
UNCLASSIFIED
Security Classification ..

DOCUMENT CONTROL DAT A - R & D
:Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1 ORIGINATING ACTIVITY (Corporate author) 2B. REPORT SECURITY CLASSIFICATION

MASSACHUSETTS INSTITUTE OF TECHNOLOGY UNCLASSIFIED
2b. GROUP

PROJECT MAC NONE
3 REPORT TITLE

STORAGE HIERARCHY SYSTEMS

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

INTERIM SCIENTIFIC REPORT
5- AU THOR(Sl (First name, middle initial, last name)

STUART E. MADNICK

6 REPORT DATE 7a, TOTAL NO. OF PAGES 17b, NO. OF REFS

APRIL, 1973 155 90
Ba. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBER(S)

NOOO14-7O-A-O362-OOO6
b. PROJECT NO.

MAC TR-107

c. 9b. OTHER REPORT NO(S) (Any other numbers that may be asslQned
this report)

d. NONE

'0. DISTRIBUTION STATEMENT

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

11- SUPPLEMENTARY NOTES 12, SPONSORING MILITARY ACTIVITY

PH.D. THESIS, DEPT. OF
ELECTRICAL ENGINEERING, OFFICE OF NAVAL RESEARCH
MAY 15, 1972

I 1 3. ABSTRACT

The relationship between the page size, program behavior, and
page fetch frequency in storage hierarchy systems is formalized and
analyzed. It is proven that there exist cyclic program reference
patterns that can cause page fetch frequency to increase signifi-
cantly if the page size used is decreased (e.g. I reduced by half) .
Furthermore, it lS proven in Theorem 3 that the limit to this
increase lS a linear function of primary store size. Thus, for
example, on a typical current-day paging system with a large
primary store, the number of page fetches encountered during the
execution of a program could increase 200-fold if the page size
were reduced by half.

The concept of temporal locality versus spatial locality lS

postulated to explain the relationship between page size and pro-
gram behavior in actual systems. This concept lS used to develop
a technique called the "tuple-coupling" approach.

Consistent with the results above and by generalizing conven-
tional two-level storage systems, a design for a general multiple
level storage hierarchy system lS presented. Particular algorithms
and implementation technqiues to be used are discussed.

(PAGE 1)
UNCLASSIFIED

SIN 0102-014-6600 Security Classification

UNCLASSIFIED
Security Classification

I 4. LINK A LINK B LINK C
KEY WORDS

ROLE WT ROLE WT ROLE WT

Storage Hierarchy

Virtual Memory

Dynamic Storage Allocation

Operating Systems

Paging

Page Size

Replacement Algorithms

Computer Architecture

Multi-level Memoires

Spatial Locality

DD ,F,?oR:n14 73 (BACK) UNCLASSIFIED
(PAGE 2) Security Classification

CAMBRIDGE

STORAGE HIERARCHY SYSTEMS

Stuart E. Madnick

April 1973

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

MASSACHUSETTS 02139

Stora1e Hierarchy Systems

STORAJE HIERARCHY SYSTEftS

by

STUART ELLIOT l!ADNICK

2

submitted to the Department of Electrical Engineering on l!ay
lj, H72, in partial fulfill11ent of the reguirements for the
dagcea of Doctor of P~ilosophy.

ABSTRACT

rhe relationship betveen page size, program behavior,
and pige fetch fcequancy in storage hierarchy systems is
f~rmalizei and analyzei, It is proven that there exist
cycli= program reference patterns that can cause page fetch
fre~uancy to increase significantly if the page size used is
lacce:1sed (e.g., r-e:luceci by half). Furthermore, it is
proven in Theorem 3 that the li11it to this increase is a
linear function of primary store size. Thus, for example,
ou a typical cucrent-liy paging system with a large priaary
~tore, the number of page fetches encountered during the
2xecution of a progrim could increase 200-fold if the page
size were redu~ed by ~alf.

rhe concept of temporal locality versus spatial
lJcality is postula.tad to explain the relationship between
p1ge size ani progr1~ bemavior in actual systems. This
~3n~e?t is used to develop a technique called the
"tupl?-coupling" appr3¼ch. It is proven in Theorem 5 that
~hen used in conjun:tion with conventional hierarchical
stoc~Je system replacement alg3rithms. tuple-coupling yields
tae henefits of sm¼ller page sizes without the dangers of
axplosive page fetch iCtivity.

:onsistent with the results above and by generalizing
~~nventional two-leval storage systems, a design for a
1ener1l multiple lavel storage hierarchy system is
presented. Particul¼r algorithms and implementation
tachni1ues to be used are discussed,

TrlESIS s UPERVISOR: Jahn J. Donovan
rrTLE: Associate Professor of Electrical Engineering

rhis

::::>nju11ction

Electrical

Stor1ge Hierarchy systems

AC KNO.l LEDGEMENT

thesis describes

11ith Project

Engineering,

research

MAC and

both of

Jone

the

whose

at M.I.T.

Department

support

3

in

of

and

3nc::>uragement are gcitefully acknowledged. During the

c::>ursa of this resear:h, I have been fortunate to have had

tae ::ooperation of t~a IBM Cambridge Scientific Center and

tne aoneywell Information Sciences Center.

I have also benefited greatly from conversations with

numerous colleagues. In particular, special mention must be

mii~ of Professor J. H. Saltzer, Don Hatfield, Harold

S::hwe11k, Paul Wooi, stave Zilles, Leonard Goodaan, and Jerry

Johnson, who provijei re::eptive ears and were helpful in

u~ra~aling many of the important issues.

By agreeing to be Readers, presumably at a weak moment,

Protessor J. c. a. ~i::klider and Dr. Ugo Gagliardi were

i1fli::ted upon by this tbesis and the associated chaos. l

a?pre:iate their

forward to their

rasearch.

co~paration and unuerstanding dnd

assistdnce in the continuation of

look

this

Stor1~e Hierarchy Systems 4

I am obligated to acknowledge Professor John Donovan as

my supervisor for thi3 thesis. But, during my studies as a

JCaiu1te student stud3ot, he has been much more than just a

toe3is supervisor. He has been my teacher, advisor,

~Jlleigue, and friend. His cooperation and assistance, not

to me1tion his enthusiasm, have had a profound affect upon

~y research and I am truly grateful.

Most importantly,

str1~1ling through and

I thank my

surviving the

wife, Ethel, for

tortures of being

married to a graduate student for countless years (I'm sure

tnat she has countei them). The same commendations are

axtenled to my sons, doward and Michael. Unfortunately, I

tear that the damage to them might be more permanent. I

realized this recently when I learned that in response to a

fir~t-grade assignment to write about what you want to be

wben you grow up, How~cd had written: "When I grow up l want

t3 be a student like ~y daddy".

wort reported herain w¼s supported, in part, by Project MAC,

~u M.I.T. research pr3ject sponsored by the Advance Research

Pcoje=ts Agency, Department of Defense, under Office of

N1v~l Research Contra=t Nonr-4102(01).

Stori3e Hierarchy Systems

CONTENTS

••

A:KNJWLED:;EMENT •••••••••••••••••••••••••••••••••••••••

1 •

2.

3.

5.

INr i.WDUCT ION AND PLAN OF TtlESIS •
1. 0
1. 1
1. 2
1.3

Introdu~tion ••••••••••••••••••••••••••••••••
Significance of Problem•••••••••••••••••••••
Specific Go1ls and Accomplishments••••••••••
General Stru~ture of rhesis ••••·••••••••••••

TBB STJRAGE HLERAR:JY PROBLEl! ••••••••••••••••••••••
2.0
2. 1
2. 2

In tcod uction ••••••••••••••••••••••••••••••••
Storage Hiecarcay Objectives••••••••••••••••
Storage Hierarchy Apprcaches ••••••••••••••••

FQ8MALIZATION OF srJRAGE HIER ARC HIES •••••••••••••••
3.0
3. 1
3.2
3.3
3.4

Introduction ••••••••••••••••••••••••••••••••
l!lajor Pacameter.ci •• , •••••••••••••••••••••• , ••
The Storage Hierarchy Model••••••••••••·••·•
Performance Measures••••••••••••••••••••••••
Related Resa1rch ••••••••••••••••••••••••••••

A STORAGE HIERARCHY 5YSTEH •• •••••••••••••••••••••••
4.0 Intro1uction ••••••••••••••••••••·•••••••••••
4. 1 :ontinuous tiierarchy ••••••••••••••••••••••••
4.2 Shadow Storage and Page Splitting•••••••••••
4.3 Direct Tcan:;fer •• ••• ••••• •••• •• •••••• •• ••••·
4.4 Reai rhrougn ••••••••••••• •••••••••••••••••••
4.5 Store Bebini ••••• •••••••••••••••••••••••••••
4.6 Automatic Kinagement ••••••••••••••••••••••••
4.7 Comments on Storage Hierarchy System Desiyn.

AN!LYSIS OF PA~E S[lE :ONSIDERATIONS • • • • • • • • • • • • • • •
5.0
5. 1
5.2
5.3
5.4
5.5

Introductiot1 ••••••••••••••••••••••••••••••••
The Page Size Issue •••••••••••••••••••••••••
Auomalies • •.• ••••••••••••••••••••••••••••••••
Tile Page Siz3 Auomaly •••••••••••••••••••••••
Significdnca of the Page Size Anomaly •••••••
8ounds on t~~ Pdge Fetch FLequency Ratio••••

2

3

9
9
9
10
11

20
20
21
30

39
39
39
44
49
55

t>2
b2
o2
64
71
73
77
80
85

86
d6
86
88
d9
99
102

5

6 I

7.

d.

SPl'l.TIAL
6.0
6. 1
6.2
6.3
6.4
6.5
6.6

stor11e Hierarchy systems

VS. TEMPOli\L LOCALITY MODEL••••••••••••••••
Introduction ••••••••• •••••••••••••••••••••••
Types of Pro~ram Reference Locality •••••••••
Conventional Removal Algorithms•••••••••••••
Locality in A:tual PLograms •••••••••••••••••
Locality Mixes ••••••••••••••••••••••••••••••
Spatial Loc~lity Algorithms•••••••••••••••••
:omments on the Page Size Anomaly•••••••••••

SPATIAL aEH3VAL ALiJRirHMS •••••••••••••••••••••••••
7.0 Introdu~tion ••••••••••••••••••••••••••••••••
7. 1 ruple-Couplin:J Approach •••••••••••••••••••••
7.2 Effectiveness of Tuple-Coupling •••••••••••••

ors:ussro~ AND :oN:LUSIONS • •••••••••••••••••••••••• a. o
8. 1
8.2

Introduction ••••••••••••••••••••••••••••••••
Su1111ary •••••••••••••••••••••••••••••••••••••
Further Work ••••••••••••••••••••••••••••••••

REFERENCES AND BIBLIOGHAPHY •••••••••••••••••••••••••••

BL OGHA PHICAL NOTE ••••••••••

120
120
120
122
122
123
124
125

126
1.26
126
135

137
137
137
139

141

154

Storige Hierarchy Systems

ILLUSTRATIONS

1. Structure of a Stori1e Hierarchy System•••••••••••• 41

2. Format of Logical !ddcess •••••••••••••••••••••••••• 46

3. Eximpla of Pige Tri=e Simulation ••••••••••••••••••• ~3

ij. Paie Splitting and Shadow Storage•••••••••••••••••• 69

5. Raid Throu~h Structure••••••••••••••••••••••••••••• 75

~. Example of Case 1 •••••••••••••••••••••••••••••••••• 90

7. Example of Case 2 •••••••••••••••••••••••••••••••••• 93

8. Ex~mple of Case 3 •••••••••••••••••••••••••••••••••• 94

9. Eximple of Case 3 (for LRU Removal) •••••••••••••••• ~8

1). :yclic Pa~e Trace with IMlt = 2 ••••••••••••••••••• 103

1 1 •

1 2 •

:yclic Page Trace witn JM'I

Cyclic Pa;e Trace with FIFO

= 3 • • • • • • • • • • • • • • • • • • •

Removal•••••••••••••••

100

118

13. GXample of LRU Removal with Tuple-Coupling•••••••• 128

1,. Example of FIFO Ramoval with Tuple-Coupling••••••• 131

7

Stor1~e Hierarchy systems

TABLES

1. aapresentative Storage Hierdrchy ••••••••••••••••••• 28

2. ~ajor Parameters of Storage Hierarchy•••••••••••••• 40

3. Marginal Increase in Page Transfer Times••••••••••• 66

MAJOR THEORE!S

1 • P:1Je Size Anomaly Existence Theorem (FIFO) ••••••••• 95

2. Pa 1e Size Anomaly Existence Theorem (LBU) • • • • • • • • • • 97

J. 5t~ady-state Page Fatch Ratio (LR U) , /r/=trt 1 J+1 • • • • 105

4o Steady-state Page Fetch Ratio (FIFO) • • • • • • • • • • • • • • • 119

5. 11 raple-coupling" Limits r to 2 ••••••••••••••••••••• 132

Stor1~e Hierarchy Systems 9

CHAPTER 1.

INTRODUCrION AND PLAN OF THESIS

1.0 Introduction

rhe primary ~oal of this thesis is to provide insight

into and shed additiJnal light on several key problems in

the design and analysis of general storage hierarchy

systens.

rhe importance of cesearch in stcrage hierarchy systems

his baen pointed out by Prof. F. J. Corbatb recently in the

ctir Project MAC Prograss Report VIII (July 1971):

"By now, it has become accepted lcre in the comfuter
system field th1t use of automatic management
algorithms for memory systems, constructed or
saveral levels with different access times, cau
provide a significant simplification of programmin~
effort. ••• Unfortunately, behind the mask ot
a=ceptance hides a worrisome lack of knowledge
b3hind how to en~ineer a multilevel memory system
with appropriate 1l~orithms ~hich axe matched to the
lJad and hardwace characteristics."

On multiple level storage hierarchies, Prot. J. H.

Stori~e Hierarchy systems

S:1.ltzer w,1s even more explicit (subject notes

"Information systems", Mir, 1972, p. 4-58):

"An interestin~ problem arises if one has thcee or
more technologies to deal with. ••• The pcoblem of
predicting the performance of a three level,
automatically manag~d system is not at all well
understood. • • • Alt hough the need for more than one
level has already been acgued, there is currently no
k1own criterion foe introducing three, four, or N
levels for a given system. ••• Although there are by
n~w many implementations of two level memory
systems, the dyna~ic management of a three or more
level memory system is such an uncharted area that
there do not yet exist examples of practical
algorithms which one can examine."

10

on

rhe specific goals and acccmplishments of this thesis,

wai:n are further elaoorated later, are:

• Analyze the affect of certain parameters, such as

page size, upon the performance of a storage

system.

• Develop a concept of locality based upon both

spatial an:i temporal adjacency l.Il address

~eference p~tterns that exflains certain dnomalies

discovered in dctual paging systems.

• Propose, formilize, and measure the pertormance of

naw "spatial-removal" storage management

algorithms, iu particular "tuple-coupling".

• Design practical algocitha for ettective

Stor1ge Hierarchy Systems 1 1

management of multiple level storage hierarchy

systems ani demonstrate its effectiveness under

some simulated system loads.

rhe key plan of this thesis is to investigate several

cc~ci1l problems and requirements of multiple level storage

hie~ttchy systems. P1rticular areas are identified and

corce3ponding theories developed and proven. A new and

1ane£al design for storage hierarchy systems is also

presented and evaluated. Finally, empirical measucement~ are

presented to validate tnd calibrate the overall design and

specific theoretical :onjectures.

rhis thesis is organizationally aivided into 8

cbaptars. The structure can be best introduced by outlining

tbe content of the following chapters in the sections below.

1.3.1 Chapter 2: Motivation for Storage Hierarchy Systew~

rhis chapter presents a perspective on the storage

hierarchy problem and tne motivation for such systerus. It

is primarily written for the benetit of people knowledyeable

in tha general computer field but vho are not especially

experienced in storage hierarchy systems. For the expert

Storige Hierarchy Systems 12

realer, this chdpter exposes the biases and orientations ot

tne author and tnus sets the tone for the remainder of the

t~esi5. This chapter ilso briefly reviews the history of

r~search in storage systems and cites numerous references.

1.3.2 Chapter 3: Form~lization of Storage Hierarchy Systems

description and formalization of the basic

=nara:teristics of storage hierarchy systems is presented in

t~is :hapter. This is followed by a summary and critical

~nalysis of research that directly relates to the specific

1~als of this thesis.

1.3.3 Chapter 4: A Storaye Hierarchy System

Iu this chapter the key concepts of the proposed

3torage hierarchy system ace presented and discussed. The

prin:iple and novel techniques ace briefly described below:

1.3.3.1 Continuous Hierarchy

rhe ratio of p3rformancc between adjacent levels is

Kept woderate (e.g., a factor of 100 or less) to minimize

lis=ontinuities or awkward special-case algorithms. This is

i1 ~~ntrast to many current systems with inter-level ratios

of 10)0 or ~ore.

stor13e Hierarchy systems 13

1.3.3.2 Shadow Storage and Page Splitting

Information is transferred in decreasing smaller size

blocks as it is passei up from low performance levels of the

hierarchy toward the "reguest generator" at tbe uppermost

level. Thus, the information that is finally received by the

raque3t generator ha5 left a "shadow" behind in the lower

levels. The significan=e and rationale for this technique is

f~rther elaborated in Chapter 6.

1.3.3.3 Automati= ~anagement

In order to redl.l:=e the

aad provide for more afficient

function

load on the central processor

and parallel operations, the

will be distributed and stor¼Je management

incorporated into

lavica controllers

tha storage levels (e.g.,

(1], etc.) • 'Ibis technique

"intelligent"

also reduces

tne ~omplexity of the operating system software.

1.3.3.ij Direct Transfer

Storage transfers between two adjacent levels need not

~1ve any effect upon aoc require the assistance ot any other

lavels (e.g., there is no need to move information from

Stor1Je Hierarchy Systems 14

level n to level 1 1nd then frcm level 1 to level n-1 if

only level n to level n-1 was needed; this two step process

is often required on =ontempocary systems). Direct transfer

i3 a;complishej by synchronizing non-mechanical storage

Jevi=as or by usin~ "rubber-hand" buffers [33] between

ale=tro-mechanical storage devices.

1.3.3.5 Read Through

Storage transfec3, as noted above, are only made

b~twean adjacent levels of the hierarchy, such as from level

n to level n-1. But, each level, such as level n-1, can

=~nne;t its input bus {from lower level n) to its output ous

(to ~igher level n-21 so that the data can be~~ !~£2.!!~h

(i.e., transferred to level n-2 while being stored in level

a-11. A similar, though specialized, technique is already

u3ei in certain systems, such as the IBM system/370 ttodels

155 and 165 cache systems (52].

rhis results in performance similar to a direct

=~nue=tion from each level to the request generator but it

p~oviles much more coutrol in the storage levels and a much

simpler structure.

Storige Hierarchy systems 15

1.3.3.6 Store Behind

By using the excess capacity of the inter-level

=1annals, there is a :ontinual tlow of altered data trom tne

hignec levels to the lowest level permanent storage. Thus,

t1e actual updated information is stored behind (after) the

3toce initiation fro~ the request generator. The updated

i1forDation is propagited down, level by level. Whenever

iiforDation is alterej at a particular level, it is ta~ged

as altered dlld is schaduled for a "store behind" operation.

1.3.4 Chapter 5: Analysis of Page Size considerations

)ne of the most important parameters of a storage

hieracchy system is the page size chosen as the unit of

transfer between two levels of the hierarchy. ln this

=aaptar, the factors influencing page size are examined from

the ievice characteristics viewpoint and the prograw

oahavior viewpoint.

Jf pacticular concecn, it has been noticed by Hatfield

[t7] and Seligman [78] and formalized in Chapter 5 that:

"rhece exists a page trace,
FIFO-removal or LRU-removal
srstems, s ands•, with page
respectively, su~lt that the
frequency f' to f exceeds 2."

P, and demand-tetch
inter-level storage
sizes N and ~•=N/2,

ratio, r, of fetch

Stor11e Hierarchy systems 16

rbis rasult runs counter tc the hoped for behavior of

lacreased page sizes 1s noted by Denning (25]:

~ ••• small pages permit a great deal of
without loss of afficiency. Small page
yield signific1nt improvements in
utilization ••• "

compression
sizes will

storage

In tbis chapter the significance of this problem is

Jamon~trated by proving that even "well-behaved" removal

1lJ~rithms, such as stac~ algorithms (63], are not immune to

tnis 1dverse performan:e behavior. Furthermore, the nature

ot this phenomenon i3 1nalyzed and bounds on its behavior

dre Jeveloped.

1.3.5 Chapter 6: Sp1tial vs. Temporal Locality Model of

A primary rationale for hierarchical storage systems is

b1sed upon the ''Principle of Locality". Unfortunately, this

principle is still 1 poorly understood, or at least

~~ntroversial, phenomanon. It is difficult to determine the

"discoverer" of this principle but it is

iltacasting to note thit its definition has changed in time.

F~r aKample, Denning [29, p.3], in 1968 loosely described

l~cality as:

Storige Hierarchy Systems

"the idea that a computation will, during an
iBterval of time, favor a subset of the information
available to it."

17

Liter, in 1970, Dennin~ [26, p.180] aefined it more

pre=isely based upon the concepts of "working set" and

•reference density", which for a page i at time k:

a (i,k.) = Pr(reference r(k)=i],

s1ca taat R(k) is tae ranking of all n pages based upon

a (i,k); thus:

"l?RINCIPLE OF LJCALITY: 'Ihe rankings B (k) are
strict aud the expected ranking lifetimes long."

rnis is a much more restrictive definition of locality than

ais earlier general concept.

In fact, many current storage management systems were

devised first, a general model was then constructed to

las~ribe tbe system, and finally a "formal" definition of

l~cality was developad to be consistent with the storage

mina~ament raoiel. Thi~ is a reasonabie stLategy as long as

t~e underlying concepts of "the principle of locality" are

u~t l~st in tbe pro:ass. Unfortunately, this appears to

niv~ happened on several occasions. In particular, most

p~pllar definitions of locality tend to be useless tor

analyzing or exp lainin 1 either the relation5hi p of pa g~ size

upon program behavior or the impact of generalizin~ from

Stor11e Hierarchy Systems 1 ti

t,o-lavel 3torage systems to multiple level hierarchical

stora~e systems.

In this chdpter 1 new view cf locality is presented (or

au ~11-viev resurrectai since it most closely resembles some

3f t~a very early des~riptions of locality). In particular,

it is shown that tha general concept of locality can be

subdi~ided into two separate factors, tempora! localil1 and

sgatial locality. Thase concepts are defined and justified

and then used to explain some peculiar phenomena

(nanomalies") observei in actual two-level storage systems.

By means of address traces and storage system

simplifications. the tamporal and spatial locality behavior

ot actual programs i, emperically measured. These results

are U5ed to reinforca ani calibrate the storage hierarchy

syste1 design presentai in Chapter q.

1.3.b Chapter:

Algor:-ith11s

7: Spatial Removal stor:-age Management

Various hierarchf storage management algorithms, such

iS tetch (e.g •• demand-fetch} and temporal removal (e.g.,

tirst-in first-out (FIFO), least r:-ecently used (LRU), etc.)

hive oeen developed, primar:-ily for two-level hierarchies.

r~ece appear to be no spatial removal algorithms described

Stori~e Hierarchy Systems 19

i1 t~a literature. Bised upon Chapter 6, several spatial

algorithms are proposed and analyzed.

It is also shoan tnat some cf the problems aescribed in

:napter 5 can be solved by spatial removal algorithms. In

particular, Hatfield :ije) noted that:

"1s yet we have been unable to prove that there is a
replacement alyocithm usin~ only the past history ot
page requests whi~h cannot generate more than twice
tbe exceptions with half size pages."

In this chapter i new algorithm, named tul?l,~.=£.Q~Elin3, is

presentei. It is formally proven that it satisfies

tlitfield's re~uirements above.

Furthermore, the ~perational behavior of tuple-cou~ling

is analyzed by measurin~ the performance of actual programs.

1.3.7 Chapter 8: DiscJssion and Conclusions

In addition to i general summary of the siynificant

aspects of the thesis, this cha~ter also outlines iwpoctant

areas foe future ceseirch.

Stor1ge Hierarchy Systems 20

CHAPTER 2.

