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ABSTRACT 

rhe relationship betveen page size, program behavior, 
and pige fetch fcequancy in storage hierarchy systems is 
f~rmalizei and analyzei, It is proven that there exist 
cycli= program reference patterns that can cause page fetch 
fre~uancy to increase significantly if the page size used is 
lacce:1sed (e.g., r-e:luceci by half). Furthermore, it is 
proven in Theorem 3 that the li11it to this increase is a 
linear function of primary store size. Thus, for example, 
ou a typical cucrent-liy paging system with a large priaary 
~tore, the number of page fetches encountered during the 
2xecution of a progrim could increase 200-fold if the page 
size were redu~ed by ~alf. 

rhe concept of temporal locality versus spatial 
lJcality is postula.tad to explain the relationship between 
p1ge size ani progr1~ bemavior in actual systems. This 
~3n~e?t is used to develop a technique called the 
"tupl?-coupling" appr3¼ch. It is proven in Theorem 5 that 
~hen used in conjun:tion with conventional hierarchical 
stoc~Je system replacement alg3rithms. tuple-coupling yields 
tae henefits of sm¼ller page sizes without the dangers of 
axplosive page fetch iCtivity. 

:onsistent with the results above and by generalizing 
~~nventional two-leval storage systems, a design for a 
1ener1l multiple lavel storage hierarchy system is 
presented. Particul¼r algorithms and implementation 
tachni1ues to be used are discussed, 

TrlESIS s UPERVISOR: Jahn J. Donovan 
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CHAPTER 1. 

INTRODUCrION AND PLAN OF THESIS 

1.0 Introduction 

rhe primary ~oal of this thesis is to provide insight 

into and shed additiJnal light on several key problems in 

the design and analysis of general storage hierarchy 

systens. 

rhe importance of cesearch in stcrage hierarchy systems 

his baen pointed out by Prof. F. J. Corbatb recently in the 

ctir Project MAC Prograss Report VIII (July 1971): 

"By now, it has become accepted lcre in the comfuter 
system field th1t use of automatic management 
algorithms for memory systems, constructed or 
saveral levels with different access times, cau 
provide a significant simplification of programmin~ 
effort. ••• Unfortunately, behind the mask ot 
a=ceptance hides a worrisome lack of knowledge 
b3hind how to en~ineer a multilevel memory system 
with appropriate 1l~orithms ~hich axe matched to the 
lJad and hardwace characteristics." 

On multiple level storage hierarchies, Prot. J. H. 
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S:1.ltzer w,1s even more explicit (subject notes 

"Information systems", Mir, 1972, p. 4-58): 

"An interestin~ problem arises if one has thcee or 
more technologies to deal with. ••• The pcoblem of 
predicting the performance of a three level, 
automatically manag~d system is not at all well 
understood. • • • Alt hough the need for more than one 
level has already been acgued, there is currently no 
k1own criterion foe introducing three, four, or N 
levels for a given system. ••• Although there are by 
n~w many implementations of two level memory 
systems, the dyna~ic management of a three or more 
level memory system is such an uncharted area that 
there do not yet exist examples of practical 
algorithms which one can examine." 

10 

on 

rhe specific goals and acccmplishments of this thesis, 

wai:n are further elaoorated later, are: 

• Analyze the affect of certain parameters, such as 

page size, upon the performance of a storage 

system. 

• Develop a concept of locality based upon both 

spatial an:i temporal adjacency l.Il address 

~eference p~tterns that exflains certain dnomalies 

discovered in dctual paging systems. 

• Propose, formilize, and measure the pertormance of 

naw "spatial-removal" storage management 

algorithms, iu particular "tuple-coupling". 

• Design practical algocitha for ettective 
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management of multiple level storage hierarchy 

systems ani demonstrate its effectiveness under 

some simulated system loads. 

rhe key plan of this thesis is to investigate several 

cc~ci1l problems and requirements of multiple level storage 

hie~ttchy systems. P1rticular areas are identified and 

corce3ponding theories developed and proven. A new and 

1ane£al design for storage hierarchy systems is also 

presented and evaluated. Finally, empirical measucement~ are 

presented to validate tnd calibrate the overall design and 

specific theoretical :onjectures. 

rhis thesis is organizationally aivided into 8 

cbaptars. The structure can be best introduced by outlining 

tbe content of the following chapters in the sections below. 

1.3.1 Chapter 2: Motivation for Storage Hierarchy Systew~ 

rhis chapter presents a perspective on the storage 

hierarchy problem and tne motivation for such systerus. It 

is primarily written for the benetit of people knowledyeable 

in tha general computer field but vho are not especially 

experienced in storage hierarchy systems. For the expert 
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realer, this chdpter exposes the biases and orientations ot 

tne author and tnus sets the tone for the remainder of the 

t~esi5. This chapter ilso briefly reviews the history of 

r~search in storage systems and cites numerous references. 

1.3.2 Chapter 3: Form~lization of Storage Hierarchy Systems 

description and formalization of the basic 

=nara:teristics of storage hierarchy systems is presented in 

t~is :hapter. This is followed by a summary and critical 

~nalysis of research that directly relates to the specific 

1~als of this thesis. 

1.3.3 Chapter 4: A Storaye Hierarchy System 

Iu this chapter the key concepts of the proposed 

3torage hierarchy system ace presented and discussed. The 

prin:iple and novel techniques ace briefly described below: 

1.3.3.1 Continuous Hierarchy 

rhe ratio of p3rformancc between adjacent levels is 

Kept woderate (e.g., a factor of 100 or less) to minimize 

lis=ontinuities or awkward special-case algorithms. This is 

i1 ~~ntrast to many current systems with inter-level ratios 

of 10)0 or ~ore. 
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1.3.3.2 Shadow Storage and Page Splitting 

Information is transferred in decreasing smaller size 

blocks as it is passei up from low performance levels of the 

hierarchy toward the "reguest generator" at tbe uppermost 

level. Thus, the information that is finally received by the 

raque3t generator ha5 left a "shadow" behind in the lower 

levels. The significan=e and rationale for this technique is 

f~rther elaborated in Chapter 6. 

1.3.3.3 Automati= ~anagement 

In order to redl.l:=e the 

aad provide for more afficient 

function 

load on the central processor 

and parallel operations, the 

will be distributed and stor¼Je management 

incorporated into 

lavica controllers 

tha storage levels (e.g., 

( 1 ], etc.) • 'Ibis technique 

"intelligent" 

also reduces 

tne ~omplexity of the operating system software. 

1.3.3.ij Direct Transfer 

Storage transfers between two adjacent levels need not 

~1ve any effect upon aoc require the assistance ot any other 

lavels (e.g., there is no need to move information from 
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level n to level 1 1nd then frcm level 1 to level n-1 if 

only level n to level n-1 was needed; this two step process 

is often required on =ontempocary systems). Direct transfer 

i3 a;complishej by synchronizing non-mechanical storage 

Jevi=as or by usin~ "rubber-hand" buffers [33] between 

ale=tro-mechanical storage devices. 

1.3.3.5 Read Through 

Storage transfec3, as noted above, are only made 

b~twean adjacent levels of the hierarchy, such as from level 

n to level n-1. But, each level, such as level n-1, can 

=~nne;t its input bus {from lower level n) to its output ous 

(to ~igher level n-21 so that the data can be~~ !~£2.!!~h 

(i.e., transferred to level n-2 while being stored in level 

a-11. A similar, though specialized, technique is already 

u3ei in certain systems, such as the IBM system/370 ttodels 

155 and 165 cache systems (52]. 

rhis results in performance similar to a direct 

=~nue=tion from each level to the request generator but it 

p~oviles much more coutrol in the storage levels and a much 

simpler structure. 
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1.3.3.6 Store Behind 

By using the excess capacity of the inter-level 

=1annals, there is a :ontinual tlow of altered data trom tne 

hignec levels to the lowest level permanent storage. Thus, 

t1e actual updated information is stored behind (after) the 

3toce initiation fro~ the request generator. The updated 

i1forDation is propagited down, level by level. Whenever 

iiforDation is alterej at a particular level, it is ta~ged 

as altered dlld is schaduled for a "store behind" operation. 

1.3.4 Chapter 5: Analysis of Page Size considerations 

)ne of the most important parameters of a storage 

hieracchy system is the page size chosen as the unit of 

transfer between two levels of the hierarchy. ln this 

=aaptar, the factors influencing page size are examined from 

the ievice characteristics viewpoint and the prograw 

oahavior viewpoint. 

Jf pacticular concecn, it has been noticed by Hatfield 

[t7] and Seligman [78] and formalized in Chapter 5 that: 

"rhece exists a page trace, 
FIFO-removal or LRU-removal 
srstems, s ands•, with page 
respectively, su~lt that the 
frequency f' to f exceeds 2." 

P, and demand-tetch 
inter-level storage 
sizes N and ~•=N/2, 

ratio, r, of fetch 
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rbis rasult runs counter tc the hoped for behavior of 

lacreased page sizes 1s noted by Denning (25]: 

~ ••• small pages permit a great deal of 
without loss of afficiency. Small page 
yield signific1nt improvements in 
utilization ••• " 

compression 
sizes will 

storage 

In tbis chapter the significance of this problem is 

Jamon~trated by proving that even "well-behaved" removal 

1lJ~rithms, such as stac~ algorithms (63], are not immune to 

tnis 1dverse performan:e behavior. Furthermore, the nature 

ot this phenomenon i3 1nalyzed and bounds on its behavior 

dre Jeveloped. 

1.3.5 Chapter 6: Sp1tial vs. Temporal Locality Model of 

A primary rationale for hierarchical storage systems is 

b1sed upon the ''Principle of Locality". Unfortunately, this 

principle is still 1 poorly understood, or at least 

~~ntroversial, phenomanon. It is difficult to determine the 

"discoverer" of this principle but it is 

iltacasting to note thit its definition has changed in time. 

F~r aKample, Denning [29, p.3], in 1968 loosely described 

l~cality as: 
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"the idea that a computation will, during an 
iBterval of time, favor a subset of the information 
available to it." 

17 

Liter, in 1970, Dennin~ [26, p.180] aefined it more 

pre=isely based upon the concepts of "working set" and 

•reference density", which for a page i at time k: 

a (i,k.) = Pr(reference r(k)=i], 

s1ca taat R(k) is tae ranking of all n pages based upon 

a (i,k); thus: 

"l?RINCIPLE OF LJCALITY: 'Ihe rankings B (k) are 
strict aud the expected ranking lifetimes long." 

rnis is a much more restrictive definition of locality than 

ais earlier general concept. 

In fact, many current storage management systems were 

devised first, a general model was then constructed to 

las~ribe tbe system, and finally a "formal" definition of 

l~cality was developad to be consistent with the storage 

mina~ament raoiel. Thi~ is a reasonabie stLategy as long as 

t~e underlying concepts of "the principle of locality" are 

u~t l~st in tbe pro:ass. Unfortunately, this appears to 

niv~ happened on several occasions. In particular, most 

p~pllar definitions of locality tend to be useless tor 

analyzing or exp lainin 1 either the relation5hi p of pa g~ size 

upon program behavior or the impact of generalizin~ from 
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t,o-lavel 3torage systems to multiple level hierarchical 

stora~e systems. 

In this chdpter 1 new view cf locality is presented (or 

au ~11-viev resurrectai since it most closely resembles some 

3f t~a very early des~riptions of locality). In particular, 

it is shown that tha general concept of locality can be 

subdi~ided into two separate factors, tempora! localil1 and 

sgatial locality. Thase concepts are defined and justified 

and then used to explain some peculiar phenomena 

(nanomalies") observei in actual two-level storage systems. 

By means of address traces and storage system 

simplifications. the tamporal and spatial locality behavior 

ot actual programs i, emperically measured. These results 

are U5ed to reinforca ani calibrate the storage hierarchy 

syste1 design presentai in Chapter q. 

1.3.b Chapter:

Algor:-ith11s 

7: Spatial Removal stor:-age Management 

Various hierarchf storage management algorithms, such 

iS tetch (e.g •• demand-fetch} and temporal removal (e.g., 

tirst-in first-out (FIFO), least r:-ecently used (LRU), etc.) 

hive oeen developed, primar:-ily for two-level hierarchies. 

r~ece appear to be no spatial removal algorithms described 
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i1 t~a literature. Bised upon Chapter 6, several spatial 

algorithms are proposed and analyzed. 

It is also shoan tnat some cf the problems aescribed in 

:napter 5 can be solved by spatial removal algorithms. In 

particular, Hatfield :ije) noted that: 

"1s yet we have been unable to prove that there is a 
replacement alyocithm usin~ only the past history ot 
page requests whi~h cannot generate more than twice 
tbe exceptions with half size pages." 

In this chapter i new algorithm, named tul?l,~.=£.Q~Elin3, is 

presentei. It is formally proven that it satisfies 

tlitfield's re~uirements above. 

Furthermore, the ~perational behavior of tuple-cou~ling 

is analyzed by measurin~ the performance of actual programs. 

1.3.7 Chapter 8: DiscJssion and Conclusions 

In addition to i general summary of the siynificant 

aspects of the thesis, this cha~ter also outlines iwpoctant 

areas foe future ceseirch. 
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CHAPTER 2. 

THE STJdAGE HI~RARCHY PROBLEK 

2.0 Introduction 

rhe evolution of computer systems has been marked by a 

~ontinually increas1n1 demand for faster, larger, tnd more 

~~ononical storage f1~ilities. In addition to the obvious 

~on~ern for better performance, the organization of a 

computer system's storage plays a key role in program 

development and progrimmer efficiency. It has often been 

~laimed that "any software design blunder can be overcome by 

ddding more memory". 

It has becoma ge~erally recognized that the cont1icting 

~equirements of ni~b-performance yet low-cost storage may be 

best satisfied by 1 mixture of technologies combing 

~xpeu3ive aigh-pertormdnce devices with inexpensive 

lower-perfor~ance devi~es. This strategy hds been given 

"hierarchical storage system", 

11 1utomatic multilevel storage management", "virtual memory", 

and t~e inevitable "virtual memory system tor the automatic 

multilevel management of a hierarchy of storage devices". 

ln tnis thesis the somewhat shorter term §tO£~g~ hi~£!!££hY 
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Investigations into 

techniques can be triced 

~utcmated 

bacK more than 

storage hierarchy 

a decade. If we 

W3ra to include manuil tecbniques, we would fiud storage 

hier¼cchies it the very dawn of the "computer age". 

crnfort~nately, there are still many unsolved and poorly 

understood problems. rhis situation can be partly exflained 

oy tha fact that th~se systems tend to be (1) extremely 

complex, (2) ill-suited to most conventional analytical 

tacai1ues, and (3) deeply influenced by the rapidly evolving 

c~aputec technology which keeps "changing the ground rules" 

it often frightening rates. In spite of these challenging 

stumbling blocks, a successful storage hierarchy system is 

30 i~portant to the future usefulness of computer systems 

that we cannot afford to abandon the search. 

2.1 Stoca~e Hierarchy Jbjectives 

8efore delving into details, it is worthwhile to 

briefly consider the aeeds and uses fer an effective storay~ 

hierarchy. 
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2. 1.1 system Perfocmance and Economics 

logic tecanology 

tacllniques have adva[lced, we 

and 

have 

~codu~e systems of in:redible speed. 

in terms 

computer 

found it 

architecture 

possible to 

Such systems are otten 

of MIPS (millions of 

instcuctions per: 

crudely, 

seconi). 

iUP:i llave been devel::>ped 

Experimental system of 

(e.g., ILLIAC IV and 

over 100 

CDC STAR). 

~ven "conventional" l1rge-scale systems have passed the 5 or 

1) MIPS mack (e.g., CDC 7600 and IBft 370/195). It has long 

.!::>~en observed thal the input/output (I/0) requirements, 

e5pe~ially foe "seconl1ry storage", of a conventional system 

tani to be strongly related to the processoc's speed. In 

t1ct, based upon scvec1l empirical measurements, it has been 

p::>stulated that a computer system averages 1 bit of I/O for 

~fecy instructiou exacuted (this is often referred to as 

A.1danl 's :onstant Leef]). As a result, many of these 

nigh-?erformance systa~s have been confronted with massive 

o~ttl~neck problems in the I/0 area, especially since these 

I/0 demands tend to o~cur in bursts. An effective storage 

hierarchy system coull yo a long way toward reducing this 

problem. 

At the other end of the spectrum ~e 

low-cost processors, the latter are 

find that medium

usually called 

mini-=om~utars, have ~ade suostantial advances in recent 
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yaars. The term "mini" cdn be quite misleaJiny. Tnese 

procassors are typically huudreds of times taster than the 

e1rly commercial compJters at a fraction of the cost (e.g., 

tme UNIVAC I, circa 1951, could p2rform about 2000 12-digit 

aiditions pee se~oni whereas contemporary mini-computers 

3pecate at around 1,)JJ,000 5-digit additions fer second). 

Alth~Jgh these mini-processors may be midgets ccmfared to 

the computational pcoblams attacked by their "big brcthers'' 

jas=ribed above, they ace wore than adequate for the vast 

majority of infomatioa processing problems which have modest 

~~mputational requirements. 

1nd economias of scale 

Due to technological advances 

result in~ from large-scale 

?rodu~tion, some minicomputers are available for less than 

$20~0 with slightly slJwer micro-computers being offered for 

~5 little as $66 l 18]. Ia spite of these technological 

alvanc~s, these processors have not bad much impact en most 

inf~r~ation system naeds due to the continuing economic 

problam of producini large capacity inexpensive storaye 

~evicas even at the modest pertormance required. A jb6 

processor is largely irrelevant if the storage costs ace in 

tne $100,000 or mora range. By developing an effective 

5tora~e hierarchy system, we can go a long way toward 

uriuging the stocage costs down to the lev~l ot these 

1nexpansive processors. As a result, a tremendous number of 

currently 

proce~sing 

known 

problems will 

solutions to 

finally become 

information 

economically 
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faa5ible solutions. 

2. 1.2 Simplify and Automate Programming 

~s noted earli~r, th~ organization of a computer's 

~tori;e system has a considerable impact upon pro~ram 

dav2l~pment and progr1mmer efficiency. To a large extent, 

tni3 potential increase in productivity is obtained by 

rad~cing or eliminatiug constraints normally imfosed by the 

storage system~ Thase constraints often distract the 

progr1mmer to the extent that he devotes a substantial 

~1ount of his time to overcoming the system's limitations 

ritnar than solving the intrinsic problems. Shoeman [80] 

n~te1 that: 

"rhe inherent error content of some programs is 
claimed to be related to the excess memory capacity 
availabl~. The theory here is that if the memory is 
vary cramped, tha software writers will have to 
rasort to overlay3 and other coding "tricks" to 
s1ueeze the desired functions into the allocated 
mamory space. It is assumed that these tricks 
introduce great complexity and are the seat of many 
errors. This effect is cited by designers of 
~irborne computer3 where the allocation of another 
block of 4k of ~emory is a major design decision." 

