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USING TYPE EXTENSION 
TO ORGANIZE VIRTUAL MEMORY MECHANISMS 

by 

Philippe A. Janson 

Abstract. 
========= 

Much effort is currently being devoted to produ~ing computer systems that 
are easy to understand, to verify and to develop. The g!;!neral methodology for 
designing such a system consists pf decomposing it' iato a structured set of 
modules so tha't the modules 'can be understood, verified. and developed 
individually, and so that the unde:rstanding/verHicadon of the system can be 
derived from the understanding/verification of its modu).es. While many of the 
mechanisms in a computer system have·b~en.~ecOJ.Dposedsuccessfully into a 
structured set of modules,. no technique has been pr<;>posed to 'organize the 
virtual memory mechanism of a system in such a way.' 

The present thesis proposes to use type-. extension for that purpose. The 
virtual memory mechanism consists of a set of type manager modules 
implementing abstract information containers. The structure of the mechanism 
reflects the structure of the containers that are implemented. While using 
type extension to organize a virtual memory mechanism is conceptually simple, 
it is hard to achieve in practice. All existing or proposed uses type 
extension assume the existence of information containers that are uniformly 
accessible, can always be grown and are protected. Using type extension 
inside a virtual memory mechanism raises implementation problems since such 
containers are not implemented. Their implementation is precisely the 
objective of the virtual memory mechanism. In addition to· explaining how type 
extension can be supported inside a virtual memory mecpanism, the thesis 
demonstrates its use in a case study involving a commercial,.general.:..purpose, 
time-sharing system. It concludes by providing some insights into the 
organization of virtual memory mechanisms for time-sharing systems. 

This report reproduces a thesis of the same title submitted to the Department 
of Electrical Engineering and Computer Science of the Massachusetts Institute 
of Technology, on 9 August 1976, in parti~l:fulfillment of the requirements 
for the Degree of Doctor of Philosophy. · 

Thesis Supervisor: Michael D. Schroeder. 
Title: Assistant Professor of Electrical Engineering and Computer Science. 
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These lines implement a fundament~L component of an abstract object of 
type "doctoral thesis". The type manager for a doctoral thesis is realized by 
two interacting processes, calle~_ '_'c,omm)t,t~e:', ~~9 "student". These lines 
serve as an information containe1:"'us'ed 1,y1"tne' 'JHu:lent process to express his 
gratitude to the committee process as well as to all lower level type managers 
who provided the moral and material ingr~~iepts necessary to compose the 
thesis. 

"A tout seigneur, tout honneur", I ~ould like to thank fir8t \JlY thesis 
committee for its coope"tation in managing· tµis tli.e_sis~ -· While an ideal 
committee loo!cs. a~ ~- sin_gle: Pf?c,e,s:5~}0.:,!1.1f'.'8l,~,e'1f ,pr?c:es~_, .a'- rear' comtn1t_tee 
is realized by th~ee parallel pro~,es,~.s,~ ,~'? _f,?rJl1,~aJ:ftl:,,8:8r.~~si ~pli op~r~Jed 
in reasonable synchrony in this case, fll;ld_ I f[\a!l~ t\l,•,.for tltat,, t thanJc. my,. 
supervisor proces,s' Professor Michael ~ht~~rr, fgr; hi, intexesting . 
suggestions, his accurate criticisms., hls'. en'thysia'sl:1¢. e~couragements and the 
many hours of dedicated work he 'devotel

0 '10 tiits °thesis,, pa.r'ticµlarly duJ."tng 
the past nine months. t thailk my racier' pr_9ce21~s~'· fl:'ofess:ors David.Jtedell . 
and Barbara Liskov, for their highly apprec:Latecf comment's' on the many drafts 
of t\lis thesis and for the enric!1}ns,, gj.scµ,ssi9n.~ we __ ~_d ~bo~t tb,e r.~search. I 
would also like to thanka virtual, reiiaet' 'process. Professor Jack Deno.is, fQ.r 
his comments on early drafts of_ the' .fl.fat chapters·· of. the thesis, apd a . -
remotely cooperating process~ Pr9f~ss6r: Jirot11e. SJit:i:er, who_~. through 
occasional short in.terrupts, prov_:!.ded. ~s with. some. crisp an<f in.sight£ ul 
remarks on our research. " . . . . . . . 

Next, I would like to extend my thanks to seyei'al people associated with 
Honeywell Information Syt:Jtet'!ls Inc,: .. to Andr~. ~tl~'18Sap. for discussing with 
me the high level . issues that presid,d to tlie. design of NSS; to Bernard 
Greenberg for helping me discover the marvels an4,'tb,.:surprises_hidden iu NSS; 
to Jerry Stern for his comments on the ':t..plemeiit•tion 9f \llilitary security 
controls iri Multics; and to. Tom VanVlec~ for.ots r~arks on the:quota 
mechanism of Multics~ I would also. like to than~ 'sQDle of my,J~llow studen~s 
at M. I. T.: Richard Feiertag and Douglas HQp.t_ for th~ :raud~ discussions we 
had, which generated many ideas·and muchtli'lnking; Ai'idrew· Mason for answering 
my many questions about the mechanics of NSS; and particularly David Reed for 
feeding me information on processor management in Multics, for discussing the 
applicability of type extension to it, and for commenting on the final draft 
of the thesis. 

Perhaps I should thank the Xerox Corporation for having hired 66.7% of my 
thesis committee on the West coast starting in August 1976, and the 
Commonwealth Fund of New York -- after_ al_l --- for bJvina required that I be 
out of the count-ry by September 1976. · Whil,~ ~Q~t~tion of pr9cesses in 
physically distributed systems is a faebional,le re~arch topic, the pr<>spect 
of experimenting with it on a doctoral th~sis was not -p•r~icularly thrilling 
and has certainly been a strong incentive to all of us to wrap up the work 
within two years. 

Thanks are also due to Ellen Lewis, who typed portions of the thesis, and 
to Multics, which did not crash too often on me while I was typing the rest. 
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Last but not least, I express my wholehearted gratitude to those who 
supplied the bottom level components that made this whole thesis possible: to 
my sweet wife, Catherine, for her patience and her courage throughout these 
long years away from the old continent she loves so mu'ch;; to iny little · 
Perrine, without whose distracting interrupts this thesis might have been 
completed months later (or earlier?); 'to her expected sibling for not 
deciding to be born before the thesis was completedi, which would have messed 
up the sequence of events quite a bit; and to my parents, Who not only helped 
fuel my wallet but also, through letters and' cassettes and transatlantic 
calls, provided me with heaps of encouragements. 

P.J. 
Cambridge, 21 July 1976. 
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I. Introduction. 

Research reported in this thesis is concerned with the organization of 

virtual memory mechanisms for computing utilities. The thesis does not 

explore new algorithms for managing virtual memories but presents a technique 

for organizing any virtual memory mechanism given the specifications of its 

user interface and the available hardware technology. The objective of this 

technique is to organize the virtual memory mechanism into a structured set of 

modules so as to make the resulting implementation easier to understand, 

verify and maintain. We have reason to believe that the technique that is 

presented can be used for organizing the virtual memory mechanism of almost 

any kind of computing utility, be it a distributed system, a real-time system 

or a conventional time-sharing system. In this thesis, the technique has been 

elaborated within the context of and applied to the design of the virtual 

memory mechanism of a general purpose commercial time-sharing system of the 

kind one might use on a university campus or in a research laboratory, for 

information storage, text editing and interactive program development and 

scientific calculation. The interest of the thesis is twofold. On one hand, 

it presents a technique that we believe is applicable to any sort of computing 

utility. On the other hand, it provides insights into the organization of 

structured and modular virtual memory mechanisms for conventional time-sharing 

systems. 

A time-sharing computing utility provides a community of users with the 

ability to share access to a set of hardware resources such as processors, 

memory and I/0 devices, to a library of programs and services, and to the 

information stored in the system. If access to these facilities were not 

controlled, abuses might be committed by users of the system. For instance, a 
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user could take over the system and cause it to deny any service to other 

users. Or a user could covertly take advantage of programs and services 

written by others and avoid the charges for the usage of such facilities. 

Much worse than the above two examples would be the uncontrolled access to the 

information stored in the system. Such uncontrolled access could result in 

unauthorized release and modification of that information [Saltzer75) and 

violation of the privacy of certain people. While the usefulness of computing 

utilities has been recognized, the need to control access to the stored 

infonnation has also been realized. The advent of computing utilities has 

thus fostered the desire for computer systems that are accredited secure, i.e. 

certified to protect the information they contain. 

Much effort is currently being devoted to producing certified secure 

time-sharing systems [see for instance Neumann75, Schroeder75]. Producing 

such a system involves several operations [Schroeder751 as shown in the 

following figure. First, it is necessary to verify that the programs of the 

system implement the specifications, i.e. to verify correctness. Second, it 

is necessary to verify that the specifications embody the model of information 

security that the system must support, i.e. to verify security. Finally, it 

is necessary to evaluate the verification of correctness, the verification of 

security and the model of security to certify that the implemented system will 

meet the security standards demanded by the c01Dmunity of users it serves. 

Evaluating the verifications of correctness and security means subjectively 

rating the quality and the effectiveness of the proof techniques or the 

automatic verifiers that may have been used for the first two steps. 

Evaluating the model of security means subjectively rating the formal 

description that this model proposes for the security standards that are only 

infonnally defined by the user community. Of the certification process, two 
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operations the verification of correctness of the implementation and the 

evaluation of that verification -- are of particular concern in this thesis. 

implementation (formal) 

verification of correctness is the validation of 

the formal correspondance between 

the implementation and the specifications 

specifications (formal) 

verification of security is the validation of 

the formal correspondance between 

the specifications and the model 

security model (formal) 

security standards 

certification is a subjective evaluation 

of the two verifications and of the correspondance 

between the model and the standards of security 

Verifying the correctness of a system and later evaluating that 

verification are impossible tasks if one attempts to verify the whole system 

as a single unit. First, existing verification techniques are not 

sufficiently powerful to establish the correctness of a program of the size of 

current time-sharing operating systems. (For certification purposes, it is 

actually sufficient to verify the correctness of the security kernel of the 

system, that is of the code critical to security. However, even this simpler 

task is beyond the capabilities of present verification techniques.) Second, 

even if adequate verification techniques were available, the resulting 

verification would probably be too long and too complex for any human auditor 

to read it, understand it, evaluate it and accept the responsibility for 

10 



subsequent certification. The purpose of the evaluation is to convince the 

community of users that the verification of correctness is adequate. For this 

evaluation to be significant and convincing require~ that the human auditor 

who will certify the system be able to convince himself of the adequacy of the 

verification. Thus, the verification of correctness should be short, simple 

and systematic or the task of evaluating it would be hopeless. The uae of 

higher level system programming languages may improve the situation somewhat 

by making programs more amenable to verification and the resulting 

verification easier to evaluate. Yet, new system programming languages will 

not suffice to overcome the verification problem. 

The alternative to verifying a whole system as a single unit consists of 

dividing the system into elements called modules to divide the task of 

verifying the system into a set of subtasks of manageable size, each of which 

consists of verifying an individual module. This method presumes that:each 
' 

module is clearly distinct from others and sufficiently small to be v~rified 

individually by existing techniques. It also presumes that all modules are 

organized in a structured way that allQws the eorrectnees of·the system to be 

logically inferred fr.om the -correctness of it• m6dules. The problem ldth this 

method is thus to organize the system into a strueturad set of modules that 

are distinct and small. 

In addition to ease of verification, two significant advantages are 

gained from dividing a system into a structured set of modules: 

understandability and maintainabili·ty. Even if one were not going to 

undertake the verification of a system, dividing it into a set of ~dules 

allows analydng and/or lllOdifying modules individually. Purthemore, the 

structure of the system may be used to learn about the system in a systematic 

fashion (e.g., botto»-up or top-down). 
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l. Thesis motivations and objectives. 

The present thesis is concerned with a technique for organizing virtual 

memory mechanisms for computing utilities in a structured and modular way. 

Such a technique is desirable because the virtual memory mechanism of a system 

is, in general, part of its security kernel and therefore should be structured 

and modular so it can be verified easily. 

Some authors [Popek74] claim it is possible to design a system such that 

the virtual memory mechanism is not part of the security kernel and therefore 

need not be verified to verify the correctness of the security kernel. We 

disagree with this claim for two reasons. First, although we believe that 

Popek's design is interesting and has removed a piece of the virtual memory 

mechanism from the security kernel, we disagree with the statement that the 

whole virtual memory mechanism is outside the security kernel. Second, 

although we believe that Popek's design can be applied with great benefit to 

simple systems like the PDP-11/45 he has been considering, we believe the 

benefit of exploiting it for more sophisticated systems is relatively small. 

Let us justify our position. First, according to Popek's design, the policy 

decision to bring a piece of data into primary memory -- even security 

critical data -- is left to the users and cannot affect the security kernel 

but all the mechanisms (space allocation, disk I/0, etc ••• ) necessary to 

implement that decision are provided by the security kernel. Thus, only the 

policy for driving the virtual memory operation is outside the security 

kernel. The mechanisms, which are secondary in nature but probably larger in 

terms of code, must be verified as part of the security kernel. Second, the 

design proposed by Popek is fairly interesting for simple systems in which the 

functions of multiplexing primary memory and protecting logical information 
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can be supported together. However, in systems where these functions are 

decoupled, the relative amount of virtual memory code that can reside outside 

the security kernel is very small. Consider the following example. In the 

Multics system [Organick72}, protection of information involves mapping 

segments into user address spaces while multiplexing of primary memory 

involves mapping pages into primary memory. A direct application of Popek's 

design to Multics would suggest that, when a user wants to reference a 

segment, the entire segment be mapped into the user address space and into the 

system primary memory. This is impractical because, in a system supporting 

information containers the size of Multics segments, it is imperative that 

mapping a segment into a user address space be decoupled from mapping its 

pages into the primary memory. The mechanism for paging segments must be part 

of the security kernel because it manipulates physical information containers 

(pages) that implement the logical information containers (segments) protected 

by the security kernel. If paging were not in the security kernel, it could 

affect the integrity of the correspondance between logical and physical 

information containers, thereby defeating the protection mechanism that the 

security kernel is supposedly implementing. Thus, in relation to Popek's 

design, the only element of the virtual memory mechanism that should still be 

under the responsibility of users is the mapping of segments into user address 

spaces. This design has indeed been recOtlllllended for Multics [Bratt75]. 

However, the amount of code that is removed from the security kernel as a 

result is very small relative to what remains in the security kernel. One 

could not claim that this design has removed the virtual memory mechanism from 

the security kernel. 

In summary, we consider that the virtual memory mechanism of a computer 

system is a part of the security kernel of the system because security depends 
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on that mechanism in two ways. First, all information secured by the 

protection mechanism of the system is stored in containers (pages and/or 

segments) that are handled by the virtual memory mechan·ism. Thus, if the 

virtual memory mechanism did not operate correctly, it could lose, damage or 

interchange information containers, ther_eby violating. ·frecurity. Second, 

security critical programs and .data bases themselves are too large to b·e core 

resident at all times.. Thus, the s~cµ.rity kernel relies on the virtual memory 

mechanism to move them in and out of core when necessary. Consequently, the 

virtual memory mechanism of a system must be verified in order to produce a 

certified secure system. 

The lack of a suitable technique to Qrganize the virtual memory mechanism 

of a system motivated this thesis. Our objective was thus to de'1elop such a 

technique to make virtual memory mechanisms easier to Uilderstand, verify and 

maintain. The technique to be presented is based on a concept of type 

extension to be defined in chapter II. The virtual memory mechanism is 

regarded as implementing a collection of abstract obj-ec ts (repositories for 

data). A different module of the virtual memory mechanism is designed to 

support every different type of abstract -object. The fonnalism of type 

extension is used to organize the modules of the virtual memory mechanism into 

a structure reflecting that of the al,stract objects sup-po.rted by the virtual 

memory mechanism. That formalism also contributes to. simplifying the 

specifications of the interfaces of the modules that are defined. The task of 

the designer consists of choosing abstract data types such that they can be 

implemented by modules of a size amenable to human understanding and hopefully 

manageable by known verification techniques. The use of a type extension 

formalism makes the virtual memory mechanism modular and structured in a way 

that simplifies understanding it, verifying it and maintaining it. 

14 



One original aspect of the thesis resides in the exploitation of the 

systematic approach of type extension in an area.of s.yst:em design to which its 

applicability has never been demonstrated .before. So ·far, true, formal type 

extension mechanisms have been used only in programming languages and in areas 

of system d-esign that are at levels higher than the virtual memory mechanism. 

To exploit type extension inside a virtual memory mechanism~ one must face the 

issues that uniformly accessible and "gro..mble" information containers are· not 

available. 

The type extension technique proposed in the thesis is more than just a 

means to evaluate and enforce the organization of a vir•tual memory mechanism. 

With most software organization techniques, all ·the hard design decisions are 

left to the designer of a system in that he must choose how to modularize his 

system. The organization techniques provide the designer only with rules to 

enforce modularity and structure after he has defined the role of each module. 

The type extension technique presented in this thesis provides the designer 

not only with rules to enforce modularity and structur~ but also with hints 

about the possible modularization of his system. In -this respect, the type 

extension technique is closer to a design methodology than most existing 

organization techniques. 

In order to show the use and the ef fee tiveness of the type extension 

technique, the thesis will exploit it to reorganize the virtual memory 

mechanism of a commercially available, general purpose time-sharing computing 

utility, the Multics system [Multics74}. Emphasis will be placed upon the 

conceptual aspects and the engineering aspects of the technique. Some 

attention will be given to the performance of the resulting system but an 

accurate perfonnance evaluation cannot be given since the reorganized. system 

bas not been implemented. The modularity and structure of the new design and 
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their impact on the understandability of the new sy$tem will also be 

discussed. However, we will not attempt .to verify the -correctness the new 

system, again because it has not been impl~nted. 

In the remainder of tµis introductory chapter, we will first review some 

background notions on the organization of structured and modular systems. 

While doing so, we will survey the existing literature on related topics. We 

will then present our method of approach to the probl~m of organizing virtual 

memory mechanisms. As we do so, we will outline the plan of the thesis. 

2. Background and related work. 

The literature is not very abundant in the area of the organization of 

structured and modular virtual memory mechanisms. However, information on 

that subject can be found in numerous papers covering a wider topic: the 

design of structured security kernels and techniques for the organization of 

structured operating systems. Therefore, we will survey various techniques 

used in connection with this wider problem and discuss their applicability to 

the design of virtual memory mechanisms. We emphasize the fact that most of 

the techniques to be described are compatible with one another and can be used 

complementarily within one system. It will be seen that several systems 

indeed exploit more than one technique at a time. 

Techniques for organizing a system should achieve two goals. First, the 

various modules of the system should have the property that they are distinct 

and sufficiently small to be amenable to human understanding and hopefully to 

existing verification techniques. Second, the organization of the modules and 

their interactions must have the property that they allow a verification of 
. 

correctness of the entire system to be derived from the verification of its 

individual modules, i.e. that they allow a structured verification of 
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correctness of the system to be carried out. 

A recent paper {Schroeder75] that sur~eyed the techniques used in the 

design of a security kernel for the Multics system mentions two techniques 

that are of particular interest for virtual memory mechanisms-. The first 

technique is based on the use of parallel processes and the second one on 

partitioning the security kernel into separate protected subsystems. 

Parallel processes to implement sequential algorithms.· 

This first technique consists of implementing a mechanism with programs 

that can execute in separate parallel processes. A paper [Hoare73] on a 

structured paging system used the technique to design a mechanism for moving 

pages of information between the paging device and the primary memory of a 

computer system. This design is extremely clear and understandable. 

Individual parallel processes, called monitors, are used for each separate 

function: allocating primary memory space, allocating paging device space, 

moving one page into primary memory, moving one page out of primary memory, 

etc ••• Each monitor represents a very small amount of code and the 

interactions between the monitors (i.e. the structure of the system) are well 

defined and would make a structured verification of the system possible. 

However, the design is unrealistic in that it requires two monitors for each 

page of information. It seems impossible to keep the status information for 

all those monitors in primary memory at all times. 

Another design [Huber76], which is very realistic and has been 

implemented in the Multics system, uses only one process per level of memory 

to handle the outward movement of pages. Each such process is responsible for 

continually maintaining free space at the memory level it is managing by 

purging selected pages to the next outer level of memory. Demand paging is 

implemented by each user process for itself. This very elegant technique 
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constitutes a definite step towards the simplification of the design of a 

paging system: the inward movement of pages can be analysed and verified 

independently from the outward movement; and the outward movement can be 

analysed and verified separately for each level of memory. We will retain 

this technique as a useful and·efficient one. It will be used in conjunction 

with the technique we will present to further simplify the task of 

understanding and verifying the virtual memory mechanism of a computer system. 

The elegance of the above technique and th~ aimplification resulting from 

its use are not accidental. They are the result of considering the true 

nature of the mechanism. that is being implemented. It fs often thought that 

by implementing all the system functions a user can trigger within the process 

representing that user, a simpler system will result since the user process is 

strictly sequential. Although often correct,· this attitude should not be 

adopted systematically. Using user processes to implement some function may 

actually cause more parallelism to occur. As a result of such a design, all 

kinds of locks may be necessary to synchronize all user processes. Several 

functions, like the removal of pages to secondary storage, should be 

considered from a system point of view even though they are perfonued as' a 

result of the interactions of individ:ual, users·. Such functions are better 

implemented by dedicated system processes t'ban withiri e~h user process. 

While looking parallel to a user~ a dedieated systetit process casts a 

sequential aspect in the implementation ·of the function it performs. The 

resulting implementation is cleaner and mor·e understandable. 

Partitioning, decomposition and modularity. 

According to Schroeder [Schroeder75], "partitioning is really the same 

problem as dividing [a system] into separate procedures and data bases, with 

the extra property that the modularity is enforced by the system's protection 
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mechanisms". Feiertag has used the term partitioning more loosely to mean 

dividing a system into modules with or wi.thout the protection connotation 

suggested by Schroeder. To clarify the situation, we will use the term 

partitioning in the sense proposed by Schroeder and we will use the term 

decomposition to mean the division of a syste~ into mQdules without any 

protection connotation. We will use simply modula~iiing to mean either 

decomposition or partitioning. Decomposition is a coa~eptual technique for 

defining modules. Partitioning alao includes a practical technique for 

enforcing t~t definition. 

Partitioning is more desirable than decomposition from a verification 

point of view because the enforced protection all-0ws the.designer of a module 

to depend on certain security properties of his module that are guaranteed to 

be true if the protection mechanism operates correctly. Those security 

properties can be helpful in the verificatioq of the module. However. there 

may be programming envirornnents -- particularily in a virtual memory mechanism 

-- where the protection mechanisms required to support partitioning simply are 

not available. In such environments, the designer must satisfy himself with 

decomposition. 

While partitioning is more helpful. than decoDtposition in v~rifying a 

system, both techniques are of e~ivalent-hel,p ia specifying or understanding 

the modules of a system. Parnas's specificatiQn technique for software 

modules [Parnas72a, Parnas72b] can be u~e4 as well .with partitioning as with 

decomposition. The difference between the two techniques will be felt only at 

the level of the security properties of a mQdule •. Wi~h partitioning, those 

properties are guaranteed to hold because of t,he pratectiQll mechanism. With 

decor.1position, they must always be proved, to hold. 

Both techniques for modularizing a system co~sist of dividing what would 
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be a complex mechanism into a set of simpler mechanisms, and implementing each 

simple mechanism with one module that can· be hardware,; sc,ftware or a 

combination of both. In either case; the module is a collection of algorithms 

and data bases. Two concepts of modularity can be found in the literature. 

Modules in the strict sense [Liskov72b, Parnas72] are isolated collections of 

procedures a.ad data bases where no data base can be shared by several modules: 

the data bases in one module can be referenced only by the procedures in that 

module. Modules in the weak sens.e [Haberma~76, Parnas.76] are collections of 

procedures and data bases that are not isQlated. They intersect over data 

bases that can be shared and managed by several mod:tJles:. The possibility of 

shared data bases belonging in several modules presents two disadvantages. 

First, the b~undaries of any individual mod.ule ar:e not clearly defined and 

modules are not clearly distinct •. Thus, it is extremely hard to i.dentify and 

specify simply, precisely, completely and correctly the interface of a module, 

i.e. the set of channels (including potential shared data bases) over which it 

interacts with other modules. Second, the formal specification .of the 

interface of a module sharing a data ,base must conta,in statements about the 

behavior of the module with respect to the srun·e.d data base. Hence, 

implementation level information about a shared data base propagates into the· 

design level specifications of the modules that share the data base, thereby 

making those specifications harder to understand, harder to use in verifying 

the modules and harder to maintain when changing the implementation of the 

shared data base. Instead, the interface of a strict module.is much easier to 

identify and specify because strict modules respeet Parnas's information 

hiding principle [Parnas71]. Since there are no shared ,data bases, modules 

cannot interact via data bases. Thus, identification of interfaces is easier 

because they never include data bases. And specifications of interfaces never 
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contain any information about the implementation of any data base. Based on 

these observations, we have chosen to work with strict modules in this thesis. 

(More details on the advantages of strict modules will be given in chapter 

III.) Unless otherwise stated, the word "module'' will implicitly mean "strict 

module". 

Partitioning and decomposition are only names for denoting two similar 

approaches to replacing what would be a large module by a set of small 

modules. There are two problems hidden behirtd those names: how does one 

choose modules to implement a system' and bow does one organize them in a way 

that makes a structured verification of the system possible? We will consider 

various answers to these questions in the next two sections. 

Total ordering vs. partial ordering. 

One objective of any module organization in a' eystem is the feasibility 

of a structured verification of the system. This objective implies that there 

b~ an ordering between the modules of the system such that the verification or 

the understanding of a set of modules can be inferred systematically ·from the 

verification or the understanding of subsets of that set. Parnas [Parnas76) 

has suggested that an ordering based on a relation he calls "uses" is adequate 

to infer the correctness of a system from the correctness of its parts. A 

module B is above a module A with respect to the "use·s" relation if A provides 

a service used by B. In this thesis, we will use an ordering based on a 

relation of dependency. A module B depends on a· module A if the correct 

operation of B depends in any way on the operation of A, i.e. if verifying the 

correctness of B requires making any assumption about the operation of A. 

(Ifore details on the dependency relation will be given in chapter III.) A 

module B that "uses" a module A depends on A because it assumes the 

correctness of the service provided by A. However, a module B that depends on 
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A does not necessarily "use" A. For instance, if A and B share a data base, B 
~ . ' . 

might not "use" A in the sense that it might not ,need the seryice prp:vided by 

A but B depends on A for preserving the integrity of the sha~ed data ~ase. 

Two modules that interact via a shared data base might not "4se" one another 

but are automatically mutually dependent on one. another. And mutual ,. 

dependence means a de,pendency loop in the _structure of the system, which. makes 

systematic understanding and verification harder. Thus,. the dependenc_y 
l ' ' ' , 

relation is preferred to the "uses" relation because it discourages the use of 

weak modules, which were deemed undesirable earlier, as they encourage cyclic 
. . . ' 

dependencies. On the other hand, Parnas argues [Parnas76] that considering 

the "uses" relation and allowing weak modules enhances system efficiency. As 

will be seen in chapter IV, we do not beli~ve that the lo~s of efficiency due 

to eliminating weak modules is substantial. In addition, we believ.e it is . ' . . . . . 

improper to trade clarity for efficiency of code, particularily in products of 

the size and complexity of current virtual memory mechanisms. (1) 

Whatever the ordering relation, two particular ways exist to organize. 

modules into a structured system: the total orderin~ t~chniqu~ and the 

partial ordering technique. 

The total ordering technique is based on a total ordering of the modules, 

i.e. each module is ordered with respect to every other module. A module can 

depend on (use) only primitives provided by lower level modules and is unaware 

of higher level modules, In many systems, the expression "level of 

abstraction" has been used to mean modules that are totally ordered. Except 

(1) In the absence of weak modules, the dependency .rela~ion is equivalent to 
the "uses" relation. Since we have decided to not use weak modules, unless 
otherwise stated, the phrase "depends on" will mean essentialJ.y the same as 
"uses". However, the reader must bear in mind the fact that the meanings are 
similar only because we restrict ourselves to strict modules. 
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when talking about such specific systems, we will avoid the expression because 

it is confusing. It has been used by too many authors to mean too many 

different concepts. 

The total ordering technique has been used for the design of numerous 

systems. Its use has been very successful in structuring the higher levels of 

a security kernel or an operating system. However, it seems to have been less 

successful in structuring the lower levels, and particularily the virtual 

memory mechanism, of a computer system. For some reason, every published 

system design based on the total ordering technique proposes to implement the 

virtual memory mechanism of the system with too few modules that are too large 

to be verified in most cases. 

In the THE system [Dijkstra68] and in a PDP-11/45 security kernel 

[Schiller73], the entire virtual memory mechanism is contained in only one 

,nodule, called a level of abstraction. Given the relative simplicity of these 

systems, a one-level virtual memory mechanism may be sufficiently small to be 

tmderstandab le and verifiable by existing techniques. But such an approach 

cannot be taken in computer systems with more sophisticated virtual memory 

1·1echanisms. 

In a virtual memory mechanism designed at Carnegie Mellon [Price73, 

Parnas74] and in an operating system designed at Stanford [Saxena75, 

Saxena76], the virtual memory mechanism is implemented by two levels of 

abstraction. The existence of two levels of abstraction perhaps clarifies the 

structure of the system but it does not necessarily simplify its verification. 

Instead of each level of abstraction being half the size that a single level 

0f abstraction would be, the levels of abstraction largely duplicate each 

other. In the Stanford system, the virtual memory mechanism is divided into 

two levels to eliminate a cyclic dependency between that mechanism and the 
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_.,..~ 

virtual processor mechanism, but not to simplify the virtual memory mechanism 

itself. The lower level of abstraction implements the virtual memory 

mechanism for a fixed small number of system processes while the higher level 

of abstraction implements the virtual memory mechanism for a large number of 

user processes. This design is very interesting to eliminate the cyclic 

dependency but in terms of size and complexity, each level of abstraction is 

comparable to what a single combined level of abstraction would be. Both 

levels of abstraction have to implement resource control and paging for the 

kind of processes they serve. The CMU system is based on a distinction 

' ' ' 

between fixed size segments existing in fixed number and variable size 
• ' • • l 

segments existing in variable quantity. Clearly, the level of abstraction 

supporting the former kind of segments is somewhat simpler than the level of 

abstraction supporting the latter kind. However, both levels duplicate one 

another in implementing paging for the kind of segments they support. 

In the Cal system [Lampson69, Sturgis74, Lampson75] and in the SRI system 

[Neumann74, Robinson75, Neumann75], the virtual memory mechanism is also 

implemented by two levels of abstraction. The levels of abstraction were 

chosen so that they hardly duplicate each other. Even so, each level of 

abstraction seems too large to be amenable to human understanding and to 

existing verification techniques. In particular, the levels of abstraction 

really implement more than one abstraction. This tends to confuse 

understanding and verification as the concepts implemented by the virtual 

memory mechanism are not clearly separated. 

The Mitre Corporation has proposed a redesign of the Multics system 

[Ames75] that includes a virtual memory mechanism composed of three 

levels of abstraction. The two lower levels of abstraction (core 

management and "other storage" management) look like they are sufficiently 
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small to be amenable to human understanding and verification. However, the 

higher level of abstraction (segment management) is cluttered with directory 

control, access control and information backup mechanisms. These mechanisms 

are not part of the segment manager and ideally should be implemented at 

higher levels. Unfortunately, the original functionality of these mechanisms, 

which Mitre has tried to respect as much as possible, suggests that they all 

share with the segment management mechanism the access to the directories of 

the file system. 

The partial ordering technique has not been exploited as often as the 

total ordering technique. As its name suggests, it is based on a partial 

ordering, as opposed to a total ordering, of the modules of the system. It 

has been exploited in the Venus system (Liskov72aJ. Feiertag has demonstrated 

the advantages of partial ordering in a case study involving the Multics 

system. The partial ordering technique is more appealing than the total 

ordering technique because it is more flexible and more natural. The designer 

is not forced to cast every module into an arbitrary, unrealistic and too 

constraining, totally ordered structure. 

Functional abstractions vs. data abstractions. 

The present section will discuss various ways to define the role of the 

modules composing a system. One may distinguish two kinds of modules: 

functional abstractions and data abstractions. 

A module defined as a functional abstraction appears as a primitive (or a 

set of primitives) implementing a function that can be applied to data 

supplied by the caller to transform it in some specified way. A functional 

abstraction module may have internal state information but usually does not. 

A module defined as a~ abstraction appears as a collection of 

objects. The primitives supported by the module ap?ear as channels to 
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store/retrieve information into/from. the objects. A data abstraction module 

always has internal state information: the representation of the objects it 

maintains. Any individual primitive (or subset of primitives) of a data 

abstraction module constitutes a functional abstraction. It is only all 

together that the primitives constitute the data abstraction. 

The data abstraction technique has two advantages over the functional 

abstraction technique. First, it is the basis of the concept of~ 

extension. This concept was first defined in the context of programming 

languages (e.g.,· SIMULA 6 7). It was then used by various people in the system 

design area. Different ways for implementing type extension in this latter 

area were proposed by Jones [Jones73] and by Redell {Redell74]. Type 

extension mechanisms were first designed for the Cal system [Lampson69, 

Sturgis74, Lampson76], the Hydra system [Cohen75, Levin75, Wulf7S] and the SRI 

system [Neumann74, Robinson75, Neumartn75]. Very recently, the type extension 

concept was used again in the programming language area for CLU [Liskov76], a 

language that will be m~ntioned several times in this thesis. 

The formalism of type extension requires that each type of object, that 

is each kind of data abstraction, be managed completely and exclusively by one 

module, called a~ manager. All the attributes of an dbject are defined 

and maintained by the type manager for that object. And any type manager 

defines and maintains the attributes of only one type of dbject. It is always 

clear which module is responsible for which type of object. Transactions with 

a type manager are restricted to operations on objects, i.e. to invocations of 

the primitives of the type manager. Thus, a type manager both hides and 

protects the implementation of the objects it supports. Since the primitives 

defining a data abstraction are grouped so as to hide the implementation of 

the data abstraction, the specification of the interface of a type manager 
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contains no knowledge about the implementation of the objects it supports and 

is thereby simplified. Since a type manager protects its objects, it 

naturally tends to not share its internal data bases with other modules. 

Thus, data abstractions lead to modules in the strict sense. This point will 

be developed further in chapter III. On the other hand, with functional 

abstractions, different modules may be responsible for different attributes of 

the same entity or, more generally, it may not be clear what the entities are. 

Nothing in the nature of a functional. abstraction suggests that it should not 

share a data base with another functional abstraction. Consequently, 

functional abstractions may lead to modules in the weak sense, with all the 

inconvenience that can result [Habermann76, Parnas76}. In summary, the first 

advantage of data abstractions over functional abstractions is that one can 

concentrate e~clusively on one module when establishing or verifying the 

properties of one type of objects, and the interface of a type manager tends 

to define an abstraction more simply, mqre precisely and more completely; than 

the interface of a (potentially weak) module based on, a functional 

abstraction. 

The second advantage of data abstractions is the ease with which the 

partially ordered structure of the system can be derived from the structure of 

the abstract objects it manipulates. In a sys~em based on type extension, 

each data abstraction is defined in terms of more primitive data abstractions 

and each abstract object is implemented in terms of more primitive objects. 

Thus, if objects of type T are implemented in terms of objects of types Tl to 

Tn, the type manager for Twill directly depend on (use) the type managers for 

Tl to Tn. The organization of the type managers directly reflects the 

structure of the data abstractions they stand for. This organization will be 

called an object based dependencx structure because of the underlying 
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existence of abstract objects. In gene}:"al~ i.t correspo,nds. to a .partial 

ordering but it may be cast in.to totally ordered modules .fNell{llann75,, 

Lampson7 5] • 

However, implementations of t.ype extension, under, ,their ct1rrent form, 

present two disadvantages that functional abstraction.a (lo not have. First, 

not every mechanism in a system can be cast eaijily into a data abstrac-tion. 

Many system programs .have an intrinsic fwictional aspect .that is hard to mpdel 

properly with d,,ata abstractions. F9r instance,. a loader is best regarded as ~ 

functional abstraction than as the manager of any type of data abstraction. 

Second, all existing type extension mechanisms depend on (use) a memory 

managemE:nt and information protection .mechanism,. which !JlaY itself be complex. 