THE STJdAGE HI~RARCHY PROBLEK

2.0 Introduction

rhe evolution of computer systems has been marked by a

~ontinually increas1n1 demand for faster, larger, tnd more

~~ononical storage f1~ilities. In addition to the obvious

~on~ern for better performance, the organization of a

computer system's storage plays a key role in program

development and progrimmer efficiency. It has often been

~laimed that "any software design blunder can be overcome by

ddding more memory".

It has becoma ge~erally recognized that the cont1icting

~equirements of ni~b-performance yet low-cost storage may be

best satisfied by 1 mixture of technologies combing

~xpeu3ive aigh-pertormdnce devices with inexpensive

lower-perfor~ance devi~es. This strategy hds been given

"hierarchical storage system",

11 1utomatic multilevel storage management", "virtual memory",

and t~e inevitable "virtual memory system tor the automatic

multilevel management of a hierarchy of storage devices".

ln tnis thesis the somewhat shorter term §tO£~g~ hi~£!!££hY

Stor~qe Hierarchy Systems 21

Investigations into

techniques can be triced

~utcmated

bacK more than

storage hierarchy

a decade. If we

W3ra to include manuil tecbniques, we would fiud storage

hier¼cchies it the very dawn of the "computer age".

crnfort~nately, there are still many unsolved and poorly

understood problems. rhis situation can be partly exflained

oy tha fact that th~se systems tend to be (1) extremely

complex, (2) ill-suited to most conventional analytical

tacai1ues, and (3) deeply influenced by the rapidly evolving

c~aputec technology which keeps "changing the ground rules"

it often frightening rates. In spite of these challenging

stumbling blocks, a successful storage hierarchy system is

30 i~portant to the future usefulness of computer systems

that we cannot afford to abandon the search.

2.1 Stoca~e Hierarchy Jbjectives

8efore delving into details, it is worthwhile to

briefly consider the aeeds and uses fer an effective storay~

hierarchy.

StoriJe Hiecacchy systems 22

2. 1.1 system Perfocmance and Economics

logic tecanology

tacllniques have adva[lced, we

and

have

~codu~e systems of in:redible speed.

in terms

computer

found it

architecture

possible to

Such systems are otten

of MIPS (millions of

instcuctions per:

crudely,

seconi).

iUP:i llave been devel::>ped

Experimental system of

(e.g., ILLIAC IV and

over 100

CDC STAR).

~ven "conventional" l1rge-scale systems have passed the 5 or

1) MIPS mack (e.g., CDC 7600 and IBft 370/195). It has long

.!::>~en observed thal the input/output (I/0) requirements,

e5pe~ially foe "seconl1ry storage", of a conventional system

tani to be strongly related to the processoc's speed. In

t1ct, based upon scvec1l empirical measurements, it has been

p::>stulated that a computer system averages 1 bit of I/O for

~fecy instructiou exacuted (this is often referred to as

A.1danl 's :onstant Leef]). As a result, many of these

nigh-?erformance systa~s have been confronted with massive

o~ttl~neck problems in the I/0 area, especially since these

I/0 demands tend to o~cur in bursts. An effective storage

hierarchy system coull yo a long way toward reducing this

problem.

At the other end of the spectrum ~e

low-cost processors, the latter are

find that medium

usually called

mini-=om~utars, have ~ade suostantial advances in recent

Storage Hierarchy systems

yaars. The term "mini" cdn be quite misleaJiny. Tnese

procassors are typically huudreds of times taster than the

e1rly commercial compJters at a fraction of the cost (e.g.,

tme UNIVAC I, circa 1951, could p2rform about 2000 12-digit

aiditions pee se~oni whereas contemporary mini-computers

3pecate at around 1,)JJ,000 5-digit additions fer second).

Alth~Jgh these mini-processors may be midgets ccmfared to

the computational pcoblams attacked by their "big brcthers''

jas=ribed above, they ace wore than adequate for the vast

majority of infomatioa processing problems which have modest

~~mputational requirements.

1nd economias of scale

Due to technological advances

result in~ from large-scale

?rodu~tion, some minicomputers are available for less than

$20~0 with slightly slJwer micro-computers being offered for

~5 little as $66 l 18]. Ia spite of these technological

alvanc~s, these processors have not bad much impact en most

inf~r~ation system naeds due to the continuing economic

problam of producini large capacity inexpensive storaye

~evicas even at the modest pertormance required. A jb6

processor is largely irrelevant if the storage costs ace in

tne $100,000 or mora range. By developing an effective

5tora~e hierarchy system, we can go a long way toward

uriuging the stocage costs down to the lev~l ot these

1nexpansive processors. As a result, a tremendous number of

currently

proce~sing

known

problems will

solutions to

finally become

information

economically

Stor1ge Hierarchy Systems 24

faa5ible solutions.

2. 1.2 Simplify and Automate Programming

~s noted earli~r, th~ organization of a computer's

~tori;e system has a considerable impact upon pro~ram

dav2l~pment and progr1mmer efficiency. To a large extent,

tni3 potential increase in productivity is obtained by

rad~cing or eliminatiug constraints normally imfosed by the

storage system~ Thase constraints often distract the

progr1mmer to the extent that he devotes a substantial

~1ount of his time to overcoming the system's limitations

ritnar than solving the intrinsic problems. Shoeman [80]

n~te1 that:

"rhe inherent error content of some programs is
claimed to be related to the excess memory capacity
availabl~. The theory here is that if the memory is
vary cramped, tha software writers will have to
rasort to overlay3 and other coding "tricks" to
s1ueeze the desired functions into the allocated
mamory space. It is assumed that these tricks
introduce great complexity and are the seat of many
errors. This effect is cited by designers of
~irborne computer3 where the allocation of another
block of 4k of ~emory is a major design decision."

For example, the pro~rammer often has to worry about:

Stori~e Hierarchy systems 2S

2.1.2.1 Programwing lanyuage code efficiency.

if a highec-leval language compiler tends to frcduce

progrims that are at all larger than those produced ny d

l~w-lavel language translator, it may be necessary to use

the low-level languaga to conserve storage. This constraint

is =ontracy to the generally accepted fact that high-level

lanJuages enhance ~co~ramminy prcductivity.

2.1.2.2 Program size.

For any specific storaye size, there are programs that

cinnot be easily written to fit into that size con~traint.

tat, pco~rammers frequently try - with considerable effort.

2.1.2.3 Data stru~tures.

rhe programmer is often faced with the need to choose

batieen a data structure representation that is convenient

to use and ~nether representation that "saves stordge".

l3is savinJ may caguire the use of an awxward or

uune=assarily complex data 3tructure representation.

Stori1e Hierarchy systems 26

2.1.2.4 Specitic aquipment characteristics.

If the pcogramaec must get the "most" out of his

stora~e system in terms of capacity and performance, he may

r3soct to techni~ues that are peculiar to his specific

stocaJe system equipment. If the equipment is changed,

tnera may be a considarable impact UfOD his software.

ie would like tJ jevelop storage

tnat eliminate, automate, or at

programming problems lescribed above.

hierarchy techniques

least minimize the

2. 1.3 Integrate New Ta=hnologies and Applications

~lthough there has been continual evolution, the basic

5tor1~e device techn~logies in commercial use have not

cnangad aramatically in the past decade. As a result, tnere

has b!en a tendency, motivated by actual need, to relate

ippli~ations to the specific available technologies. This

has caused certain 1pplication areas to be abandoned as

~infa1sible" and many storage management strategies to be

iiscredited as "irralavlnt" or "inefficient". In the passage

3f tiie we remember the lpplications and tecnniques in use

out fre~uently forget or ignore the alternatives possible

dnd tne reasons for bypassing these alternatives.

stori~e Hierarchy Systems 27

After this rather long "rest", it app~ars that we aLe

on the verge of some

taciln3logy. It is

major "awakenings" in applications aud

bard to quantify the ne~ application

needs other than requiring more and faster storage for less

~3nay. Section 1.1.2 presents some of these motivations, the

ravitalized interests in time-sharing, artificial

intelligence and automatic programming are also "fanning the

fira".

Due to the uncertainty of advanced research in stora~e

davica technologies, it is difficult to Lorsee accurately

~hi=h of the many ictive efforts will succeed (see for

,Hample, Ayling [7 J, Best L 15 J, Bobeck (16], Camras L 17],

Dall :24), Fields [35], Gardner (39], Howard {50], MaticK

[&Matick..], !1yers (59], Rectoi: (74], Shahbendi2r (79],

rnoapson (85]). Considering the technical advance3 clearly

demonstrated in the laboratory and the driving "protit"

motiv~tion, it is reasonable to expect some dramatic changes

ia tb~ next few years. Even if we don't know what or when,

~~ W3Jld be foolhearty to totally ignoi:e this situation.

rable 1 below indicates the performance and price

~Bara=teristics of typical current-day storage techuoloqies.

rhe t~o entries marked by questicn marks (?), Bulk Store and

Giant Store, indicata new technologies that have already

Stor1~e Hierarchy Systems 28

(ft 1)

Random Maximum
Accass rransfer

Davi:::~ rima Rate Price capacity
J.~g~2!1.~l~t J!> yt eil!~sa. ili!H!il (!!.I!!!§)

1 • :acne Store l.6x10- 1 1 x 10 8 8.8xlOO 1.6x10 4

(IBM 3165) (16) ns) (100M b/s) ($8.80) (16K)

2. Main Store 1.4~x10- 6 1.6x107 S.1:10-1 5.12x105
(Io l'1 3360} (1. ~4 us) (16M b/s) (50t) (512K)

3. Bulk Store? 1.3.x:10- ♦ ax 106 8. Bx 10-z 2x10 6

(iU1 S SSU(35]) (130 US) (8 !! b/s) (8.8t) (2 tt)

4. l,arge Store Sx 1:)- 3 1. Sx 10 • 2.2x10-2 1.1x107
(IBM 2305-2) (5 II S) (1. SM b/s) (2. 2 t) (11M)

5. !'\a5 s Store 3.8xlo-2 8x 10s 4.Sxl0- 4 2xl0&
(IiHl 3330) (3 ti ms) (800K b/s) (.045t) (200M)

ti • :ii1nt Store? 6x1JG 6x 10s 2.2x10- 5 l.6x1010
(Grumman (6 sa:::) (600K b/s) (. 0022¢) (168)
MASSTAPE)

Table ,.
Representative Storage Hierarchy

StocaJe Hierarchy systems 29

oaen placed in limited use, Since these two

cost/performance po5itions were net part of our

"traditional'' technolo~ies, we are faced with the prcblem of

pJssible modifying our applications and developing new

~trategies to efficiantly, effectively, and, hopefully

optimally, intagrate them into our overall hierarchical

3tocage system.

ls the entire spectrum of computer architectures, as

well as storage device technologies, undergoes reshutflings,

OJth avolution as well as revolutions, it is worthwhile to

caviaw and reconsider our current concepts on storage system

Jasign. raole 1, although a simplified summary of current

5tora~e technologies, illustrates the fact that there exists

d spectrum of devices that span about 6 orders of magnitude

of price/performance (100,00C,OOOi). This is quite

~igaificaut in the light of the excitement that no~mally

d=co ■ panies an i~prorament of 10-20~ in performance or d

dacre1se of 10-20~ in price in current-day systems. The

participants in this "storage sweepstakes" may change in

time, but with such large price/performance stakes, there

will be continuing benefits to "playing the game" better.

StoriJe Hierarchy systems 30

2. 1.4 Understanding of Program and System Behavior

~s noted P.atlier, the Jetailed operational behavior of

~omputer systems is often extremely complex. Thus,

3ecLaions on hardware, software, and system design must

often be made in spite of insufficient knowledge. A bEtter

~rid~rstandinj of program and system behavior is essential to

t~e intelligent and efficient develofment of future systems.

It is hoped thdt the research tc be conducted as part

of t~is thesis will shed considerable light en these

ul:l tters.

2.2 Stora1e Uierarchy A££Coaches

~stora~e hierdrchy system" and

in many contexts. Consistent

similar terms have been

usei

outliried in the pc:!vious

with the

section, certain

objectives

part.iculac

~ontexts are assumed in this research.

2. 2. 1 Spectrum of Approaches

rhe problems ot storage hierarchy management have been

attacked by a host of approaches. We can loosely

~haca:teci~e these efforts into three cate~ories:

Stora1e Hierarchy systems J 1

2.2.1. 1 Manual HieraLchy Management

:iiven specitic ensemble of storage d.evice

t3cbnJlogies, after cJnsiderable thought the frogrammec can

axpli=itly or implicitly specify how his intormaticn (i.e.,

programs and data) should be organized and distributed

within the hierarchy ind how and when his information should

be re-arranged. Ha~in~ jetermined the distribution, he must

also specify his access to specify information accordingly.

ihen a programmer is directly operating upon his

information at the lowest level (e.g., using machine

lang111.ge, direct I/:) requests, etc.), h.e is explicitly

~ontrolling the storige hierarchy, this is ex£.!icit manual

ai~£!££~~ ~anagement. In most conventional systems, the

programmar co1111unicdtes with the system via proyraw~iny

langu1ges and control cards. Although this can relieve much

of th~ tedious or intricate details of stocag~ managewent,

the overall control of the storage hiecdrchy is still

pci~acily the responsibility of the programmer. This is

i1~li=it manual hierarchy management.

~dnual storage m~nagement can be very economical since

it usually requires n~ special hardware features nor special

system soft~are. Furthermore, it places the control of the

Storiie Hierarchy Systems 32

stor11e hierarchy iu the hands of the progrdmmer who is

presumably tne ond mo~t familiar with his needs. Manual

stori1e mana~ement, i~ its many manifestations, is the most

cJmmJn storaqe hierar:1ty approach in use today.

Manual storage mdnagement bas many disadvantages,

though. Tbe amount of detail that tne programmer must

understand and use cin add significant complexity to this

This then introduces additional areas of error and

Jacre1sed productivity.

tne programmer is the

Furthermore,

best judge

the assumption that

of optimal storage

ocg1nization is often wrong. The complexities and dynamics

;Jmmou to mouern systems are often beyond the understanding

0f most application programmers.

Multiprogramming, an almost universal technique in

~urrent systems, na~essitates strategies for global

Jpti~i,zation whi~n usually differ substantially from the

iodividual local optimizations cf each program. For these

reasons thee~ has been ~ontinual search for "a better way".

2,2.1.2 Semi-Automatic Hierarchy Management

~any tachni1ua3 ~dve been developed to ~iniwize the

~mount of effoct re~uireJ of the pro~rammer and to provide

faedbick to him. The programmer still has the ultimate

Stor1Je Hierarchy Systems

contr~l in such a

system.

jJ

:ertain of these technigues are based upon the concept

of the programmer pr~viding "hints" to the system. These

nints form the basis for a partially automated, partially

manual stora~e managa~ent system. Although not esfecially

widespread, this approach has been used in several systems

(e.g., Jensen ~t ~! [53], o•Neill £1 ~1 (70], etc.).

If there is a single application that is quite large

and camplex, techni~ues have been developed to dnalyze the

actual performance an1 provide feedback to the programmer.

rhis approach is primarily used in specialized, dedicated,

predictable, high-pertormance systems, such as an airliue

r:eserv at ions system. Numerous attempts have been r-eported,

s~ch as Arora ~f ~! [5], Ramamoorthy £1 ~! [12], etc.

rhe various semi-automatic hierarchy management

appro1ches help to raiuce the programmer's effort and to

dtt1iu a better locil optimization. Although useful tor

~art1in applications, thase strategies do not remove the

Jisddvantayes already noted with manual hierarchy mdnagement

;:;;y ste11 s.

Stor11e Hierarchy systems 34

2.2.1.J Automati~ Hierarchy Mdnagement

:ertain aspects of loyical information organization are

inh2r~nt in a pro<,Jrarnmer•s basic al1orithm. In an ~!.Q~~if

~h~~~£fhY management system, all a~pects of the physical

information organi&ation and distribution that dre

irrelevant to the unierlying logical structure should be

from tile programmer's responsibility. The

pro9rammer may wish to, mayb~ even be encouraged to, use

~lgorithms tnat are Known to perform well in conjunction

with the automated hierarchy management. But, the central

responsibility of tha storage hierarchy management is

removed from the programmer.

Since this approach directly tocuses on the

hidtarchy objectives presented earlier, it will

pri~ary apprJach to be pursued in this thesis.

2.2.2 Spectrum of Analysis Efforts

stoi:age

be the

Each of the storage hierarchy approaches mentioned

above, primarily semi-automatic and automatic, have Deen

subje~ted to various torms of analysis. In this section we

briefly outlinP. the principal aeficiencies of these efforts.

Stor-:qe Hierarchy Systems 35

2.2,2.1 ~eneraliLect Models

Jne popular form of analysis is to assume a generalized

•Jiel for bdrdware, software, and system behavior. If one is

c1refJl in ch0osin9 tna characteristics of the model (e,g,,

Poisson arrival and s~cvice ti~es, etc,), it is possible to

iavelop precise analytical solutions. Unfortunately; it is

usually difficult to validate these models except foe rather

simple solutions. Furthermore, since there are few truly

aJtom1tic storage hi3racchy systems in

~xtre~ely difficult to even determine

general use, it is

realistic parameters

for these generalized ~odels even·if the models were valid,

Generalizea mod3ls have been reported in several

p1pec3, such as Aho ~! ~! [2] and Denning [25] in the

BibliJgraphy.

2,2,2.2 Constrained Models

Another variation on the generalized model schewe is to

~nalyze a particular program and then model its relationship

to tne rest of tha system. There are at least two

snoct:omings in this approach. Fiest~ as in the yeoeralized

model case, it is 1ifficult to realistically model the

celationsnip between i pcogram and the rest of the system.

3aconi, the analysis and measurement of the particular

Storaye Hierarchy Systems 36

pro~r1m is norwally converted into scme form of probability

~atrix or probabalistic reference pattern. In either case,

significant effort is required to accurately measure the

pro1ram•s behavior. Furthermore, the probabalistic

~oara~teristics are usually aggregated to reflect the

Jverall behavior of the program and, as a result, the

dynamic nature of the program and its impact on the storage

hiP-rarchy ar~ often lost.

Exampl~ analyses of constrained models can be found in

references: Arora and Gallo [5], Hatfield and Gerald (47],

LJwis and rue [60], and Ramamoorthy and Chandy [72].

2.2.2.3 Limited Environment

A common deficiency of most previous research is that

o~ly a limited anvironment was considered, in particular

aJtom1tic hierarchy management over cnly two levels using a

sinyla page size. Of :ourse, most current-day computers have

only Jmploy~d automati: hierarchy management in either Cache

Systeras (cache store - main store) or Paging Systems (main

store - large store). Unfortunately, there is definite

reasons to believe that many of the conclusions and

t~c~niquas demonstrated for a two-level hierarchy do not

nacessarily yeneraliz~ to handle tbe spectrum of program

Jatail and ievice cnaracteristics encountered in a truly

Stor1ge Hierarchy Systems 31

wultiple level stordga hierarchy. Furthermore, many at the

p:ipec:i that atte~ptei to investigate genecal storage

nieracchies assumed techniques and approaches that are

~ci~acily based upon two-level hierarchy assumptions.

£his limited environment has been stuuied by numerous

people, such as Aho ~i £!1 [2], Be lady g,! ~! l 10, 11, 12],

C ::>ff man an d Varian [1':J,86], Conti ~!: al L 2 1 22 J
-- I I

Denning

~25j, Fotheringham [33J, Guertin (45], Kilburn et _gl t57],

rtatts::>n ~!: ~! ~63], 5211.gmau (78], Smith [81], ana Wilkes

C a 8].

2.2.2.4 General Hierarchy Environment

rhe studies of limited two-level storage hierarchies

h1ve been quite su=cessful in many actual systems. A

reasouable strate~y w::>uld be to extend these techniques to a

~::>re Jenecal storage aierarcby environment. Ther:B have been

~ few attempts along these lines, but as menticnBd in the

previ3us section, most were hawpereJ by:

(1) attempting t::> directly apply two-level hier:ar-cby

techniques

dpplicability,

without carefully consider:in<J their

(2) attempting to gcnerc1lize techniquts which weL-e not

aven fully understood in a two-level envirotment.

Storage Hierarchy systems 38

rhe major thrust ot this thesis is to provide insight

into and shed additional light on these problems.

Stor11e Hierarchy Systems 39

CHAPTER 3.

FORMALIZATION OF STORlGE HI~RARCHIES AND RELATED RESEAiiCh

J.0 Introduction

In this chapter- a .to.rmalization of the key

cnar-actecistics of storage nierarchies is preseutEct and

pacfocmance measures ace derived. The reported performance

of actual systems is r-eviewed.

rable 2 and Figure 1 illustrate the major parameters of

~ storage hierarchy system. These paramete~s can be grouped

into four categucies: (1) basic technolOl:JY, (i)

c:,nfi1ucation, (3) alJorithm, and (4) pr:ogcam behavior-.

J. 1.1 Basic Technology

r he basic t ec hnolog y para mete rs, £Q:3tLQ11~, c, and

a,ecage access ti!!, T, are primarily de~endent upon the

pnysical proper-ties ot the stocage device technology. At any

qiven time the state-of-the-art offers only a limited number

()f (:, T) al teen a ti ves that the system desig nee can select.

Stor11e Hierarchy Systems 40

(ft:.l)
Basic Technology

• C cost/byte

• T average ac:ass time

..;Jntig_uration

• L uumbec of levels

• I inter-conue.:tion of levels

• s S.lZe (ca pa:; i ty)

• B transfer rate (band v idth)

• N nu1Bbec of oytes in page (page size)

• A address tc~ce

• f retch

• P placement

• H replacement

Table 2.
Major Par-ametecs of a Storage Hieracchy System

Lavel 1

L~vel 3

Level L

Storaye Hierdrchy systems

. . I

Request
Generator

{Processor)
A={a1,a 2 , ••• J

(CZ,S2) I
m (N.S,T 3 ,B 3)

lP

(C 3 ,S 3)

tttt
••••

figure 1.
Structure ot a Storage Hierarchy system

(f 1 J)

42

J. 1.2 Confiquration

rhe system desig~er does have flexibility in crgan~zin~

t~ese storage devices. By serial and/ar parallel structuring

~f the components of a given level of storage device

t~c~nalogy, it is possible to specify, over a wide rdnge or

~ilUe3, the §!~g (stora~e capacity), s, and the llXim~~

!:£~!!§~~£ £~!~ (data bandwidth), B, of the system. For

axarnple, if a particul~r technology provides d tasic device

with 5=s and B=b, connecting n cf these devices io parallel

produ:es a stor:age le11~l with S=ns and B=nb. (To some extent

tne machanism and cost of the organizational structure does

i1flu~nce tha overall :ost/byte and average access time of a

laval, this effect i3 usually minimal for small values of

n I •

Jn a mord global bdsis, the designer must determine the

~~mQ~£ QI !~!~!§, L, in the stora~e system, the

i~ter:onnections ot the levels, I, and the size, N, of a

~ag~ (the unit of inf~rmation moved between levels).

3. 1. J PI:"O(jrara Behavior

undec program control, produces a

sequential 3eries of raterences to the storage system. ihese

pro::essor refer:ences 3.r:e in the form of log,i~! address

Stora1e Hierarchy systems 43

&eferences which serv~ to uniquely identity each individual

unit of stored inf~rmatation (e.g., an d-bit ~l!!)

independent of its location (i.e., Ml, M2, M3 , •••). The

time sequence of logical address references, A, is called an

aidre3s trace or ~~~£~2~ reference £attern. In general, each

unique program and its input data will result in a different

processor address tri~e. For purfcses of analyzing the

effectiveness of the storage hierarchy, the address trace is

tne pri~acy characterization of a program that is needed

(~.~., we don't care what the program's purpose is or what

languige it is written in, etc., we cnly care about its

aidress trace). rhus, the address trace describes the

~co~ram•s behavior as observed by the storaye hierarchy.

J. 1.~ Algorithm

rhere are three basic decision algorithms that must be

d~ployed by an autom~tic storage management system. fg~fh,

F, de:ides when and whicb infor ■ation should be moved up a

level (e.g., from M2 to Ml). El~£~!~B£, ~, uecides wnere

iafor~ation should be placed in a level. g!!Qlll or

re£lacement, R, decides when and which informaticn shculd be

transferred down a le~el (e.y., from M' to M2).