For example, the pro~rammer often has to worry about: 
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2.1.2.1 Programwing lanyuage code efficiency. 

if a highec-leval language compiler tends to frcduce 

progrims that are at all larger than those produced ny d 

l~w-lavel language translator, it may be necessary to use 

the low-level languaga to conserve storage. This constraint 

is =ontracy to the generally accepted fact that high-level 

lanJuages enhance ~co~ramminy prcductivity. 

2.1.2.2 Program size. 

For any specific storaye size, there are programs that 

cinnot be easily written to fit into that size con~traint. 

tat, pco~rammers frequently try - with considerable effort. 

2.1.2.3 Data stru~tures. 

rhe programmer is often faced with the need to choose 

batieen a data structure representation that is convenient 

to use and ~nether representation that "saves stordge". 

l3is savinJ may caguire the use of an awxward or 

uune=assarily complex data 3tructure representation. 
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2.1.2.4 Specitic aquipment characteristics. 

If the pcogramaec must get the "most" out of his 

stora~e system in terms of capacity and performance, he may 

r3soct to techni~ues that are peculiar to his specific 

stocaJe system equipment. If the equipment is changed, 

tnera may be a considarable impact UfOD his software. 

ie would like tJ jevelop storage 

tnat eliminate, automate, or at 

programming problems lescribed above. 

hierarchy techniques 

least minimize the 

2. 1.3 Integrate New Ta=hnologies and Applications 

~lthough there has been continual evolution, the basic 

5tor1~e device techn~logies in commercial use have not 

cnangad aramatically in the past decade. As a result, tnere 

has b!en a tendency, motivated by actual need, to relate 

ippli~ations to the specific available technologies. This 

has caused certain 1pplication areas to be abandoned as 

~infa1sible" and many storage management strategies to be 

iiscredited as "irralavlnt" or "inefficient". In the passage 

3f tiie we remember the lpplications and tecnniques in use 

out fre~uently forget or ignore the alternatives possible 

dnd tne reasons for bypassing these alternatives. 



stori~e Hierarchy Systems 27 

After this rather long "rest", it app~ars that we aLe 

on the verge of some 

taciln3logy. It is 

major "awakenings" in applications aud 

bard to quantify the ne~ application 

needs other than requiring more and faster storage for less 

~3nay. Section 1.1.2 presents some of these motivations, the 

ravitalized interests in time-sharing, artificial 

intelligence and automatic programming are also "fanning the 

fira". 

Due to the uncertainty of advanced research in stora~e 

davica technologies, it is difficult to Lorsee accurately 

~hi=h of the many ictive efforts will succeed (see for 

,Hample, Ayling [ 7 J, Best L 15 J, Bobeck ( 16 ], Camras L 17 ], 

Dall :24), Fields [35], Gardner (39], Howard {50], MaticK 

[&Matick..], !1yers (59], Rectoi: (74], Shahbendi2r (79], 

rnoapson (85]). Considering the technical advance3 clearly 

demonstrated in the laboratory and the driving "protit" 

motiv~tion, it is reasonable to expect some dramatic changes 

ia tb~ next few years. Even if we don't know what or when, 

~~ W3Jld be foolhearty to totally ignoi:e this situation. 

rable 1 below indicates the performance and price 

~Bara=teristics of typical current-day storage techuoloqies. 

rhe t~o entries marked by questicn marks (?), Bulk Store and 

Giant Store, indicata new technologies that have already 
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(ft 1) 

Random Maximum 
Accass rransfer 

Davi:::~ rima Rate Price capacity 
J.~g~2!1.~l~t J!> yt eil!~sa. ili!H!il (!!.I!!!§) 

1 • :acne Store l.6x10- 1 1 x 10 8 8.8xlOO 1.6x10 4 

(IBM 3165) (16) ns) (100M b/s) ($8.80) ( 16K) 

2. Main Store 1.4~x10- 6 1.6x107 S.1:10-1 5.12x105 
( Io l'1 3360} (1. ~4 us) ( 16M b/s) (50t) (512K) 

3. Bulk Store? 1.3.x:10- ♦ ax 106 8. Bx 10-z 2x10 6 

(iU1 S SSU(35]) (130 US) ( 8 !! b/s) (8.8t) (2 tt) 

4. l,arge Store Sx 1:)- 3 1. Sx 10 • 2.2x10-2 1.1x107 
(IBM 2305-2) (5 II S) ( 1. SM b/s) ( 2. 2 t) ( 11M) 

5. !'\a5 s Store 3.8xlo-2 8x 10s 4.Sxl0- 4 2xl0& 
(IiHl 3330) (3 ti ms) (800K b/s) (.045t) (200M) 

ti • :ii1nt Store? 6x1JG 6x 10s 2.2x10- 5 l.6x1010 
(Grumman (6 sa:::) (600K b/s) (. 0022¢) ( 168) 
MASSTAPE) 

Table ,. 
Representative Storage Hierarchy 
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oaen placed in limited use, Since these two 

cost/performance po5itions were net part of our 

"traditional'' technolo~ies, we are faced with the prcblem of 

pJssible modifying our applications and developing new 

~trategies to efficiantly, effectively, and, hopefully 

optimally, intagrate them into our overall hierarchical 

3tocage system. 

ls the entire spectrum of computer architectures, as 

well as storage device technologies, undergoes reshutflings, 

OJth avolution as well as revolutions, it is worthwhile to 

caviaw and reconsider our current concepts on storage system 

Jasign. raole 1, although a simplified summary of current 

5tora~e technologies, illustrates the fact that there exists 

d spectrum of devices that span about 6 orders of magnitude 

of price/performance (100,00C,OOOi). This is quite 

~igaificaut in the light of the excitement that no~mally 

d=co ■ panies an i~prorament of 10-20~ in performance or d 

dacre1se of 10-20~ in price in current-day systems. The 

participants in this "storage sweepstakes" may change in 

time, but with such large price/performance stakes, there 

will be continuing benefits to "playing the game" better. 
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2. 1.4 Understanding of Program and System Behavior 

~s noted P.atlier, the Jetailed operational behavior of 

~omputer systems is often extremely complex. Thus, 

3ecLaions on hardware, software, and system design must 

often be made in spite of insufficient knowledge. A bEtter 

~rid~rstandinj of program and system behavior is essential to 

t~e intelligent and efficient develofment of future systems. 

It is hoped thdt the research tc be conducted as part 

of t~is thesis will shed considerable light en these 

ul:l tters. 

2.2 Stora1e Uierarchy A££Coaches 

~stora~e hierdrchy system" and 

in many contexts. Consistent 

similar terms have been 

usei 

outliried in the pc:!vious 

with the 

section, certain 

objectives 

part.iculac 

~ontexts are assumed in this research. 

2. 2. 1 Spectrum of Approaches 

rhe problems ot storage hierarchy management have been 

attacked by a host of approaches. We can loosely 

~haca:teci~e these efforts into three cate~ories: 
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2.2.1. 1 Manual HieraLchy Management 

:iiven specitic ensemble of storage d.evice 

t3cbnJlogies, after cJnsiderable thought the frogrammec can 

axpli=itly or implicitly specify how his intormaticn (i.e., 

programs and data) should be organized and distributed 

within the hierarchy ind how and when his information should 

be re-arranged. Ha~in~ jetermined the distribution, he must 

also specify his access to specify information accordingly. 

ihen a programmer is directly operating upon his 

information at the lowest level (e.g., using machine 

lang111.ge, direct I/:) requests, etc.), h.e is explicitly 

~ontrolling the storige hierarchy, this is ex£.!icit manual 

ai~£!££~~ ~anagement. In most conventional systems, the 

programmar co1111unicdtes with the system via proyraw~iny 

langu1ges and control cards. Although this can relieve much 

of th~ tedious or intricate details of stocag~ managewent, 

the overall control of the storage hiecdrchy is still 

pci~acily the responsibility of the programmer. This is 

i1~li=it manual hierarchy management. 

~dnual storage m~nagement can be very economical since 

it usually requires n~ special hardware features nor special 

system soft~are. Furthermore, it places the control of the 
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stor11e hierarchy iu the hands of the progrdmmer who is 

presumably tne ond mo~t familiar with his needs. Manual 

stori1e mana~ement, i~ its many manifestations, is the most 

cJmmJn storaqe hierar:1ty approach in use today. 

Manual storage mdnagement bas many disadvantages, 

though. Tbe amount of detail that tne programmer must 

understand and use cin add significant complexity to this 

This then introduces additional areas of error and 

Jacre1sed productivity. 

tne programmer is the 

Furthermore, 

best judge 

the assumption that 

of optimal storage 

ocg1nization is often wrong. The complexities and dynamics 

;Jmmou to mouern systems are often beyond the understanding 

0f most application programmers. 

Multiprogramming, an almost universal technique in 

~urrent systems, na~essitates strategies for global 

Jpti~i,zation whi~n usually differ substantially from the 

iodividual local optimizations cf each program. For these 

reasons thee~ has been ~ontinual search for "a better way". 

2,2.1.2 Semi-Automatic Hierarchy Management 

~any tachni1ua3 ~dve been developed to ~iniwize the 

~mount of effoct re~uireJ of the pro~rammer and to provide 

faedbick to him. The programmer still has the ultimate 
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contr~l in such a 

system. 

jJ 

:ertain of these technigues are based upon the concept 

of the programmer pr~viding "hints" to the system. These 

nints form the basis for a partially automated, partially 

manual stora~e managa~ent system. Although not esfecially 

widespread, this approach has been used in several systems 

(e.g., Jensen ~t ~! [53], o•Neill £1 ~1 (70], etc.). 

If there is a single application that is quite large 

and camplex, techni~ues have been developed to dnalyze the 

actual performance an1 provide feedback to the programmer. 

rhis approach is primarily used in specialized, dedicated, 

predictable, high-pertormance systems, such as an airliue 

r:eserv at ions system. Numerous attempts have been r-eported, 

s~ch as Arora ~f ~! [5], Ramamoorthy £1 ~! [12], etc. 

rhe various semi-automatic hierarchy management 

appro1ches help to raiuce the programmer's effort and to 

dtt1iu a better locil optimization. Although useful tor 

~art1in applications, thase strategies do not remove the 

Jisddvantayes already noted with manual hierarchy mdnagement 

;:;;y ste11 s. 
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2.2.1.J Automati~ Hierarchy Mdnagement 

:ertain aspects of loyical information organization are 

inh2r~nt in a pro<,Jrarnmer•s basic al1orithm. In an ~!.Q~~if 

~h~~~£fhY management system, all a~pects of the physical 

information organi&ation and distribution that dre 

irrelevant to the unierlying logical structure should be 

from tile programmer's responsibility. The 

pro9rammer may wish to, mayb~ even be encouraged to, use 

~lgorithms tnat are Known to perform well in conjunction 

with the automated hierarchy management. But, the central 

responsibility of tha storage hierarchy management is 

removed from the programmer. 

Since this approach directly tocuses on the 

hidtarchy objectives presented earlier, it will 

pri~ary apprJach to be pursued in this thesis. 

2.2.2 Spectrum of Analysis Efforts 

stoi:age 

be the 

Each of the storage hierarchy approaches mentioned 

above, primarily semi-automatic and automatic, have Deen 

subje~ted to various torms of analysis. In this section we 

briefly outlinP. the principal aeficiencies of these efforts. 
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2.2,2.1 ~eneraliLect Models 

Jne popular form of analysis is to assume a generalized 

•Jiel for bdrdware, software, and system behavior. If one is 

c1refJl in ch0osin9 tna characteristics of the model (e,g,, 

Poisson arrival and s~cvice ti~es, etc,), it is possible to 

iavelop precise analytical solutions. Unfortunately; it is 

usually difficult to validate these models except foe rather 

simple solutions. Furthermore, since there are few truly 

aJtom1tic storage hi3racchy systems in 

~xtre~ely difficult to even determine 

general use, it is 

realistic parameters 

for these generalized ~odels even·if the models were valid, 

Generalizea mod3ls have been reported in several 

p1pec3, such as Aho ~! ~! [2] and Denning [25] in the 

BibliJgraphy. 

2,2,2.2 Constrained Models 

Another variation on the generalized model schewe is to 

~nalyze a particular program and then model its relationship 

to tne rest of tha system. There are at least two 

snoct:omings in this approach. Fiest~ as in the yeoeralized 

model case, it is 1ifficult to realistically model the 

celationsnip between i pcogram and the rest of the system. 

3aconi, the analysis and measurement of the particular 
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pro~r1m is norwally converted into scme form of probability 

~atrix or probabalistic reference pattern. In either case, 

significant effort is required to accurately measure the 

pro1ram•s behavior. Furthermore, the probabalistic 

~oara~teristics are usually aggregated to reflect the 

Jverall behavior of the program and, as a result, the 

dynamic nature of the program and its impact on the storage 

hiP-rarchy ar~ often lost. 

Exampl~ analyses of constrained models can be found in 

references: Arora and Gallo [5], Hatfield and Gerald (47 ], 

LJwis and rue [60], and Ramamoorthy and Chandy [72]. 

2.2.2.3 Limited Environment 

A common deficiency of most previous research is that 

o~ly a limited anvironment was considered, in particular 

aJtom1tic hierarchy management over cnly two levels using a 

sinyla page size. Of :ourse, most current-day computers have 

only Jmploy~d automati: hierarchy management in either Cache 

Systeras (cache store - main store) or Paging Systems (main 

store - large store). Unfortunately, there is definite 

reasons to believe that many of the conclusions and 

t~c~niquas demonstrated for a two-level hierarchy do not 

nacessarily yeneraliz~ to handle tbe spectrum of program 

Jatail and ievice cnaracteristics encountered in a truly 
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wultiple level stordga hierarchy. Furthermore, many at the 

p:ipec:i that atte~ptei to investigate genecal storage 

nieracchies assumed techniques and approaches that are 

~ci~acily based upon two-level hierarchy assumptions. 

£his limited environment has been stuuied by numerous 

people, such as Aho ~i £!1 [ 2 ], Be lady g,! ~! l 10, 11, 12 ], 

C ::>ff man an d Varian [1':J,86], Conti ~!: al L 2 1 22 J 
-- I I 

Denning 

~25j, Fotheringham [33J, Guertin (45], Kilburn et _gl t57], 

rtatts::>n ~!: ~! ~63], 5211.gmau (78], Smith [81], ana Wilkes 

C a 8]. 

2.2.2.4 General Hierarchy Environment 

rhe studies of limited two-level storage hierarchies 

h1ve been quite su=cessful in many actual systems. A 

reasouable strate~y w::>uld be to extend these techniques to a 

~::>re Jenecal storage aierarcby environment. Ther:B have been 

~ few attempts along these lines, but as menticnBd in the 

previ3us section, most were hawpereJ by: 

( 1) attempting t::> directly apply two-level hier:ar-cby 

techniques 

dpplicability, 

without carefully consider:in<J their 

(2) attempting to gcnerc1lize techniquts which weL-e not 

aven fully understood in a two-level envirotment. 
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rhe major thrust ot this thesis is to provide insight 

into and shed additional light on these problems. 
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CHAPTER 3. 

FORMALIZATION OF STORlGE HI~RARCHIES AND RELATED RESEAiiCh 

J.0 Introduction 

In this chapter- a .to.rmalization of the key 

cnar-actecistics of storage nierarchies is preseutEct and 

pacfocmance measures ace derived. The reported performance 

of actual systems is r-eviewed. 

rable 2 and Figure 1 illustrate the major parameters of 

~ storage hierarchy system. These paramete~s can be grouped 

into four categucies: (1) basic technolOl:JY, (i) 

c:,nfi1ucation, (3) alJorithm, and (4) pr:ogcam behavior-. 

J. 1.1 Basic Technology 

r he basic t ec hnolog y para mete rs, £Q:3tLQ11~, c, and 

a,ecage access ti!!, T, are primarily de~endent upon the 

pnysical proper-ties ot the stocage device technology. At any 

qiven time the state-of-the-art offers only a limited number 

()f (:, T) al teen a ti ves that the system desig nee can select. 
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(ft:.l) 
Basic Technology 

• C cost/byte 

• T average ac:ass time 

..;Jntig_uration 

• L uumbec of levels 

• I inter-conue.:tion of levels 

• s S.lZe (ca pa:; i ty) 

• B transfer rate (band v idth) 

• N nu1Bbec of oytes in page (page size) 

• A address tc~ce 

• f retch 

• P placement 

• H replacement 

Table 2. 
Major Par-ametecs of a Storage Hieracchy System 
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figure 1. 
Structure ot a Storage Hierarchy system 
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J. 1.2 Confiquration 

rhe system desig~er does have flexibility in crgan~zin~ 

t~ese storage devices. By serial and/ar parallel structuring 

~f the components of a given level of storage device 

t~c~nalogy, it is possible to specify, over a wide rdnge or 

~ilUe3, the §!~g (stora~e capacity), s, and the llXim~~ 

!:£~!!§~~£ £~!~ (data bandwidth), B, of the system. For 

axarnple, if a particul~r technology provides d tasic device 

with 5=s and B=b, connecting n cf these devices io parallel 

produ:es a stor:age le11~l with S=ns and B=nb. (To some extent 

tne machanism and cost of the organizational structure does 

i1flu~nce tha overall :ost/byte and average access time of a 

laval, this effect i3 usually minimal for small values of 

n I • 

Jn a mord global bdsis, the designer must determine the 

~~mQ~£ QI !~!~!§, L, in the stora~e system, the 

i~ter:onnections ot the levels, I, and the size, N, of a 

~ag~ (the unit of inf~rmation moved between levels). 

3. 1. J PI:"O(jrara Behavior 

undec program control, produces a 

sequential 3eries of raterences to the storage system. ihese 

pro::essor refer:ences 3.r:e in the form of log,i~! address 
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&eferences which serv~ to uniquely identity each individual 

unit of stored inf~rmatation (e.g., an d-bit ~l!!) 

independent of its location (i.e., Ml, M2, M3 , ••• ). The 

time sequence of logical address references, A, is called an 

aidre3s trace or ~~~£~2~ reference £attern. In general, each 

unique program and its input data will result in a different 

processor address tri~e. For purfcses of analyzing the 

effectiveness of the storage hierarchy, the address trace is 

tne pri~acy characterization of a program that is needed 

(~.~., we don't care what the program's purpose is or what 

languige it is written in, etc., we cnly care about its 

aidress trace). rhus, the address trace describes the 

~co~ram•s behavior as observed by the storaye hierarchy. 

