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ABSTRACT 

Chapter I is a survey of finite automata as acceptors of finite 
labeled trees. Chapter II is a survey of finite automata as acceptors 
of infinite strings on a finite alphabet. Among the automata models 
considered in Chapter II are those used by McNaughton, Buchi, and 
Landweber. In Chapter II we also consider several new automata models 
based on a notion of a run of a finite automaton on an infinite string 
suggested by Professor A.R. Meyer in private coumunication. We show 
that these new models are all equivalent to various previously formulated 
models. 

M.O. Rabin has published two solutions of the emptiness problem for 
finite automata operating on infinite labeled trees. Appendices I and 
II contain a new solution of this emptiness problem. This new solution 
was obtained jointly by the author and Charles Racko££. 
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Introduction 

In 1969 M.O. Rabin [8] used finite automata on infinite trees to 

give a decision procedure for the monadic second-order theory of two 

successor functions. This is a powerful result and has as corollaries 

decision procedures for several other interesting theories whose decision 

problems were previously open. It, also, solved several other open problems. 

Rabin's work has attracted considerable attention from mathematicians who 

are otherwise not very interested in the notion of a finite automaton. 

We believe that the proper way to begin one's study of finite automata 

on infinite trees and of Rabin's work is by studying finite automata on 

finite trees and finite automata on infinite sequences. It is hoped that 

this thesis will aid the reader in these preliminary studies. 

The most interesting new result contained in this thesis was obtained 

jointly by the author and Charles Rackoff and is presented in Appendices I 

and II. We reduce the emptiness problem for finite automata on infinite 

trees (either as defined by Rabin in [8] using the designated subset 

acceptance condition, or as defined by Rabin in [7] using the!l. acceptance 

condition) to the emptiness problem for finite automata on finite trees. 

Every proof in this paper is effective in the sense that: 

1) When the existence of a finite automaton with certain properties is 

asserted given the existence of another (other) finite automaton (s), 

then the proof consists in determining the finite automaton with the 

asserted properties from the given finite automaton (s). 
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2) When the existence of a characterization of a set is asserted given 

another characterization of it, the proof consists in determining the 

new characterization from the old characterization. 

The principal results in Chapter I are summarized by the following: 

A 1-f.a.f.t. is a leaf-up nondeterministic finite automaton on finite 

:U-trees. 

A 2-f.a.f.t. is a leaf-up deterministic finite automaton for finite 

!',-trees. 

A 3-f.a.f.t. is a root-down nondeterministic finite automaton on 

finite !',-trees. 

A 4-f.a.f.t. is a root-down deterministic finite automaton on 

finite D-trees. 

1-f.a.f.t. - 2-f.a.f.t. = 3-f.a.f.t.::) 4-f.a.f.t. 

3-f.a.f.t. 4-f.a. f. t. 
union closed no 

intersection closed closed 

complementation closed no 

projection closed no 

cylindrification closed closed 

TABLE 1 

The principal results of Chapter II are summarized by the following. 

Those unfamiliar with the usual definition of a finite automaton run on 

an infinite sequence should refer to Chapter II. We abbreviate non

deterministic finite automata as n.f.a., and deterministic finite automaton 

as d.f.a. 
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For i E {l, 1', 2, 2', 3, 4}, a run r on an infinite sequence of 

an i-n.f.a. (i-d.f.a.) lffiwith state set Sis an accepting run if r is 

i-accepting, where 

r is 1-accepting with respect to F k S if 

(3: t) r ( t) E F, 

r is 1'-accepting with respect to F k S if 

(Vt) r(t) E F, 

r is 2-accepting with respect to F k S if 

In(r) n F 'F (/), 

r is 2'-accepting with respect to~ k P(S) if 

(3:F E ~) In(r) k F, 

r is 3-accepting with respect to~ k P(S) if 

In(r) E ~, 

r is 4-accepting with respect to..C'l.= ((R., G.)). , if for some i < n, 
1 1 i<n 

In(r) n R. = ¢ and In(r) n G. 'F ¢. 
1 1 
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1-n.f.a. - 1-d.f.a. 

l'-n.f.a. - l'-d.f.a. 

2'-n.f.a. - 2'-d.f.a. 

2-n.f.a. = 3-n.f.a. = 3-d.f.a. - 4-n.f.a. - 4-d.f.a. 

2-d.f.a. 2'-f.a. 3-f.a. 

1-f.a. incomp. l c 2-d. 1 C 2 1 1 C 3 

l'-f.a. l'c 2-d. l'C 2' l'c 3 

2-cL f.a. incomp. 2d.c 3 

2'-f.a. 2'c 3 

1-f a . . l'-f a . . . . 2-d fa. 2'-f.a. 3-f. a. 

union yes yes yes yes yes 

intersection yes yes yes yes yes 

complementation no no no no yes 

projection yes yes no yes yes 

cylindrification yes yes yes yes yes 

TABLE 2 
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CHAPTER I 

Finite Automata on Finite Trees 

SECTION I INTRODUCTION 

In 1965 finite automata on finite trees were first used by J.E. 

Doner (2] who first applied them to obtain a decision procedure for 

the weak monadic second-order theory of two successor functions. Thatcher 

and Wright [11, 12] independently developed finite automata on finite 

trees and noticed the same application. 

Finite automata on finite trees are no harder to visualize and 

understand than finite automata on finite sequences, and, in fact, the 

various finite automata models on finite trees have just those properties 

which one familiar with finite automata on finite sequences would 

expect them to have. 

SECTION II DEFINITIONS 

We will use the usual set theoretic notation throughout this paper. 

A function f: A ➔ Bis a subset f GA X B such that l) for all a EA 

there is (a,b) E f,for some b EB, 2) for all a EA, b, c EB, (a,b) E f 

and (a,c) E f implies b c. Sometimes we will describe a mapping by 

the notation X r f(x), XE A, which indicates that XE A, Xis mapped 

into f(x). If f: A ➔ B then A and f(A) = {f(a) I a EA} are called, 

respectively, the domain and the range off. If f: A ➔ Band CG A, 

then flc will denote the restriction f n(c x B) off to C. 