Stor1~e Hierarchy systems 44

~ compietely gen~ral storage hierarchy alyorithm, H,

m1st :;onsider all the parameters described above:

d = f (<Tec~nology>,<:onfiguraticn>,<Progcam>,<Algorithm>)

H = f(<C,T>, <L, I, S, B, N>, <A>, <t', P, li>)

:learly, attempting to optimize a system with so many

piramaters is difficult. Fortunately, it is possible to

eliminate from con:;aru oc at least simplify certain

parameters as explained below.

3. 2. 1 Confiquration

:onsistent with the title of this thesis, we shall

c~nsiier only hierarchical interconnections of levels as

illustcated in Figure 1, where 1'<T2(T3(etc. and N'<NZ<N3(

ate. fhe rationale far this decision is elaborated in the

ttiesis.

rhece ~ce thcea basic strategies for information

mavernant sizes: (1) select a single page size value, N,

wni:;h is always used throughout the hierarchy this

~ppco~ch is used on ~ost contemforary automatic multilevel

storage systems (e.g., Multics), (2) allow dn arbitrary

range of values for N to be used - this approach is

pri~arily used on manually managed storage systems, and (3)

Stocige Hierarchy Systems 45

s~la~t L values of N, a s~ecific unit of transfer is used

between any two levels of the hierarchy - this ap~roach will

ba pursued and justified in this thesis.

J.2.2 Program Behavior

Each logical address can be represented as a bits as

~nown in Figure 2(a). If the paye sizes, N, are chosen to

ba powers of 2, the sat of 2**a possible addresses can be

partitioned into 2**P pages of N=2**n consecutive logical

aidcesses each as shown in Figure 2(b). (Note: the notation

"2**a" means 2 raised to the power a]. Since the inf6rmation

m~vem3nt between st~rage levels is accomplished by

transferrin~ pages, wa can

by merely considarinJ the

analyze this interlevel movement

time sequence ot loyical pages

references, Ap, callei a~~~~ i£~~•

Since we allow the paqe size to be different between

each level and requests are only passed down to a given

lavel if they cannot b3 satisfied by any higher level, each

level will usually experience a different page trace though

all are algorithmically derivable from tbe same address

tcaca. In fact, if all address references were broadcast to

all storage levels, the page traces can be determined by a

simple mapping from l~1ical addresses into logical fdges:

pa~e aaJrass = integer(logical address/N)

Stor1ge Hierarchy Systems 46

(f 2)

1~-------- a bits --------1
AUDRESS I

(a) Logical Address

I a nits I

I PAGE DISPLACEMENT I ,~ p bits ~I n bits
(a=p+n)

(b) Logical Address
(Divided into Page Address and Displacement)

Figure 2.
Format of Logical Address

StoraJe Hierarchy systems 47

w~ece N is tne page size foe that level •

.1.2.3 Algorithm

rhe placement Je~ision, P, is usually unconstrained or

~inimally constrainel and, as a result, has relatively

littla impact upon performance.

! demand fetch policy will be used. Assume that at time

t a request foe logical address a (or, equivalently,

p1 =iateger(a/N 1)) arrives at level Ml. At that instant the

information may currently reside in Nl, otherwise it must be

f~und in a lower level. Under J~mand fetch, if p 1 is in M1 ,

t~e rafereuce proceeis, the infcrmation is passed back to

the processor, and no other page .11ove11en t occurs iu the

niecacctty. It

pz =i11teger (a/NZ)

pl is not in M 1 •

is saut from Ml to M2.

a rey_uest for

If p2 is in MZ, the

page is transferred to M' and processing continues as

ias=ribed above, otherwise a rey_uest for p3=iateger(a/N 3) is

3ant from M2 to M3, ate. Note that under the demand tetch

policy, information is only ~oved up in

and if it is explicitly g~~2QQ~Q {i.e.,

p['OC8SSO[' •

the hierarchy when

requested) by the

Althou~h Jemand fetch is only one fOssible tetch

algocithmr it can ba shown (b3] that for hierarchically

structured storage systems:

Stor1ge Hierarchy Systems

"••• giveu dny tri:a and replacement algorithm (not
nacessarily using demand paging) ancther replacement
algoritnm exist that uses demand paging and causes
tbe same or tewar total number of pages to be
transferred •••"

Ia otber words, as you mi~ht intuitively suspect, moving

p11es only when necess1ry results in the minimal number of

p1ge ~overnents. Of course, if page movement is required and

the higher level that is to receive the page is already

full, the removal al1orithm must be employed to provide

spa~e for the new pa9e.

3.2.4 ~eviseJ Storage Hierarchy Model

dased upon the discussion atcve, we can slightly

simplify the parametacs remaining fcI consideration in the

stora;e hierarchy al~oLithm, H, so that it need consider

only:

H = f{<Tecnnology>,<:onfiguration>,<Program>,<Algorithm>)

H = f{<c,r>, <L,S,b,N>, <A>, <R>)

In tbis th~sis all of th0se parameters will be considered

~nd investigated. 5pecidl emFhasis will be placed on

analyzing an1 unjerstandin~ the relationship between the

~1~es sizes, N, and the removal algorithm, R, required for

2ffi=ient op~ratiou of the stocage hierarchy.

StoraJe HieLarchy systems 49

J.3 Pacformance ~easuces

rhere are var-ioll:i performance IBeasures that WE could

c~n3iler. For an overall point of view, system measures,

such as jab throughput, job turn-arcund time, and processor

utilization, are ~uita significant. Unfortunately, it is

extremely difficult to directly relate these measures to the

performan=e of the stor-age system, even an appr-oximatiou

w~uld require consideration of many more parameters. Thus,

W3 vill only consider measures that relate to the effective

performance of the storage hierarchy.

3.3.1 Performance Measurement Notation

Due to the strict hierarchical structure of our storage

system and the demanl fetch pclicy, we can analyze the

performance of the system by separately considering tne

levels of the hierar=hy starting with M1 • Since a given

level only receives a page fetch request it the information

h3s not been found 1t a higher level, each level usually

s~es a different page trace, Ap', ApZ, Ap3, etc.

rhere dre seveLal important properties of pdge traces.

If Pis a particular p1ye trace (e.g., Ap 1) of d program, we

define:

• I P I length of the page trace sequence

F:>r

W3

•

• IQ I

example, in

p = a, b,

obsecve that

I P I = 6

Storige Hierarchy systems

set of distinct pages referenced in P

numoer of pages in Q

the p:1~e tcace

a , ,. b, a '-.

u = {a, b, ::: }

50

(Lower case letters will be used to represent lo~ical fage

aidra5ses instead of pa.ye numbers).

For a specific storage hierarchy, we define JMI to be

the size of~ in units of pages receivable from the next

l:>wec level. For example, jMl)=S1/NZ, 1e.21=S2/N3, etc.

For a specif~c page trace, P, storage level, M, and

R, we define the result B~s@ ill£~ or

f~1£h ~~~g 1£1£~, P', as the time sequenced page references

of P that were not found in M. We shall call page

references that are found in M §B~§§~§• The SUCC€S§

f~gftiQ~, Sf, is the number of references satisfied by Mand

can be computed as IPl-1~•1. By analogy to the success

function, the nucu.ber: of re.Z:er:euces not satisfied by M, JP' I,

is called the failure function, Ff. In general, we wish to

maximize the su:::cess function or, equivalently, minimize the

fiiluce function. It is convenient to normalize the failure

Storige Hierdrchy Systems 51

function ny defininy the failure fre~uency functio~, f,

f = IP' 1/IPI

rile sgccess fre~uency [Y~£!i2Q, s, can be easily computed as

1-f; it is often called the hit £~1~ on a two-level storage

system. We also define the §Y.§!!t! !~il~£~ fr~guen~y

1Yn~ti2~, f 3 , of a level to be:

1: 3 = IP'I/IAI

where A is the address trace generated by the processor and

Ill is the length of tae address trace (it is also true that

IAI always equals IP'I, thus they may be used

interchangeably). The system success f~eguenci !~~£ti.ill! is

c~rrespondingly defined as s 0 =1-t0 •

If we apply tha definitions above to the processor

Jenerated page trace, P 1 , received by Ml, we note that the

result page trace, P', is essentially the page trace, P 2 ,

raceived by M2 • fhere is a minor relabeling required to

aijust for the difference in page size used by M2 ,

p2=P 1 (Nl/NZ) •

iavel~p tbe

functions, an:i

eacll level of

By repeating this process recursively, we can

effective page traces, failure and success

failure and success trequency functions for

the bLerarchy. Since we assume that all

referanced information e~ists in the storaye hierarchy, the

sum of the system suc:ass frequency functions must be 1.

Jne general 11aasure of a storage hierarcay•s

Storige Hierarchy Systems 52

p~rformance is its effective access time, T', and effective

c~st, c•, which are defined as fellows:

T' = T's01+r2 5 oz+T3s03+ •••

C' = (Cl51+:2sz+c3S3+ 0 ••)/(S1+52+53+ •• .)

r• ani c• can be viewaj as characterizing the entire storage

hierarchy ~ccordin~ to a corresponding one-level system.

From a cost/performince point of view, one should be

i1different between a single-level single-technology storage

1evica with average access time, T', and average cost/byte,

..:: • , and a storaye hierarc~y system with performance

pirameters er• ,C'). In particular, if the system designer

naeis a storage performance (T, C) and no such basic

tacan3loyy exists, ha must attempt to develop a storage

hieracchy such that er I ,c•) = (T ,C).

3.3.2 Page Trace Simulation

Joe way to determiue t~e success frequency function and

t~e rasult paqe trace for a specific page trace is to

sim~lite the storage management al~orithms and note the

contents of Mat ea:b step of the page trace. Clearly,

these results Jepeni upon numerous parameters (e.g.,

specific trace, removil algorithm, size of M, etc.). Figure

J illustrates this step by step simulation assuming demand

p:1.ging, FIF0 (first-ia first-out) removal, and IMI = 2

For simplicity, the has oeen

Stor1~e Hierarchy Systems 53

(t 3)

i'ara11eters

• p = a, b, b, c, b, a, d, c, a, a

• IP J = 1 0

• J = { a, b, - d } -,

• I QI = 4

• IM I = 2

• FIFO Removal

Simulation

P1ge rrace,P I a I b J b I c I b I a. t d t c I a I a J
-------------+---+---+---+---+---+---+---+---+---+---+
Fat~h I * I * I I * I I * I * l * I * J -------------+---+---+---+---+---+---+---+---+---+---+
M Contents a I b I b I c I c I a I d I c I a I a J <-"new"
(after each I a f a I b I b Jc J a I d I c I c j <-"old"
reference) I I I 1 I I I I J 1

-------------+---+---+---+---+---+---+---+---+---+---+
P.1ge rrace,P'J a i b I I c I I a l d I c I a I

~~2!!l~2

• Ff = IP' I = 7

• Sf = IPI-IP'J = 3

• f = 70 Ya

• s = 30%

• I?. = a, b, c, a, d, c, a

Figure 3.
Example of Page Trace Simulation

Stor1Je Hierarchy Systems 54

1urmd.lized to be expr-.~ssed in units of receivable pages. In

p:1.rticular, if M is l'P, t11en Jl1J=S'/N 2 and. p=integei=(a/N 2)

w~era a is a lo~ical address cefecence and f is

1he fages in M are shown as

ordered to indicate the FiFO ordering, the top page is the

11 last" ("latest") paie fetched into M, whereas the bottom

tJ3.cJe is the "t'irst" ("old(!St") page in Mand is the ~age

s!lected for replacement when necessary. The asterisk (*)

iadicites that a ret~h was re~uired frcm a lower level of

tbe bierarchy, the p1~e reference is thus noted as part of

tbe result page trace, P'.

It is normally assumed that all levels, except level L*

ice e~pty initially, thus there is a transient stage during

wnich pages are loaiad into M without any replacements

neeiel. Since there are so fEw fages in ct during this

start-up stdge, thece are many fetches required. ie will

fini it usetul to separate out this transient phenomenon.

rhis transient consists of the fage trace up to the first

l~I unique pdge rater~nces, in the example of Figure 3 this

(i.e., a, l.i). Consider the

c1se if IQjSl~I, thera would be no further tetches into this

lavel after the initial transient that loads the IQI fages

int::> rt. In this case, IP' J=tQI exactly, independent of IPI,

1~d s tends toward 1 as jt'j increases.

Stor~ge ilierarchy Systems

In the particuldr exampl~ illustrated in Figure J, we

note tnat th8re were 3 'hits' and 7 •misses• out or 10 page

rafarances, so that s=30~. Thus, p• cnly consists of 7 page

raferances to the lowar levels.

3.4 Ralated Research

~s noted above, we wish to dev€lop a storage hiecarchy

11i th attractive cost/!:)er formance,. (C •, T •) , characteristics.

It is clear that we :an arbitrarily decrease the cost/byte

oy maKing the size of e3ch level, s, increasingly lacger as

we go rrom the high-performance high-cost to the

lov-performance low-:ost levels (i.e., C1)CZ>c 3 > ••• and

S 1 <S 2 <S 3 < •••). In fact, this afi:roach is the basic

~otiv~tion for storage hierarchies.

Unfortunately, if the processor generated address

rafarences that wera uniformly distributed in time and

~idre~s, each byte would be equally likely to oe referenced

at any instant. rhis probdbility would be:

Pr[cefec-ance aJ = 1/(St+sz+s3+ •••)

r1tus* the expected system success function, s 0 , foe each

lavel is proportiondl to the size of the l~vel. For exdmple,

501 = 51/(S1+52+5.J+ •••) •

dut, 5ince we have assumed that St(SZ(SJ< ••• , we find that

Storige Hierarchy systems Sb

~ot<s 0 z<s 0 3< ••• Thus, the system success function for the

Lth l~vel dominates (i.e., is apFroximately 1) since we nave

issumaJ that it is the largest level. Referriny back to our

definition of effective access time, we find that T' would

o~ appro~imately equal to the lowest performance level

(level L) since all the other terms wculd be neyligible. If

t~is inalysis were trJe, our stcrage hierarchy would result

1n a performance just slightly better than our lowest

pert:)cmance level at a moderate inccease i11 pr1.ce - r,ot an

2sp2~ially exciting result.

l,1.ecarchies do not behave tiL1.s

foctunately, actual storage

way. We will briefly review

~;ome r2lated resear::h 011 this subject.

3. 4. 1 Locality

It bas been empirically observed that actual fCOgrams

cluster theic references so that, duriny any inteLval at

tim~, only d subset of the intormation available is dctually

u;eJ. A dBtailed discussion of this phenomenon will be

pceseuteJ in the thesis.

It is i~portant to note tnat due to our basic rankings

of ~age siLes and

2:1:;h level 11 sees 11

l~vel5 of the

a::::::ess times in the stocage hieracchy.

a diffec~nt view of the pcogram. The high

hierarchy must fellow the micrcscopic

1.nstruction by instruction reference pattern whereas the

Stor11e Hierarchy Systems 57

middle levels follow a more gross subroutine by subroutine

pattern. The vecy low levels are primarilJ concerned about

tbe pcocessor•s referances as it moves from subsystem to

subsystem. •e do not have any a priori guarantee that

l~cality of reference nolds equally true for all of these

views, but we do have some repcrted evideuce to encourage

us. M~st of these studies have been basea upon twc-level

systems oc

ni ec J.C ch ies.

J,4.2 Paginq Systems

cestcict ed forms of three-level

rne earliest aut~matic storage systems were based upon

t~o-lavel core-drum hierarchies (devices 2 and 4 of Table

11. This technique was introduced in the Atlas system

(3Br57] iuririJ the early 1960 1 s. It has since been used on

many contemporary systams.

rhe performance of paging systems has been stuaied by

various researchers, such dS Belady (12], Coffmau and Varian

[19,86 Jr Hatfield L !+d], and Sayre (77 J. In Cofiman•s

rasults, for exa mpla, it was

Sl/(Sl+S2)=0.25, st otten exceeded

noted

95'.l.

that even

Hatfield

thou,~h

studied

the parformance of

d~sig1ed and founJ

srstem programs that had been carefully

that for s1;cs1+s2) ratios as low as

J.25, it was possible tor st to ctten exceed 99.~9~.

StoriJe Hierarchy Systems 58

3. 4. 3 Cache SystGms

:iche systems ira based upon two-level cache-main

hierarchies (devices 1 dud. 2 of 'Iable 1). Although they have

b~en proposed as early as 1965 (see ~ilkes (H8]), the major

commercial use of Ci~be systems did not occur until the

intro1uction of the IBM system/360 Model 85 [21,61]. Moce

recently, th.1.s tecnn1.que has been used in sevecal

contemporary systems, such as the IEM System/370 ~odel 155

ind Model 165 [52 J.

In the3e cache systems, IBM found that it was possible

to 1risticdlly reduce s•/(S•+s2) to as low as 1% and still

K~ep che hit ratio, 5 1 , above 90%. Similar findings were

1lso ceport~J. by dell and Casasent (13], Mattson L64J, Meade

~j5], and s~ligIDau (78].

J.4.4 Three-level Systdms

rhera have be2n i few three-level systems reportEd in

the literatuc~, uufort~nately they have all been somewhat ~g

gJ£ in iesiyn and the rosults are far fcom conclusive.

There have been at liast three types of such hierarchies

stuJL:!d.

3.4.4.1 Main-Bulk-Mass Store Hierarchy

lhere have been several systems devised based upon

javicas 2. 3, and 5 of Table 1. The Bulk Stace actually

U5ei. called Large Core Store (LCS), had a much lower access

time (arounJ 8 us) ani a much higher frice (about 25~/byte).

In order to compensite for peculiarties in the hardware

structure and out of considerable concern for th~ e~treille

cost of LCS, these systems tended to become much more

minuilly managed hiacarchies than automatically managed.

Although they were found to be effective, it is difficult to

ganerilize the results. The most ambitious attempt reported

Wis undertaken by Carna1ie-Mellon University (J6J. Results

hive ilso been reported by Durae (J1J, Williams ld9J, and

others.

3.4.4.2 Main-Lar~e-Mass Store Hierarch}

rhere does not ippear to be any automatically managed

systems of this type published in the general literature.

rme ~ultics system at MIT froject MAC has recently

iati:-o;iuced a "pag-e-lllultilevel" strategy based Ut,!Oll d€vices

2, 4, and 5 of Taole 1. There has only bee1, limited findiny

r~pocted to date but it has been statEd in the MaLch 1972

i3sue ot tbe MIT Information Processing services ~Y!!21in

jtora1e Hierarchy systems

(p. 11) that it

"• •• does pay off since it meets fluctuating demands
on the system, rejuces the wcrkload for the disks to
an efficient level, is inexfensive, and keeps pages
on the drum for an acceptable length of time."

60

1\5 ill indic,itiou ot its effect, tbe new strategy is refuted

t~ bave increased the success frequency function, s 2 , of the

lrJ~ from 201 to more than 901 {i.e., "reduced from one page

r~ai from the disk for every four rEads from the drum, to

one p~ge cdad from th2 disK for every ten to twenty fages

from the dr-um").

3.4.4.3 Main-LarJe-Giant Stcre Hierarchy

rhe work of Consiline and Weis [20] is difficult to

It is based upon a thrEe-level hierarchj where

t~e first level cocres~onds to device 2 (main store) of

T1bl~ 1, the second level corresponds to a combination of

(drums) auJ 5 (disks), and the thira level

~~nsi5ts of removable jis~s which can best be approximated

oy device 6 of Tabla 1. It is imfossible tc compute any

s11c~~3s fc.-e,1uency fun:tions from th-air data, but it affears

tnat for S2/(S 2 +S3)=0.5, is very hi':}h. fhey note

in particulir, "most of the data moved to the

arch.iv al stor-age {i.e., M3) have stayed ther2. u

Storage Hierarchy Systems 61

J.4.5 Need foe Additional Hesearch

<hough the re~ults of research described above is

aacoucaging, the design and performance of general

mJltiple-level stordg~ hierarchies are still inconclusive.

T~is thesis is intendel to provide Sfecific results in this

Stoc1ge Hierarchy Systems 62

CliAPTEit 4.

A STJ~AGE HIERARCHl SYSTEM

~.O Iatroduction

In this chapter a design for a general multiple level

stora1e hierarchy systew, in particular with tnree or more

level3, is presentad. This design is based upon an orderly

and ~niform treatment of the logical structure ot the

~tora~e levels and their interccnnections. In addition to

pcoviJing a solution to convenient storage manayement for

to. e user, ttns design is

performance for the storage

~tfective access time, T',

intended to

nierarchy as

and effective

produce yood

measured by

cost, c•.

its

T tie

pciuciple and novel techniques to be used are described

separately in the sections below.

As noted ~arliec, automatic storage hierarchy systems

~re still in the minority. Amongst those systems that ao

?LOViie aut~m1tic storage hierarchy mana~ement, the majority

limit their scope to two levels with a few rare three level

3yst2~s. As a result of these limitations, the user is

Stor1~e Hierarchy Systems t>3

5till forced to rely on manual or semi-automatic storage

wanagement technijues to deal with the storage l8vels that

are n~t automatically managed. Thus, an automatic storaye

minagement system should consist of a continuous hi~rarchy

t~at ancompasses the full range of storage levels.

-+. 1. 1 Cost/Performance of Adjacent Levels

t major obstacle to generalizing storage management

3lgocitbms, iu parti;ular in two-level payin~ systems, is

the tcemenlous contrast, often over 3 orders of magnitude,

in cost/performance between Ml and M2, As illustrated in

T1ble 1 (paga 28), a representative Main Store, M1 , has an

a~c~ss time of 1,44 us compared to a Large Store, M2 , with

au access time of 5 ms. In such a t~o-level system, the

effective access time, r•, is

r• = r1so1 + rzsoz

T' = 1.~4s0 1 + 5000s 0 2

and since s 0 i+s 0 z=1, ,a can substitute s 0 1=1-s 0 z to get

T' = 1.44 - 1. 44502 + 5000soz

T' = 1,44 + 4998,56s02

In orier to attain an effective access time, T', that is

compacable to the ~ain Store access tiwd, T 1, we mu.st keep

tae system success rr~~uency tunction, s 02 , very close to 0

or, ~~rrespondingly, Kee~ s 01 very close to 1. Even with

s~l at 99.81, an improveru~nt to Y~.Yi would cut the

Stor1~e Hierarchy systems 64

~ffective access time, T 1 , in halt. With such pressure to

1ttain very high s 0 1 v1lues, the systems designer is often

f3rc~i to seek out v3ry specialized techniques in contrast

to our goals of orderly and unifor~ algorithms.

4. 1. 2 Moderate ~ost/P~rformance Ratics

In ord~r to ruak2 the storage hierarchy design robust

~nu flexible, the CJ5t/performance characteristics should

Jiffar by l~ss than two orders of magnitude between adjacent

lavels. rhus, succ2s3 frequency functions in the range 90%

t~ 991 are aie~uate tJ insure reasonable performance. If

t~e diff~rencas are wuch greater, it will be difficult to

tinl 3ufficiently efficient ~eneral algorithms. Since minor

~hangas in production techniques and technology evolution

can result in a variation of a factor ot two or three in the

=3st/performance for~ yiven technology, it is not desirable

t~ Je=rease much oelow one order of magnitude difterence

o?twean adjacent stor1ge levels.

rhe time, Tm, required tc move a page between two

l?vels of the hierar~hy usually consists of summing two

c~mponents: (1) the average access time, T, and (2) the

tcan:iter time, Bx:N.

Stor1ge Hierdrchy Systems o5

If all page sizes were set to provide exactlj the

J. iB ount of .1.n format ion, N 1, re quested by the processor, the

p~ge movement time would be

Tm= T + BxN'

wbere T and B wouli Jepend UfOn the particular stordge

leval3. By examininJ the representative uevices shown in

r1ble 1 (page 28), we see thdt access time varies 111uch more

titan transfer rate (i.e., access time spans 6 orders of

m1gnitude whereas tran3fer rate varies by only 3 orders of

u. gni t ude) •

ij,2. 1 Marginal Increa5e in Page Transfer T.1.me and Ref~renc~

Pcobability

Let us assume th1t Nl is guite small, such as d bytes.