J. 1.~ Algorithm 

rhere are three basic decision algorithms that must be 

d~ployed by an autom~tic storage management system. fg~fh, 

F, de:ides when and whicb infor ■ation should be moved up a 

level (e.g., from M2 to Ml). El~£~!~B£, ~, uecides wnere 

iafor~ation should be placed in a level. g!!Qlll or 

re£lacement, R, decides when and which informaticn shculd be 

transferred down a le~el (e.y., from M' to M2 ). 
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~ compietely gen~ral storage hierarchy alyorithm, H, 

m1st :;onsider all the parameters described above: 

d = f (<Tec~nology>,<:onfiguraticn>,<Progcam>,<Algorithm>) 

H = f(<C,T>, <L, I, S, B, N>, <A>, <t', P, li>) 

:learly, attempting to optimize a system with so many 

piramaters is difficult. Fortunately, it is possible to 

eliminate from con:;aru oc at least simplify certain 

parameters as explained below. 

3. 2. 1 Confiquration 

:onsistent with the title of this thesis, we shall 

c~nsiier only hierarchical interconnections of levels as 

illustcated in Figure 1, where 1'<T2(T3( etc. and N'<NZ<N3( 

ate. fhe rationale far this decision is elaborated in the 

ttiesis. 

rhece ~ce thcea basic strategies for information 

mavernant sizes: (1) select a single page size value, N, 

wni:;h is always used throughout the hierarchy this 

~ppco~ch is used on ~ost contemforary automatic multilevel 

storage systems (e.g., Multics), (2) allow dn arbitrary 

range of values for N to be used - this approach is 

pri~arily used on manually managed storage systems, and (3) 
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s~la~t L values of N, a s~ecific unit of transfer is used 

between any two levels of the hierarchy - this ap~roach will 

ba pursued and justified in this thesis. 

J.2.2 Program Behavior 

Each logical address can be represented as a bits as 

~nown in Figure 2(a). If the paye sizes, N, are chosen to 

ba powers of 2, the sat of 2**a possible addresses can be 

partitioned into 2**P pages of N=2**n consecutive logical 

aidcesses each as shown in Figure 2(b). (Note: the notation 

"2**a" means 2 raised to the power a]. Since the inf6rmation 

m~vem3nt between st~rage levels is accomplished by 

transferrin~ pages, wa can 

by merely considarinJ the 

analyze this interlevel movement 

time sequence ot loyical pages 

references, Ap, callei a~~~~ i£~~• 

Since we allow the paqe size to be different between 

each level and requests are only passed down to a given 

lavel if they cannot b3 satisfied by any higher level, each 

level will usually experience a different page trace though 

all are algorithmically derivable from tbe same address 

tcaca. In fact, if all address references were broadcast to 

all storage levels, the page traces can be determined by a 

simple mapping from l~1ical addresses into logical fdges: 

pa~e aaJrass = integer( logical address/N) 
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(f 2) 

1~-------- a bits --------1 
AUDRESS I 

(a) Logical Address 

I a nits I 

I PAGE DISPLACEMENT I ,~ p bits ~I n bits 
(a=p+n) 

(b) Logical Address 
(Divided into Page Address and Displacement) 

Figure 2. 
Format of Logical Address 



StoraJe Hierarchy systems 47 

w~ece N is tne page size foe that level • 

.1.2.3 Algorithm 

rhe placement Je~ision, P, is usually unconstrained or 

~inimally constrainel and, as a result, has relatively 

littla impact upon performance. 

! demand fetch policy will be used. Assume that at time 

t a request foe logical address a (or, equivalently, 

p1 =iateger(a/N 1 )) arrives at level Ml. At that instant the 

information may currently reside in Nl, otherwise it must be 

f~und in a lower level. Under J~mand fetch, if p 1 is in M1 , 

t~e rafereuce proceeis, the infcrmation is passed back to 

the processor, and no other page .11ove11en t occurs iu the 

niecacctty. It 

pz =i11teger (a/NZ) 

pl is not in M 1 • 

is saut from Ml to M2. 

a rey_uest for 

If p2 is in MZ, the 

page is transferred to M' and processing continues as 

ias=ribed above, otherwise a rey_uest for p3=iateger(a/N 3) is 

3ant from M2 to M3, ate. Note that under the demand tetch 

policy, information is only ~oved up in 

and if it is explicitly g~~2QQ~Q {i.e., 

p['OC8SSO[' • 

the hierarchy when 

requested) by the 

Althou~h Jemand fetch is only one fOssible tetch 

algocithmr it can ba shown (b3] that for hierarchically 

structured storage systems: 
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"••• giveu dny tri:a and replacement algorithm (not 
nacessarily using demand paging) ancther replacement 
algoritnm exist that uses demand paging and causes 
tbe same or tewar total number of pages to be 
transferred •••" 

Ia otber words, as you mi~ht intuitively suspect, moving 

p11es only when necess1ry results in the minimal number of 

p1ge ~overnents. Of course, if page movement is required and 

the higher level that is to receive the page is already 

full, the removal al1orithm must be employed to provide 

spa~e for the new pa9e. 

3.2.4 ~eviseJ Storage Hierarchy Model 

dased upon the discussion atcve, we can slightly 

simplify the parametacs remaining fcI consideration in the 

stora;e hierarchy al~oLithm, H, so that it need consider 

only: 

H = f{<Tecnnology>,<:onfiguration>,<Program>,<Algorithm>) 

H = f{<c,r>, <L,S,b,N>, <A>, <R>) 

In tbis th~sis all of th0se parameters will be considered 

~nd investigated. 5pecidl emFhasis will be placed on 

analyzing an1 unjerstandin~ the relationship between the 

~1~es sizes, N, and the removal algorithm, R, required for 

2ffi=ient op~ratiou of the stocage hierarchy. 
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J.3 Pacformance ~easuces 

rhere are var-ioll:i performance IBeasures that WE could 

c~n3iler. For an overall point of view, system measures, 

such as jab throughput, job turn-arcund time, and processor 

utilization, are ~uita significant. Unfortunately, it is 

extremely difficult to directly relate these measures to the 

performan=e of the stor-age system, even an appr-oximatiou 

w~uld require consideration of many more parameters. Thus, 

W3 vill only consider measures that relate to the effective 

performance of the storage hierarchy. 

3.3.1 Performance Measurement Notation 

Due to the strict hierarchical structure of our storage 

system and the demanl fetch pclicy, we can analyze the 

performance of the system by separately considering tne 

levels of the hierar=hy starting with M1 • Since a given 

level only receives a page fetch request it the information 

h3s not been found 1t a higher level, each level usually 

s~es a different page trace, Ap', ApZ, Ap3, etc. 

rhere dre seveLal important properties of pdge traces. 

If Pis a particular p1ye trace (e.g., Ap 1 ) of d program, we 

define: 

• I P I length of the page trace sequence 



F:>r 

W3 

• 

• IQ I 

example, in 

p = a, b, 

obsecve that 

I P I = 6 

Storige Hierarchy systems 

set of distinct pages referenced in P 

numoer of pages in Q 

the p:1~e tcace 

a , ,. b, a '-. 

u = {a, b, ::: } 

50 

(Lower case letters will be used to represent lo~ical fage 

aidra5ses instead of pa.ye numbers). 

For a specific storage hierarchy, we define JMI to be 

the size of~ in units of pages receivable from the next 

l:>wec level. For example, jMl)=S1/NZ, 1e.21=S2/N3, etc. 

For a specif~c page trace, P, storage level, M, and 

R, we define the result B~s@ ill£~ or 

f~1£h ~~~g 1£1£~, P', as the time sequenced page references 

of P that were not found in M. We shall call page 

references that are found in M §B~§§~§• The SUCC€S§ 

f~gftiQ~, Sf, is the number of references satisfied by Mand 

can be computed as IPl-1~•1. By analogy to the success 

function, the nucu.ber: of re.Z:er:euces not satisfied by M, JP' I, 

is called the failure function, Ff. In general, we wish to 

maximize the su:::cess function or, equivalently, minimize the 

fiiluce function. It is convenient to normalize the failure 
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function ny defininy the failure fre~uency functio~, f, 

f = IP' 1/IPI 

rile sgccess fre~uency [Y~£!i2Q, s, can be easily computed as 

1-f; it is often called the hit £~1~ on a two-level storage 

system. We also define the §Y.§!!t! !~il~£~ fr~guen~y 

1Yn~ti2~, f 3 , of a level to be: 

1: 3 = IP'I/IAI 

where A is the address trace generated by the processor and 

Ill is the length of tae address trace (it is also true that 

IAI always equals IP'I, thus they may be used 

interchangeably). The system success f~eguenci !~~£ti.ill! is 

c~rrespondingly defined as s 0 =1-t0 • 

If we apply tha definitions above to the processor 

Jenerated page trace, P 1 , received by Ml, we note that the 

result page trace, P', is essentially the page trace, P 2 , 

raceived by M2 • fhere is a minor relabeling required to 

aijust for the difference in page size used by M2 , 

p2=P 1 (Nl/NZ) • 

iavel~p tbe 

functions, an:i 

eacll level of 

By repeating this process recursively, we can 

effective page traces, failure and success 

failure and success trequency functions for 

the bLerarchy. Since we assume that all 

referanced information e~ists in the storaye hierarchy, the 

sum of the system suc:ass frequency functions must be 1. 

Jne general 11aasure of a storage hierarcay•s 
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p~rformance is its effective access time, T', and effective 

c~st, c•, which are defined as fellows: 

T' = T's01+r2 5 oz+T3s03+ ••• 

C' = (Cl51+:2sz+c3S3+ 0 •• )/(S1+52+53+ •• .) 

r• ani c• can be viewaj as characterizing the entire storage 

hierarchy ~ccordin~ to a corresponding one-level system. 

From a cost/performince point of view, one should be 

i1different between a single-level single-technology storage 

1evica with average access time, T', and average cost/byte, 

..:: • , and a storaye hierarc~y system with performance 

pirameters er• ,C'). In particular, if the system designer 

naeis a storage performance (T, C) and no such basic 

tacan3loyy exists, ha must attempt to develop a storage 

hieracchy such that er I ,c•) = (T ,C). 

3.3.2 Page Trace Simulation 

Joe way to determiue t~e success frequency function and 

t~e rasult paqe trace for a specific page trace is to 

sim~lite the storage management al~orithms and note the 

contents of Mat ea:b step of the page trace. Clearly, 

these results Jepeni upon numerous parameters (e.g., 

specific trace, removil algorithm, size of M, etc.). Figure 

J illustrates this step by step simulation assuming demand 

p:1.ging, FIF0 (first-ia first-out) removal, and IMI = 2 

For simplicity, the has oeen 
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(t 3) 

i'ara11eters 

• p = a, b, b, c, b, a, d, c, a, a 

• IP J = 1 0 

• J = { a, b, - d } -, 

• I QI = 4 

• IM I = 2 

• FIFO Removal 

Simulation 

P1ge rrace,P I a I b J b I c I b I a. t d t c I a I a J 
-------------+---+---+---+---+---+---+---+---+---+---+ 
Fat~h I * I * I I * I I * I * l * I * J -------------+---+---+---+---+---+---+---+---+---+---+ 
M Contents a I b I b I c I c I a I d I c I a I a J <-"new" 
(after each I a f a I b I b Jc J a I d I c I c j <-"old" 
reference) I I I 1 I I I I J 1 

-------------+---+---+---+---+---+---+---+---+---+---+ 
P.1ge rrace,P'J a i b I I c I I a l d I c I a I 

~~2!!l~2 

• Ff = IP' I = 7 

• Sf = IPI-IP'J = 3 

• f = 70 Ya 

• s = 30% 

• I?. = a, b, c, a, d, c, a 

Figure 3. 
Example of Page Trace Simulation 
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1urmd.lized to be expr-.~ssed in units of receivable pages. In 

p:1.rticular, if M is l'P, t11en Jl1J=S'/N 2 and. p=integei=(a/N 2 ) 

w~era a is a lo~ical address cefecence and f is 

1he fages in M are shown as 

ordered to indicate the FiFO ordering, the top page is the 

11 last" ("latest") paie fetched into M, whereas the bottom 

tJ3.cJe is the "t'irst" ("old(!St") page in Mand is the ~age 

s!lected for replacement when necessary. The asterisk (*) 

iadicites that a ret~h was re~uired frcm a lower level of 

tbe bierarchy, the p1~e reference is thus noted as part of 

tbe result page trace, P'. 

It is normally assumed that all levels, except level L* 

ice e~pty initially, thus there is a transient stage during 

wnich pages are loaiad into M without any replacements 

neeiel. Since there are so fEw fages in ct during this 

start-up stdge, thece are many fetches required. ie will 

fini it usetul to separate out this transient phenomenon. 

rhis transient consists of the fage trace up to the first 

l~I unique pdge rater~nces, in the example of Figure 3 this 

(i.e., a, l.i). Consider the 

c1se if IQjSl~I, thera would be no further tetches into this 

lavel after the initial transient that loads the IQI fages 

int::> rt. In this case, IP' J=tQI exactly, independent of IPI, 

1~d s tends toward 1 as jt'j increases. 
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In the particuldr exampl~ illustrated in Figure J, we 

note tnat th8re were 3 'hits' and 7 •misses• out or 10 page 

rafarances, so that s=30~. Thus, p• cnly consists of 7 page 

raferances to the lowar levels. 

3.4 Ralated Research 

~s noted above, we wish to dev€lop a storage hiecarchy 

11i th attractive cost/!:)er formance,. ( C •, T •) , characteristics. 

It is clear that we :an arbitrarily decrease the cost/byte 

oy maKing the size of e3ch level, s, increasingly lacger as 

we go rrom the high-performance high-cost to the 

lov-performance low-:ost levels (i.e., C1)CZ>c 3 > ••• and 

S 1 <S 2 <S 3 < ••• ). In fact, this afi:roach is the basic 

~otiv~tion for storage hierarchies. 

Unfortunately, if the processor generated address 

rafarences that wera uniformly distributed in time and 

~idre~s, each byte would be equally likely to oe referenced 

at any instant. rhis probdbility would be: 

Pr[cefec-ance aJ = 1/(St+sz+s3+ ••• ) 

r1tus* the expected system success function, s 0 , foe each 

lavel is proportiondl to the size of the l~vel. For exdmple, 

501 = 51/(S1+52+5.J+ ••• ) • 

dut, 5ince we have assumed that St(SZ(SJ< ••• , we find that 
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~ot<s 0 z<s 0 3< ••• Thus, the system success function for the 

Lth l~vel dominates (i.e., is apFroximately 1) since we nave 

issumaJ that it is the largest level. Referriny back to our 

definition of effective access time, we find that T' would 

o~ appro~imately equal to the lowest performance level 

(level L) since all the other terms wculd be neyligible. If 

t~is inalysis were trJe, our stcrage hierarchy would result 

1n a performance just slightly better than our lowest 

pert:)cmance level at a moderate inccease i11 pr1.ce - r,ot an 

2sp2~ially exciting result. 

l,1.ecarchies do not behave tiL1.s 

foctunately, actual storage 

way. We will briefly review 

~;ome r2lated resear::h 011 this subject. 

3. 4. 1 Locality 

It bas been empirically observed that actual fCOgrams 

cluster theic references so that, duriny any inteLval at 

tim~, only d subset of the intormation available is dctually 

u;eJ. A dBtailed discussion of this phenomenon will be 

pceseuteJ in the thesis. 

It is i~portant to note tnat due to our basic rankings 

of ~age siLes and 

2:1:;h level 11 sees 11 

l~vel5 of the 

a::::::ess times in the stocage hieracchy. 

a diffec~nt view of the pcogram. The high 

hierarchy must fellow the micrcscopic 

1.nstruction by instruction reference pattern whereas the 
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middle levels follow a more gross subroutine by subroutine 

pattern. The vecy low levels are primarilJ concerned about 

tbe pcocessor•s referances as it moves from subsystem to 

subsystem. •e do not have any a priori guarantee that 

l~cality of reference nolds equally true for all of these 

views, but we do have some repcrted evideuce to encourage 

us. M~st of these studies have been basea upon twc-level 

systems oc 

ni ec J.C ch ies. 

J,4.2 Paginq Systems 

cestcict ed forms of three-level 

rne earliest aut~matic storage systems were based upon 

t~o-lavel core-drum hierarchies (devices 2 and 4 of Table 

11. This technique was introduced in the Atlas system 

(3Br57] iuririJ the early 1960 1 s. It has since been used on 

many contemporary systams. 

rhe performance of paging systems has been stuaied by 

various researchers, such dS Belady ( 12], Coffmau and Varian 

[ 19,86 Jr Hatfield L !+d ], and Sayre ( 77 J. In Cofiman•s 

rasults, for exa mpla, it was 

Sl/(Sl+S2)=0.25, st otten exceeded 

noted 

95'.l. 

that even 

Hatfield 

thou,~h 

studied 

the parformance of 

d~sig1ed and founJ 

srstem programs that had been carefully 

that for s1;cs1+s2) ratios as low as 

J.25, it was possible tor st to ctten exceed 99.~9~. 
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3. 4. 3 Cache SystGms 

:iche systems ira based upon two-level cache-main 

hierarchies (devices 1 dud. 2 of 'Iable 1). Although they have 

b~en proposed as early as 1965 (see ~ilkes (H8]), the major 

commercial use of Ci~be systems did not occur until the 

intro1uction of the IBM system/360 Model 85 [21,61]. Moce 

recently, th.1.s tecnn1.que has been used in sevecal 

contemporary systems, such as the IEM System/370 ~odel 155 

ind Model 165 [ 52 J. 

In the3e cache systems, IBM found that it was possible 

to 1risticdlly reduce s•/(S•+s2) to as low as 1% and still 

K~ep che hit ratio, 5 1 , above 90%. Similar findings were 

1lso ceport~J. by dell and Casasent (13], Mattson L64J, Meade 

~j5], and s~ligIDau (78]. 

J.4.4 Three-level Systdms 

rhera have be2n i few three-level systems reportEd in 

the literatuc~, uufort~nately they have all been somewhat ~g 

gJ£ in iesiyn and the rosults are far fcom conclusive. 

There have been at liast three types of such hierarchies 

stuJL:!d. 



3.4.4.1 Main-Bulk-Mass Store Hierarchy 

lhere have been several systems devised based upon 

javicas 2. 3, and 5 of Table 1. The Bulk Stace actually 

U5ei. called Large Core Store (LCS), had a much lower access 

time (arounJ 8 us) ani a much higher frice (about 25~/byte). 

In order to compensite for peculiarties in the hardware 

structure and out of considerable concern for th~ e~treille 

cost of LCS, these systems tended to become much more 

minuilly managed hiacarchies than automatically managed. 

Although they were found to be effective, it is difficult to 

ganerilize the results. The most ambitious attempt reported 

Wis undertaken by Carna1ie-Mellon University (J6J. Results 

hive ilso been reported by Durae (J1J, Williams ld9J, and 

others. 