The cardinality of a set A will be denoted by c(A). The set of 

all subsets of a set A will be denoted by P(A). For a an ordinal we 

let the set [a]={~ I ~<a} of all smaller ordinals. We will use /41 

to denote [w) = {O, 1,2, ••• } . 

For the set A and nan integer, An is the set of all n-termed sequences 

of elements of A. That is, An= {w ' w: {1,2, ... , n} ➔ A}. Let A 

be a set, nan integer, and 1 ~ i ~ n. The projection onto the ith 

coordinate is the mapping p.: An ➔ A such that p.((x
1

, .•. , x )) = x .. 
i l. n l. 

Strictly speaking, projections such as (x,y) r y and (x,y,z) f-t y are 

different mappings, but we will denote both by p
2

• 

* The infinite binary tree is the set T = {0,1} of all finite strings 

of zeros and ones. The elements x ET are the nodes of T. For x ET, 

the nodes xO, xl are called the immediate successors of x. The empty 

word is called the~ of T. Our language suggests the following picture. 

The highest node of Tis the root b.. The root branches down to the 

right into the node O and to the left into the node 1. The node 0 

branches into 00 and 01; the node 1 branches into 10 and 11; and so on 

ad infinitum. 

~fi~l 

0/ ~! 1/ ~11 
• 
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Definition: On T we define a partial ordering by x ~ y iff there exists 

a z such that y = xz. If x ~ y and x I y then we shall write x < y. 

Definition: For x ET, the subtree T with root xis defined by 
X 

Tx = {y I y ET, x ~ y}. Note that Th= T. 

Definition: A path TT of a tree T is a set TT c T satisfying 1) x E TT, 
X X 

2) for y E TT, either yO E TT or yl E TT, but not both, 3) TT is a minimal 

subset of T satisfying 1) and 2). 
X 

Definition: A subset F c T is called a frontier of T if for every 
X X 

path TT C T we have c(TT n F) = 1. 
X 

It is easily seen that if F c T is a frontier, then Fis finite. 
X 

Definition: A finite frontiered tree with root z is a set E = {x I z ~ x 
z 

& x ~ y, for some y E F} where Fis a fixed frontier of T. Fis called z 

the frontier of E and is denoted Ft(E ) . By "finite tree" we will mean z z 

a finite frontiered tree. When the root is D. we will aften write E 

rather than EA . 

Definition: A finite E(labeled)-tree is a pair (v,E) where E c T 
z z z 

is a finite frontiered tree with root z and v: E -Ft(E) ➔ !:. 
z z 

Definition: The set of all finite ~trees with root A will be denoted Yr;· 

Definition: The projection p1 (A) of a set A~ Yr; X4, is p1 (A) = 
1 2 

The ~1-cylindrification of a set B ~ Y~ 
1 

is the largest set A~ Yr; X4 such that p1 (A) = B. 
1 2 
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C C 
The complement A of a set A~ Y~ is A = Y~ A. 

If (v,E) is a finite :&-tree and y EE , then the induced 
X X 

subtree (v I E n T , E n T ) will 'be denoted (v, ~ n T ) . 
X y X y . X y 

Definition: An ~-J(joining)-table on finite :&-trees is a system 

O"t' = < S, ~. M, s0 >,where Sis the finite state set,~ is the finite 

label set, M: S X S X ~ .-. __ P(S) is the state transition function, and 

s0 ES is the initial state. 

A £-.:I-table is an n-J-table with M: S x S X ~ ➔ ((s} I s ES}. 

An 01.'-!.!:!!! on ~tree e = (v,E) is any mapping r: E ➔ S such that 
X X 

1) r(Ft(Ex)) = (s0}, and 2) for ally E Ex - Ft(Ex), r(y) E M(r(yO), 

r(yl), v(y)). 

Definition: An ~-S(splitting)-table on finite :E-trees is a system 

Ot' = < S, ~. M, s0 >, where Sis the finite state set,~ is the finite 

label set, M: S X ~ ➔ P(S XS) is the state transition function, and 

s
0 

ES is the initial state. 

A £-.§.-table is an n-S-table with M: S X ~ ➔ (((s1, s 2)} I (s1, s 2) E 

S X S}. 

An Ol.'-run on ~tree e = (v,Ex) is any mapping r: Ex ➔ S such that 

1) r(x) = s0 , and 2) for ally EE - Ft(E ), (r(yO), r(yl)) E M(r(y), v(y)). 
X X 

We also talk about an O{-run of an f.a. f. t. Ol on a finite labeled 

tree meaning an O"L'-run of the associated J(S)-table Ol,'. The set 

of all 01-runs one is denoted Rn(O'{,e). 
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Definition: Leaf-up nondeterministic finite automaton on finite u-trees: 

A 1-f.a. f. t. on finite u-trees is a system 01:;:: :<_S, :E, M, s0 , F >, 

where< S, :E, M, s0 > is an n-J-table,.and F ~Sis the set of designated 

states. 

1-f.a.f.t. OZ accepts finite u-tree e = (v,E) if there exists an 
X 

Ot -run r on e such that r(x) E F. 

Definition: Leaf-up deterministic finite automaton on finite !;-trees: 

A 2-f.a. f. t. on finite u-trees is a system 01 = < S, :E, M, s0 , F >, 

where < s, :E, M, s
0 

> is a d-J-table, and F ~ 8-aS:~tha>tc'ftet, o~Edetjg.nat:ed 

states. 

2-f.a.f.t. ()1 accepts finite D-tree e = (v,E) if there exists 
X 

an 07-run r one such that r(x) E F. 

Definition: Root-down nondeterministic finite automaton on finite D, 

trees: 

A ,1-f.a. f. t. on finite u-trees is a system {]'( = < S, :E, M, s0 , F >, 

where< S, :E, M, s0 > is an n-S-table, and F ~Sis the set of designated 

states. 

3-f.a.f.t. 01 accepts finite u-tree e = (v,E) if there exists 
X 

an O{-run r one such that r(Ft(E )) ~ F. 
X 

Definition: Root-down deterministic finite automaton on finite u-trees: 

A 4-f.a. f. t. on finite D-trees is a system 07. = < S, :E, M, s
0

, F >,, 

where< S, :E, M, s0 > is a d-S-table, and F ~Sis the set of designated 

states. 
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4-f.a.f.t. {rt. accepts finite I'rtree e = (v,E) if there exists 
X 

an 01..-run r one such that r(Ft(E )) ~ F. 
X 

Definition: The set T(O"() of finite ~trees defined by 01. is 

T(O-{) = ( (v,E) (v,E) is accepted by O'(}. 