~a can ask the question: What is the marginal increase in Tm

it we tcanstec the ai jacent Na bytes in addition to tiie N 1

bytes requested by tha processor? Table Jon the next page

answers this guestion. Notice that the margindl increase in

T1 decreases from d

low of .OQ2j. (level

high of 5.5i (level 2 to

6 to level 5). This

level 1)

fact is

iuteresting if weals~ consider the concept of locality

.:haptars 5 :1nd o f::>r: additional discussioH) and

to a

only

(see

the

~uestion: What is th? probability, Fr, tnat the processor

Stor11e Hierarchy Systems 66

(tt3)

LaH~l r 11 Tm iiarginal Increase
rcdn::ifec (1 unit) (2 uni ts) in Tm

-------- ------- -------- -----
2 t::> 1 (*) 1 • 4 4 us 1. 52 us 5.5%

j to I. 131 U5 132 us .8%

,.. to 3 5 1)06 us 5011 us • 1 %

) to !+ 38010 U5 38020 us .03~

6 to '.) 600013 U5 600027 us .002j

Table 3.
Mctrginal In=rease in Page Transfer Times

* rh~ figures for i=cess time and transfer rate for the
M1in Store listed in Table 1 are approximations that are
only ~eaningful for very large pag£ sizes. For the page
sizes under consideration in this chapter, the figures used
in tha table above are more apprcpriate.

Stor1ye Hierarchy Systems b7

will reference the adjacent Nl bytes with a sheet interval

of time, such as Tm ~econds? Due tc locality of frcgram

reference, we would expect Pr to be much larger than merely

tb.e reciprocal of the logical address space S.lZe.

Farthermore, Pr shoull increase as Tm increases. Thus, for

3 given level, if Pr is larger than the marginal increase in

r1, it is beneficial to transfer the additional N1 bytes and

tneraby avoid the na~essity of expending Tm seconds to

transfer these N 1 byt~s later separately.

rhese sdme aryumants can be apfliEd to the guesticn or

transferring the adJacent nxNt bytes, etc. Since the

~ir~iual increase in Tm decreases monotonically as a

fun~tion or stora1e l~val, the number of N1 byte pdcxets to

transferred as a single should incr:ease

monotonically.

Nl(NZ(N3(etc.

This confirms our earlier ctecision that

4.2.2 Choic~ of Pa~e Size

In order to simpliry the implementation of the system

and t~ be consistent with the mapping from logical address

to pa:1e address illus teated in Figure 2 (paye 46) , we will

raquire that all page sizes be a power of two. Thus, each

page 3ize (e.g., lP) l. s some pcwer of two larger than the

page size of the il~Xt higher level (e.g. r N3 =N 2 **i).

Stor1je Hierarchy Systems 68

~le1rly, the specitic values of Pr and thus the choice for

aich page Jize depenis upon the characteristics of the

progr1ms tu be run 1nd the effectiveness of the cverall

3cor11e system. Preliminary measurements indicate that a

r1ti3 of 4:1 bet~een levels is reasonable, Meade (65] has

raported similar findings. Other important factors

iffecting page size are discussed in Chapters 5 and 6.

4.2.J Page Splitting

Now let us consiiar the actual movement of information

ia t~e storage hiec1rchy. At time t, tne processor

~aner1tes a referenca foe logical address a. Assume that

tne ~orresponiing information is not currently stored in Ml

or M2 but is found in M3. For simplicity, assume that page

siz2s are doubled as wa g3 down the hierarchy (e.g., NZ:2N1,

saa Figure 4). The page of size N3

c3nt~ining a is coplad from M3 to ~z. ~2 now contains the

n3edei information, so we repeat the frocess.

siz~ N2 containing a i~ copie1 frcm M2 to Ml.

The page or

Now, finally,

the paye of size Nl contdining a is copied from Ml and

torwdrJed to the pro~essor. In this process the page of

inforraation is split (i.e., ~g~ §EJ1!ting) repeatedly as it

moves up the hierarchy.

Stor~ye Hierdrchy Systems

(f 14)

Processor

B
f

f'l 1 I I~2:1~I !
f

i"l.2 . I I ; 4:1 ; I ::
l

1:13 I ; : ; 8:1 : : : I
1

Figur-e 4.
Page Splitting and Shadow Stora~e

Stor~~e Hierarchy Systems 70

~.2.4 Shadow Storage

As a result of this splitting, the page ot size N1 that

13 ce=eived by the processor has left a "shadow" consisting

of itself and its a1jacent pages behind in all the lower

level5 (i.e., shadow stoca9.e).

exhibits locality ot reference,

Presumably, if the program

many of these shadow fages

will he referenced shortly afterward and be moved further up

in the hierarcay also.

4.2.5 2opying of Pages

In the strate~y presented, fages are actually ccfied as

they wove up the hiecacchy; a page at level n has one copy

of itself in each of the lower levels. Since processor

"fetch" re~uests substantially outnumber "store" requests

(e.g., by more tnan 5:1 in some measured programs), the

=~ntents of pa~es are seldom changed. Thus, if a page has

n~t Daen chan1ed and is selected to be removed £rem one

l?val to a lower level, it need not be actually tcansfecred

sin=e a valid copy alreaJy exists in the lower level. The

contents of any level of the hierarchy is always a subset of

the iaformation contiined in the next lower level. Thus,

t~e total information c~pacity of the system is equal ta the

size of tha level L store rather than the sum cf the

cipacities of all the levels. Since the capacity of level L

Stor11~ Hierarchy systems 71

is assumed to be mu~h larger thctn the capacity of L-1, etc.,

t~e Jiffer~nce in total system capacity ctue to shadow

stora~e is minimal.

4.3 Direct Transfer

In the description above it is implied that infor:mcttion

a=tually moves betwe~n adjacent levels. This a~proach,

~allei direct transfer, is indeEd intended.

tnou~n, many proposei and experimental

o y c cw far: i son ,

multi.pl€ level

storaJe systems are oased upon an !QQ!£~£S tI~n§!~f (e.g.,

t~e Multics "page multilevel" system mentioned in Chapter

,n. In these systems, all infcrmation 1.;;; routed through

level 1. For example, to move a page from level n to level

n-1, the page is movei from level n tc level 1 and then from

ievel 1 to level n-1. Clearly, this indirect approach is

~nd~sirabl3 since it requires extra paye movement and

c~ns~mes a portion of the limited ~1 capdcity in the

process.

rhere hdve been t~o major obstacles to direct tLduster

in previous systems: (1) interccnnection structure and (2)

syn::hronization.

72

4.3.1 Interconnection structure

for many ceason3, so me tee hnical and some hist or ica 1,

m35t contemporary systems ace physically stcuctured in a

i:-::1.dial manner. That is, there is a central element to the

3ystaD, eitn~r the processor itself er the frimary store,

and all other storage ievices and/or processors are directly

c3nne=ted to this central element.

c~ntrJl signals, th~re are no

Except foe some possible

direct data transfer

=onnections between the non-central

quite :,;tru::ture is, ot course,

management

elements. This

consistent with a

system. non-Bierarcnical stora~e

storaie hierarchy systam should be based upon

A logical

a physically

hierarchical interconaaction structure.

4.J.2 Synchronization

As indicated in Table 1, storage devices often have

d1iterent timing and transfer rate characteristics. In ceder

t~ a=complish a dira~t data transfer between levels,

syn~hronization is na~assary. It may be obvious that a

storage device can not transfµr data faster than its rated

?arformance, but for many

el8::tromechanical jevi::as,

storage devices, es~ecially

it is not fOssible to transfer

Jata slower than its rited speed.

Storage Hiecarchy systems 73

Based on current technology, this problem Cdli be

~~lvel. Many of the stocage devices dCE now

uon- el ectromecha nica 1 (i.e. , strictly electr icd l) , sucn i.iS

tne (:iche, l'1ain, and l3ulk. Stores of Table 1. It 1.s ':iuite

f~a3iole to provide jirect transfer between any of tnese

Jevicas and any other storage device; this is one reason tor

tne raiial interconnections described above where the Ma1.n

store acted

s y nchr oniza tion.

as the

Using a

common

similar

means of prov1.diny

approach, we can allow

Jirect transfer between electromechanical devices if this

tcansfer 1.s routed through a small and reasonaoly

inexpensive electrical storage buffer. Femling L33J

discusses such a devi:a, which he calls a rubber-bana .!!!~.!!!Q.fY

prea~~ably because it "stretches" to ~atch the

cnaracteristics of tha sour~e and destination devices.

4.4 Read Through

In the descripti~n above, it is imflied that a transfer

up the hiecarch y t com 12 vel 2 to the processor (level tJ)

~Jnsists of two seque1tial steps: (1) transfer pa~e ot si~e

N2 from level 2 to level 1, and then (2) extract the

dppcopciate page subset of ~ize Nl and transfer it trow

la val 1 to the process::>c (level 0). In general, a transfer

from level n to the processor would consist of a series of n

Stor11e Hierdrchy Systems

3teps. Thus the system page transfer time

sum of n inter-level page transfer

e I I) • Furthermore,

74

w culd equal the

times

for

(e.g.,

many

electcomechauical stocaye devices,

r~quir~d to forwar1 the page subset,

the second access,

may experience the

"max:illulll" dGCess del:iy rather t.han the "averagen

dftar storing the information into the level, a comflete

illachauical revolution may be required to r~position to read

the Sime information ind forwdrd it to the next level).

rnis can dVOided allowing

levels 1.n fo nna tion to stored into all upper

~imultaneously. Pigure 5 illustrates this mechanism. If

information is to be transferred from~~ to the processor,

~ 3 turns on its output data gate, G3 out, when it is ready to

start and transfers N3 bytes dnd their corresfcnding logical

addLesses up the data bus.

J2ia, to receive these N3

~ppro~riate NZ bytes neeied

M2 turns on its input data gate,

bytes; furthermore, when the

oy Ml are detected by h 2 , it

turns on its output d1ta gate, G2out, and these N2 bytes are

f3r~arded to Ml wbile being stored in M2, etc.

For example, as~~me a reference tc lcyical address a is

1enerated by the processor and tbe corresponding information

13 ~urrent stored at level n (and all lower levels, of

cJurse). At the inst1nt that the Nl bytes containing a are

Stori~e Hierarchy systems

Processor

lf

□-(-➔)•+-<--M-•--➔
ll
B-(

□-<)
f

1P

Figure 5.
Re1i Through Structure

75

(t 1 5)

storage Hierdrchy systems 76

pla=el on t~e data b~s by level n, these N1 bytes will be

stocei into all levals from level n-1 to level O (the

simultaneously. Likewise, the bytes

c3ntaining a are simultaneously stored into all levels from

l~vel n-1 to level 1. This strategy thus makes it appear

tnat the Nl byte pa~e re~uested by the processor is~~~

t~£2~~~ directly to tne processor without any delays.

4.4.1 Page Transfer Time

Jsing the read throu~h strategy, the page transfer time

t~ tna processor is actually less than the page transfer

time to the adjacent storage level. For example, if the

raquested information is stored in M3 , the page transfer

ti.me to the processor, via redd through, is

f ill30 = T3 + N 1 B 3

Wn eI:-B.:1. S 1 the page ti:ansfer time frcm fP to M2 l.S

r1132 = T3 + N3B3.

Sin::e Nl(N3, then Tm30(Tm32.

4.4.2 Availability anl Servicability

rhe read through mechanism described above ofiers some

inportant advantages to the dVailability anJ serviceability

uf tha stordge system. Note that all storage levels are

cJnne:;t,~d to the gc1te1 data bu::. uot dirBctly to each other.

Storage Hiecarchy systems 77

IE a storage level must be removed from the system for

ser,i:ing, it is merely necessary tc manually set both Gin

<i[ld :iout "on". In this case, the information is really

"read through" tbis lave! as if it aidn't e~ist. No other

caan~es are needed to any of the other storage levels or the

stora 1e management algorithms although we would expect the

parforaance to decrea5e.

!+. 5 Store Behind

Under normal steaiy-state Oferation, all the levels of

t~e storage hierarchy will be full (except FOssibly level

L). rhus, whenever a pa~e is tc be moved into a level, it

is oe=essary to remove a current page. If the page selected

f~c removal has not been changed by means of a processor

"store", the nev page can be immediately stored into the

lav3l sinGe a copy of the removed page already exists in the

n;!xt lower level of. tne hierarchy. If the processor

g~nerates a "store" request, all levels that contdin a copy

~f tbe information beiug ~odified must be updated. This can

in accomplished in thcee basic lilays: (1) store through, (2)

3tore replacement, or (3) store behind.

Stor1ge Hierarchy Systems 1 'd

4. 5. 1 Stoce Thr-ough

Under a elQ£g 1Q£QQgQ policy, all levels are

simultaneously updatei whenever the processor generates a

"store" re1uest. This is the obvious inverse of the cead

tarough policy. But, there is a crucial distinction. Undec

caai through, only storage levels 1 through n are used,

wbera n is the highast level containing the requested

iuformation. Store through must update the contents of

lavels n through L. rau5, read throu~h speed is limited by

its slowest level atfacted, level n; store through is always

limitad by the speed ou level L, the slowest level of them

all. If 2J'~ o:t all processor requests are "stores", the

3yste~ success fre~uancy function ct level L will be at

Due to its l~rge average access time, level L

will be the dominata portion of the system's effective

a:::cess time., r •.

Store through caa be used efficiently only if the

~ccess time of level Lis com~arable to the access time of

lavel 1, such as in i two-level cache system. In fact, it

is used in some cache systems, such as the IBM systea/370

Modal3 155 and 165 [52 J.

Storiie Hierarchy syste~s

ij.5.2 Store Replacement

Under a store re£1acement policy, the processor only

stores into M1 • Ir a cnan~dd fage is later selected tor

ramoval, it is then moved to the next lover level, M2 ,

i1mediately prior to heing replaced. This process occurs at

avery level and, eveutually, level L ~ill be upddt~d but

only ifter the paje has been selected for re~oval from all

tne higher levels. Due to the extra delays causea by

updating changed pa~es Defore r~placement, the effective

i:c~53 time for fetcnas is increased. Variou8 versions of

3tore replacement are used in mcst two-level paginy systems

sine~ it offers substautially better performance than store

through for slow second level storage devices (e.~., drums

and disks).

ij.5.3 Store Behind

Store Behind is i compromise strategy that bridges the

Jip between store through and store replacement and otters

substantially better p~rformance.

tne 5toraga system was required

In both strategies aoove,

tc perform the update

Jpecation at some spe:ific time (e.g., at the instant of the

"store" request for store through or at the instant of

camoYal for store replicement). Once the information to be

3torei has been accepted by the storage management system,

Storaye Hierarchy Systems

the processor doesn't really care he~

the storage hierarchy are updated.

,dv:1nta<je of this d:!1ree of freedom.

or when the copies in

Store behind takes

uue to the large

iisparity between average access time and transfer rate for

most levels, the maximum data transfer capacity is rarely

rea~ned (i.e., at any instant of time, a storage level aay

tt:>t have any

w:1.itinJ for

r~qu~st).

outst~niing requests foe service or

proper positioning to service

DurincJ these "idle" periods, data

a

it 11ay be

fending

can be

transferred down to the next level of the storage hierarchy

without affecting or delaying any fetch operation. Since

tties:! "idle" per-iods are usually very frequent under most

actual circumstances, there can be a continual flow of

c~aa~ad infor-mation down throu~h the hierar-chy towards level

L.

4.6 A1tomatic Mana~emant

Although an effective storage management system should

3ttempt to minimize page movement and its associated

"housekeeping", there will still be a substantial amount of

worK reyuired to man1~e the hierarchy. It is desirable to

camova as much as possible of the storage mana~eweat from

t;e concern of the pr-oc2ssor and the progr-ams running on the

pro=~3soc, including tbe operating system. There are two

etinary ~otivations foe this cbjective: (1) the storage

Stor11e hierarchy systems b1

hierarchy s~ould function as an independent comfonent of the

system to elimindt2 any added complexity to the processor or

pro:1.cams, and (2) w2 want to conserve the procEssor•.s

~~mputational powers for solving the user's problems rutner

t~an for "system overhead". In actuality, of course, the

stora~e hierarchy can not be divorced entir~ly from the rest

~f t~e system, but tha reillaining interdepenaencies should be

miniiaal.

4.6.1 Distributed Control

In the hierarchi=~l storage system described above, all

storaJe management oparations can be determined local to a

sin~le level or, at most, in consideration of information

rco~ neighboriny levels. Thus, it is possible to distribute

toe =antral of the hierarchy into the levels, this also

f1cilitates parallel and asynchroncus o~eration in the

hiecarchy.

In a comprehensive multiple level storage hi~raLchy, as

illustrated in Tabla 1, this automatic and distributed

::=ontrol can be accomplished Ly using two mechanisms: (1)

processor fun:::tions, inl (2) "intellige!lt" controllecs.

Storige Hiecarchy Systems 82

ij.6.1.1 Processor Functions

rhe management of the first storage level must cperate

at speeds comparable to the processor. As a result, it is

usuilly necessary t~ incorporate the first level store and

its 1ssociated mana~ement operations into the processor

nardw~re itself. This approach is used in the IBM

system/370 cache syste~s [52].

It is often desirable to incorporate the management of

the second stora~e level also into the processor. This

l3vel requires substantial performance to handle the demands

f~r service from the first storage level. Since its

r3~uirements are not ~uite as demanding as tbe first level,

it is an ideal candid1te for firmware control, assuming that

tne processor is microprogrammed. This approach has not been

usej in

iate,1r1ted

:.udels of

any CUC.Tent commercial systems,

channels (i.e., mi::=roprogram med)

the IbM system/370 are based

although the

of certain

upon similar

::=onc~pts. rhere have been a few experimental systems, such

as the VENUS System at MiTRE, which provides processor

tunctions to essentually manage the pa~ing system via

microprogra~ming.

Stor~~e Hierarchy systems

ij.6.1.2 "Intelli~Bnt" Controllers

For the third storage level dnd beyond, the stordye

mana~ement pertorman:a requirements are much more modest

since most of the stor~ge activity should occur at the first

and s~cond levels. F3r these lower levels, it is fOSSible

t3 ievelop indepenJent storage management ccntro~ facilities

for each level. This can be accomplished by extending the

runctionality ot :ouventional device controllers. Some

recent sophisticated ievice controllers are microprogrammed

and are already ca~anle of performing the storage manayement

function (1].

4.6.2 MultiprogramminJ

Jp to now we have tacitly assumed that the frccessor

becomes idle whenever it is necessary to fetch information

from the storage hierirchy. This may be a reasonable policy

for t~o-lev~l cac~e systems since the processor is uever

idle for more than one or two microseconds at a tiwe. But,

foe pa<:Jing

niec:archies,

systems and general

the processor may be

multiple level storage

idled for periods ot

hunireds or thousand5 of microseconJs at a time. It l.S

w3cthijhile to try to rind useful work for the ~cocessor

wbile the storage hi~rarchy is retrieving the reguested

infoc11a tion.

Stor1ge Hierarchy Systems

In most C3nventianal computer systems,

time is utilized by multiprogramming. This

tlera be multiple pro1rams available to be

84

processor ictle

requires that

run. Whenever

one program must he d~layed Jue to a time-consuming storage

caque3t, t~e process3c is switched to another pro~ram.

Under reasonable cir:umstances (e.g., many progcdms ready

foe axecuti0n and moderate load on the storage system), it

is po3sible to kaep the processcr ccntinually busy. Thus,

t~e ~ffectiva system storage access time, r•, will very

closely approximate f 1 •

Unfortunately, tne process cf switching execution from

one program to anothar can result in a considerable amount

of pc~cessor ovacheaJ. For example, an early version of tne

~ultics operating system was reported to require 10

milliseconds to switctl programs; typical operating systems

r~q~ice up to 1 millisecond. The time reguired to

~ccomplish this multiproyram s~itch can be drastically

reduced if the multiprogramming manayement is dlso

iacocporated into th~ processor along with the rirst and

seconl storaye level management. Although the particular

p~rposes ~ere Jitferent, hardware surported multiprogramming

n~s bien available on several computing systems, such as the

ll~ney,~11 8}0 series [46) and more recently in the Singer

Stor11e Hierarchy Systems 85

5yste~ Ten (30J. fha less frequently executeJ o~erdtiny

system functions, su=h as job scheduling and time-sharing

managawent alyocithws, can be sup~orted by the sott~are

operating system as oo ~onventioal systems without adversely

at feet in~ pert ormance.

~.7 C~mments on the Storage liierdrchy s1stem Qe~ign

rhis chapter has presented the key conce~t~ of a

gener-al multiple

tile particular

level storage

det1ils of

hierarchy system.

the system will

Many of

require

consilerable investigation and experimentation to determine

an ~ptimal implementation. Three important factors are

axtansively studie:i i11 the followin-J chapters: (1) other

p1ge size considerations, (2) removal al~orithms, dll.:.I (J)

Storige ll1er:-ar-chy systems

C.-IAPTER 5.

ANALISIS OF PAGE SIZE CONSIDERATIONS

5.0 Intcoduction

Jne of tbe most impoctant parameters or a stocage

nier:-acchy system is the page size, the unit of information

tcan3fer between two levels of the hierarchy. In this

chapter, the factors influencing page size are examined from

tne ievice charactaristics viewpoint and the program

behavior viewpoint.

5. 1 rhe Pa~e Size Issue

Ju contempocary two-level paging systems (based ~~on

two Jevices similar to d8vices 2 and 4 of Table 1), the page

::;ize is usually quit~ lacge (typically 4096 bytes for paging

systems) to taice adv:rntage of fi2 1 s large transfer rate to

compensate foe its slow access ti~e. Such a large page size

is justified by celiance on the Principle ot Locality.

~onsiiering the devi=as of rable 1 for example, a single

byta =an be accessed ~nd transferred between ~1 and MZ in

about 5 milliseconds whereas 4096 contiguous bytes can be

fatchad in 7.8 millisa=onds, only 56% more time.

Stoc1ge rliecdcchy systems t3 7

S, 1. 1 Page Size Investigations

Although paginy systems haVP. been used successfully,

tne affect of page si,e nas become the subject ot increasin~

investigation, This interest has been aroused due to several

consi:ierations:

1, It has bean noted by Denning (26] that the

utili~ation of M 1 is maximized and "Fage breakage" minimized

by using rather smill pages,

p1rticulac, ne emphasizes:

such as 200 bytes. In

"rhese results ace significant ••• small payes
parmit a great deal of compression without loss of
efficiency. Smdll page sizes will yiela significant
improvements in storage utilization ••• 11

2. The success of cache systems indicates t.hat

Principle of Locality applies on the microscopic scale

the

as

wall as the macros:::oiJi::::: scale cf conventional payin':}

systems.

3 • The recent introduction of several new device

t~cbn:>logies, such dS th2 "semiccnductor dru111 11 (JS) with an

aver~~e access time :>t about 100 microseconds, drdsticdlly

reduce~ the benefits ~t very large page sizes in a paging

system.

q. Although m:>st current multilevel systems employ

only two lavels, this tnesis is ccncerned with multiple

Stor1~e Hierarchy Systems

lavel ~torage bierarcbies (i.e., tnree cf more levels). In

t1ct, storage systems with six or more levels are quite

plausible. A deep un1arstanding ot the effects of various

~age sizes is essenti1l to the development of such systems.

rhus, altbough there are many reasons fer considering

new page sizes, there is not a complete understanding of the

impict of such a change. Denning (26] sums up our current

Knowledge as follows:

"rwo factors primarily influence the choice of page
size: fragmentation and eificiency of page-transfcrt
operation."

I~ tbis chapter sowe ather tactors of potentially crucial

importance ~ill be discusseJ.

5.2 Anomalies

Jne of the more intriguing and frustrating aspects of

compla~ systems, such as paging systems, is the occurrence

of an~malies (i.e., phenomena that are contrary to "ccmmon

sen5e"). For example, Belady [10] has shown that certain

stora.1e manayement ranoval algorithms, in particuldr FIFO

(tirst-in first-out), may actually cause performance to

Jecrease as the capacity of Ml

contriry to tha general belief

thin,J5 work out batter".

is increased. This result is

that "more main memory makes

Thus, one must execcise

Stor~ge Hierdcchy Systems 89

C3n~iderable care when consideciny "tinkering" 11ith the

~aram~ters, such as page size, of a multilevel stara~e

system.

rhe objective of this chapter is to present and analyz~

some anomalies encountered when the page size pardrueter is

cbaa1ad in a pagin~ sy3teru.