Such a type extension mechanism cannot be us~ to structure the underlying 

memory management and protection mechanism be.cause .this wouJ.,d create a 

dependency loop between the two mechanisms,. which violates the partial 

ordering requirement of any module organization. All systems providing a type 

extension mechanism to their users do not exploit the mechanism within their 

virtual memory mechanism because the v;irtual memory mechani.s:\11. ls the memory 

management and protection mechanism used by the typ.e extension mechanism. At 

best, one can distinguish the shadow of a type extension concept in the 

virtual memory mechanism of certain systems. But this shadow is not supported 

by any actual type extension formalism, much less enforced by any type 

extension mechanism. 

For example, any operating system built around the Hydra kernel can use 

the type extension mechanism provided. by the keruel. 9Rwever, the kernel 

itself cannot and does not use the type extension mechanism because it 

implements the memory management and protection mechanisms that are precisely 

required to support type extension. In fact, the abstract objects (pages) 
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protected by the kernel are manipulated by primitives that evoke functional 

abstractions more than data abstractions [Levin75]. 

In the SRI system [Neumann75], most modules above the two levels of 

abstraction that implement the virtual memory mechanism strictly respect type 

extension. However, modules at and below the virtual memory levels do not. 

First, some of the abstractions supported are not data abstractions but rather 

functional abstractions (e.g., interrupt handling, masking, access 

revocation). Second, even abstractions that look like data abstractions are 

net implemented ds data abstractions. Segments and pages are implemented in 

terms of lower level functional abstractions rather than being implemented in 

terms of more primitive data abstractions like disk records and core blocks, 

for instance. Finally, each level of abstraction violates type extension in 

that it really i~plements more than one abstraction, as mentioned earlier. 

for instance, concepts such dS disk I/0, resource control and information 

backup are not recognized as separate abstractions. They are implemented 

within the two virtual memory levels of abstraction together with segments and 

pages thereby making the two levels of abstraction larger and more complex. 

In the Cal system [Lampson75], the two levels of abstraction implementing 

the virtual memory mechanism support two different kinds of file: core files 

and disk files. As in the SRI system, the formalism of type extension is 

violated and some of its advantages are lost because the lower level of 

abstraction implements half a dozen data abstractions instead of just one. 

Not only does this make that lower level too large for understanding and 

verification by existing techniques, but it also increases its complexity 

because some of the primitives it provides involve more than one abstract 

object. 
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3. Approach and thesis plan. 

From the previous discussion, it appears that the partial ordering 

technique is more desirable than the total ordering _technique to organize the 

modules of a system into a structured program. The partial ordering technique 

is more flexible and less restrictive than the total ordering technique. 

Therefore, it is easier to use and yields a more understandable system. 

It also appears that using type extension and designing modules after 

data abstractions rather than functional abstractions simplifies the resulting 

system. Not only does type extension naturally lead to a system that has an 

object based structure, which is -- in general -- a partially ordered 

structure but, in addition, type extension protects and hides all the details 

of each abstraction inside a type 10.anager module that embodies that 

abstraction. Thus, understanding and verification of any abstraction boils 

down to understanding and verifying the single module of the system that 

embodies the abstraction (assuming that the abstractions it depends on (uses) 

are correct). 

Unfortunately, data abstractions are not always easy to use because not 

every mechanism in a system can be cast into a data abstraction and because 

type extension mechanisms traditionally require the support of a memory 

management and protection mechanism that provides uniformly accessible, 

"growable" and protected information containers. 

The use of a type extension mechanism to structure a virtual memory 

mechanism is particularly awkward. First, a virtual memory mechanism may 

include mechanisms such as paging and resource control, which have inherent 

functional aspects that are hard to model with data abstractions. Second, a 

virtual memory mechanism implements the memory management and protection 
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mechanisms required by existing type extension mechanisms. Therefore, a 

virtual memory mechanism cannot use a type extension mechanism without 

creating dependency loops that violate the partial ordering of the system 

structure. 

The purpose of this thesis is to present a technique for organizing 

virtual memory mechanisms that exhibit an object based structure, that is, 

virtual memory mechanisms that are implemented by a set of partially ordered 

modules designed on the basis of type extension. 

The originality of this technique resides in the use of a new type 

extension concept that preserves the advantages of data abstractions over 

fun~tional abstractions while overcoming the two problems encountered in 

trying to stucture a virtual memory mechanism with a traditional type 

extension mechanism. Chapter II will examine in detail the differences 

between the traditional and the new type extension concepts. 

Chapter Ill will explain how the type extension concept we propose can be 

exploited to organize the virtual memory mechanism of a system. It will first 

be shown that type extension suggests and greatly helps building modules in 

the strict sense. The relation between type extension and dependency will 

tlien be studied, It will be demonstrated that the type extension concept 

helps choosing a set of data abstractions to implement the virtual memory 

mechanism and deriving the dependency structure that ties the data 

abstractions together. Finally, the impact of the type extension concept on 

deadlock prevention will be examined. 

In chapter IV, the usefulness and the applicability of the type extension 

concept will be demonstrated by a case study. The type extension concept will 

be used to reorganize the virtual memory mechanism of a commercial 

time-sharing computing utility, the Multics system. The functionality of the 
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user interface to the virtual memory mechanism will first be described for the 

readers who might not be familiar With Multics. The- present implementation of 

the Multics virtual memory mechanism will then be examined. The problems 

associated with this implementation will be pointed out. Finally, a new 

design that respects the functionality of the Multics virtual memory mechanism 

and is based on type extension will be presented. Particular care will be 

given to showing how the type extension concept helps avoid the problems that 

were pointed out in the current implement~tion of the- Multics virtual memory 

mechanism. To conclude the chapter, a few observations about the organization 

of the new design and the benefits of type extension will be made. 

While chapters II and III are crucial to the understanding of the type 

extension concept and its impact on the organization of a system, chapter IV 

is by far the most important part of the thesis. It represents a 

demonstration of the use of the type extension technique and reports on the 

bulk of the research that was performed to support this thesis. 

32 



II. Type extension in a virtual memory mechanism. 

This chapter will describe the details of a type extension concept 

designed to be used in organizing the virtual memory:111echani.sm of a c0111puting 

utility. When we will need to dist:inguisb this concept fr01D all type " 

extension concepts proposed earlier, we will refer to it simply as the ~ 

type extension concept or -2.!!!. type extension concept. We will refer to 

earlier concepts as classical or traditional· concepts. These names are used 

solely to distinguish various kinds of type extension. We do not imply in any 

way that all classical concepts are identical and indistinguishable among 

themselves. They are classical or traditional only insofar as they cannot be 

used inside a virtual memory mechanism, which distinguishes them from our 

concept of type extension. The advantages of using ouT concept inside a 

virtual memory mechanism will be discussed. In order to make those advantages 

clear to the reader, the differences between our type extension concept and 

classical type extension concepts, such as those used in Cal, Hydra and the 

SRI system, for instance, will be pointed out in terms of a data abstraction 

model. This model will be used as a reference to talk about the features of 

various concepts of type extension and their ability or inability to solve the 

problems that are encountered in organizing a structured and modular virtual 

memory mechanism. Classical type extension concepts and our concept will be 

examined from five different viewpoints: the nature of abstract types, the 

nature of abstract objects, the possibility of sharing components among 

objects, the protection of abstract objects and the implementation of 

abstractions. 
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1. 'A data abstraction model. 

The basis for any data abstraction lies in the concepts of abstract 

objects and abstract types. Our purpose here is to give semi-formal 

definitions of these concepts. 

The set of all objects in a system is partitioned into subsets called 

abstract types. An abstract type has three properties [Liskov76]: 

1. An abstract type is defined by a set of operations that can be performed 

on all objects of that type and are supported by a program designed for 

that purpose $id called the type manager (or the cluster in CLU 

{Liskov76)). 

2. The users of objects of some abstract type need not be aware of the 

implementation of the objects to manipulate them. 

3. In fact, it would do the users no good to be aware of the implementation 

of the objects, because they are allowed to manipulate them 

only by invoking the abstract type operations supported by the type 

manager and not by directly accessing their implementation. 

Abstract objects are repositories for structured data. Each abstract 

object is named by a unique identifier (uid). This uid is the result of the 

concatenation of a type identifier defining the type of the object and an 

object identifier. An object identifier is unique over all times but only 

within each type. Thus, its interpretation is type dependent. A uid is 

unique over all objects and all times. 

All abstract types (except the most primitive ones) ate defined in terms 

of more primitive types (therefore the term "type extension"). An abstract 

object O of type Tis implemented in terms of abstract objects 01, ••• ,On of 

more primitive types Tl, ••• ,Tn respectively. Objects 01, ••• ,On are called 
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the components of o. The information establishing the co~respondance between 

0 and its components is called the map ~f o. The map together with the 

components of O is called the representation of O. 

object 01 

type Tl 

Tl manager 

object O of type T 

manager for type T 

object 02 

type T2 

T2 manager 

object 03 

type T3 

T3 manager 

map 

representation 

compqnent 

Thus, the complete structure of an object could be pictured as a (possibly 

multi-level) tree rooted at the object an4 branching ~ut through the levels of 

components and subcomponents of the object. Only one leyel of this structure 

is visible by any type manager since each type manager knows about the 

structure of and can access the representation of only the objects it manages. 

The structure is nonetheless existant as defined by all type managers 

together. The structure of O reflects a.structure embedded in the definition 

of T. Any object of type T has a str~cture similar to that of O because type 

Tis defined in terms of types Tl, T2 and T3. Similarily, the structure of 0 

reflects a dependency structure that exists between the type manager for T and 

the type managers for Tl, T2 and T3. Since Tis defined in termsof Tl, T2 

and T3, any operation supported by the type manager: for T is expressed in 

terms of operations supported by the type managers for Tl, T2 and T3. Thus, 

the type manager for T depends on (uses) the type managers for Tl, T2 and T3 
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(therefore ;he term "object based dependency- structure"). 

With the above model of an abstract ob}eet,,we are in a position to point 

out the connections and the differences between the classical type extension 

concept and the 012e .we propose to use. for virtual memory mechanisms. 

2. The nature of abstract types. 

In the rest of the thesis, we will be considering various kinds of 

abstract types. In order to help the reader visualize what the various kinds 

are, we have tried to capture their relation in the following figure. 

in the user enviroament 

(classical type extension) { 

in the virtual memory environment ◄ 

(our type-extension) 

(C/D) · user types 

base level 

- (C/D :and A/F) 

intermediate level'. 

( C/B and A/ F) 1nternal types 
• ..... ------------1 

bottom level 

(A/F) 

User types are those visible to the users. Users may invoke user type 

managers to operate on user type objects. The most primitive user types will 

be called the base level types. Such types are precisely the types of 

abstract, virtual information containers (e.g., segments or pages) implemented 

by the virtual memory mechanism for the users. The virtual memory mechanism 

implements base level types in terms of more primitive types of information 

containers called internal types, which are not visible to the users. The 

most primitive internal types will be called bottom level types. Such types 

of information containers have a direct hardware representation (e.g., disk 
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records or core blocks). Through several layers of intermediate types, base 

level objects are ultimately implemented in terms of bottom level objects. 

The objective of this section is to discuss the first of five differences 

between classical type extension concepts and our type extension concept. 

This difference deals with the supply and lifetime, and with the possible 

reconfigurability of the objects considered under each concept. 

In all existing designs and implementations of the classical type 

extension concept, the supply of abstract objects of any type is apparently 

unlimited. Users can always create as many objects as they can afford to pay 

for. They can never exhaust the supply of objects. After a user has ceased 

to use an object, there is no need to ever reuse the object. It is destroyed 

and its uid becomes meaningless for ever. Thus, with the classical type 

extension concept, there is an essentially infinite supply of objects. And 

one can say that the lifetime of an object is bounded by its creation and its 

deletion, if such an operation exists. The object does not exist until it is 

created and assigned a uid. If deletion is a possible operation, the object 

is destroyed and ceases to exist after some user deletes it. The object uid 

is discarded for ever. Such objects will be called create/delete (C/D) 

objects. The abstract types of information containers provided by the virtual 

memory mechanism of a system to its users, i.e. the base level types, are in 

general C/D types. 

With our type extension concept, it is possible to define C/D types but 

it is desirable to define other types as well. The purpose of a virtual 

memory mechanism is to implement (simulate) an apparently unlimited supply of 

base level objects using a definitely limited supply of information containers 

Jike, for instance, core blocks and disk records. Such information containers 

are the most primitive types of objects one can conceive. They have a direct 
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hardware representa,tion. They stand for the~.s~lves, have no maps and no 

components. They are the bottom level objects. A bottom lev~l type provides 

a supply of objects that is limited be~ause it directly corresponds to a 

limited amount of physica~ space. Bottom level objects are of course never 

destroyed. They are only deallocated and are kept around for later 

reallocation. They have a physical existence and stay around as long as the 

system operates (except for reconfiguration c_ircumstances to be discussed 

soon). Thus, the bott.om level objects exist in limi~ed supply and need to be 

reused time after time. They are never created and deleted as are C/D 

objects. Instead, they are allocated ~ fr.eed (A/F). While the lif_etime of 

a C/D object is finite in the sense. of being bounded by ~he us~r requests to 

create and delete it, the lifetime pf an .A/F obj~ct is infinite in the sense 

that a user can only request its allocation and its deallocation. 

Deallocation does not mean destruction of the object. Nor does it mean 

invalidation of the uid of the object. The uid ii:; temporarily out of service 

but not meaningless. 

Other types envisioned under our type extension concept (intermediate and 

base level) may be either C/D or A/F depending on the needs and the 

possibilities. For instance, since the base lev.el prov.ides users with a large 

suppl}'.' of abstract information containers th~t can be created and deleted,. 

some base level objects are obviously C/D. Ho~ver ,, tl}ere may also be 

additional A/F types at the base level, as will be seen in the case study of 

chapter IV. It will also be seen there that most intermediate types tend to 

be A/F types though this is not an absolute rule. SoJUe may be C/D types. 

Certain types defined under our type extension concept may differ from· 

types defined under a classical type extension con<:ept · in terms of the supply 

and the lifetime of the objects they provide, as we have just seen. Certain 
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types considered under our type extension concept may also differ from the 

types considered under the classical typ_e extension concept in that the 

objects they provide may be dynamically reconfigured. In general, this only 

requires that the type managers for such types provide two pri.Di.itives, 

"configure" and "deconfigure", of which the purpose is to change appropriately 

the state of the objects they are invoked to operate on. 

At this point, it is desirable to discuss the relation between the 

configure/deconfigure primitives and the allocate/free primitives. To do 

this, we will relate our concept of type extension to the model of dynamic 

resource reconfiguration proposed by Schell [Schell71]. 

Schell' s algorithm for recortfiguring resources first makes a distinction 

between physical resources and logical resources. An example of a physical 

resource is a memory box. A logical resource is a physical resource that is 

accessible. The logical resource corresponding to a memory box is a memory 

box to which the system is connected. To und~rstand how a physical resource 

can be configured into a logical resource, we refer the reader to Schell's 

thesis [Schell71]. 

We are interested primarily in the configuration of logical resources. 

Schell's logical resources correspond to pools of our A/F objects. (1) In 

terms of Schell's model, logical resources evolve between one of four states 

as explained by the following figure. 

(1) For readers familiar with Sche11•s terminology, the folldwing 
correspondances exist with our terminology: 

Schell's 
available 
unavailable 
free 
bound 
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Consider for ins~ance a logical (connected) core block. Initial~y, a 

logical core block is free and deconfigured, i.e. -it may.1;,e co~nected to the 

system but it is free in the sense that it contains no useful information and 

it is deconfigured in the sense that the system is unaware of it and cannot 

store anything into it. After it is configured, the core block becomes 

logically accessible to store· information into it. When it is allocated (for 

instance, to an address space, a segment or a page), it does contain 

potentially useful information. When it is deconfigured and if it was free, 

it goes back directly to the initial state. If it was allocated, it is first 

marked deconfigured even though it may still contain information and then it 

is freed and returned to the initial state. 

In connection with our type extension concept, the transition diagram 

deserves a comment. It differs from the one suggested by Schell for certain 

types of .objects. According to Schell, a resource that is d'eco!)-figured 

logically must be freed (emptied of all useful informa.tion) before it can be 

deconfigured physically. This is because Schell has envisioned the 

reconfiguration of objects like core blocks that cannot retain information 

while they are disconnected. However, we want to be more general and consider 

removable disk packs, for instance, as in the case study of chapter IV. 
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Resources like removable disk packs are designed. to be kept off-line but 

allocated to· useful abstract information containers.' 'With such resources, 

regardless of the allocated/free state of an object, that object can be 

deconfigured logically and physically without having to return to the initial 

deconfigured-free logical state before being deconfigured physically. Thus, 

the modified transition diagram for such obj~cis is the following. 

l 2 3 

free free allocated 

" 'configured deconfigured configured 

' ' ·r l 
allocated 

deconfigured 

4 

In essence, the resources considered by Schell always had to be deconfigured 

logically and returned to the free state (1) before ~hey could be deconfigured 

physically. In this thesis, we also consider resources that need not return 

to the free state as they are deconfigured logically before they can be 

deconfigured physically. They can be deconfigured physically from either 

state (1) or (4). 

3. The nature of maps. 

The second difference between the classical type extension concept and 

our type extension concept deals with the nature of the maps of objects 

supported by the virtual memory mechanism. 

Consider the type extension concept in the system design area [Cohen75, 

Neumann75). Outside the virtual memory mechanism~ the role of object maps is 
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secondary. The essence of any operation on an: abstract object consists of 

operating on the components of the object •. The map itself is affected only 

when components are added or deleted. 

Within a virtual memory mechanism, we will observe just the opposite 

situation. Most of the code of a type manager will be devoted to manipulating 

the map of the objects it supports. Very little. will be concerned with 

storing/retrieving information into/from the components of the objects. Such 

operations are usually.implemented in hardware. This contrast with the 

classical type extension concept (in the system des.ign field) is justified by 

the fact that our type extension concept is designed to organize virtual 

memory mechanisms. The essence of a virtual memory mechanism is to perform a 

mapping function from base level objects to bottom level objects. Thus, most 

of the informa.tion stored in the representation of an object is information 

mapping that object into its components. Most objects implemented by the 

virtual memory mechanism consist essentially of their map. (Of course, bottom 

level objects have no map and consist only,of user information that was stored 

into them.} 

With the classical type extension concept, the implementation of object 

maps is fairly straightforward. Maps are i111.plemented by base. level objects. 

For instance, in Hydra [Jones73], each map is implemented by. an individual 

list of capabilities ( c-list). In the SRI syste111 [Neumann75], all maps are 

collected in a centrally managed segment. Thus, there is a dependency ("uses" 

relation} between any type manager and the -type manager that. implements maps. 

This dependency does not reflect the structure of any ~batract 9bject.. It is 

not a component dependency. It is a d.ependency -resulting solely from the need 

to implement maps with some type of information container. 

With our type extension concept, the implementation of maps is no trivial 
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problem. It is out of the question to envision using base~ level objects to 

implement the maps ,for objects implemented by the virt.ual memory mechanism 

since base level objects are themselves implemented by such objects and we 

want to avoid dependency, loops in the, st~t.ure of ·d1e systea. The problem 

with the new type extension concept is t·hat eaca type manager aust reuiveot 

its own type extension. mechanism., that is, it ~ .-decide· what infomation 

containers it will use to implement the map of the; .objectai it supports •. · Jn 

order to avoid violating the partial ordering of the, abstract types and of the 

dependency structure of the virtual memory mechaniam, a given type·manag~r 

must implement the maps for its objects_ in ter.ms .of information containers of 

an abstract type defined at a lower level. As wil:l be seen in .chapter LY_. if 

none of the abstract types defined ;at lower lev.els: ar.e suUable for 

implementing the maps as desi-red, an. ~act type 1Day be created· for that 

special purpose. ·(1) 

A solution that will be exploited in chapter IV for imple!lle!ltilJgthe ~aps 

of the objects of some·abstract type consists,of ,collecting the maps of many 

objects of that type into one information container that constitutes an 

internal data base of the type manager for tnat type.· Maps are in general 

ve:r:y small in terms of storage ra_quirements, often too' small, to efficiently 

utilize ,the amount of physical storap provided. by an abstract container of, 

any available type. Therefore, it is desirable to gather many maps into one 

(1) This observation supports our earlier claim that the SRI system does not 
really use type extension to organize its virtual memory mechanism. It fails 
to specify means to implement the maps C)f the ab.st!ract :obJects (pages and 
segments) its virtual memory supports. No data abstractions are defined for 
that purpose. Maps are implemented by: so111e -unspecified,.internal aechani• 
that is left to the creativity of the system programmer and to the imagination 
of the user. If a true type extension appr{)ach, had been taken,,:the problem of 
the implementation of maps would have been raised explicitly and would not be 
left undefined as it is. 
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abstract con~ainer to achieve more efficient utilization of the physical 

storage. The implem,entation of maps is a manifestation of a problem often 

referred to as the "small object problem". 

This problem is al'so encountered in practice (see chapter IV) for the 

implementation of small components of abstract objects. Its solution in this 

case is similar to the one suggested for the implementation of maps. Several 

small components are collected in one information container. Consider a 

hypothetical abstract type called segment. :The s,tructure of a segment is 

defined below. 

segment. 

}map 

cur len max len page_l page_2 page_n. } components 

The components called page_l, ••• , page_n are repositories for user 

information. They are implemented by abstract objects of type "page". The 

cur_len and max_len components are repositories for information that is 

maintained by the segment manager about the current and the maximum number of 

pages in a segment. From the point of view of programming languages, these 

components are implemented by objects of type ,11 integer". However, from the 

point of view of a virtual memory mechanism, we are not interested in the 

abstract information (integers) that represents thes~ components but rather in 

the abstract containers that implement them. (1) If there existed abstract 

(1) To relate the programming language view of the small components as 
integers and the virtual memory view of the small components as information 
containers, one can regard information containers as type generators. The 
concept of a type geneI'atcn;. has been defined in CLU [Liskov76). Arrays and 
stac~s, for instance, are type generators, Le. tll,ey do not define abstract 
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containers that could contain efficiently small amounts of information, they 

would be suitable for our purpose. Unfortunately, existing virtual memory 

mechanisms do not support small information containers; much to the contrary, 

they tend to support containers that are as large as possible. Thus, we are 

faced with the problem of implementing small components with large information 

containers. To solve this problem, we propose storing the small components of 

an object in one container. 

In fact, we can solve the problem of implementing maps and small 

components even more efficiently by combining these small objects together. 

Assuming that small components are not shared by several objects, we can store 

the small components and the map of an object together; and we can even 

collect the maps and small components of several objects of the same type in 

one information container. In our example about segments, we could, for 

instance, use one page to implement the maps of four segments, together with 

their small components. Irr fact, since the small components of an object are 

implemented together with its map, the map need not explicitly contain the 

uids (addresses) of the small components. It may directly contain the 

components themselves as illustrated below. To this extent, the small 

components are better regarded as attributes than as components of the 

segment. They are implemented by (stored in) an information container defined 

below the level of segments. They are interpreted and used by the segment 

manager. They are analogous to what is called the "data-part" of the object 

in Hydra [Cohen75]. 

types per se but they can be used in conjunction with abstract types to 
generate other abstract types, e.g., arrays of integers or stacks of reals. 
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map for segment page (own data base of segment typ·e manager) 

so 

S1 

S2 

Sl' 

••• page_n ... l 'page_n 

4. SharinA compOnents. 

The third difference between the classical and the new type extension 

concepts deals with sharing a component among several objects. Such sharing 

is generally regarded as dangerous because of the side-effects it may have. 

Yet, use of the new type extension concept for implementing a virtual memory 

mechanism has shown that such sharing may be desirable precisely for its 

side-effects. A few comments are in order about shared components. 

First, consider how sharing can be caused to occur. The following figure 

illustrates a sharing situation in a hypothetical virtual memory mechanism. 

passive 

user segment S {arrows indicate 

segment P active segment A component relationships ~-disk record R core block B 

Five abstract types are involved in the example: disk records and core blocks 

at the bottom level, active and passive segments at the intermediate level and 

user segments at the base level. In the quiescent state, i.e. while it is not 

used, a user segment is composed of only a passive segment. A passive segment 
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is itself composed of a set of N dililk_ records, "1iere N can- u, set explicitly 

by the user for each passive segment when the- cor-r$ponding user segment is 

created. A passive segment -is -characterize«C·by the, fact '.that its map resides 

in a disk record. When a user segmentl>ecomes"used~ an dpject called an 

·-
the property that its map resides ia a core 'b.}.ock and i~r initialized to denote 

the same N disk records as the map of the passive segment denotes. Thus, when 

a user segment S is used, its components P and A share N.ditK.-Z:~Ql'dl!I as _their 

components. When the kth page of Sis referenced, a demand paging mechanism 

implemented inside the active segment manager requests the allocation of a 

core block B, makes Ba component of A and copies into B the information 

contained in the kth disk record (R) of A. Sharing occurs not as a result of 

the active segment manager having independently requested the allocation of 

the N disk records but as a result of the user segment manager passing from 

the passive segment manager to the active segment manager the list of disk 

records composing P. Sharing cannot be the result of two type managers 

requesting the allocation of the same components because objects can be 

allocated only once. Instead, sharing is the result of the uids of the shared 

components having propagated-,from the map of one object tq __,~he map of another 

as the result of an explicit operation of some module (the user segment 

manager in our example) that necessarily executes at a level higher than that 

of the type managers for the objects sharing components or is one of these 

type managers themselves. This observation will be used in the next section 

as we discuss the protection of internal type objects. 

A second comment is in order on the use of shared components. The second 

property of abstract types states that the module using an object of some 
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abstract type need not be aware of the impl:ementation of the object. This may 

seem to contradict the fact that the user $egment manager has caused p and A 

to share Rand therefore is aware of R. In fact, there is no contradiction if 

one considers the original intent behind the second property of abstract 

types. The intent is to relieve the module using an object from worrying 

about the details of implementation of the object and to hide from it any 

internal feature of the object that it does not need externally to use the 

object. That the user segment manager may see the uid for R does not mean 

that it must know about the implementation of P and A. It does not have to 

know how R is used by the passive segment manager and the active segment 

manager. Nor does it have to know how R fits together with other objects to 

compose P and A. The active segment manager and the passive segment manager 

hide from the user segment manager internal features of P arid A that are of no 

interest to it. However, if Pis a passive segment and A an active segment, 

there must be a way for modules using such abstractions to talk about the disk 

records in the segments. Such features are in no way internal. They are 

explicitly specified by the various abstract type definitions as externally 

accessible, logical attributes of these abstract types. To compare this to 

the programming language area, the disk records in a segment should be 

regarded as the integers in an array. Integers in an array are, by definition 

of an array of integers, logical attributes that are accessible to the user of 

the array via the array indexing operations. 
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5. Protecting internal type objects. 

The fourth difference between the new type extension concept and the 

classical one deals with the protection they afford to the abstract objects 

they consider. 

In order to ensure the third property of abstract types, i.e. the 

exclusive privileges of a type manager to manipulate the objects it supports, 

any type extension mechanism requires the help of a protection mechanism. 

}lost existing and proposed type extension mechanisms rely upon a protection 

mechanism based on the use of capabilities. The uids of abstract objects are 

locked into capabilities. The first purpose of capabilities is horizontal 

protection, i.e. the protection of users against each other. A user can 

request a type manager to operate on an object only if he has a capability for 

the object. The second purpose of capabilities is vertical protection, i.e. 

the protection of type managers from their users. A user cannot directly 

manipulate the representation of an object because the privilege required to 

turn (ampl_ify [Jones73] or unseal [Redell74]) the capability for the object 

into a capability for its representation belongs exclusively to the type 

manager _for the object. Unfortunately, a capability mechanism (or any other 

run-time protection mechanism) appears to be unsuitable and uneconomical to 

protect internal type (bottom and intermediate level) objects. 

Consider bottom level objects in particular. If capabilities were used, 

they would have to be revocable. With bottom level objects, there must exist 

a mechanism to guarantee that the user of an object cannot access that object 

after it has been deallocated. There exist two classical ways to implement 

revocation in a capability mechanism. With the first, every time a capability 

is given to a user, its location is recorded in a table. When a privilege 
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must be revoked, the system can chase and destroy all the capabilities that 

embody it. This scheme is used in the- Mult,ics system {Organick72]. However, 

it would be very impractical to use it in a system where capabilities can be 

freely copied. A better scheme {Redell741 consists essentially of maintaining 

a list of currently valid capabilities and mat~hing against that list any 

capability that is presented to access an object. With either revocation 

scheme, a revocation table is required (either to record where capabilities 

are or to record currently valid ones). In genel'al, there are DJany objects in 

a system. Even though there is a limited supply of bottom level objects, that 

supply may be large (e.g., disk records). Therefore, either kind of 

revocation table may be very large, possibly too large: to be core resident at 

all times. Since bottom level type managers are below the base level of the 

virtual memory mechanism, they cannot use baiJe level opjects to implement 

revocation tables. Thus, they cannot take advantage of the I/Q mechanism 

embedded in the virtual memory mechanism to manage revocation_ tables. 

Instead, special purpose mechanisms for I/0 and revocation table manipulation 

would have to be provided at the bottom level of the virtual memory mechanism 

to enable all bottom level type managers to maintain revoc~tion tables. This 

would not only increase the size and the complexity of the virtual memory 

mechanism but it might add a sustantial overhead in I/0 time to the system due 

to the management of revocation tables. Thus,. using revocable capabilities 

for bottom level objects would be inefficient and inco.nvenient. The same 

argument holds about the inconvenience,of any run-time protection mechanism at 

the bottom level: some potentially large data base is always necessary to 

decide what accesses should be authorized. 

Furthermore, capabilities are too sophisticated and expensive for the 

protection of internal type objects in general. They are not really 
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necessary. As far as the users of the system are concerned, they see only 

base level objects. They do not see internal type objects and never own 

capabilities for them. The only "users" of internal type objects are the 

system programs implementing the virtual memory mechaniS111. Such programs are 

very different from user programs in that it can be demonstrated through 

compilation and verification that they do not violate-the protection of 

internal type objects at run-time. Thus, the protection of internal type 

objects from system programs does not require a run-time protection mechanism. 

The use of such a mechanism. to keep system programs from hurting one another 

seems an expensive solution to solve a problem that has a much cheaper 

solution, as is explained below. 

In the above discussion, we have tried to suggest that to carry the 

philosophy of type extension all the way through the lowe~t levels of a 

system, it may be desirable to have a protection mechanism different from 

capabilities and other run-time mechanisms. First, it seeurs difficult to 

support revocation if a run-time protection mechanism is used and second, it 

seems uneconomical to use a run-time mechanism a-t those levels. Yet, in no 

way are we suggesting that the use of a run-time proteation mechanism must be 

precluded for all internal types. Furthermore, with new technology, the use 

of capabilities might become more practical. For instance, the machine 

described in [Radin76] contains a built-in capability mechanism for doing type 

extension from the bottom level up. Although one may argue about the cost of 

manufacturing such hardware today, the proposed machine would grea.tly help 

support the type extension concept proposed in this thesis. The protection 

mechanism we recommend does away completely with run-time protection for 

internal type objects. Vertical protection is _provided by a compile-time 

mechanism and horizontal protection partly by the compile-time mechanism and 
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partly by a verification-ti.Bte mechanism, as will be seen. These mechanisms 

provide the same pt'oterition as a run--.time m~cbani811l ,woule provide but at a 

much lower cost. 

Let us first consider vertical protection. We recommend a protection 

mechanism similar to the one used in the CLU language (Liskov76]. Instead of 

depending on the capability mechanism provided by .,the system to the users at 

run-time, the CLU type extension mechanism depends on acaapile-time 

protection mechanism based on ~ checking. The CLU system ·conslsts of a se.t 

of description units (interface specifications) for clusters (type managers) 

and procedures (ftm.ctional abstractions). Every time a aew CLU program is 

compiled into the CLU system, the type checking •echanism enforces three 

properties. First, it verifies that all clust,ers and procedures invoked 

(used) by the program being compiled already belong in ,the CLU system. i.e. 

that there exist description units for them. Second, :it verifies that the 

type of every argument of every call to every cluster or procedure invoked by 

the program being compiled is declared to be the type expec.t~d by the invoked 

cluster or procedure, as specified in the CLU system. Third, the type 

checking mechanism ensures that the· program bein-g compiled does not (try to) 

access the representation of any of the objects it manipulates ·except for the 

objects it supports if it is a cluster. 

We recommend using such a type checking mechanism to enforce the vertical 

protection of'internal type objects. Thus, modules of the virtual memory 

mechanism must be formally described to the compiler before compilation takes 

place so that type checking can be performed at compile-time. The 

implementation of vertical protection for in·ternal type obJects points out one 

difference between user and internal type objects. The vertical protection of 

an internal type is not guaranteed by its type man~ger because the typ.e 
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manager does not provide capabilities or any other aechan:ism to protect the 

objects it implements at run-time. (1) In&tead, vertical ,protection.is 

guaranteed by the compile-time type checking mechanism. 

Let us now consider the horizontal protection of internal type objects. 

Insuring that a module cannot access obj~ts, owned by other modules for which 

it has received no privilege can aleo be g-1,aµte_ed by the compiler in most 

cases. For instance, the compiler should prevent modules from generating 

random references that would cause tbert to access l()C'-l variables in the 

activation records of other modules. The CQll.piler should-also prevent modules 

from referencillg arrays beyond their bounds, This sort of horizontal 

protection issues do not pose any problem. However, t:he following issue poses 

a problem. The problem consists of guarante~ing tl)at no module of the virtual 

memory mechanism ever uses the uid of an obj~t af.ter. that object has been 

deallocated. In CLO, objects cannot be deleted. Therefore, there is no need 

to implement revocation of deleted uids. In fact, we suspect that objects are 

never deleted precisely because there is no obvious way to revoke deleted uids 

in a user environment like CLO. However, the problem is quite different in a 

system environment like a virtual memory mechanism. 

In a us,er environment, one must expect a user to c;lelete an object but 

forget to delete all the uids he has for it or forget t~ tell other users 

sharing the object to delete their uids for it. And one must expect a left 

over uid to be used after the object that it once den,o,ted has been deleted. 

Thus, a protection mechanism is necessary to prevent the usage of uids of 

(1) An elementary run-time type checking mechan:ism may be built into the 
programming language for union types [Liskov76), which stand for one of 
several types, the actual type being determined only at run-time. Noti~e that 
we have not felt the slightest need for union types in the particular case 
study of chapter IV but we do not mean·· to rule them out in general. 
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deleted objects. Thanks to a capability revocation mechanism, the user can be 

prevented from using uids of deleted objects. If he did, he would soon 

realize his mistake and could take some appropriate corrective action. 

In the system environment of a virtual memory mechanism, the above 

situation can and must be prevented from ever occurring. It must be prevented 

in any case simply because it would give rise to errors. The users of the 

virtual memory mechanism do not see internal type objects. They do not have 

any knowledge about internal type objects. Therefore, they could never take 

an appropriate corrective action if a module of the virtual memory mechanism 

used the uid of a deallocated or deleted object. Thus, virtual memory modules 

should simply never put themselves in a situation in which they could use the 

uid of a deallocated or deleted object. Using the uid of any deallocated 

internal type object is a blatant violation of the protection of some base 

level object because the internal type object may have been reallocated in the 

meantime. If a core block had been deallocated from one segment and 

reallocated to another, the user of the first segment could access a portion 

of the other segment if the segment manager had not properly deleted the uid 

of the deallocated/reallocated core block from the map of the first segment. 

One can prevent the usage of uids of deallocated or deleted virtual 

memory objects precisely because they are never used or seen in user modules. 

They are confined to virtual memory modules. And unlike user modules, the 

correctness of virtual memory modules must be verified prior to their 

execution. Part of their verification consists of showing that they are coded 

so as to destroy any copy of the uid of any object when it is deallocated or 

deleted. We will refer to this property as the conservation of uids: all 

copies of a uid must disappear from the modules that used it when the 

corresponding object is deallocated or deleted. Thus, the horizontal 
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protection of internal type objects is guaranteed not by any run-time 

protection mechanism like capabilities but by the uid conservation that is 

checked at verification-time. 

The above paragraph points out another difference between internal type 

objects and user objects. For internal type objects, the type manager does 

not implement capabilities or any other run-time protection mechanism. Thus, 

it is not responsible for the horizontal protection any more than for the 

vertical protection of the objects it maintains. Horizontal protection is 

guaranteed by the fact that the virtual memory modules are verified to 

conserve the uids of in tern al type objects. A type manager for an internal 

type only guarantees the correct manipulation of internal type objects. It 

will never allocate/create an object that is already allocated/created. But 

it does not prevent modules having used an object from referencing it after it 

is deallocated or deleted. Modules doing so would hurt only themselves or 

other modules using the same objects. In practice, they hurt neither 

t11emselves nor uther modules because all modules are verified to properly 

conserve all uids together. Thus, mutual dependencies that would exist 

between two modules if each one needed to assume that the other conserved uids 

proµerly are eliminated at run-time because uid conservation was checked at 

verification-time, globally for all modules. 