Definition: A set A~ Y!; is i-f.a.f.t. definable if there is an 

i-f.a. f. t. 07. such that T(Or) = A. 

Note that the above definitions are not as general as you would 

expect. Though the notion of finite tree was defined so that a finite 

tree may have any reot x ET, the above definitions of T(O() and Y!; 

are in terms of finite trees with root /)., We are forced to consider 

finite trees not rooted at h by later proofs in which we find it con

venient to look at finite subtrees of a finite tree. However, we follow 

Rabin [9, 10) and Thatcher and Wright [12] (who define finite trees so 

that all of their finite trees have root fi) by restricting our def

initions of T(O'l) and Y!;. This eliminates several awkward notational 

problems. 

Definition: We say i-f.a.f.t. 01
1 

is equivalent to j-f.a.f.t. 07..
2 

if T( O'l' 1) = T( 0"72). 

Definition: We will say i-f.a.f.t. are closed under union (intersection, 

complementation, projection, cylindrification) if for all i-f.a.f.t. on 

~trees 071 , ~' there exists an i-f. a. f. t. 0"[
3 

such that T( 0'(
3 

) = 

T(01 1) U T( O"½) 
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(intersection: T( ()1
3

) = T( 0"[1) n T( 0t.2), 

complementation: T( 0[
3

) = Y:E - T( 0(1), 

projection: T( OT 3) = p1(T(011)), where :E = :E1 X :E2 , 

cylindrification: T( 0( 3) = !:2-cylindrification of T( O"( 1), 

where :E = :E1, 

respectively). 

Definition: We will say i-f.a.f.t. are equivalent (in defining power) 

to j-f.a.f.t. (denoted i-f.a.f.t. = j-f.a.f.t.) if the family of i-f.a.f.t. 

definable sets is the family of j-f.a.f.t. definable sets. 

We will say i-f.a.f.t. are weaker or equivalent to j-f.a.f.t. 

(denoted i-f.a.f.t. ~ j-f.a.f.t.) if the family of i-f.a.f.t. definable 

sets is a subset of the family of j-f.a.f.t. definable sets. 

We will say i-f.a.f.t. are strictly weaker than j-f.a.f.t. (denoted 

i-f.a.f.t. c j-f.a.f.t.) if the family of i-f.a.f.t. definable sets is 

a proper subset of the family of j-f.a.f.t. definable sets. 

We will say i-f.a.f.t. and j-f.a.f.t. are incomparable if the family 

of i-f.a.f.t. definable sets is not a subset of the family of j-f.a.f.t. 

definable sets, and vice versa. 

SECTION III FINI?E AUTOMATA ON FINITE TREES 

In [12] Thatcher and Wright use both 1-f.a.f.t. and 2-f.a.f.t •• 

In r10J Rabin uses a finite automata on finite trees model which is 

equivalent to 3-f.a.f.t. ~n fact, Rabin uses 3-f.a.f.t. restricted as 

indicated in Theorem 3 of this section.) In [9] Rabin defines 2-f.a.f.t. 
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The following theorems establish the closure properties of all our 

models and their relative powers. We do not state the immediate corollaries 

of each theorem. Instead we summarize in Figure 1 all of our theorems 

and their immediate corollaries. 

Theorem 1: 1-f.a.f.t. = 3-f.a.f.t. 

Proof: Given 3-f.a.f.t. D1 = < s, ~, M, SO' F >. Define 3-f.a.f.t. 

(J( 1 =<SU (f1}, ~, Ml, so, ( fl} >, where for all s1 , s2, s 3 Es, 

and all er E :E, (s2' s3) E M1(s 1, er) if (s 2, s
3

) E M(s
1

, er), 

(fl, s3) E M1(s1, er) if M(s
1

, er) n (F X (s3}) I (/), 

(s2, fl) E M1(s1 , CJ) if M(s 1, er) n (( s2} X F) I (/)' 

(fl' fl) E M1(s1 , er) if M(s 1, er) n (F X F) I (/), 

and for all er E ~, M1(f1 , er)=(/). Clearly, T( 071) ;;;i T(07). For all 

finite ::r~trees e = (v,E) and all accepting 071-runs r 1 one, we have 

for all x E E-Ft(E), r 1 (x) ES and r(Ft(E)) = (f1J. Hence, by the 

definition of M1, there exists an Ol'-run r one such that for all 

x E E-Ft(E), r(x) = r 1 (x), and r(Ft(E)) ~ F. Therefore, T( 0( 1) ~ T(01), 

and hence, T( 071) = T(07). 

Define 1-f.a.f.t. 072 =<SU (f1}, ~, M2, f 1 , (s
0

} >, where for 

all s
1

, s 2 , s
3 

ES U (f
1
}, and all er E ~, s

3 
E M2(s1, s 2 , er) if (s1, s

2
) 

E M
1

(s
3

, er). Clearly, T(C1(
2

) = T(0(
1
), because for every finite :E-tree 

e, every 07'
1
-run one is an Cl

2
-run one and vice versa, and a run is an 

accepting 0(1-run iff it is an accepting 072-run. 

Hence, 3-f.a.f.t. ~ 1-f.a.f.t. 
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Given 1-f.a.f.t. 07
3 

= < s3 , ~, M
3

, s
30

, F
3 

>. Define 1-f.a.f.t. 

01 4 = < s
3 

u ( f
4
J, ~, M4' s30' ( f4} >, where for all s

1
, s 2, s3 E s

3
, 

and all er E ~, s3 E M4 (s1, s2' er) if s3 E M3(s1, s 2 , er) ' 

f
4 

E M
4

(s
1

, s2, er) 0 f M n i 3(sl, s2, er) F3-/= ¢, 

and for all s 1 E s
3

, and all er E ~, M
4

(f
4

, s
1

, er)= M
4

(s
1

, f
4

, er)=¢. 