5.3 T~e Page Size Anomaly

For simplicity, let us start by consiaeriny the eftect

ot da~reasing the ~aJe size used in a

from N to N1 wheres• = N/2 in this

two-level system, s,

new system, S'. In

particular, we wish to investigate the effects upcn the

failure frequencies which are t and f', respectively. IIJe

define the ratio f'/f to be r. ihe possible results can be

partitionei into three interesting regions:

1. r < 1.

2. 1 S C S -'•

J. C) 2.

5.3.1 Case 1: r < 1 (r• < f).

rhis 11ould be highly desirable result since tne

uumber of page fetch~s i~ actually decreased. Furthermore~

the time required to access and transfer a page of size N'

would he expected to be less than that required fer the

Stor1Je Hierarchy Systems 90

(f 4)

Parameters

As seen by S:

• p = a, b, a, b, C - ,
• JP I = 6
• Q = [a, b, C }

• IQ f = 3
• IM 1 I = 2
• FIFO Removal

A:i seen by s' :

• p = a+, b+, c+ I a+, b+ I c+
• I P t = 6
• Q = { a+, b+ , c+ }
• IQ I = 3
• PPI = 4

• FIFO Removal

Simulation

i?l ge rrace: a+ b+ c+ a+ b+ c+

-~-
Fatch: * • * * * *
tP :on tents: a b C a b C

a b C a b

-~~-
Fatch: * * *
:11 :on tents: a+ b+ c+ c+ c+ c+

a+ b+ b+ b+ b+
a+ a+ a+ a+

il§!!!!:.2

• F = 6
• F' = 3

• r = 3/6 = o.s

Figure 6.
Example cf Case 1

Stor11e Hierarchy Systems

lirger page size N. Figure 6 illustrates an instance of this

~ase. In converting au ddlress trace to a page trace for N1 ,

tne l~gical page addrasses ~+ and p- are used to represent

t~e two halves of the page p of size N. Note that when usiny

a paya size of N/2 instead of ~, Ml actually holds twic~ dS

~any 2ayes though aaca page is only half as la~ge.

In the example of Figure 6, r = 0.5, which means that

t~e number of page fetches was cut in half by using the

smaller page size N1 • rhis type of result might be expEcted

fcom a pro1ram that exhibited a rather sparse and

aon-l)calized reference behavior. Recall that in typical

t~o-lavel paging systems, a page of size 4096 bytes is

fetched even thou~h a single reference uses only a few

bytes. Unless the program immediately makes many more

r~ferances to this page, much of it will have been f~tched

out not used. Under tbese circumstdnces, M1 might oe better

utilized by noldin~ a larger and more diversified collection

of paJes, even if each page were smaller.

5. 3. 2 Case 2: 1 :S r s 2 (f s f' :S 2f)

rhis is a transitional region. For r =

perform better tbdn s since the number ot page

1 , s • will

tetc.hes is

t~e same dnd the tiwe required fer each fetch is less. For r

= 2, s• will re~uire twice as many page fetches. This will

u~ually swamp any paJe transfer benefit derived from the

Stor11e Hierarchy Systems 92

3mall3r page size, thus s would ferform better. The specific

p3int of transition, r', depends largely upon the time

r3quired to access and transfer a page, T and r•

r3spe=tively ins ands•, such That r• = T/T'.

Figure 7 illustr1tes an ~xtreme example of Case 2 wuere

r = 2.0. This m~ans that the number of page fetches was

j~uDled by using tne smaller page size N'. This type of

r3s1lt might he expected from a program that exhibited a

J3n;a, localized, and sequential reference behavior.

Intuitively, the r = 2.0 result is the "worst" ca3e

sin=1 ~e dra being forced to always load both the p+ and p

u1lve3 of each original page p, thereby losing all the

banefits of the small2r N' page size and incurring twice as

many actual page fiults. This intuitive observation is

t1lse; r = 2.0 is not the «wor3t" case.

'). 3. 3 case 3 : r > 2 (t• > 2f)

£his r :! Ji OH 1 besides being intuitively

inpossible, is clearlt undesirable. Since the number ot page

tet:n2s required woulJ be more than doubled, the performance

Jf S' would be undoubtedly worse than s. Depending u~on the

i:tuil value of r, the perrormance could be much worse.

Figure 8 illustrates 1 reference pattern that produces a

result of r = 2.75. This reyion of operation will b€ the

Stor~~e Hiecarchy systems

P1ra11eters

A.s seen by s:

• p = a, a, b, b, c, C

• IP I = 6

• \J = { a, b, C i
• I JI = 3

• IM 1 I = 2
• FIFO demoval

As sean by s. :

• p

• I PJ
• Q

• I Q I
• PPI
• FIFO

Si mul:1 tiou

J:lage rrace:
-~-
Fat;;h:
'.11 :on tents:

-~~-
11 at;;h:
111 :on tents:

fl.12!!lt2

• F =
• F' =
• r -

= a+, a- , b+, b-, c+, c-
= 6
= (a+, a-, b+-, b- , c+ , c-
= b

= 4
Removal

a+ a-

*
:i a

* * a+ a-
a+

3
6
6/3 =

l.)+ b- c+ c-

* *
b b C C

a a b b

* * 'I' *
b+ b- c+ c-
a- iJ+ b- c+
a+ a- i)+ b-

a+ <1- b+

2.0

F'iguce 7.
~idmple of Case 2

}

93

(f 5)

Stor1ge Hierarchy Syste~s

(f b)

?1ramatecs ---,--------
A~ 3Ban by S:

• p = a. , b, 1, b, c, c, b, a, a, c, C

• I P I = 1 1
• Q = { a, b, C }
• I i.Jl = 3
• P1l I = 2
• FIFO Removal

As s2en bys•:

• i' = a+ b+, a-, b-, c+ I c-, b+, a+, a-, c+, c-,
• IP I = 11
• :,J = (a+, 1-, b+, b-, c+, c- J
• J QI = 6

• PPI = 4

• FIFO Removal

Simulation

PigB r race: a+ b+ a- b- c+ c- b+ a+ a- c+ c-

-~-
P:! tcti: * * * * i:11 Con tents: d b b .b C C C a a a a

a a a b b b C C C C

-~~-
F:! tell: * * * * * * * * * * *
;11 :au tents: a+ b+ a- b- c+ c- b+ a+ a- c+ c-

a+ b+ :i - b- c+ c- b+ a+ a- c+
a+ o+ a- b- c+ c- b+ a+ a-

~+ b+ a- b- c+ c- b+ a+

• f = 4
• F' = 11
• r = 11/4 = 2.7~

Figure 8.
Example of Case 3

Stor1Je rlieratchy systems

subje=t of Jiscussion for the remainder of this chapter. ~e

f~rmaiize this situation by the following existence thecrem.

(th 1)
THEOREM 1:

rhere exists 1 page tr ace, P, and demand-fetch

FIFO-removal two-level storage systems, sands•, with

page sizes N anl N'=N/2, respectively, such that the

ratio, r, of tet:h freguency f' to f exceeds 2.

Proof:

By example (Figure o).

S.3.~ Oth8r Removal Algorithms

r~eorem 1 states the anomaly that decreasiny page size

Dy a factor of two :an cause the page fetch fre1uency to

i~crease by more than a iactor of two. The two-.1evel

demanl-fetcn conditions of Theorem 1 are typical of most

contemporary pagin~ systems. But, to put this situation into

perspactive, other removal algoritums must be con~idered.

Duet~ its simplicity, tne FIFO removal alyorithrn was used

in many of the early p~ging systems. In recent tiwes it has

oaen found that FlFJ has certain disturbing pecularities

(e,g., the dJstem•s success frequency, s, is not a monotonic

fun~tion of primary store size, JM11 (10J). Furthermore,

othar removal algoritn~s have been fcund to be empirically

96

closer approximations to the "optimdl" removal algorithm,

MIN [11], MIN itself is not physically realizable since it

raquires future knowlelge, but it can be used as a basis for

parformance comparison with practical algorithms.

Variou3 forms of the "least recently

remov1l al~orithm h1ye become pofular in

used" (1.RU)

contemporary

:.ysteJIS, Under LRU, the page select€d tor reilloval from the

prim1ry store is the one that bas net been referenced for

the longest time (i.e., the least recently used page),

S~pirically, LRU hds been found to closely approximate the

partormance of the "optimal" algorithm tor many actual

pro~rams. Furthermore, Mattson et al (63] have studied LRU

1ad f3und that it is 1 member of a genEcal class of removal

algoritnms call~d "stick algorithms". The class of stac1l

1lgorithms, as noted by Denning (25], "contains all the

•reasJnable' algorithns". In particular, stack algorithms

dll satisfy an inclusion property that results in well

nah!Vld characteristics, For example. it has been proven

tnat all stack algorithms, including LRU, have a success

tre1u~ncy that is a monotonic function cf primary store size

dad immune to the FIFO peculariarity observed by Belady.

rhus, one mi~bt be tampted to assuwe that the page size

anom~ly is also a phenJmenom unique to FlPO removal and

~Juli not occur if a "well behaved" removal algorithm, such

ii LHJ, ~ere used. Tbis expectation can be rafidly destroyed

Stor:11e Hierarchy systems 97

by observing Figurcl 9, wnich is the same system as figured

but with an LRU removil algorithm. In this exdruple, the page

fetch fraquency ratio, r, is 2.2 which still exceeds 2. This

result leads us to TheJrem 2 and corollary 2a.

(th2)
rHEJdEM 2:

rhece exists a page trace, and demand-fetch

Lau-removal two-level storage systems, sand S', ~ith

page sizes N anj N1 =N/2, respectively, such that the

ratio, r, of fet:h frequency f' to f exceeds 2.

!?roof:

By example (Figure 9).

C)RJLLARY 2a:

,iven a pa~e trace, P, and demand-fetch two-level

stocage systews, Sand S', with page sizes N and

N'=N/2, respectively, the use of a "stacX" rewovdl

:ilgorithm

propecty 14)

(i.e., an algorithm with the "inclusion

is nJt sufficient to guarantee tnat the

ratio, c, of tetch frequency f' to f will be bounded by

2.

StoriJe Hierarchy Systems

PiC'am~tecs

A5 ;:;ean bys·

• p = a, b, i, b, c, c, b, a,
• IP J = 1 1
• u = (a, b, C j

• IQ I = 3
• PPI = 2
• LRU Removal

!\.::i sean bys•:

• p = a+, b +, a-, b-, c+, c-,
• I PJ = 1 1
• Q = { a+, a-, b+ o- c+, c-, ,
• I J J = 6
• ll'Pi = 4

• LRU Removal

Si mul:1 tion

!?:iga rrace: a+ b+-

-~-
Fat::h: * *
,'11 Cout8nts: a b

a
S I

Fetch: * * 11 ~outents: a+ b+
a+

g_~.§Y!!:~

• F = 5
• F' = 1 1
• r = 11/5 =

a- b- c+ c- b+ a+ a-

* *
ii b C C b a a
b a b b C b b

* * * * * * * a- b- c+ c- b+ a+ a-
b+ a- b- c+ c- b+ a+
a+ b+ a- b- c+ c- b+

i+ b+ a- b- Ct- c-

2.2

F 1.y ure 9.
Example ot Case J
(for LHU He moval)

a,

b+,

}

c+

*
C

a

*
c+
a-
a+
b+

98

(t 7)

c, C

a-+, a-, c+, c-

c-

C

a

* c-
c+
a-
a+

Storage nierarchy systems

5.4 Si~nificance ot th~ Page Size Ancmaly

rne previous thaorems prove that there exist page

trac~5 tnat result ia significantly increased page tetch

frequancies if the piya size is decreased. It is necessary

to consider the liKelibood of encountering such page trace

patterns in actual programs. For example, it can De proven

taat, as you are reading this sentence, all the molecules of

air in the room may su~denly move towards tbe opposite

cornec and cause you to suffocate. If you survived the last

s~nte1ce, you have probably deduced that the likelihood ot

tbat avent is extremely s~all, fortunately.

5.4. 1 Simulation Studies

Hatfield [48J and Seligman [78] have performed

experiments tbat indicate that the page size anomaly is very

common, it not inevit~ble, in actual programs. In both cases

a~tual programs were monitored and their corresfondin~ page

trac~ reference strings were recordeJ, usually on magnetic

t~pe. Then simulators were developed that mimic~eu the

softw~re and hardware of the two-level stoLaye systems then

in us~ or being consiierei. By SUFplying the monitored pdge

trace3 as inputs to the simulators, the performanc~ cf such

a system can oe accurately measured. These simulators were

3crupulously accurate, not just approximations. The validity

storage Hierarchy systems 100

~f these cesults have been confirmed in some cases oy

r1nnia~ the ceal pro~rams under a real two-level storage

.:;y st arn.

5.4.2 Hatfi~l1 Studies

ll at fie 1 d L 4 8] performed studies in the bar: d ware

envir~nmeat of the IBM System/360 Model 67 with programs

rJnninq undar the CP-67/CMS Operating System. fhe simulated

pertormance was measured for various page sizes, N, and

v:1rious primary store sizes, JM' f. In summary, it was

c~nfirme1 taat certain programs. which were viewed as

~xamples of low-density storage use, resulted in decreased

page tetcb frequency when page size was decreased. But, it

was observed that for programs with much greater

l~cali~ation of heavily used storag~:

"not only does the smaller page size often generate
nadrly twice dS m~ny page fetches as the large page
size, it often resulted in more than twice the page
tatchas, contrary to our intuiticns."

Ia pirticular, the substantially

trequ2ncy appears to ba:

increased page fetch

"a characteristi= of pro~rams which have a high
locality and therefore perform well on systems using
ralocation hardware for address translaticn and is
characteristic of those programs in the region of
l~w paging rate."

Stor1ge Hierarchy Systems 101

In other words, the anomaly is most prevalent in ~rograms

~~ptimized" for perfocmdnce in a two-level stora~e system

w~en cunning unJer nearly "optimal" conditions!

j,4.3 Seligman Studies

whereas Hatfielj vas concerned with a paging system

with page sizes in the range from 2048 to 16384 bytes,

Saligman (78] analyzed a proposed cache system with much

smaller page sizes in the range of 8 to 256 bytes. He

observed that:

"interestingly, the missing page probability (for
this dat~) is minimized for a page size which
increases slowly with total memory size. Note that
the associative memory organization, where page size
aquals one word, is not optimum; tc borrow a phrase
from economics, the marginal utility of the extra
words fatched in a page is higher than that of tho~e
displaced".

rhus, continual decceising of page size ap~ears to have an

inevitable adverse eff3ct upon system performance.

5.4.4 Other Questions Raised

Now that it has been shown that the page size anomaly

is theoretically possible and likely to occur in prdctice,

there are several other ~uestions of interest. Since it has

baen proven that tha page fetch frequency ratio is not

StoriJe Hierarchy systems 102

bJunded by r = 2, wh1t bounds, if any, do e~ist? Hatfield

i~plicitly raised another question by the statement:

"1s yet we have b3an unable to prove that there is a
raplacement algorithm using cnly the past history of
p1qe requests wni=h cannot generate more than twice
the exceptions witb half size pages."

rne answers to thesa questions are the subjects of the

following sections anJ chapters.

It bas De~n shown that the page fetch fre1uency ratio

can exceed r = 2, but just now bad can it get? ot equal

in~3rtance, what f1~tor3 influence this bound? These

~uestions will he discussed in this section.

5.5.1 cyclic Page Tra=es

Figures 10 and 11 re~resent page trace simulaticns for

t,o 3ets of jemand-fetch LRU-removal two-level storage

systems with priwary store sizes JMlj=2 and JM 1 1=J,

rasp~=tively. In botn cases, it Cdn be observed that the

piga trace simuldted is cyclic with a repeated fattern, Pc.

Ia Figure 10, tne page trace consists of the repeated

p=tttern:

Stor11e Hierarchy systems 1 03

(t d)
Parameters

As seen by S:

• p = a, b, -, c, b, a, a, b, c, c, b, d

• I P I = 12
• J = { a, b, C }
• I JI = 3

• IM l I = 2

• LRU Removal

As seen bys•:

• p = a+, b+, c+, c-, b-, d-, a+, b+, c+, c-, b-, a-
• IP J = 12
• Q = (a+, a-, b+, n- , c+, c- }
• I QI = 6

• IM l I == 4

• LRU Removal

Si111ul1tion

transient steady-state
t< cy:le >1< cycle >j

Page rrace: a+ b+ c+ c- b- a- a+ b+ c+ c- b- a-

-~-
Fetch: * * * * * * ct l :on tents: d b C C b a a b C C b a

a b b C b b a b .b C b

-~~-
Fet::h: * * * * * * * * * * * * 1-(l :0ntents: a+ b+ c+ - b- a- a+ b+ c+ c- b- a-

a+ b+ c+ c- b- a- a+ b+ c+ c- b-
a+ b+ c+ c- b- a- a+ :o+ c+ c-

a+ n+ c+ c- b- a- a+ b+ c+

L same
_J

;!~§Y!~§
for the steady-state cycle:

• F = 6 • F = 2
• pt = 12 • F' = 6

• r = 12/6 = 2.:) • /r/ = 6/2 = 3.0

Figur~ 10.
Cyclic Page Trace ~ith tM 1 1 = 2

104

wbere~s Figura 11 repaats the similar pattern:

Pc = a+ b • c + d + d- c- b- a-

5,5.2 Ste3.dy State cy;lic Paye Traces

Let us consider Figure lJ first, The page fetch ratio,

~, is 2,0 in this casa, As noted earlier, the page trace can

ba suo1ividP.d into an initial transient stage, Pt, with a

high pa~e fetch frequency followed by a steady-state stage,

P5, with usually a lo■ er page fetch frequency. In Figure 10,

the first Pc cycle c~ntains the entire start-up transient

stage and completely fills all the available space in M 1 •

r~u3, tha seconJ t'C cycle reFresents the start oi the

steady-state stage. Furthermore, since the content and page

ord~ring of ~1 is exa;tly the same at the end of the second

cycle as theJ were at the beginning of that cycle for both S

::i.r1d 5 1 , the paye trace cycle, Pc, can be repeated

~~ntinuously with exactly the same results each time tor

page fetch re1uests dal M1 contents. If /r/ is defined to be

t~e p1ge f~tch fraque~cy ratio foe the first steady-state

pariol, Pc, of a cyclic pa~e trace, (Pc)*, /r/ is also the

page fetch frequency ratio for the entire steddy-state

plrtion of the page tr~:e defined by the regular expression:

P = Pt•Ps = Ft•(Pc)*

A3 t~~ length of the page trace, IPI, becomes large in

:omparison with the length of the transient stage, JPtJ, the

Storige Hierarchy systems 105

overall page fetch freyuency ratio, r, asyrnftoticdlly

appro3ches the value of the steady-state cycle page fetch

frequency ratio, /r/. In Figure 10, /r/ = J.O, thus r will

iacrease from 2.0 towards J.O as the page trace is

lanJtbened by continually repeating the pdttecn Pc. 1bus,
I ',

tbe pige fetcb trequency ratio, r, fer the page trdce

is bounded by 3.0 when Jftlj = 2.

A similar situation is illustrated in Figure 11. lu

tnis axa ■ pla, r = 2.28 and /r/ = 4,0. 1hus, the page tetch

frequency ratio, r, foe the page trace

is bounded by 4.0 wban IM'I = 3. By generalizing these

examples, we arrive at Theorem 3 and Corollary Ja.

(th 3)
rHEOdEl'l 3:

For any t~o demand-fetch LRU-removal two-lEvel stora~e

systems, s ani 5 1 , with page sizes N and N'=N/2 and

primary store sizes IM 1 1 and IM 1 1'=21N'I, resp~ctively,

there exists a cy=lic pa~e trace, F = (Pc)*, where t~cl

= 2(1M'l+1), su=~ that the steddy-state page fetcn

frequency ratio, /c/, equals IM'l+l.

Proof:

(See below).

Stor~ge Hierarchy Systems 106

(f 9)

A;;, seen by S:

• p = a,b,c,i,d,c,b,a,a,b,c,d,d,c,b,a
• I PI = 16
• Q = (a, b, c, d }
• IQ I = 4
• Pill = 3
• LRU Removal

As seen by s•:

• P = a+,b+,~+,d+,d-,c-,b-,a-,a+,b+,c+,d+,d-,c-,b-,a-
• IPI = 16
• Q = (a+, 1-, b+, o-, c+, c-, d+, d-}
• IQ I = 8
• llPI = 6
• LRU de11oval

Simul1tion
tcansient steady-state

I~ ~ycle I cycle • Piye rrace: a+ b+ c+ d+ d- c- b- a- a+ b+ c+ d + d- c- b- a-

-~-
Fa tch: * * * * * * * ;1.1 :on tents: a b C j d C b a a b C d d C b a

a 0 C C d C b b a b C C d C b
d. b b b d C C C a b b b d C

-~~-
r'et:::n: * * * * * * * * * * * * * * * *
!'i l :on tents: a+ b+ c+ i+ d- c- b- a- a+ b+ c+ d+ u- c- l:;- a-

a+ b+ c+ d+ d- c- b- a- a+ b+ c+ d+ d- c- b-
a+ b+ c+ d+ d- c- b- a- a+ b+ c+ d+ d- c-

a+ b+ c+ d+ d- c- o- a- a+ b+ c+ d+ d-
a+ b+ c+ d + d- c- b- a- a • b+ c+ d+

a+ b+ c+ d+ d- c- b- a- a+ b+ c+

t same i
d~2!!it.§

For the steady-state cycle:
• F' = 1 • F = 2
• F' ,= 16 • pt = 8
• r = 16/7 = i.28 .. /r/ = 8/2 = 4.0

Figurti 11.
Cyclic ?ige irac~ with IM 1 1 = 3

Stor1ge Hierarchy Systems 107

CJROLLAR'i 3a:

For any two demand-fetch LRU-removal two-level storage

systems, S ands•, witn page sizes ~ and N'=N/2 and

primary store sizes IMlJ and IM11'=2JM11, respectively,

there exists a cy:lic page trace, f = (Pc)*, wh~ce !Pel

= 2 (I M 1 I + 1) , s u c ti t ha t the over- a 11 page t etch f i: e q u ency

ratio, r, asymptJtically approaches the bound IM 1 1+1 as

IPI approaches infinity.

S.5.3 Proof ot Theorea J

5.5.3.1 Notation ind Properties

Assuma a fixed page size N and primary stor-e of size S1 , let

n = tt1.e number of pa1es .1.n M1 (i.e., n = IM1 I = S1 /N). It

bis baen shown by M1ttson et al (63] that a demand-tetcri

Lau-removal algorithm has the following properties:

P1. If M1 is initially empty, it tills with the first

n distin:t pages referenced by the trace.

P2. At any tima t, M• contains then most recently

referencei distinct pages.

P3. a> LRU satisfies the inclusion ,ECO.E,ert1

Ml(l) C M1(2} C ••• C M1 (1ll)

where M' (1) means the cootents of Ml

etc.

1.f u= 1,

Stor~ye Hi@rarchy systems 108

b) At any time t after Ml bas become filled, there

is a strict removal ordering referred to as the

s = { s (1) , s (2) , ••• , s (n) }

where

s(i) =Ml(i) -Ml(i-1) for i = 1, 2, ••• , n

and s(n) is the ~age to be removed next.

S.5.J.2 Definiti~u 3-a:

For any integer n, let us consider a page trace, P0 ,

~onsisting of the repeated p1ttern, Pc 0 , of length tPc 0 t =

2(n+1)

po = Pco [n]*

w ti ere

rtie P: 0 (i)s are defined as follows:

Pc0 (i)
= { 2(i-11

4n+5-2i

ruus, for n = 2 --

for i = 1, ••• , n+1

for i = n+2, ••• , 2n+2

Pc0L2] = { 0, 2, 4, 5, 3, 1}

and

P0 [2] = (;J, i, 4, s, 3, 1, o, 2, 4, 5, 3, 1, ••• l

r~e cyclic page traca pattern, Pc 0 (n], is used to define

Stocige Hiecdrchy Systems

~:>cceiponding cyclic page trdce patterns, Pc[n] and Pc'LnJ,

f3c Sands•, respectively. These are defin~d as tollcws

Foe a given value of n and i = 1, 2, ••• , 2n+2

Pc(i) = integer[P: 0 (i)/2]

Pc' (i)
(integer(Pc 0 (i)/2])-

if rea(Pc0 (i)/2]=0

if rea(Pc0 (i)/2]=1

rnus, for n = 2

P(2] = (0, 1, 2, 2, 1, 0, 0, 1 , 2, 2, 1, 1), • • • }

. . . }

We can see tbdt these page traces are identical to the page

traces of Figure 8 with appropciate relabeling (i.e., a=O,

b=1, c=2).