The protection of internal type objects deserves a last comment. We know 

what a type checking mechanism consists of and we know it can be built. But 

\,c~ io not have similar experience for uid conservation. We do not know if we 

l'.an verify it systematically, if we can verify it at all. Rather than trying 

t,, produce potentially complex rules to write systematically assertions that 

would guarantee the conservation of uids in all possible cases, we propose a 

pragmatic approach to formulating the assertions. Experience with the type 

55 



extension concept in the case study of chapter IV has taught us that 

formulating the right set of assertions to-guarantee uid conservation in every 

particular case was easy while trying to produce rules- to formulate assertions 

systematically in all ·possible eases was ·extremely hard. In most cases, the 

uid of a internal type object was found to be confined to the module that 

requested the allocation of the object. In such casesj one can formulate 

easily assertions that guarantee the uid conservation within that! module. It 

is simple to require that· all copies of the uid made within the single module 

be destroyed when the object is returned to the free pool. In·the few cases 

where a uid was found to propagate through several mddules, we noticed that 

its propagation was controlled by the module that is highest in the dependency 

structure of all modules through wich the uid propagated. Consequently, it 

is easy to produce assertions on that one module to guarantee that it controls 

the destruction of copies of the uid as well-as it controls their propagation. 

Verifying these assertions will automatically suggest to the designer the 

assertions that: may have to be verified about the lower level llodules through 

which the uid propagates. 

For an example of such a situation, consider the hypothetical system used -

to illustrate sharing in the previous section. The ~ids of disk records 

propagate through the passive segment manager, the user segment manager and 

the active segment manager precisely to cause sharing. Yet, their propagation 

is controlled by the user segment manager because the disk records are 

ultimately the bottom level components of user segments. The conservation of 

those uids is guaranteed as follows. Disk records are deallocated only when 

the passive segment they compose is deallocated. This passive segment is 

deallocated only when the user segment it is a component of is deleted. At 

that time, the semantics of the user segment manager require that the 
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corresponding active segment also be deallocatecf. J~ other words, uid 

conservation does not even require verifying any speci~l- P\Jl'lNSe ,asser,t:i.on .. 

It is guaranteed by the fact that the user sepent m~aaer aiways deactivates 

a user segment before it deletes it. Of coµ1:se, on~ ~an.1vel'ify uid 

conservation only if it can be shown tl)at the ac::,tive s~gment _maqager and the 

passive segment manager clear (erase) the map of:,~he objects they maintain 

when they are requested to deallocate these ~bj~~t1ii"'. ~SQ• copies stored in 

working storage must be destroyed. Such assert;i.ons-111,ay ~qt be part of the 

original definition of the two type manage,;~ .but they ,r~ easy .to fc;,na\llate 

and certainly seem reasonable (not too con~trainil\g)., As wa~ mentio~ec;l in the 

section on shared components, sharing is always cqntroll~d exp.lic,itly -~y some 

module that depends on (uses) or is one of the type managers managing the 

objects that share components. That module also con..trols. the propagation of 

the shared uids. Thus, at least in all ~:l.tuations wbere&µ..ds propagate 

because of sharing, we suspect it should b~ as easy as in our example to 

formulate the assertions guaranteeing uid co~-servatipu,. _. In all ~haring 

situations of the case study of chapter IV, verifying uid conservation is not 

a problern. 

6. The nature of type managers. 

A type manager is an isolated collection of procedures and data bases 

that constitute a module. In general, an instance of a module is available in 

every user process in the form of a callable program. If modules are isolated 

by a partitioning technique based on the protection mechanism of the system, 

then they are realized by domains that can be invoked only at certain entry 

points called gates. If modules are defined by a simple decomposition of the 

system, with no enforcement of isolation by any protection mechanism, then 
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they are realized in every user process by what Feiertag has called a region 

that is an unprotected collection of callable procedures. However, there is 

nothing intrinsic about type managers that implies the above implementation. 

Nothing precludes realizing a type manager module with a dedicated process and 

its operations with inter-process messages. This kind of implementation is 

possible because of the common nature of processes and domains/regions. They 

are all made up of procedures and data bases. A domain/region is a set of 

procedures that can be executed sequentially with respect to a user 

computation. A process is a set of procedures that can be executed in 

parallel with a user computation. In practice, modules are often realized 

with a domain/region. However, there may be cases where using processes or a 

combination of processes and domains/regions is necessary or desirable. The 

advantage of using a process is that it can take the initiative of certain 

actions and carry them out in parallel to user processes, which would be 

impossible with a domain/region that can start operating only upon a 

synchronous user request. For instance, to implement the asynchronous but 

sequential page removal algorithm described in chapter I, the page manager 

would have to be realized by one region that' is synchronous to the execution 

of user processes and one process that runs in parallel to them. Both the 

region and the process are part of the implementation of the page manager 

module for the very reason that they manage the page maps that tell whether 

any page is in or out of core. Thus, clarity is gained because the region and 

the process perform distinct operations on pages in their own way. However, 

the interaction between the region and the process cannot be ignored in the 

verification of the type manager. As will be seen in chapter III, the 

particular realization of a type manager as a region, a domain, a process or a 

combination of these does not matter from the point of view of the modularity 
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of the system because modularity considers only modules and is not concerned 

about their nature. 

7. Conclusion. 

This chapter has first defined a data abstraction model. Then, based on 

this model, the features of conventional type extension concepts were compared 

to those of the type extension concept we propose to use for virtual memory 

mechanisms. In particular, we have examined the lifetime and the supply, and 

the reconfiguration of objects. We have also discussed the problems of 

implementing object maps, sharing components and protecting objects in the 

specific environment of the virtual memory mechanism. 
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III. Use of the type extension technique 
to design a virtual memory mechanism. 

The present chapter will discuss the impact of using the type extension 

concept defined in chapter II on several aspects of the design of a virtual 

memory mechanism. First, we will discuss the use of type extension as a 

technique to organize virtual memory mechanisms. Second, we will discuss the 

impact of type extension on modularity and explain in what sense the type 

extension concept fosters strict modules. Third, we will discuss the impact 

of type extension on structure, we will examine what situations could cause 

violations of the partially ordered structure of a system, and we will see 

which of those situations the type extension concept helps avoid or simply 

eliminates. Finally, we will discuss the advantages of type extension with 

respect to a locking strategy for avoiding deadly embraces on system data 

bases. 

1. Use of the type extension concept. 

It should be kept in mind that the topic of this thesis is not the 

presentation of a tool for automating the design of virtual memory mechanisms. 

We are not trying to systematically produce "off-the-shelf" virtual memory 

mechanisms. (Not because this would be undesirable but just because it is too 

hard.) We are concerned primarily with recognizing a well-organized design 

once we see it. Thus, the type extension technique is not a tool for 

mechanically generating the design. It is mainly a means for evaluating the 

organization of an existing system design. The type extension concept is a 

context in which the organization of a system can be evaluated and 

progressively tuned towards a strictly modular and partially ordered design. 

The whole point of the type extension concept is regarding the virtual 
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memory mechanism as a set of modules, most of which are likely to be type 

managers, that provide abstract types of information containers. The problem 

that must be solved is the choice of an "adequate" set of abstract information 

container types. How successful a designer may be at making a good choice of 

abstractions depends on his experience and -- shall we say -- his good taste. 

There is no single best way to organize a system. There are probably many 

good ways to organize it. How fast a designer can arrive at such a good 

design depends on his ability to adopt the type extension view, i.e. to 

visualize data abstractions providing the functionality he has in mind. This 

may require several design iterations in the course of which the designer may 

notice modularity and structure problems and should adjust his design 

accordingly. 

While the design of a system and the choice of abstractions may be very 

hard problems and are left entirely to the designer, the type extension 

technique more than any other technique provides a few handles on these 

problems. On the one hand, it provides feedback such that the organization of 

the system may be evaluated and problems may be detected. On the other hand, 

it may suggest possible corrective actions for certain problems. In the 

remainder of this section on the use of type extension, we review only briefly 

the overall process of exploiting type extension to design a system. More 

details and specific examples about this process will be giv~n in later 

sections of chapters III and IV. 

Let us first consider the feedback provided by type extension on the 

design of a system. When the designer believes he has worked out a possible 

decomposition of his system into modules and before he implements any module, 

he can construct two graphs that will provide him with useful feedback to 

evaluate the organization of his system. Such graphs can always be drawn, 
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even if the system is not well-organized, which the graphs would precisely 

indicate. Parts of such graphs are shown below for a hypothetical 

well-organized system. 

structure graph dependency graph 

file 

t 
file manager 

~ 
segment 

' 
segment manager 

t 
page 

+ 
core block 

page manager 

t 
core block manager 

The structure graph of a virtual memory mechanism is a graph that shows 

all the abstract types implemented within the mechanism and their component 

relationships. The graph contains one node per abstract type and one directed 

arc per component relationship, such that the target of an arc denotes a type 

that is a component of the type denoted by the origin of the arc. The 

structure graph of a system is constructed by examining the mechanical 

operation of the system, envisioning the data bases it should contain, 

considering the connections between these data bases, and by attempting to 

view the data bases as abstract objects and the links that connect them as 

component relationships. The process of constructing the structure graph of a 

system will become clearer in chapter IV. For the time being, it would be 

presumptuous to be more explicit or more formal about it because the type 

extension technique would look like an automatic design tool, which it really 

is not, and the construction of a structure graph would seem to be a 

mechanical task, which it is not in reality. 

The dependency graph of a virtual memory mechanism shows the complete 

dependency structure of the system. Every node in the dependency graph stands 

for one of the modules of the system and every arc indicates that the module 
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at its origin depends on the module at its tip. The dependency graph of a 

system is derived from its structure'graph-by considering that each type in 

the structure graph corresponds to a type manager module in the dependency 

graph and each component relationship in the structure graph corresponds to a 

dependency relation in the dependency graph (because if a type Tis composed 

partly of a type T', the type manager for T depends ontthe type manager for T' 

to manipulate the representation of objects of type T)~ The arcs of the 

dependency graph, however, are a superset of those in the structure graph as 

they indicate module dependencies generated by many different causes, not just 

by component relationships. The various sorts of dependertcy·relati-0nships 

represented by dependency graph arcs and the construction ·of the complete 

dependency graph will be examined in detail in aection j of this chapter. 

The feedback provided by the two graphs we have 'just described is the 

existence of directed loops they might contafn. A directed loop in the 

structure graph violates the type extension ·rule stating that abstract types 

may be defined only in terms of more primitive types, i.e. that the structure 

graph must be partially ordered. A directed loop in the dependency graph 

should also be eliminated because it means a violation of the partial ordering 

of the dependency structure of the system. 

Let us now consider the possible corrective actions that are provided by 

the type extension technique to eliminate potential loops in the two graphs. 

It would be nice to ha'i/e a complete set of rules for eliminating loops 

systematically in all cases. Unfortunately, our ~xperience with.the type 

extension technique is limited to the design of only one system. Thus, we do 

not dare claim that the rules that have proved to be sufficient f0'£ 

eliminating loops in that particular system would be sufffcient to eliminate 

all loops in any system. Consequently, the following are three interesting 
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but only informal examples of how one may look at a loop and its environment 

to try to analyze its cause and perceive a way to elillinate it either by 

adding nodes to or by subtracting nodes from the graphs. 

For instance, a loop may exist between two nodes A and B because A •and B 

stand for abstractions that are so tightly coupled that they should be 

regarded as a single abstraction. Replacing A and B by a single node X 

obviously eliminates the loop. The cost of this change is that the 

abstractions represented by A and Bare no longer distinct and will not be 

specified by individual internal interfaces in the final design. 

As another example, a loop may be due to a node standing for a complex 

abstraction that could be split into two simpler abstractions in such a way 

that the loop is broken as follows: 

This type of action is discussed by Parnas [Parnas76]. It was used by Reed 

[Reed76] to split the Multics virtual processor mechanism (A) into two levels 

and avoid a dependency loop with the virtual memory mechanism (B). Splitting 

abstractions in such a way presents the advantage of separating ideas into 

modules that will be specified by their own internal interfaces in the final 

design. Of course, it costs the price of maintaining an extra level of 

mapping between abstractions. In addition, it may not always be possible to 

find a clean split between two abstractions. 

As a last example, loops may be due to a failure to recognize several 

ideas as parts of the same abstraction (such is the case with the quota 

problem discussed in chapter IV) or to provide an adequate abstraction where 
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it is needed (such is the case with the address space problem discussed in 

chapter IV). Adding appropriate abstractions to the graphs solves such 

problems. 

2. Type extension and modularity. 

The objective of the designer of a virtual memory mechanism is to 

organize his system into a structured set of small and distinct modules. The 

next section will discuss the impact of type extension on structure. The 

purpose of this section is to discuss the relation between modularity and type 

extension. 

With the type extension concept, each type manager is a module of the 

system. As mentioned earlier, each module is implemented by a set of callable 

procedures (domain or region) and/or by a set of dedicated system processes. 

While this distinction is important to build the dependency graph of the 

system, it is largely irrelevant to the evaluation of modularity because 

modularity is defined with respect to the programs that compose a type manager 

and not with respect to what process, domain or region type managers are 

executed in nor how they are invoked. 

As suggested in chapter I, a type manager is said to be strictly modular 

if none of its internal data bases are ever shared with other type managers. 

Hence, modularity i~plies that type managers can interact with one another 

strictly via inter-module calls and/or inter-process signals, depending on how 

the module is executed. In fact, most of the data kept by a type manager T is 

data pertinent to the representation of the objects it maintains. By virtue 

of the definition of type extension, such data may never be accessed by other 

type managers. In order to access it, other type managers must invoke the 

operations defined for the type implemented by the type manager T. Thus, the 
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rule that a type manager should not share any internal data base with other 

type managers does not add much of a constraint on type managers since most 

data bases cannot be shared anyway by definition of type extension. Only data 

bases not directly pertinent to the representation of cibjects (e.g., metering 

and perfo•rmance monitoring information) could be·is-hared but should not 

according to the modularity constraint. (1) 

The main reason for ruling out interactions via shared data bases is, as 

stated earlier, to keep the interfaces of modules as s_imple and easy to define 

as possible, according to Parnas~s information hiding princip.le {Parnas71]. 

Strict modules tend to define abstractions that are more meaningful, more 

precise, mo.re complete. 

A second reason ,for ruling out share4 data bases ill to keep a tighter 

control on the dependencies between modul~s. •As long .tlB type m~nagers can 

interact only by calling one another or by sending s.j_gnals t,.., one another, it 

is (relatively) easy to keep track of every interaction and to decide whether 

it raises a dependency problem, as will .be seen in the next section. 

Interactions via shared internal data bases .would make the identificat-ion of 

dependencies extremely hard because every shared data base would have to be 

studied from the point of view of every module shar:ing. it. This study would 

require a huge (and otherwise practically useless) cros4a-reference table that, 

for each data item. indicates which module 1:e_ads from it OJ" writes into it. 

A third reason for eliminating shared databases .is to ease explicit 

recognition of parallel activity when it is present. If data bases can be 

shared, the designer of one module may not know whether or not a data base his 

(1) One might conceive a situation where several type managers share access to 
a common read-only data base. Such a situation is acceptable as reading from 
a non-writeable data base cannot mean interacting. 
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module is using may be used at the same time by other modules being executed 

in parallel prQcesses. Failing to recognize such. parallelism would. alJnost 

certainly lead to a disaster. By insisting that d.ata bases never be shared· 

among modules, we make it easier to recognize.parallelism explicitly. Knowing 

that his module is the only one.to reference the data bases it uses, a 

designer is in full control of parallel activity over these data bases.· He 

can code his module so that user and./ or system proceases that may execute 

portions of its code in parallel will approprtately synchronize their activity 

over the data bases they share as parallel instances or portions of the same 

module. 

A fourth reason for disallowing shared data bases is because disallowance 

helps provide a strategy for avoiding deadly embraces, when locking system data 

bases, as will be seen i-n section 4 of this chapter. 

Eliminating the possibility of sharing internal data bases among modules 

may sound like a drastic measure likely to impair the perfoi;mance of the 

system and complicate the task of the designer. Based on our experience with 

the redesign of the Multics virtual memory mechanism, we do not think this 

measure poses any problem in practice. We do not believe that the performance 

of the Multics virtual memory mechanism would be any better if data bases 

could be shared. And, we have not encountered a single circumstance in the 

virtual memory mechanism of Multics where a shared data base would have been 

desirable. In general, we suspect that the desire to, share a data base among 

several modules will not occur to the designers of those modules if they 

strictly respect the formalism of type extension. Indeed, each type manager 

has a natural tendency to be a strict module because its main function is to 

manage an isolated collection of objects, a task which does not require 

sharing internal data bases. 
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Eliminating shared internal data bases is a sound decision and should 

become common practice. If anything, it foster1;1 syst,em. flexibility bec4use it 

makes modules independent of one another in the sense that they do not have to 

agree on the format and semantics of any shared data. 

3. Type extension and structure. 

The structure graph of a system indicates what data abstractions are 

supported by the system and how they are implemented in terms of one another. 

The objective of this section is to discuss the relation between the structure 

graph and the dependency graph of a system. First, we will give a definition 

of the concept of dependency and we will analyze all possible causes of 

dependency. While doing so, we will see how· helpful the type extension 

concept is to eliminate or point out dependencies that would violate the 

partial ordering of the dependency graph. Second, we will indicate how to 

construct the dependency graph of a system, by using the type structure graph. 

Causes of dependency. 

First of all, it is time to define more carefully the dependency 

relation. The fact that a type manager A can influence the operation of a 

type manager B does not mean that B depends on A's actions. In particular, if 

B implements a service for A, B's operation will obviously be driven by A's 

commands to B. Yet, B may be declared independent of A. There is no 

connection between the concept of dependency we are interested in and the fact 

that the operation of Bis influenced by the actions of A. There is a 

dependency, in our sense of the word, only if the correct operation of B 

depends on the operation of A, i.e. if some action of A could cause B to 

operate in a way different from that stated by its interface specification. 

In other words, B depends on A if verifying B's correct operation requires 
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using assertions defined in the interface specification of A. 

With respect to the partially ordered'dependency structure of a system, 

we define an upward dependency to be one that would violate the partial 

ordering. Conceptually, all upward dependencies are of course forbidden as 

they make understanding and verifying the system ·more compl'icated. 

Practically, however, the designer of a system may enco~nter situations that 

could result in upward dependencies. We will see in this section that one can 

distinguish three sets of upward dependencies with respect to the type 

extension concept. Upward dependencies of the first set, which could 

potentially occur in a system not based on type extens.ion, are totally 

eliminated by type extension. Upward dependencies of the second set are not 

eliminated but are easy to find thanks to type extension and can be corrected. 

And type extension is of no help with respect to upward deperdencies of the 

third set. 

It is interesting to compare in some detail Parnas's "uses" relation, 

which was mentioned in chapter I [Parnas76], to the dependency relation to 

justify our use the latter relation in this thesis. A module that "uses" 

another module depends on it because the correctness of the used module must 

be assumed to verify the correctness of the first m9dule. However, a modµle 

that does not "use" another module may still depend on it, as was suggested in 

chapter I. For instance, assume that two modules share a common data base. 

They may not "use" one another in the sense that neither of them ever causes 

the other to perform any service on its behalf. Yet, they mutually depend on 

one another because verifying the correctness of either one implies verifying 

the correctness of the data base they share, which depends on the assumption 

that the other module always leaves the data base in a consistent state. 

One advantage of the dependency relation over the "uses" relation was 
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mentioned in chapter II: it discourages the use of weak modules (shared data 

bases) because they cause dependency loops ~~'.the structure of ~he system. 

A second advantage of the dependency .re].ation over the "uses" relation 

deals with the maintenance of the system. With the dependency relation, when 

a single module is modified, it is sufficient to re'(erify the correctness of 

that module and the modules that depend on it to guarantee the correctness of 

the entire system. With the "uses" relation, it may be necessary to reverify 

any module, whether it uses, is used by or bears no relation to the modified 

module, .because any module may share a data ,base _with ~he modified module and 

it$ correctness may be affected by changes in the modified module. In other 

words, a change in the modified module may atfect the semantics of a data 

base, which may implicitly affect the s~ification of the inter.face of any 

module sharing, that data base with the modified module, and require that such. 

a module be reverified even though its code may not have changed. 

Given thedefinition of dependency, we can analyze the possible causes of 

depenq.ency between two modules. The first cause of dependency deals with the 

way modules interact. We first consider what modul~ interactions are 

possible. We have just seen that modules may not interact via data bases. We 

have also seen earlier that modules may be. implemented, by callable 

domains/regions and/or by dedicated system proe>esses.. Thus, a module may 

interact with a callable module only by giv·ing control to it. And a module 

can interact with a process module only by exchanging messages with it. 

We now discuss.when module interac.tions may give rise to dependencies. A 

module A that initiates a transaction with. a module B becomes dependent on B 

if its own continued correct operation depends on an ~ssumed responEe of B 

within a finite amount of time. If A initiates a transaction with Band 

abandons control but does not expect any response from B iri any amount of 
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time, A will be said in the quiescent' state (independent of R). In practice, 

the quiescent state of a module implies that all i,ts· internal· data bases are 

consistent, that none of them is locked and that there is no pending procedure 

invocation in the module. 

We finally discuss what forms of interactions yield dependencies, given 

the definition of the quiescent state of a module. First~ if a module A 

simply sends a message to a module B, does not abandon control' attd' does not 

expect any response· from B, then it is not depertd-ent on B, as explained above. 

This is a trivial case of module interaction where a module infonns another 

module, as it executes, of some situation it has encountered (e.g., some event 

to be metered, recor.ded or accoimted for by the recipient of the meffage). 

This form of module interaction will not further retaih out-· attention. 

Second, if a module A sends a message to a_ modul<e B" and then abandons control, 

a form of transaction we will further call siSnkl·lly, A depends on B only if 

it abandoned control in a non-quiescent stat-e, thereby implyi.ng that it• 

expects some response from B to resume an unfinished ·task. Third, if a module 

A transfers control ("go to") 'to a tnodule B, ·:•it aepends• on- B only if it 

u·ansferred control in a non-quiescent state, t~reby implying that it expects 

to regain control and complete some pending work. Finally, if a module A 

calls a module B, it is always dependent on B because a call expects a 

matching return. To summarize important situati-ons described in this 

paragraphs, we will use the terms "invoking" and ·"notifying" as defined below 

throughout the rest of the thesis. A module A that transfers control or 

signals an event to a module Bin a non-quiescent state, or calls B will be 

said to invoke (1) the service of B. Invoking a aervice is synonymous to 

(1) Invocations to certain type managers may take the form of an implicit 
hardware operation if the type"manag~r supports an abstraction that is 

71 



using a service in Parnas's sense [Parnas76]. Invol.q.ng a module implies 

depending on it. This is the first cause of dependency. On the other hand, a 

module A that transfers control or signals an event to a ~odule Band ~emains 

in the quiescent state (independent of B) will be said to notify B of some 

event. Notifications are important forms of interactions. In particular, 

processor exceptions in a system are notifications by a hardware module to 

some software module that an exceptional situation requiring software support 

was encountered. In fact, most instances of notificatiqns may be regarded as 

error returns from implicit invocat_ions. For instance, 11n implicit invo.cation 

of an operation to access a word of a page that is n,ot in primary memory 

results in a processor exception that is often called a page fault. 

The type extension concept does fOt preve~t upward dependencies due to 

upward invocations. Indeed, a designer might conceive t~ modules that invoke 

one another. The type checking compiler can eliminate. upward calls because it 

knows that they all correspond to upward d~penqen,cie~. But it cannot 

eliminate upward invocations corresponding to u~ward transfers oJ .control or 

signals because it does not have enough knowledge about modules to distinguish 

such upward invocations from upward not.ifications, which are allowed, i.e. it 

does not know how to decide whether a module abandons control· in a quiescent 

state or not. However, by restricting module interactions to. calls, transfers 

of control and signals, type extension makes the Aet;e<!tion of upward 

dependencies easier to the designer. For every module interaction, the state 

of the module that initiates the tr an sac t.ion should be inspiac ted ,by the 

designer, ~~o has sufficient knowledge about his module to decide wh!?ther it 

is in a quiescent state or not. If it is not qu~escen.t at the time of the 

implemented partly in hardware. For instance, reading· or writing an in core 
segment are primitives invoked implicitly by. J1ardware <;>perati~ns. 
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dependencies because it totally ignores types and ranges of values. Argument 

validation is a very har:d problem that has to be carefully· dealt with by every 

individual module designer. The use of programming languages with built•in 

language type checking feat;ures (e.g., CLU) might provide syste'Qlatic type 

validation for values but still provides no ,help with respect to range 

validation. 

The case of references is different. By accepting a reference to an 

object, a type mapager might become dependent on the supplier of the reference 

( the invoker) and on t.he suppli,er of the object denoted by the re.ference ( the 

type manager implementing the .obj e_ct). It. becomes dependent on, the type 

manager of the object if it uses the object (because using the object implies 

invoking the type manager to manipulate the object). It becomes dependent on 

the supplier of the reference if it as.sumes that the reference is meaningful, 

Le. that it denotes an accessible object. It would also beco~e dependent on 

the supp.l~er of, the reference if it assumed anything about the type of the 

object denoted by the reference. 

Because of the type checking mechanism built into the compiler, a type 

manager can never invoke a higher level type manager to operate on a higher 

level object. In other words, a type ma.nager c,an never interpret a reference 

to a higher level object. We will call this the information level rule: high 

level references cannot be interpreted in low.level modules. Thus, the type 

extension concept systematically prevents the designer ,from producing modules 

that accept as arguments references to higher level objects and use them to 

access the objects. (Notice that the type checking CO!Jlpiler does not prevent 

a module from accepting and storing references to high. level objects as long 

as it does not use them to access the objects. References that are never used 

are simply regarded as values and are not .type c:qe~ .;;i~- denoting information 
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containers.) 

Because of the type checking feature also, any assumption a type manager 

may make about the type of the objects for 1.tlich it receives references as 

arguments is validated at compile-time. -Thus, the type extension concept 

systematically prevents the designer from producing a module that would be 

dependent on its invoker because it failed to validate the type of references 

it has received. 

Notice that in most virtual memory mechanisms, associated with references 

to certain abstract types are certain system everits. For instance, a segment 

fault might be an event associated with referencing a segment of which the map 

is not in primary memory. A page fault might' be an event associated with 

referencing a page that is not in primary memory. An access violation is an 

event associated with referencing an object to lmich access has been revoked 

or which does not exist. If a type manager A depends on a type manager B, it

must be prepared for the events associated with the ol>j-ects implemented by B 

to occur when it references them. On the other hand, if it cannot tolerate 

these events, it should not use objects of type B to avoid being dependent on 

type manager B. Consider, for instance, the case of access violations in a 

virtual memory mechanism. For internal type objects (i.e. objects not visible 

to users, below the base level), the uid conservation property that is checked 

at verification-time guarantees that while an object is deallocated, no copy 

of its uid exists outside the type manager that manages it. Thus, if a type 

manager receives a uid of an internal type object as argument, it can rely 

upon the fact that that uid denotes an allocated object because that fact was 

checked when the system was verified. However, for a base level object, a uid 

or a capability may still exist in some module after the possibility or the 

right to access the corresponding object has been removed. Thus, if a type 
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manager depends on a base level type manager and .accepts a capability or a uid 

for a base level object as argument, it must expect running into access 

violations and be prepared to handle them in some appropriate way. 

One comment is in order about a situatiott where -ehe two causes of 

dependency ( invocation and lack of argument valida•tiea} could. frequently cause 

dependency loops. By virtue of the first cause o.f -dependency, a.type manager 

is always dependent on a type manager it invokes to have a service performed. 

This implies that the in:vo k.ed type manager may never depend on its invoker 

because a dependency loop violating. the desired partially ordered structure 

would occur. Thus, instances of dependency due to the second cause (argument 

passing) must be eliminated in all cases of raodule interactions corresponding 

to lnvocat:tons'.. An invoked type manager should. nev.er -~,sume anything about. 

the input arguments it receives, or if it does, tt must ~~idate its 

asswnptions before using the arguments, otherwise it would be depende~t on its 

invoker, thereby causing an upward dependency. Therefore, we impose that .the 

designer of a moduie performing a service always define'in· th~ specifications 

of the serv'ice interface of his module the assumptions it makes about the 

arguments it expects and code his module to dynamically validate those 

assumptions before perfonning the service. (If it did not validate those 

assumptions, it would be incorrect with respect to its specifications.) 

Construction of the dependency graph. 

Having analyzed wat a.ctions ·cause dependency; we will now examirte the 

relation between the dependency graph of a virtual memory mechan·ism and its 

structure graph by examining all the possible reasons ~y a ,t.ype manager might 

become dependent on another type manager. 

The basic relation between the dependency graph and the structure graph 

of a system is the one to one correspondance between 'nodes. But there are 
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many more arcs in the dependency graph than in the structure graph. Every 

node in the structure graph corresponds.to an abstract type. Since every 

abstract type requires its own type manager, there ;must; b,e one node in the 

dependency graph for every node in the structure graph. That node stands for 

the corresponding type manager. In addition, all arcs in the structure graph 

have their equivalent in the dependency graph. Every directed arc in the 

structure graph corresponds to a component r.elaticmship. Every operation on 

an abstract object is translated by the type manager for that object into 

operations on one or more components of the object.. 'U\llS, the type manager 

translates invocations .to itself into invocations to the type managers of the 

components, of the objects it manages. Since t,qe ~yp~ structure graph sh_puld 

correspond to a partially ordered structure of @stract type~, t,he dependency 

structure indicates type managers that are partia,l],y -0rd~d by the dependency 

relation. The instances of dependency identified above are called component 

dependencies. 

Component dependencies are not the only arcs in the dependency graph. A 

second category of dependencies are _!!!2. dependencies. They were briefly 

mentioned in chapter II. Any type manager must maintain a map for each object 

it implements. The maps themselves must be implemented out of some type of 

information container. Thus, the type manager 4epends on the type manager for 

the maps because it invokes it to manipulate the maps. 

A third category of dependencies is called program dependencies. Every 

type manager (except type managers supported by hard•re operations) is a 

program, i.e. a set of procedures and data bases (not including the objects it 

manages and their maps). The procedures and data bases must be stored in soae 

type of information container. The type manager will be dependent on the type 

manager for these information containers because reading, writing and 
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executing its. own programs is equivalent to invoking (usually b1plicitly 

through the hardware) t.he typ.e Bl<!lnager !q!pl~nti'1g ~he. program containers. 

Like JIUil.p 4ependencies, pr9g.ram depe~de~ie,s $re nQt a problem in a user . 

environment. With classical impl~ntatio~ of typ~ extension, maps and 

programs can bqth be implemented out_of b~se level objects._(e.g., segments or _, . 

pages). However, within the context of the virtual memory mechanism, base 

level objects are not defined. Thus, other-types must be found. This task is 

not trivial. As in the. case study of chapter IV, special purpose types may 

have to be created to implement maps and programs because none of the types 

available at a given level may be adequate far this purpose. This is a first 

instance of a situation where the construction of the dependency grapn may 

point out deficiencies in the structure graph and require a design iteration 

to modify the structure graph. 

The fourth category of dependencies is called addr_ess space dependencies. 

The procedures, data bases and object maps tha:t a type 1nanager uses are 

objects. The set of all s~h objects defines the aqd,:ess space of the type 

manager. In most systems, the address space in which a callable. subsystem 

(domain or reg,ion) or a process executes is implemented by some sort of 

information container or set o-f registers that cpl\tains the complete 

collection of all uids and capabilities that the subsystem or the process can 

reference as part of its address space. Thus, every type manager depends on 

some other type manager to implement the information container, materializing 

the address space it executes in. Again, in a user environment, some base 

level container can be used to collect the capabilities in the address space 

of a type manager. (For instaJice, in Multics» a,descriptor segment is used 

for that purpose. In Hydra, a local name space (LNS) defin~s the address 

space of each procedure.) However, in a virtual memory environment, base 
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level containers cannot be used for that purpose because they are not defined. 

Special purpose· information conta:iners may also have to be defined to 

implement address spaces. This iS' a second 'instance of a situation where the 

construction of the dependency graph·may suggest a design iteration. 

The fifth category of dependencies is-called interpreter dependencies. 

Whether a type manager is implemented as a callable- subsystem.or as a 

dedicated process, it needs a proces-sor to interpret its code and thus run it, 

and to control its rate of execution, If each type manager could have a 

hardware processor all.to itself, it would depend on.only the correct design 

of that processor. However, hardware pcoeessors are:too scarce and expensive 

resources to be dedicated to executing any- single type manager. In practice, 

type managers, as well as user modules, run on abstract types of processors, 

sometimes called virtual processors, among which the physical processors are 

multiplexed. Thus, they. depend on the correctness of those virtual processors 

and on the correctness of the mechanism ·that multiplexes the physical 

processors among them. One can envision using a type extension concept for 

multiplexing (bottom level) processors among abstract (base level) processes 

that is similar to the concept we use to multiplex bottom level core blocks 

among higher level abstract pages. A parallel research project [Reed76} that 

was concerned with reorganizing the virtual processor management mechanism of 

the Multics system has in fact implicitLy used a concept of type extension. 

The type extension concepts used in the virtual memory and virtual processor 

contexts are very similar. In particular, they are identical with respect to 

the dependency relation. The same problems of implementing components, maps, 

programs, address spaces and interpreters arise with virtual memory type 

managers as with virtual processor type managers. Virtual memory type 

managers depend on other virtual memory type managers to implement everything 

79 



but their interpreter_s. For their interp;c-eter, they depend on some virtual. 

processor type managers. Virtual processor type managers depend on other 

virtual procesSO'r type managers to implement,, coinpPnent& and· i.nterpr,e_ters but 

they depend on some virtual memory type managers to implement maps, programs 

and address spaces. Thus, the virtual memory and virt~l proc~ssor dependency 

structures are intimately in,te.rleaved. This can. be observed in the case study 

of chapter IV. One must be particularily .careful. not to cause mutual 

dependencies of the .sort discussed b:y Saxena JSaxena76] between the virtual 

.processor type managers and the vir~ual memory type 1J1..an.ger$. If the 

dependency graph indicates dependency J_oops, a de,sign 1,.teration should be 

performed to modify the structure graph. In fa~t, such~ dependency lQop is 

exactly what prompted Reed [Reed76) to, r~desi.$n F™r p~ocessor multiple~ing 

mechanism of Multics. 

Conclusion. 

The concept of type extension does not. a,~to01atic8:ily;~liminate all upwa!'.d 

" 

dependencies and guarantee a partially ordered dependency structure. However, 

it does eliminate some upward dependencies lllhich are among the most frequently 

encountered in existing systems. Accepting reference arguments of an 

unexpected type is impossible because the compile-time typ~ checking mechanism 

validates the type of all references passed to a type manager. Using objects 

.c , ,s,'.. -; ,. 

defined at a higher level is impossible because of the information level rule 

that is also guaranteed by the type checking mechanism. A second set of 

upward dependencies are not eliminated by the type extension mechanism but 

they are easy to spot and remove thanks to it. Such is the case for upward 

signals and upwards transfers of c·ontrol before which a t&7pe manager should 

return to a quiescent state. Finally, certain kinds of upward dependencies 

are not considered at all by our type extension concept. Such is the case for 
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the validation of the range of argutnenti3 in geheral. Stich dependencies must 

be watched for'·explicitly by the designer o:f every module •. 

We have seen how the dependency graph of a syate111 ca\\· be derived from its 

type structure graph. By analyzing the implementation of a type ma'nager, one 

can identify all the type managers it depends'on to interpret its code, to 

implement its addr~ss space, to stor~ it•g prog~a111.1:r and to store the components 

and the maps of the objects it manages. 

We have tried to suggest how to iteratively design and evaluate a virtual 

memory mechanism by inspe·cting its ·type'strticture·graphandits dependency 

graph. We have seen how helpful type extension cliti be tn displaying:the 

modularity and the struc:ture of the· system without requiring-much more 

knowledge about its design than· is elilbedded 'lrt the d(!peiiden~y graph. After 

the modularity and the structure of the system are apparent:, the deslgnei- ma:y 

produce the formal specifications and the code for the modules. 

4. Type extensi'dn and ''deadlock prevention·: 

In this section, we will st4dy the impact of type extension on a third 
. ' ,, ' . 

aspect of the des_ign of a system: de~lock prevention~ ~ea~locks (otherwise 

known as deadly embraces) are situations that can occur when several parallel 

processes compete for resources that can be used by only one of them at a 

time. For instance, if two processes P and Q decide simultaneously to acquire 

exclusive usage of two resources A and B, they will need to lock them to avoid 

conflicts. However, if P locks A first and Q locks B first, neither P nor Q 

will able to proceed because each will see one of the data bases locked (by 

the other) and thus temporarily out of service as far as it is concerned. 