Clearly, T( 07 4) :1 T( 07
3
). For all finite ~trees e = (v,E) and all 

accepting 074-runs r
4 

one, we have r
4
(~) = f

4 
and r

4
(E- (i\}) ~ s

3
. 

Hence, from the definition of M
4

, if there is an accepting ot
4

-run on 

e, then there exists an 0,
3
-run r 3 one such that r

3
(6) E F

3
. That is, 

an accepting Ol3-run on e. Hence, T( or 3) :2 T( 07 4)' and therefore, 

T(07.4) = T(0'73). 

Define 3-f.a.f.t. <JrS = < s3 U (f4}, ~. MS, f4 , (s30} >, where for 

all s 1 , s
2

, s
3 

E s
3 

U (f
4
}, and all er E ~, (s 2, s

3
) E MS(s

1
, er) if 

s1 E M4 (s2, s
3

, er). Clearly, T(01
4

) = T(07s), because for every finite 

~tree e, every 07.4-run one is an OlS-run one and vice versa, and 

a run is an accepting (}{
4
-run iff it is an accepting O'lS-run: 

Hence, 3-f.a.f.t. :1 1-f.a.f.t. 
0 

The constructions of 071 and OT
4 

in the preceding proof innnediatly 

give the following theorems which we s~ate without further proof. 

Theorem 2: Given any 1-f.a.f.t. OTon finite ~trees, we can determine 

an equivalent 1-f.a.f.t. 07
1 

= < s
1

, ~, M1, s
10

, (f1} >, where M
1

: 

(S1-(f1}) X (S1-(f1}) X ~ ➔ P(S
1
). 
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Theorem 3: Given any 3-f.a.f.t. CT(on finite ~trees, we can determine 

an equivalent 3-f.a.f.t. 07
1 

= < s
1

, :E, M
1

, s 10 , (f
1

} >, where M
1

: 

(S
1

- (f
1
}) XI: ➔ P(S

1 
X s

1
). 

It is easily shown that Theorem 2 does not hold for 2-f.a.f.t. 's, 

and Theorem 3 does not hold for 4-f.a.f.t. 's by showing that 

B1 = ( (v,E) E Y{O, l} I v(E-Ft(E)) = 1 or v(E-Ft(E)) = O} is both 2-f.a.f.t. 

and 4-f.a.f.t. definable, but that no 2-f.a.f.t. nor 4-f.a.f.t. with only 

one designated state defines B1• 

Theorem 4: 1-f.a.f.t. = 2-f.a.f.t. 

Proof: Every 2-f.a.f.t. is a 1-f.a.f.t •• Hence, we have immediately 

2-f.a.f.t. ~ 1-f.a.f.t. 

Given 1-f.a.f.t. 07. = < S, :E, M, s
0

, F >. Define 2-f.a.f.t. 

01 1 = < P(S), I:, M
1

, {s
0
}, F

1 
>, where for all /4

1
, 4-

2 
~ s, and all 

cr E :E, M1 ( A-
1

, 4
2

, cr) = [(s
3 

I (:El: s
1 

E A-
1

)(:E: s
2 

EA- 2) (s
3 

E M(s
1

, 

s 2 , cr))}}, and Fl = {A.,~ S 14 n F ,f, ¢}. 

We prove by induction that for every finite ~tree e 

01
1
-run r 

1 
on e is such that 

U (r(x)} 
rERn(O'(, e) 

(v,E), the 

Basis of the induction: For all r E Rn( 07 , e) , and all x E Ft (E), we 

have r(x) = s0 . We also have for all x E Ft(E), r
1

(x) = {s0}. 
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Induction hypothesis: For some x E E-Ft(E), r
1

(x0) = 

U {r(xl)} • 
rERn( (JI, e) 

U {r(xO)} and 
rERn( 01, e) 

Induction step: By the definition of 07-run for all r E Rn(O"( ,e), we 

have r(x) E M(r(xO), r(xl), v(x)). By the definition of M1 we then have 

r 1 (x) = M
1

(r
1

(x0), r 1(xl), v(x)) = {s l(~r E Rn(07, e))(s E M(r(xO), 

r(xl), v(x))} = U {r(x)}. This completes the induction. 
rERn( 01 ,e) 

Suppose e E T( 01
1
). Then the 07 1-run r

1 
one is accepting, i.e., 

r 1(6) E F1• By the definition of F1 and by (I) there is an 01-run r on 

e such that r(~) E F. That is, r is an accepting 07-run, and e E T(O'{). 

Suppose e E T(07). Then there is an accepting 01-run r one, i.e., 

r(6) E F. By (I) r(~) E r
1
(6), where r

1 
is the Ol

1
-run one. Hence, 

by the definition of F1, r
1
(n) E F

1
, and hence, r

1 
is an accepting 

O'r1-run on e. Therefore, e E T( 01
1
). □ 

Theorem 5: 3-f.a.f.t. are closed under union and projection. 

Proof: The constructions will be indicated. The reader may easily 

complete the proofs. 

Given 3-f.a.f.t. 's 07
1 

~, M2, 1 20' F2 >. 

Define 3-f.a.f.t. 07 = < s1 U s2 U {s0}, ~, M, s
0

, F1 U F
2 

>, where 

for all s 1, s2 E s1 U s
2

, and all cr E ~, (s
1

, s2) E M(s
0

, cr) if 

(s1, s
2

) E M1(s10 , cr) or (s
1

, s2) E M2(s 20 , cr), for all s
1

, s
2

, s
3 

E s
1

, 

and all cr E :E, (s1 , s2) E M(s
3

, cr) if (s1 , s2) E M
1

(s
3

, cr), and for all 

s 1, s2 , s 3 E s2, and all cr E ~, (s
1

, s2) E M(s
3

, cr) if (s
1

, s
2

) E M2(s
3

, cr). 

T(Ol) = T(D71) U T(072). 
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Given 3-f.a.f.t. 07
3 

= < s3, rf, M
3

, s
30

, F
3 

>. Define 3-f.a.f.t. 