3.4.4.2 Main-Lar~e-Mass Store Hierarch} 

rhere does not ippear to be any automatically managed 

systems of this type published in the general literature. 

rme ~ultics system at MIT froject MAC has recently 

iati:-o;iuced a "pag-e-lllultilevel" strategy based Ut,!Oll d€vices 

2, 4, and 5 of Taole 1. There has only bee1, limited findiny 

r~pocted to date but it has been statEd in the MaLch 1972 

i3sue ot tbe MIT Information Processing services ~Y!!21in 
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(p. 11) that it 

"• •• does pay off since it meets fluctuating demands 
on the system, rejuces the wcrkload for the disks to 
an efficient level, is inexfensive, and keeps pages 
on the drum for an acceptable length of time." 

60 

1\5 ill indic,itiou ot its effect, tbe new strategy is refuted 

t~ bave increased the success frequency function, s 2 , of the 

lrJ~ from 201 to more than 901 {i.e., "reduced from one page 

r~ai from the disk for every four rEads from the drum, to 

one p~ge cdad from th2 disK for every ten to twenty fages 

from the dr-um"). 

3.4.4.3 Main-LarJe-Giant Stcre Hierarchy 

rhe work of Consiline and Weis [20] is difficult to 

It is based upon a thrEe-level hierarchj where 

t~e first level cocres~onds to device 2 (main store) of 

T1bl~ 1, the second level corresponds to a combination of 

(drums) auJ 5 (disks), and the thira level 

~~nsi5ts of removable jis~s which can best be approximated 

oy device 6 of Tabla 1. It is imfossible tc compute any 

s11c~~3s fc.-e,1uency fun:tions from th-air data, but it affears 

tnat for S2/(S 2 +S3)=0.5, is very hi':}h. fhey note 

in particulir, "most of the data moved to the 

arch.iv al stor-age {i.e., M3) have stayed ther2. u 
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J.4.5 Need foe Additional Hesearch 

&lthough the re~ults of research described above is 

aacoucaging, the design and performance of general 

mJltiple-level stordg~ hierarchies are still inconclusive. 

T~is thesis is intendel to provide Sfecific results in this 



Stoc1ge Hierarchy Systems 62 

CliAPTEit 4. 

A STJ~AGE HIERARCHl SYSTEM 

~.O Iatroduction 

In this chapter a design for a general multiple level 

stora1e hierarchy systew, in particular with tnree or more 

level3, is presentad. This design is based upon an orderly 

and ~niform treatment of the logical structure ot the 

~tora~e levels and their interccnnections. In addition to 

pcoviJing a solution to convenient storage manayement for 

to. e user, ttns design is 

performance for the storage 

~tfective access time, T', 

intended to 

nierarchy as 

and effective 

produce yood 

measured by 

cost, c•. 

its 

T tie 

pciuciple and novel techniques to be used are described 

separately in the sections below. 

As noted ~arliec, automatic storage hierarchy systems 

~re still in the minority. Amongst those systems that ao 

?LOViie aut~m1tic storage hierarchy mana~ement, the majority 

limit their scope to two levels with a few rare three level 

3yst2~s. As a result of these limitations, the user is 
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5till forced to rely on manual or semi-automatic storage 

wanagement technijues to deal with the storage l8vels that 

are n~t automatically managed. Thus, an automatic storaye 

minagement system should consist of a continuous hi~rarchy 

t~at ancompasses the full range of storage levels. 

-+. 1. 1 Cost/Performance of Adjacent Levels 

t major obstacle to generalizing storage management 

3lgocitbms, iu parti;ular in two-level payin~ systems, is 

the tcemenlous contrast, often over 3 orders of magnitude, 

in cost/performance between Ml and M2, As illustrated in 

T1ble 1 (paga 28), a representative Main Store, M1 , has an 

a~c~ss time of 1,44 us compared to a Large Store, M2 , with 

au access time of 5 ms. In such a t~o-level system, the 

effective access time, r•, is 

r• = r1so1 + rzsoz 

T' = 1.~4s0 1 + 5000s 0 2 

and since s 0 i+s 0 z=1, ,a can substitute s 0 1=1-s 0 z to get 

T' = 1.44 - 1. 44502 + 5000soz 

T' = 1,44 + 4998,56s02 

In orier to attain an effective access time, T', that is 

compacable to the ~ain Store access tiwd, T 1, we mu.st keep 

tae system success rr~~uency tunction, s 02 , very close to 0 

or, ~~rrespondingly, Kee~ s 01 very close to 1. Even with 

s~l at 99.81, an improveru~nt to Y~.Yi would cut the 
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~ffective access time, T 1 , in halt. With such pressure to 

1ttain very high s 0 1 v1lues, the systems designer is often 

f3rc~i to seek out v3ry specialized techniques in contrast 

to our goals of orderly and unifor~ algorithms. 

4. 1. 2 Moderate ~ost/P~rformance Ratics 

In ord~r to ruak2 the storage hierarchy design robust 

~nu flexible, the CJ5t/performance characteristics should 

Jiffar by l~ss than two orders of magnitude between adjacent 

lavels. rhus, succ2s3 frequency functions in the range 90% 

t~ 991 are aie~uate tJ insure reasonable performance. If 

t~e diff~rencas are wuch greater, it will be difficult to 

tinl 3ufficiently efficient ~eneral algorithms. Since minor 

~hangas in production techniques and technology evolution 

can result in a variation of a factor ot two or three in the 

=3st/performance for~ yiven technology, it is not desirable 

t~ Je=rease much oelow one order of magnitude difterence 

o?twean adjacent stor1ge levels. 

rhe time, Tm, required tc move a page between two 

l?vels of the hierar~hy usually consists of summing two 

c~mponents: (1) the average access time, T, and (2) the 

tcan:iter time, Bx:N. 
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If all page sizes were set to provide exactlj the 

J. iB ount of .1.n format ion, N 1, re quested by the processor, the 

p~ge movement time would be 

Tm= T + BxN' 

wbere T and B wouli Jepend UfOn the particular stordge 

leval3. By examininJ the representative uevices shown in 

r1ble 1 (page 28), we see thdt access time varies 111uch more 

titan transfer rate (i.e., access time spans 6 orders of 

m1gnitude whereas tran3fer rate varies by only 3 orders of 

u. gni t ude) • 

ij,2. 1 Marginal Increa5e in Page Transfer T.1.me and Ref~renc~ 

Pcobability 

Let us assume th1t Nl is guite small, such as d bytes. 

~a can ask the question: What is the marginal increase in Tm 

it we tcanstec the ai jacent Na bytes in addition to tiie N 1 

bytes requested by tha processor? Table Jon the next page 

answers this guestion. Notice that the margindl increase in 

T1 decreases from d 

low of .OQ2j. (level 

high of 5.5i (level 2 to 

6 to level 5). This 

level 1) 

fact is 

iuteresting if weals~ consider the concept of locality 

.:haptars 5 :1nd o f::>r: additional discussioH) and 

to a 

only 

(see 

the 

~uestion: What is th? probability, Fr, tnat the processor 
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(tt3) 

LaH~l r 11 Tm iiarginal Increase 
rcdn::ifec (1 unit) (2 uni ts) in Tm 

-------- ------- -------- -----
2 t::> 1 (*) 1 • 4 4 us 1. 52 us 5.5% 

j to I. 131 U5 132 us .8% 

,.. to 3 5 1)06 us 5011 us • 1 % 

) to !+ 38010 U5 38020 us .03~ 

6 to '.) 600013 U5 600027 us .002j 

Table 3. 
Mctrginal In=rease in Page Transfer Times 

* rh~ figures for i=cess time and transfer rate for the 
M1in Store listed in Table 1 are approximations that are 
only ~eaningful for very large pag£ sizes. For the page 
sizes under consideration in this chapter, the figures used 
in tha table above are more apprcpriate. 
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will reference the adjacent Nl bytes with a sheet interval 

of time, such as Tm ~econds? Due tc locality of frcgram 

reference, we would expect Pr to be much larger than merely 

tb.e reciprocal of the logical address space S.lZe. 

Farthermore, Pr shoull increase as Tm increases. Thus, for 

3 given level, if Pr is larger than the marginal increase in 

r1, it is beneficial to transfer the additional N1 bytes and 

tneraby avoid the na~essity of expending Tm seconds to 

transfer these N 1 byt~s later separately. 

rhese sdme aryumants can be apfliEd to the guesticn or 

transferring the adJacent nxNt bytes, etc. Since the 

~ir~iual increase in Tm decreases monotonically as a 

fun~tion or stora1e l~val, the number of N1 byte pdcxets to 

transferred as a single should incr:ease 

monotonically. 

Nl(NZ(N3( etc. 

This confirms our earlier ctecision that 

4.2.2 Choic~ of Pa~e Size 

In order to simpliry the implementation of the system 

and t~ be consistent with the mapping from logical address 

to pa:1e address illus teated in Figure 2 (paye 46) , we will 

raquire that all page sizes be a power of two. Thus, each 

page 3ize (e.g., lP) l. s some pcwer of two larger than the 

page size of the il~Xt higher level (e.g. r N3 =N 2 **i). 
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~le1rly, the specitic values of Pr and thus the choice for 

aich page Jize depenis upon the characteristics of the 

progr1ms tu be run 1nd the effectiveness of the cverall 

3cor11e system. Preliminary measurements indicate that a 

r1ti3 of 4:1 bet~een levels is reasonable, Meade (65] has 

raported similar findings. Other important factors 

iffecting page size are discussed in Chapters 5 and 6. 

4.2.J Page Splitting 

Now let us consiiar the actual movement of information 

ia t~e storage hiec1rchy. At time t, tne processor 

~aner1tes a referenca foe logical address a. Assume that 

tne ~orresponiing information is not currently stored in Ml 

or M2 but is found in M3. For simplicity, assume that page 

siz2s are doubled as wa g3 down the hierarchy (e.g., NZ:2N1, 

saa Figure 4). The page of size N3 

c3nt~ining a is coplad from M3 to ~z. ~2 now contains the 

n3edei information, so we repeat the frocess. 

siz~ N2 containing a i~ copie1 frcm M2 to Ml. 

The page or 

Now, finally, 

the paye of size Nl contdining a is copied from Ml and 

torwdrJed to the pro~essor. In this process the page of 

inforraation is split (i.e., ~g~ §EJ1!ting) repeatedly as it 

moves up the hierarchy. 
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(f 14) 

Processor 

B 
f 

f'l 1 I I~2:1~I ! 
f 

i"l.2 . I I ; 4:1 ; I :: 
l 

1:13 I ; : ; 8:1 : : : I 
1 

Figur-e 4. 
Page Splitting and Shadow Stora~e 
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~.2.4 Shadow Storage 

As a result of this splitting, the page ot size N1 that 

13 ce=eived by the processor has left a "shadow" consisting 

of itself and its a1jacent pages behind in all the lower 

level5 (i.e., shadow stoca9.e). 

exhibits locality ot reference, 

Presumably, if the program 

many of these shadow fages 

will he referenced shortly afterward and be moved further up 

in the hierarcay also. 

4.2.5 2opying of Pages 

In the strate~y presented, fages are actually ccfied as 

they wove up the hiecacchy; a page at level n has one copy 

of itself in each of the lower levels. Since processor 

"fetch" re~uests substantially outnumber "store" requests 

(e.g., by more tnan 5:1 in some measured programs), the 

=~ntents of pa~es are seldom changed. Thus, if a page has 

n~t Daen chan1ed and is selected to be removed £rem one 

l?val to a lower level, it need not be actually tcansfecred 

sin=e a valid copy alreaJy exists in the lower level. The 

contents of any level of the hierarchy is always a subset of 

the iaformation contiined in the next lower level. Thus, 

t~e total information c~pacity of the system is equal ta the 

size of tha level L store rather than the sum cf the 

cipacities of all the levels. Since the capacity of level L 
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is assumed to be mu~h larger thctn the capacity of L-1, etc., 

t~e Jiffer~nce in total system capacity ctue to shadow 

stora~e is minimal. 

4.3 Direct Transfer 

In the description above it is implied that infor:mcttion 

a=tually moves betwe~n adjacent levels. This a~proach, 

~allei direct transfer, is indeEd intended. 

tnou~n, many proposei and experimental 

o y c cw far: i son , 

multi.pl€ level 

storaJe systems are oased upon an !QQ!£~£S tI~n§!~f (e.g., 

t~e Multics "page multilevel" system mentioned in Chapter 

,n. In these systems, all infcrmation 1.;;; routed through 

level 1. For example, to move a page from level n to level 

n-1, the page is movei from level n tc level 1 and then from 

ievel 1 to level n-1. Clearly, this indirect approach is 

~nd~sirabl3 since it requires extra paye movement and 

c~ns~mes a portion of the limited ~1 capdcity in the 

process. 

rhere hdve been t~o major obstacles to direct tLduster 

in previous systems: ( 1) interccnnection structure and (2) 

syn::hronization. 
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4.3.1 Interconnection structure 

for many ceason3, so me tee hnical and some hist or ica 1, 

m35t contemporary systems ace physically stcuctured in a 

i:-::1.dial manner. That is, there is a central element to the 

3ystaD, eitn~r the processor itself er the frimary store, 

and all other storage ievices and/or processors are directly 

c3nne=ted to this central element. 

c~ntrJl signals, th~re are no 

Except foe some possible 

direct data transfer 

=onnections between the non-central 

quite :,;tru::ture is, ot course, 

management 

elements. This 

consistent with a 

system. non-Bierarcnical stora~e 

storaie hierarchy systam should be based upon 

A logical 

a physically 

hierarchical interconaaction structure. 

4.J.2 Synchronization 

As indicated in Table 1, storage devices often have 

d1iterent timing and transfer rate characteristics. In ceder 

t~ a=complish a dira~t data transfer between levels, 

syn~hronization is na~assary. It may be obvious that a 

storage device can not transfµr data faster than its rated 

?arformance, but for many 

el8::tromechanical jevi::as, 

storage devices, es~ecially 

it is not fOssible to transfer 

Jata slower than its rited speed. 
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Based on current technology, this problem Cdli be 

~~lvel. Many of the stocage devices dCE now 

uon- el ectromecha nica 1 (i.e. , strictly electr icd l) , sucn i.iS 

tne (:iche, l'1ain, and l3ulk. Stores of Table 1. It 1.s ':iuite 

f~a3iole to provide jirect transfer between any of tnese 

Jevicas and any other storage device; this is one reason tor 

tne raiial interconnections described above where the Ma1.n 

store acted 

s y nchr oniza tion. 

as the 

Using a 

common 

similar 

means of prov1.diny 

approach, we can allow 

Jirect transfer between electromechanical devices if this 

tcansfer 1.s routed through a small and reasonaoly 

inexpensive electrical storage buffer. Femling L33J 

discusses such a devi:a, which he calls a rubber-bana .!!!~.!!!Q.fY 

prea~~ably because it "stretches" to ~atch the 

cnaracteristics of tha sour~e and destination devices. 

4.4 Read Through 

In the descripti~n above, it is imflied that a transfer 

up the hiecarch y t com 12 vel 2 to the processor (level tJ) 

~Jnsists of two seque1tial steps: (1) transfer pa~e ot si~e 

N2 from level 2 to level 1, and then (2) extract the 

dppcopciate page subset of ~ize Nl and transfer it trow 

la val 1 to the process::>c (level 0). In general, a transfer 

from level n to the processor would consist of a series of n 
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3teps. Thus the system page transfer time 

sum of n inter-level page transfer 

e I I ) • Furthermore, 

74 

w culd equal the 

times 

for 

(e.g., 

many 

electcomechauical stocaye devices, 

r~quir~d to forwar1 the page subset, 

the second access, 

may experience the 

"max:illulll" dGCess del:iy rather t.han the "averagen 

dftar storing the information into the level, a comflete 

illachauical revolution may be required to r~position to read 

the Sime information ind forwdrd it to the next level). 

rnis can dVOided allowing 

levels 1.n fo nna tion to stored into all upper 

~imultaneously. Pigure 5 illustrates this mechanism. If 

information is to be transferred from~~ to the processor, 

~ 3 turns on its output data gate, G3 out, when it is ready to 

start and transfers N3 bytes dnd their corresfcnding logical 

addLesses up the data bus. 

J2ia, to receive these N3 

~ppro~riate NZ bytes neeied 

M2 turns on its input data gate, 

bytes; furthermore, when the 

oy Ml are detected by h 2 , it 

turns on its output d1ta gate, G2out, and these N2 bytes are 

f3r~arded to Ml wbile being stored in M2, etc. 

For example, as~~me a reference tc lcyical address a is 

1enerated by the processor and tbe corresponding information 

13 ~urrent stored at level n (and all lower levels, of 

cJurse). At the inst1nt that the Nl bytes containing a are 
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Figure 5. 
Re1i Through Structure 
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pla=el on t~e data b~s by level n, these N1 bytes will be 

stocei into all levals from level n-1 to level O (the 

simultaneously. Likewise, the bytes 

c3ntaining a are simultaneously stored into all levels from 

l~vel n-1 to level 1. This strategy thus makes it appear 

tnat the Nl byte pa~e re~uested by the processor is~~~ 

t~£2~~~ directly to tne processor without any delays. 

4.4.1 Page Transfer Time 

Jsing the read throu~h strategy, the page transfer time 

t~ tna processor is actually less than the page transfer 

time to the adjacent storage level. For example, if the 

raquested information is stored in M3 , the page transfer 

ti.me to the processor, via redd through, is 

f ill30 = T3 + N 1 B 3 

Wn eI:-B.:1. S 1 the page ti:ansfer time frcm fP to M2 l.S 

r1132 = T3 + N3B3. 

Sin::e Nl(N3, then Tm30(Tm32. 

4.4.2 Availability anl Servicability 

rhe read through mechanism described above ofiers some 

inportant advantages to the dVailability anJ serviceability 

uf tha stordge system. Note that all storage levels are 

cJnne:;t,~d to the gc1te1 data bu::. uot dirBctly to each other. 
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IE a storage level must be removed from the system for 

ser,i:ing, it is merely necessary tc manually set both Gin 

<i[ld :iout "on". In this case, the information is really 

"read through" tbis lave! as if it aidn't e~ist. No other 

caan~es are needed to any of the other storage levels or the 

stora 1e management algorithms although we would expect the 

parforaance to decrea5e. 

