal model [Bell73].

Therefore, chances are that the first system to be certified secure will be

certified with respect to that model. We wanted to demonstrate that the type

extension technique, which was developed, among other reasons, to make virtual

memory mechanisms easier to certify, can be used to organize the virtual

memory mechanism of the sort of system that will precisely be certified first.

Second, this thesis is one result of a project aimed at producing a prototype

security kernel for Multics [Schroeder75]. This project, in turn, is one

piece of the U.S.A.F. security program that sponsored the development of the

military security controls model [Bell73].

Military security controls.

For more information on the functionality of these controls, we refer the

reader to the formal model [Bell73]. Here, we will only summarize the main

concepts involved in the AIM. Four levels of security are defined in a total

200

ordering: unclassified, confidential, secret and top secret (four more may be

defined in Multics). Several categories may be defined: e.g., AEC, NATO, US,

etc •• Sets of categories are partially ordered by the set containment

relation. The cross-product of a level and a category set defines a

compartment. Compartments are thus also partially ordered by a relation that

is the product of the set containment relation and the total ordering relation

of levels. Every piece of information is classified into some compartment.

Every agent (user) is cleared for a given compartment. The security controls

state that an agent can read a piece of information only if his clearance is

greater than or equal to the classification of that information. This is

called the no-read-up rule. To confine a piece of information to its

compartment and higher compartments, the no-read-up rule is not sufficient.

It is necessary to prevent an agent authorized to read the information from

copying it down into lower compartments where unauthorized agents would be

able to read it. This is called the no-write-down rule or more generally the

*-property. These security controls are called non-discretionary, which means

that they not only prevent unauthorized access but they also prevent

authorized agents from leaking information to unauthorized ones at their

discretion.

Computer environment.

In a computer environment, the enforcement of the security controls may

be implemented as follows. For the no-read-up rule, it is sufficient to never

give a user READ access to information stored in higher compartments. For the

no-write-down rule, things are more complex. Of course, it is necessary to

never give a user WRITE access to information stored in lower compartments.

However, this is not sufficient. This blocks only overt information channels

between compartments.

201

There also exist covert channels. These channels are divided into

storage channels and!.!!!!!:. channels. Storag~ ~ha~nels are those involving

stored data as the support for transmitt:i,ng infoonation. For instance, if a

low clearance user and a high clearance user share the resources of a disk,

they both depend on the disk manager for using the disk. By varying his usage

of space on the disk, the high clea_rance user may, transmit infol"lllation to the

low clearance user. The information is transmitteq, via the stor.~ data kept.

by the disk manager to manage space on the disks. Time channels are those

involving elapsed time between observable events as the support for

transmitting information. For instance, if a high clear~ce user and a low

clearance user share core, by varying heavily his pa~~ fault rate with time,

the high clearance user may transmit information to the low clearance user.

The information is transmitted via the variatio~s_ with ttme of the page faplt

rate, which might not be stored anywhere but. ca~es del~ys observable by any

user.

In general, it is demanded that. storage ch~q.nels be blocked because they

tend to have a relatively large bandwidth. Ther~. are tw<> ways to block, them.

First, shared storage resources can be preallocated by c~p~r.tment so that ,I.he

resource usage of one compartment is invisible t~ and c~nnot,affect other

compartpients_. Second I shared storage resourc(}S can ,be multi,ple.xed over time
• ' ,- _a ~ • < ' - '• . ~

in such a way that two compartments are never ,a,ware th,a,t t;hey compete for the

resources.On the other hand, it is not requilied, in gen.e.ral, t.l\at s.torage
..:,:. J·· . ; .

channels be blocked because they tend to be relatively _low bandw_idth _channels

and because blocking them would ~ply preallQCaUn&, time. Thls would be.

logically equivalent to having an inde~ndent COQ\p~e:r ~r .each c,ompartment so

that time dependen;t e.vents and signals genera~4 by a hig.h. ~learanc~ user

could not be observed by low clearance. users.. This design would be gros.sly

202

inefficient as it ignores the fundamental principles of multiprogramming. As

long as time channels are identified, they present a limited risk and are

usually tolerated. Notice that this paragraph has only described current

techniques for implementing the AIM. Since we are only interested in showing

that type extension does neither help nor hinder implementing the AIM as it

exists today, it is not our intention to formulate any judgement about the

current implementation of the AIM nor to try do do better than current

technology does.