5.5.3.3 Lemma 3-b:

rhe page referen:es of the set

{ Pc(1), ••• , Pc(n+1) J

are distinct.

Pco:>f:

Based upon the definitions cf Pc 0 [n] and Pc[n], we see

that

Foe i = 1, ••• , n+1

Pc(i) = iateger[Pc 0 (i)/2]

= integer[2(i-1)/2]

= integer(i-1]

Storige Hierarchy systems 110

= i-1.

r11 us, each value of P:: (i) for- i = 1, ••• , n+ 1 is distinct.

5.5.3.4 Lemma 3-c:

rhe page referen::es of th8 set

(P:: (n+2) , ••• , Pc (2n+2) }

are distinct.

Pr-oof:

B~sed upon the definitions cf Pc 0 (n] and Pc[n], we see

th.at

For i = n+2, ••• , 2n+2

l?c (i) = integer[l?c 0 (i} /2]

= integer[(~n+5-2i)/2]

= integer[2n+2+(1/2)-i]

=· 2n+ 2-i

Th.us, each value of Pc(i)

distinct.

).5.J.5 Lemma 3-1:

f o r i = n + i. , ••• , 2 n + 2 is

At the end of each cycle, ~c(n], of the page trace,

P[n], ~1 conta~ns the pag8s, in LRU stack ocder,

.s 0 = (s0(1), •••• s 0 (n)}

Stora;e Hierarchy systems 1 11

where

s 0 (J) = j- 1 foe j = 1, ••• , n

Pcoof:

Since each cycla, Pc(n], cf P(n] is of leu~th 2n+i

wai=h is greater that u, the s 0 LRU stack consists or tne

last n pa~e references of Pc[n] in reverse order uy froperty

P2, Pl, and Lemma 3-c. thus,

s 0 (j) = Pc(2n+3-j)

such that

s 0 (H = Pc(2n+2), s 0 {2) = Pc(2n+1), ••• ,, s 0 (n) = Pc(n+J).

Wilen j takes on values (1, ••• , n J, 2n+3- j takes on values

{ 2n+2, ••• , n+3 J. Tb.us, for j = 1,, ••• , n and oasell upon

Lammi 3-c:

s 0 (j) = t>c (2n+3-j)

= 2n+2-(2n+J-j)

= j-1.

5.5.3.6 Lemma 3-a:

Q.E.D.

~iven a demand-fetch LRU-removal two-level storage

system, s, with page size N, primary store size S1

~ontainin~ n=S•/N pages, the page fetch fuuction, F,

resulting from aa=h stedcty-state cycle, Pc[u], of the

page tx:-ace P uas the value 2 (i.e. , F'l Pc(n])= 2 dur iny

steady state).

Storiye Hierdrchy systems 112

Pc-oof:

Let us subdivid3 the Pc(n] cycle, which is of length

2n+2, into four regions as follows:

Re-1ion 1: Pc 1 = (Pc (i) , ... , Pc (n) J

Region 2: Pc 2 = { Pc(n+1) J

R•?gion 3: Pel = (Pc (n+2), • • • I Pc(2n+1) }

R•?·:Jion 4 : Pc• = { Pc(2n+2) } .
~ud c3m~ute the numbec- of page fetches in each region, F 1 ,

p2, fl, F•, respectively. Since the page trace regions are

c3ncat~nated, the paJe fetches are cumulative, so we know

tnat.

F =pl+ fZ +Fl ♦ p•.

Pel = [Pc(1), ••• , Pc(n) }

Prom Lemma 3-b, ie know that

Pc(i) = i-1 i = 1, ••• , n+1

dnd iram Lemma 3-d, w~ know that at the beginning of each

cycle

s 0 (j) :: j-1 j = 1, ••• , n.

rtie pi ge references (Pc (1) , ••• , Pc (n) } are actually the

c.i?quauce (o, ••• , n-1 J which is identical to the contents

3f M1 at the start of the cycle, s0 • Therefore, no paye

tcan3fers are requirai although LRU stack reordering may

u:; C 11 I."• <f:~ ::Q) •

Pc 2 = l i?c(n+1) J

Paga reference P:;(n+1) is page n which is net contained

in s 0 nor loaded during region 1 (in fact, no pages were

Stori~e Hierarchy Systems 113

fetchad during region 1); thus, a page transfer i:.:; cequired

(f!~l). Using similar techniques as in lemma 3-d, since each

referance of Pc 1 is distinct, the LRU removal stdCK at this

p:Jin t is

s = { s (1) , ••• , s (n) }

11here

s(j) = Pc(n+1-j) j = 1, ••• , n.

P:1ge s (n) is selectei ror removal, this is actually page

P:(n+1-n)=Pc(1)=0. The new LRU stack ordering becomes

&egion 3:

rhe

s(j) = Pc(n+2-j) j = 1, ••• , n.

Pel = [Pc (n+2) , ... , Pc (2n+ 1) }

pa-Je referen::es (Pc(n+2), . . . , Pc{2n+1) J are

actually the sequence [n,

Lemma 3-b. The LliU stack

referance Pc(n+2) is

•••• 1 } as s.nown in the proo£ of

ordering immediately pcioc to

500 = (s (1) , ••• , s (n) j

which is actually

{ n, ••• , 1 J

sin:;a it has been shown earlier that at reference Pc(n+2)

S (j) = P C (n + 2- j) j = 1, ••• , n.

rhus, as in region 1, every page referenced is already

:;ontained in K1 and there are no page transfers required

(£:!.::QJ •

Rag ion 4: Pc• = { Pc (2n+2) }

Page reference P:(2n+2) is actually page O. ~his paye

was not contained in s00 , thus a page transfer is required

Storige Hierarchy systems

rnerefore, we can conclude

F[Pc[n]] = Fll Pc'] + fZ[PcZ] + F 3 (fc.J J + F•(Pc•]

=0+1+0+1

= 2.

114

Q.E.D,

5.5.3.7 Lemma 3-f:

Jiven a demand-fetch LRU-removal two-level storage

5ystem, s•, with page size N'=N/2, primary store size

: M'] containin(J 2n=[Ml]/ (N/2) pages, the page fetch

function, F', resulting from each steady-state cycle,

Pc'[n], of the page trace P' has the value 2n+2 (i.e.,

F'[Pc'(n]]=2n+2 iuring steady state).

Pc-oof:

rhe proof follows directly from the definition of P',

tne LRU properties, ani the previous Lemmas.

• Each page referan=e in the cyclic pattern Pc'(n] is

iistirict. (This cau ba easily seen fcom the definition or

pc-o~au in a similar manner to Lemmas 3-b and 3-c),

• Each cycle is 2n+l references lcng.

• At any time t, pa~e cetercnce P' (t) = P' (t-2n-2).

• rhe primary stoc-e, M1 , can hold 2n pages in s• since

tl'=N/2.

Stor1ge Hierarchy Systems 1 1 5

• Since the cyclic pattern only repeats after 2n+2 steps

and Ml is only 2u pages large, Mt always holds the la~t 2n

page references (since they are distinct).

• rhus, at any time t, page reference P' (t) wil~ not

~~rrespond to any paJe currently in Ml (i.e., L'il 11olds

ceferences { P' (t-1), ••• , P' (t-2n) i and P' (t) =.l'' (t-2n-2)

is not in that set). As a result, a page fetch is requir:ea

f~c every page refer:en=e.

• Since there are 2n+2 page Leferencas per cycle, there

ace 2n+2 page fetches required per cycl€. Thus, F'=2n+2.

5.5.3.8 lheorea J:

For any two demani-fetch LRU-cemoval two-level storage

3Jstems, S ands•, with page sizes N and N1 =N/2 and

primary store sizes IM 1 J'=21M'I, respectively, there

exists a cyclic page trace, P=(l?c) *, where

f Pct=2(1M 1 J+1), such that the steady-state pa~e i8tch

frequency ratio, /r/, equals 1Mlf+1.

f>roof:

rhis proof folloi~ trivially from Lemmas J-e and 3-t.

Wa Kaow that for each steddy-state cycle ot s, F=2 (Lemma

J-e). Also, for each 3teady-state cycle of F=2n+2 (Lewma

J-fl. Since the paye fatca frequency ratio, r, is detined as

f'/f ~r (F'/IPl)/(F/ll?I) which equals F'/F, we tind that iu

Stor1Je HieraLchy Systems 1 1 t>

steady-state

/r/ = P'/1:' = (2n+2)/2 = n+1.

Q.E.D.

5. 5.4 :omments on fheoram 3

rhe above results expose another facet of the page size

1nomaly. As the size ~f the primary store, Ml, is increased,

the overall pdge f~tch frequency ratio as stated in

:orollary 3a also incraases. This ~eans that the larger the

prinary store that you have, the mo~e "dangerous" the page

~iza 1nomaly becomes. For examfle, in a two-level paging

st st era based on dev i::es 2 and 4 f rem Table 1, I l'l 1 l = 128

pi~~5 anl N = 4096 bytes, if the page size is decreased by

half to 204a bytes, it is possible that tne page fetch

fre~uancy would increase 129-told (a 12,800~ increase in

~~giay activity!). Jf =ourse, one would assume, or at least

11:Jpe, that such pathological page trace patterns would be

v~ry rare, but we Kil OW that they can exist. It is

i1t2r3sting to note that th~ pd th alo-1 ical pattern shown

:1bove (e.g., a+ b+ c+ b- a-) corresponds to the eipected

refec~nces of ne3ted subroutine calls (i.e., subroutine a

c1lls 3Ubroutine b which calls subroutine c, etc., and eacn

3ubcoutine, of course, returns tc its caller). This is also

true of othec stack-like program constructs. Such highly

ra~dul~r pcogcaru design is quite typical and, furthermore, is

Stor~~e Hierarchy systems 1 17

oftan explicitly encJucaged. In view of Hatfield's finding

w~ere the overall r exceeded 2.0 in many programs, it is

reasonable to assume that there were probably regions in

wtiich r 11as quite small, possibly below 1.0, which were

cJuntarbalanced by regions with very high values of r. At

present we do not have this particular intormation

~vailable, but if it were true, performance could be greatly

i1proved by aliminatin~ the high r value regions. This

problam will be discussed in the next section.

5.5.S Bounds foe FIFO Removal Algorithm

rheorem 3 applies to LRU removal algorithms and many

other removal algorithms, although these other cases will

n~t bi explicitly proven in this thesis. It is intere~tiu~

to consider whether the result of Theorem 3 applies to the

FIFJ removal algorithm. Unfortunately, due to tbe

paculiarities of FIFO, a simple yeneralizable cyclic page

tcace pattern has not been found. But, isolated examp~es

have been found, as illustrated in Figuce 12, that show that

it is possible for c to exceed Jftlj+1. This result is stat~d

in rhaorem 4. Based upon othec examples, it is conjectuced

tnat the c, when FIFJ cemoval is used, mdy be as high as

Storage Hierarchy Systems

i?i r-a mate rs

As seen bys:

• p

• I Pl
• Q

=a,c,a,b,b,c,c,a,a,b,b,c,c,a,a,b,b,c,c
=19
= [a, b, c }

• I~ I =3
• 11'11 I =2
• P'H' o Re11ova 1

As sean by s •:

118

(:t, 0)

• i:'
• IP I
• Q

=a+,c-,a-,b+,b-,c+,c-,a+,a-,b+,b-,c+,c-,a+,a-,b+,b-,c+,c
=19
= (a+, a-, b+, b-, c+, c- }

• I JI =6
• jI1 1 1=4
• FIFO Removal

Simul1tion
st€ady-state

l < transient ~I cycle
rr ace: a+ c- a- b+ b- c+ c- a+ a- b+ b- c+ c- a+ a- b+ b- c+ c-
;i
1.-'~tch: * * * * * *
l'l l : a C C b b b b a a a a C C C C b b b b

a a C C C C b b b b a a a a C C C C

-~~-
F~tcti: * * * * * * * * * * * * * * * * * * *
[11 : a+ c- a- b+ b- c+ -- a+ a- b+ b- c+ c- a+ a- b+ b- c+ c-~

a+ c- a- b+ b- c+ c- a+ a- b+ b- c+ c- a+ a- lJ+ b- c+
a+ c- a- b+ b- c+ c- a+ a- b+ b- c+ c- a+ a- b+ b-

a+ c- a- b+ b- c+ c- a+ a- b+ b- c+ c- a+ a- b+

! same t
!i~§.!tl~§

For the steady-state cycle:
• F = 6 • F = 3
• F' = 19 • F' = 12
• r = 19/6 = 3. 1 o • /r/ = 12/3 = 4.0

Figure 12.
Cyclic PaJa Trace with FIFO Removal

Stor1Je Hierarchy Systems

(thf)
rHEJREM 4:

For any two demand-fetch FIFO-removal two-level storage

~ystems, S ands•, vitn page sizes N and N'=N/2 ana

respectively, thare exi3ts a cyclic ~age trace, P =

Pt•(Pc)* vhere I Pel= 2(1f!lt+1) (lltll), such that the

page fetch frequan=y ratio, r, exceeds fM 1 t+1,

Proof:

By example (Figure 12).

Storage Hierarchy Systems 120

CHAP'l'r!R 6.

SPAl'IAL VS. TEMPORAL LOCALITt MODEL OF PROGRAM BEHAVIOR

6.0 Introduction

Early in this thesis it was explained that a major

c1tionale for multilevel storagE systems is based upon the

Principle of Locality. Unfortunately, locality is still a

p~orly understood, or at least controversial, phenomenoa. In

this chapter some n~vel viewpoints and ~nsi~hts will be

presented.

6. 1 ri2es of Program Reference Lccalit1

Let us consider two extreme forms of program reference

lJcality which will be called ~emQQ~~! locality and S£atial

l:!£~!.i!;y:

6. 1. 1 Tempocal Locality

If the logical addcesses (at, a 2 , ••• } are raferenced

1uring the time interval t-T to t, there is a nigh

probability that these same logical addresses will be

ceferenced durin3 the time interval t to t+T.

rhis behavior cau be rationalized by program constructs

Stoca~e hiecacchy Systems 121

such as: loops, frequently used vaciables, and

frequently used subcoutines.

6.1.2 Spatial Locality

If the logical address a is referenced at time t, thece

is a hi1h probability that a logical address in the

cange a-A to a+A will oe referenced at time t+l.

rhis behavior can be rationalized by program constructs

such as: sequential instruction sequencing, and linear

jata structures (e.g., arrays).

o.1.3 General Locality

rhe detinitions of temporal

ace iuite extreme. Usually we

and spatial locality anove

consider only the general

spati~temporal propecties and define locality as:

£.ocality

If the logical addresses { at, ••• j are referenced

1uring the time interval t-T to t, there is a high

probability that the logical addresses in the ranges

at-A to to a 2 + A, ... , will be referenced

lu~ing tae ti~e inteLval t to t+I.

It is important to recognize that temporal locality and

~patial locality ace indeed the underlying phenomenon and

th at the "genaral luca 1 i ty" L; me eel y a sim plit yi ny rue rging

and blurring of these basic concepts.

Stor1~e Hierarchy systems 122

6.2 :~nventional Removal A!g_orithms

Je cau begin to understand the factors causing the page

~iz~ anomaly by stJiying how the various conventional

Lemov1l algorithms hanile temporal and spatial locality. In

p1rtL~ular, ,e see, that whereas temporal locality policies

arG 1iven explicit att~ntion, spatial locality policies are

u5ually handled impli~itly and subtlely. The "least recently

u5el", LBU, removal 1lgorithm, for example, is very much

c~n~ernei anout the temporal aspects of the prcgram•s

reference pattern. The spatial aspects are handled as a

by-pr~Juct of the iact that the demand fetch algorithm must

l~ad an entire page (i.e., a spatial region) at a time and

LRU r~raoval decisions are based upon these pages. With these

thoughts in mind, wa can see that decreasing page size

~1us~5 the convention1l storage management algorithms to

iocrease their sensitivity to temporal locality and decrease

tbeic sensitivity to spatial locality. Increasiny page size,

of course, results in the reverse effect.

6,3 Locality in Actual Programs

~~ny of the t~=hniques for improving the locality

bahdvior of progc~ms, sucn as the method ot automatic

Stor1ge tlierarchy Systems 123

pcogram restructurinJ by sectcr (subroutine) reordering

las=ribed by Hatfield and Gerald (47], result in both

i1creased temporal and spatial lccality. But, it seems that

ttte r~ordering techniiue does, in fact, significantly favor

spatial locality sinca it was noted (47] that:

"the better ocjerings not only concentrate
appropriate sectors into pages, but these pages also
naturally cluster into larger units that satist1
n~arness requiremants on the page level and
cluster better than do the pages at the other
orderings ••• clustering sectors into pages also
clusters p~ges into larger units."

kn effective multilevel storage management system must

taka oath temporal and spatial locality into consideration.

A; we have seen from both Hatfield's and Seligman•s results,

nayle:ting spatial locality can have disasterous results.

Any 1iven program, or portion of a p~ogram•s operation, can

~:1va its reference lo:ality characterized by the two-by-two

111:1trir:

'fE.MPORAL

s Low High
p

A Low 1 2
T
I Ii ig tl 3 4
A
L

-1..iaicant 1, low-tempocal and low-sfatial locality, is

Stor1ge Hierarchy Systems 124

Jafinitely undesirable for operation in a multilevel storage

system. There have baan numerous algorithms and programmer

trdining techniques developed, as mentioned above, to

minimize the number ot progra~s with these poor locality

caaracteristics. Quadr1nt 4, high-temporal and high-spatial

lJcality, has traditionaly been the regicn of h~st

performance and is usually the objective of good frogram

dasigu. Unfortunat~ly, it is not always possitle or

convenient to desiga programs which attain both high

tamporal and high sp1tial locality; thus, we find many

pro1r1ms operating in quadrants 2 or 3.

G.5 seatial Locality Algorithms

f1r

Storage management techniques axe

more flexibility and robustness

needed which prcvide

for balancing the

syste~•s sensitivity to temporal and spatial locality. These

dlgorithms must explicitly consider the spatial locality of

1 program. The tupla-coupling approach, described in the

uaxt ~bapter, is one such technique. It takes advantaye of

the t~mporal locality and compactness possible with small

p1ges characterized by quadrant 2 behavior, yet it adjusts

tJ tne spatial locality and clustering characterized by

1uair1nt 3 behavior by simulatin~ the removal policies

associated with large pages.

Ston.ge llie.carchy Syste11s 125

6.6 :~mment on the Pa~e Size Ancsaly

With this insig4t, we can now see that the page size

dnomaly is not really ~ven a function strictly of page size!

Iaste~d, it is an issue of locality, temporal versus

spatial.

Stor~~e Hierarchy systems 126

CHAPTER 7.

SPATIAL REMOVAL STORAGE MANAGEMENT ALGORITHMS

7.0 Introduction

~s stated earlier in this thesis and noted by Hatfield,

a te»oval algorithm that would limit the page fetch

frequancy ratio, r, to 2 would be very desirable. In this

~ecti~n a technique, :alled the "tuple-coupling approach",

is Jescribed which, when used in conjunction with

~~nventional re~oval algorithms, such as LRU or FIFO,

~uarantees that r will not exceed 2.

rhe basic concept behind the tuple-coupling approach is

extremely simple. First, the two pcitions, p• and p-, of

2acn ~riginal ldrger page, p, must be identifiable (i.e.,

tne ~et of pages of s• are viewed as a collection of

i-tuples). Second, tne removal ordering policies must be

applied to both elemants of a tuple (i.e., the tuples are

~oupl~d in re1ard to ordering decisions) such that a page p+

or p- of s• is never ra~oved unless the corresponding page p

of s would also have been removed from M'. The particular

Stor1ge Hierarchy Systems 127

implementation of this approach may vary slightly defending

upon the ce11oval

to be used.

algorithm, e.g., LRU, FIFO,

Any removal algccitnm to

etc., that is

which the

tuple-coupling approa=b can be incorporated is said to be

"tuple-couple-able",

7. 1. 1 An Example of Lau Tuple-coupling

Figure 13 illustrates the

tuple-coupling appro1ch to the

application

LRU removal

ot the

example

previously shown in Figure~. It shculd be noted that, in

this ~ase, r has indeed been limited to 2 although it had a

v1lue of 2.2 when normal LHU removal was used. The reader

shouli carefully comp1re Figures 7 and 11 to understand how

the tuple-coupling approach affects the removal algorithm.

rhe Mt contents ace idantical, of course, for Sin both

examples, but there 1re subtle differences in M1 contents

Eacn state of M' con tents is

referance purposes.

ma.eked, 1 to

Notice that in Figuca 13 for

implementation of tuple-coupling whenever both halves

11, in

this

of a

pa~e, p+ and p-, are in Ml, they are always adjacent in the

~1 oclering; compare this with Figure 9.

~t page trace step 3 we can see the first difterence

bat,ean Figures 7 dnd 11, Page a- is referenced and must be

tatchad in Figure 9, it is then placed at the top of the N 1

Storage Hierarchy Systems 128

(f 1 1)

Pa came tees

As seen by S:

• p = a, b, :l , b, c, c, b, a, a, c, C

• I P 1 = 11
• Q = [a, b, C }

• I Ul = 3
• P\11 = 2
• LRU Removal

A3 sean bys•:

• P = a+, b+, a-, b-, c+, c-, b+, a+, a-, c+, c-
• IPJ = 11
• Q = (a+ , a - , b+ , b- , c + , c- }
• I QI = 6
• jM 1 1 = 4
• LRU Removal with Tuple-ccupling

SimuL1tion

1 l 3 • 5 • 7 a • 10 11

P:1.ga rrace: a+ b+ a- b- c+ c- b+ a+ a- c+ c-

-~-
Fetch: * * * * * Ml Contents: a b a b C C b a a C C

a I) a b b C b b a a
_i~-
F ~ t::: h: * * * * * * * * * * (11 Coutents: a+ b+ a- b- c+ c- b+ a+ a- c+ c-

a+ a+ b+ b- c+ b- b+ a+ a- c+
b+ a- b+ b- c- tr b+ a+ a-

a+ a- b+ c+ c- b- b+ a+

R~2.\!!~§

• J.<' = s
• F' = 10
• r = 10/5 = 2.0

FigurG 13.
Example of .I.RU Removal with 'Iufle-coupling

(see Fi Jure 9 for comparison)

S ton. :J e !lie r-archy s ysteias 129

ordering wnich becomas a-,b•,a+. on the other nand, in

Figura 13 at step 3, it is noticed that a• was already in

M1 • r~us, when a- is placed dt the top of the M1 ordering,

a+ is coupled to it resulting in the ordering a-,a+,b+. At

page trace step 7 of Figure 13 we see another interesting

axample of tne tuple-:~upliny apfroach. At the previous step

the ordering was

c- c+ b- b-t:

wnen the reference to b+ is made, there is nc need to

initiate a fetch sinca b+ is already in M1 • The Ml ordering

then becomes

b+ b- c- c+

since LRU requires tn1t the most recent rererence move to

tme top. Under this tuple-coupling scheme, b- is also moved

t~varj the top of tne ordering to continue to be adjacent to

7.1.2 Implementation ~f the Tuple-Coupling Approach

rt is important to note that there are often various

w1ys to implement tuple-coupling. In

tuple-couplin~ al~orithm described

w~enever both portions were in Ml,

particular, in the LRU

above, the 2-tuples,

.ere arranged to be

ajja~ent in the Ml renoval ordering. The requirement that

ueithar portion, p+ or~-, of a tuple in s• be removed

Stor1;e Hierarchy Systews 130

unl~ss the corresponding page of S would have been removed

Cin be accomplished in other ways. For example, the LRU

camov1l stac~ can be left in its normal ordering, as in

Pigura 9. In this case, when it is necessary to remove a

page from s• the bottom page is not necessarily the correct

cnoica to satisfy tuple-coupling. There is an algorithm

wnicn can scan the LUU stack dnd select the correct paye for

ramov1l (in fact, it will select, of ccurse, the same page

3alected by the algorithm illustrated in Figure 13).