This is a deadlock situation. 

Several algorithms have been designed to help designers make sure that 
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the.ir system is deadlock-free, i.e. that it can nev~r put itself in a deadlock 

situation {Bensoussan68, Havender68,. Habermann69J .. These algorithms are 

undoubtedly helpful. But verifying that a systew respects .theJ_U and is 

deadlock-free may be hard. In general, i.t requires the. designer of every 

module of the system to be aware of the dea~Uock prevention algorithm on a 

system-wide basis and thus to be aware in some measure of. what designers of 

other modules have done with respect to deadlock prevention. 

In this section,. we are concerned with a specific kind of deadlocks, 

namely those that may occur when several parallel processes compete for 

locking of internal system data bases to preset:ve the integrity of these data 

bases. We will. show that the type extension concept defined in chapter II, 

together with the restriction that modules may.,not share data bases, 

guarantees-the prevention of deadlocks due to COlllpetition for locking of 

internal systent data bases. The type extension.concept provides a strategy 

for orderly locking of internal system data bases that guarantees a 

system-wide respect of Havender' s deadlock prevention alg•orithm, while not 

requiring any particular attention to or awareness of •the algorithm on the 

part of the designers of the system. 

Havender's algorithm is summarized here. With every data base that can 

be accessed by several parallel processes but by only one of these at a t:ime, 

one assoo,iates a lock (semaphore). In order to be allowed to access the data 

base, any process must test and set the lock in one atomic (hardware) 

operation. If it sees the lock already set, it must wait on it. Havender's 

algorithm requires that all the locks in the system be ordered by ass~ciating 

a number with them. Furthermore, a process may neither test and set a lock X 

nor wait on it if the relation X>Y holds, where Y is the lowest numbered lock 
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that that same process has currently set. (1) 

This algorithm guarantees the absence of deadlocks due to competition 

over internal system data bases because any process that wants to lock a set 

of data bases must lock the1n in a fixed dec-reasing ordi!r that is the same for 

all processes. Thus, in our earlier example, if we assume that the fixed lock 

ordering is B>A, a deadlock cannot occur because P cannot lock A first and try 

to lock B then. Both P and Q must try to lock B fir&t and wn·tchever ,succeeds· 

may go ahead, lock A and do its task while the other is waiting on B but not 

deadlocked. 

The modularity of type maRagers impl-ies that any data base is local to 

one type manager. Thus, if it is shared b_y p.n-allel processes, these parallel 

processes must be executing parallel instances or portio11S of the same type 

manager. Since locks are attached to data bases. they ,are also local to type 

managers. In other words, locks, as well as the data bases they protect, are 

never shared across type managers. Let us temporarily assU11e that there is 

only one lock per type manager. 

The dependency stJ;'ucture of the system imposes a partial .ordering on the 

type managers. Thus, that partial ordering is also imposed on the locks of 

these type managers. It is true that two locks corresponding to two type 

managers that are not ordered with respect to one, an~ther may, as a result, 

bear the same number. However, if two type managers are not ordered with 

respect to one another, they do not depend on one another and in particular, 

control cannot leave one in a non-quiescent state and go to the other. In 

other words, there is no computation path that could cause a process to 

(1) This is stronger than necessary. Bensoussan' s algoiithm states that the 
minimal condition for deadlock prevention is only that a process may not wait 
on a lock if X>Y but it may always test and set the lock if it can. 
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execute the code of one type manager whi1e'i!iti invocation of the other is 

pending in that same process. Pending irtvocatii>ns of the two type managers 

can never exist at the same time in any process. At' least one of the type 

managers must be in the quiescet'lt state as far as that process is ·concerned, 

thereby implying that its associated lock cannbt be set by that process. 

Thus, the'fact' that two locks can 'bear the same number does not matter. Thie; 

only means that they are on different coi'nputational paths and that no process 

will ·ever be able to set them both in any order. What does matter is that on 

any single c·omputational (dependency) path, all the lodes that can potentially 

be set are ordered. 

By virtue of the definition of dependency, if a process is currently 

executing in a type manager at a level L, all type managers at lower leyels 

are in t~e quiescent stftte as far as that process is concerned, and in 

particular, none of their locks can be set by that process. If execution 

moves down one level, then a lock at level (L-1) may be set or waited on. 

This is safe since the current lowest lock set by the process is numbered L. 

If execution backs out of level L into (L+l), then lock L must be released 

since the type manager at level L, by virtue of the dependency graph, returns 

to the quiescent state. 

Hence, provided the designer of each type manager is careful to always 

return to the quiescent state before transferring (or returning) control 

upward, which we assumed he was to remain independent of higher level type 

managers, respect of Havender's algorithm is always guaranteed on a 

system-wide basis. 

Now, let us release the original assumption that there is only one lock 

per type manager. If there may be several locks within one type manager and 

if several parallel processes executing parallel instances or portions of that 
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type manager may set them in random order, we again have a deadlock 

possibility. What is necessary is a local locking strategy in every type 

manager that prevents parallel processes executing within that type manager to 

deadlock one another. Type extension does nothing to enforce Havender' s 

algorithm at the level of an individual type manager but since the size of a 

type manager ideally should be manageable by one person, that person can 

easily keep track of all the locks used by the type manager and code the type 

manager so that processes executing its code always attempt to set locks in 

the same order. In essence, type extension suggests that, from a global point 

of view, all the locks in a type manager should be regarded as one lock and 

~ust be released to leave the type manager in the quiescent state. 

5. Conclusion. 

In this chapter, we have fir st examined how and when the type extension 

technique can be exploited to organize the design of system. We have then 

examined the relations between the type extension concept and three aspects of 

the design of a system: modularity, structure and deadlock prevention. We 

have seen that type extension was helpful in guaranteeing that the system has 

these three properties. 
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IV. Case S~~dy. 

1 • In trod uc tion • 

The objective of this chapter is to demonstrate the usefulness and to 

illustrate the exploitation of the type extension technique described in 

chapters II and III by using it to reorganize a real virtual memory mechanism. 

Our intent is not to design a new virtual memory mechanism, but to show 

how our type extension technique can be exploited to organize a real virtual 

memory mechanism. On this basis, there is no point trying to be creative 

about the functionality of the virtual memory mechanism to be designed. Such 

creativity would present two dangers. First,.it would divert the attention of 

the reader from the real purpose of the case study. And second, it could 

result in an unconvincing paper design of an unrealistic, too ambitious or too 

simplified system. 

To avoid these two pitfalls, we have chosen to reorganize an existing and 

viable virtual memory mechanism. The specific example we have chosen for our 

case study is the virtual memory mechanism of the Multics system that is 

offered commercially by Honeywell Information Systems Inc. [Bensoussan72, 

Multics74, Organick72]. 

Our choice of the Multics virtual memory mechanism was motivated by two 

reasons. First, Multics is a large, powerful and sophisticated system. Its 

virtual memory mechanism is useful and practical but is currently a maze of 

programs that is certainly unamenable to verification and hard to understand. 

Because of this complexity, the Multics virtual memory mechanism is as good as 

any other for our case study. If our type extension technique succeeds in 

modularizing and restructuring the Multics virtual memory mechanism, the 

chances are high that it could be used successfully for any other system. 
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Second, the Multics system was available· to us, we were familiar with it and 

moreover, our case study fitted within the framework of an ongoing research 

project aimed at producing a more understandable version of Multics that will 

be a prototype for a future certifiably secure system [Schroeder]. Thus, the 

design that will result from the case study is of direct interest to the 

project concerned with the overall reorganization of Multics. 

Throughout the rest of this chapter, we will be concerned with several 

different designs of the same virtual memory mechanism. It may be a~propriate 

to distinguish them here. The original design of the Multics virtual memory 

mechanism described in [Bensoussan72] has been superceded recently by a new 

one. The functionality of the original design has been prese;rved by the new 

design. However the new design has added several features to the original 

virtual memory mechanism, notably the possibility to add and remove disk'packs 

from the on-line virtual memory of the system. To distinguish t?e new design 

from the original one, the new virtual memory mechanism is called~ Storage 

System (NSS). Our case study will not be concerned with the original Multics 

virtual memory mechanism. Instead, we will produce a system design with the. 

functionality of NSS. Documentation on NSS is not generally available yet. 

All we can say is NSS has preserved the functionality of the original design 

and is similar to IBH' s OS/360 as far as removable disk packs are concerned. 

For lack of adequate documentation, we will devote section 2 of this chapter 

to the description of the functionality of the user interface of NSS. This 

section may be skipped without loss of continuity by readers familiar with the 

functionality of the Multics virtual memory mechanism. Preserving the reverse 

alphabetical order after OS/360 and NSS, we will refer to the design presented 

in this chapter as~ Storage System (MSS) to distinguish it from the other 

designs. 
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Section 3 of this chapter will be dey.oted to.an analyzis of NSS. 

Analyzing NSS is interesting for two reasons. First, in designing MSS, we 

will use the design of NSS as a starting point and evolve NSS towards a 

well-organized system based on type extension. Second, we will describe some 

instances of violations of modularity and we will explain how these instances 

contribute to the complexity of NSS. We will also list the most important 

violations of the dependency structure and we will explain how they are a 

source of difficulty in understanding NSS. Isolating these problems will 

allow us to study their nature and will tell us where to concentrate our 

attention to later evolve NSS towards a well-organized system. 

Section 4 will pre.sent the design of MSS. Evolving NSS towards MSS was a 

very long and involved process that required many design iterations. It is 
.·, 

impossible and probably uninteresting to describe all these design iterations 

--
here. However, we will briefly describe the evolution from NSS to MSS for two 

reasons. First, we hope that showing the connections and the similarities 

between NSS and MSS will enhance the credibility of the design of MSS based on 

the observation that it is so close to the design of an existing system. 

Second, showing a sketch of the evofution of MSS will illustr~te. the thought 
... ,. 

processes involved in designing a system based on type extension. 

Section 5 will conclude the chapter by evaluating the impact of type 

extension on certain aspects of the design of a virtual memory mechanism like 

MSS. We will summarize observations on particular structural patterns that 

are encountered several times in MSS and appear to be fundamental to the use 

of type extension at the low levels of an operating system. This summary is 

particularly interesting for readers who mi.ght _ read only quickly and 

superficially the. :rest of chapter IV· a,n4 for r~~~:r.s who. are interested only 

in the general cp,nclu_sions of our case st::udy. 
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2. The Multics virtual memory mechaniS111. 

Our purpose here is to outline the functionality of the user interface of 

the Multics virtual memory mechanism we are going to design. 'ttlis 

functionality is that of NSS. We intend to preserve it in MSS. Someone 

familiar with NSS may ignore this section without loss.of continuity. 

The level of detail we have adopted and the particular aspects we mention 

here to describe the virtual memory mechanism were selected only on the basis 

of what we felt -- ex post facto ~osed oiganiJation probl!!llls and deserved 

attention in this thesis. Thus, the following description is by no meens a 

complete specification of the Multics virtual memory interface: many aspects 

of this interface present QO design or implementation- challenge and are 

therefore not worth mentioning here. (1) On the other hand, some features of 

the virtual memory mechanism are a const4nt source of dtffic1.ilty to the 

designer: this explains why certain aspects of the user interface ar• 

discussed at great length. As mueh as po•tible, we have eliminated from this 

$ec ticm the details of the implementat:!on o~ the lliltic~ virtual •emory 

mechanism. Before diving into the descrtption of Multics, it may be us•ful to 

inform the reader that the following table provides a brief _and easy to look 

up summary of all the abbreviations that are µsed ihroughout t~ rest of this 

chapter. 

(l} One of the aspects of the Muitics virtual memory liechani• that is not 
mentioned here is the n<>n-diacretion_ary mil_itary protecti_o~ •echanl• that ~t 
impleinents. This aspect presents no n~v- de•ign cball•g•, rel--ated to the use 
of type extension and is omitted from chapter IV. Interested readers will 
find a discussion of military security controls· in au appendix. 
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Abbreviations used in chapter IV. 

APT 
AST 
ASTEP 
CDSG 
CMAP 
CRU 
CSL 
cu 
DBR 
DSG 
DT 
DTAM 
DTEM 
DTM 
DTU 
FSDCT 
KST 
LVID 
LVRD 
MQ 
MSL 
MSS 
NSS 
PFT 
PLID 
PTA
PTW 
PVID 
PVT 
PVTX 
Q 
QCT 
QCTEP 
RU 
sow 
TRP 
u 
UHT 
UID 
UPT 
VPT 
VTOC 
VTOCX 

Processes. 

active process table (describes states of processes in NSS) 
active segment table (descri~es all active aegments) 
AST entry pointer (denotes an active segment} 
core descriptor se.gment ( contains SJ)W,s . for ~ystem segments in MSS) 
core map- ( contains bit map of core) · 
current record usage (of a segment} 
current segment length 
change usage {operation to update U in a quota cell) 
descriptor base register (denotes the base of a user address space) 
descripto~ segnient -(contain.& SDWa fQr co~ted segments) 
disk table (describes all disk packs) · 
date; and tim~ ac~es-s last modifi~: (in-,directory and VTOC) 
date and time entry last modified (in directory and KST) 
date and time last modified (a segpie.nt). 
date and time last used (a segment) 
file system- device- configu.r:'lt.ion ;t_a,l>l~ (con.,ains- bit maps of disks) 
known segment table (describes all segments known to a process) 
logical voluu.e- idenU.fier- (deno.tes ,a ,set ~t,,cU,sk, packs) 
logical volume registration data (describes a set of disk packs) 
move quo.ea ( operation to move Q- between two quota. cells) 
maximum segment length 
Multics Storage System (new ~ecltaa~ ,presented in this thesis) 
New Storage System (current Multics virtual memory mechanism) 
page frame table (contains all-,PTW,,a- tn .MSS) _, 
principal identifier (denotes a user in the system) 
page table ad~r-en (denotes tlle f:J.rat page of a segmei;,.,t-) 
page table word (describes one page of a segment) 
physical volume identifier (~notes a disk pack) 
physical volume table (describes all motmted packs) 
PVT index (denot.e-s a ~ted paclt) 
quota (upper bound of U in a quota cell) 
quota <r~+l table (contains all (a~tive) quot~ cells_) in MSS) 
QCT entry pointer (denotes a quota cell in MSS) 
reset, usage. ( oper~tion to. extr~c._t an-d, resei -t~ TRP of a quota c,~11) 
segment descriptor word (describes a connected segment) 
t iqie-record prod\,lC t. _( in tegr_~ of U tP.- ll c(IUQt, ~eil) 
usage (in a quota cell) 
UU) hash tabl~. (hashes UI.Ds into_ ~TEfs) 
unique identifier (denotes a segment) 
user process table (describes states of use;r processes J.p MSS). 
virtual processor table (describes virtual processors in MSS) 
volume table of contents (describes passive segments) 
VTOC index (denotes a passive segment) 

Eve~y user authorized to use .a Multics system at a:.given site is named 

inside that. system by a p1:'i~cipal iden-tif.ier {Pl.ID) •. '.lhi$ _ PLID is used to 
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control the user1 s access to the information stored in the system. While a 

user is actually using the system, he is represent;ed internally by and 

interacts with a process bearing his PLlD. What a process can reference is 

determined by the PLI.D that is tagged on it. "The physical processors are 

multiplexed among all processes. 

Pases. 

Multics supports a demand paged virtual memory. A user never has to 

worry about bringing the information he is going to reference int-0 primary 

memory or copying an area of primary memory out to secondary storage to make 

room for other information in primary memory. When a user -r-eferenc-es a piece 

of information, it is brought into primary memory automatically if it is not 

already there. Then, if it is not used for a while, the piece of information 

is removed automatically by the syetem and flushed out to secondary -storage. 

Primary memory and secondary storage are divided into logic-al blocks/records 

of a fixed number of sequentially numbered wor~•- The information ~•presented 

by any such block/record is called a ..2!8!.• - lnformat.ion is moved autoptically 

from primary memory to secondary storage or vtce versa by entire pages. If a 

user references a page that is not in· primary memory 9 a processor exception 

known as a £!.&!, fault occurs. It causes the user computation to be suspended 

temporarily and directs the system to bring in the desired page. A user can 

observe page faults insofar as he can see the delays they cause. He is 

otherwise unaware of pages. 

~l!~ 

A user never references pages directly. A user references segments. A 

segment is a logical collection of pages that are sequentially nwnbered. lbe 

location of the pages of a segment are denoted by the words of its .2!&!. table. 

Segments have many attributes that a U11er can g_et at or set. Most of these 
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pose no design challenge. Two kinds of attributes deserve some attention here 

as they will be referred to later. First, are the date-time-used (DTU) and 

date-time-modified (DTM) attributes. They indicate to_ the users the .date and 

the time a segment was respec~ively last used and last modified. Second are 

the length attributes of. a segment. The maximum-segm.ent:--leng.t;h (MSL) is a 

user definable attribute defining the maximum number of pages that a segment 

may contain. The cµrrent-segment-length (,GSL) is the.number_ of pages a 

segment currently contains.; it is determined on the basis of the highest 

numbered page of the segment that is not .. fu:ii of zeroes (null page), as sh_own 

in the following figure. 

null page CRU = 3 

V/1/LZZVii non-null page CSL = 6 

MSL = 8 
:,---r • ; ~ 

Finally, the current-record-usag~ (CRU) .of a 15egment ind1.cates how many pages 

are not null. The user is charged for the &pace. occupied by his segment on 

the basis of this quantity. He pays only -f-0r -non-nu-11 pagea because null 

pages are not actually allocated. If a page is null. the-~ tabl.e ~ 

(PTW) that.describe0s it ·do.es not denote anything.· The. pa.ge has no image and 

occupies no. physical .space.. Physical· space. is: allocated _and the user is 

charged for it only if and :when the page contains some non-zero bit. 

Address Spaces. 

Now comes the question of how a user references a segment. Every user 

process has its own address· space. This address space is:implemented by a 

descriptor segment (DSG) • A descriptor segment, has a :fixed, small MSL. Every 

entry in a descriptor segment is called a sepent descr;iptor word· (SDW) and is 
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indexed by segment number. A SDW is represented schenlatically below. 

page table address fault tag 

current segment length access modes 

Every SDW describes one segment. It tells the user about the absolute ~ 

table address (PTA) and the CSL of the segment. It also indicates the access 

modes (read mode, write mode, execute mode. etc ••• ) that c-0nstrain what the 

user can do with the segment. The meaning of -the fattlt tag is examined later. 

While the process of a user is running on a physieal ,r--oceseor, the PTA of the 

process DSG is loaded into the distinguished descriptor~ 'regfster (DBR) of 

the processor. The user pro~ess then references a piece of infOJ'll4tion by a 

(segment number, word num.J>er) pair indirectly through the DB~,-,. a .SPW. and a 

PTW. The segment number is u~ed to index the DSG and get at the SOW of the 

desired segment. The word numQer iJ divided by the page length to obtain the 

number of the desired PTW within the page table of the desired segment. And 

the remainder of the division is us:ed as an index for tbe,dee-ired woTd within 

the desired page. Retrieving. the SDW and the PTW on ever~ reference is 

speeded up by the use of hardware as.socia:tive memories that hold -the most 

recently used SDWs and PTWs [Schroeder71].· 

If a user references a segment beyond its CSL:t a :processor exception 

known as a bound fault occurs. AB a result. of it, the CSL attribute of the 

segment is increased unless it ·is already equal to. the- MSL. In the latter 

case, a bound violation is signalled to the user and the computation is 

aborted. 

Since there may be very many seg-ments in the system, it is imponib1e to 

keep the page table of each of them. at a fi}'ed address in primary. ~ory all 

the time. When a segment is- not being used, its page table _is removed from 
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primary memory and stored on secondary storage, where it is called the file -.-
map. This is called deactivating the segment (the inverse operation is called 

activation). 

It is now time to explain the first role of the fault tag in a SDW. The 

first role is to signal changes in the physical attributes of a segment across 

processes. If a bound fault or a deactivation occurs, all processes that have 

a SDW for the segment must be notified so they can update this SDW if they 

care to. To signal bound faults and deactivations, the fault tag is turned on 

in all the SDWs that denote the segment that is affected, to cause processors 

to trap if they try to access the segment. This is called disconnection (the 

reverse operation is called connection). If any of the disconnected processes 

later references the segment, it causes a processor exception known as a 

segment fault. As a result, that process is made aware that something has 

changed. Either it has to update the bound of the segment it referenced in 

the SDW it trapped on or it has to retrieve and perhaps reactivate the segment 

page table. 

The obvious question to ask now is: how does a process reconnect itself 

to a segment? It must be able to retrieve the page table of the segment and 

to recompute its CSL. For this purpose, the system maintains system-wide data 

bases (to be described soon) where it records the CSL and the current PTA of 

every segment. On a segment fault, the faulting process must extract from 

these data bases the information it needs to perform the connection. This 

requires that the process be able to translate the faulting, hardware 

interpretable segment number, which identifies the segment within the process 

address space, into some sort of unique name that identifies the segment 

within the entire system and permits the process to ad.dress the system-wide 

data bases. For this purpose, every process owns a table called a known 
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segment table (KST) that maps every segment number into a unique name. In 

fact the KST maps each segment number into two unique names that are 

synonymous in denoting the same segment but are meaningful at different levels 

of the system, as will be seen. (The implementation may confer more functions 

to the KST, but these have no effect on the user interface.) 

Both the DSG and the KST exist only as long as the user process exists. 

Every time a process is created , a new KST and DSG are provided. The 

connection operation described earlier fabricates a SDW in the DSG from 

infoI'lllation that is in the KST entry with the corresponding segment number. 

The next question to answer is: how does that information get into the KST 

entry in the first place or, in other words, how 1-s a segment added to the 

address space of a process? 

Directories. 

The file system is composed of a set of system-wide data bases called 

directories. Although directories appear different from segments to the user, 

they are stored like segments by the system. Directories are used for four 

functions: naming, addressing, protection, and resource accounting. 

The naming function consists of providing system-wide unique names for 

denoting segments. Each directory entry describes either another directory or 

a segment. Thus, the file system appears to the user as a hierarchical tree 

of directories (nodes) and segments (leaves). (1) The tree is rooted at a 

distinguished directory called "root" that is not described in any directory 

entry. Every entry in a directory bears two names: a symbolic name (character 

string) that is unique within the directory and the (numerical) unique 

( 1) The Multics terminology is often unfortun«~-:pa..-;:t,1c11,}arly about segaents. 
Most of the time, a segment means a logical collection of pages. But in the 
context of the- fil~ sy51-tem, a s~pent means a. J.e41f of the, tree.. We will t_ry 
to make clear what kind of segment we mean when we use the word. 
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identifier (UID) of the segment or directory described· by the directory entry. 

UIDs are unique over the entire system. Thus, a directory entry is uniquely 

defined by its path ~ in the tree and uniquely recognized by the UID i't · 

contains. The path name is user oriented; the UID is system oriented. UIDs 

are easy to store and use within the system but path names are provided to 

users as they are easier to use to name directory entries. Adding a segment 

to an address space is called initiating the segment ( the inverse operation is 

called terminating). (Initiating a segment is somewhat synonymous to opening 

a file on other systems.) When a user requests that the segment described by 

a given directory entry be initiated, a KST entry is allocated, the symbolic 

name of the directory entry and the UID of the segment it describ~s are copied 

into the KST entry, and the corresponding segment number is returned to the 

user. Notice that path names and UIDs are entirely decoupled ways to identify 

a directory entry in the sense that the path-name may change while the UID 

remains the same. If a user has initiated a segment with a given UID, he can 

still use that UID to refer to the segment even if the name of some directory 

entry along the tree path for reaching the segment has changed. 

The addressing function of the file system consists of providing.a way 

for the user to get at the pbysical attributes of a segment (PTA,· CSL). This 

function is required to activate a segment or to recompute its CSL, as 

mentioned in the description of the connection operation. The directories are 

the system-wide data bases mentioned there. 

The protection function consists of providing an access control list for 

every segment and for every directory. An aceess ·control list determ'ines what 

PLIDs can acquire access to the associated segment or directory and how. The 

exact functionality of the access control list mechanism is of no interest 

here [see Saltzer' s paper in Multics74]. The only point t!hat d'eserves 
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attention here is the revocation of access. A user A can cause the access of 

another user B to some segment to be revoked by changing what the access 

control list says. The functionality of Multics .requires that this change be 

effective immediately even if user B has init~ated the segment and is 

currently connected to it. Access revocation is the seeond purpose of the 

fault tag in a SDW. It is turned on if access is revoked. When trying to 

reconnect a disconnected segment* the system recomputes the access of the 

faulting process and denies reconnection, signalling an access violation if 

access has been revoked. 

Finally, the resource accounting function consists of providing system 

administrators with a means to bill users fox the spaee used by their 

segments. It also provides a means to project adminiatrators or individual 

users to control their own resource usage. The resource accounting function, 

otherwise known as quota mechanism, poses many design problems and is 

extremely complex to describe. The following is a simplified descTiption of 

the mechanism that preserves the design challenges of the original mechaniam 

while trying to eliminate some of the complexity of its functionality. 

Quota Mechanism. 

Resource accounting is done on a per directery basis.· Every•directory 

has associated with it a. quota.£!.!!. The resour1:e- unit: ts one page. (Notice 

that users do not pay for directory pages in the current implementation of 

Multics.) 

There are two kinds of directories: quota d.irectories and non-quota 

directories. Although the following restriction does not quite hold ~n theory 

in Multics, let us assuae for simplicity that a directo~y can be a quota 

directory only if its parent is .a quota directory. Thie restriction appe.ars 

to hold in practice, as far as users are concerned. Thus ... quota directories 

97 



are aggregated at the higher levels of the directory hierarchy as in the 

following example. 

ROOT (has to be a quota directory) 

CSR (quot\ectory for project) 

(qu\ directory for user) 

.. ~----- segments -
The quota cell of a non-quota directory contains only a running total U of the 

number of pages _!!sed by all the segments (sum of their CRUs) described in that 

and inferior directories. For example, the quota cell of THESIS-indicates the 

number of pages used by segments in subtree STl.. The quota cell of a quota 

directory contains resource usage, resource control and. resource accounting 

information. The resource usage information, further referred to as usage 

{U), consists of the running total of the number of pages used by segments in 

that and inferior non-quota directories~ Thus, for CSR, U is the number of 

pages used by segments in subtree ST2. The resource contr,ol information, aJso 

known as quota (Q), is an upper bound for U. The resour(;e a.ccounting 

infonnation,- also known as the time-rec,.or~prod\lct (TRP), is the integral over 

time of U •. 

The quota mechanism supports three functions: J;'eset usage product (RU), 

~ quota (MQ) and change usage (CU). 

The RU function performs accounting. It i.s· el~r from the above 
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discussion that the sum of the TRPs of all quota dlTectories is equal to the 

integral of resource usage for the whole system. Thus, by periodically 

extracting the TRP of all quota directories and resetting them to zero, system 

administrators can bill the owners of those quota directories for the 

resources they have used and recover the total cost of pages used during the 

elapsed accounting period. This is the purpose of the RU operation. 

The MQ operation is intended to allow project administrators and users to 

put upper bounds on the amount of pages they ar1:? willing to pay for in any 

directory or subtree of directories. The MQ operation moves po.rtions of Q 

from a parent directory to its son or vice versa. The parent directory must 

be a quota directory. As a result of a MQ operation, the son directory may 

change status from quota to non-qu<fl:a or vice versa. In either case, and in 

order to preserve the meaning of Q relative to U, the MQ primitive must update 

the U value of the parent directory. lf Q is delegated to a son that becomes 

a quota directory, then U (son) must be subtracted from U (parent) as it is 

now charged against Q (son). If all Q is removed fr0tt1 a son that becotnes a 

non-quota directory, then U (son) must be added to U (parent) as it is now 

charged against Q (parent) and Q (son) is zero. 

Finally, the purpose of the CU operation is to update the U of quota 

cells when segments are gro"1tl or shrunk. Again, to preserve the meaning of a 

Q with respect to the associated U, when a segment is grown/shrunk, a page 

must be added to/ subtracted from the U of the quota cell of every directory 

above the affected segment up to and ineluding the lowest quota directory. If 

U =Qin that directory, then the segment may not be grown and a quota 

overflow condition-is signalled to the user. 

Removable disk packs. 

We are now almost done with our description of the functiE>nality of the 
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Multics virtual memory mechanism. We must yet describe the removable disk 

pack feature. This description will be extremely simplified for two reasons: 
. . 

as we are writing this thesis, the exact functionality of removing disk packs 

is not defined because the implementation of NSS is not completed, and the 

functionality as we perceive it does not seem to pose any major design 

challenge. 

The purpose of having removable disk packs is to be able to not have all 

segments on-line all the time, i.e. to extend the available virtual memory to 

off-line packs. 

The organization of disk packs is governed by t,wo concepts: physical and 

logical volumes. Physical volumes are physical packs. Logical volumes are 

collections of physical volumes. Two rules apply to the organization of 

information on volumes. First, all the pages of a segment must reside on one 

physical volume. Every segment has as a tag the physical volume its pages 

belong in. Second, all the segments in one directory must reside in one 

logical volume. Every directory is tagged with a logical volume attribute 

defining the logical volume its son segments belong in. When a segment is 

created, its home logical volume is determined from the logical volume 

attribute of its parent directory. The home physical volume is selected as 

the least full of the physical volumes in the home logical volume. If the 

system lacks physical space to grow a segment on its home physical volume 

(out-of-physical-volume (OOPV) condition), it may move the entire segment to 

the -- then -- least full physical volume of the home logical volume. 

The removability of disk packs is governed by two rules. First, they 

must be mounted/demounted by entire logical volumes so that all the segments 

in one directory are either on-line or off-line at the same time. Second, one 

logical volume, which is called the root logical volume and contains all 
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directories and some segments critical to system operation, can never be 

demounted. Thus, the skeleton of the file.system hierarchy, i.e. the 

directories, is permanently accessible on-line. As a consequence, it is 

always possible to find out about the unique names, the secondary storage 

address and the access control list of a segment, and to access a quota cell. 

However, it is not always possible to access or find out about the attributes 

(DTU, DTM, CSL, MSL, CRU) of any segment. This is possible only for segments 

stored in logical volumes that are on-line. If a user tries to access the 

content or the attributes of a segment that is off-line, he will receive an 

error message indicating that the desired logical volume is not on-line. In 

order to reference an off-line segment or its attributes, it is necessary to 

first request explicitly that the right logical volume be mounted. 

For each logical volume, there exists registration data (LVRD). The LVRD 

specify which physical volumes are in the logical volume. These physical 

volumes cannot be mounted individually. The LVRD also specify what 

directories of the file system are master directories for the logical volume. 

The segments in a directory Dare normally stored in the same logical volume 
- ., ' ··-

as the segments in the parent directory of D. However, if Dis a master 

directory for some logical volume, the segments in D are stored in that 

logical volume. In other words, a master directory is recognized by the fact 

that its LVID attribute was not inherited from its parent but is determined by 

some LVRD. 
. .• 

There is an obvious connection between the space that is physically 

available in a logical volume and the fact that that space will be shared by 

segments described ·~~ly in the master directories of the logical volume and in 

inferior non-master directories. In view of this connection, quota on a 

master directory cannot be adjusted by moving it. to/from its parent directory 



since the parent directory, by definition, controls resource all~at~on on a 

different logical volume. Thus, a master directory is a. boundary fot; the MQ 

operation: quota cannot move between_ a master direc.tory and its parent. In 

reality, it will be possible to adjust quota on a master d.icectQ~Y by moving 

it to/ from the quota pools of a space partitiqn de.fined in the L'{RD -0£ the 

corresponding logical volume. However, the funct,ionality pf this mechanism. is 

not yet fully defined and the mechanism is not yet implemented. Since the 

mechanism does not seem to pose any desigq challenge in a system based on type 

extension, we will ignore its details and an<il assume for simplicity in this 

thesis that quota on the master direc_tories <?f a logieal volume can be 

adjusted externally, in an unspecified way, ijy the executives (see below) of 

the logical volume. 

For every logical volume, there is also an access con,trol, list. This 

access control list specifies the authorized_ ''.users" a,nd ."executives" of the 

logical volume. The "users" can mount (use) 1and <lemount .tbe logical volume. 

The "executives" can move quota between the I!f.aster directories of the logical 

volume and quota pools. defined in the LVRD o~ . the logi~l vohqne. Only th_e 

person known as the "owner" of the logical vql:U,llle can set the access control 

list of the logical volume. 

3. Study of NSS. 

• ! 

The purpose of this section is to examine how the virtual memory 

I 
mechanism that was described in the previous section is implemented in NSS. 

f 
While studying NSS, which is not well organized and not based on type 

I c. 

extension, may sound irrelevant to the topic ~f this thesis, there are two 

reasons for doing so. First, MSS will be evolved directly from NSS with 

.. -
amazingly few changes. Thus, it is interesting to describe NSS as it is the 
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basis for MSS and is very similar to it in many respects. Second, in studying 
-

NSS, we will point out the problem areas in· its organization. This will allow 

us to concentrate later on these areas to ·analyze the nature of the problems 

and solve them in MSS. 

To characterize NSS, we will first describe its mechanical operation by 

surveying the data bases it contains and their management. We will then step 

back from the detailed mechanical description of NSS to give a somewhat 

abstract description of its organization. ffiis will allow us, in a third 

step, to point out examples of problems associated with the modularity of NSS. 

And finally, we will isolate problems associated with its structure. 

Mechanical operation of NSS. 

Our objective here is to describe the mechanical operation of NSS in a 

way that will prepare the reader to later vbualize data abstractions in NSS, 

which was not designed with type extension in mind, and to evolve it towards 

MSS, which is explicitly based on type extension. Ft-Oil chapter It, we know 

that an abstract object is a repository for data. 1.'hus~ in more common terms, 

an abstract object is a data base or a data item. -Therefore, to arrive at a 

data abstraction view of NSS, it may be helpful to describe its mechanical 

operation from a data base point of view. Adopting ~uch a data base view is 

exactly what helped us to produce MSS from NSS in reality. Thus, the 

following discussion will gravitate around NSS data bases and their 

interconnections. This discussion does not pretend to give a full description 

of all data bases. First, it provides only information necessary to gain an 

overall understanding of the mechanical operation of the system. And second, 

it omits the description of specific operations that cause organizational 

problems as these operations are described later in more detail. 
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a. Logical volumes. (1) 

When a user wants to operate on a logical volume, he can name it by a 

path name. The .path name denotes a segment in the file system hierarcQy that 

contains the LVRD for the logical volume to be operated on. This LVRD 

contains, first of all, a logical volume identifier (LVID) for the logical 

volume under concern •. The LVID of a logic~l volume is a system oriented name 

for talking about a logical volume. While users never see LVIDs, the system 

never uses path names to denote logical volumes. The LVRD of a logical volu~e 

also contains a list of physical volume identifiers (PVID) that specifies 

which physical volumes compose the logical volume, _and a list of path names 

that specifies which directories of the file system are master directories for 

the logical volumes and how much quota these ll).aster direc.tories may have. 

Every time a user wants to mount/demount a logical volume, the list of PVIDs 

is used to mount/demount the physical volumes. of th~ logical volume. Every 

time a user wants to create a master directory for some logical volume, the 

list of master directories is used to determine if the directory to be created 

may be a master directory for the given logical volume and if so, to set the 

quota on it. The LVRD finally specifies if the logj.cal volume is demountable. 

b. Physical volumes. 

Thanks to a hash table associated with a data base called the~ Table 

(DT), every PVID is mapped into an entry of that OT. This entry describes the 

corresponding physical v_olume (device type, size, configuration, etc ••• ). In 

particular, the entry indicates if the physical volume is demountable and if 

(1) The information in this section may not reflect the .true implementation of 
NSS because that implementation does not ye·t exist as ·we "1r·ite these lines. 
The implementation that is described here is b~lieved -~o be a. close 
approximatiotr to what will everttually ha·ppen ;to be a real implementatiort. At' 
any rate, the functionality of the mechanism is respected. 
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it is currently mounted. If the physical volume is currently mounted, the 

entry specifies 1'1hich drive it is mounted on by giving the index (PVTX) of the 

entry corresponding to that drive in a table called the physical volume table 

(PVT). 

c. Configured volumes. 

The Pvr is a system table that contains one entry for every disk drive. 