Application to MSS.

Since the incarnation of an agent in MSS is a user process, the concept

of clearance is attached to user processes. And since the mode of access

{READ or WRITE) to information is controlled on a per segment basis, the

concept of classification is attached to segments. In terms of MSS

abstractions, we have the choice of attaching it to the directory entry that

describes a segment or to the segment itself. If we are concerned about only

non-discretionary controls, i.e. if we care to certify the system against only

Bell's model and do not care about the correctness of the discretionary access

control list mechanism, it is better to attach classifications to segments.

By doing so, the directory manager, ~hich is a substantial module, and higher

level modules are essentially out~ide the AIM security kernel. What they can

access will be constrained entirely by the AIM built into the segment manager

and lower level type managers. This is a vivid example of the interest of a

partial ordering based on the dependency relation. Within the same system,

one can consider two {or more) different security kernels. The discretionary

security kernel is built on top of and includes the AIM security kernel. The

interface of the discretionary security kernel is the "interface presented to

the users. The interface of the AIM security· kernel is the interface

203

presented to the discretionary security kernel. It is defined by the

specifications of the configured volume.manager, the segment _manager, the

known segment manager, the connected segment manager and the user process

manager. Thus, thanks to the partial ordering of modules, we can define

layered security kernel interfaces. Every l~yei:- of a. security kernel is

responsible foi:- the enforcement of a distinguished set of security pr9perties.

Each security kernel embodies mqre security prpperties than the lower one.

Let us now consider the impact of the AIM on the design o(MSS.

Let us first consider the abstr.actions outside the AIM security kernel.

The classification of a logical volume, a physical volume or a directory is

defined by the classification of the segment that directly or indirectly

implements its maps. (The DT is assum~d to be split it\t:O ,as many Physical
' '

Volume Registration Data (PVRD) segments as there are physical volumes. Thus,

every physical volume needs a path name denoting its PVRD segment in the file

system.) A priori, a logical volul!le might cpntain physical volumes (1) and

master directories in different compartments, a directory may describe sons in

different compartments and a physical volume may co~tain disk records

belonging to segments in different compartments. There is however one

fundamental restriction on the possible classification of .the components of

such abstractions. The classification of tbe componeqts of an object O must

be higher than or equal to the classification of (the map of) O. If this were

(1) We do not see any use for having physical volumes in different
compartments inside the same logical volume. Since·· all physical volumes in a
logical volume are logically equivalent as far as the user is concerned, we
fail to see any situation that would justify classifying the physical volumes
in a logical volume into different compartments. In addition, this would
complicate the mounting/demounting operations as will soon become clear.
Thus, even though it may be conceivable to have physical volumes in different
compartments, we will assume that this is never desired iri practice in the
remainder. of this appendix.

204

not the case, it would be impossible to access the components because of the

AIM. If a user had the clearance for O, he would not be able to operate on

the components by virtue of the *-property. And, if he had the clearance for

the components, he would not be able to find out what they are because he

would not be allowed to read the map of O by virtue of the no-read-up rule.

The conclusion that the structure of an object must correspond to a

non-decreasing hierarchy of compartments was arrived at independently in NSS,

where the file system hierarchy of directories and segments must be

non-decreasing in classification.