7. 1. J An :C:iCdmple of FH'O Tuple-Coupling

It is interesting to consider the effect of

tuple-coupling upon FIFO removal. Figure 14 illustrates the

dpplication of the tuple-coupling apfroach to the FIFO

ram~v1l example previously shown in Figure 6. Once again,

tne p19e fetch fr~~uency ratio, c, which originally was 2.75

h1s indeed ~ean limitai to 2. The examfle of Figure 14 does

nJt fully illustrata all the interesting aspects of

tuple-cou~liny upon FIFO removal. In particular, if page p+,

flr alampla, is referenced in a page trace and it was not

already in M1 , it must be fetched. The Ml contents are

reordared as follows:

1. If p- is not currently M1 , f+ is placed at the top

lf the FIFO ordering.

i. If p- is currently in M1 , f+ is placed immediately

Storige Hierarchy Systems

As seen bys:

• p = a, b, a, b, c, c, b, a, a, c, C

• IP I = 1 1
• Q = (a, b, C j
• I Q I = 3
• IM 1 I = 2
• FIFO Removal

As seen bys•:

• p = a+, b+, a-, b-, c+, c-, b+, a+, a-,
• IP I = 1 1
• Q = { a+, 3.-, b+, o-, c+, c- J
• IQ I = 6
• HPI = 4
• FIFO Removal .,ith. Tuple-coupling

Si IDU13. tion

l 2 3 ♦ s • 1 8 • lO 1 1

Page rrace: a+ b+ a- b- c+ c- b+ a+ a- c+ c-
;i
Fat::h: * * * * Ml :::on tents: a b b b C C C a a a a

a a a b b b C C C C

_i~-
Fatch: * * * * * * * * (11 Contents: a+ b+ a- b- c+ c- c- a+ a- a- a-

a+ a+ b+ b- c+ c+ c- a+ a+ a+
b+ a- b+ b- b- c+ c- c- c-

a+ a- b+ b+ b- c+ c+ c+

flg2!!:H:2

• F = 4
• F' = 8
• r = 8/4 = 2. J

Figure 14.
Example of FIFJ Removal with TuFle-coupling

(see Figure 8 for comparison)

1 31

(11 2)

c+, c-

Stor~ge Hierarchy Systems 132

before p- in the logical FIFO ordering

p-•s relative ordering remains unchanged.

rie ceason foe the se:::ond part of this rule can be seen from

the normal FIFO ordering rule which places a page pat the

t~p only if it were not already in M'. If it were in M1 , it

cemains at its previous ordering position. Under

t~ple-coupling, this rule applies jointly to the

t1pl~ as stated above. The reader is encouraged to work

t~r::>uJn the example of Figure 10 using the tuple-ccufling

appcodch to illustrate this FIFO ordering phenomenom. The

affect of the tupl3-coupling approach is summarized in

Ttie::>cem 5.

(th5)
rHEOJ.rni1 $:

For any two demiud-fetch two-level storage systems, s

ind s•, with paga sizes N and N'=N/2, respectively, the

use of the "tu~le-coupling" approach for s' in

:::onjunction W iti1 a removal algorithm that is

~tuple-couple-abla" is sufficient to guarantee that the

pa~e fetch frequancy ratio, r, cannot exceed the value

2 for all possible page traces, P.

r r-oof:

(See below) •

star1~e dierarchy Systems 1 33

7. 1.4 Proof ot Theorem S

As described earlier, when an adress trace, !, is

appliad to storage systems S (with page size N) and S' (with

p1ge size N'=N/2), it can be represented as page trdces g

and f', respectively. At time t 1 , let us consider a Sfecific

aldre3s reference, a, whose corresponding page references

(in S) and p+ (in S'). In processing this reference

t~ere are four possible fetch actions ins ands• depending

upon the current content state of primary store, M1 :

State page p (S) page p+ (S •) F F' F '-F ef feet

1 in Ml in M' 0 0 0 r => 1

2 in Ml not in M' 0 1 1 r => >1

3 not in Ml in M' 1 0 -1 C => <1

4 not in i'f l not in til 1 1 0 r => 1

Recall that the page fetch freguency ratio, r, eq~als

P'/F. In states 1 and 4 the same action (i.e., no page fetch

in 1 and a page fetch in 4) occurs in both sand s•, the

o:currence of these 3tates causer to tend towards 1. ln

state 3, ~ pa~e fetch is required ins but not ins•, this

situation, if freguent, will cause r to decrease toward

zero. This is usually the intended result of reducing page

size. Only stdte 2, iu which s• aloue requires a page r~tch.

cJntcibutes to an in~cease in r. Thus, we will concentrate

our analysis on this particular situation.

stoc1Je Hierarchy systems 134

Since state 2 re~uices that page p be in M1 at time t 1 ,

if we scan the addre3s tcace backwards, there must be so ■e

previous cefecence tiae tz that caused page p (in S) to be

tetch~d into Ml (this may have been the only previous

r~ferance top or tne page p may have been fetched and

rem:> v e d many ti mes) • At time t 2, there must also be a

c~rre3pondinJ refecen:a to either p- and p+ of s•. These two

:is~s will be considereJ separately:

:.:::1sa 1 : g = ••• p • •• p

R' = • • • p- ••• p+

t = • • • t2 • • • tl

rhis case merely illustrates the fact that it can

r21uice two page fetches (for p+ and p-) ins• to tetch the

same 1mount of storage as page pins. If this were the only

case for state 2, c would never exceed 2.

C:3.se 2: f = • • • p • • • p

g' = • • • p+ • • • p+

t = • • • t2 • • • tl

In this case we see that subsequent to reference t2

p1ge p of sand page p+ on s• must be in M1 • Yet at time t 1

p1qe p of S is still in Ml but fage p+ of s• is not. Onder

t~ese circum3tances r c1n certainly exceed 2~ merely maxin~

p- t~e next referen=e will account for 3 fetches in s•

compared to 1 fetch ins. Furthermore, it is possible that

t~e references between t2 and t• could be repeated to

Storige Hierarchy Systems 135

continually cause fetches for p+ in s• without auy

c~ccespondin~ fetches required ins. Thus, we see that this

is precisely the situation that allows r to exceed 2.

Under closer analysis, we see that this situation

r3quices that ins• p• be removed frcm M' betweeu tz and t 1

wherads in S p remains in M1 • In other words, this general

situation can only occur if at some time t, p+ or p- of s•

is selected for reilloval from Ml and the corresponding ~dye p

of S is not also removed from M1 • But, the tuple-coupling

algorithm (sea page 125) is "such that a fage p• or f- of s•

i~ uaver removed uule~s the correspondinq page p of S would

also have been removai from M'"• Thus, the tuple-coupliny

~liminates the possibility of case 2 and therefore

guarantees that r cannot exceed 2.

:learly, the tuple-~oupling approach has an influence

upon tne overall etfectiveness of the basic rewoval

algorithm being used and the benefits of the smaller page

size. It is obvious that there ar€ certain rtference

patterns (with r less than 2) for which tuple-coupling

incceises the value ~tr. On the other hand, it can be

shown, as a simple exer~ise for the ceader, that the example

136

:>f r,i1ure

J.5 even

a retains its low page fetch frequeucy ratio of

when tuple-coupling is used. In fdct,

tuple-coupling may often result in the "best of both worlds"

oy pl3cing a bound on the page fetch frequency ratio, r, for

high r regions without interfering with the performance of

ori1inally lo~ r regi~ns.

~ program's reference behavior in s•, during a short

inter~al of its operition, may be characteri~ed by three

reyio~s basej upon the value of the page fetch frequency

r~tio, r, whdn tuple-=oupling is not used:

1. Sparse referen=e - small r (e.g.,

2. Moder~te reference - moderate r

ind 2) •

less than 1) •

(e.g., between 1

3. Dense reference - high r (e.g., greater than 2).

rn tue sparse reference region, it is unlikely that both

portions, p+ and p-, of a paqe, p, will be in M1

simultaneously; thus, the tuple-coupling will have minimal

affect upon pertormanca. In the dense refeLence region, we

h:1ve dlr~ady

V :l l U ~ 3 of J:" •

:naast1r'3ments,

seen that tuple-coupling prevents

though aased upon some

it appaar-s that in

recent,

the moderate

re1io~ tuple-couplinJ performs about as well

non-tuple-coupled algorithms.

extreme

limited,

reference

as the

Stora~e Hierarchy Systems 137

CHA PT ER 8.

DISCUSSION AND CONCLUSIONS

8.0 Introduction

Efficient and effective storage management is imfortant

t~ tha development of future computer systems. It has been

:stimited that the st~rage subsystems account for over 70~

of tne cost of most contemporary installations and, based

upon present trend3, this percentage is expecteJ to

inccease.

Much more research will be needed before all the

problems of automatic storage management are understood and

the ~bstacles to effective operation eliminated. This

t~esis has solved several open problems and has provided

insight that should lead to the solution of many more

problems.

A detailed discussion of the many tacets ot stcrdye

~dnaqement is present~j in Chapter 2. It also contdins d

general disc~ssion of the requirements which a systEw wust

Storige Hierarchy Systems 1 38

s1tisty to be effective foe thti user-.

In Chaptei:-s J 1nu 4 a moctel for stora~e hierarchy

systans is focmalized and an implementation is proposed. The

systa~•s design is based upon an ccderly and unifoi:-m

treatment ot the storage levels. Specific techniques to

1Dprove performance, such as continuous nierdrchy, shadow

stor11e, jirect transfer, read through, store behind, and

automatic management, are explained.

In Chapter 5 the "~age size ancmaly" is presented (see

,1lso Hatfield (48]) :

11 rhe assumption about virtual memory systems that a.s
overhead (time for access and softwace page
management) decceises page size should be reduced is
not alwdys a yood one. Recent experiments indicate
tuat larger sizes can provide better performance for
programs that maka highly localized use of memory
space."

r~is phenom~nom is focm~lized and a bound on the perfcrmance

is pc::>ven.

In Chapters 6 ani 7 the concept of spatial locality is

i~troduced and serves as the oasis for a new storage removal

~lgorithm called "tuple-coupling". These concepts are used

t~ explain the occurrence of the "page size anomaly" in

a.c tual syste11s. It is proven that the tuple-coupling

~ppr::>~ch is 3 sufficiaut strategy to avoid the occurrence of

Storige Hierarchy Systems 139

the "page size anomaly" and it cffers fotential perfcrwance

improvements for the 3tOrdye hierarchy systew.

rhe tecbniques 1nct theorems presented in this thesis

proviie a much more scientifically sound basis for examiniuy

and designinJ storaJe ~ierarchy systems than most cur~ent !~

h2£ approaches. Althou9h there is still a long way to go,

develJpment of these formalisms is essential to the

aivan~ing of the "science" in Computer Science.

8.2 Further work

rbere are many ireas touched on ty tnis WOLK in which

questions remain. One of the ■est si~niticant i3 in th~

devel~pment and study of other fOSsible "spatial locality''

removal al~orithms in additicn tc the tuple-coupliny

approach studied in this thesis. This is an entirely wide

open 1rea.

Although tuple-c~upling is studied extensively in this

thesis, there are still many unanswered questions. Hew does

tuple-coupling compdce with the class of ''stack" algorithms

studied by Mattson ~i ~1 [oJ], in particular under what

cir=umstances, if any, is tuple-coupling a stack algorithm?

Likewise, how ioes tuple-coupling compare with the

tbe~retically optimal replacement algorithm, callect OPT (63]

Storage Hierarchy systems 140

~r MIN [12]? On a mora practical side, how efficiently can a

tuple-coupling algorithm, or other spdtial removal

alyorithms, be implemented?

In ord~r to as~ertain specific procf of the utility and

2fficiency of gener1l storage hierarchies, it will be

aecessary to actually construct and measure the performance

of such a system or, at least, perform more extensive

simul1tion dnalysis. Furthermore, we must develop overall

pro~rimming techni1ue3 and execution envirouments that are

2ven more amenable to efficient operation in a storage

hierarchy system.

Many of

iavestigation,

these questions

the results will be

Pcoj~:t MAC rechnical Report.

are currently under

published later in a arT

Stor~Je Hierarchy SJstems 141

REF£RENCES AND tilllLICGRAPHY

AbbceV'iations used in the references:

:&CM Communications of the AC~

FJc: Fall Joint :omputec Conference

IEEE-re IEEE Transactions on Ccmputers

IEEE-rEC IEEi Transactions on Electronic Computers

JAC! Journal of the ACM

SJC: Spring Joint Computer Conference

L 1] Ahearn, G, R,, Y. Dishon, and. R, N. Snively, "Design
Innovations of the IBM 3830 and 2835 Storage Ccntcol
Units", IBM Jou~nal of Re~arch and Develo£ment 16, 1
(January 1972), 11- 18.

An intecestin~ article illustratin~ the use of
microprocessors to produce sophisticated and
flexible wass storage control units.

[2] Aho, Alfred v., Pater J, Denning, and Jeffrey Ullman,
"Principles of Optimal Pa~e Replacement", J!f.tl 1&, 1
(January 19 7 1) , 8 0- 9 3 •

Presents a model of program behavior basect upon
1-order non-stationary Markov processes where
p (x, u, t) is the proba.bili ty tba t a ceterence to
page xis ~euerated at time t given that~ is
currently 4ll stdte u and JUl=l+l, They ace only
able to carry throuyil the analysis foe "almo!>t"
stationary 0-ocdec Markov models. They de note
that althoug~ "we are able to give only approximate
extensions to the general 0-order case ••• we
believe that the simplest program model is. a gooJ

[6]

Stor1ge Hierarchy Systems 142

startin~ point for the formal investigation ot
paging algorithm behavior." Unfortunately, they do
not provide 1ny justification or empirical evidence
to even substantiate this choice of a model.

lmdahl, ;. M., ind L. D. Amdahl, "Fourth-Generation"
Hardware", Q.!!tl!!!,g,tiQ!!, (January 1967).

!nacker, w. and:. P. Wong, "Performance Evaluation of
Computer Syste:as With Memory Hierarchies", ~~~E-1~£
~£:.1~, 6 (December 1967), 765-773.

~rora, s. H. and!. Gallo, "Optimal Sizing, Loadiny and
Re-loading in 1 ~ulti-level Memory liierarchy System",
~lff I~, (197 lJ, 337-3tJ4.

"A Dynamic Disc Allocation Algorithm Austin, B. J.,
Designed to
Reloading", Ihi
(1971), 378-381.

Reduce Fragmentation During Pile
British Co111.E.Y1er 4Q.!!£!!~! l;!, 4

Presents an interesting file allocation technique
that minimizes the need fer "fage maps" (file maps)
by periodically iumping and reloading all files, in
general daily. The statistics on file usage are
quite relevant. Of the 5000 files on the system,
almost 50~ ~f the files were 1 page or less in
length (1 pa~e = 512 36-bit wcrds = 2K bytes). Un
the other h1ni, these 1 page files consumed only
101 of the spice used. In fact, file allocation was
rather evenly distributed amongst files from 1 to
10)0 pages in length. (i.e., files of page sizes=
1, 2-3, 4-7, 8-15, ••• , 511-1023, consumed about
10; in each r~nge).

:1] Ayling, J. K., "Monolithic Main l'lemory is Taking Ot:t",
1971 IEEE International Convention Q!Sl.fil?.!:, (march
1971), 70-71.

aarJ, r., "Performance Criteria and Measurement
T ime-s bar in~ 5 yste m", I Bli sys!~§ JoyI!!gJ.
(1971), 193-216.

for a
1.2, 3

s ny- ming Ju, and David c. Wood,

StoriJe Hierarchy Systems

"Measurements of Segment
1 9 7 0) , 15 5- 1 5 9 •

Size", £AC11

[10] Belady, L. A., R. A. Nelsen, and G. S.
Anomaly in Space-Time Characteristics
Programs Running in a Paging Machine",
(June 1969), 31'9-353.

14J

13 J __ , (March

SheJlec, "An
of Certain
£~Q.1 ld, 6

: 11] Belady, L. A. and c. J. Kuehner, "Dynamic Sface-shaciuy
in :omputer Sy5tems", £!£11 li, 5 (May 1~69), 282-288.

[12] Belady, L. A., "A Study of Replacement Algorithms tor a
Virtual Storage Computer", IBM ~ystems Journal ~, ~
(1966), 78-101.

~13] 6ell, Gorden:. ind David Casasent, "Implementation of
a Buffer Memocy 1.n J.'1inicc ■ puters", fomeuter Q_g§.!.!l!!,
(November 1971) , 83-8 9.

(14] Bensoussan, A., :. T. Clingen, and li. c. Daley, "The
Multics Virtuil Memory", g,oc~~ging§ of !he !£~
~~f:29.s! ~I!!EQ.§!Y..!!! .Q!! OB,erating_ system Princi£les,
Princeton Univec3ity, (October 20-22, 1969), 3Q-ij2.

[15] aest, Donald T., "The Present and Future of Moviuy
Media Memories", 1971 IEEE International Convention
Qig,g2 ,t, (Mar::::ll 1971), 270-271.

[16] Bobecil, Andrew H. and H. E.
Bubbles", scientific American
78-90.

D. ScoYil, "Magnetic
Ji!! , 6 (Ju n e 1 ~ 7 1) ,

:11] :amras, Marvin, "Information Storage Density",. ,!i;~i!
~:e~£1.£!!!, (July 1~65), 98-105.

[18J .:ashman, :1. w., "Technology: 1971" (editorial uote),
Q.~la.!1-l!Q!!, (Jan u at· y 1 9 7 2) , 4 7 •

Briet review of significant technical development~
of 1971. Items mentioned include the Texas
Instruments 960A minicomputer priced at J2850
($1350 for processor plus $1500 for 4K memory) and

Stor1ge Hierarchy Systems 144

the Intel MCS-4 "cpu on a chip" priced at $66 (in
quantities of 100 - 999).

[19] .:offman, E.G., ~nd L. c. Varian, "Further Experimental
Data on the Behavior cf Prcgrams in a Paging
Enviconment", ;A,~!! 11, 5 (July 1968), 471-474.

~20] .:onsidine, James P. and Allan H. ~eis, "Establishment
and ~aintenanca of a Storage Hierarchy for an On-line
Data Base Under TSS/360 11 , U££ .J.2, (1969), 433-440.

L.ll] .:onti, :. J., D. H. Gib~on, and S. H. Pitkowsk.y,
"Structural Aspects of the System/360 Model 85: r.
Genecdl Organization", lBM SY§tems Journal 1, 1
(1968), 2-14.

:22] Conti, c. J,, "Concepts for Buffer Storage", IEEE
~Q!!E.!!!~!: GCQ!!E. £!~~2 , (March 1969), 6- 13,

:23] :ooK, tlobert w. ini Michael J, Flynn, "System Design ot
a Dynamic Mier::> processor", ,I,gg~=TC f=lt, 3 (March
1 9 7 0) , 2 1 3-22 2.

[24] Uell, tlacold H,, "Uesign of a High Density Optical Mass
fllemory System", £.Q.!!£.!!1§.! _QesigQ, (August 1971),
'-' 9- 5 3.

~25j Dennin~, Peter J., "The Working Set Model for Program
Behavior-", ~~f~ 11, 5 (May 1968), 323-333.

:26] ~enning, Petar J., "Virt~al Memory", COm£utiug Surveys
i, J (September 1970), 153-189.

(27] Jenning, Peter- J., "Thir-d Generation Computer Systems",
Coa,euting Surve1s 3, ~ (December 1971), 175-216.

[28J Dennin~, Peter J,, "Thrashing: Its Causes and
Prevention", lJ~~ JJ, (1968), 915-922.

Discusses thr-ashing and points out interdependency
bet~een processor s~heduling and memory management.

Stor11e Hierarchy Systems

Of particulaL interest, he discusses the affect of
page traverse time Ton the efficiency (busyness)
of the procassor. He notes that "t<educiny T oy d
factor of 10 :::ould reduce the memory cequ1.remeut by
as much as 10, the number of busy processors neiny
held constant • • • or i nccease by 10 the number- ot:
busy processJcs, the amount of m~mory oeing held
constant." tle states that the 3b0/67 at
Carnegie-rtellJn Univecsity refcrted by Fikes §1 ~1
(3b] confir~s these projections. (Unfortunately,
the situations are not really analayous, in tdct,
foe the simple case implied by Denning, fiKes
comments th1t strictly replaciny the drum by a
smaller but faster LCS (large core stocag e)
"yielded only a t1odest impi:ovement". Major chanye.s
to the system were required to improve performduce,
these changes may even have improved th~ drum
version; thus, a scientific comparison can not ue
estdblished]. At the end, Denning briefly
speculates ~n reducing T by usiny a three-level
memory system and possibly using small page sizes
(since acces3 delay is assumed to be minimal for
the 2nd level store). He does not pursue this fOint
very far in tnis paper.

[29] Denning, Peter J., "Resource Allocation in Multiprocess
Computer Systems", ~LT Project MAC Beport MAC-TR-50,
Massachusetts Institute of Technology, Cambriuge,
Mass., (May 19id).

[30] Jick.inson,
Approach
181-186.

R.
to

v. and w. K. Orr, "System Ten - A New
(1970), ~ u l ti pr og r a mm in g " , f.!If~ 11,

[31] Durae, Melvin J., Jr., "Finding Happiness in Extended
Core", Datamation, (August 15, 1971), 32-34.

[32] Farr, ~illia~ w. and William E. Peisel, "An
Disc Jrganization for a Virtual Memory
Com,euter Design, (June 1971), ij9-54.

Oi-Jtimum
system",

[33] Femlin1, Don, "Hubber-band Memocy", Electronic Q!!iYB
11, (June 24, 1971), 6ij-68.

:34] Fetch, G. c., "~e~ory Organization and Hierarchies of

Stor~ge Hierarchy systems 146

Stocage Work.stiop", fQJ!.l!.Y!gI GrQ,YE 1!~~§,
1969,, 24-25.

(January

[35] Fields, Stephen, "Silicon Disk Memories Beat Dru~s",
Electrouics, (lhy 24, 1971), 85-86.

[36] Fikes, Richard E., Hugh c. Lauer, and Albin L. Vareha,
Jr., "Steps Toward a General-Purpose Time-Sharing
System Using Large :afacity Core Storage and
TSS/360", Pro=aedings of the 23rd ACM National
Conference, (1968), 7-18.

: 3 7] F'inch, Tudor R., "Semiconductcr Me1Bory", 12,_:1 ,!J;;EE
International Convention Qige2i, (~arch 1971),
272-273.

[38J Fotheringham, John, "Dynamic Storage Allocation in the
Atlas Computer Including an Automatic Use of a
Backing Store", ;,Acji ~, 10 (October 1961), 435-436.

An early papar that briefly describes the Atlas
system. ThouJh short, it presents the basic ideas
rather clearly. See the paper by Kilburn et al [57]
foe a more extensive presentation.

[31]]acJnec, w.
Direction",

01 vid, "Debate
Datamation 18, 1

~ives Peek at IBft's
{January 1972), 58-60.

:~2J J8ntile, Richari B. and Jcseph R. Lucas, Jr., "The
~J££ 38, {1971), TABLON Mass Storage Network",

345-356.

;dntile, Richard B. and Robert w.
Utility: Considerations for
Applications", IEEE Transactions
4 (December 1971), 848-852.

Grove, "Mass Storage
Shared Storage

g~ ~~gnet!CS !1.!Q::1,

['-'2] Gertz, J8ffr:-ey Lee, "Hierai:chical Associative .Memories
for Pacall0l :amputation", MIT Project MAC Report
MA:-rR-69, Ma,sachusetts Institute of Technology,
Cambridge, Mas:;., (June 1970).

Stor1ge Hierarchy Systems 147

[~3] .ioldberg,
Lincoln
28L-·)036,

Robert P., ttVirtual Machine Sy.::;tews", Mll'
Labori tor:- y :rec hnical Memorandum N u11be r:-
(August 1969}.

[44] :ireenes, R. A., A. N. Pappalardo, c. w.
Barnett, "A System for Clinical Data
f!!~~ J.i, (196 9) , 29 7- 30 5.

Marble, G. o.
Manayement",

[45] :iuertin, R. L., "Programming in a Paging EnviconmEnt",
Datamation 18, 2 (February 1972), 48-55.

Discusses proJCdrnming techni(jues "which ceducE the
working set Jt a program or reduce the probability
of requirinJ {Jdge s11aps". Primarily discusses
techniques ralat~d to array processing in iOhT~AN.

[~6] Hatcll, TheodJce F., Jr., and James B. Geyer,
"Hardware/Softwire Interaction on the Honeywell Model
8200", [J.~~ JJ, (196d), 891-901.