!+. 5 Store Behind 

Under normal steaiy-state Oferation, all the levels of 

t~e storage hierarchy will be full (except FOssibly level 

L). rhus, whenever a pa~e is tc be moved into a level, it 

is oe=essary to remove a current page. If the page selected 

f~c removal has not been changed by means of a processor 

"store", the nev page can be immediately stored into the 

lav3l sinGe a copy of the removed page already exists in the 

n;!xt lower level of. tne hierarchy. If the processor 

g~nerates a "store" request, all levels that contdin a copy 

~f tbe information beiug ~odified must be updated. This can 

in accomplished in thcee basic lilays: (1) store through, (2) 

3tore replacement, or (3) store behind. 
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4. 5. 1 Stoce Thr-ough 

Under a elQ£g 1Q£QQgQ policy, all levels are 

simultaneously updatei whenever the processor generates a 

"store" re1uest. This is the obvious inverse of the cead 

tarough policy. But, there is a crucial distinction. Undec 

caai through, only storage levels 1 through n are used, 

wbera n is the highast level containing the requested 

iuformation. Store through must update the contents of 

lavels n through L. rau5, read throu~h speed is limited by 

its slowest level atfacted, level n; store through is always 

limitad by the speed ou level L, the slowest level of them 

all. If 2J'~ o:t all processor requests are "stores", the 

3yste~ success fre~uancy function ct level L will be at 

Due to its l~rge average access time, level L 

will be the dominata portion of the system's effective 

a:::cess time., r •. 

Store through caa be used efficiently only if the 

~ccess time of level Lis com~arable to the access time of 

lavel 1, such as in i two-level cache system. In fact, it 

is used in some cache systems, such as the IBM systea/370 

Modal3 155 and 165 [ 52 J. 
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ij.5.2 Store Replacement 

Under a store re£1acement policy, the processor only 

stores into M1 • Ir a cnan~dd fage is later selected tor 

ramoval, it is then moved to the next lover level, M2 , 

i1mediately prior to heing replaced. This process occurs at 

avery level and, eveutually, level L ~ill be upddt~d but 

only ifter the paje has been selected for re~oval from all 

tne higher levels. Due to the extra delays causea by 

updating changed pa~es Defore r~placement, the effective 

i:c~53 time for fetcnas is increased. Variou8 versions of 

3tore replacement are used in mcst two-level paginy systems 

sine~ it offers substautially better performance than store 

through for slow second level storage devices (e.~., drums 

and disks). 

ij.5.3 Store Behind 

Store Behind is i compromise strategy that bridges the 

Jip between store through and store replacement and otters 

substantially better p~rformance. 

tne 5toraga system was required 

In both strategies aoove, 

tc perform the update 

Jpecation at some spe:ific time (e.g., at the instant of the 

"store" request for store through or at the instant of 

camoYal for store replicement). Once the information to be 

3torei has been accepted by the storage management system, 
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the processor doesn't really care he~ 

the storage hierarchy are updated. 

,dv:1nta<je of this d:!1ree of freedom. 

or when the copies in 

Store behind takes 

uue to the large 

iisparity between average access time and transfer rate for 

most levels, the maximum data transfer capacity is rarely 

rea~ned (i.e., at any instant of time, a storage level aay 

tt:>t have any 

w:1.itinJ for 

r~qu~st). 

outst~niing requests foe service or 

proper positioning to service 

DurincJ these "idle" periods, data 

a 

it 11ay be 

fending 

can be 

transferred down to the next level of the storage hierarchy 

without affecting or delaying any fetch operation. Since 

tties:! "idle" per-iods are usually very frequent under most 

actual circumstances, there can be a continual flow of 

c~aa~ad infor-mation down throu~h the hierar-chy towards level 

L. 

4.6 A1tomatic Mana~emant 

Although an effective storage management system should 

3ttempt to minimize page movement and its associated 

"housekeeping", there will still be a substantial amount of 

worK reyuired to man1~e the hierarchy. It is desirable to 

camova as much as possible of the storage mana~eweat from 

t;e concern of the pr-oc2ssor and the progr-ams running on the 

pro=~3soc, including tbe operating system. There are two 

etinary ~otivations foe this cbjective: (1) the storage 
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hierarchy s~ould function as an independent comfonent of the 

system to elimindt2 any added complexity to the processor or 

pro:1.cams, and (2) w2 want to conserve the procEssor•.s 

~~mputational powers for solving the user's problems rutner 

t~an for "system overhead". In actuality, of course, the 

stora~e hierarchy can not be divorced entir~ly from the rest 

~f t~e system, but tha reillaining interdepenaencies should be 

miniiaal. 

4.6.1 Distributed Control 

In the hierarchi=~l storage system described above, all 

storaJe management oparations can be determined local to a 

sin~le level or, at most, in consideration of information 

rco~ neighboriny levels. Thus, it is possible to distribute 

toe =antral of the hierarchy into the levels, this also 

f1cilitates parallel and asynchroncus o~eration in the 

hiecarchy. 

In a comprehensive multiple level storage hi~raLchy, as 

illustrated in Tabla 1, this automatic and distributed 

::=ontrol can be accomplished Ly using two mechanisms: ( 1) 

processor fun:::tions, inl (2) "intellige!lt" controllecs. 
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ij.6.1.1 Processor Functions 

rhe management of the first storage level must cperate 

at speeds comparable to the processor. As a result, it is 

usuilly necessary t~ incorporate the first level store and 

its 1ssociated mana~ement operations into the processor 

nardw~re itself. This approach is used in the IBM 

system/370 cache syste~s [ 52]. 

It is often desirable to incorporate the management of 

the second stora~e level also into the processor. This 

l3vel requires substantial performance to handle the demands 

f~r service from the first storage level. Since its 

r3~uirements are not ~uite as demanding as tbe first level, 

it is an ideal candid1te for firmware control, assuming that 

tne processor is microprogrammed. This approach has not been 

usej in 

iate,1r1ted 

:.udels of 

any CUC.Tent commercial systems, 

channels (i.e., mi::=roprogram med) 

the IbM system/370 are based 

although the 

of certain 

upon similar 

::=onc~pts. rhere have been a few experimental systems, such 

as the VENUS System at MiTRE, which provides processor 

tunctions to essentually manage the pa~ing system via 

microprogra~ming. 
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ij.6.1.2 "Intelli~Bnt" Controllers 

For the third storage level dnd beyond, the stordye 

mana~ement pertorman:a requirements are much more modest 

since most of the stor~ge activity should occur at the first 

and s~cond levels. F3r these lower levels, it is fOSSible 

t3 ievelop indepenJent storage management ccntro~ facilities 

for each level. This can be accomplished by extending the 

runctionality ot :ouventional device controllers. Some 

recent sophisticated ievice controllers are microprogrammed 

and are already ca~anle of performing the storage manayement 

function ( 1 ]. 

4.6.2 MultiprogramminJ 

Jp to now we have tacitly assumed that the frccessor 

becomes idle whenever it is necessary to fetch information 

from the storage hierirchy. This may be a reasonable policy 

for t~o-lev~l cac~e systems since the processor is uever 

idle for more than one or two microseconds at a tiwe. But, 

foe pa<:Jing 

niec:archies, 

systems and general 

the processor may be 

multiple level storage 

idled for periods ot 

hunireds or thousand5 of microseconJs at a time. It l.S 

w3cthijhile to try to rind useful work for the ~cocessor 

wbile the storage hi~rarchy is retrieving the reguested 

infoc11a tion. 



Stor1ge Hierarchy Systems 

In most C3nventianal computer systems, 

time is utilized by multiprogramming. This 

tlera be multiple pro1rams available to be 

84 

processor ictle 

requires that 

run. Whenever 

one program must he d~layed Jue to a time-consuming storage 

caque3t, t~e process3c is switched to another pro~ram. 

Under reasonable cir:umstances (e.g., many progcdms ready 

foe axecuti0n and moderate load on the storage system), it 

is po3sible to kaep the processcr ccntinually busy. Thus, 

t~e ~ffectiva system storage access time, r•, will very 

closely approximate f 1 • 

Unfortunately, tne process cf switching execution from 

one program to anothar can result in a considerable amount 

of pc~cessor ovacheaJ. For example, an early version of tne 

~ultics operating system was reported to require 10 

milliseconds to switctl programs; typical operating systems 

r~q~ice up to 1 millisecond. The time reguired to 

~ccomplish this multiproyram s~itch can be drastically 

reduced if the multiprogramming manayement is dlso 

iacocporated into th~ processor along with the rirst and 

seconl storaye level management. Although the particular 

p~rposes ~ere Jitferent, hardware surported multiprogramming 

n~s bien available on several computing systems, such as the 

ll~ney,~11 8}0 series [46) and more recently in the Singer 
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5yste~ Ten (30J. fha less frequently executeJ o~erdtiny 

system functions, su=h as job scheduling and time-sharing 

managawent alyocithws, can be sup~orted by the sott~are 

operating system as oo ~onventioal systems without adversely 

at feet in~ pert ormance. 

~.7 C~mments on the Storage liierdrchy s1stem Qe~ign 

rhis chapter has presented the key conce~t~ of a 

gener-al multiple 

tile particular 

level storage 

det1ils of 

hierarchy system. 

the system will 

Many of 

require 

consilerable investigation and experimentation to determine 

an ~ptimal implementation. Three important factors are 

axtansively studie:i i11 the followin-J chapters: (1) other 

p1ge size considerations, (2) removal al~orithms, dll.:.I ( J) 
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C.-IAPTER 5. 

ANALISIS OF PAGE SIZE CONSIDERATIONS 

5.0 Intcoduction 

Jne of tbe most impoctant parameters or a stocage 

nier:-acchy system is the page size, the unit of information 

tcan3fer between two levels of the hierarchy. In this 

chapter, the factors influencing page size are examined from 

tne ievice charactaristics viewpoint and the program 

behavior viewpoint. 

5. 1 rhe Pa~e Size Issue 

Ju contempocary two-level paging systems (based ~~on 

two Jevices similar to d8vices 2 and 4 of Table 1), the page 

::;ize is usually quit~ lacge (typically 4096 bytes for paging 

systems) to taice adv:rntage of fi2 1 s large transfer rate to 

compensate foe its slow access ti~e. Such a large page size 

is justified by celiance on the Principle ot Locality. 

~onsiiering the devi=as of rable 1 for example, a single 

byta =an be accessed ~nd transferred between ~1 and MZ in 

about 5 milliseconds whereas 4096 contiguous bytes can be 

fatchad in 7.8 millisa=onds, only 56% more time. 
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S, 1. 1 Page Size Investigations 

Although paginy systems haVP. been used successfully, 

tne affect of page si,e nas become the subject ot increasin~ 

investigation, This interest has been aroused due to several 

consi:ierations: 

1, It has bean noted by Denning ( 26] that the 

utili~ation of M 1 is maximized and "Fage breakage" minimized 

by using rather smill pages, 

p1rticulac, ne emphasizes: 

such as 200 bytes. In 

"rhese results ace significant ••• small payes 
parmit a great deal of compression without loss of 
efficiency. Smdll page sizes will yiela significant 
improvements in storage utilization ••• 11 

2. The success of cache systems indicates t.hat 

Principle of Locality applies on the microscopic scale 

the 

as 

wall as the macros:::oiJi::::: scale cf conventional payin':} 

systems. 

3 • The recent introduction of several new device 

t~cbn:>logies, such dS th2 "semiccnductor dru111 11 (JS) with an 

aver~~e access time :>t about 100 microseconds, drdsticdlly 

reduce~ the benefits ~t very large page sizes in a paging 

system. 

q. Although m:>st current multilevel systems employ 

only two lavels, this tnesis is ccncerned with multiple 
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lavel ~torage bierarcbies (i.e., tnree cf more levels). In 

t1ct, storage systems with six or more levels are quite 

plausible. A deep un1arstanding ot the effects of various 

~age sizes is essenti1l to the development of such systems. 

rhus, altbough there are many reasons fer considering 

new page sizes, there is not a complete understanding of the 

impict of such a change. Denning (26] sums up our current 

Knowledge as follows: 

"rwo factors primarily influence the choice of page 
size: fragmentation and eificiency of page-transfcrt 
operation." 

I~ tbis chapter sowe ather tactors of potentially crucial 

importance ~ill be discusseJ. 

5.2 Anomalies 

Jne of the more intriguing and frustrating aspects of 

compla~ systems, such as paging systems, is the occurrence 

of an~malies (i.e., phenomena that are contrary to "ccmmon 

sen5e"). For example, Belady [ 10] has shown that certain 

stora.1e manayement ranoval algorithms, in particuldr FIFO 

(tirst-in first-out), may actually cause performance to 

Jecrease as the capacity of Ml 

contriry to tha general belief 

thin,J5 work out batter". 

is increased. This result is 

that "more main memory makes 

Thus, one must execcise 
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C3n~iderable care when consideciny "tinkering" 11ith the 

~aram~ters, such as page size, of a multilevel stara~e 

system. 

rhe objective of this chapter is to present and analyz~ 

some anomalies encountered when the page size pardrueter is 

cbaa1ad in a pagin~ sy3teru. 

5.3 T~e Page Size Anomaly 

For simplicity, let us start by consiaeriny the eftect 

ot da~reasing the ~aJe size used in a 

from N to N1 wheres• = N/2 in this 

two-level system, s, 

new system, S'. In 

particular, we wish to investigate the effects upcn the 

failure frequencies which are t and f', respectively. IIJe 

define the ratio f'/f to be r. ihe possible results can be 

partitionei into three interesting regions: 

1. r < 1. 

2. 1 S C S -'• 

J. C ) 2. 

5.3.1 Case 1: r < 1 ( r• < f ). 

rhis 11ould be highly desirable result since tne 

uumber of page fetch~s i~ actually decreased. Furthermore~ 

the time required to access and transfer a page of size N' 

would he expected to be less than that required fer the 
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(f 4) 

Parameters 

As seen by S: 

• p = a, b, a, b, C - , 
• JP I = 6 
• Q = [ a, b, C } 

• IQ f = 3 
• IM 1 I = 2 
• FIFO Removal 

A:i seen by s' : 

• p = a+, b+, c+ I a+, b+ I c+ 
• I P t = 6 
• Q = { a+, b+ , c+ } 
• IQ I = 3 
• PPI = 4 

• FIFO Removal 

Simulation 

i?l ge rrace: a+ b+ c+ a+ b+ c+ 

-~-
Fatch: * • * * * * 
tP :on tents: a b C a b C 

a b C a b 

-~~-
Fatch: * * * 
:11 :on tents: a+ b+ c+ c+ c+ c+ 

a+ b+ b+ b+ b+ 
a+ a+ a+ a+ 

il§!!!!:.2 

• F = 6 
• F' = 3 

• r = 3/6 = o.s 

Figure 6. 
Example cf Case 1 
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lirger page size N. Figure 6 illustrates an instance of this 

~ase. In converting au ddlress trace to a page trace for N1 , 

tne l~gical page addrasses ~+ and p- are used to represent 

t~e two halves of the page p of size N. Note that when usiny 

a paya size of N/2 instead of ~, Ml actually holds twic~ dS 

~any 2ayes though aaca page is only half as la~ge. 

In the example of Figure 6, r = 0.5, which means that 

t~e number of page fetches was cut in half by using the 

smaller page size N1 • rhis type of result might be expEcted 

fcom a pro1ram that exhibited a rather sparse and 

aon-l)calized reference behavior. Recall that in typical 

t~o-lavel paging systems, a page of size 4096 bytes is 

fetched even thou~h a single reference uses only a few 

bytes. Unless the program immediately makes many more 

r~ferances to this page, much of it will have been f~tched 

out not used. Under tbese circumstdnces, M1 might oe better 

utilized by noldin~ a larger and more diversified collection 

of paJes, even if each page were smaller. 

5. 3. 2 Case 2: 1 :S r s 2 ( f s f' :S 2f ) 

rhis is a transitional region. For r = 

perform better tbdn s since the number ot page 

1 , s • will 

tetc.hes is 

t~e same dnd the tiwe required fer each fetch is less. For r 

= 2, s• will re~uire twice as many page fetches. This will 

u~ually swamp any paJe transfer benefit derived from the 
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3mall3r page size, thus s would ferform better. The specific 

p3int of transition, r', depends largely upon the time 

r3quired to access and transfer a page, T and r• 

r3spe=tively ins ands•, such That r• = T/T'. 

Figure 7 illustr1tes an ~xtreme example of Case 2 wuere 

r = 2.0. This m~ans that the number of page fetches was 

j~uDled by using tne smaller page size N'. This type of 

r3s1lt might he expected from a program that exhibited a 

J3n;a, localized, and sequential reference behavior. 

Intuitively, the r = 2.0 result is the "worst" ca3e 

sin=1 ~e dra being forced to always load both the p+ and p

u1lve3 of each original page p, thereby losing all the 

banefits of the small2r N' page size and incurring twice as 

many actual page fiults. This intuitive observation is 

t1lse; r = 2.0 is not the «wor3t" case. 

'). 3. 3 case 3 : r > 2 ( t• > 2f ) 

£his r :! Ji OH 1 besides being intuitively 

inpossible, is clearlt undesirable. Since the number ot page 

tet:n2s required woulJ be more than doubled, the performance 

Jf S' would be undoubtedly worse than s. Depending u~on the 

i:tuil value of r, the perrormance could be much worse. 

Figure 8 illustrates 1 reference pattern that produces a 

result of r = 2.75. This reyion of operation will b€ the 
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P1ra11eters 

A.s seen by s: 

• p = a, a, b, b, c, C 

• IP I = 6 

• \J = { a, b, C i 
• I JI = 3 

• IM 1 I = 2 
• FIFO demoval 

As sean by s. : 

• p 

• I PJ 
• Q 

• I Q I 
• PPI 
• FIFO 

Si mul:1 tiou 

J:lage rrace: 
-~-
Fat;;h: 
'.11 :on tents: 

-~~-
11 at;;h: 
111 :on tents: 

fl.12!!lt2 

• F = 
• F' = 
• r -

= a+, a- , b+, b-, c+, c-
= 6 
= (a+, a-, b+-, b- , c+ , c-
= b 

= 4 
Removal 

a+ a-

* 
:i a 

* * a+ a-
a+ 

3 
6 
6/3 = 

l.)+ b- c+ c-

* * 
b b C C 

a a b b 

* * 'I' * 
b+ b- c+ c-
a- iJ+ b- c+ 
a+ a- i)+ b-

a+ <1- b+ 

2.0 

F'iguce 7. 
~idmple of Case 2 

} 
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(f 5) 



Stor1ge Hierarchy Syste~s 

(f b) 

?1ramatecs ---,--------
A~ 3Ban by S: 

• p = a. , b, 1, b, c, c, b, a, a, c, C 

• I P I = 1 1 
• Q = { a, b, C } 
• I i.Jl = 3 
• P1l I = 2 
• FIFO Removal 

As s2en bys•: 

• i' = a+ b+, a-, b-, c+ I c-, b+, a+, a-, c+, c-, 
• IP I = 11 
• :,J = ( a+, 1-, b+, b-, c+, c- J 
• J QI = 6 

• PPI = 4 

• FIFO Removal 

Simulation 

PigB r race: a+ b+ a- b- c+ c- b+ a+ a- c+ c-

-~-
P:! tcti: * * * * i:11 Con tents: d b b .b C C C a a a a 

a a a b b b C C C C 

-~~-
F:! tell: * * * * * * * * * * * 
;11 :au tents: a+ b+ a- b- c+ c- b+ a+ a- c+ c-

a+ b+ :i - b- c+ c- b+ a+ a- c+ 
a+ o+ a- b- c+ c- b+ a+ a-

~+ b+ a- b- c+ c- b+ a+ 

• f = 4 
• F' = 11 
• r = 11/4 = 2.7~ 

Figure 8. 
Example of Case 3 
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subje=t of Jiscussion for the remainder of this chapter. ~e 

f~rmaiize this situation by the following existence thecrem. 