01
4 

= < s3, I:, M
4

, s
30

, F3 >, where for alls E s
3

, and all cr E :E, 

M
4

(s, cr) = U M
3

(s, (cr
1

, cr)). T({J(
4

) = p
2
T(07

3
). 

crl~ 

1-f.a.f. t. may be shown to be closed under union and projection 

by the obvious constructions corresponding to those in the preceding 

proof. Since we have 1-f.a.f.t. closed under union and projection as 

an immediate corollary of Theorems 1 and 5, it is unnecessary that we 

do these constructions. 

Theorem 6: 3-f.a.f.t. and 4-f.a.f.t. are closed under intersection. 

Proof: The construction will be indicated. The reader may easily 

complete the;proof. 

Given 3-f.a.f.t.'s (4-f.a.f.t.'s) 0(
1 

= < s
1

, :E, M
1

, s
10

, F
1 

> and 

012 = < 82' I:, M2, s20' F2 >. 

Define 3-f.a.f.t. (4-f.a.f.t., respectively) 07
5 

= < s1 X s2, I:, 

M
5

, (s
10

, s
20

), F
1 

X F
2 

>, where for all s
1

, s
3

, s
5 

E s
1

, all s
2

, s
4

, 

s 6 E s2, and all cr E :E, ((s
3

, s
4
), (s

5
, s

6
)) E M

5
((a1, s2), cr) if 

(s
3

, s
5

) E M
1

(s
1

, cr) and 

(s
4

, s
6

) E M
2

(s
2

, cr). 

D 
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Note that 3-f.a.f.t. 07
6 

= < s 1 x s 2 :E, MS' (s10 , s 20), F
6 

>, where 

s
1

, s 2, :E, MS, s
10

, and s
20 

are all as in the preceding proof, and 

F6 = (F1 X s 2) U (S1 X F2), is not necessarily a union machine for 011 

and ()(
2

• In general, T( 01
6

):::, T(01
1

) UT( CT( 
2
), where A:::, B indicates 

A :::2 Band A f: B. 

Note, also, that the cross product construction does yield a union 

machine for the leaf-up models. That is, given 1-f.a. f.t.'s (2-f.a.f.t. 's) 

017 = < s7, :E, M7' s70' F7 > and Ola - ~ s8, :E, MB' s80' Fa >. 

Define 1-f.a.f.t. (2-f.a.f.t., respectively) 01.
9 

= < s
7 

x s8, :E, M
9

, 

(s70 , s
80

), F
9 

>, where for all s
1

, s
3

, sS E s
7

, all s
2

, s
4

, s
6 

E s8 , 

and all a E :E, (sl, s2) E M
9

((s
3

, s
4
), (sS, s6), a) if s 1 E ~(s3, sS, 

and s2 E M8(s4, s6, a), and Fg = (S7 X F8) U (F
7 

X s8). T( 01
9

) = 

T( O{ 7) U(T(t'IJ~). 

The reader is urged to thoroughly consider the differences between 

root-down and leaf-up automata which the two preceding observations 

indicate. 

a) 

Theorem 7: 3-f.a.f.t. and 4-f.a.f.t. are closed under cylindrification. 

Proof: Given 3-f.a. f. t. (4-f.a. f. t.) Cl= < S, :E
1

, M, s0 , F >. Define 

3-f.a.f.t. (4-f.a.f.t., respectively) 01
1 

= < S, :E1 X :E2 , M
1

, s
0

, F >, 

where for all (cr1, a 2) E :E
1 

X :E2, and alls ES, M
1

(s, (a
1

, a 2)) = 

M(s, a 1). T(U{1) = the :E
2
-cylindrification of T(O"(). 

0 
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Claim 1: T( 071) = Y'E - T(U{) • 

Proof: For each s ES, define 3-f.a.f.t. O'(s = < S, 'E, M, s, F >. 

Consider a finite :&-tree e = (v,E). 

First we state and prove Lemma 1, then we use Lenma 1 to show that 

if e ~ T(O{) then e E T(07
1
). Then we state Lemma 2 (which is the 

contrapositive of Lemma 1) and Lemma 3 (which is iI1DI1ediate from Lemma 2), 

and we use Lemma 3 to show that if e E T(Ol) then e ~ T(C(
1
). 

Note that the following definition and Lemmas 1, 2, and 3 are all 

stated with respect to the finite !:-tree e. 

For s E S and y E E, we will say that Condition! holds for .! at y 

if [Vr E Rn(07., (v, En T )))[r(Ft(En T )) ~ F]. For,A.~ Sandy EE 
s y y 

:. we will say that Condition 1 holds for ,<l at y iff for all s EA- , 

Condition 1 holds for sat y. 

Lemma 1: For alls ES and ally EE - Ft(E), if Condition 1 holds for 

sat y, then for all (s
1

, s
2

) E M(s, v(Y)), either 1) Condition 1 holds 

for s 1 at yO, or 2) Condition 1 holds for s 2 at yl, or both 1) and 2). 

Proof of Lemma 1: Suppose Lemma 1 is false. Then for some s ES and 

some y EE - Ft(E), Condition 1 holds for sat y, and there exists 

(s1 , s 2) E M(s, v(y)) such that Condition 1 does ,!!2! hold for s
1 

at yO 

and Condition 1 does not hold for s2 at yl. Hence, [:3:r E Rn( 07 , 
sl 

(v, En T 0)) ](r(Ft(E n T 
0
)) ~ F), and prr E Rn( 07 , 

y Y s2 

(r(Ft(E n Ty1)) ~ F). But then clearly, [:3:r E Rn( fJ( s' 

(v, En Tyl))] 

(v,EnT))] 
y 

(r(Ft(E n T )) ~ F); and this contradicts the assumption that Condition 1 y 

holds for sat y. Therefore, Lemma 1 is true. 
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We proceed with the proof of Claim 1. 

Suppose el T(O'{). We use Lemma 1 to construct an accepting 071-run 

r 1 one inductibely as follows. 

Induction hyPothesis: 

1) For ally E E-Ft(E) such that r 1(y) has been defined, we have 

Condition 1 holds for r 1 (y) at y. 

2) For ally E E-Ft(E), a) r
1

(y0) has been defined iff r 1 (yl) 

has been defined, and b) if r 1(y0) has been defined, then 

(r1 (y0), r 1(yl)) E M
1
(r

1
(y), v(y)). 