Describes t~a H82JO which incorforates hardware
controlled multiprogramming of up 8 Job processes
plus an axecutive process. Tbe hardwace
multiprogramming is accomplished by interleaveu
instruction execution of the (u~ to 9) active
processes; th3re is a separate set of processor
re1isters f~r each of the 9 processes. It is
claimed that the "horizontal multiprogramming",
besides eliminating conventional multiprogramwing
software ov3rhead, also provides greater 1/0
throughput. Referenca (30] should be exawined tor
an implemantatiou of hardware "vertical
multi pr og ramming 11 •

(~7] datfield, D. J. and J. Gerald,
for Virtual Memory", .!!H1
(1971), 168-192.

"Program Restructuring
!i.Y2ig~2 l2~£~! !Q, J

:~s] datfield, o. J., "Some Experi~ents on the Relationship
Between l?a~e Size and Program Access Pattern", IJH!
Journal of Research and Develo.,Ewent 16, 1 (Jauuary
1972), 58-bb.

Presents tne results of many experiments with paye
size and ac:ess patterns. Provides much ot the
empirical evidence behind tne "paye size" anomaly

Storige Hierarchy Systems 148

(i.e., decreising page size by halt can result in a
drastically increased faging 1/0 rate - sometimes
more tban d~uble). These results were based upon
instruction traces of real IBM System/360 programs.

[~9] rlobbs, L. c., "Present and Future State-of-the-Act in
Corn.puter Memories", Ili~~:.Il!~ EC-1~, 4 (August 1966),
534-550.

:53] Howard, Harry, "1amories: Modern Day 'Musical Chairs'",
~!H!l~srn, (August 15, 1971), 23-31.

[51] IBM, "IBM System/360 Time Sharing system, System Logic
summary, Pro1ram Logic Manual, Form Number
GY.28-2009-2, (June 1970), 17-22.

:52) IBM, "A Guide t~ the IBM System/370 Model 165", Form
Numb~r G:::.20-1733, (June 1970), 19-25.

~53] Jensen, J., P. ~ondrup, and P.
Allocation Schame for Algol 60",
1961), 441-445.

Naur, "A
£!£11 !!, 10

Storage
(October

Presents a design whereby the compiler, witn its
run-time support, handle multilevel management of
the ba=King store with the aid of "hints" trow the
pLogrammer. rhis is an examfle of one of the many
semi-automatic techniques for storage management
thdt have bean used.

C54J Johnson, n.
Dataillation,

R., "Needed:
(D~c~mber 15,

A Measure ror
1970), 22-30.

Measure",

~55] Kdtzan, Harry, Jr., "OperatinJ Systems Architecture",
2!!£~ 1§., (1970), 109-118.

L So J Kdtzau, darry Jc., "Storage Hieracchy Systems", SJ~~
1.§., (1'j71), 325-336.

L "57] t<ilburn, T., D. t3. G. Edwards, r'l. J. Lanigan, and f. H.
Sumn~r, "Ont-.:-level StocagE Systems", IEEE-TEC EC-11,
2 (April 1902), 223-:.u5.

Stor1ge Hierarchy Systems 149

(58] Lehman, Meir M. ind Jack L. RosenfelJ, "ferfcrwance of
a Simula tej Multi programming System", f'J~ ll,
(1968), 1431-1442.

:59] Lew, Art, "On Optimal Pagination
University of Hawaii Information
Honolulu, Hawaii, (May 1970).

of Prcgrams",
Sciences Report,

:o3] Levis, P. A. w. :1.nd P. c. Yue, "Statistical Analysis of
Program Reference Patterns in a Paging Envicoument",
Proceedings of the 1971 lEEE International Co!tiuter
Society Conference, (September 1971), 133-134.

[61] Liptay, J. s., "Structaral
Model 85: II• The Cache",
(1 9 6 8) , 1 s- 2 1 •

Aspects ot the systew/3o0
IBM systems Journal 7, 1

(62] ~artinson, J.
Time Sltaring
Development
(October 28,

R. 1 "Utilization of Virtual Memory in
System/360", IBM TR53.0001, IBM Systems
Division, Iorktovn Heights, N. Y.,
1968).

:63] !attson, R. ~., J. Gecsei, D. R. Slutz,
Traiger, "Ev:1.luation Techniques for
Hierarchies", IBt1 SY.2tems Journal .2,
78-117.

and I. L.
storage

2 (1970),

[64] ~attson, Richard L.,
Memories", Memorandum,
Jose, California, 1971.

,. Eval Ud tion
IBM Research

of Multilevel
Lab01:-dtory, San

Presents adiress trace analysis techniques for
two-level m~mory hierarchies (which use "stack"
replacement ilgorithms, e.g., LRU) that ace up to
1000 times fister than conventional simulation ~ee
also refecen=e (63]). He considers multiple classes
(i.e., set-associative constraint), various primacy
memory sizes and page sizes, and other factors,
such as cost and speed of technologies. A sample
analysis is illustrated. Although it is a powerful
technique, Mattson•s analysis described in this
paper and reference (63] is not immediately
applicable to multiple level memories (i.e.,

Stor3le Hierarchy systems 150

varies and
or if an

used, such as

thr:ee-levels or more) if the page size
is subsetted between the levels
"non-stack" replacement algorithm is
"tuple-coupling".

[6 5] ~ eade, Robert M., "On Me110 ry Systea Design", fJCC]__:,
(19 7 J) , 3 3- I+ 3 •

This is a very extensive survey of storage
hierarchy systems. Meade presents varicus diagrams
indicating trade-offs between block size, butter
store size, tr~nsfer rates, processor utilization,
etc. His dita also illustrates the "page size
anomaly" although h~ doesn't explicitly coa ■ent
upon it. Ha investigated three level stcra~e
hierarchies based upon extending cache systems and
stated that: "By anctlysis like that above, the
block size for a third-level should be from one to
eight second-level blocks. Preliminary results
indicate that a 4:1 ratio (256 bytes at the third
level) is be3 t."

[~6] ~eade, Robert M., "How a Cache Memory Enhances a
Co11puter•s Performance", Elgct~ll.!.£§, (January 17,
197 2) , 58-6J.

[57] :!'!eyer, R. A. ani L. H.
Time-Sharing System",
(1970), 199-213.

Seawright, "A
!.]A §;tst~a

Virtual Nachine
ililUCl!il 2, 3

:&a] ~orenoff, Edwar:d and John H. McLean, "Application of
Level :hanging to a Multilevel Storage Organization",
~!fl! lQ, 3 (t1acch 1967), 149-154.

[59] ~yers, Edit~, "de Dreams the Imfossible Dream ••• or
Does He?", Datamation, (July 1, 1971), 52-53.

[73] J'Neill, Robert w. and Burnett H. Sams, "freplanned vs.
Dynamic Stocaga Allocation Techniques", ~!CM !!_, 10
(October 1961), 416-418.

An early discussion that comfares and contrasts the
techniques of preplanned and dynamic storage
allocation. Preplanned techniques are based upon
information aither provided by the programmer or

Stori1e dierarchy Systems 1 5 1

the compiler. Dynamic techniques assume that the
storage allocation is handled frimarily at run-time
by the operitinJ system. Hore recent debates on
this subject can be found in Denning (26] and Sayre
[11].

L71] ~enny, Samuel
Alston-Garnjost,
System", f~ff lI,

J., tlobert Fink,
"Design of a Very
(1970), 45-51.

and
Large

Margaret
Storage

[72] aa11a11oorthy, c. v. dnd K. M. Chandy, "Optim~zaticn of
Memory Hierarcllies in Multiprogrammed systems", ~!fl'.!
11., 3 (July 1970}, 426-445.

:73] liandell, B. ani c. J. Kuehner, "Dynamic Stcrage
Allocation systems", £A~£! 11, 5 (May 1968), 297-306.

[74] Rector, Robert w. and c. J. Walter,
Anotber Generation Gap?", Mo!!~!:!! ~!.a,
42-48.

"The Fourth
(March 196Y),

Presents the problems of designing the next
generation of machines. Briefly discusses the
importance of a memory hierarchy and speculates on
the technoloJies that will be available.

(75] Rice, Rex and William R. Smith, "SYMBOL - A majoc
Departure Prom Classic Software Dcminated vcn Neumann
Computing systams", §if£ 3l:3, (1971), 575-587.

(76] Rosin, Robert P., 11 CcntemForary Ccncefts of
Microprogramming and Emulation", Co~uting Surve,:ts 1,
4 (December 1969), 197-212.

[77] Sayre, D., "ls Automatic 'Folding• of Programs
Efficient EuouJ~ to DLsplace Manual?", £!£tl ll, 12
(December 1969), b56-660.

[78] Seligman, Lawren:a, "Experimental Data for the WorKing
Set Model", MIT Project MAC Computation Structures
Group Memo Number 39, ~assachusetts Institute ot
Technology, Cambriige., Mass., (March 1968).

Stor1ge Hierarchy systems 152

:19] Shahbender, R., "Magnetic Memories - Present Status and
Future Trends", 1971 IEEE International ~.Q!!~DtiQ!!
Qj,g~§!:., (March 1971), 274-275.

[30] Shooman, Martin L., "Notes on Computer Hardware,
Softijare, and 5ystems Reliability", HIT IAP Seminar:
Computer Architecture, Department of Electrical
Engineering, C1mbc-idge, Mass., (January 7, 1972).

These are n~tes on various asfects of reliability
that were used as part of an MIT seminar on
computer architecture. In particular, there is a
section on software reliability and the "nature of
bugs", A few storage system related problems are
meutioned.

L 31] smith, John L., "Multi programming Under a Page on
Demand Stcate:11 11

, ~l~li 12., 10 (October 1967),
636-646.

[j2J Smith, William R. et al, "SYMBOL - A Large Experimental
System Explorin~ Major Hardware Replacement of
Softwat'e", ~if~ J§., (1971), 601-616.

~~3] Solomon, ~at'tin B., Jr., "Economics of Scale and the
IBM System/360~, £Afl 2, 6 (June 1966), 435-44C.

[84] Sumner, F. H., "Jparand Accessing in the MUS Computer",
Proceedin~s of the 1971 International CO,!l£Uter
Society Confarance, (September 1971), 119-120.

[:35] rhompson, Steve, Ja~k A. Morton, and Andrew Bobeck,
"Memories: Fut11I."e Storage Techniques", Th~ ~!~xtronic
~!Hl!.!HH!£, (August 1971), 33-39.

~86] ~acian, L. c. ani E. G. Coffman, "An Empirical Study of
the Behavior of Programs in a Paging Environment",

(37] ,alter, Cloy J., Arline Bohl Walter, and Narilyn Jean
Bohl, "Impact of Fourth Generation Software on
Hacdwat'e DesiJn", IEEE Computer G£O.!U~ NeJ!§, (July
1968), 1-lJ.

Storige Hierarchy systems 153

[38] Wilkes, M. v., "Slave Memories and Dynamic Storage
Allocation", !ii!;~-Tj~ 1~, 2 (April 1965), 270-271.

~39] iilliams, John G., "Large-Core Storage in Perspective",
£21.eY.tgI D0§!.slll 11, 1 (January 1972), 45-49.

[~l] Woolf, Ashby Morefield, "Analysis and Optimization ot
!ultiprohraamei Computer systems Using storage
Hierarchies", University of Michigan, Ano Arbor,
Michigan, Systems Engineering Laboratory, SEL
Technical Repoc-t Number 5 3, (April 1971) •

Stor1ie Hierarchy Systems 154

dIOGRAPdICAl NOTE

Stuart Elliot Madnick was born in Worcester,
~is5a=husetts, on July 10, 1944. He attended public schools
tnere, graduating from Classical High School in ftay, 1962.
H3 2atered the Mass1=husetts Institute of Technology in
September, 1962, where he studied Electrical Engineering,
r~cei~ing the degree of s.a. (June, 1966). In December,
1J6~, he married the former Elthel J. Westerman of ~alden,
~iss. They have two children, Howard Jon and !ichael
AndC"eli.

In Septe~ber, 1907, he entered the M.I.T. Alfred P.
Slo~n School of Mana1ement, where he studied Management
Sciences anJ Computer Science in conjunction with the ft.I.T.
D~partment of Electci=al Engineering, receiving the degrees
ot S. M. , Management, Hld S. M., Electrical Engineering (June,
19611.

Mr. Madnick joined the staft of the ft.I.T. Electrical
Eagiu~ering department in September, 1966, as a teaching
1ssistant; in July, 1371 he became an Instructor. He has
tiuJht sev~ral computer science courses in addition to
i:1. I. r. 's pr-inc ipal systems programming course (6. 251) • In
1J6j ~e was a recipient of the Carlton E. Tucker Avard for
Exc?llence in TeachinJ.

At M.I.T., Mr. Midnick has been engaged in various
computer-related projacts for the Student Aid Center, Civil
~nyinaering Department, Mechanical Engineering Department,
1u d the Computation ~enter. In June, 1968, he became
ass3cidted with M.r.r. Project MAC, where his research in
operating system design, computer architecture, programming
lanJuages, and software engineering formed the basis of his
doctoral dissertation.

~r. Madnick h1s been a consultant to the IBM
~or~oration since 1956. He assisted in the development of
tbe IBM 360/40 ani 360/67 CP/CMS Virtual Machine
rime-Sharing projects. During the summer of 1967, he vas an
A3sociate Engineer it the Lockheed Palo Alto Research
Liboratory, where ne designed and implemented the control
~~dul~s for the Lockheed/NASA DIALOG information retrieval
syst~Jl.

Stor11e Hierarchy systems 155

~r. Madnick has consulted to the lBM cawbridge
Scientific Center, the Lockheed Palo Alto Resedrch
Laboratory, the doneywell Programming systems Division and
Honeywell Advanced Systems and Technoloyy Oryanization,
M3rtia-Marietta Co., Naval Underwater Systems center, and
INTER:OftP, Inc. oa the iesign of multi-terminal multi-access
computing systems.

lir. Madnick
Electrical and
Association for
raviewer for the

is 1 member of Sigma Xi, the Institute of
Electronics Engineers (IEE~, and the

Coapating Machinery (ACM). He has be~n a
A~A ;~!.£~ti~ ~~i!~~2 since 1969.

Publications

Kadnick, S.E., "String Processing Techni~ues",
~2!!~a!£gt!2il§ Ql 1~~ !f&, Vol. 10, No. 7, July 1967.

~3dnick, S.E., and Moulton, G.A., "SChIPT, An Online
M~nascript Processin~ System", IEEE Transactions Q~
~!!Sl!!lU!.Iing_ iriting and s,2eech, Vol. EWS-11, No. 2, August
1968.

fhdnick, s. E.,
f£Q£~~~iRi2 Qt 1~~
1968.

"Multi-Processor Software Lockout",
122~ ACK]at.i,.Q~l ~.Ql!fe~£g, August

eadnick, S.E., 11 Tima-5haring Systems: Virtual Machines
C:>ncapt vs. Convention al Approach", ~Q.4~ Q~ll :1ll?t~.!!§,
V:>l. l., No. 3, March 1~69.

Madnick, s.E., and Alsop, J.W~, "A Modular Approach to File
System Design", Proceedings .Q! !!!,g 1.2.&.2 SI?r,i_gg 4.9~!!1
Comeuter Conference, Vol. 34, May 1969.

l'hdnicit, S.E., "MIS - Problems Plus A Solution", f.QJ!!H!_gf.
!~£~! i~£2£t, Vol. 1, No. 4, July 1969.

M~jnick, s.E., "Design Strategies fer File systems: A
Working Model", File 0£9.anization - ~el~~ll.s! Pa.12,gf§ FrQJ!!
r!~~=~~. IFIP Admini3trative Data Processing GrOUf (lAG),
Publi~ation No. J, l~o'L

Madnick, s.B., and Alsop, J.W., "A Modular Approach to File
System Design", I!§ JM~£1~,ll, IFIP Amsterdam, Vol. L, No.
J, 196 9.

!h:iriick, s.e., "What Li Microprcgram11ing? 11 , ££2£~.Q,in_g§ -2!
~~~ !~ll COll£Uter Confarence, September 1971. 





Scanning Agent Identification -Target 

Scanning of this document was supported in part by 
the Corporation for National Research Initiatives, 
using funds from the Advanced Research Projects 
Agency of the United states Government under 
Grant: MDA972-92-J1029. 

The scanning agent for this project was the 
Document Services department of the M.I. T 
Libraries. Technical support for this project was 
also provided by the M.I. T. Laboratory for 
Computer Sciences. 

darptrgt.wpw Rev. 9/94 



CS-TR Scanning Project 
Document Control Form Date : J I IS: I ?C 

Each of the following should be identified by a checkmark: 
Originating Department: 

D Artificial lntellegence Laboratory (Al) 
)( Laboratory for Computer Science (LCS) 

Document Type: 

X Technical Report (TR) 

D Other: 

D Technical Memo (TM) 

-----------
Document Information Number of pages: /r;-6Q ld-:·i'm"(;Fs) 

- Not to include DOD forms, printer intstructions, etc ... original pages only. 

Originals are: 

□ Single-sided or 

)8( Double-sided 

Print type: 
D Typewriter O Offset Press 0 Laser Print 

Intended to be printed as : 

□ Single-sided or 

~ Double-sided 

D InkJet Printer )&:,_ Unknown 0 Other: ______ _ 

Check each if included with document: 

~ DOD Form ( J.) D Funding Agent Form D Cover Page 

D Spine D Printers Notes D Photo negatives 

D Other: ------------
Page Data: 

Blank Pages(by page numbe<):. __________ _ 

Photographs/Tonal Material (by page numbe<):. ________ _ 

Other (noCB ~-num1>er1: 

Description : Page Number: 

"IlhA(if m&(f ~ (/. / S{) U,f\/-feFD Ti TU ~A6'r; J J.- JS~ 

l1 &lt1@ BLJ;iN I< f IJ CX . 

Scanning Agent Signoff: 

Date Received: sb_/ IS-/ 9C Date Scanned: _}__1_!j_1J.J__ Date Returned: 5' I.!.!__; C/f: 

Scanning Agent Signature:. ___ ~.....,.;._-~k"""""4.,1<'4....,J-.tJi .... 1J ...... 1..;;;~~-•---
R"" 911M DS/LCS Document Contro4 Fonn csuform. YSd 



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5 10 

1111111 11111111111111 111111111111
1
1

111 
111111111111 Ill Ill llllllili11 ::

1

111111111111 II 111111111111111 : 1111111111111 11111111111111111 11111111111111 111111111111:i!:: :!
1
111111111111 111111 111111

1
:
1 1

~/i/111111 

~ l\11111 ~ 

:::::::: --- -- -- -- -:::::; ~ 

~ 1/1111~ ~ 

1

::

1

:: 11111

2
·
8 

11111

2
·
5 

,:
1
i 11111

3 2 
I 2.2 

,,Z 11111
36 

II~ :1111}.£ II 1cQ_ 

111111.
8 

11111 I.A 111111.
6 

NMA MICROFONT QJKLPYZ 
6BSl2GHSD4X7UlW8V9E · 
PQR4SDE9UV670FG8STHIUNOWXABYZ 500 - -~~ 
1 K L M I 2 C : _ n _ - •· . · , " . - • c " "' " 300 = ,:, -

250 
200-

A B C D E F G H I J K L M N O P Q R S T U V W 150 -

. X Y Z a b c d e f g h i j k L m n o p q r s t 125 
-

100-
uvwxyz0123456789 OCR-B w-

so-

ABCDEFGHIJKLMNOPQRSTUV ,o

WXYZabcde fghij klmnopqr 60
-

stuvwxyzl234567890PICA 5o-

ABCDEFGHIJKLMNOPQRSTUVWXYZ 
abcdefghijklmnopqrstuvwxyz 40

-

1234567890 Elite 

ABCD Ef-GH UK L M NOPQRS T UVWX YZ 

obcdefgh 11 kl m 110pq r;luvw)(yz 

123456/890 Spartan Medium 6 pt 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 
abcdefghij kl mnopq rstuvwxyz 

1234567890 Spartan Medium 8 pt 

"l,,d,·fyl,,,,,,,,,opq•>l<.vw,yz 

123~567890 S,m,lrn, Md,u,,, ~ µI 

- ------=----

65 
I ~~ 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 
abcdefgh ij kl mnopq rstuvwxyz 

120 ~~ 

IEEE Std 167A-1987 °'~~ ,~ * 
~ ~ "',J/fy,, #~ 

l 234567890 Spartan Medium l O pt 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 
abcdefgh ijklm nopq rstuvwxyz 
l 234567890 Spartan Medium 12 pt 

,~ "~~"(~' 
Prepared by the IEEE Facsimile Subcommittee and printed by C) ,~ '\.., (~ c., 

l:astman Kodak Company. Lse in accordance with IEEE Std 167- ~
1 

~ 
1966, ·rest Procedure for Facsimile. Copyright 1987, Institute ol ,~ 
Electrical and Electronics Engineers. ~ 

FACSIMILE TEST CHART 

- -----~· - --



■ i 
1123456 

4 
5 
6 

4 PT 

6 PT 

8 PT 

10 PT 

AIIM SCANNER TEST CHART# 2 
Spectra 
ABCDEFGH IJKLMNOPOHSTUVWXYZabcciefgh•Jklmrmpqrstuvw~yz , /?$01 23456789 

ABCDE FG H IJ K LM NO PQRSTUVWXYZabcdefg h1jkl mnopqrstuvwxyz;:' ',./?SO 123456 789 

ABCD EFG H IJ K LM NOPQRSTUVWXYZabcdefg hij klm nopqrstuvwxyz;:' ',./?$01 23456789 

ABC DE FG H IJ KLM NOPQR STUVWXYZabcdefgh ijkl mnopqrstuvwxyz;:'',./?$0123456789 
Times Roman 

4 !'I AB('DEFCJ!l!JKLMJ\iOl'QR~TUVWA YL,t>cJefgh,Jklmnr,l"l''tu,v.~,,, ··, /''S012.14)6~H': 

6 PT 

8 PT 

10 PT 

ARC:DEFGHIJKLMNOPQRSTUVWXYZabcdefgh,jklmnopqrstuvwxyz::",J"SOl23456789 

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:'',./?$0123456789 

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",,/?$0123456789 
Century Schoolbook Bold 

4 PT ABCDEFGHI,IKLMNOPQRSTUVWXYZabcdefghijklmnopql"!ltuvwxyz;:",. ?SOJ234567H9 

6 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:'',./?$0123456789 

8 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789 
10 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$012 '156789 

I Vi 

6 PT 

8 PT 

IO PT 

'"' 6 PT 

8 PT 

10 PT 

123456 

MESH 

65 

85 

100 

110 

133 

150 

U// JU.I (,///}Al ~1\0l'QH~' ! / ) If \ )/11/"d'j1'hrjl,/,//w,/"lr,11n ri, 1~ 

4HCDEFG/I !JK UWiVOPQR STU VW X Y/,abrdefKhiJklmrwpqr.\l11nnyz:: ·· . ./..,,SOJ :n 1.)6 789 

A HCDEFG!IIJKLl',INOPQRSTU VWX Y:/,,bcdPfghijklmnopqrstunnyz;: •:.1°S0123456 789 

A BCDEFGHIJK LMNOPQR STU VWXYZabcdefghijklmnopqrstuvwxyz;: '",./?SO 

Greek and Math Symbols 
A Br .'.IF:;::Al\l K '\M'\JOll<i>PL I 'H)Xq1Ln/3y8t~l!71,...:Aµvu1rd,p,,-n'11Xi"'. , '> ,· ' 

ABr/iFC:0Hl KAMNO!!<l>P:l:TYflX'l'Za{Jy8,~07J<KAµvu,,-<l,pa-rvwxvG~+",. / ;';± ~-!--°> <:l»J: ✓, 
ABr~E=0HIKAMNOII<t>P.lTYDXIJIZa/3yllE~07JiKAµvo1r<ppCTTVWXl/l[=~+",. / ~+ if 0 > <J><t><= 
ABr~E'.=:8HIKAMNOII<l>PITY!1X\IIZaj1yoE~lh7LKAJ.LV07T<ppcn xiH> +",.I<+ =* 0 > <::J><t>< 

White Isolated Characters 

□ 
6543211 

A4 Page 6543210 

A4 Page 6543210 

6543210 
6 
5 
4 ~-