Thus, a PVTX identifies one drive. A PVT entry indicates if the corresponding 

drive is currently used. If it is, the entry indicates whether the configured 

volume (the physical volume moun~ed on it) may,be da-ounted. (This 

information duplicates what is in the DT and the LVRD.) · The entry also 

indicates the PVID of the configured volume and the LVID of the logical volume 

of which the configured volume is a component. The PVT contains two more 

pieces of information. First, it contains a hash table that allows searching 

the Pvr to find out what drive (PVTX) a physical volume with a given PVID is 

mounted on. While it is possible to find what drive (PVTX) a PVID is bound to 

by looking up the description of the given physical volume in the DT, it is 

also possible to find out about this binding by searching for the drive 

desc dpt ion in the PVT. (Notice that whife a PVID i.s given and a PVTX is 

expected in return, this operation is not an operation on a physical volume. 

It does not affect any physical volume in any way. It concerns a configured 

volume. This seemingly irrelevant comment will have a> tremendous importance 

later.) Second, when a logical volume is mounted, all PVT entries that are 

allocated to mount its physical volumes are threaded into a circular list. 

Thus, given a PVTX for one configured volume of a logical volume, it is 

possible to get the PVTXs fo:r all others. Tile above._~~ pieces of information 

are used to create and move {OOPV) segments. ait.d to activate them, as will be 

seen soon. 
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d. Directories. 

A user may refer to ~ directory by its path name. However, as soon as he 

has initiated the directory in his process, he will address it by segment 

number, as does the system internally. A directory contains three data areas: 

an entry name hash table, a UID hash table and directory entries. The entry 

name hash table is used to find an entry in the directory, given its symbolic 

name. The UID hash table is used to find an entry in the directory, given its 

UID. 

As mentioned in section 2 of this chapter, every directory is also tagged 

with the LVID of a logical volume. That LVID indicates, the logical volume on 

which the son segments of the directory should be stored. (Notice that the 

LVID is never used to operate on (mount/demount, etc ••• ) the logical volume. 

It is only used as a common tag for all the segments in the diJ;ectory. This 

observation will have a fundamental impact on the design of MSS.) 

Every entry in a directory describes a file. (The name file is used to 

mean either a directory or a segment.) A directory entry associates its own 

symbolic name with the UID, the secondary storage,iocation and the access 

control list of the file it describes. The access control list is a list 

associating PLIDs with the access they should be granted to the file denoted 

by the entry. The secondary storage location of a file ts defined as follows. 

Every physical volume is divided into two zon~s: the paging zone and the 

cataloging zone called tlle volume table, of cont~nt {VTOC)., The paging zone. is 

used to store file pages and the cataloging ,.zgae , is uijed to ,store file maps. 

A VTOC entry contains one file map. The secondary storage loqation of a file 

is dlifined by the PVID of the physical volume where the fi.le is stored and an 

index (VTOCX) to the entry where the map of t\le, file is -ator~ in the VTOC. 

To .create an entry in a directory, i.e. to create, a f:ile, the LVLD tag of 
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the directory is used to search the PVT until a configured volume with a 

matching LVID is found. (If none is found, a logical-volume-not-mounted error 

is returned.) The circular list of configured volumes with that LVID tag is 

then searched to find the least full configured volume. A VTOC entry is then 

allocated on that volume. A new UID is created. And the (UID, PVID, VTOCX) 

for the new file are stored in the new directory entry. 

e. Processes. 

While we are interested in the virtual memory mechanism of Multics, we 

need to say a few words about the virtual processor mechanism insofar as it 

interacts with the virtual memory mechanism. (More information on the virtual 

processor mechanism can be found in {Reed76] .) 

Every user attached to the system is represented by a process. The 

system maintains a table called Active Process Table (API') of wich each entry 

describes the state.of one process. An APT entry bears as a name the PLID of 

the user owning the process. It binds the PLID to a DSG and a KST for the 

user process. The DSG and the KST are permanently connected segments, i.e. 

there always is a SOW to address them in the DSG. If they were not 

permanently connected, the system could never connect them because connecting 

a segment requires addressing a DSG and a KST, as will be seen. 

f. Initiated segments. 

In order to address a file by hardware. it is necessary to acquire a 

segment number for it. This is the initiation operation mentioned earlier. 

It is impossible to initiate a file in a process unless its parent directory 

is already initiated in that process because initiating a file requires 

addressing the directory entry that describes it. To initiate a file. the 

user must supply the segment number of its parent directory and the symbolic 

name of the entry describing the-file in the parent directory. An entry is 
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then allocated in the KST, and the segment number of the parent directory, the 

UID of the directory entry and the symbolic name of the directory entry are 

stored into it. The parent directory segment number in every KST entry binds 

that entry to the KST entry for the parent and the (parent directory segment 

number, UID, entry name) triple binds the KST entry to the directory entry 

both by name and by UID. From then on, the file is said to be known with a 

segment number equal to the sequence number of the KST entry allocated to it. 

While it is known, it cannot be addressed yet because it_ is not connected 

and it may be inactive. When the user first uses the segment numb.er just 

allocated to the file, he takes a segment fault. As a result, the system 

looks up the faulting segment number in the KST. It follows the (directory 

segment number, UID) binding from the KST entry to the directory entry to find 

the access control list and the (PVID, VTOCX} of the faulting segment. It 

uses these information items to activate the segment if necessary and to 

connect it in this process, as explained below. (Notice that the system 

follows the UID binding rather than the entry name binding from the KST entry 

to the directory entry. Thus, it is not affected by potential changes in the 

name of the directory entry.) 

g. Segments. 

NSS is ambiguous about the definition of segments. In this paragraph, we 

mean to talk about stored segments, i.e. logical coll~ctions of pages, as 

opposed to file system segments, i.e. leaves in the hierar~hical file system. 

In the quiescent state, a segment is materialized by its VT.QC entry. The VTOC 

entry contains its UID, its file map and its storage attributes (DTU, DTM, 

CSL, MSL, CRU) • 

To activate a segment, the system uses the (PVIP,. VTOCX) stored in the 

directory entry describing the segment. It first searches the PVT to find the 
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PVTX corresponding to the given PVIO. It then uses the resulting (PVTX, 

VTOCX) to access the VTOC entry of the segment. It proceeds to find a free 

entry in a core resident table called the Active Segment Table (AST). (If 

there is no free entry, it deactivates another segment, as explained later.) 

It finally copies the VTOC entry into the AST entry, thereby bringing the page 

table of the activated segment in core. It also adds an entry to the !!!Q_ hash 

table (UHT) of the AST to map the UIO of the activated segment into a relative 

pointer (ASTEP) to its AST entry. 

In addition to the page table and the storage attributes of the active 

segment it describes, an AST entry also contains the (Pvrx, VTOCX) denoting 

the secondary storage home of the segment. If the segment ~age table or its 

storag~ attributes change while the segment is active, they are copied back to 

the home VTOC entry when the segment is deactivated. Finally, an AST entry 

contains a trailer list. A trailer is an (ASTEP, segment number) pair that 

identifies a SDW (denoted by its segment number) in.side a DSG (denoted by the 

ASTEP to its AST entry). The trailer list of an AST entry denotes all SDWs 

in any DSG that are connected to the active segment. It is used to disconnect 

these sows if access to the segment is revoked, if its bound changes or if it 

is deactivated. 

h. Connected segments. 

For every KST entry, there is one SDW. (1) Having initiated a segment is 

sufficient to address it by segment number. However, a segment fault occurs 

when a disconnected SOW is used. On a segment fault, the system follows the 

(1) Notice that the inverse is not true. Some SDWs that are permanently 
connected permit addressing ~f certain sy,t~ s~_penJ_s th:at are not described 
in any KST entry. Segment faults and bound fauf t"s on -s\!Ch segments cannot be 
taken because_ they require the existence of a KS? entry to be handl~d 
properly. · · · - · 
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binding from the KST entry with the faulting segment nl.Dllber to the directory 

entry describing the segment that must now be connected.. In a way to .be 

explained later, it inspects the access control list to determine the access 

mode of the faulting process to the faulting segment and it .c-<>pies the 

computed mode into the SOW.. It. then uses the (UIO, PVID,. VTOCX) of the 

segment to retrieve its CSL and page table. If the segment is active, the UID 

hashes directly into an ASTEP. Otherwise, the segment is first activated, by 

using the (PVIO, VTOCX), to get an ASTEP for it. In either case, the system 

then finds the CSL and the page table in the AST entry denoted by the ASTEP, 

stores the PTA and the CSL in the SOW, and turns off the fault tag in the SOW. 

(When a bound fault occurs, the system proceeds as for a segment fault to 

retrieve the CSL of the segment to be grown.) 

i. Pages. 

The paging mechanism is based on three data bases: PTWs, the Core Map 

(CMAP) and the File System Device Configuration Table (FSDCT). For every 

configured volume, the FSDCT contains a bitmap indicating the allocated/free 

status of every disk record on that volume. The CMAP contains one entry per 

core block. If a core block is used, its assoc:iated. CM.AF .entry points to the 

PTW that denotes the core block and to the disk record that is .the home of the 

page currently in the core block. A PTW contains the disk or core address of 

the page it stands for and a "used" flag and a "modifi~d" flag t~t describe 

the state of the page. These flags are maintained by the hardware as the FTW 

is indirected through. 

The paging mechanism operates as follows. On a page fault, if the PTW 

faulted on is null and if the quota mechanism (see later) allows creation of a 

page, the system looks in the AST entry containj,ng t~e faulting PTW for the 

PVTX of the home volume of the segment being_ ,grown. It searches a free disk 
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record in the bitmap associated with this volume in the FSDCT. If there is no 

free disk record, it signals an OOPV condition (see later). If there is a 

free record, it allocates it and cop·ie s its address in the PTW. 

If, on a page fault, the PTW faulted on denotes a disk record, that 

record must be copied into a core block. The system Bearches the CMAP for a 

free entry. If it finds one, it copies the address of the disk record into 

the free entry; it copies the absolute address of the faulting PTW into the· 

free entry; it copies the address of the associated core block into the PTW; 

and it threads the CMAP entry to a circular list of used CMAP entries. 

If no CMAP entry could be found, a page must be thrown out of core to 

free a core block. The system walks around the list of used CHAP entries. 

From each CMAP entry, it follows the binding to th~ PTW that uses the 

associated core block. If the "used" flag is on in that PTW, the system turns 

it off. 1f it is off, meaning that -the page has not been used since the 

system last revolved around the circular list of used CMAP entries, the system 

frees the CMAP entry. To do so, it looks at the "nt<>dified" flag in the- PTW. 

If it is off, the system restores the PTW to its quiescent state by copying 

into it the d-isk address that "'88 earlier saved in the CMAP entry associated 

with the core block denoted by the PTW. lt then free·s the CMAP entry. If the 

"modified" flag is on, the system first copies the core block it is freeing 

back into the disk record home of the page it is removing from core, and it 

restores the PTW to its quiescent state. It then fr~s the CMAP entry. 

j. Summary. 

Figure 4.1 summarizes the data bases involved in the operation of NSS and 

their interconnections. Boxes stand for data bases or parts of data basee. 

Since these boxes will later be identified with abstra<:t types, we might as 

well think of them now as denoting various kinds of objects. Every arc 
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Figure 4.1: NSS data bases and interconnections. 



indicates a binding between two objects of different kinds. Single lines 

indicate explicit bindings or stored denotations. For instance, a SOW denotes 

a page table. Double lines indicate implicit bi~~gs or correspondances. 

For instance, a PVT entry corresponds to a collection of disk records and VTOC 

entries in the sense that it describes a corifigured:volume that is composed of 

these disk records and VTOC entries. The distinction between single and 

double lines is purely informative. It has no stgnificance ftir the later use 

of the figure. The dashed line deserves a, special comment~ A (PVID, VTOCX) 

in a directory entry binds that entry tQ a VTOC entry only on the Condition 

that the physical volume denoted by. the ·PVID is moun:ted, i.e. only if the PVT 

maps the PVID into some PVTX. The dashed line stand,s for this fOndition on 

the bind iag. 

While figure 4.1 is only a summary of what was described in this section, -

adds no knowledge to the description of NSS, and may: seem of little import,nce. 

now, we will see in the next section of this chapter ·the interest it presents 

for deriving a first approximation of a'type structure graph for MSS. 

Organization of NSS. 

The purpose of this section is to try to see a modular decomposition and 

a dependency structure in NSS, i.e. to try to group the procedures of NSS 

around the data bases they manage and se~ how they interact. 

Since NSS actually is neither modular nor structured, we cannot see a 

' 
perfectly modular and structured organizatio~ where ther~ is.none. The 

organization discussed here is the one that beat fits tne real organization of 

NSS. It will b~, the purpose of later paiqraphs -~o: show ~ti the real NSS 

differs from the model we try to see here, thereby causing violations of 

modularity and structure. 
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Figure 4.2: best fit model of the organization of NSS. 
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The model that best fits the organization of NSS is given in figure 4.2. 

Every line describes one module. For every module, we have indicated a name 

and the list of data bases it manages. Every module depends on the modules 

below it. The partially ordered dependency structure is thus a total ordering 

in the case of NSS. 

Volume control manages the LVRD of all logical volumes and the DT. It 

implements the operations for creating, deleting, mounting and demounting 

logical and physical volumes. It also supports the operations for controlling 

the use of master directories, although the management of these directories is 

obviously done by directory control. Volume control depends on directory 

control because LVRD files and the DT are segments stored in the file system 

and the concept of a master directory requires the existence of the file 

system. 

Directory control manages all directories. It implements the operations 

for creating and deleting directory entries, and for managing their names and 

their access control lists. Ii depends on address space control because 

directories must be initiated by every user in his own process in order for 

the system to be able to address them on the user's behalf. 

Address space control manages KS Ts. It implements the operations for 

initiating and terminating segments and for handling segment faults and bound 

faults. It depends on segment control because handling segment and bound 

faults requires activating and connecting segments. 

Segment control manages the AST and the vrocs, ,the Pvt, and the DSGs. It 

implements the operations for creating, deleting, activating, deactivating, 

connecting and disconnecting segments. It also controls the allocation of 

disk drives by managing the PVT. It depends on page control because most of 
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its code resides in paged segments. 

Page control manages page tables and individual PTWs, the FSDCT and the 

CHAP. It implements the page allocation, the page fault and the page removal 

algorithms. It depends on traffic control because c,ne can.not af-ford to keep a 

processor idle, waiting in a loop for an I/0 operation to complete on a page. 

Thus, page control depends on traffic control to multiplex processors among 

ready processes while other processes wait for I/0 on a page to complete. 

Finally, traffic control manages the APT. ·rt supports the creation, 

deletion and scheduling of processes and the multiplexing of processors. 

Modularity violations in NSS. 

Modularity violations occur when a procedure in one module references a 

data base in another module. Such violations ar~ innwne~able in NSS. It is 

impossible to mention them all here and in addition, .it would be uninteresting 

to mention them all as most of these violations are benign. and could easily be 

fixed. 

Our purpose here is to pick two illustrative examples of violations of 

modularity and to discuss them with respect to the understandability of the 

system. 

Consider the case of the AST. The AST as a whole.~s managed by the 

segment control module. Yet, page tables are stored in the AST and are 

managed by page control. Thus, we have a case of two modules managing one 

data base. The problem would not be too bad if each mo~ule managed only a 

distinct area of the AST. In essence, they would be lll.anaging distinct data 

bases. Unfortunately, this is not even true. Segment control never touches 

PTWs, but page control does touch AST information that belongs in the segment 

control module. In particular, for every segment, page control maintains a 

"file-modified" switch, a "file-map-modified" swit.ch and a running total of 
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the number of pages that are currently in core. · Tnese pieces of inf-ormation 

are used by segment control to deac.tivat:e segments. The "modified" switches 

are used by segment control to decide whet-her to update the DTM and the file 

map of a segment in its VTOC entry when it deactivates it. 'Dle number of 

pages in core is used by segment control as an approxi:aul~e measure of the 

segment usage rate. This measure is used to select for deactivation the 

segment with the smallest number of pages in core so as to minimize the ·paging 

activity that is required to deactivate a segment. 'lbe BhM-ing of the AST 

canplicates the understanding and the verificatiorf :of NSS because there is an 

implicit interaction between page control and se~t., QQntr<>l over data it~s 

they share ·access to. Also, the primary function of page -control is to manage 

PTWs but it cannot ignor~ totally the fact that pages :are- logically grouped 

into entities called segments at a higher level. Ma result, the interface 

between segment control and page control is very hard to define completely and 

correctly. 

Second, we would like to mention the ca~ of :one procedure whose function 

is to translate almost any kind of segilent· i~-tt:fier into any other kind and. 

to return any segment attribute given any kind of segment identifier. Such a 

procedure really cuts across all modules of NSS. It knows :about the f-ormats 

of directories, KSTs, DSGs and the AST. It is not a ·functional abstraction 

that is usable at different levels. It is a elus.cer of functions belonging in 

different levels and -glued together in one procedure. · Understanding such a 

procedure is extremely awkward as it requires a good deal of knowledge about 

several levels of NSS. 

Structure violatioas in NS~. 

In the rest of this section, we will exalline violations of the partial 

ordering of the dependency structure i'n NSS. :There are .ooiy a few instances 
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of such violations. Therefore we will study them all. We study them all 

because they all constitute major probl~m areas in NSS and we-want to analyze 

them to focus on their solution in MSS. 

a. Process loading. 

As mentioned earlier, page control _dep~n~s on traffic control to 

multiplex processors among processes whi.le waiting for 1/0. operations to 

complete on pages. Unfortunately, traffic control also depends on page 

control to load processes. The address space of a process, as materialized by 

its DSG, contains SDWs not only for segments the user has initiated and 

referenced, but in addition for all system programs, wltich are thus in every 

user address space. ( Such programs are of course not accessible in the user 

protection environment.) In order for a process to run at all, that page of 

the DSG which contains the SDWs for system prog-,:-ams must be wired in. core. 

Otherwise, the process could not handle its. page. faul..ts and bring in core any 

page it references, including the DSG page, since the progr~s required to 

handle page faults are system programs described by Sl>Ws in _the PSG page 

itself. Thus, prior to switching a processor _to a n,.w process, tlle traffic 

control module (executed in the old proceas) 111µst invoke the page control 

module to "load" (read in and wire th_e DSG page of) the new prQ_cess. This 
. _- • ·" 't ~- 4~ -- - ' 

causes a first upward dependency violating .uie struc_ttn:~,,9f figure 4.2. It is 

due to an upward call. It is a ~~nif,estatiqn of a, d~,P.eJ?de11.cy loop encountered 

in many syst~s between the virtu~l mem?ry tlle~hanj.sm a?d the processor 

multiplexing mechanism, and .analyzed in [S.axen,i76] and :J_n [Reed76]. , 
b. Page fault handling., 

When a. process refere!}ces a pa_ge of a se~~~nt that. is not in ~ore, a fl~g 

in the PTW.causes a.page fault. As a result, the state of the p_rocessor is 

saved to record what caused the fault. The pr.of;:.eJ;$or .abaµd9ns the user 
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computation and it traps -- within the user process -- to the page control 

module of which the function is to bring in the page. Unfortunately, to do 

so, page control is dependent upon address space control (and segment control 

by transitivity). 

Two processes cannot be in page control at the same time.· This is to 

preserve the consistency of PTWs as a whole. Synchronization is obtained by 

using a global page control lock. Every process must test and set that lock 

before entering page control code. Unfortunately, there is always a time 

window between the moment a process takes a page fault and the moment it sets 

the page control lock. Even if the page control lock is not set when a 

process P takes a page fault, it may be set by some other process Q by the 

time P gets a chance to test it. In some rare but possibfe cases, the 

activity of Q in page control may precisely be pertittent to the PTW that P 

faulted on. In particular, Q may have entered page control to deactivate or 

simply delete the whole page table containing the PTW that P faulted on. As 

soon as Q leaves page control, P may set the page control lock and enter page 

control. However, to determine what PTW originally caused the fault, P cannot 

use the absolute address of the PTW that may have been saved in the processor 

state. That absolute address may now denote a PTW in the page table of 

another segment or simply a free PTW. Thus·, to make sure it finds the correct 

PTW, page control must repeat the whole address translation operation that was 

originally performed by the processor before it took the fault. This includes 

interpreting the segment number to get to the SDW and from there to the page 

table. (Of course, if the segment has indeed been deleted or deactivated, the 

SDW will be disconnected. At that point, page control must quit and restore 

the processor state, which Will cause P to retry the opeiation and this time 

take a segment fault.) The upward dependency of page control on address space 
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control resides in the fact that page control relies on the meaning of segment 

numbers and SDWs to get at a faulting PTW. Yet, page control operates at a 

very low level, should not know about segment numbers and should not use SDWs 

as they are stored in the paged DSG, which makes possible the accumulation of 

page faults. This upward dependency corresponds to a violation of the 

information level rule mentioned earlier. Debugging has of course shown that 

NSS works, but understanding and verifying the system are more complex due to 

the above violation. 

c. OOPV conditions. 

The next upward dependency is due to OOPV conditions mentioned earlier. 

When a segment needs to be grown but the physical vol.ume it is on is full, the 

segment must be moved to another physical volume prior to being grown. The 

overall mechanism for doing so follows. When a user process touches a zero 

(null) page of a segment, it causes a page fault. Page control is invoked to 

grow the segment. If it discovers an OOPV condition, it posts it in the AST 

entry of the segment (this is another violation of modularity) and it invokes 

segment control to disconnect the segment- (this constitutes a first upward 

dependency). Page control then restores the processor state. The process 

retries referencing the segment and this time takes a segment fault since it 

is disconnected. Address space control is entered to process the segment 

fault and invokes segment control to reconnect the SOW. Segment control 

eventually discovers that an OOPV condition was posted by page control. It 

follows the circular list of threaded PVT entries from the original home 

configured volume to the currently least full configured volume within the 

same logical volume and proceeds,to move the segment from the original home to 

the new one. Finally, the move must be reflected at directo11y control level 

where the (PVID, VTOCX) of the segment must be changed. To do so, segment 
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control reaches up and writes into the directory entry describing the moved 

segment, violating both modularity and depeIJ<lency. Dependency is violated ,in 

the following way. In order to write into the directory, segment control 

obtains the segment number of the directory and the UID of the appropriate 

directory entry from the KST. In doing so, it relies on address space control 

for having stored the right parent directory segment nUlllber and the right 

entry UID at the right place. Furthermore, a (directory segment nlUllber, UID) 

pair denotes a directory entry and should be meaningful only at directory 

control level. It can be stored at lower levels, but it should remain unused 

because it denotes a directory control data base that should, from• a type 

extension point of view, remain unknown t.o lower modules according to the 

information level rule. By interpreting the pair, segment control becomes 

dependent on directory control as it does not know (or should not know) 

anything about a data base like a directory that belongs in a higher level 

module. Notice that a low level module touching a high level data base 

results in a violation of modularity on top of which there is a violation of 

dependency structure due to violating the information level rule. 11iis was 

the case both in the handling of page faults and of OOPV conditions. 

d. Access recalculation on segment faults. 

The main role of the KST is to bind segment numbers to directory entries 

so that, on a segment fault or a bound fault, one can go to the directory to 

recalculate access or reactivate the segment, or to the AST/VTOC to access its 

CSL. On a segment fault, address space control uses the (parent segment 

number, UID) pair in the KST entry to acces~ the ,directory entry, obtain the 

(PVID, VTOCX) and compute the access mode from the access control list. Since 

reading an access control list and .extracting from it the desired information 

for one process is an expensive operation, the following mechanism is used. 
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The KST is used as a sort of software cache for the access information 

residing in directory entries. The access info;D!lation for one process to one 

segment resides in the access control list of the dire,ctory entry. describing 

the segment and is stored in a more accessible and readable form in the 

corresponding KST entry. In addition, both the directory entry and the KST 

entry contain a date-and-time-entry-was-last~modified (DTEM). On a segment 

fault, address space control uses the (directory segJ11ent number, UID) pair to 

access the directory entry and read its DTEM. If this_.DTEM is more recent 

than the DTEM in the KST entry, access must effectively be recqmputed from the 

access control list as it may have changed. (The .PTt:M is also UBdated in the 

KST entry). Otherwise, the access information in the KST entry is s.till up to 

date and can readily b~ used without recomputatioq._. · Address space control 

depends on directory control again because .of a violation of the information 

level rule on top of a violatio11 of modularity. Address.space control should 

not touch directories and should moreover never use (interpret) a (parent 

segment number, UID) pai~ because, even though_it knows about segment numbers, 

it should in principle not know what directories are and should not assume 

anything about their usage or the:i,.r managtlment (format). 

e. Tile quota problem. 

The implementation of the quota mechanism in NSS is the biggest source of 

modularity and dependency violations. The quota mechanism involves every 

module from page control to directory control. In short, the.cause of the 

problem .is the following. Quota cells are organized into a. hierarchy that is 

defined at directory control. level; they are stored in th~ VTOCs and the AST 

at segment control level; they are lllanaged at,_page cont.rol_level; and 

processing page. faults that require growf_pg soµie segment: ,requires address 

space control level information (SDWs) as explained ~~li~. Thus, page 
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control depends on address space control to interpret SDWs (see earlier). 

Page control also depends on segment control because that -'is where the quota 

cells it manages are stored. And segment control depends on directory control 

because it cannot ignore the quota cell hierarchy, which fs in fact defined at 

directory control level. 

To understand the above implementation, one must consider the CU 

operation. The CU operation is invoked in t~o cases. First, when a segment 

is deactivated or truncated (on a user request), the pages that (may) have 

become null are deleted. Second, wheri a user references a null PTW, a page is 

created. In the above two situations the CRU of the segment changes and 

therefore the CU operation must be applied to the quota cells of all superior 

directories up to and including the lowest quota directory. Unfortunately, 

the hardware that supports Multics does ·not distinguish normal page faults 

from page faults on null PTWs (further referred to as quota faults). Thus, 

page control is entered on a quota fault and page control is responsible for 

the CU operation. Since two processes must not update a quota cell at the 

same time, quota cells must be protected-by some lock. Since the CU operation 

is performed under the protection of the: page control lock, all other quota 

operations must be performed under the protection of the page control lock as 

well. This is the argument that was used to justify llhy page control actually 

manages quota cells. 

The next question concerns the storage of quota ceils. In the original 

Multics implementation, quota cells were- stored in directories themselves 

since each directory has its own quota cell. However,· this implementation was 

deemed inefficient because updating' a- potentially' l'arge 1Jet of quota cells on 

a CU operation was likely to cause a flurry of page faults on directories, 

which is undesirable while a proces11 is 'already processing a page fault. In 
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NSS, it was decided to store a quota cell in the VTOC en.try of !ts directory 

rather than in the directory itself. .And in order to. av.oid delays due to I/0 

on VTOC entries, it was decided to keep active any directory that has at least 

one son active and to copy the quota cell of an active directory into the AST 

entry for the directory. (For this and other reasons, any directory with 

active sons was also kept active in the origin,al Multics design so that NSS 

did not change that aspect of the implementation of the Multics virtual memory 

mechanism.) Thus, when a quota fault is taken on some segment, the quota 

cells of all superior directories are guaranteed to be in core and readily 

accessible. Since segment control must not. arbitrarily deactivate 

directories, every AST entry describing a directory must contain a count of 

the number of segments below that directory that are active. Also, to allow 

page control to walk up the quota cell hierarchy on a CU oper.ation, the AST 

entry of any segment/directory is threaded to the AST entry for its parent. 

Consequently, page control depends on segment control becquse it uses AST 

entry threads that are supplied by segment control and manages quota 

information sto·red in segment control data bases • 

. Finally, segment control depends on directory control because, for 

various reasons that will not be described here as they lack interest, it may 

at times operate on inactive quota cells in VTOC entries. Since these 

inactive quota cells are not threaded into a hierarchy as are the active quota 

cells in the AST, segment control invokes directory. to find out about the 

structure of the directory hierarchy. 

In addition to being hard to understand, the above design is inefficient 

in that it requires many directories to remain active, even though they are 

not used, when all that needs to be accessible is their quota cell, which 

represents only a few words out of each AST entry. 
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f. Program, address space and interpreter dependencies. 

Although NSS is not based on type extensiein, the programs, the address

space and the interpreter of a modute·should still be implemented in terms of 

mechanisms defined at or below the level of the module. Yet,' NSS contains 

innumerable instances of dependency structure violations r-esulting from 

program, address space and interpreter dependencies. 

To name only one such instance, consider the case of the page control 

module. The page control module contains certain programs stored into 

segments that for obvious reasons need to be permanently active and have all 

their pages wired in core to avoid infinitely recursive page faults. 

Unfortunately, there does not exist an abstraction equivalent to a permanently 

active, wired down segment. Thus, page control uses regular segments and 

assumes that segment control will not deactivate or otherwise damage the PTWs 

of these segments. Also, the page control module runs in the user address 

space as materialized by a DSG. That DSG should also be a permanently active, 

wired down segment. Short of having such objects, the DSG is implemented by a 

paged segment. Thus, again, page control trusts segment control not to 

deactivate or otherwise damage the DSG it uses to define its address space. 

Finally, the page control module depends on processes implemented by the 

traffic control module to interpret its code, while the traffic cont-rol module 

depends on the page control module for loading and uttloading (paging in and 

out the state of) processes it schedules. 

4. Design of MSS. 

The objective of this section is to discuss the design i of MSS. 
! 

In a first step, we will try to visualize data abstracfions in NSS and 

I 

after briefly discussing the problems associated with these i abstractions, we 
I 
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will slightly modify them to yield the type structure graph of MSS. The 

transition from .NSS to MSS was a painfully ).ong process in reality, which we 

cannot afford to retrace completely here. Thus, we will not say in detail how 

and why we chose to modify the fictitious type structure of NSS the way we did 

to arrive at the real type structure graph of MSS. Ho.wever ,. by giving a brief 

summary of the transition, we hope to communicate to the reader the basic 

operations involved in designing a well-organized system that is.based on type 

extension and we hope to convince the reader that MSS is close enough to NSS 

that it could be implemented in practice. 

In a second step, we will build the complete dependency graph of MSS. To 

do so, as recommended in chapter I II, we will take the type structure graph of 

MSS and. add to it dependency arcs correspoJ:?-ding to map, program, address space 

and interpreter dependencies for each type manager. We will see that the 

graph so constructed is partially ordered .• 

In a last step, we will look back at the problem areas encountered in the 

organiza.tion of NSS and see how they are no longer problem areas in MSS. 

Considering the problem areas last departs from the way we ~onstructed MSS in 

reality. In designing MSS, we considered the problems first and in trying to 

solve them, we progressively arrived at the type structure graph and the 

dependency graph to be presented at the beginning of this ~ection. We have 

decided to present the. design of MSS first and to discuss the problems it 

solves then for two r.easons. First, some readers might not .be interested in 

the specific system. design problems that MSS solves, in which case they may 

skip .the end of this section without loss of continuity. Second., talking 

about the specific problems first and then discussing f.he. organization would 

present the risk of distracting the reader from the ill\{)Ortance of the 

pcjlrtial.ly ordered structure of modules. 
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Development of MSS type structure. 

In order to develop the type structure graph for MSS, we want to look at 

NSS from a type extension point of view to see if we can distinguish abstract 

types in it. Of course, such types cannot be formally stuctured and are 

probably not well-defined. But they may provide us with a first cut idea of a 

type structure graph for MSS. It will then be possible to formalize those 

types and to improve their organization to derive a well formed type structure 

graph for MSS. 

The basic process for evolving NSS towards a system based on type 

extension consists of regarding its data bases as abstract objects and their 

interconnections as component relationships. We will first associate every 

kind of data base in NSS with an abstract type and we will define informally 

the sPmantics of every abstract type. We will then examine the 

interconnections between the various kinds of data bases in NSS to see how the 

different abstract types are related, i.e. what the type structure graph of 

NSS is. We will finally discuss the structure violaiions found in that type 

structure graph and indicate what can be done about them to arrive at a well 

structured graph for MSS. 

a. Choice of abstractions. 

In this section, we associate every kind of -data base with an abstract 

type and we define informally the semantics and the "raison d'~tre" of that 

type. Unless otherwise stated, these semantics will be preserved in MSS. We 

are not concerned here about the relation bet'Ween the various abstract types. 

Logical volumes represent what the user sees as single (logical) disk 

packs and associate these atomic (logical) packs with sets of (phys-ical) disk 

packs and with master directories controlling the use of space on these di:sk 

packs. A logical volume is associated with a LVRD file. A logical volume is 
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named by the path name of its LVRD. It is also named by a LVID tag. However, 

this tag only identifieEJ the logical volume. It is insufficient to retrieve 

its LVRD and operate on i_t. Logical v.o.lumes are bas_e level, C/D objects. 

Logical volumes can be created, deleted, mounted and demounted. In addition, 

it is possible to define master directories for logical volumes. 

Physical volumes represent the physical disk packs that compose the 

logical volume objects defined above. A physical volume is associated with an 

entry of the DT. A physical volume is named by its PVID, which, thanks to the 

DT hash table, denotes the associated entry in.the DT. Physical volumes are 

C/D objects. (There can be very many entries iq the DT.) They can be 

created, deleted, mounted and demounte<!. Tl-le oper~tions de(ined on physical 

volumes are the .operations used to imple11,1ent .. the op~rations defined on logical 

volumes for each of the physical volumes that compose them. 

Configured volumes represent disk drives. The allocation of configured 

volumes to physical volumes is intended to modeJ.. the allocation of disk drives 

to mount disk packs. A configured vol.ume is associated with an entry of the 

PVT. A configured volume is named by its PyrX. Configured volumes are A/F 

objects. A configured volume can be allocated to mount a physical volume and 

deallocated when the corresponding physical volume is de_mounted. In addition, 

it is possible to search all ~llocated configll;l"~d volt11D.e_s, i.e. all mounted 

disk packs, for one that bears _a given PVID. This operation corresponds to 

searching the PVT, as explained earlier. 

Directoxies are the places where users catalog files. Directories are 

the nodes of the file system. A ~ir,e<:to,ry is named by its p_ath l!_am_e. 

Directories are b-ase level .. C/D .objects. , The operatio~s defined on directories 

are those defined at the interface of the directory control module in NSS 

(e.g., create, delete, create entry, del,ete entry,, rename _entry, set access 
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control list, move quota, etc ••• ). If a directory is initiated in a process, 

that process can also name the directory by segment number. 

User process objects are the internal representation of users and carry 

out inside the system the intentions of the users. The user process con~pt 

is associated with an entry of the APT (later renamed the~ Process Table 

(UPT) in MSS). A user process is named by the PLID of· its APT entry. User 

processes are base level C/D objects. (The system supports a limited number 

of processes at a time.) User processes are subject to-synchronization 

operations of which one purpose is to multiplex the processors of the system. 

A known segment is a slot in the address space of a user process. Every 

user process has a finite set of known segments available in his address 

space. The user can request the allocation and the deallocation of known 

segments but he cannot read or write knowri segments. Such operations are not 

defined on this type of abstraction. The known segment toncept is associated 

with a KST entry. A known segment is named by the segment number denoting its 

KST entry. (Note that a segme.nt number must be interpreted· with respect to 

the KST of a specific process. That specific process b1 implicitly defined as 

being the one interpreting the segment number.) Known segments are base level 

A/F objects. Known segments are allocated/freed in response to a user's 

request to initiate/ terminate files. Segment faults and bound faults are 

events defined on known segments. (So are quota faul:ts in MSS, as will be 

seen later.) 

The segment abstraction stands for a log-lcal collection of fixed size 

physical information containers. A segment is assoc·i1ft.ed with a UHT entry. A 

segment is named by a UID. Segments are C/D object's. -·segments can be 

created, deleted, activated and deacti'lfated. Segments iinpl:ement the segments 

and directories defined in the file system~ 
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A connected segment is also a slot in the ~ddress space of a user 

process. Every user proce~s has as many conn~cted s_egments as he has known 

segments and they are in a one-to-one correspondance. The allo~ation of 

connected segments is implicitly controlled by the allocation of known 

segments because _of this one-to-one correspondance. Th\lS, the user cannot 

explicitly request the allocation or the deallocation of a conn~cted segment. 

However, he can read or write connected segments. The connected segment 

concept is associated with a SDW. A connected segment is named by the segment 

number of its SDW. (Note that a segment,_ n1,1111ber for a connected segment must 

be interpreted with respect to the DSG of a specific process. This specific 

process is defined as being the one interpreting the segment number.) 

Connected segments are base level A/F objects. In addition to read, write and 

execute, two operations defined on connected. segments. are connection and 

disconnection. They can be invoked only by the system. 

The passive segment abstraction stands for. the disk image of a segment. 

A passive segment is associated with a VTOC entry. A passive segment is named 

by a (UIP, PVTX, VTOCX) triple denotin$ its VTOC entry. Notice that the 

(PVfX, VTOCX) pair is sufficient to ret.rieve the VTOC entry but not to 

identify it as corresponding to the right passive _segment. The importance of 

this remark will become clear soon. Passive segments are A/F objects. One 

can read or write their VTOC entry. 