3) For ally E Ft(E), if r 1 (y) has been defined, then r 1(y) E F1• 

Clearly, clauses 2) and 3) of the induction hypothesis will insure 

that r 1 is an accepting 071-run one. 

Basis: r 1(A) = (s0}. 

Since e (/_ T(O'{), the-induction hypothesis holds after the basis step. 

Induction step: We assmne r 1 is defined at y E E-Ft(E) and extend r 1 

to yO and yl by defining r
1

(y0) and r 1(yl) to be the sets containing only 

those states explicitly put into them by the following. 

Case 1: yO E Ft(E) and yl (/_ Ft(E). 

For all (s1, s2) E M(r1(y), v(y)), if Condition 1 holds for s 1 at 

yO, then put s1 into r 1(y0), else put s
2 

into r
1

(yl). 



Clearly from the definition of M1, we have (r1(y0), r
1

(yl)) E 

M1(r1(y), v(y)). Clearly from the construction of r 1(y0), Condition 1 

holds for r 1(y0) at yO; and by clause 1) in the induction hypothesis and 

Lennna 1, Condition 1 holds for r 1(yl) at yl. 

Case 2: yO E Ft(E) and yl i Ft(E). 

For all (s1, s 2) E M(r1(y), v(y)), if s1 i F, then put s1 into 

r 1(y0), else put s2 into r
1
(yl). 

Clearly from the definition of M1, we have (r1(y0), r 1(yl)) E 

M1(r1(y), v(y)). From the construction of r
1

(y0), we have r 1(y0) n F = ¢, 

and hence, from the definition of F1 we have r 1(y0) E F1. For all 

s E F, Condition 1 does not hold for sat yO. Hence, by clause 1) in 

the induction hypothesis and Lemma 1, we have Condition 1 holds for 

r 1(yl) at yl. 

Case 3: yO i Ft(E) and yl E Ft(E). 

Symmetric to Case 2. 

Case 4: yO E Ft(E) and yl E Ft(E). 

For all (s1, s2) E M(r1(y), v(y)), if s
1 

l F, then put s1 into 

r 1(y0), else put s 2 into r 1(yl). 

Clearly from the definition of M1, we have (r1(y0), r 1(yl) E 

M1(r1(y), v(y)). Suppose that for some (s1, s
2

) E M(r1(y), v(y)), we 

have s1 E F and s2 E F. But then we have inmediately that Condition 1 

does not hold for some s E r 1(y) at y, and this contradicts the induction 
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hypothesis. Hence, if s
1 

E F, then s
2 

r/:_ F, and by construction 

r 1 (yO) n F = ¢ and r 1 (yl) n F = ¢. Hence, by the definition of F
1

, we 

have r
1

(y0) E F
1 

and r
1

(yl) E F
1

. 

This completes the induction. 

By clauses 2) and 3) of the induction hypothesis r 1 is an accepting 

01.1-run on e. Therefore, if e r/:_ T(OT), then e E T( 01 1) • 

Lemma 2: For alls ES and ally E E-Ft(E), if Condition 1 does not 

hold for sat y, then for some (s1, s 2) E M(s, v(y)), Condition 1 does 

not hold for s 1 at yO, and Condition 1 does not hold for s 2 at yl. 

Proof of Lemma 2: Lemma 2 is the contrpositive of Lemma 1. 

Lemma 3: For all r 
1 

E Rn( CT{ 1, e), and all y E E-Ft(E), if Condition 

1 does not hold for r
1

(y) at y, then either 1) Condition l does not hold 

for r 1 (y0) at yO, or 2) Condition 1 does not hold for r 1 (yl) at ylr 

or both 1) and 2). 

Proof of Lemma 3: Immediate from Lemma 2 and the definition of M
1

. 

We proceed with the proof of Claim 1. 

Suppose e E T(01), Then Condition 1 does not hold for s
0 

at A. 

Hence, by induction using Lemma 3, we have for all r 1 E Rn(o-J 1 , (v,E)) 

there exists a y E Ft(E) such that Condition 1 does not hold for r 1 (y) 

at y. That is, r
1

(y) n FI¢, and hence, r
1

(y) i F
1

, and r
1 

is not 

an accepting 011-run. 
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Therefore, if e E T(D{ ), then e rt_ T( U{ 1). This completes the 

proof of Claim 1. 
□ 

Theorem 9: 4-f.a.f.t. are not closed under union, projection, or 

complementation. 

Proof: First we show that 4-f.a.f.t. are not closed under union. 

Let B2 = (e1 , e2}, where e1 = (v
1

, E), e
2 

= (v2, E), E = (n, 0, 1, 

00, 01, 10, 11}, and v
1 

and v2 are given by the following pictures: 

Suppose 4-f.a. f. t. (1f = < S, (0, l}, M, s
0

, F > defines B2. Let 

r 1 and r 2 be the unique 0-C -runs on e
1 

and e
2

, respectively. Consider 

e3 = (v
3

, E) where v
3 

is given by the following picture: 

Clearly, the unique 01-run on e3 is given by the following picture: 

.. 
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Since r 1 and r 2 are both accepting OT-runs, we have {r2(00), r 2(0l), 

r 1(10), r 1(11)) ~ F, and e3 E T(07). But e
3 

f B2 and contrary to 

assumption T(O'f) # B2• Heree B2 is not 4-f.a.f.t. definable. 

Let B3 = fe1). B3 is defined by 4-f.a.f.t. 07
1 

= < {s0 , s
1

, s 2, 

f, R), {0,1), M1, s0 , {f) >, where M1 is given by the table: 

Ml 0 1 

so (sl, s2) (R, R) 

sl (R, R} ( f, f) 

s2 (f, f) (R, R) 

f (R, R) (R, R) 

R (R, R) (R, R) 

Let B4 = {e2J. B4 is defined by a 4-f.a.f.t. symmetric 07
1

. 

B2 = B3 U B
4 

is not 4-f.a.f.t. definable. Thefefore, 4-f.a.f.t. are 

not closed under union. 