(th 1) 
THEOREM 1: 

rhere exists 1 page tr ace, P, and demand-fetch 

FIFO-removal two-level storage systems, sands•, with 

page sizes N anl N'=N/2, respectively, such that the 

ratio, r, of tet:h freguency f' to f exceeds 2. 

Proof: 

By example (Figure o). 

S.3.~ Oth8r Removal Algorithms 

r~eorem 1 states the anomaly that decreasiny page size 

Dy a factor of two :an cause the page fetch fre1uency to 

i~crease by more than a iactor of two. The two-.1evel 

demanl-fetcn conditions of Theorem 1 are typical of most 

contemporary pagin~ systems. But, to put this situation into 

perspactive, other removal algoritums must be con~idered. 

Duet~ its simplicity, tne FIFO removal alyorithrn was used 

in many of the early p~ging systems. In recent tiwes it has 

oaen found that FlFJ has certain disturbing pecularities 

(e,g., the dJstem•s success frequency, s, is not a monotonic 

fun~tion of primary store size, JM11 ( 10J). Furthermore, 

othar removal algoritn~s have been fcund to be empirically 
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closer approximations to the "optimdl" removal algorithm, 

MIN [ 11], MIN itself is not physically realizable since it 

raquires future knowlelge, but it can be used as a basis for 

parformance comparison with practical algorithms. 

Variou3 forms of the "least recently 

remov1l al~orithm h1ye become pofular in 

used" (1.RU) 

contemporary 

:.ysteJIS, Under LRU, the page select€d tor reilloval from the 

prim1ry store is the one that bas net been referenced for 

the longest time (i.e., the least recently used page), 

S~pirically, LRU hds been found to closely approximate the 

partormance of the "optimal" algorithm tor many actual 

pro~rams. Furthermore, Mattson et al (63] have studied LRU 

1ad f3und that it is 1 member of a genEcal class of removal 

algoritnms call~d "stick algorithms". The class of stac1l 

1lgorithms, as noted by Denning (25], "contains all the 

•reasJnable' algorithns". In particular, stack algorithms 

dll satisfy an inclusion property that results in well 

nah!Vld characteristics, For example. it has been proven 

tnat all stack algorithms, including LRU, have a success 

tre1u~ncy that is a monotonic function cf primary store size 

dad immune to the FIFO peculariarity observed by Belady. 

rhus, one mi~bt be tampted to assuwe that the page size 

anom~ly is also a phenJmenom unique to FlPO removal and 

~Juli not occur if a "well behaved" removal algorithm, such 

ii LHJ, ~ere used. Tbis expectation can be rafidly destroyed 
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by observing Figurcl 9, wnich is the same system as figured 

but with an LRU removil algorithm. In this exdruple, the page 

fetch fraquency ratio, r, is 2.2 which still exceeds 2. This 

result leads us to TheJrem 2 and corollary 2a. 

(th2) 
rHEJdEM 2: 

rhece exists a page trace, and demand-fetch 

Lau-removal two-level storage systems, sand S', ~ith 

page sizes N anj N1 =N/2, respectively, such that the 

ratio, r, of fet:h frequency f' to f exceeds 2. 

!?roof: 

By example (Figure 9). 

C)RJLLARY 2a: 

,iven a pa~e trace, P, and demand-fetch two-level 

stocage systews, Sand S', with page sizes N and 

N'=N/2, respectively, the use of a "stacX" rewovdl 

:ilgorithm 

propecty 14 ) 

(i.e., an algorithm with the "inclusion 

is nJt sufficient to guarantee tnat the 

ratio, c, of tetch frequency f' to f will be bounded by 

2. 
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PiC'am~tecs 

A5 ;:;ean bys· 

• p = a, b, i, b, c, c, b, a, 
• IP J = 1 1 
• u = ( a, b, C j 

• IQ I = 3 
• PPI = 2 
• LRU Removal 

!\.::i sean bys•: 

• p = a+, b +, a-, b-, c+, c-, 
• I PJ = 1 1 
• Q = { a+, a-, b+ o- c+, c-, , 
• I J J = 6 
• ll'Pi = 4 

• LRU Removal 

Si mul:1 tion 

!?:iga rrace: a+ b+-

-~-
Fat::h: * * 
,'11 Cout8nts: a b 

a 
S I 

Fetch: * * 11 ~outents: a+ b+ 
a+ 

g_~.§Y!!:~ 

• F = 5 
• F' = 1 1 
• r = 11/5 = 

a- b- c+ c- b+ a+ a-

* * 
ii b C C b a a 
b a b b C b b 

* * * * * * * a- b- c+ c- b+ a+ a-
b+ a- b- c+ c- b+ a+ 
a+ b+ a- b- c+ c- b+ 

i+ b+ a- b- Ct- c-

2.2 

F 1.y ure 9. 
Example ot Case J 
(for LHU He moval) 

a, 

b+, 

} 

c+ 

* 
C 

a 

* 
c+ 
a-
a+ 
b+ 
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(t 7) 

c, C 

a-+, a-, c+, c-

c-

C 

a 

* c-
c+ 
a-
a+ 
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5.4 Si~nificance ot th~ Page Size Ancmaly 

rne previous thaorems prove that there exist page 

trac~5 tnat result ia significantly increased page tetch 

frequancies if the piya size is decreased. It is necessary 

to consider the liKelibood of encountering such page trace 

patterns in actual programs. For example, it can De proven 

taat, as you are reading this sentence, all the molecules of 

air in the room may su~denly move towards tbe opposite 

cornec and cause you to suffocate. If you survived the last 

s~nte1ce, you have probably deduced that the likelihood ot 

tbat avent is extremely s~all, fortunately. 

5.4. 1 Simulation Studies 

Hatfield [48J and Seligman [78] have performed 

experiments tbat indicate that the page size anomaly is very 

common, it not inevit~ble, in actual programs. In both cases 

a~tual programs were monitored and their corresfondin~ page 

trac~ reference strings were recordeJ, usually on magnetic 

t~pe. Then simulators were developed that mimic~eu the 

softw~re and hardware of the two-level stoLaye systems then 

in us~ or being consiierei. By SUFplying the monitored pdge 

trace3 as inputs to the simulators, the performanc~ cf such 

a system can oe accurately measured. These simulators were 

3crupulously accurate, not just approximations. The validity 
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~f these cesults have been confirmed in some cases oy 

r1nnia~ the ceal pro~rams under a real two-level storage 

.:;y st arn. 

5.4.2 Hatfi~l1 Studies 

ll at fie 1 d L 4 8 ] performed studies in the bar: d ware 

envir~nmeat of the IBM System/360 Model 67 with programs 

rJnninq undar the CP-67/CMS Operating System. fhe simulated 

pertormance was measured for various page sizes, N, and 

v:1rious primary store sizes, JM' f. In summary, it was 

c~nfirme1 taat certain programs. which were viewed as 

~xamples of low-density storage use, resulted in decreased 

page tetcb frequency when page size was decreased. But, it 

was observed that for programs with much greater 

l~cali~ation of heavily used storag~: 

"not only does the smaller page size often generate 
nadrly twice dS m~ny page fetches as the large page 
size, it often resulted in more than twice the page 
tatchas, contrary to our intuiticns." 

Ia pirticular, the substantially 

trequ2ncy appears to ba: 

increased page fetch 

"a characteristi= of pro~rams which have a high 
locality and therefore perform well on systems using 
ralocation hardware for address translaticn and is 
characteristic of those programs in the region of 
l~w paging rate." 
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In other words, the anomaly is most prevalent in ~rograms 

~~ptimized" for perfocmdnce in a two-level stora~e system 

w~en cunning unJer nearly "optimal" conditions! 

j,4.3 Seligman Studies 

whereas Hatfielj vas concerned with a paging system 

with page sizes in the range from 2048 to 16384 bytes, 

Saligman (78] analyzed a proposed cache system with much 

smaller page sizes in the range of 8 to 256 bytes. He 

observed that: 

"interestingly, the missing page probability (for 
this dat~) is minimized for a page size which 
increases slowly with total memory size. Note that 
the associative memory organization, where page size 
aquals one word, is not optimum; tc borrow a phrase 
from economics, the marginal utility of the extra 
words fatched in a page is higher than that of tho~e 
displaced". 

rhus, continual decceising of page size ap~ears to have an 

inevitable adverse eff3ct upon system performance. 

5.4.4 Other Questions Raised 

Now that it has been shown that the page size anomaly 

is theoretically possible and likely to occur in prdctice, 

there are several other ~uestions of interest. Since it has 

baen proven that tha page fetch frequency ratio is not 
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bJunded by r = 2, wh1t bounds, if any, do e~ist? Hatfield 

i~plicitly raised another question by the statement: 

"1s yet we have b3an unable to prove that there is a 
raplacement algorithm using cnly the past history of 
p1qe requests wni=h cannot generate more than twice 
the exceptions witb half size pages." 

rne answers to thesa questions are the subjects of the 

following sections anJ chapters. 

It bas De~n shown that the page fetch fre1uency ratio 

can exceed r = 2, but just now bad can it get? ot equal 

in~3rtance, what f1~tor3 influence this bound? These 

~uestions will he discussed in this section. 

5.5.1 cyclic Page Tra=es 

Figures 10 and 11 re~resent page trace simulaticns for 

t,o 3ets of jemand-fetch LRU-removal two-level storage 

systems with priwary store sizes JMlj=2 and JM 1 1=J, 

rasp~=tively. In botn cases, it Cdn be observed that the 

piga trace simuldted is cyclic with a repeated fattern, Pc. 

Ia Figure 10, tne page trace consists of the repeated 

p=tttern: 
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(t d) 
Parameters 

As seen by S: 

• p = a, b, -, c, b, a, a, b, c, c, b, d 

• I P I = 12 
• J = { a, b, C } 
• I JI = 3 

• IM l I = 2 

• LRU Removal 

As seen bys•: 

• p = a+, b+, c+, c-, b-, d-, a+, b+, c+, c-, b-, a-
• IP J = 12 
• Q = ( a+, a-, b+, n- , c+, c- } 
• I QI = 6 

• IM l I == 4 

• LRU Removal 

Si111ul1tion 

transient steady-state 
t< cy:le >1< cycle >j 

Page rrace: a+ b+ c+ c- b- a- a+ b+ c+ c- b- a-

-~-
Fetch: * * * * * * ct l :on tents: d b C C b a a b C C b a 

a b b C b b a b .b C b 

-~~-
Fet::h: * * * * * * * * * * * * 1-(l :0ntents: a+ b+ c+ - b- a- a+ b+ c+ c- b- a-

a+ b+ c+ c- b- a- a+ b+ c+ c- b-
a+ b+ c+ c- b- a- a+ :o+ c+ c-

a+ n+ c+ c- b- a- a+ b+ c+ 

L same 
_J 

;!~§Y!~§ 
for the steady-state cycle: 

• F = 6 • F = 2 
• pt = 12 • F' = 6 

• r = 12/6 = 2.:) • /r/ = 6/2 = 3.0 

Figur~ 10. 
Cyclic Page Trace ~ith tM 1 1 = 2 
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wbere~s Figura 11 repaats the similar pattern: 

Pc = a+ b • c + d + d- c- b- a-

5,5.2 Ste3.dy State cy;lic Paye Traces 

Let us consider Figure lJ first, The page fetch ratio, 

~, is 2,0 in this casa, As noted earlier, the page trace can 

ba suo1ividP.d into an initial transient stage, Pt, with a 

high pa~e fetch frequency followed by a steady-state stage, 

P5, with usually a lo■ er page fetch frequency. In Figure 10, 

the first Pc cycle c~ntains the entire start-up transient 

stage and completely fills all the available space in M 1 • 

r~u3, tha seconJ t'C cycle reFresents the start oi the 

steady-state stage. Furthermore, since the content and page 

ord~ring of ~1 is exa;tly the same at the end of the second 

cycle as theJ were at the beginning of that cycle for both S 

::i.r1d 5 1 , the paye trace cycle, Pc, can be repeated 

~~ntinuously with exactly the same results each time tor 

page fetch re1uests dal M1 contents. If /r/ is defined to be 

t~e p1ge f~tch fraque~cy ratio foe the first steady-state 

pariol, Pc, of a cyclic pa~e trace, (Pc)*, /r/ is also the 

page fetch frequency ratio for the entire steddy-state 

plrtion of the page tr~:e defined by the regular expression: 

P = Pt•Ps = Ft•(Pc)* 

A3 t~~ length of the page trace, IPI, becomes large in 

:omparison with the length of the transient stage, JPtJ, the 
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overall page fetch freyuency ratio, r, asyrnftoticdlly 

appro3ches the value of the steady-state cycle page fetch 

frequency ratio, /r/. In Figure 10, /r/ = J.O, thus r will 

iacrease from 2.0 towards J.O as the page trace is 

lanJtbened by continually repeating the pdttecn Pc. 1bus, 
I ', 

tbe pige fetcb trequency ratio, r, fer the page trdce 

is bounded by 3.0 when Jftlj = 2. 

A similar situation is illustrated in Figure 11. lu 

tnis axa ■ pla, r = 2.28 and /r/ = 4,0. 1hus, the page tetch 

frequency ratio, r, foe the page trace 

is bounded by 4.0 wban IM'I = 3. By generalizing these 

examples, we arrive at Theorem 3 and Corollary Ja. 

(th 3) 
rHEOdEl'l 3: 

For any t~o demand-fetch LRU-removal two-lEvel stora~e 

systems, s ani 5 1 , with page sizes N and N'=N/2 and 

primary store sizes IM 1 1 and IM 1 1'=21N'I, resp~ctively, 

there exists a cy=lic pa~e trace, F = (Pc)*, where t~cl 

= 2(1M'l+1), su=~ that the steddy-state page fetcn 

frequency ratio, /c/, equals IM'l+l. 

Proof: 

(See below). 
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(f 9) 

A;;, seen by S: 

• p = a,b,c,i,d,c,b,a,a,b,c,d,d,c,b,a 
• I PI = 16 
• Q = ( a, b, c, d } 
• IQ I = 4 
• Pill = 3 
• LRU Removal 

As seen by s•: 

• P = a+,b+,~+,d+,d-,c-,b-,a-,a+,b+,c+,d+,d-,c-,b-,a-
• IPI = 16 
• Q = ( a+, 1-, b+, o-, c+, c-, d+, d-} 
• IQ I = 8 
• llPI = 6 
• LRU de11oval 

Simul1tion 
tcansient steady-state 

I~ ~ycle I cycle • Piye rrace: a+ b+ c+ d+ d- c- b- a- a+ b+ c+ d + d- c- b- a-

-~-
Fa tch: * * * * * * * ;1.1 :on tents: a b C j d C b a a b C d d C b a 

a 0 C C d C b b a b C C d C b 
d. b b b d C C C a b b b d C 

-~~-
r'et:::n: * * * * * * * * * * * * * * * * 
!'i l :on tents: a+ b+ c+ i+ d- c- b- a- a+ b+ c+ d+ u- c- l:;- a-

a+ b+ c+ d+ d- c- b- a- a+ b+ c+ d+ d- c- b-
a+ b+ c+ d+ d- c- b- a- a+ b+ c+ d+ d- c-

a+ b+ c+ d+ d- c- o- a- a+ b+ c+ d+ d-
a+ b+ c+ d + d- c- b- a- a • b+ c+ d+ 

a+ b+ c+ d+ d- c- b- a- a+ b+ c+ 

t same i 
d~2!!it.§ 

For the steady-state cycle: 
• F' = 1 • F = 2 
• F' ,= 16 • pt = 8 
• r = 16/7 = i.28 .. /r/ = 8/2 = 4.0 

Figurti 11. 
Cyclic ?ige irac~ with IM 1 1 = 3 
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CJROLLAR'i 3a: 

For any two demand-fetch LRU-removal two-level storage 

systems, S ands•, witn page sizes ~ and N'=N/2 and 

primary store sizes IMlJ and IM11'=2JM11, respectively, 

there exists a cy:lic page trace, f = (Pc)*, wh~ce !Pel 

= 2 ( I M 1 I + 1 ) , s u c ti t ha t the over- a 11 page t etch f i: e q u ency 

ratio, r, asymptJtically approaches the bound IM 1 1+1 as 

IPI approaches infinity. 

S.5.3 Proof ot Theorea J 

5.5.3.1 Notation ind Properties 

Assuma a fixed page size N and primary stor-e of size S1 , let 

n = tt1.e number of pa1es .1.n M1 (i.e., n = IM1 I = S1 /N). It 

bis baen shown by M1ttson et al (63] that a demand-tetcri 

Lau-removal algorithm has the following properties: 

P1. If M1 is initially empty, it tills with the first 

n distin:t pages referenced by the trace. 

P2. At any tima t, M• contains then most recently 

referencei distinct pages. 

P3. a> LRU satisfies the inclusion ,ECO.E,ert1 

Ml(l) C M1(2} C ••• C M1 (1ll) 

where M' (1) means the cootents of Ml 

etc. 

1.f u= 1, 
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b) At any time t after Ml bas become filled, there 

is a strict removal ordering referred to as the 

s = { s ( 1) , s ( 2) , ••• , s (n) } 

where 

s(i) =Ml(i) -Ml(i-1) for i = 1, 2, ••• , n 

and s(n) is the ~age to be removed next. 

S.5.J.2 Definiti~u 3-a: 

For any integer n, let us consider a page trace, P0 , 

~onsisting of the repeated p1ttern, Pc 0 , of length tPc 0 t = 

2(n+1) 

po = Pco [ n ]* 

w ti ere 

rtie P: 0 (i)s are defined as follows: 

Pc0 (i) 
= { 2(i-11 

4n+5-2i 

ruus, for n = 2 --

for i = 1, ••• , n+1 

for i = n+2, ••• , 2n+2 

Pc0L2] = { 0, 2, 4, 5, 3, 1} 

and 

P0 [2] = ( ;J, i, 4, s, 3, 1, o, 2, 4, 5, 3, 1, ••• l 

r~e cyclic page traca pattern, Pc 0 (n], is used to define 
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~:>cceiponding cyclic page trdce patterns, Pc[n] and Pc'LnJ, 

f3c Sands•, respectively. These are defin~d as tollcws 

Foe a given value of n and i = 1, 2, ••• , 2n+2 

Pc(i) = integer[P: 0 (i)/2] 

Pc' (i) 
(integer(Pc 0 (i)/2])-

if rea(Pc0 (i)/2]=0 

if rea(Pc0 (i)/2]=1 

rnus, for n = 2 

P( 2] = ( 0, 1, 2, 2, 1, 0, 0, 1 , 2, 2, 1, 1), • • • } 

. . . } 

We can see tbdt these page traces are identical to the page 

traces of Figure 8 with appropciate relabeling (i.e., a=O, 

b=1, c=2). 