The active segment abstraction stands for the image of a segment of which 

the page table is in core. Ao active segment is associated with an AST e~try. 

An ac ti;ve segment is named by its ASTEP •. ,Ac,tiv,e. s~gments a~e A/F obj ec~s. 

On-e can read or write their associated AS'I' entry and c-ause their CSL, MSL, 

CRU, DTM and DTU attributes to be updated. Notice th~t in MSS some active 

segments are not the image of any segment. They are stand-alone objects used 
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by the system. Such active segments are not components or subcomponents of 

any segment, known segment or directory. Segment, bound 'and quota faults are 

not defined on them. They cannot be deact1'1ated (deallocated) because the 

segment manager, which multiplexes active segments among passive segment and 

implements the segment deactivation algorithm, is unaware of them and has no 

ASTEP to name them. 

The page frame abstraction stands for a block of contiguous words of 

storage. A page frame is associated with a PTW. A page frame is named by the 

absolute address of its PTW. Page frames are A/F objects. One can read or 

write the PTW of a page frame. Page faults ate events defined on page frames; 

We will see in MSS that PTWs are no longer stored in the AST. Instead, they 

are stored in a separate table called the PageFrmne Table (PFT). 'l'he PPT is 

an array of PTWs. The concept of a segment as a 1ogleal colleeti.on of page 

frames is totally lost at this level. All the page frame manager knows about 

is a page table, i.e. a collection of page frames with sequential names (the 

absolute addresses of their PTWs). It can allocate and free page frames with 

sequential names. lt can inspect several page frames' at a time given the name 

of the first one (PTA) and the number of page frames to be inspected (CSL) but 

it never knows what segment a page frame is part of,. 

The concept of a disk record is associated with a block·of storage on 

disk and one bit in the FSDCT. A disk record is nasted by its disk address. 

Disk records are bottom level A/F objects. They can be allocated, freed, read 

and written. 

The concept of a core block is associated with a block of'storage in core 

and one entry of the CMAP. A core block i-S denoted by its core address. Core 

blocks are bottom level A/F objects. ntey can be ·a11ccated, freed, read and 

written. 
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b. Type structure of NSS. 

We now turn our attention to the reJa,tio.n beiween abstr.~ctions in NSS. 

In other words., we want to find out what a type struct,1,1re graph for NSS would 

be. 

We will say that a data base A is bound to. a data base B if A contains a 

name denoting B. The basic technique for constructing the type structure 

graph of NSS consists of saying that if ,a data base A is bound to a data base 

B then a procedur.e operating on A may follow. t.he biµd.i.ng from A to B and 

request that some operation be performed on B. Thus, the abstraction 

associated with B should be regarded as a component of the abstracti@ 

associated with A since operations on A may eventually affeci. B when the 

bJnding is followed to it. 

In fact, not all bindings sho~ld be viewed as component relationships. 

Consider a data base A that is bound to a data base .B. 

The binding between A and B can fulfill one of two mutually exclusive roles. 

First, it may be there so that the program~ managing A may find Band invoke 

the programs managing B to perform some ope.ration <;m, B. In type extension 

terms, this means that the management of A may, on occasions, require 

operating on B.. The binding exist to record the name of the specific object 

( B) that should be operated on as part of operating on A •. T,he type manager of 

A may use this binding to request the type manager of B to operate on.B. In 

other words, B is a component of A. A binding of this first kind will be 

called an inte.rpr~ted binding. Second, the binding .may be stored in A by the 

programs managing A only to record so.me ass9.cµtion be,,t~en A and B (not a 

componen.t reJationship) but not to ever operclte on B. In type extension 
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terms, either the type manager for A does not care at all about this binding 

and the binding is stored there on beha-lf of some other module, ·or the type 

manager for A cares about the binding only insofar as it establishes a 

relation between A and B but not a component relation. This latter case would 

be indicated by the fact that the type manager ·for A never need·s to invoke the 

type manager for B to operate on B because it cares about 'B only a-s an object 

somehow related to -A but not as a component: o-f A. · A binding that does not 

correspond to a component relati.onship will be called an uninterpreted 

binding. Examples of interpreted and uninterpreted bindings in a real system 

will be discussed soon. 

Thus, when considering a binding between t~ data bases in NSS, we must 

wonder whether the binding is interpreted or not by the programs managing- the 

type of data base at the origin of the binding. 

In order to develop a fictitious tYPe structur~'graph for NSS, we 

consider figure 4. l, which shows all the data bases in -NSS- -and slD!lmarizes all 

the bindings between them. We regard every kind of data base represented in 

that figure as corresponding to one of the 'abstract d.ita types de'fined abo'le. 

And we must carefully review every binding between any two data bases to 

decide whether it is interpreted or not. The result of this process is shown 

in figure 4.3. Every box stands for an abstrat.t ·type and every {solid) arc 

for a component relationship. We cannot afford to j\lstify here e'lery 

component relationship in figure 4. 3. From t'.he description of the mechanical 

operation of NSS, the reader may, if he ca'I'es, verif:9' that every component 

relationship indeed corresponds to an interpreted bindin:g. However, we will 

discuss here the uninterpreted bindings of figure 4.1 that are represented by 

dashed lines in figure 4. 3 and are not c0111ponent relationships. 

First of all, a comment is necessary to interpret the abstrac-tiori ma-rked 
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X. This abstraction maps the (PVID, VTOCX) stored in a directory entry to the 

(PVTX, VTOCX) necessary to access a VTOC entry. In reality, it maps a PVID 

into a PVTX. This mapping is determined by the OT and duplicated in the PVT. 

As expressed in figure 4.1, this mapping is conditional on the physical volume 

with the given PVID being mounted, i.e. on the ~VID beingbo~nd to some PVTX. 

Thus, abstraction X implements a mapping that already exists in the PVT. As 

will be seen in MSS, abstraction Xis merged with the segpieni abstrac~ion. A 

' -----
Begmen twill be named by a (UID, PVID, VTOCX) triple. Every time the segment 

manager is invoked to operate on a segment denoted by such a triple, it first 

uses the UID alone in the hope that the segment_i.s active and will be f-ound in 

the UHT. If this search fails, it invokes a primitive of the configured_ 

volume manager to examine all configured volumes and see if any corresponds to 

the physical volume with the given PVID. If such a configured volume is 

found, its PVTX is returned. The segment manager then uses the (PVTX, VTOCX) 

it now has to request operations on the corresponding passive segment. In 

other words, the segment manager is dependent on the configured volume manager 

to map a segment into its passive, component because the mapping relation is 

stored in the PVT that is maintained by the configured volume manager. This 

will later appear as an appropriate map dependency. It is not the 

responsibility of the segment manager to guarantee against the loss of its 

ubjects. Its only responsibility is to- guarantee that the integrity of its 

objects is always preserved even if they are lost. Notice that losses can be 

recovered from if the higher level mechanisms that cause them care to correct 

them and retrieve the lost objects. 

Now, consider arcs (1), (2) and (3) of figure 4.3. They are all 

uninterpreted bindings for the same reason; they are never used by any 
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program to operate on the target objects they denote. Arc (1) is the LVID tag 

of a directory. As mentioned earlier, it is never used to operate on the 

logical volume it denotes. It is used as a sort of color tag that the 

directory manager wants to be common to all segments in a directory. The 

directory manager does n-0t care about what logical volume it denotes. In 

fact, it does not care about what logical volumes are. All it knows is that 

every directory has a color tag and that to create a segment in a directory, 

it is necessary to match that tag with a similar tag in the PVT entry of the 

configured volume on which the segment is created. In the PVT, arc (2) stands 

for this matching tag. Again, it is an uninterpreted binding. In fact, it is 

the inverse of a component relationship. The configured segment manager does 

not care about what logical volumes are. It only knows that every configured 

volume bears a LVID color tag and that all configured volumes with the same 

tag are threaded in a circular list. The same sort o~ argument could be made 

for arc (3), which stands for the PVID tag of a configured volume, yet another 

sort of color tag used to retrieve passive segments as expressed in the 

previous paragraph. 

One might believe that, in MSS, the directory manager and the segment 

manager would depend on the meaning of color tags that are really determined 

at the physical volume and logical volume levels. This is not the case. The 

directory manager and the segment manager use the tags to group segments into 

directories and. pages into segments respectively. Thus, tags provide a 

strategy for physically organizing, storing and retrieving information • 
. - ~ . 

However, the directory and segment managers do not depend on them to guarantee 

the integrity of the logical objects they manage because the ultimate item 

that associates directory entries to segments and to VTOC entries is a UID. 

UIDs are not sufficient to retrieve segments but they are sufficent to 
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identify them. Thus, if tags got mixed up somehow by-the logical or the 

physical volume manager, the segment manager would not be able to retrieve its 

segments. However, it would never d~age the~ accidentally thanks to the 

ultimate integrity check provided by UIDs. Consequently; the segment manager 

could signal discrepancies in the associations of color ·tags ii:. sees with 

respect to associations it previously saw. But as soon as these discrepancies 

would be fixed, for instance, by salvaging some LVRD or the DT, the segment 

manager would recover its full capac.ity and no segment would have been damaged 

or lost in the meantime. UIDs essentially constitute· a protection mechanism. 

that prevents the segment manager from suffering (ram'· mal·f~ctions in the 

logical or physical volume managers. The -~emarit:ic.s oi'.the. segment manager 

guarantee the integrity of ail segments but do not guarantee .that all segmen·ts 

t : ' 

can always be accessed. This latter property ·may ·be imposed and verifiea only 

at the level of the logical volume manager. 

Now consider arcs (4) and (5). These bindings are used by the page 

removal algorithm, as explained earlier. Since the purpose of this algorithm 

is to throw pages out of core when necessary, which requires manipulating the 

PTWs that represent the pages, the algorithm is part of what should be called 

the page frame manager. (4) and (5) are stored in ·olAP entries by the core 

block manager only on behalf of the page removal algorithm. ·The core block 

manager never uses these bindings to operate on PTWs or on disk records. (4) 

is only a way to save the address of the home of a page (4') while the page is 

in core. (5) is only the inverse of the compon~nt relati~riship .(5'). 

. . 

While arcs (6) ciearly establish an identity between. segment numbers of 

KST entries and segment numbers of SDWs, they·are not·component relationshipi • 

• - • • • ,- • -e: • - ·r · ~ { ! ~ : ' t - - , -- ·_ . -_ .- , 

While operating on a KST entry with segment number N; the KST management 

programs never invoke the DSG management progr~s to operate ori tne SDW with 
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number N. Conversely, while operating on an SDW with number N, the DSG 

management programs never depend on the KST management programs to operate on 

the KST entry with number N. 

We now have a fictitious type structure graph for NSS. It is fictitious 

in the sense that NSS does not really respect any typ~ extension formalism and 

the type structure graph is not well structured. The partial ordering of 

abstract types.is violated in two places. First, an ~ST entry is composed of 

a collection· of PTWs but its is also possible to get to an AST entry (7) from 

any of its PTWs, to operate on it. _This is indeed what the paging mechanism 

does to maintain for every segment a "file-modified" switch, a 

"file-map-modified" switch and. a number of pages _in core, as described 

earlier. Second, there is a loop of c-omponent relationshJps between 

directories, processes and known segments. 

c. Type structure of MSS. 

To construct the type structure graph of MSS by evolving that of NSS, we 

consider figure 4.3. 

We first consider the dashed lines. Lines (1), (2), (3} and (6) can be 

discarded as no module ever interprets them as com(l(ln~nt relationships. Line 

(5) can be discarded as it is interpreted by the page frame manager, as the 

inverse of a component relationship represented by line (_5'). Line (4) can be 

discarded as it is interpreted by the page fra~ manager, as a component 

relatio_nship already repres,e,nte-d by line (4'). We then remove line (7} as it 

violates partial ordering. This ts t_o say that it is now impossible to go 

from a PTW to the containing AST entry. In other words, PTWs are now stored 

in a separate table, the PFT, as ~nnounce4 earli~r. We al$o remove line (8) 

for the same reason. This is to say that it is now i~possi~le to go from a 

KST entry to the corresponding direc,tory ~n;try. In othe.i; ;word~, the known 
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segment manager will not be allowed to invoke the directory manager to operate 

on a directory entry or to extract iliformation from it. The impact of the 

blunt deletion of the two lines mentioned above will be studied-later. 

Finally, we merge abstraction X with the segment abstraction, as explained 

earlier. The result of this evolution process is show in· figure 4.4, which 

shows the complete type structure graph of MSS. The names- of the data bases 

under certain abstract types denote the data base(s) managed within the type 

managers for the corresponding types. · As we proceed, we will see that these 

data bases really implement the maps of the objects <tf the corresponding 

abstract types. 

The informal semantics of abstract types defined in NS$ are preserved in 

MSS. Some new abstract types are defined in figure 4.4. Their purpose will 

be justified and their semantics will be given 1.ater.· as we ,examine the 

problem areas in NSS and take care of them in MSS. The details of the 

mechanical sequence of operations for handling such events as. page faults, 

quota faults, OOPV conditions, bound faults and segment faults will also be 

given in the third part of this section on MSS, a& we discuss how MSS handles 

situations that caused problems in NSS. Notice that ·two component 

relationships have been slightly moved in f'igure·4.4. A UHT entry rather than 

the AST entry it points at is designed to· contain the trailer list o'f an 

active segment and the (Pvrx, VTOCX) denoti.ng the home: of the segment. These 

bindings have been moved from the AST to the tJHT ·because they will yield 

component dependencies that would conflict witb the pa,:tiat: ordering of the 

dependency graph of MSS if.they were not moved. (Speeifically, they would 

conflict with map dependencies to be described later--) 

MSS dependency structure. 

A basic dependency graph for MSS is given in figure 4.5. 'This graph 
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contains only the component dependencies that are derived directly from the 

type structure of figure 4.4 by drawing o~e ~ype manager for each abstract 

type and one component dependency for each component rela_tionship. Each node 

gives the name of the internal data base(s) ·of the type tn~nager. 

a. Map dependencies. 

The dependency graph of figure 4.5 shows only component dependencies. We 

are now concerned with adding t-0 that graph dependenci~s_ due to the 

implementation of the maps of obj_ects of each: abstract type. We must design 

the system so that none of the map dependencies to be _introduced cause a 

dependency loop with any of the component dependencies that we already have 

drawn. 

The map -0f a logical volume is in its LVRD, which binds the logical 

volume to a collection of physical volumes and of master directories. The 

LVRD is implemented by a segment that is cat,aloged .. in some directory. Thus, 

to implement maps of logical volumes, the logical _volume manager is dependent 

on the directory manager. 

The map of a physical volume is stored in a DT entry, which binds the 

physical volume to a configured volume if it is moun t~d. The DT is also 

implemented by a segment that is cataloged in some_directory so it can be 
• a " ' 

backed up like all files of the file system by a mechanism (not described 

here) ope.rating above th_e virtu_al memory m~c~a?ism, which -periodically orders 

copies of every recently modifi~d file to b~ made on ~ ;_ape. Thus, to 

implement maps of physical voluµies,, the pbysiGsJ-1 val,ume _m~~n~ger depends on the 

directory manager. 

Of course, LVRD segments and the DJ must_be stored on the root logical 

volume to be on-line at all times. The root logical volume is guaranteed to 
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be on-line at all times by the configured volume manager. Each configured 

volume corresponding to a physical volume of the root logical volume is marked 

with a special "rootu tag that is set at system initialization and prevents 

that volume from being demounted even if the logical volume manager or the 

physical volume manager accidentally requested that it be demounted. 

The map of a configured volume is in an entry of the PVT, which specifies 

what portion of the configured volume constitutes the disk record pool and 

what portion constitutes the disk sector pool (see later). The PVT is 

implemented by a core segment. Thus, the configured volume manager clepends on 

the core segment manager for implementing maps of configured volumes. 

A core segment is a new type of segment that is introduced now for the 

first time but will often be needed later at places where NSS used permanently 

active, wired down segments. A core segment is an unpaged collection of 

contiguous words in core. Core segments are core resident information 

containers. They reside in a portion of core that is determined as the system 

is initialized and is distinct from the portion of core used by core blocks. 

Core segments are used exclusively by system modules, as will be seen. They 

are defined and initialized when the system is brought up. They are never 

allocated or freed thereafter. They are fixed size information containers. 

The only operations defined on core segments are READ, WRITE, and EXECtrrE. 

The core segment manager is implemented entirely by hardware operations. Core 

segments are named by their absolute core address. They can be addressed in 

hardware by SDWs of which a dedicated bit indicates that the field normally 

containing a PTA denotes the base of the segment itself rather than the base 

of its page table. 

The map of a directory is the data tiase that binds the directory to the 

set of (UID, PVID, VTOCX) triples of the segments described in the directory 
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and to the set of PLIDs of the users allowed to access th~se segments. This 

data base is the segment contain~ng the directory entries._ Thus, the 

directory manager depends on the segment manager for implementing directory 

maps. 

The map of a user process is its UPT entry. A UPT entry occasionally 

binds a user process to a virtual pr_ocessor {see later). It also binds the 

user process to a collection of 19lown segments and to a collection of 

connected segments. {In fact, it binds the user process to the image of a 

DBR, i.e. to a DSG. Thus, it indirectly binds the user process to a set of 

SDWs and to a set of KST entries. A user process is indirectly bound to a KST 

because every DSG contains a SDW with a conventional, fixed segment number 

that deno_tes t?e KST of the corresponding pr.oce~s •.. There is no reason to 

regard DSGs_and KSTs as abstractions maintained separate~y from connected 

segments ~nd known segments beca~se the man~ement of such tables is concerned 

solely with management of SDWs and KST entries respectively. In consequence, 

figure 4.5, which maps user processes directly into known segments and 

connected segm~nts is a simplified, view of the reality bt1t it is absolutely 

correct: usE}r proce~ses are bound (indirectly and implicitly) to sets of 

known segments and connected segments.) The UPT is implement~d by an active 

segment. Thus, the user process manager depends on the acti;ve segment manager 

for implementing maps of user processes. An active segment is not catalog_ed 

in the file system, which means that it has no secondary storage home and 

vanishes when the system is brought down. This poses no proble_m because, when 

the system is shut down, all user processes are deleted and the UPT is empty 

anyway. 

The map of a known segment is contained in a KST entry, which binds the 

known segment to a segment UID. (In fact, we will see later that a KST entry 
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binds the known segment to the (UID, PVID, VTOCX) triple of a segment.) A KST 

is a connected segment that should never be disconnected because the operation 

of connecting a segment requires the presence of a connected KST. Thus, the 

known segment manager depends on the connected segment manager for 

implementing the maps of known segments. 

The map of a connected segment is its SDW. The DSG containing the SDW is 

also a connected segment that may never be disconnected for the same reasons 

as the KST. Thus, the connected segment manager depends on itself to 

implement the maps for connected segments. Although this unquestionably 

constitutes a dependency loop, this loop does not pose 'a ctonceptual problem, 

as explained below. 

In reality, a permanently connectedse'gnient should be regarded as an 

abstract type different from other connected segments bn wich segment faults 

can be taken. Then, there would be no dependency of the conne-cted segment 

manager on itself. Furthermore, the type chec1dng mechan-:tsm could distinguish 

permanently connected segments from othet connected segments, which is 

important since the system will operate correctly only if it can be verified 

that KSTs and DSGs are never disconnected. While regarding permanently 

connected segments as an abstract type different from c·onnected · segments is 

the only rigorously correct approach to type exi:ensiott, ·we have taken the 

liberty to depart from such strict formalism for two reasons. First, 

permanently connected segments are very much like connected segments and by 

slightly modifying the connected segment manager, it can also support 

permanently connected segments. Second; there rieed be on1y three permanently 

connected segments per process. Therefore, it is easy to declare and build 

into the type checking mechanism that three SDWs with identical, fixed segment 

numbers in each DSG are dedicated' to implementing permanently connected 
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segments. The connected segment manager mai b~, co<l~d to never disconnect 

these segments even if it were accidentally requested to do so. And the type 

checking mechanism may recognize the .three fixed segment numbers as denoting. 

the equivalent of permanently connecte,~ segme~ts.. In essence, when a user 

process is created, the user process manag~r invokes an initialization 

primitive of the connected segment man~ger. This prim;tive first invokes the 

active segment manager to allocate ~d. Quild three active .seiments with giv:en 

lengths {CSL).. It then manufactures three SDWs for these segments. 
. - •- ' ., ··.'. '_ ' 

It stores 

the three SDWs in one of the three ac tiv,e; 5e:gments, to become the DSG, at a 

location corresponding to the three reservEld segment numbers. It finally 

returns an image of the SDW for the DSG to the user process manager. That 

image binds the process to its DSG and implicitly to its KST and will serv~ to 

load the DBR of a processor every time the process is scheduled. 

The map of a segment is constituted. partly by a {!HT entry, which binds 

the segment to its active component, if a1'y, and partly by i_nformation 

embedded in the PVT, which binds the PVID tag of the segment to a PVTX tag. 

The UHT is implemented as an active segment. Thus, the segment manager 

depends on the active segment manager and. on the configu~ed volume manager for 

mapping segments into their components. 

The map of a passive segment is its file map in its VTOC entry. (In 

fact, it is the whole. VTOC entry if .one consid1:,rs that t.he storage attributes 

of the segment (DTU, DTM, etc ••• ) that reside in the yTOC entry are what we 

called in chapter II the small compone~ts of t~e segm~nt an,d ,are stored 

together .with the map.) A VTOC is imptemented by disk sectors. Thus, the 

passive segment manager depends on the disk sect.or ma~ager to implement .the 

maps of passive segments. 

Altl).ough the, _concept of a disk sec tor a,lready ex!~te.d, in, NSS, it was not 
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recognized as an independent data type. l>isk sectors were m:anaged by the page 

control module. Every disk is divided into a paging ~zone and a cataloging 

zone, as explained earlier. The paging zone is the disli record pool. The 

cataloging zone, i.~. the VTOC~ · is the disk sector: pool. Disk sectors are 

containers smaller than disk records. A VTOC- en.try is impl~ented by three 

disk sec tors that are contiguous. Since atsk -s~c tora are used solely to 

implement VTOC entries, there is no need to keep track of their A/F status. 

It is implicitly determined by the A/F status of the corresponding VTOC entry. 

All the disk sector manager does Hi READ and WRITE disk sectors and configure 

them when told to by the configured volume manager. Configuring disk sectors 

consists only in remembering how many sectors are associated with a given PVTX 

tag. 

The map of an active segment is its AST entry, which contains the small 

components of the segment and binds it to a collection of page frames (PTA, 

CSL). The AST must be a core segment because the active segment manager would 

depend on itself if the AST were an active segment that had to be maintained 

permanently active. 

The map of a page frame is its PTW. P'tWs are collected in the PFT, which 

must be a core segment because the page frame manager may not take a page 

fault on the table it maintains to handle ·page :faults. 

Disk sectors, disk records, core blocks and core segments are bottom 

level objects and have no map. The quota cell table (QCT) and the virtual 

processor table (VPT), which serve to store the maps oJ quota cells and 

virtual processors respectively, will be discussed lateT. · Let us say ·for now 

that the QCT is an active segment and tlie VPT a core·segl!lent. 

b. Program dependencies. 

Program dependencies are those that make any type manager depend~nt on 
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one or more other type managers for storing the procedures and data bases that 

implement it. By examining the implementation of maps, we have answered the 

question of the implementation of every data base in figure 4.5 except the 

CMAP and the FSDCT. Since these tables are used below the level of the paging 

mechanism, they must be core resident. Thus, they are core segments. 

We must now discuss the implementation of the procedures and the working 

storage for each type manager. In Multics, the working storage is constituted 

by an Algol-like push-down stack for storing the local variables and the 

argument lists of pending procedure invocations. 

For the implementation of procedures in MSS, one must consider two 

environments of execution, the core resident environment,an~ the paged, 

permanently active (paged for short) environp1ent. The core resident 

environment is implemented entirely by core segments. and the paged environment 

is implemented entirely by active segments. These active segments are in 

practice permanently active because the segment deactivation algorithm, which 

operates in the segment manager, can only deactivate ( L,e. request. the 

deallocation of) active segments that are components of segments. It does not 

see and cannot operate on any other active segment because it does not have 

any ASTEPs to name them. 

The core segment manager is i!nplemented entirely by hardware operations. 

Thus, it is in neither the resi~ent nor the paged environment. It is in a 

hardware environment below both. The core re.sident envi~onment comprises the 

disk sector manager, the disk record manager, the active segment manager, the 

page frame manager, the core block manager and the yirtual proces~or manager. 

All other type m~nagers are in the paged environment. 

The active segment manager must execute in the paged environment because 

it would depend on itself if it executed in the other. The page frame 
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manager, the core block manager and the disk record manager must execute in 

the resident environment because they implement the mechanism for supporting 

non-core resident information containers and cannot depend on this mechanism. 

The disk sector manager executes in the resident environment for efficiency 

only to avoid taking page faults when READing or WRITing a disk sector. The 

virtual processor manager executes in the resident environment by construction 

(see later). All other type managers can safely operate in the paged 

env iromnent. 

Now consider the implementation of stacks. The type managers executing 

in the core resident environment obviously'require a core resident stack. The 

implication of this statement is that any procedure in the paged environment 

that calls a procedure in the resident environment must pass its arguments to 

the called procedure on the core resident stack. This is a practical 
. ' - . 

consequence of the information level rule. Since the resident environment 

knows only about core segments, it cannot accept arguments that are not in a 

core segment. This constraint is enforced by the type checking mechanism, 

which will refuse to compile a type manager that passes non-resident arguments 

to a resident type manager. 

A priori, one resident stack per user process can be used to pile the 

pending invocations of all resident type managers in that process. This stack 

must be stored in a core segment that is of a size sufficient to hold the 

deepest pile of pending invocations that can possibly occur along any 

computation path through the resident type managers. NSS embodies a similar 

design constraint in that the resident part of the system (traffic control and 

page control) must use a special stack that is stored in a core resident 

(actually permanently active and non-pageable) segment. In fact, in NSS, 

there need not be one such stack for each process that can execute resident 

149 



code because, by design, only one process at a time can execute in traffic 

control and one in page control. In practice, there is one such stack for 

each physical processor. Even though only twu processors may be executing 

resident code ( one in traf.fic control and one in· page cont.rol) at the same 

time, every processor needs its own -stack because, while t:wo processors are 

executing resident code, all others might b~ wa.i:ting (e.g., on the traffic 

control lock) in an id:le loop to start executing that resident code and. while 

doing so need to store. the arguments that will be pa·s.sed to the resident code 

as soon as it is entered. Thus, we recommend an analogous design for MSS, 

where traffic control isto be read as the virtual pr.oc.essorinanager (see 

further) and page control is to b-e read as the other resident type managers. 

The implementation ·of a stack for the pa:ged enYir&nment· is somewhat more 

tricky. Whatever the type of that stack is-9 every argument passed from the 

user environment into the paged environment must be stored in·to the stack for 

the paged environment. A type ma-nager (e.g., the connected segment manager) 

of the paged envirotllllent cannot access an argument stored in a random segmen.t: 

because that segment ma.y be of a type defin-ed at a higher level (e.g. known 

segment). This is again an information .level problem. But this time, the 

user wo passes the arg,umen-t is not_ subject to the cmupile-time type checking 

mechanism that the systetn- programs are subj eet· to. Thus, it may in effect 

pass an argument stored ·in a random segment • .Consequently, at the user 

interface but inside the: paged (type checked} environment, there must ~xist 

conversion routines that a~ce·pt user supplied :argumen~s stored in any type of 

segment and copy them into the paged stack. The need for such routines was 

not felt in the early days of Multics ,and many_ system problems (including 

crashes) resulted from, the absence of such rout'ines. 

A prio.ri, one would be tempted to impl.ement one,-paged- stack per user 
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process with an active segment having a number of pages (CSL) sufficient to 

hold the deepest pos-sible pile of invocations in that process along any 

computation path through the paged envir<>nment_. In fact, it is necessary that 

the per process stack be a (permanently) active segment. However, this is not 

sufficient. The stack under concern is use&,· among other cases, while 

handling segment faults. Thus, a process mu&t never take a segment fault on 

its paged stack to avoid infinitely recursive segment faults. In other words, 

the paged stack must be implemented by a permanently connected segment (that 

is itself implemented by a permanently active segment). With the DSG and the 

KST, the paged stack of a process is the third and last permanently connected 

segment needed in every process. The obvious question to ask now is: why do 

we explicitly state that the stack is a permanentl.y connected segment while we 

do not explicitly state that the procedures of the known segment manager, 

which handles segment faults, are permanently connected? The answer to this 

question will become clear in the next paragraphs •. In short, two kinds of 

address spaces are defined: per process address spaces and per processor 

address spaces. Since all user processes share the same stored procedures to 

implement the paged type managers, SDWs for· such procedures may be stored· in 

per processor address spaces, which contain only permanently connected SDWs, 

as will be seen. Thus, the procedures of all paged ty4>emanagers are de facto 

permanently connected. However, the working ~torage of_ the·paged environment 

cannot be shared by all user processes like the procedures are. Every process 

may be doing its own computation in the paged envir01U11,ent a-t a given time. 

Thus, the SDWs for the paged stacks may not be stored. in per processor a,ddress 

spaces because a per processor address space is shared by all the processes 

that at one time or another get to execute on the corresponding processor. · 

SDWs for paged stacks must therefore bee stored :in per process add·ress spaces, 
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i.e. in what we have called so far DSGs. We explicitly insist· that SDWs for 

paged stacks be permanently con~ec.ted because SDWs in user DSGs normally. are 

not. 

c. Address space dependencies. 

This fourth kind of dependency is due to the iillplementa tion of the 

address space of a type man.ager. In NSS, the address space is implemented on 

a per process basis. The address space of a user process. is defined by a DSG. 

Because DSGs are permanently connected segments in MSS;, at least all type 

managers below the connected segment manager cannot use a DSG as the 

realization of their address space. This is example of a ,sU:uation where the 

dependency graph suggests that the NSS: design: is inadequate and another 

abstraction (namely core segments) must be used -to implement the address space 

that part ·of the virtual memory mechanism, will be executing in. 

To achieve a proper design for MSS. we, recommend the:,following, hardware 

architecture. Rather than using only one DBR and consequentiy one. DSG while 

it executes, a processor should use two DBR.s, DBRO and DBIU, defining 

essentially two domains of, execution. Any sepent numbi!r below a fixed 

boundary is interpreted, by the hard.ware as an index denoting a SDW in the DSG 

denoted by DBRO. The value of the fixed boundary is ,subtracted from any 

segment number superior or equal to it and the result .i,s used as an index 

denoting a SDW in the DSG denoted by DBRl. The DBRl is· similar to the DBR in 

NSS. It denotes a DSG that is a permanently connected: segment and contains 

the map of all connected se.gments. It is us.ed to addressall segments that· 

may be connected, the paged stack, the KST and the· DSG itself: within the 

running process. The DBRO is not a per process DBR but a per processor &BR 

that denotes a~ descriptor segment (CDSG) implemented by a core segment. 

The CDSG is a repository for the SDWs of all the. active and core segments 
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implementing all system procedures; data·bases and maps, except the paged 

stack, the KST and the DSG of every process, iwecisely--becauee there is one· of 

each per process and their SDWs cannot be stored in per processor CDSGs. One 

CDSG is defined and initialized for each processor. It contains the SDW for 

the core stack of the corresponding processor. -The use of a per processor 

CDSG eliminates the need to load and unload pro-ces-ses-· in .MSS. Indeed, SDWs 

for the core segments implementing the active segment manager and lower le11el 

type managers are in the CDSG that is a core resident segment and ne11er needs 

to be loaded and unloaded. 

d. Interpreter dependencies. 

Every type manager of the virtual·mt!mOry mechanism has to depend on an 

abstract code interpreter to execute its. procedur.e.s·.. On the other hand, 

modules implementing abstract code interpreters (virtual: processor type 

managers) must depen.d on some virtual memory type managers· to implement their 

maps, programs and address spaces. One must therefore pay attention not to 

introduce any dependency loop in the system·by making a type manager P 

implementing a abstract code interpreter depend on a type manager M 

implementing an abstract information contai.ne~ and at the same time making M 

dependent on P to implement its code interpreter. 

This dependency loop between the virtual memory and virtual processor 

mechanisms is present in most existing systems in one form or another. In 

NSS, it is manifested among· other instances by the loop between traffic 

control and page control, where page control depends on-traffic control to do 

processor multiplexing while traffic control depends on page control to •load 

and unload processes. 

Solutions are proposed to solve the problem -of_ mutual dependency between 

the virtual memory and virtual processor mechanisms both in [Saxena76] and in 
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[Reed76]. The two solutions are very similar in nature. They consist of 

interleaving layers of the virtual memory and virtual processor mechanisms. 

Reed's solution is interesting because it implicitly uses a type extension 

concept very similar to ours to implement abstract code interpreters in two 

layers (see figure 4.5). The top layer implements user processes as we have 

defined them in the description of NSS. The bottom layer impleI11ent1? virtual 

processors. User processes are implemented in terms of virtual processors and 

virtual processors are implemented in terms of physical processors {not 

represented in figure 4.5 hecause they are implemen.ted in hardware, entirely 

below the virtual memory mechanism described by the figure). The virtual 

processor-manager multipJ.exes physical processC!rs alllongvir:tual processors. 

The user process manager multiplexes v;i.i;tual processors among user processes. 

User processes are bound to virtual processors at the request of the 

scheduler, which is a piece of the user pi;-oc-ess manager that executes in a 

dedicated (permanently allocated) v:irtual processor. A.user process is 

unbound from its virtual processor component whenever_ that component "finishes 

its current task", Le •. when it goes blo-C~'ld, w,a,iting for a us_e,r cgenerated 

event. 

The dependency loop between thevirtual memory and virtual processqr 

mechanisms is avoided in the following wa,y. ,_ T\le usef _proc:ess manager freely 

takes advantage of virtual memory facilities. However, .no virtual memory type 

manager depends on it to interpret its code. Virtual memory type managers can 

be entered only-as a result of user initiated calls or as a result of taking a 

processor e&ception that always leads to either han4ling the
0
exception and 

restoring the processor state or aborting the computation aµ.d signall~n!t an 

error to the user. Thus, while executing in the virtual J!lemory mechanism~ ,f1 

user process may temporarily lose its physical processor subcomponent (e.g., 
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while waiting for paging I/0). However, it will never loose its virtual 

processor component as all computation paths in the-virtual memory mechanism 

are finite and ultimately return control to ltser- modules without ever putting 

themselves in a situation of waiting for a user generated event. -. In addition, 

the user process manager could not accidentally unbind a. user process from its 

virtual processor component while the latter executes system code because the 

virtual processor manager refuses to deallocate (unbind) any virtual processor 

of which the instruction register currently points to' a SDW in .the CDSG, 

thereby indicating that it: is executing- syst8D ,code. '!bus, .. v·irtual memory 

type managers depend on the virtual processor manager to interpret their code 

and not on the user process manager. In turn, the vl.rtual processor manager 

depends only on the core segment managcer to implement ttsmaps, progras and 

address space, Le. it is entirely core resident. (As explained earlier, the 

core segment manager does not depend on -the virtual processor manager to 

interpret its code because it is implemented :etitireliy in hardware. Tnus, the 

core segment manager depends only on hardwar-e processors, .whi.ch in tul'n do not 

depend on anything because they are bottom· level objects.) 

With these last dependencies, we have a complete list of the dependencies 

in MSS. Figure 4.6 represents the dependency graph of MSS. The line cutting 

across the figure separates the paged environment from the resident 

environment. Every box represents a type managu. Solid lines represent 

component dependencies.· Dashed lines represent map dependencies. Certain map 

and all program, address space and interpreter dependencies.are omitted from 

the figure to avoid confusion. The dependencies- tha~ are 0111.tted are- trivial 

anywy. The graph summarizes compommt d~pendencie.s and soaie no~trivial 

dependencies for m·aps. 
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Solutions to problem areas. 

In this last section on MSS~ we will discuss how MSS handles the 

situations that caused modularity and structure probl~s in NSS. While doing 

so, we will describe the mechanical sequence of operatiOflS for handling all 

system events, i.e. page faults, quota faults, OOPV conditions, bound faults 

and segment faults. 

a. Page fault handling. 

In NSS, the page fault hand.ler was ~equired to· simulate ·the addressing 

hardware to get at the PTW that :caused a page fault. The page fault handler 

could not use directly the absoLute address of the PTW le-ft in the copy of the 

processor state at the time of the fault because that PTW might have been 

deallocated between the time it-was faulted on and :the" time the page fault 

handler could actually process the fault. 4s a resu!'.t, the fault handler in 

page control had to depend upon the meaning of SDWs in address space control. 