Let BS= {e4 , esJ, where e4 = (v4 , E), es= (vs, E), Eis as 

before, and v4 and vs are given by the pictures: 

• 
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B5 is defined by 4-f.a.f.t. 072 = < {so, sl, s 2, f, R} , { 0, 1} , M2, 

so, { f} >, where M2 is given by the table: 

M2 00 01 10 11 

so (sl, s2) (s2, sl) (R, R) (R, R) 

sl (R, R) (R, R) (f, f) (R, R) 

s2 (f, f) (R, R) (R, R) (R, R' 

f (R., R) (R, R) (R, R) (R, R) 

R (R, R) (R, R) (R, R) (R, R) 

B2 = p1B5 is not 4-f.a.f.t. definable. Therefore, 4-f.a.f.t. are not 

closed under projection. 

Let B6 = {(v6, E6) E Y{O,l} I (Vx E E6-Ft(E6))(v6(x) = O)}. Then 

Y{O,l}-B6 = {(v,E) E Y{O,l} I (~x E E-Ft(E))(v(X) = l)}. B6 is defined 

by 4-f.a.f.t. 07
3 

= < {s0 , R}, {O,lJ, M3, s
0

, {s0} >,where~ is given 

by the table: 

0 

R (R, R) 

1 

(R, R) 

(R, R) • 

Suppose 4-f.a.f.t. (l{ 4 defines Y(O,lJ-B6• (e1, e2} ~ Y{O,l}-B6 and 

hence there exist accepting 01 4-runs on e
1 

am e2• By the same argument 

used for O"(, there must then be an accepting 0'(
4
-run on e

3
, and e

3 
E 

But e
3 

E B6, and hence, contrary to our assumption T( (T( 4) / 

Therefore, 4-f.a.f.t. are not closed under complementation. 

□ 
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Theorem 10: 3-f.a.f.t.::) 4-f.a.f.t. 

Proof: Every 4-f.a.f.t. is a 3-f.a.f.t •• Hence, we have immediately 

3-f.a.f.t. ~ 4-f.a.f.t. 

Let the set B2 be as defined in the previous proof. B2 is defined 

by 3-f.a.f.t. 01 = < {s0, s 1, s 2, f, R}, {O,l}, M, s0 , {f} >, where M 

is given by the table: 

M 0 1 

so (sl' s2) (R, R) 

(s2' sl) 

sl (R, R) (£, £) 

s2 (f, f) (R, R) 

f (R, R) (li R) 

R (R, R) (R, R) 

By the proof of Theorem 9, B2 Is not 4-f.a.f.t. definable. 

□ 
Theorem 11: There exists a procedure which given any 3-f.a.f.t. 

3 with n states decides whether or not T( 07) = ¢ in n or fewer 

computational steps. 

Proof: Given 3-f.a. f. t. on D-trees l1{ = < s, ~, M, s0 , F >, we first 

form the 3-f.a.f.t. on {OJ-trees 011 = < S, {O}, M1, s0, F >, where 

for alls ES, M1(s, 0) = U M(s, er). Clearly, T(O'{) =; iff 
crE:E 
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For each s ES, define 3-f.a.f.t. 0-Cs = < S, {O}, M1, s, F >, 

where s, M
1

, and Fare as above. Let R denote the set of s E s such 

that there exists a finite tree E I {L\.J and an 07 -run r: E ➔ S such 
s 

that r(Ft(E)) \;;; F. (Remember that for every O'l -run r, we have r ( /:').) 
s 

s.) We compute R recursively as follows: 

1) HO=¢, 

2) for i < w, Hi+l = u1 U {s I (ls1)(is2)[(s1, s 2) E M1(s, 0), 

{s1 , s 2} \;;; Hi U F]}. 

Hi\;;; Hi+l' for all i < w, and if Hi= Hi+l' then Hi= Hi+k = R, 

k < w. Since H. \;;; S, we are assurred that H = H_._1 = R. Given H., 
1 n 1rr 1 

= 

the calculation of Hi+l requires at most n
2 

steps since c(Hi) ~ n. That 

is, for each pair (a
1

, s 2) such that {s1 , s 2} \;;; Hi U F we look at a 

previously constructed table to find alls ES such that (s1, s 2) E 

3 Hence, the calculation of R takes at most n steps. 

□ 
The above procedure is an appropriate simplification of a procedure 

presented by Rabin in {10). The informal notion of computational step 

used above is the one used by Rabin in [10). 

In sunnnary, the root-down nondeterministic finite tree automaton 

model is trivially equivalent to the leaf-up nondeterministic finite tree 

automaton model. The leaf-up nondeterministic finite tree automaton model 

is equivalent (by the subset machine construction) to the leaf-up deter

ministic finite tree automaton model. These automata mddels are all 

:, : .. - . ... ' . ' : i :; .. :· 
·.' ' ,) ·,_: 
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closed under union, intersection, complementation, projection and 

cylindrification. The root-down deterministic finite tree automaton 

model is strictly weaker than the above, and is closed only under 

intersection and cylindrification. 

1-f.a.f.t. - 2-f.a.f.t. - 3-f.a.f.t. =:i 4-f.a.f.t. 

3-f.a.f.t. 4-f. a. f. t. 

union closed no 

intersect ion closed closed 

complementation closed no 

projection closed no 

cylindrification closed closed 

FIGURE 1 
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CHAPTER II 

Finite Automata on Infinite Sequences 

SECTION I INTRODUCTION 

In 1960 Buchi [l] was the first to use finite automata on infinite 

sequences to obtain a decision procedure for a theory. This theory 

was the monadic second-order theory of one successor function. In 

1966 McNaughton [5] proved his important fundamental result, the 

equivalence of the deterministic and nondeterministic variations of a 

finite automaton model on infinite input sequences. 

As in Chapter I we do not state the innnediate corollaries of each 

theorem. Instead, we summarize our theorems and their innnediate 

corollaries in Figure 2 of section 7. 

SECTION II DEFINITIONS 

* Definition: T1 = 1. 

The mapping t: T1 ➔ II such that ln r n is a one-to-one corres

pondence between T1 and 4". Hence, we sometimes use /ff for T1 and 

'J"-1 ['1") for (h, 1, 11, ••• , 1 }, 'I" <w. 