5.5.3.3 Lemma 3-b: 

rhe page referen:es of the set 

{ Pc(1), ••• , Pc(n+1) J 

are distinct. 

Pco:>f: 

Based upon the definitions cf Pc 0 [n] and Pc[n], we see 

that 

Foe i = 1, ••• , n+1 

Pc(i) = iateger[Pc 0 (i)/2] 

= integer[2(i-1)/2] 

= integer(i-1] 
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= i-1. 

r11 us, each value of P:: ( i) for- i = 1, ••• , n+ 1 is distinct. 

5.5.3.4 Lemma 3-c: 

rhe page referen::es of th8 set 

( P:: (n+2) , ••• , Pc (2n+2) } 

are distinct. 

Pr-oof: 

B~sed upon the definitions cf Pc 0 (n] and Pc[n], we see 

th.at 

For i = n+2, ••• , 2n+2 

l?c (i) = integer[ l?c 0 (i} /2] 

= integer[ (~n+5-2i)/2] 

= integer[2n+2+(1/2)-i] 

=· 2n+ 2-i 

Th.us, each value of Pc(i) 

distinct. 

).5.J.5 Lemma 3-1: 

f o r i = n + i. , ••• , 2 n + 2 is 

At the end of each cycle, ~c(n], of the page trace, 

P[n], ~1 conta~ns the pag8s, in LRU stack ocder, 

.s 0 = ( s0(1), •••• s 0 (n)} 
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where 

s 0 (J) = j- 1 foe j = 1, ••• , n 

Pcoof: 

Since each cycla, Pc(n], cf P(n] is of leu~th 2n+i 

wai=h is greater that u, the s 0 LRU stack consists or tne 

last n pa~e references of Pc[n] in reverse order uy froperty 

P2, Pl, and Lemma 3-c. thus, 

s 0 (j) = Pc(2n+3-j) 

such that 

s 0 (H = Pc(2n+2), s 0 {2) = Pc(2n+1), ••• ,, s 0 (n) = Pc(n+J). 

Wilen j takes on values ( 1, ••• , n J, 2n+3- j takes on values 

{ 2n+2, ••• , n+3 J. Tb.us, for j = 1,, ••• , n and oasell upon 

Lammi 3-c: 

s 0 (j) = t>c (2n+3-j) 

= 2n+2-(2n+J-j) 

= j-1. 

5.5.3.6 Lemma 3-a: 

Q.E.D. 

~iven a demand-fetch LRU-removal two-level storage 

system, s, with page size N, primary store size S1 

~ontainin~ n=S•/N pages, the page fetch fuuction, F, 

resulting from aa=h stedcty-state cycle, Pc[u], of the 

page tx:-ace P uas the value 2 (i.e. , F'l Pc( n] )= 2 dur iny 

steady state). 
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Pc-oof: 

Let us subdivid3 the Pc(n] cycle, which is of length 

2n+2, into four regions as follows: 

Re-1ion 1: Pc 1 = ( Pc ( i) , ... , Pc (n) J 

Region 2: Pc 2 = { Pc(n+1) J 

R•?gion 3: Pel = ( Pc (n+2), • • • I Pc(2n+1) } 

R•?·:Jion 4 : Pc• = { Pc(2n+2) } . 
~ud c3m~ute the numbec- of page fetches in each region, F 1 , 

p2, fl, F•, respectively. Since the page trace regions are 

c3ncat~nated, the paJe fetches are cumulative, so we know 

tnat. 

F =pl+ fZ +Fl ♦ p•. 

Pel = [ Pc(1), ••• , Pc(n) } 

Prom Lemma 3-b, ie know that 

Pc(i) = i-1 i = 1, ••• , n+1 

dnd iram Lemma 3-d, w~ know that at the beginning of each 

cycle 

s 0 (j) :: j-1 j = 1, ••• , n. 

rtie pi ge references ( Pc ( 1) , ••• , Pc (n) } are actually the 

c.i?quauce ( o, ••• , n-1 J which is identical to the contents 

3f M1 at the start of the cycle, s0 • Therefore, no paye 

tcan3fers are requirai although LRU stack reordering may 

u:; C 11 I."• <f:~ ::Q) • 

Pc 2 = l i?c(n+1) J 

Paga reference P:;(n+1) is page n which is net contained 

in s 0 nor loaded during region 1 (in fact, no pages were 
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fetchad during region 1); thus, a page transfer i:.:; cequired 

(f!~l). Using similar techniques as in lemma 3-d, since each 

referance of Pc 1 is distinct, the LRU removal stdCK at this 

p:Jin t is 

s = { s ( 1) , ••• , s (n) } 

11here 

s(j) = Pc(n+1-j) j = 1, ••• , n. 

P:1ge s (n) is selectei ror removal, this is actually page 

P:(n+1-n)=Pc(1)=0. The new LRU stack ordering becomes 

&egion 3: 

rhe 

s(j) = Pc(n+2-j) j = 1, ••• , n. 

Pel = [ Pc (n+2) , ... , Pc (2n+ 1) } 

pa-Je referen::es ( Pc(n+2), . . . , Pc{2n+1) J are 

actually the sequence [ n, 

Lemma 3-b. The LliU stack 

referance Pc(n+2) is 

•••• 1 } as s.nown in the proo£ of 

ordering immediately pcioc to 

500 = ( s ( 1) , ••• , s (n) j 

which is actually 

{ n, ••• , 1 J 

sin:;a it has been shown earlier that at reference Pc(n+2) 

S ( j ) = P C ( n + 2- j ) j = 1, ••• , n. 

rhus, as in region 1, every page referenced is already 

:;ontained in K1 and there are no page transfers required 

(£:!.::QJ • 

Rag ion 4: Pc• = { Pc (2n+2) } 

Page reference P:(2n+2) is actually page O. ~his paye 

was not contained in s00 , thus a page transfer is required 
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rnerefore, we can conclude 

F[ Pc[ n]] = Fll Pc'] + fZ[ PcZ] + F 3 ( fc.J J + F•(Pc•] 

=0+1+0+1 

= 2. 

114 

Q.E.D, 

5.5.3.7 Lemma 3-f: 

Jiven a demand-fetch LRU-removal two-level storage 

5ystem, s•, with page size N'=N/2, primary store size 

: M'] containin(J 2n=[ Ml]/ (N/2) pages, the page fetch 

function, F', resulting from each steady-state cycle, 

Pc'[n], of the page trace P' has the value 2n+2 (i.e., 

F'[Pc'(n]]=2n+2 iuring steady state). 

Pc-oof: 

rhe proof follows directly from the definition of P', 

tne LRU properties, ani the previous Lemmas. 

• Each page referan=e in the cyclic pattern Pc'(n] is 

iistirict. (This cau ba easily seen fcom the definition or 

pc-o~au in a similar manner to Lemmas 3-b and 3-c), 

• Each cycle is 2n+l references lcng. 

• At any time t, pa~e cetercnce P' (t) = P' (t-2n-2). 

• rhe primary stoc-e, M1 , can hold 2n pages in s• since 

tl'=N/2. 
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• Since the cyclic pattern only repeats after 2n+2 steps 

and Ml is only 2u pages large, Mt always holds the la~t 2n 

page references (since they are distinct). 

• rhus, at any time t, page reference P' (t) wil~ not 

~~rrespond to any paJe currently in Ml (i.e., L'il 11olds 

ceferences { P' (t-1), ••• , P' (t-2n) i and P' (t) =.l'' (t-2n-2) 

is not in that set). As a result, a page fetch is requir:ea 

f~c every page refer:en=e. 

• Since there are 2n+2 page Leferencas per cycle, there 

ace 2n+2 page fetches required per cycl€. Thus, F'=2n+2. 

5.5.3.8 lheorea J: 

For any two demani-fetch LRU-cemoval two-level storage 

3Jstems, S ands•, with page sizes N and N1 =N/2 and 

primary store sizes IM 1 J'=21M'I, respectively, there 

exists a cyclic page trace, P=(l?c) *, where 

f Pct=2(1M 1 J+1), such that the steady-state pa~e i8tch 

frequency ratio, /r/, equals 1Mlf+1. 

f>roof: 

rhis proof folloi~ trivially from Lemmas J-e and 3-t. 

Wa Kaow that for each steddy-state cycle ot s, F=2 (Lemma 

J-e). Also, for each 3teady-state cycle of F=2n+2 (Lewma 

J-fl. Since the paye fatca frequency ratio, r, is detined as 

f'/f ~r (F'/IPl)/(F/ll?I) which equals F'/F, we tind that iu 
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steady-state 

/r/ = P'/1:' = (2n+2)/2 = n+1. 

Q.E.D. 

5. 5.4 :omments on fheoram 3 

rhe above results expose another facet of the page size 

1nomaly. As the size ~f the primary store, Ml, is increased, 

the overall pdge f~tch frequency ratio as stated in 

:orollary 3a also incraases. This ~eans that the larger the 

prinary store that you have, the mo~e "dangerous" the page 

~iza 1nomaly becomes. For examfle, in a two-level paging 

st st era based on dev i::es 2 and 4 f rem Table 1, I l'l 1 l = 128 

pi~~5 anl N = 4096 bytes, if the page size is decreased by 

half to 204a bytes, it is possible that tne page fetch 

fre~uancy would increase 129-told (a 12,800~ increase in 

~~giay activity!). Jf =ourse, one would assume, or at least 

11:Jpe, that such pathological page trace patterns would be 

v~ry rare, but we Kil OW that they can exist. It is 

i1t2r3sting to note that th~ pd th alo-1 ical pattern shown 

:1bove (e.g., a+ b+ c+ .... b- a-) corresponds to the eipected 

refec~nces of ne3ted subroutine calls (i.e., subroutine a 

c1lls 3Ubroutine b which calls subroutine c, etc., and eacn 

3ubcoutine, of course, returns tc its caller). This is also 

true of othec stack-like program constructs. Such highly 

ra~dul~r pcogcaru design is quite typical and, furthermore, is 
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oftan explicitly encJucaged. In view of Hatfield's finding 

w~ere the overall r exceeded 2.0 in many programs, it is 

reasonable to assume that there were probably regions in 

wtiich r 11as quite small, possibly below 1.0, which were 

cJuntarbalanced by regions with very high values of r. At 

present we do not have this particular intormation 

~vailable, but if it were true, performance could be greatly 

i1proved by aliminatin~ the high r value regions. This 

problam will be discussed in the next section. 

5.5.S Bounds foe FIFO Removal Algorithm 

rheorem 3 applies to LRU removal algorithms and many 

other removal algorithms, although these other cases will 

n~t bi explicitly proven in this thesis. It is intere~tiu~ 

to consider whether the result of Theorem 3 applies to the 

FIFJ removal algorithm. Unfortunately, due to tbe 

paculiarities of FIFO, a simple yeneralizable cyclic page 

tcace pattern has not been found. But, isolated examp~es 

have been found, as illustrated in Figuce 12, that show that 

it is possible for c to exceed Jftlj+1. This result is stat~d 

in rhaorem 4. Based upon othec examples, it is conjectuced 

tnat the c, when FIFJ cemoval is used, mdy be as high as 
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i?i r-a mate rs 

As seen bys: 

• p 

• I Pl 
• Q 

=a,c,a,b,b,c,c,a,a,b,b,c,c,a,a,b,b,c,c 
=19 
= [ a, b, c } 

• I~ I =3 
• 11'11 I =2 
• P'H' o Re11ova 1 

As sean by s •: 
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(:t, 0) 

• i:' 
• IP I 
• Q 

=a+,c-,a-,b+,b-,c+,c-,a+,a-,b+,b-,c+,c-,a+,a-,b+,b-,c+,c
=19 
= ( a+, a-, b+, b-, c+, c- } 

• I JI =6 
• jI1 1 1=4 
• FIFO Removal 

Simul1tion 
st€ady-state 

l < transient ~I cycle 
rr ace: a+ c- a- b+ b- c+ c- a+ a- b+ b- c+ c- a+ a- b+ b- c+ c-
_;i_ 
1.-'~tch: * * * * * * 
l'l l : a C C b b b b a a a a C C C C b b b b 

a a C C C C b b b b a a a a C C C C 

-~~-
F~tcti: * * * * * * * * * * * * * * * * * * * 
[11 : a+ c- a- b+ b- c+ -- a+ a- b+ b- c+ c- a+ a- b+ b- c+ c-~ 

a+ c- a- b+ b- c+ c- a+ a- b+ b- c+ c- a+ a- lJ+ b- c+ 
a+ c- a- b+ b- c+ c- a+ a- b+ b- c+ c- a+ a- b+ b-

a+ c- a- b+ b- c+ c- a+ a- b+ b- c+ c- a+ a- b+ 

! same t 
!i~§.!tl~§ 

For the steady-state cycle: 
• F = 6 • F = 3 
• F' = 19 • F' = 12 
• r = 19/6 = 3. 1 o • /r/ = 12/3 = 4.0 

Figure 12. 
Cyclic PaJa Trace with FIFO Removal 
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(thf) 
rHEJREM 4: 

For any two demand-fetch FIFO-removal two-level storage 

~ystems, S ands•, vitn page sizes N and N'=N/2 ana 

respectively, thare exi3ts a cyclic ~age trace, P = 

Pt•(Pc)* vhere I Pel= 2(1f!lt+1) (lltll), such that the 

page fetch frequan=y ratio, r, exceeds fM 1 t+1, 

Proof: 

By example (Figure 12). 
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CHAP'l'r!R 6. 

SPAl'IAL VS. TEMPORAL LOCALITt MODEL OF PROGRAM BEHAVIOR 

6.0 Introduction 

Early in this thesis it was explained that a major 

c1tionale for multilevel storagE systems is based upon the 

Principle of Locality. Unfortunately, locality is still a 

p~orly understood, or at least controversial, phenomenoa. In 

this chapter some n~vel viewpoints and ~nsi~hts will be 

presented. 

6. 1 ri2es of Program Reference Lccalit1 

Let us consider two extreme forms of program reference 

lJcality which will be called ~emQQ~~! locality and S£atial 

l:!£~!.i!;y: 

6. 1. 1 Tempocal Locality 

If the logical addcesses ( at, a 2 , ••• } are raferenced 

1uring the time interval t-T to t, there is a nigh 

probability that these same logical addresses will be 

ceferenced durin3 the time interval t to t+T. 

rhis behavior cau be rationalized by program constructs 
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such as: loops, frequently used vaciables, and 

frequently used subcoutines. 

6.1.2 Spatial Locality 

If the logical address a is referenced at time t, thece 

is a hi1h probability that a logical address in the 

cange a-A to a+A will oe referenced at time t+l. 

rhis behavior can be rationalized by program constructs 

such as: sequential instruction sequencing, and linear 

jata structures (e.g., arrays). 

o.1.3 General Locality 

rhe detinitions of temporal 

ace iuite extreme. Usually we 

and spatial locality anove 

consider only the general 

spati~temporal propecties and define locality as: 

£.ocality 

If the logical addresses { at, ••• j are referenced 

1uring the time interval t-T to t, there is a high 

probability that the logical addresses in the ranges 

at-A to to a 2 + A, ... , will be referenced 

lu~ing tae ti~e inteLval t to t+I. 

It is important to recognize that temporal locality and 

~patial locality ace indeed the underlying phenomenon and 

th at the "genaral luca 1 i ty" L; me eel y a sim plit yi ny rue rging 

and blurring of these basic concepts. 
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6.2 :~nventional Removal A!g_orithms 

Je cau begin to understand the factors causing the page 

~iz~ anomaly by stJiying how the various conventional 

Lemov1l algorithms hanile temporal and spatial locality. In 

p1rtL~ular, ,e see, that whereas temporal locality policies 

arG 1iven explicit att~ntion, spatial locality policies are 

u5ually handled impli~itly and subtlely. The "least recently 

u5el", LBU, removal 1lgorithm, for example, is very much 

c~n~ernei anout the temporal aspects of the prcgram•s 

reference pattern. The spatial aspects are handled as a 

by-pr~Juct of the iact that the demand fetch algorithm must 

l~ad an entire page (i.e., a spatial region) at a time and 

LRU r~raoval decisions are based upon these pages. With these 

thoughts in mind, wa can see that decreasing page size 

~1us~5 the convention1l storage management algorithms to 

iocrease their sensitivity to temporal locality and decrease 

tbeic sensitivity to spatial locality. Increasiny page size, 

of course, results in the reverse effect. 

6,3 Locality in Actual Programs 

~~ny of the t~=hniques for improving the locality 

bahdvior of progc~ms, sucn as the method ot automatic 
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pcogram restructurinJ by sectcr (subroutine) reordering 

las=ribed by Hatfield and Gerald (47], result in both 

i1creased temporal and spatial lccality. But, it seems that 

ttte r~ordering techniiue does, in fact, significantly favor 

spatial locality sinca it was noted (47] that: 

"the better ocjerings not only concentrate 
appropriate sectors into pages, but these pages also 
naturally cluster into larger units that satist1 
n~arness requiremants on the page level and 
cluster better than do the pages at the other 
orderings ••• clustering sectors into pages also 
clusters p~ges into larger units." 

kn effective multilevel storage management system must 

taka oath temporal and spatial locality into consideration. 

A; we have seen from both Hatfield's and Seligman•s results, 

nayle:ting spatial locality can have disasterous results. 

Any 1iven program, or portion of a p~ogram•s operation, can 

~:1va its reference lo:ality characterized by the two-by-two 

111:1trir: 

'fE.MPORAL 

s Low High 
p 

A Low 1 2 
T 
I Ii ig tl 3 4 
A 
L 

-1..iaicant 1, low-tempocal and low-sfatial locality, is 
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Jafinitely undesirable for operation in a multilevel storage 

system. There have baan numerous algorithms and programmer 

trdining techniques developed, as mentioned above, to 

minimize the number ot progra~s with these poor locality 

caaracteristics. Quadr1nt 4, high-temporal and high-spatial 

lJcality, has traditionaly been the regicn of h~st 

performance and is usually the objective of good frogram 

dasigu. Unfortunat~ly, it is not always possitle or 

convenient to desiga programs which attain both high 

tamporal and high sp1tial locality; thus, we find many 

pro1r1ms operating in quadrants 2 or 3. 