An apparent solution to the problem 1n·MSs would be for the hardware to 

signal page faults to the connected segment manager so that it could interpret ) 

the SDW and then pass the fault down with the absolute address of the faulting 

PTW to the page frame.manager. In fact, this does ~ot solve the problem. It 

is still possible for the page frame to he deallocated between the time the 

SDW is interpreted in the c-0nneeted --segaent manager and the time control is 

given to the page frame manager, for instance, if the segment containing the 

page frame is deactivated during that titlle window. 

Instead, a way is needed to guarantee that a page frame cannot be 

deallocated between the time it is faulted on and the time its disk record 

component. is copied into a core block. 'lbus, we TecOlllllend that when a 

physical processor faults on a PTW, the PTW be locked so as to indicate that 



the corresponding page frame cannot be deallocated until the I/0 operation it 

is subject to completes. 

This solution is adequate but raises one -problem. By setting a lock by 

hardware in a PTW, a virtual processor can prevent the page frame from being 

deallocated. But it will not prevent other virtual processors executing on 

other physical processors from faulting on the page frame. What strategy must 

be used in this case? If a virtual processor faults on a PTW that is locked, 

it cannot afford to wait in an idle loop for the lock to be reset -because this 

lock will be set for the entire duration of the I/0 operation on the page 

frame. Thus, if a faulting virtual processor sees a 'lock: set in a PTW, it 

must invoke the virtual processor manager to put itself on a waiting list for 

the occurrence·of the I/0 completion event cotresponding to the page frame it 

faulted on. When the event occurs, the PTW is unlocked and all virtual 

processors waiting for the event are be notified. At this point, these 

virtual processors should not lock the PTW but should simply- restore the 

processor state that existed before the fault they took to retry referencing 

the page frame. Chances are high that the page' frame will be in core.; If so 

there is no need to lock the PTW. Or the page frame may have been deallocated 

between the time it was unlocked and the time the waiting virtual processors 

were notified, which is why these virtual processors should not lock it anyway 

and must restart the faulting computation. 

Another problem is now raised. This is a traffic control problem 

examined by Saltzer [Saltzer66] and called the wakeup waiting problem. Assume 

a virtual processor A faults on and locks a PTW. Towards the end of the I/0 

operation on·the affected page frame, a virtual processor B faults on the PTW 

and firtds the lock set. Assume further that the I/0 operation completes then 

and is notified to all waiting virtual processors before B-has had a chance to 
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put itself on the waiting list for the event. If so, B will go blocked and 

wait for ever for an event that has already occurred. Saltzer has described 

the following solution to this problem. 

A so called wakeup waiting switch for the I/0 event is associated with B. 

The virtual processor manager first notifies all waiting virtual pro~essors of 

the I/0 completion. event and then sets the switch of B. On its part, B first 

resets its switch and then calls the virtual processor manager to put itself 

on the waiting list. The virtual processor manager will do so only if the 

wakeup waiting switch of B is still off. If it were_ on, it would mean that 

the event B was going to be waiting for has ~ust occurred and it is not 

necessary for B to wait any longer. 

The question is: how does the virtual processor manager know what virtual 

processors (like B) are interested in an I/0 completi~n event it is 

signalling? The answer is simpler than it may see~. Since virt~l processors 

cannot be preempted while executing system code~ as explained earlier, a 

virtual processor handling a page fault either is currently running on a 

physical processor or. is already waiting fo.~ some I/0 completion event. Thus, 

virtual processors interested in a specific I/0 c.anpletion event and not yet 

on the waiting list for it can only be among the virtual processors that are 

currently running on a physical processor. Thus, the wakeup wa_~ting problem 

for PTW locks in MSS can be solved with two hardware registers in each 

physical processor. When a physical processor takes_,a page fault and finds 

the ptW locked, it posts the absolute address of the faulting PTW in the first 

register and turns off the wakeup waiting switch in th~ other. register,. all in 

one atomic operation, to prepare itself to invoke the wait primitive of the 

virtual processor manager. On its part, th~ notify. p~imitive of the virtual 

processor manager first notifies waiting v.irt1.lal proce~~Fs an<l then 
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broadcasts to all physical processors the identity of the PTW event it just 

notified. If this name matches the one in the first reg·iste·r of a physical 

processor, that processor turns on its switch in the second register. This 

will indicate to the wait primitive of the 'vfrtual processor manager that the 

event the virtual processor wanted to wait on has already occurred. 

In fact, the lock in a PTW serves a more general purpose. tt means that 

some (any) I/0 operation is going on on the [P'fW, as a result of a page fault 

or of a decision of the page removal algorithm. The reader can verify for 

himself that the operation of the wakeup waiting switch is not- affected by the 

more general meaning of the PTW lock. The page removal algorithm operates, as 

recommended by Huber {Ihibe.r76], in· a virtual processor that' is dedicated to 

executing just that algorithm. The algorithm 'is impli!mehted as 'part of the 

page frame manager even though the circular list of core blocks ·cha:t ts the , 

basis of the algorithm is maintained by thr~ading CMAP entri~s together in the 

core block manager. The core block manag~r 'act~ as a'subrout'ine to the page 

frame manager both for allocating and deallocating core -blocks. ·However, the 

driving procedures both for the page fault and the page removal· algorithms are 

part of the page frame manager. This explains why the cote block to page· 

frame and core block to disk record binding~ that are kept in CM.AP entries 

remain uninterpreted at the core block level. They are kept only on behalf of 

the page frame manager. 

In the implementation of NSS (and MSS by inferertce), the mechanism for 

deactivating a segment is triggered only after the sE!gment is disconnected in 

all processes. Since a virtual processor needs ·a SDW to get at a PTW, a 

virtual processor could never take a page fault on a segment being 

deactivated. Thus, it is not necessary that the page frame deallocation 

algorithm, which is irivoked to "deactivate"' the page table of a segment, set 
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the PTW locks while it cleans up th_e page table. However, not setting the 

locks is assuming something about the segment disconnection algorithm and thus 

depending on the cor.rectness of higher type managers. Hence, we recommend 
.. . . . .. 

setting PTW locks while deallocating a collection of page frames as desirable 

for clarity a1though not necessary for proper operation. 

b. The quota mechanism. 

The manipulation of quota cells in NSS _is a major f:lOurce of problems 

because it occurs at page coo.rrol level while quota cells are stored at 

segment control level and related by a hierarchy d_efined at directory control 

level. 

There are two reasons why quota cells are manipulat~d by page control in 

NSS. First, quota faults are not disting~i~hed froJD ea&~ faults by the 

hardware. Thus, they are passed to the page fault handler in page control. 

Second, in response to a quota fault, a disk record must be allocated and made 

a component of a page frame. Since this part of quota fault handling occurs 

in page control anyway, NSS implements all of quota handling in page control 

so that the manipulation of quota cells is protected by the page control lock. 

The above reasons are plausible excuses for manipulating quota cells in page 

control but they are not sufficient to warrant doing it that way in a 

well-organized system. 

In MSS, the hardware is modified so that quota faults are distinguished 

from page faults. (The hardware is also modified so as to avoid taking a 

quota fault when only reading a zero (null) page. A word of zeroes is simply 

returned.) Quota faults should not be regarded as page related events since 

no page exists when they occur. Quota faults should instead be regarded as 

segment related events. Thus, _quota faults do not involve locking a PTW. 

They are directed into the known segment manager and appear as an error return 
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from an operation to write into a connected segment. The known segment 

manager translates the segment number of the segment to be grown into a UID 

and then invokes the segment manager, which will handle the fault. If the 

segment to be grown is deactivated by then, the segment manager simply returns 

and the reference that caused the quota fault must be retried. 

If the segment to be grown is active, ·the segment manager will drive the 

operations to allocate the page frame and manipulate the quota cell. However, 

the operations themselves are carried out by the page frame manager on one 

hand and by a new type manager, called the quota cell manager, on the other 

hand (see figure 4.6). 

The quota cell manager manages the QCT, which contains one entry per 

quota cell. A quota cell is named by the relative pointer (QCTEP) to the 

entry that implements it in the QCT. The quota cell manager supports the-CU, 

MQ and RU operations. The quota cell manager is designed' to fulfill the lack 

of a type manager dediiated to implementing concepts (quota faults and quota 

cells) that are logically related but are sc'attered across several modules in 

NSS. Under its quiescent state, the quota.infotmatilin'asso:ctated with a 

directory is not called a quota· cell and is stored· as uninterpreted bits in 

the VTOC eri:try of the· directory. The quota informati.ot'l is copied· into a quota 

cell of the quota cell manager onl-y while it might be· used• i.e. while a 

segment bel6w the directory is active. Thus. ~he quota cell manager really. 

implements the concept of an active quota cell. The segment manager maintains 

the UHT to map UIDs· of· aegmen'ts in to corresponding AS-TEfs and (PVTX, VTOCK) 

pairs. It- also tt1aintains, irt a similar way', a hash table associated with the 

UHT·, which maps UIDs of segments representing, directories into -corresponding 

QCTEPs and (PVTX, VTOCX) pairs. · In essence, this second UID hash table m-a.ps 

UIDs of quota cells into•passive quota cells and active quota cells.. The 
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activation of cpota cells is done as follows. 

When the segment manager is invoked to activate a segment, it must be 

given the (UID, PVID, YfOCX) for that se~ment and the list of similar triples 

for all superior directories, in order. (We will see soon that it is always 

possible to generate this list because the only type manager to ever request 

that a segment be activated is the known segment manager and every KST entry 

contains the triple for the corresponding segment as ~11 as the segment 

number of the KST entry describing the parent of that segment.) After the 

segment is activated, the segment manager searches. the Jable associated with 

the UHT for the UIDs of all superior directories to find out what superior 

quota cells are already active. It activates those that are not, using the 

list of (PVID, v.TQCX) pairs. The procedure for deactivating quota cells will 

be explained soon. 

At this point, the following has been gained over NSS. First, thanks to 

a separate quota fault mechanism and the creation of a dedicated quota cell 

manager, the actual allocation of. a page frame occurs in the ~ge frame 

manager while the manipulation and the storage of (active) quota cells is 

under the responsibil.ity of the quota cell •nag.~r. Second., since (active).· 

quota cells are stored in the QCl' of the qu~a ,cell manager as opposed to the 

AST, segments and directories can be deactiv~te<l unifonaly, without any 

consideration of hierarchy at the segment m-anager level. However, three 

problems remain. 

First, while the segment manager and the passive:segment manager see 

quota information, the quota cell manager is ~e$ponsible for .handling quota 

cells. Thus, when a request to access. a quota cell is passed to, the segment 

manager, the segment manager may not directly reference the quota infonna_tlon. 

A strict type extension view says that the segment m~µ&ger e-0ntains the 
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mechanism to activate segments and quota cells but not to manipulate them. 

Thus, the segment manager may rtever· directly upda~e quota information. It 

must always actival'.e the quota cell first and then ~r,erate on it via lreqtiests 

to the quota cell manager. The quota: cetl manager guarantees the :correct 

management C)f a quota cell given the- information· in that cell; But the 

segment manager is responsible for the irl:tegtity of that -:information~ (To 

parallel this situation, the active segment ihjn.ilg'er guarantees the semantics 

of the CSL, MSLand CRU·of an active segment while the segm~rit manager is 

responsible for the integrity of th()se itema between activations.) 

Second, in order to support the·· CU operatioh?l:n gt'ow and" shrink segments, 

every segment that is active (susceptible to grow or shrink) must now be bound 

to the quota cell of its pareht direc·tory. ·· E~ety tm1' entry- {1) could contain 

the QCTEP of its parertt directory quota cell. On a quota fault, the segment1 

manager would then extract this QCTEP from' the UHT entry srid present it to the 

quota cell manager to perfonn the CU operation. 

Finally, there is the problem of the quota cell hierarchy. This 

hierarchy is fundamental to the CU operation and it must be mied to decide how 

quota cells may be deact1.,,ated. Indeed, ·dtrectot:·ies and segmen-ts can· be 

deactivated uniformly only because quota cells have b~en removed' from the AST. 

Howe'7er, the concept· of' a hierarchy must now exist· among quota cells· in the· 

QCT to allow a CU operation to walk up the' hierarchy-of quota celis, updating 

alr celi.s- up to and including the ·quota ee-11 of the lowest - quota directory, 

and to prevent quota cells from being deActivated· as long as·any segment that 

is lower in the hierarchy is active. Thus, 'quota· cells· iri the QCT must be 

(1) This is true only for UHT entries corresponding to segments that are 
charged to a quota· cell. Directory segments: and ev-en' some' Wh!r: aegiaents are 
never charged to any quota cell. The UHT entries for such segments point to 
no quota-cell. -
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threaded to their parent j~st as AST-entfi.&$ ~re in- NSS and ~hey must co~~a.ia 

a count of inf~rior active seg111~n_ts. 'fpis de,{~es 8,,:, ht~~a:rchy"' pf,· quota cells. 

The. quota cell de~.tivation algorit1il11t may_,be par;t o,~, tlle:.segment 

deactivation alggrithm. Every. ti~ a- segm~t,i.t Js s,icc~ssfu~ly de~ctiv~ted_. the 

segment manager calls the quota cell,. m.a~uJger, to .ti~d P\l~ whether. t-e quota. 

cell associated w:l.t:h the parent,cU..rfU;tpry qf fb, 4~~e.U:"',.ted segment bas any 

other ~gment char::ged J:o. _it curren~ly. aJ:til7e... ,If not.t the. ~,sm.~nt manager 

requests the deact!'vat;iJ>n of the ._quo.ta_ cell ~d re~atedly calls the quota 

cell manager to walk up", the hier;µ'cby ot .cp.t,Qia c~lls· ',Ult:il a, cell is foun4 .. 

that cannot be. deactivated becaus~L i~ ha(:t a -•~g""at cparged ,=o it currently 

active. 

While this design is plausible, it has sever~ clisa~vaatages. First, the 

ability_ to deactivate segm,ents and. di.J'ec~~rws unifonily iii an aq.vaatage but 

the price we have paid for thi-s advantage is d.ear. A 1:lst of. 011D, PY:{.D, 

VTOCX) triples must be given to a«;.tivate any_sepent so.that the hierarchy of 

quota cells above tha,t segment can be rec~tructed. ~cond, the sheer. idea 

of ma.intaining a hierarchy of quota ce1,ls: i.s a source of,.complexity for the 

quota cell 'laanager. Of course-, the hierarchy is n~essa~J-:~O_!ilU{)port the MQ 

operation but it would app~ar redundant to keep a ~uplicate ci;,py of that 

hier~rchy in the quota cell mana~er wbile it also exis~s. (in a less accessible 

form) in the directory manager. Would it. not be possible to have a quota cell 

manager that. can move quota between- any two quota cell.J3 -atid l~t the direetory 

manager constrain w~ch two quota cells. can. be. subject to a specific MQ 

operation? The following paragraphs explain tiow this j.s possible. 

The hierarchy of quota cells is kept in the quota cell manager so that 

when a CfJ operation is performed, the U field. of th~_ch~in of
0
affected quqta 

cells may be updated. However, the CU operation updates the U in th~,cpain.of. 
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indirect quota cells not for itself but to support the MQ operation. When a 

directory changes status from quota to non--quota or vice-"lf'ersa as· a result of 

a MQ operation, the U of its associated quota cell has to be added 

to/subtracted from the U of the quota cell of its parent. If the CU operation 

did not maintain the U for all quota cells, changing the quota status of a 

directory on a MQ operation would require computing its U at the time of the 

operation. This means adding the CRU of all t:he segmenfs in the subtree below 

the affected directory, which may be a very expensive task. In fact, it is an 

impossible task because it would require "freezing11 the subtree and the CRU of 

every segment in the subtree so that the computation would 'be consistent and 

look atomic. "Freezing" would require the use of a lock keeping every process 

temporarily out of both the segment manager and the directory manager since 

the computation requires adding quantities that are defined at the segment 

level but are related by a hierarchy ~efined at the d1rectory level. Such a 

lock would violate modularity and is thus ruled ouL 

Based on the observation that all quota cell threads and the associated 

complexity in the quota cell manager result from the need to support the MQ 

operation, we suggest a slight change to the definition·of the MQ operation 

that will eliminate these problems. When the directory manager is invoked by 

a user to move quota between a parent directory P and one of its sons S, it 

passes the call down through· the segment manager to the quota cell manager and 

tells the quota cell manager whether S containt, arty entry. If as a result of· 

the MQ operation defined in NSS, s would not change quota status (i.e. from 

quota directory to non-quota or vice-vetsa)~ the new MQ is defirted to perform 

like the original one. But if S would change quota status according to the 

original functionality of MQ, the new MQ will leC·the change occur as expected 

only if-the directory manager indicated that Sis empty (contains no entry). 
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If Sis not empty, the new MQ operation is defined to abort and return an 

error code indicating that the move is illegal. Thu~, the new MQ operation is 

identical to the original one except for the fact that one may not move any 

quota to a non-quota directory or remove all quota from a quota directory if 

that directory contains one or more entries. This modification has two 

consequences. 

First, when the quota cell manager moves quota down from P to S, which is 

assumed empty and non-quota, it need not read the U of S to subtract it from 

the U of P because the U of Sis guaranteed to be null since Sis empty. In 

other words, it is not necessary to ever maiptain the quota cell of a 

non-quota directory because the only useful item it used to contain was the U 

field and the new MQ opera.tiol) never looks at it anyway. 

Second, in addition to not maintaining the quo:t~ cell of a non-quota 

directory, it is not necessary to thread ,quota_cells together. Since a quota 

directory can become a non-quota directory only if it is empty, it is 

guaranteed to not change status as long as there is any segment charged to it. 

Thus, a segment can be charged directly to the ~ quota cell during its 

whole life because the e~istence of the segJDent guarantees that all 
. - --

directories above it are not empty and therefore cannot change status. 

In consequence, when a directory entry is created, it should be tagged 

with an integer N indicating bow many levels higher. in the file system 

hierarchy the lowest quota directory is. This.integer is incremented by one 

at each level of the hierarchy unless a new quota directory is created, in 

which case the. integer is reset to o. When. a segment is initiated, the KST 

entry should be tagged with the integer N of the corresponding directory 

entry. Finally, when the segment is activated, the known segment manager, 

which always requests the activation, as _will be seen, need not construct a 
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whole list of (UID, PVID, VTOCX) triples but need only retrieve the triple for 

the lowest quota directory above the segment being activated. Retrieving this 

triple·is easy since every KST entry is bound by segment number to the l{ST 

entry for· the parent directory of the segment i·t describes, the KST entry of 

the segment to be activated contains the integer N telling ho11 many KST 

entries "above" the current one must be followed to reach the loliest quota 

directory:, and the KST entry for that quota directory cotttains the desired 

triple, as will be seen soon •.. To control the deactivation of quota cells, it 

is sufficient to have a count in each quota cell of the number o:f segments 

charged to it that are currently active. 

While the functionality change we recommend fort~ MQ operation may 

sound drastic, experience with Multics shows·that it would not b'e in practice. 

A data collection experiment on Multics has shown that almost' all quota 

directories are so-called project directories or· usf!r directories. (Each' 

project on Multics has' its own directory anti ~ach user has its own directory 

that is a son of the directory of the 1>roject the user 1.s working on.) Such 

directories are quota directories from their creation· to their destruction, 

i.e. since a tirae·when they are obviously,empty to a time when they'.have to be 

emptied· anyway. Only on the order of a dozen directorie•s were made quota 

directories by individual users. · For such users,- it is still possible to 

simulate NSS with MSS if they want to move qu6ta to a non-empty non-quota 

directory or to remove all quota from a non-empty quotrtl directory. They tan 

create an empty directory named X, move quota- to ,it, thQt1,..move the subtree 

below the original direc.tory into X, delete th-:e a,ri.ginal directory and rename 

X after the original directory. Th.is·is an involved operation that requires 

extra quota for the transition state with two directories but, it should 

satisfy the need of the few sophisticated users ·wno would ever want to use it. 



As we have designed it, the MSS quota mechanism is perfectly clear, 

structured and modular. The policy for the_MQ and RU operations, which are 

based on the existence of a hierarchy and are conditional on certain directory 

attributes, is defined at the directory level. However, the directory manager 

does not know anything about the storage and the manipulation of quota cells. 

This mechanism is implemented by the quota cell manager, which in turn ignores 

everything about the hierarchy. All the quota cell manager needs is a count 9 

in each quota cell, of how many inferior seglllents charged- to it are active. 

This count is updated by the segment manager every time a segment is activated 

or deactivated. The page frame manager is not ,at all involved in the 

management of quota cells. It only allocates pa.ge frames upon requests 

originating from the segment manager, after the quo_ta cell manager has 

authorized such allocation. 

c. OOPV conditions and access recalculatiQ-n. 

OOPV conditions and access recalculatiQn cause modularity and structure 

violations in NSS because th_ey require accessing lnfotmation that resides at 

directory control level ( (PVID, VTOCX) and access con~rol list) but they are 

handled at lower levels (segment control and address space control). 

These two problems admit of similar solutiO'PS in MSS. It is tempting to 

say that OOPV conditions and segment faults should be reflected as high as the 

directory manager since that is where the necessary information is stored to 

handle those events. However, OOPV conditions are events detected on only a 

very small subset of quota faults. Since .the occurrence of an OOPV condition 

can be detected only after some processing has been done, the proposed design 

would imply that all quota faults be reflected as high as the directory 

manager level. This design is not plausible because quota faults are error 

returns from operations on segments, and have nothing to do with directories. 
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As to segment faults, it would be inappropriate to reflect them to the 

directory manager. Segment faults are faults involving the address space of a 

process and not the whole file system. Thus,. segmen~ faults as well as quota 

faults should be reflected no higher than the known segment manager. 

In NSS, the address space control moduJe uses the (parent segment number, 

UID) pair in the KST entry of a faulting segment to update t~e (PVID, VTOCX) 

of the segment on an OOPV condition and to get the (PVID, VTOCX) and the 

access control list on a segment fault. Such a design, is ruled out in MSS 

since we declared earlier that the lcnQ~ segment manager may never interpret 

the binding between a KST entry and a dir~ctory .•ntry to access or operate on 

the directory. This would violate the .part.tally ordered structur1:a of the 

dependency graph. 

In MSS, not only the UID and aecess inf~ma~ion but also the (PVID, 

VTOCX) of a segment are stored in its KST e,n,try. Thus, as long. as . th~se 

attributes do no.t change~ aegment ,fault (a11d bound fault) hanc:lling is more 

efficient than in NSS as it does not require getting at the directory entry
0
at 

all for either the (PVID, VTOCX) or the a~cess control list, Activation and 

connection of a segment can alway$ be requested directly by the known segment 

manager without requiring accessing directo.ries. 

Access must be recalculated in NSS when;.~he-, DTEM in the directory entry 

is more recent than the DTFJ1 in the KST entry. In, MSS,. the comparison between 

two such quantiti.es .cannot be mad.e by the.Jcnown ,segment manager since it 

cannot read the directory or invoke the dµectory m~nager to read it. Thus, 

instead of using 0'1:~s to decide whether ace-e5;~ mµst be.xecalcul;a.ted, we . 

prQpose using a dedicated attribute, called dat&-ti~.acci,s$,,-;tnQdi!if;d _(D'I'.AM), 

that is stored in the VTOC entry of every aegment b_elqw the ~wn segment_ . 

manager level rather than in the directory ~n_try above the _known s~gme,nt 
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manager level. Every time the access control list of a segment is modified, 

the DTEM and the DTAM must be modified. On a-segment fault, the known segment 

manager invokes the connected segment·manager through the segment manager to 

reconnect the faulting segment. It passes to the segment manager the UID, the 

(PVID, VTOCX), the access information and the DTAM that are stored in the KST 

entry. If that DTAM happens to be less recent than the DTAM in the VTOC 

entry, indicating that the access control list has changed, the segment 

manager simply returns an access fault code to the known segment manager. If 

the UID that is found in the VTOC entry denoted by the ~PVID, VTOGX) is not 

the UID that was given by the known segment manager to the segment manager, 

indicating that the segment with the given UID has been moved, the segment 

manager returns a move fault code to the segment manager. In ei-ther case, 

when the known segment manager rec.eives a fault code., i·t deduces that the KST 

entry is no more up to date. It thus returns to the 411descent state and 

notifies the directory manager that the KST entry needs to be updated if it 

cares to proceed. 

One problem remains to be solved. Changing an access control list is the 

result of a user call to the directory manager. The directory manager is in a 

position to request updating the DTAM in the VTOC· entry and the access control 

list in the directory entry without -causing violations· of organization. 

Howe'ler, changing a (PVID, VTOCX) is the result of an OOPV condition, which is 

detected by the disk record manager when it cannot find a disk record to 

satisfy a quota fault. Thus, the disk record manager must return an OOPV code 

to the page frame manager, the page frame manager r-eturns the code to the' 

active segment manager, the ac t1'te segment manager ·"t<> the segment manager and 

the segment manager to the known segment manager that originally inter~epted 

the quota fault. Unfortunately, the known segment manager is not in a 
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position to move the affected segment, much' less to update the (PVID, VTOCX) 

in the directory entry. Our design specifies tha'.t the known. segment manager 

must again return to a quiescent state and notify the directory manager to let 

the move happen and the directory be updated. 

The MSS answer to both access recalculation and OOPV handling is based on 

the comparison of DTAMs or UIDs in KST and VTOC entries and on notifications 

from the known segment manager to the directory manager. The known segment 

manager transfers to the directory manager en quota faults it cannot handle 

because of OOPV conditions and on segment faults it cannot handle because of 

an out of date KST entry. In both cases, when it receives control, the 

directory manager can move the segment or update the.KST entry as appropriate 

by invoking respectively the segment manager or the known segment manager with 

information it keeps. After doin-g so, it can invoke the known segment manager 

to retry processing the quota/segment fa:ult it was handling and restore the 

processor state that existed before the fault. Notke that the known segment 

manager does not depend on the directory manager becaus·e it cannot be hurt if 

the directory manager fails to call it to finish up its task. The known 

segment manager only performs a service for the directory manager. It 

notifies OOPV condittons and out-of-date KST entries and, is willing to support 

quota and segment fault if the directo-ry manager ~ares to invoke it for that 

purpose. The known segment manager is not dependent on the directory manager 

any more than the hardware notifying quota and ~segment faults is dependent on 

the known segment manager. 

d. Segment deactivation. 

So far, we have e~amined how dependency stucture violations that existed 

in NSS were avoided in MSS. All violations of modularity that existed in NSS, 

are fixed in MSS in the sense that every module in MSS manages its own data · 
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bases. However, the radical decision not to share data -bases may have an 

impact on the de$ign in certain ca~es. It:does in the case of the AST. In 

NSS, segment control and page control share access to the AST. For every 

segment in the AST, page control maintains a r1,m.ning total of the number of 

pag~s in core, a "file-modified" switch and a "fUe-map-m~ified" switch that 

are used to deactivate segments. Such item$ cannot be maintained by the page 

frame manager in MSS because it is totally unaware. of the grouping of pages 

into segments. This is indicated by our earlier deqlaration that there is no 

binding from a PTW to the segment that contains it. 

In MSS, the segment deactivation algorithm is executed as part of the 

segment manager but in a dedicated virtual processor that runs in parallel to 

virtual processors implementing user processes. Thus, in a way similar to the 

page removal activity, the segment· deactiva-tion .activity is a task that is 

performed "on the side" and. is .asynchronous with the ,~tivity of user 

processes. The segment deactivation algorithm ~onsists of seEpJentially 

inspecting all active sepents that are compo-nenta of. segmen.ts to find. those 

that have been used the least recently. This is a ao~t of LR.U algorithm for 

segments. In order to record the identity of all ac-tive ~gments that are 

components of segments, the act;Lve segment manager thre~ds them together in a 

circular list on behalf of the segment manager as the core block 111,anager 

threads together the core blocks. on behalf of the page frame manag_er. Thus, 

the segment manager will never accidentally deactivate an. a~tive segment that 

is not a component of a segment (i.e., an active segment used to store the 

maps, procedures, or working storage of some type manager) bec~use it simply. 

does n-ot have names for them and,-they are ·not threaded ;in the list of 

candidates for deactivation. The selection and dea~tivation of a segment are 

perfonned as follows .• 
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First, consider the problem of evaluating the usage of a segment, which 

was possible in NSS thanks to the count of in-core pages maintained by page 

control for each segment. MSS answer to this problem is based on the 

observation that it is desirable that the paging activity be heavier than the 

segment activation activity, i.e. it is desirable that there always be many 

more AST entries than there are core blocks. Otherwise, deactivating a 

segment would often require throwing out of core several pages, which makes 

deactivation more expensive. Page removal would be driven mainly by segment 

deactivation and not so much by the page removal algorithm. The hypothesis 

that there should be many more AST entries than there are core blocks in a 

system is verified for all existing Multics installations. Under, this 

hypothesis, there will always be at least one segment that has no page in 

core. Thus, the segment deactivation algorithm that we propose for MSS, which 

looks for a segment with no page in core, performs in practice like the NSS 

segment deactivation algorithm, which looks for the segment with the least 

number of pages in core. The advantage of the algorithm we propose for MSS is 

that it does not require keeping a running total of in-core pages for each 

segment. Instead, to determine if a segment has any page in core, the page 

frame manager can be invoked with the name of the first page frame (PTA) and a 

number of page frames (CSL). Determining if any of these page frames is in 

core is extremely fast as it only requires "ORing" a collection of sequential 

PTWs together and checking if the result of the "OR" operation has the in-core 

flag on. To find a segment that has no page in core, the segment deactivation 

algorithm must repeatedly invoke the page frame manager until it finds a 

collection of page frames of which none is in core. Of course, the "ORing" 

operation may still be somewhat less efficient than directly looking up a 

pages-in-core count. However, experience with Multics indicates that the 
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average CSL of a segment is between one and two pages. Thus, only one or two 

PTWs must. be looked at on the average. 

Now consider the problem-of d.eactivatb1g a. sel.ecte4 sepent. In MSS, 

like in NSS, seg~ent deactivation is the tilJl,e to update the DTM, BTU and file 

map of a segment in its VTOC entry if necessary._ DTU is always updated 

(because the segment woµld not have been activated if, it were not to be_ used). 

The DTM is upd~ted only if the segment -..as written, in-to. In NSS, this 

situation was detected by looking at the "file-modified" switch kept by page 

control in the AST entry. For the purpose of detecting this situation in MSS, 

each PTW contains not one but two "JD<>dified" bits. They .are both set by 

hardware. When the page removal algorit}un copies_ out a page that has b~en 

modified, it looks at and resets only one bit,:. The o.ther serves as a -reminder 

to tell the segment manager at segment deaetivatioJ1 Ume that the segment 

containing that PTW was modified. In NSS, the file map of the segment must be 

updated in its VTOC entry if the "file-map-1').pci;j.fieqlf-~itch is on in the AST. 

In MSS, there c.an be no such switch. Thus, the segment manager proceeds as 

follows. The file map of a segment must be updated if die segment has grown 

or if it has shrunk while it was active. A segment grows as the result of a 

quota fault. Since the segment manager is i-'volved. in µandling qoota faults, 

every time it handles a quota fault on soae segnaent, it can record that fact 

in the UUT.entry for the segment to remind itself of later updating the file 

map when it deactivates the segment. A s,epent shrink,& ~n the page frame 

manager decides to throw out one of its pages and discc;>vers that the page has 

become null while it was in core, in whien case tbe page frame manager 

requests the deallocation of the home disk record of the page and zerc:>es out 

the disk address field of its PTW. When the time comes to deactivat-e a 

segment, the page frames of that segaent- that< have- -beeoute null during the 
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latest activity period are recognized to the fact tha.t their PTW contains a 

null disk address but has the second "modified11 bit on. Thus~ when the page 

frame manager is invoked to deallocate the collection of page frames of a 

segment being deactivated, it returns the number of the highest page frame 

that is notcnull and the number of page frames that have become null over the 

latest activity period. The former number becomes the new CSL of the segment. 

If the latter number is not zero, it is subtracted from the CRU of the segment 

and the U field of the quota cell to which the segment is charged. The file 

map is then updated in the VTOC entry. This overwrites the address of any 

disk record that was deallocated by the page frame manager, thereby 

guaranteeing horizontal protection of these disk records. 

5. Structural patterns. 

In producing the design of MSS, we have come across three interesting 

structural patterns that appear to be related to the nature of certain 

problems they solve. The objective of the present section is to review the 

nature of these three patterns and to discuss the problems they solve. 

Software caches. 

The basic pattern is the following. 
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On several occasions, two kinds of data abstractions are defined to contain 

the same sort of information. For one of them, called- the slow container; 

only two operations are defined. They are READ and WI.ITE, of. which :,the 

purpose is obviously to extract information: frOlll or- to: pour, down, iJ1fomation 

into·a slow container. Many opera-tions ••Y be defined on·the.other, called 

the cache container. A third abstract·ion is- defined on top of b~th, ·of· which 

the purpose is to move information from the· slow· container to · the cache 

container and vice-versa to allow operating on. that information while it 

resides in the cache container. The top abstraction may be viewed as a 

functional abstraction if it impl~ments oBl.y t:he·,move&ent of: information 

between the two lower types of containers. On the oth~r hand, it may be 

viewed as a data abstraction (as we did in MSS) if it supports for the top 

level information containers all the operations that are supported for the 

cache information containers and implements them by moving the information to 

, ' 
be operated on from a slow container to a cache container and then invoking 

the operations on the cache container, thereby making the encaching/decaching 

function transparent to the user. 

This basic pattern manifests itself in MSS with disk records (slow), core 

blocks (cache) and page frames (top), with passive segments (slow), active 

segments (cache) and segments (top). It is also found with passive segments 

(slow), quota cells (cache) and aegments (top) from the point of view of quota 

cells. In fact, we could have/implemented the concepts of a passive quota 

cell, an active quota cell and a quota cell in.dependently from segments, which 

would have isolated rlle quota cell cache pattern h;om the-segment cache 

pattern totally. Yet, we dee ided not to do so beqaus-e ::th~ ~slow abstractions 

{passive segments· and passive quota cells) are very siailat': as far as their 

implementation and maintenance are concerned, and the top abstractions 
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(segment and quota cell) are intimately related by the synchrony of their 

activations and deactivations. Separating the abstractions would have 

increased the complexity of the organization of the system while not reducing 

the size of the passive segment manager or the segment manager substantially. 

Thus, we estimated that it would be better to merge the abstractions at those 

levels. 

On occasions, the management of the slow container~ requires so little 

data and is so simple that slow containers need not be managed explicitly by 

their own type manager. The concept -0f a slow container is collapsed into 

that of the top abstraction. The following dependency graph results. 
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An example of this pattern is the configured volume manager (cache) and the 

physical volume manager (top and siow) case where a demounted physical volume 

is such a trivial abstraction that i. t is merged with the physical volume 

abstraction, i.e. all DT entries are .kept together, whether they correspond to 

mo\lllted physical volumes or not. Another example of ~:UCh. collapsing can be 

found below. 

The .s,oftware cache pattern is not limited to the vir.tual memOFY mechanism 

dependency structure. It also shows up in the virtual proce~sor mechanism 

dependency structure, as noted in [Reed76]. Here, the pattern involves 

178-



abstract code interpreters instead of abstract information containers. The 

virtual processor structure is in fact a triple repetition with collapsing of 

the software cache pattern. 

/ 
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Physical processors are high speed code interpreter&. Physical processor 
,~ 

states are loaded into real processors when possible. 'Ibis represents an 

abstraction called a virtual processor. Virtual processors are capable of 

interpreting virtual processor states. 'lb.us, virtual processor states are 

loaded into virtual processors as these are available, thereby implementing a 

user process abstraction. In fact, the management of the user process and 

virtual processor state abstracdons is so· simple that these abstractions are 

collapsed into the user process concept in MSS. 

Interestingly, one notices that the "slow'' type manager tends to depend 

on the "cache" type manager in a software cache pattern. This is because it 

takes advantage of the· software cache·. abstraction to· iltplement · its own 

programs, maps or interpreters. For instance, the passive aegment manager 

depends on the active segment manager to implement its ptograms and the user 
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process manager depends on the virtual processor manager to interpret its 

code. 

The existence of the software. cache pa~t_ern is, an i-ndependent 

confirmation of the results observed by Parrias [l'arnas76} who :Iloted that a 

series of functions is often cepeated at two lev~ls within a -Etystem in such a. 

way that the higher oc.currence has more _abs,trac:t resourc:e.s available to it but 

the lower occurrence contains functions th~t are more, effic.ient and are used 

more frequently .. 

Merging hierarchies. 

The second structural pattern that gover~a ~tie Ol'S@:l.zation of_several 

modules of MSS is the merging hierarchies pattern._ One can· distinguish two 

hier~rchies of abstractions in MSS: physical resources. ,and logical resources. 