In MSS, like in NSS, we have the concept of a transition object, which

denotes an object of which the classification is higher than the

classification of the object it is a component of. In MSS, like in NSS, the

manipulation of transition objects is extremely delicate. Indeed, a user who

is cleared to operate on a transition object T may read the map of the object

0 of which Tis a component but he.may not write into that map by virtue of

the *-property. Thus, he cannot perform any operation on T that would require

changing the map of o. (In particular, he cannot delete/deallocate T unless

he lowers his clearance or requests the assistance of a so-called trusted

user, i.e. a user who has the privilege to write-down but is trusted not to

abuse it to transmit sensitive information.) We will say that transition

objects are frozen. Practical consequences of this statement for MSS as well

as for NSS follow. A user cleared to manipulate a transition master directory

cannot operate on it (e.g., set quota on it) in any way that would require

modifying the LVRD of the logical volume composed of the master directory

because this LVRD has a lower classification. A user cleared to use a

transition segment (directory or file system segment) .cannot operate on it in

any fashion that would require modifying the directory entry that describes

205

the segment because this entry is part of a dire;ctory with a lower

classification. In more specific terms, a transition ~eginent implementing a

directory can never be subject to access control list changes or to moves

resulting from OOPV conditions because. this would rpquire modif;ying the access

control list or the PVID, VTOCX in the directory entry describ:i,ng the

transition directory, which is ruled out by the *Tp.op~rty. A transition

segment implementing a file system seg{llent (!l.ay never b;~. supj ect to access.

control list changes or to OOPV moves and in addition may nev~r be subjec.t to

a quota fault because thie would reqµire updating the quota cell of some

superior quota directory that has, by definition, a lower classification.

Furthermore, every transitio.n dir.ectory should be a quota directory to allow

the inferior segments to be grown/shrunk. _If_ this were not the case, th~ Cl;l

operation .would (because it should be co4ed so) refuse. to grow/shrink a

segment if it discovered that the quota cell which it sbo,µl..d update has a

lower classification than th~ segment charged to it.

Until now, we have examined the impact of· the AIM· p~imarily.on the type

managers outside the AIM security kern.el. A-s fa~ as this, security kernel is

concerned, we have only concluded that it should never- grant a user READ

access to segments in higher compartments and that it, sl;lou.ld refuse to handle

OOPV conditions and quota faults on tr,ansition segments.

Let us now examine in more details what -the AIM security kernel should do

to enforce the AIM. In particular, let us study what is n~essary to block

the covert st~rage channels. As explained earlier, it is necessary to

guarantee that every type of shared storage resource be preallocated by

compartment. Segments '!re not a -problem. They are C/D resources, which means

that every UID is given out only once. It is never reused by (shared with)

other users. Thus, whether it is used or not cannot be exploited as a "storqe

206

channel. A burst in the creation of segments would use up many UIDs at once,

which might be exploited as a time channel. However, if UIDs were generated

by reading a microsecond clock and if we asswne that it is impossible to

create more than one segment every microsecond, it would be impossible to tell

whether a given UID is in use or not. Known and connected segments are not a

problem as they are never shared by several user processes. Every process has

j ts own. Thus, a process could never use its KST or DSG as a covert channel

to another process. Core segments are not a problem either-because they are

used strictly inside the security kernel, which will obviously not try to

exploit them to leak information. Active segments, quota cells, page frames

and core blocks are not a problem because, even though they are shared by all

processes, processes do not directly control their deallocation. Deallocation

is under the control of the segment deactivation and page removal algorithms.

The above abstractions might be exploited as time channels (e.g., varying page

fault and segment activation rates) but such channels are very slow because of

the noise introduced by the deallocation algorithms and by all processes

competing for the same resources at once.

Disk records could be a problem because processes are in full control of

their allocation and deallocation. For instance, a high classification

process could use up all the records on a physical volume, thereby causing a

low classification process to observe OOPV conditions on any segment it might

try to grow. In fact, this sort of channel can be blocked in practice if the

security officers of the system are careful not to overaJ.locate quota.

indeed, if the sum of all quota allocated to the compartments sharing a

physical volume is no greater than the total amount of disk records available

on the physical volume, then the disk records are essentially preallocated by

compartment and OOPV conditions will never be observed.