G.5 seatial Locality Algorithms 

f1r 

Storage management techniques axe 

more flexibility and robustness 

needed which prcvide 

for balancing the 

syste~•s sensitivity to temporal and spatial locality. These 

dlgorithms must explicitly consider the spatial locality of 

1 program. The tupla-coupling approach, described in the 

uaxt ~bapter, is one such technique. It takes advantaye of 

the t~mporal locality and compactness possible with small 

p1ges characterized by quadrant 2 behavior, yet it adjusts 

tJ tne spatial locality and clustering characterized by 

1uair1nt 3 behavior by simulatin~ the removal policies 

associated with large pages. 
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6.6 :~mment on the Pa~e Size Ancsaly 

With this insig4t, we can now see that the page size 

dnomaly is not really ~ven a function strictly of page size! 

Iaste~d, it is an issue of locality, temporal versus 

spatial. 
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CHAPTER 7. 

SPATIAL REMOVAL STORAGE MANAGEMENT ALGORITHMS 

7.0 Introduction 

~s stated earlier in this thesis and noted by Hatfield, 

a te»oval algorithm that would limit the page fetch 

frequancy ratio, r, to 2 would be very desirable. In this 

~ecti~n a technique, :alled the "tuple-coupling approach", 

is Jescribed which, when used in conjunction with 

~~nventional re~oval algorithms, such as LRU or FIFO, 

~uarantees that r will not exceed 2. 

rhe basic concept behind the tuple-coupling approach is 

extremely simple. First, the two pcitions, p• and p-, of 

2acn ~riginal ldrger page, p, must be identifiable (i.e., 

tne ~et of pages of s• are viewed as a collection of 

i-tuples). Second, tne removal ordering policies must be 

applied to both elemants of a tuple (i.e., the tuples are 

~oupl~d in re1ard to ordering decisions) such that a page p+ 

or p- of s• is never ra~oved unless the corresponding page p 

of s would also have been removed from M'. The particular 
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implementation of this approach may vary slightly defending 

upon the ce11oval 

to be used. 

algorithm, e.g., LRU, FIFO, 

Any removal algccitnm to 

etc., that is 

which the 

tuple-coupling approa=b can be incorporated is said to be 

"tuple-couple-able", 

7. 1. 1 An Example of Lau Tuple-coupling 

Figure 13 illustrates the 

tuple-coupling appro1ch to the 

application 

LRU removal 

ot the 

example 

previously shown in Figure~. It shculd be noted that, in 

this ~ase, r has indeed been limited to 2 although it had a 

v1lue of 2.2 when normal LHU removal was used. The reader 

shouli carefully comp1re Figures 7 and 11 to understand how 

the tuple-coupling approach affects the removal algorithm. 

rhe Mt contents ace idantical, of course, for Sin both 

examples, but there 1re subtle differences in M1 contents 

Eacn state of M' con tents is 

referance purposes. 

ma.eked, 1 to 

Notice that in Figuca 13 for 

implementation of tuple-coupling whenever both halves 

11, in 

this 

of a 

pa~e, p+ and p-, are in Ml, they are always adjacent in the 

~1 oclering; compare this with Figure 9. 

~t page trace step 3 we can see the first difterence 

bat,ean Figures 7 dnd 11, Page a- is referenced and must be 

tatchad in Figure 9, it is then placed at the top of the N 1 
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(f 1 1) 

Pa came tees 

As seen by S: 

• p = a, b, :l , b, c, c, b, a, a, c, C 

• I P 1 = 11 
• Q = [ a, b, C } 

• I Ul = 3 
• P\11 = 2 
• LRU Removal 

A3 sean bys•: 

• P = a+, b+, a-, b-, c+, c-, b+, a+, a-, c+, c-
• IPJ = 11 
• Q = ( a+ , a - , b+ , b- , c + , c- } 
• I QI = 6 
• jM 1 1 = 4 
• LRU Removal with Tuple-ccupling 

SimuL1tion 

1 l 3 • 5 • 7 a • 10 11 

P:1.ga rrace: a+ b+ a- b- c+ c- b+ a+ a- c+ c-

-~-
Fetch: * * * * * Ml Contents: a b a b C C b a a C C 

a I) a b b C b b a a 
_i~-
F ~ t::: h: * * * * * * * * * * (11 Coutents: a+ b+ a- b- c+ c- b+ a+ a- c+ c-

a+ a+ b+ b- c+ b- b+ a+ a- c+ 
b+ a- b+ b- c- tr b+ a+ a-

a+ a- b+ c+ c- b- b+ a+ 

R~2.\!!~§ 

• J.<' = s 
• F' = 10 
• r = 10/5 = 2.0 

FigurG 13. 
Example of .I.RU Removal with 'Iufle-coupling 

(see Fi Jure 9 for comparison) 
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ordering wnich becomas a-,b•,a+. on the other nand, in 

Figura 13 at step 3, it is noticed that a• was already in 

M1 • r~us, when a- is placed dt the top of the M1 ordering, 

a+ is coupled to it resulting in the ordering a-,a+,b+. At 

page trace step 7 of Figure 13 we see another interesting 

axample of tne tuple-:~upliny apfroach. At the previous step 

the ordering was 

c- c+ b- b-t: 

wnen the reference to b+ is made, there is nc need to 

initiate a fetch sinca b+ is already in M1 • The Ml ordering 

then becomes 

b+ b- c- c+ 

since LRU requires tn1t the most recent rererence move to 

tme top. Under this tuple-coupling scheme, b- is also moved 

t~varj the top of tne ordering to continue to be adjacent to 

7.1.2 Implementation ~f the Tuple-Coupling Approach 

rt is important to note that there are often various 

w1ys to implement tuple-coupling. In 

tuple-couplin~ al~orithm described 

w~enever both portions were in Ml, 

particular, in the LRU 

above, the 2-tuples, 

.ere arranged to be 

ajja~ent in the Ml renoval ordering. The requirement that 

ueithar portion, p+ or~-, of a tuple in s• be removed 
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unl~ss the corresponding page of S would have been removed 

Cin be accomplished in other ways. For example, the LRU 

camov1l stac~ can be left in its normal ordering, as in 

Pigura 9. In this case, when it is necessary to remove a 

page from s• the bottom page is not necessarily the correct 

cnoica to satisfy tuple-coupling. There is an algorithm 

wnicn can scan the LUU stack dnd select the correct paye for 

ramov1l (in fact, it will select, of ccurse, the same page 

3alected by the algorithm illustrated in Figure 13). 

7. 1. J An :C:iCdmple of FH'O Tuple-Coupling 

It is interesting to consider the effect of 

tuple-coupling upon FIFO removal. Figure 14 illustrates the 

dpplication of the tuple-coupling apfroach to the FIFO 

ram~v1l example previously shown in Figure 6. Once again, 

tne p19e fetch fr~~uency ratio, c, which originally was 2.75 

h1s indeed ~ean limitai to 2. The examfle of Figure 14 does 

nJt fully illustrata all the interesting aspects of 

tuple-cou~liny upon FIFO removal. In particular, if page p+, 

flr alampla, is referenced in a page trace and it was not 

already in M1 , it must be fetched. The Ml contents are 

reordared as follows: 

1. If p- is not currently M1 , f+ is placed at the top 

lf the FIFO ordering. 

i. If p- is currently in M1 , f+ is placed immediately 
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As seen bys: 

• p = a, b, a, b, c, c, b, a, a, c, C 

• IP I = 1 1 
• Q = ( a, b, C j 
• I Q I = 3 
• IM 1 I = 2 
• FIFO Removal 

As seen bys•: 

• p = a+, b+, a-, b-, c+, c-, b+, a+, a-, 
• IP I = 1 1 
• Q = { a+, 3.-, b+, o-, c+, c- J 
• IQ I = 6 
• HPI = 4 
• FIFO Removal .,ith. Tuple-coupling 

Si IDU13. tion 

l 2 3 ♦ s • 1 8 • lO 1 1 

Page rrace: a+ b+ a- b- c+ c- b+ a+ a- c+ c-
_;i_ 
Fat::h: * * * * Ml :::on tents: a b b b C C C a a a a 

a a a b b b C C C C 

_i~-
Fatch: * * * * * * * * (11 Contents: a+ b+ a- b- c+ c- c- a+ a- a- a-

a+ a+ b+ b- c+ c+ c- a+ a+ a+ 
b+ a- b+ b- b- c+ c- c- c-

a+ a- b+ b+ b- c+ c+ c+ 

flg2!!:H:2 

• F = 4 
• F' = 8 
• r = 8/4 = 2. J 

Figure 14. 
Example of FIFJ Removal with TuFle-coupling 

(see Figure 8 for comparison) 

1 31 

(11 2) 

c+, c-



Stor~ge Hierarchy Systems 132 

before p- in the logical FIFO ordering 

p-•s relative ordering remains unchanged. 

rie ceason foe the se:::ond part of this rule can be seen from 

the normal FIFO ordering rule which places a page pat the 

t~p only if it were not already in M'. If it were in M1 , it 

cemains at its previous ordering position. Under 

t~ple-coupling, this rule applies jointly to the 

t1pl~ as stated above. The reader is encouraged to work 

t~r::>uJn the example of Figure 10 using the tuple-ccufling 

appcodch to illustrate this FIFO ordering phenomenom. The 

affect of the tupl3-coupling approach is summarized in 

Ttie::>cem 5. 

(th5) 
rHEOJ.rni1 $: 

For any two demiud-fetch two-level storage systems, s 

ind s•, with paga sizes N and N'=N/2, respectively, the 

use of the "tu~le-coupling" approach for s' in 

:::onjunction W iti1 a removal algorithm that is 

~tuple-couple-abla" is sufficient to guarantee that the 

pa~e fetch frequancy ratio, r, cannot exceed the value 

2 for all possible page traces, P. 

r r-oof: 

( See below) • 
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7. 1.4 Proof ot Theorem S 

As described earlier, when an adress trace, !, is 

appliad to storage systems S (with page size N) and S' (with 

p1ge size N'=N/2), it can be represented as page trdces g 

and f', respectively. At time t 1 , let us consider a Sfecific 

aldre3s reference, a, whose corresponding page references 

(in S) and p+ (in S'). In processing this reference 

t~ere are four possible fetch actions ins ands• depending 

upon the current content state of primary store, M1 : 

State page p (S) page p+ (S • ) F F' F '-F ef feet 

1 in Ml in M' 0 0 0 r => 1 

2 in Ml not in M' 0 1 1 r => >1 

3 not in Ml in M' 1 0 -1 C => <1 

4 not in i'f l not in til 1 1 0 r => 1 

Recall that the page fetch freguency ratio, r, eq~als 

P'/F. In states 1 and 4 the same action (i.e., no page fetch 

in 1 and a page fetch in 4) occurs in both sand s•, the 

o:currence of these 3tates causer to tend towards 1. ln 

state 3, ~ pa~e fetch is required ins but not ins•, this 

situation, if freguent, will cause r to decrease toward 

zero. This is usually the intended result of reducing page 

size. Only stdte 2, iu which s• aloue requires a page r~tch. 

cJntcibutes to an in~cease in r. Thus, we will concentrate 

our analysis on this particular situation. 
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Since state 2 re~uices that page p be in M1 at time t 1 , 

if we scan the addre3s tcace backwards, there must be so ■e 

previous cefecence tiae tz that caused page p (in S) to be 

tetch~d into Ml (this may have been the only previous 

r~ferance top or tne page p may have been fetched and 

rem:> v e d many ti mes) • At time t 2, there must also be a 

c~rre3pondinJ refecen:a to either p- and p+ of s•. These two 

:is~s will be considereJ separately: 

:.:::1sa 1 : g = ••• p • •• p 

R' = • • • p- ••• p+ 

t = • • • t2 • • • tl 

rhis case merely illustrates the fact that it can 

r21uice two page fetches (for p+ and p-) ins• to tetch the 

same 1mount of storage as page pins. If this were the only 

case for state 2, c would never exceed 2. 

C:3.se 2: f = • • • p • • • p 

g' = • • • p+ • • • p+ 

t = • • • t2 • • • tl 

In this case we see that subsequent to reference t2 

p1ge p of sand page p+ on s• must be in M1 • Yet at time t 1 

p1qe p of S is still in Ml but fage p+ of s• is not. Onder 

t~ese circum3tances r c1n certainly exceed 2~ merely maxin~ 

p- t~e next referen=e will account for 3 fetches in s• 

compared to 1 fetch ins. Furthermore, it is possible that 

t~e references between t2 and t• could be repeated to 
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continually cause fetches for p+ in s• without auy 

c~ccespondin~ fetches required ins. Thus, we see that this 

is precisely the situation that allows r to exceed 2. 

Under closer analysis, we see that this situation 

r3quices that ins• p• be removed frcm M' betweeu tz and t 1 

wherads in S p remains in M1 • In other words, this general 

situation can only occur if at some time t, p+ or p- of s• 

is selected for reilloval from Ml and the corresponding ~dye p 

of S is not also removed from M1 • But, the tuple-coupling 

algorithm (sea page 125) is "such that a fage p• or f- of s• 

i~ uaver removed uule~s the correspondinq page p of S would 

also have been removai from M'"• Thus, the tuple-coupliny 

~liminates the possibility of case 2 and therefore 

guarantees that r cannot exceed 2. 

:learly, the tuple-~oupling approach has an influence 

upon tne overall etfectiveness of the basic rewoval 

algorithm being used and the benefits of the smaller page 

size. It is obvious that there ar€ certain rtference 

patterns (with r less than 2) for which tuple-coupling 

incceises the value ~tr. On the other hand, it can be 

shown, as a simple exer~ise for the ceader, that the example 
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:>f r,i1ure 

J.5 even 

a retains its low page fetch frequeucy ratio of 

when tuple-coupling is used. In fdct, 

tuple-coupling may often result in the "best of both worlds" 

oy pl3cing a bound on the page fetch frequency ratio, r, for 

high r regions without interfering with the performance of 

ori1inally lo~ r regi~ns. 

~ program's reference behavior in s•, during a short 

inter~al of its operition, may be characteri~ed by three 

reyio~s basej upon the value of the page fetch frequency 

r~tio, r, whdn tuple-=oupling is not used: 

1. Sparse referen=e - small r (e.g., 

2. Moder~te reference - moderate r 

ind 2) • 

less than 1) • 

(e.g., between 1 

3. Dense reference - high r (e.g., greater than 2). 

rn tue sparse reference region, it is unlikely that both 

portions, p+ and p-, of a paqe, p, will be in M1 

simultaneously; thus, the tuple-coupling will have minimal 

affect upon pertormanca. In the dense refeLence region, we 

h:1ve dlr~ady 

V :l l U ~ 3 of J:" • 

:naast1r'3ments, 

seen that tuple-coupling prevents 

though aased upon some 

it appaar-s that in 

recent, 

the moderate 

re1io~ tuple-couplinJ performs about as well 

non-tuple-coupled algorithms. 

extreme 

limited, 

reference 

as the 
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CHA PT ER 8. 

DISCUSSION AND CONCLUSIONS 

8.0 Introduction 

Efficient and effective storage management is imfortant 

t~ tha development of future computer systems. It has been 

:stimited that the st~rage subsystems account for over 70~ 

of tne cost of most contemporary installations and, based 

upon present trend3, this percentage is expecteJ to 

inccease. 

Much more research will be needed before all the 

problems of automatic storage management are understood and 

the ~bstacles to effective operation eliminated. This 

t~esis has solved several open problems and has provided 

insight that should lead to the solution of many more 

problems. 

A detailed discussion of the many tacets ot stcrdye 

~dnaqement is present~j in Chapter 2. It also contdins d 

general disc~ssion of the requirements which a systEw wust 
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s1tisty to be effective foe thti user-. 

In Chaptei:-s J 1nu 4 a moctel for stora~e hierarchy 

systans is focmalized and an implementation is proposed. The 

systa~•s design is based upon an ccderly and unifoi:-m 

treatment ot the storage levels. Specific techniques to 

1Dprove performance, such as continuous nierdrchy, shadow 

stor11e, jirect transfer, read through, store behind, and 

automatic management, are explained. 

In Chapter 5 the "~age size ancmaly" is presented (see 

,1lso Hatfield ( 48 ]) : 

11 rhe assumption about virtual memory systems that a.s 
overhead (time for access and softwace page 
management) decceises page size should be reduced is 
not alwdys a yood one. Recent experiments indicate 
tuat larger sizes can provide better performance for 
programs that maka highly localized use of memory 
space." 

r~is phenom~nom is focm~lized and a bound on the perfcrmance 

is pc::>ven. 

In Chapters 6 ani 7 the concept of spatial locality is 

i~troduced and serves as the oasis for a new storage removal 

~lgorithm called "tuple-coupling". These concepts are used 

t~ explain the occurrence of the "page size anomaly" in 

a.c tual syste11s. It is proven that the tuple-coupling 

~ppr::>~ch is 3 sufficiaut strategy to avoid the occurrence of 
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the "page size anomaly" and it cffers fotential perfcrwance 

improvements for the 3tOrdye hierarchy systew. 

rhe tecbniques 1nct theorems presented in this thesis 

proviie a much more scientifically sound basis for examiniuy 

and designinJ storaJe ~ierarchy systems than most cur~ent !~ 

h2£ approaches. Althou9h there is still a long way to go, 

develJpment of these formalisms is essential to the 

aivan~ing of the "science" in Computer Science. 

8.2 Further work 

rbere are many ireas touched on ty tnis WOLK in which 

questions remain. One of the ■est si~niticant i3 in th~ 

devel~pment and study of other fOSsible "spatial locality'' 

removal al~orithms in additicn tc the tuple-coupliny 

approach studied in this thesis. This is an entirely wide 

open 1rea. 

Although tuple-c~upling is studied extensively in this 

thesis, there are still many unanswered questions. Hew does 

tuple-coupling compdce with the class of ''stack" algorithms 

studied by Mattson ~i ~1 [oJ], in particular under what 

cir=umstances, if any, is tuple-coupling a stack algorithm? 

Likewise, how ioes tuple-coupling compare with the 

tbe~retically optimal replacement algorithm, callect OPT (63] 
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~r MIN [ 12]? On a mora practical side, how efficiently can a 

tuple-coupling algorithm, or other spdtial removal 

alyorithms, be implemented? 

In ord~r to as~ertain specific procf of the utility and 

2fficiency of gener1l storage hierarchies, it will be 

aecessary to actually construct and measure the performance 

of such a system or, at least, perform more extensive 

simul1tion dnalysis. Furthermore, we must develop overall 

pro~rimming techni1ue3 and execution envirouments that are 

2ven more amenable to efficient operation in a storage 

hierarchy system. 

Many of 

iavestigation, 

these questions 

the results will be 

Pcoj~:t MAC rechnical Report. 

are currently under 

published later in a arT 
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