The physical resources hierarchy is composed of J,.pgic11l .yolumes, physical 

volumes, ~9nfigured volu~es and disk records~ A ~ogic•i volllflle is a 

collection of physical volumes; a physical,volume is the top abstraction of a 

cache pattern of which the cache abstraction is a configured volume; and a 

configured volume is a set of disk records. The logical resources hierarchy 

is composed of directories, segments, passive segments and disk records. A 

directory describes a collection of segments; .~ segment i-e the top 

abstraction of a cache pattern of which the slow.abstraction is a passive 

segment; and a passive segment is a set of disk records. These hierarchies 

merge in the sense that they share, at the bottom level, the disk records, 

which can be viewed either .as physical resources Cilr as logical resources. 

The tnteresting fact about these merging hiera,rchJes is that .they are not 

unrelated. As might be expe(?ted in alm~st any sys,tem.,. th_er.e exi.sts a policy 

for grouping logical information containers into physical infomation 

containers. Logical resources are grouped in a way dictated by physical_ 
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resources. In MSS, all the disk records of one segment must reside on the 

same physical volume and all the segments in one directory must reside in the 

same logical volume. One might suspect, as we did tmtii we· saw the final 

design of MSS, that two situations would result from ~he tight coupling of the 

hierarchies. First, directories and segments would be composed of (dependent 

on) logical volumes and physical volumes sinc·e these physical· containers 

dictate the grouping of those logical containers. (This would not be 

outrageous but disappointing since physical containers conceptually contain 

several logical containers rather than the other way around.) Second, the 

coupling between the two hierarchies m.igh1: ln fact be: so tight that it would 

generate some unavoidable dependency l'OOps. 

It is interesting to see that directories-and segments are not components 

of voltttnes and it is satisfying to observe that there are no upward 

dependencies in MSS. This design was achieved by the simultaneous use of UIDs 

and of tags, as we called the LVIDs, PVIDs and PffXs earlier. 1be tags serve 

as a means to retrieve and associate containers while· tlie UIDs serve for, 

naming them and ultimately validating their identity. · Tags are viewed as mere 

bit strings on which to associate objects. They are not used for what they 

denote but only for what they are. If they get mixed up by rheir managers, 

the integrity of information will not be hurt because ft is protected' tiy the 

UIDs. In other words the directory manager, the segment manager and the 

passive segment manager are not dependent on the logic:al and physical volume 

manager because the latter can never cause the fbmer ·to operate in a way 

different from that stated in their formal specifications. While these 

specifications do not guarantee that a piece of ·,1rifomation cart always be 

accessed, they ·do guarantee that if it can be acc~ssed; its integrity is 

unaltered. 
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Notifications. 

The last interesting pattern that is found in MSS is trivial but very 

useful. It consists of a low level module notifying a higher level module and 

abandoning control without making itself dependent on the higher level module. 

This pattern is of course very frequent in any processor in the form of 

hardware processor exceptions. A processor exception is a notification from 

the bottom level code. interpreter to some higher level type manager indicating 

that interpretation cannot p.roceed becaus~ SOlJle elem,ent necess~ry to proceed 

is not accessible to the code interpreter. If executi~g a hardware 

instruction is regarded, as it should be, as i~voking an 9peration of the 

bottom level c.ode interpreter., a processor exception may be viewed as an error 

return from an operation that could not be performed. 

The pattern is also used in software in MSS to notify OOPV conditions and 

out-of-diite KST entries. In either case, the ,known seg~ent manager notifies 

the directory, manager that it canrot proceed with what it is doing. In the 

OOPV case. the hardware first notifies the known segment manager that it 

cannot write into some page of some segment becaw~e the page does not exist. 

This is an indication that a reference to a connected segm~nt could not be 

interpreted •. Tile kno~ segment manag~r knows how to cause changes in the 
' • <' < ,. ..... • ' 

connected segment that will make the reference succeed. In a few cases 

though, it is told thi:lt the connected Elegment cannot be grown for lack of 

physical space. This implies that the segment should be moved and hence that 

the directory entry must be updated. Since the known segment manager does not 

know mat directories are, it translates the original qu9ta fault on a 

co.nnec ted seglllen,t into a move fault on a known ~gment, which the directory 

manager intercepts and handles appropriately. The same sort of reasoning can 

be proposed for the case of access recalculation. The known segment manager 
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can handle segment faults on connected segments for which access has not 

changed. But it cannot handle other segment faults and therefore maps them 

into access faults on known segments that the directory manager intercepts and 

handles. 

6. Conclusion. 

At this stage, it is probably unnecessary to review the modularity and 

the structure of MSS. It is clear from the preceding sections that none of 

the data bases are shared and that the dependency structure contains no 

directed loop. It is also- clear that every type manager is substantially 

simpler and smaller than the modules defined in NSS. 'ttle purpose of this 

concluding section is to discuss a few consequences of having used type 

extension to organize MSS. 

Performance. 

The efficiency aspects of Mss deserve some comments. It is impossible to 

rate the efficiency on an absolute -scale as· we hav'e rro unit of efficiency. It 

is even inappropriate to dare evaluate the efficiency of MSS versus that of 

NSS. MSS has not been implemented. Because it is so similar to NSS, we are 

convinced that MSS is a logically plausible system but it would be ambitious 

to make any firm statement about its performance versus that of NSS. Not only 

is it difficult to distinguish in MSS the areas that might be more or less 

efficient than their equivalent in NSS but· it is impo·ssible to predict the 

impact of MSS on the performance of the whole operating system. Regardless of 

the particular strong or weak points in the performance of MSS itself, certain 

design features that are individually more efficient may cause bottle necks in 

the overall system because their logical conception causes them to be executed 

more frequently. Conversely, certain functions that might be individually 

183 



less efficient in MSS may in fact not have a negative impact on the overall 

design because they are performed less often than in NSS. 

However, we would like to risk two comments on the performance of MSS. 

First, we believe that it would be comparable to that of NSS. To justify 

this, we observe several facts. The overall structure of MSS can be mapped 

into the overall structure of NSS so that the higher level type managers of 

MSS correspond to the higher level modules of NSS. MSS maintains the same 

data bases as NSS, except for the fact that the AST, the QCT and the PFT are . 
separated in MSS. Those MSS data bases that have an equivalent in NSS fulfill 

the same function as that equivalent except for a few instances (e.g., the 

DTEM in a directory entry is no longer used for access recalculation, and the 

number of in-core pages is no longer kept for every active segment). The 

handling of certain situations in MSS is slower than in NSS (e.g., OOPV 

conditions and access recalculations) because more computation goes on before 

they are detected. On the other hand, those situations are rare and the 

handling of the corresponding situations in NSS (page fault and segment fault) 

is more efficient because it is assumed a priori that the rare situations do 

not occur normally. (Page faults do not require sorting out quota faults and 

OOPV conditions and segment faults do not require fetching the (PVID, VTOCX) 

from the directory entry on every occurrence.) In addition, the handling of 

the quota problem in MSS has released the constraint that all the directories 

above an active segment or directory must be active. This represents a 

non-negligible saving of space in the AST, which is bound to be translated 

into an improvement in the performance of the system (less paging activity if 

the core block pool is increased or less AST activity if the original AST size 

is preserved.) The point we are driving at is that the structure and the 

modularity are primarily -- though not exclusively -- abstract views of the 
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design. In essence, the resulting implementation is very close -- though not 

identical -- to that of NSS. Therefore, we suspect that the performances of 

MSS and NSS should be in the same vicinity. 

Second, readers might object that the performance of MSS may suffer from 

its modularity. Since data bases are never shared, a module can find out 

about some information residing in the data bases of some other module only by 

asking the other module about it. It cannot directly reference the data base. 

Calling the other module would of course be less efficient than directly .. 
referencing the data base. In reality, we do not believe that modularity at 

the level of the language used to code the system can. affect performance at 

the level of the machine language. Indeed, the type checking compiler may and 

should include macro expansion and global optimization features. Thus, it is 

possible to have strict modules at the level of the coding language, which is 

all that counts for understanding, maintaining and verifying the system. And 

at the same time, the compiler may compile a module by substituting code 

in-line. The resulting MSS object code would no longer be a strict module, 

but this does not matter, and its performance could be as good as the 

equivalent code in NSS. 

Modules as data abstractions. 

The nature of all the modules in MSS deserves one comment. All modules 

happen to stand for data abstractions (type managers) only because we have 

strictly respected the type extension view at all times and have regarded 

evety concept from an object based point of view. However, the type extension 

technique does not intrinsically rule out functional abstractions. We are 

convinced that there may exist systems for which a certain aspect cannot be 

properly designed if it is viewed from a data abstraction point of view. 
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Horizontal protection of internal objects. 

In chapter II, we made the point that the horizontal protection of 

internal type objects, i.e. the objects implemented by the virtual memory 

mechanism below the base level, was not guaranteed by their type manager. 

Instead, assertions must be verified about the modules using the internal type 

objects to show that they never use the uid of a deallocated/deleted object. 

We suggested then that, while the task of producing the assertions might seem 

hard, it was not in praftice. In most cases, only one module ever sees the 

uid of an object provided by some type manager. Thus, assertions can easily 

be imposed on that module to guarantee that it destroys all copies of the uid 

of an object it releases. One can verify in this way the protection of all 

internal types except disk records and page frames, which are used by several 

modules in the sense that their uids may at times be seen by several modules. 

For the latter internal types, we suggested in chapter II that it nonetheless 

would be sufficient, in general, to produce assertions on only one module 

because, usually, only one module has caused the propagation of copies of the 

uids through several modules, is aware of the distribution of the uids and can 

cause their destruction. This is indeed the case of disk records and page 

frames. Disk records are shared by page frames and passive segments. The 

segment manager controls the propagation of their uids. Page frames are 

shared by active segments and connected segments. The segment manager also 

controls the propagation of their uids. 

Conclusion. 

This chapter has demonstrated the applicability of type extension as a 

technique for organizing the virtual memory mechanism of a real general 

purpose time-sharing system. In a first section of the chapter, we have 

presented the functionality of the mechanism as the user sees it. In a second 
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section, we have described the implementation of the mechanism as it exist in 

reality. We have pointed out where and why modularity and structure were 

violated in this real implementation. In a third section, we have proposed a 

new design based on type extension that preserves the original functionality 

of the mechanism. We have briefly characterized each module of the mechanism 

and we have systematically inspected the structure of the mechanism to 

conclude that the design was strictly modular and partially ordered by the 

dependency relation. We have then explained how the·organization problems 

encountered in the real implementation of the mechanism are eliminated in the 

proposed design. In a fourth section, we have discussed three structural 

patterns that seem to be fundamental in the design of a well-organized virtual 

memory mechanism for a general purpose time-sharing system. The software 

cache pattern appears every time a scarce resource is multiplexed among more 

abundant abstractions. The merging hierarchies pattern appears where the 

organization of logical containers is governed by the organization of physical 

containers. The notification pattern appears every time a module notifies an 

event upward to implement an error return from an operation that was, 

sometimes implicitly, invoked. 
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V. Conclusion. 

1. Summary. 

This thesis has presented a technique for organizing the virtual memory 

mechanism of a computing utility. The technique, is basecl on the concept of 

type extension. The virtual memory mechani•nvof a· sy4tem. ia•regarded as a· Bet 

of type managers .supporting abstract information containers. Tltese abstract 

containers are implemen.ted in terms of more, primd.tive, containers such as core 

blocks and disk 'records. Strictly, ap•plied to -a virtual memory mechanism, the 

formalism of .type extension helps organize the design of the mechanism into a 

structured set of modules. The,moduJzes,are·che:twe dtanagers for the abstract 

containers utilized and supported by the virtual memory meehanian. The 

structure of,th:e mechanism reflects the seructure,of'the information 

containers it i1Uplements. 

In addition; to :reviewing some· background notions and existing liter.ature, 

on organ.iz.a,tion techniques for computing systt1'lSt,,d\apter I jQstified why :a. 

technique, for organizing virtual memory mec\lani•• ·i.s ~-edrable. Such 

mechanism-s, c1r:e often cqmplex and require a fairly lal'.ge anto.unt of code. Thus, 

it is de$i~able that they be well-organized to facilitate understanding and 

maintaining them. In ad.dition, the rise in 'i~terest for certifiably secuTe 

systems has fostered the need for systems of whi.ch the security kernel can be 

verified correct. A verification ,af ,,cor.rec&:a.esa,,cannat.lJe carried out unless 

the security kernel is well~Qrganized.,, Since the·vi:rmtal memory mechanism of: 

a system is, in general, part at the. 'sec:urity 1-rael. it i.s necessary to 

organize it so it can be verified oorrect. 

Chapter I I has defined the meaning of type extension in. the 0environment 

of a virtual ~ry mechanbm. It has exarllined the nature of the abstraction.a 
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one may encounter in such an environment. In particular, it has introduced 

the idea of abstract types providing a limited supply of objects that have an 

essentially unbounded lifetime. Such abstractions are necessary to model the 

behavior of storage resources that are scarce and need be multiplexed among 

all users over time. It bas also pointed out the difficulty of providing a 

mechanism (e.g., capabilities) for protecting abstract infomnation containers 

at run-time inside a virtual memory mechanism. Implementing run•time 

protection inside a virtual memory mechanism is difficult with, today's 

technology because run-time protection depends on addressing potentially large 

access control data bases while addressing of large data bases depends on 

precisely having a virtual memory mechanism or .a special purpose but then 

cumbersome I/0 mechanism. 

Chapter III has explained bow the type extension concept can be exploited 

as an organization technique in a virtual memory mechanism, and what the 

advantages of this technique are. 'l1le usefulness of the technique for 

selecting abstractions to modularize a virtual· memory ·mechanism was pointed 

out. The property of type extension to foster modularity and structure in a 

virtual memory mechanism was discussed. In particular, it was explained how 

the environment of execution of a type manager (maps, programs, address space, 

code interpreter) should be set up to avoid vfolations 0-.f the partially 

ordered, object based dependency structure of the system. Finally, the 

advantages of type extension towards providing a strategy for a,,oiding deadly 

embraces when locking system data bases were stressed. 

In chapter IV, we have demonstrated the applicability and the usefulness 

of the type extension technique by exploiting it to (re)organize the virtual 

memory mechanism of a real computing utility, the Multics system. This case 

study is interesting because it showed the ability of the type extension 
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technique to cope with the complex functionality of a real system. Most 

existing techniques have been illustrated by examples of applications 

involving "paper" systems. Such examples demonstrate only the conceptual 

aspects of the technique that is employed but fail to demonstrate its 

applicability to the organization of a real system. The functionality of the 

"paper" systems is in some sense built to fit what their organization permits. 

In this thesis, we wanted to examine both the conceptual and the engineering 

aspects of the type extension technique. Thus, we took the unconstrained 

functionality of a viable system as granted and worked from there towards a 

clean organization. 

2. Results. 

The first contribution of the thesis ts a technique for organizing the 

virtual memory mechanism of a computing utility. Th.is technique has proved 

convenient to use and capable of yielding modular and _structured designs for 

virtual memory mechanisms. It was demonstrated useful to organize even real 

systems with all the complexity and hardware constraints associated with them. 

The second contribution of the thesis is in the area of the design of 

general purpose, time-sharing systems. By illustrating the use of the type 

extension technique in chapter IV, we have at the same time produced a 

well-organized design for the virtual memory mechanism of such a system. To 

the best of our knowledge, such a clean design has never before been proposed 

for virtual memory mechanisms of the size and complexity of the Multics 

storage system. It is satisfying to know that well-organized designs for such 

mechanisms exist and could lead to reasonably efficient implementations. 

A third result of the thesis, which was not expected as an initial 

objective but came as an interesting conclusion, is the demonstration of the 
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analogy between the type extension concept we have used to organize MSS and 

the type extension concept that was used implicitly to organize the virtual 

processor mechanism of Multics [Reed76]. The two concepts serve somewhat 

different purposes. Reed used type extension to break a dependency lo,op 

between the virtual memory and the virtual processor mechanisms of Multics. 

We used type extension to break the .virtual memory mechanism of Multics into a 

set of smaller and simpler mechanisms. However, for all practical purposes, 

the two concepts are•equivalent. They deal with the same problem, the 

organization of a mechanism in the security kernel. They face the same 

issues, designing partially ordered modules in the constrained execution 

environment of the security kernel. They are equivalent with respect to the 

dependency relation in that the dependency structures that result from using 

them are interleaved. And last but not least, the s()ft'ware cache structural 

pattern appears to be fundamental to the exploitation of type extension for 

multiplexing resources, be they storage or processing resources. 

3. Future research. 

A first research topic that remains open is the practicality of virtual 

memory mechanisms based on type extension. We bel iev.e that a. system like MSS 

is conceptually plausible and could achieve a reasonable performance if it 

were implemented. However, we cannot assert this until someone will have 

built such a system clear through the implementation, so that _the system can 

be tested. Even with the type extension technique as it was described in this 

thesis, we have a long way to go to implement a system based on type 

extension. We lack t_he most elementary tools to achieve a correct and 

efficient implementation, namely a compiler that can perform type che~king, 

verify uid conservation, do in-line substitution of macros and optimize code 
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across type managers to break the barriers of strict modules at the level of 

the object code. 

The thesis has developed a technique based on type extension for 

organizing the virtual memory mechanism of a system. This technique appears 

very similar in nature if not in origin to the technique used elsewhere 

[Reed76] to organize the virtual processor mechanism of a system. A question 

that naturally comes to the mind is: is the type extension technique used for 

virtual memory and virtual processor mechanisms also applicable to I/0 

mechanisms? Could it be exploited to organize the external communication 

interfaces of a system, including the eventual network interfaces? In our own 

mind, we suspect type extension is applicable to this area. Since it proved 

applicable to the organization of the virtual memory I/0 of a system, it is 

probably applicable to the non-virtual memory (external) I/0 of a system. 

However, we have given no further thoughts to the idea and we do not have any 

demonstration of its validity. 

As technology evolves, we observe a trend towards distributed computing 

and very large distributed data bases. Also, we may forecast for the not too 

distant future the introduction in the market of personal computers that can 

tap into a cable or be hooked to a network to communicate with distant hosts 

to access enhanced storage and processing facilities. Because of these 

observations, there is little doubt that what is called today the external 

network interface of a system will be looked at tomorrow as an internal 

interface in some distributed storage system. What looks today like a 

transfer of information between physically and logically separate storage 

systems might look tomorrow like a transfer of information between two 

components of a higher level abstract file in a physically distributed but 

logically integrated storage system. One may wonder whether the type 
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extension technique or some variation of it will be u~ea~le for organizing 
, . ~ . - _· . , , 

such distributed systems. In particular, will it be capable of ~oping with a 

storage system of which some parts may be. i_naccessible at times due to local 

failures while other parts must remain accessible and consistent? Will it be 

capable of collecting different local storage system architectures into a 

single global formalism of type extension? Many more questions could be 

formulated along these lines. 

Leaving the concept of type extension and returning .to present systems, 

further research is necessary to produce certifiably secure systems. While 

the type extension technique, among others, represents a step in the direction 

of more understandable and reliable systems, it does in no way con'?titute ~he 

final answer to all problems. Further research is needed in four directions: 

programming languages, specification teclmiques, security standards and 

verification techniques. 

As far as programming languages are concerned, it is desirable to have 

high-level languages with type extensipn features and a system programmi~g 

orientation. CLU [Liskov76J includes the dea.ira~le type_ extensi~n features. 

However, under its current impl~mentation, it is not adeq~at~ for system 

programming purposes. The CLU system assumes the ex~sten,ce of a "heap" for 

storing all its variables. One of the mai~ problems o.f. doing type extension 

inside the kernel of a system is that such, heap is not available and 

variables must be stored in different kinds of containers with different 

addressing characteristics. 

While module specification techniques such as the one proposed by Parnas 

[Parnas72a] or the one used by SRI [N'WQ.~on75] ~eem appealing, they lack 

several features. First, they lack adequate semanti~s to express certain 

facts dealing with, for instance, parallelism and wh.at i»arnas calls the 
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"global properties" of a module (properties involving several of the functions 

supported by the module). Second, they lack an adequate language to formulate 

specifications. Neither Parnas nor SRI claim the language they use is 

adequate. But the fact that it is not is an indication that we lack a 

language that is altogether powerful and readable, yet formal. 

Only one concept of security -- the U.S. Department of Defense security 

controls -- has been analyzed to the point where formal models could be 
. 

formulated for it [Bell73). While this concept is interesting for military 

purposes, it is not for most civilian applications. Protection mechanisms 

such as access control lists and capabilities have been built into various 

systems that are designed mainly for civilian use. However, we have no idea 

of what formal security models these mechanisms might support. Before we 

embark on certifying a system, we should know what we are trying to certify 

about it. 

Finally, verification techniques will be necessary to prove the 

correctness and the security of systems. Some good work has already been 

produced in the area. However, we are not convinced that a system like MSS, 

for instance, could be verified with existing techniques, even if complete 

specifications existed for it. The same problem is encountered with 

verification techniques as with specification techniques. There is a lack of 

ability to handle problems like parallelism and "global properties". 

This thesis has attempted to present a technique for organizing virtual 

memory mechanisms to make them understandable and verifiable. Considering the 

crucial role played by the virtual memory mechanism of a system with respect 

to security, this is not a negligible result. However, it falls far short of 

achieving the objectives contemplated in our quest for certifiably secure 
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systems, as indicated by the previous paragraphs. All the tasks evoked 

earlier -- choice of a security model, formulation of specifications, 

verification of correctness and security, and certification -- are necessary 

steps towards a secure system but we do not know how to take most of them. 

Yet, it is worthwhile attacking these problems because there will be a need to 

solve them for as long as there will be computers. Because of the ever 

expanding applications of computers in private and public sectors, and because 

of the ever increasing costs of developing and maintaining software, computer 

systems that are easy to nnderstand, to maintain and to verify are becoming a 

necessity. The times of perhaps efficient but "quick and dirty computer 

hacking" are over. Considering what evil computers can do to us, it is time 

that we consider what good we could do to them so they will be cheaper to 

maintain, they will be safer to use, they will be harder to break and they 

will serve us better. 
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Appendix. Military security controls in Multics. 
====================~~===========z============= 

Among the various aspects of the functionality of Multics that we have 

ignored in the design of MSS is the Access isolation Mechanism (AIM), which is 

a protection mechanism capable of supporting isolated compartments for storing 

information. The AIM was initially designed to enforce the security controls 

defined by the U.S. Department of Defense. This mechanism was purposely 

ignored because type extension does neither help nor hinder its design. No 

new modularity or structural issues are raised by the AIM with respect to type 

extension. There is no interest in discussing the AIM from a type extension 

point of view. 

However, there are two reasons for discussing type extension from the AIM 

point of view in an appendix. First, military security controls are the only 

concept of security for which there exists a formal model [Bell73]. 

Therefore, chances are that the first system to be certified secure will be 

certified with respect to that model. We wanted to demonstrate that the type 

extension technique, which was developed, among other reasons, to make virtual 

memory mechanisms easier to certify, can be used to organize the virtual 

memory mechanism of the sort of system that will precisely be certified first. 

Second, this thesis is one result of a project aimed at producing a prototype 

security kernel for Multics [Schroeder75]. This project, in turn, is one 

piece of the U.S.A.F. security program that sponsored the development of the 

military security controls model [Bell73]. 

Military security controls. 

For more information on the functionality of these controls, we refer the 

reader to the formal model [Bell73]. Here, we will only summarize the main 

concepts involved in the AIM. Four levels of security are defined in a total 
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ordering: unclassified, confidential, secret and top secret (four more may be 

defined in Multics). Several categories may be defined: e.g., AEC, NATO, US, 

etc •• Sets of categories are partially ordered by the set containment 

relation. The cross-product of a level and a category set defines a 

compartment. Compartments are thus also partially ordered by a relation that 

is the product of the set containment relation and the total ordering relation 

of levels. Every piece of information is classified into some compartment. 

Every agent (user) is cleared for a given compartment. The security controls 

state that an agent can read a piece of information only if his clearance is 

greater than or equal to the classification of that information. This is 

called the no-read-up rule. To confine a piece of information to its 

compartment and higher compartments, the no-read-up rule is not sufficient. 

It is necessary to prevent an agent authorized to read the information from 

copying it down into lower compartments where unauthorized agents would be 

able to read it. This is called the no-write-down rule or more generally the 

*-property. These security controls are called non-discretionary, which means 

that they not only prevent unauthorized access but they also prevent 

authorized agents from leaking information to unauthorized ones at their 

discretion. 

Computer environment. 

In a computer environment, the enforcement of the security controls may 

be implemented as follows. For the no-read-up rule, it is sufficient to never 

give a user READ access to information stored in higher compartments. For the 

no-write-down rule, things are more complex. Of course, it is necessary to 

never give a user WRITE access to information stored in lower compartments. 

However, this is not sufficient. This blocks only overt information channels 

between compartments. 
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There also exist covert channels. These channels are divided into 

storage channels and!.!!!!!:. channels. Storag~ ~ha~nels are those involving 

stored data as the support for transmitt:i,ng infoonation. For instance, if a 

low clearance user and a high clearance user share the resources of a disk, 

they both depend on the disk manager for using the disk. By varying his usage 

of space on the disk, the high clea_rance user may, transmit infol"lllation to the 

low clearance user. The information is transmitteq, via the stor.~ data kept. 

by the disk manager to manage space on the disks. Time channels are those 

involving elapsed time between observable events as the support for 

transmitting information. For instance, if a high clear~ce user and a low 

clearance user share core, by varying heavily his pa~~ fault rate with time, 

the high clearance user may transmit information to the low clearance user. 

The information is transmitted via the variatio~s_ with ttme of the page faplt 

rate, which might not be stored anywhere but. ca~es del~ys observable by any 

user. 

In general, it is demanded that. storage ch~q.nels be blocked because they 

tend to have a relatively large bandwidth. Ther~. are tw<> ways to block, them. 

First, shared storage resources can be preallocated by c~p~r.tment so that ,I.he 

resource usage of one compartment is invisible t~ and c~nnot,affect other 

compartpients_. Second I shared storage resourc(}S can ,be multi,ple.xed over time 
• ' ,- _a ~ • < ' - '• . ~ 

in such a way that two compartments are never ,a,ware th,a,t t;hey compete for the 

resources.On the other hand, it is not requilied, in gen.e.ral, t.l\at s.torage 
..:,:. J·· . ; . 

channels be blocked because they tend to be relatively _low bandw_idth _channels 

and because blocking them would ~ply preallQCaUn&, time. Thls would be. 

logically equivalent to having an inde~ndent COQ\p~e:r ~r .each c,ompartment so 

that time dependen;t e.vents and signals genera~4 by a hig.h. ~learanc~ user 

could not be observed by low clearance. users.. This design would be gros.sly 
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inefficient as it ignores the fundamental principles of multiprogramming. As 

long as time channels are identified, they present a limited risk and are 

usually tolerated. Notice that this paragraph has only described current 

techniques for implementing the AIM. Since we are only interested in showing 

that type extension does neither help nor hinder implementing the AIM as it 

exists today, it is not our intention to formulate any judgement about the 

current implementation of the AIM nor to try do do better than current 

technology does. 

Application to MSS. 

Since the incarnation of an agent in MSS is a user process, the concept 

of clearance is attached to user processes. And since the mode of access 

{READ or WRITE) to information is controlled on a per segment basis, the 

concept of classification is attached to segments. In terms of MSS 

abstractions, we have the choice of attaching it to the directory entry that 

describes a segment or to the segment itself. If we are concerned about only 

non-discretionary controls, i.e. if we care to certify the system against only 

Bell's model and do not care about the correctness of the discretionary access 

control list mechanism, it is better to attach classifications to segments. 

By doing so, the directory manager, ~hich is a substantial module, and higher 

level modules are essentially out~ide the AIM security kernel. What they can 

access will be constrained entirely by the AIM built into the segment manager 

and lower level type managers. This is a vivid example of the interest of a 

partial ordering based on the dependency relation. Within the same system, 

one can consider two {or more) different security kernels. The discretionary 

security kernel is built on top of and includes the AIM security kernel. The 

interface of the discretionary security kernel is the "interface presented to 

the users. The interface of the AIM security· kernel is the interface 
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presented to the discretionary security kernel. It is defined by the 

specifications of the configured volume.manager, the segment _manager, the 

known segment manager, the connected segment manager and the user process 

manager. Thus, thanks to the partial ordering of modules, we can define 

layered security kernel interfaces. Every l~yei:- of a. security kernel is 

responsible foi:- the enforcement of a distinguished set of security pr9perties. 

Each security kernel embodies mqre security prpperties than the lower one. 

Let us now consider the impact of the AIM on the design o( MSS. 

Let us first consider the abstr.actions outside the AIM security kernel. 

The classification of a logical volume, a physical volume or a directory is 

defined by the classification of the segment that directly or indirectly 

implements its maps. (The DT is assum~d to be split it\t:O ,as many Physical 
' ' 

Volume Registration Data (PVRD) segments as there are physical volumes. Thus, 

every physical volume needs a path name denoting its PVRD segment in the file 

system.) A priori, a logical volul!le might cpntain physical volumes (1) and 

master directories in different compartments, a directory may describe sons in 

different compartments and a physical volume may co~tain disk records 

belonging to segments in different compartments. There is however one 

fundamental restriction on the possible classification of .the components of 

such abstractions. The classification of tbe componeqts of an object O must 

be higher than or equal to the classification of (the map of) O. If this were 

(1) We do not see any use for having physical volumes in different 
compartments inside the same logical volume. Since·· all physical volumes in a 
logical volume are logically equivalent as far as the user is concerned, we 
fail to see any situation that would justify classifying the physical volumes 
in a logical volume into different compartments. In addition, this would 
complicate the mounting/demounting operations as will soon become clear. 
Thus, even though it may be conceivable to have physical volumes in different 
compartments, we will assume that this is never desired iri practice in the 
remainder. of this appendix. 
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not the case, it would be impossible to access the components because of the 

AIM. If a user had the clearance for O, he would not be able to operate on 

the components by virtue of the *-property. And, if he had the clearance for 

the components, he would not be able to find out what they are because he 

would not be allowed to read the map of O by virtue of the no-read-up rule. 

The conclusion that the structure of an object must correspond to a 

non-decreasing hierarchy of compartments was arrived at independently in NSS, 

where the file system hierarchy of directories and segments must be 

non-decreasing in classification. 

In MSS, like in NSS, we have the concept of a transition object, which 

denotes an object of which the classification is higher than the 

classification of the object it is a component of. In MSS, like in NSS, the 

manipulation of transition objects is extremely delicate. Indeed, a user who 

is cleared to operate on a transition object T may read the map of the object 

0 of which Tis a component but he.may not write into that map by virtue of 

the *-property. Thus, he cannot perform any operation on T that would require 

changing the map of o. (In particular, he cannot delete/deallocate T unless 

he lowers his clearance or requests the assistance of a so-called trusted 

user, i.e. a user who has the privilege to write-down but is trusted not to 

abuse it to transmit sensitive information.) We will say that transition 

objects are frozen. Practical consequences of this statement for MSS as well 

as for NSS follow. A user cleared to manipulate a transition master directory 

cannot operate on it (e.g., set quota on it) in any way that would require 

modifying the LVRD of the logical volume composed of the master directory 

because this LVRD has a lower classification. A user cleared to use a 

transition segment (directory or file system segment) .cannot operate on it in 

any fashion that would require modifying the directory entry that describes 
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the segment because this entry is part of a dire;ctory with a lower 

classification. In more specific terms, a transition ~eginent implementing a 

directory can never be subject to access control list changes or to moves 

resulting from OOPV conditions because. this would rpquire modif;ying the access 

control list or the PVID, VTOCX in the directory entry describ:i,ng the 

transition directory, which is ruled out by the *Tp.op~rty. A transition 

segment implementing a file system seg{llent (!l.ay never b;~. supj ect to access. 

control list changes or to OOPV moves and in addition may nev~r be subjec.t to 

a quota fault because thie would reqµire updating the quota cell of some 

superior quota directory that has, by definition, a lower classification. 

Furthermore, every transitio.n dir.ectory should be a quota directory to allow 

the inferior segments to be grown/shrunk. _If_ this were not the case, th~ Cl;l 

operation .would (because it should be co4ed so) refuse. to grow/shrink a 

segment if it discovered that the quota cell which it sbo,µl..d update has a 

lower classification than th~ segment charged to it. 

Until now, we have examined the impact of· the AIM· p~imarily.on the type 

managers outside the AIM security kern.el. A-s fa~ as this, security kernel is 

concerned, we have only concluded that it should never- grant a user READ 

access to segments in higher compartments and that it, sl;lou.ld refuse to handle 

OOPV conditions and quota faults on tr,ansition segments. 

Let us now examine in more details what -the AIM security kernel should do 

to enforce the AIM. In particular, let us study what is n~essary to block 

the covert st~rage channels. As explained earlier, it is necessary to 

guarantee that every type of shared storage resource be preallocated by 

compartment. Segments '!re not a -problem. They are C/D resources, which means 

that every UID is given out only once. It is never reused by (shared with) 

other users. Thus, whether it is used or not cannot be exploited as a "storqe 
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channel. A burst in the creation of segments would use up many UIDs at once, 

which might be exploited as a time channel. However, if UIDs were generated 

by reading a microsecond clock and if we asswne that it is impossible to 

create more than one segment every microsecond, it would be impossible to tell 

whether a given UID is in use or not. Known and connected segments are not a 

problem as they are never shared by several user processes. Every process has 

j ts own. Thus, a process could never use its KST or DSG as a covert channel 

to another process. Core segments are not a problem either-because they are 

used strictly inside the security kernel, which will obviously not try to 

exploit them to leak information. Active segments, quota cells, page frames 

and core blocks are not a problem because, even though they are shared by all 

processes, processes do not directly control their deallocation. Deallocation 

is under the control of the segment deactivation and page removal algorithms. 

The above abstractions might be exploited as time channels (e.g., varying page 

fault and segment activation rates) but such channels are very slow because of 

the noise introduced by the deallocation algorithms and by all processes 

competing for the same resources at once. 

Disk records could be a problem because processes are in full control of 

their allocation and deallocation. For instance, a high classification 

process could use up all the records on a physical volume, thereby causing a 

low classification process to observe OOPV conditions on any segment it might 

try to grow. In fact, this sort of channel can be blocked in practice if the 

security officers of the system are careful not to overaJ.locate quota. 

indeed, if the sum of all quota allocated to the compartments sharing a 

physical volume is no greater than the total amount of disk records available 

on the physical volume, then the disk records are essentially preallocated by 

compartment and OOPV conditions will never be observed. 
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Passive segments and disk sectors (i.e. VTOC entries) a~e a problem (in 

MSS as well as in NSS!) because there~$ no mechanism like quota for 

controlling their preallocation. Thus, by varying its usage of VTOC e~tries, 

a hi_gh classification process can transmit information to a low classification 

process. The only obvious way to block this ~hannel ~h.ort of introducing 

quota on VTOC entries.is to re9uire that all tra?siti9n,di~epto~ies be master. 

directories and that all master directories for a.logical .volume .be in the 
•• :_- •. I , , ; • "•...,) 

same compartment, or, in short, that each .logical vol~me ,~elon~ in a single_., 

compartment. In other words, this says that all the segments of which the 

passive image is on one logical volume must be in the same compartments so 

that the VTOC entries (and the disk records too, by the way) on that logical 

volume are not, in practice, shared by several compartments. The latter 

statement does not require that the logical volume, physical volume and 

directory entry managers be in the AIM security kernel. The compartment 

associated with a given logical volume and its component physical volumes may 

be recorded in the label of every physical volume. This label is secure 

because it can be accessed only by the configured volume manager, which is 

part of the security kernel. Thus, every time a user process requests the 

creation of a segment with a given classification on a given logical volume, 

the given classification is compared with the classification of the given 

logical volume. If they are not equal, creation is denied. 

Finally, configured volumes are not a problem. While it is true that 

they are shared and not preallocated, it would be hard to use them as channels 

to communicate information. Allocating and releasing configured volumes 

implies mounting and demounting physical volumes, which is a slow and easy to 

monitor information channel. 

In this appendix, we have not tried to propose any new solution to the 
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implementation of the AIM. We have not tried to design a new mechanism for 

better implementing the military security controls. We have simply attempted 

to show that the restrictions imposed by the AIM in a state of the art system, 

the problems of implementing the AIM and the solutions to these problems can 

be handled by the type extension concept. Whatever can be done in NSS can be 

done in MSS. And HSS is not particularily helpful to implement the AIM. Type 

extension neither helps nor hinders sealing off storage channels. Type 

extension and the military security controls are orthogonal issues. 
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