207

,,_J_ -

Passive segments and disk sectors (i.e. VTOC entries) a~e a problem (in

MSS as well as in NSS!) because there~$ no mechanism like quota for

controlling their preallocation. Thus, by varying its usage of VTOC e~tries,

a hi_gh classification process can transmit information to a low classification

process. The only obvious way to block this ~hannel ~h.ort of introducing

quota on VTOC entries.is to re9uire that all tra?siti9n,di~epto~ies be master.

directories and that all master directories for a.logical .volume .be in the
•• :_- •. I , , ; • "•...,)

same compartment, or, in short, that each .logical vol~me ,~elon~ in a single_.,

compartment. In other words, this says that all the segments of which the

passive image is on one logical volume must be in the same compartments so

that the VTOC entries (and the disk records too, by the way) on that logical

volume are not, in practice, shared by several compartments. The latter

statement does not require that the logical volume, physical volume and

directory entry managers be in the AIM security kernel. The compartment

associated with a given logical volume and its component physical volumes may

be recorded in the label of every physical volume. This label is secure

because it can be accessed only by the configured volume manager, which is

part of the security kernel. Thus, every time a user process requests the

creation of a segment with a given classification on a given logical volume,

the given classification is compared with the classification of the given

logical volume. If they are not equal, creation is denied.

Finally, configured volumes are not a problem. While it is true that

they are shared and not preallocated, it would be hard to use them as channels

to communicate information. Allocating and releasing configured volumes

implies mounting and demounting physical volumes, which is a slow and easy to

monitor information channel.

In this appendix, we have not tried to propose any new solution to the

208

implementation of the AIM. We have not tried to design a new mechanism for

better implementing the military security controls. We have simply attempted

to show that the restrictions imposed by the AIM in a state of the art system,

the problems of implementing the AIM and the solutions to these problems can

be handled by the type extension concept. Whatever can be done in NSS can be

done in MSS. And HSS is not particularily helpful to implement the AIM. Type

extension neither helps nor hinders sealing off storage channels. Type

extension and the military security controls are orthogonal issues.

209

Biographical note.

Philippe Janson was born in Brussels, Belgium on 7 December 1949. He
attended high school there, graduating from the Athenee Robert Catteau in June
1967. He entered the Universite Libre de Bruxelles in September 1967,
receiving the degrees of Candidat Ingenieur Civil (June 1969), Candidat en
Sciences Math6matiques (October 1970) and Ingenieur Civil
Mecanicien-Electricien (June 1972). His major field of interest then was
electronics. He received a Harkness Fellowship from the Commonwealth Fund of
New York in September 1972, which permitted him to study Computer Science at
the Massachusetts Institute of Technology, where he received the degrees of
S.l'l. (June 1974) and E.E. (February 1975).

During the summer of 1974, he was a staff member at Project MAC (now
Laboratory for Computer Science), working on the development of the Multics
system. In September of 1974, he became a research assistant at Project MAC,
working in the area of system design, which is the subject of his doctoral
thesis.

He is a member of the Association for Computing Machinery and of the
Association des Ingenieurs de l'Universite de Bruxelles.

In December 1971, he married the former Catherine Rolin. The Jansons
have 1.9 children, Perrine and X.

Publications.

"Study and discrete simulation of the scheduler of the CDC SCOPE 3.4 operating
system", (French), Engineering Dissertation, U.L.Brussels (June 1972).

"Removing the dynamic linker from the security kernel of a computing utility",
S.H. and E.E. thesis, M.I.T. & MAC-TR-132, MIT Lab. for Comp. Sc. (June 1974).

"Dynamic linking and environment initialization in a multi-domain process",
Proc. ACM 5th Symp. on Oper. Syst. Prine., ACM Oper. Syst. Review 9 5, pp
43-50 (Nov. 1975).

"Validating the protection mechanism of a computer system", IRIA Workshop on
Protection and Security in Data Networks, Paris (28-30 June 1976).

210