* Definition: A ~-sequence on a finite alphabet!; is a mapping 

w: (A ' 1, 11, ••• , 'I" 1 } ➔ I;, 'I" < w (or equivalently, w: ['1"+1] ➔ :E). 

1:;* is the set of all :t*-sequences. 
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w 
Definition: A ~-sequence on a finite alphabet :Eis a mapping 

v: T
1 
➔ :E (or equivalently, v: IN ➔ :E). 

We formally defined both finite and infinite sequences as mappings. 

However, because it is very convenient to use concatenation, we will 

* refer to finite and infinite strings of symbols on :E as :E -sequences 

w * and :E -sequences, respectively, and we will refer to :E -sequences and 
w 

I: -sequences as strings of symbols on!;. For example, x = 001 is the 

* f0, l} -sequences x: [3] ➔ (0, l}, where x(0) = 0, x(l) = 0, and x(2) = 1. 

* Definition: A regular event is any set A k :E which is finite automata 

definable. 

* We will denote a :E -sequence by x, or y, or w, or xi. Hence, if 

* A is a set of finite strings on E, we use A to denote the set of all 

finite strings obtained by concatenating finitely many members of A. 

* If x, y E :E, xy is the concatenation of x and y. We will denote a 

regular event by~, ~' or y. We will denote a symbol in the alphabet 

:E by er, or er •• 
l. 

We will denote a r>-sequence by v or V. • 
l. 

+ w ...Jv Definition: If Ek :E then we denote by!._ the set of all }.j -sequences 

obtained by concatenating members of E infinitely many times. That 

• w I 1.s, E = (x1x2 ..• xn .•• for all i E fH, xi EE}. 

* + w I Definition: If Ek!; and F k !; , then the set E•F = (x•v x EE 

w 
and v E F}. 
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Definition: A set R k t'1 is an ~-regular event if there exist regular 

events E
1

, ... ' * :+ En' F
1

, ••• , F, such that 1) E. k !; , and F. k !; , 
n i l. 

for all i, 1 ~ i ~ n, and 2) R = 

I -1 
Definition: For a mapping w: A ➔ B, In(t) = (b b EB, c(w (b)) ~ w). 

Definition: A mapping r: ,ft' ➔ sis _!-accepting with respect to F k S if 

(~t) r(t) E F. 

A mapping r: IN ➔ Sis ~-accepting with respect to F k S if 

(Vt) r(t) E F. 

A mapping r: /IY ➔ S is ~-accepting with F k S if 

In(r) n F #- ¢. 

A mapping r: nV ➔ Sis ~-accepting with respect to~ k P(S) if 

(~FE~) In(r) k F. 

A mapping r: W ➔ Sis 1-accepting with respect to~ k P(S) if 

In(r) E ~-

A mapping r:. /A"➔ Sis ~-accepting with respect toft= ((R., G.)).<, 
i I. in 

where for all i < n, R. k S, G. k S, if for some i < n, 
l. l. 

In(r) n R. = ¢ and In(r) n G. #- ¢. 
l. l. 
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In speaking it is often convenient to indicate that a run is 2-

accepting by saying that it "accepts infinitely often", to indicate 

that a run is 2'-accepting by saying that it "eventually always accepts", 

and to indicate that a run is 3-accepting by saying that "the set of 

states entered infinitely often is a designated subset". 

Definition: An ~-table on~ is a system!JJ!' = < S, ~, M, s O >, where S 

is the finite state set,~ is the finite alphabet set, M: S X ~ ➔ P(S)

{~} is the state transition function, and s
O 

ES is the initial state. 

Definition: Ad-table on~ is an n-table such that M: S X ~ ➔ {{s} I 
s E S}. 

* Definition: An !JJ!' -,!:.!:!!! .Q.E input !! E ~ , w: ['T] ➔ ~, 'T < w, is any 

mapping r: ['T+l] ➔ S such that 1) r(O) = s
O

, and 2) for all t < 'T, 

r(t+l) E M(r(t), w(t)). 

Definition: For any 'T ~ w, any t"-sequence v, and any table !JJ!' = 

< S, ~, M, sO >, a mapping r: f'T] ➔ Sis called compatible with !JJ!' and 

v if 1) r(O) = sO, and 2) for all t < 'T, r(t+l) E M(r(t), v(t)). 

Definition: An !!:rt•-,!:.!:!!! on input y E ~ is any mapping r: //{ ➔ S which 

is compatible with table !JJ!' and v. 

We, also, talk about an ~run of an automaton !JJ! on a sequence v(w) 

meaning an!JJ!'-run of the associated n(d)-table !JJ!'. The set of all 

!JJ!-runs on v(w) is denoted Rn(!JJ!, v) (Rn(!JJ!, w)) . 
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Nondeterministic (deterministic) finite automaton on finite sequences 

is abbreviated n.f.a.f. (d.f.a.f.). 

* Definition: An n.f.a.f. (d.f.a.f.) on :E is a system !rn = < S, :E, M, 

s
0

, F >,where< S, :E, M, s
0 

> is an n-table (d-table), and F k Sis 

the set of accepting states. 

f. a. f. !rn accepts w: r'T] ➔ :E, 'T < w, if there exists an !D1-run r on 

w such that r('T) E F. 

The n.f.a.f. and d.f.a.f. are the familiar finite automaton models 

of conventional finite automata theory. 

Nondeterministic (deterministic) finite automaton (on infinite 

sequences) is abbreviated n.f.a. (d.f.a.). 

Definition: A 1-n.f.a. (1-d.f.a.) on~ is a system !D1 = < S, !;, M, 

s 0 , F >,where< S, :E, M, s
0 

> is an n-table (d-table), and F k Sis 

the set of designated states. 

1-f.a. !IR accepts v if there exists an!D1-run on v which is 1-accepting 

with respect to F. 

Definition: 
w 

A 1'-n.f.a. (l'-d.f.a.) on :E is a system 'lJ1 = < S, :E, M, 

s
0

, F >,where< S, :E, M, s
0 

> is an n-table (d-table), and F k Sis 

the set of designated states. 

l'-f.a. !D1 accepts v if there exists an !m-run on v which is !'-accepting 

with respect to F. 
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Definition: A ~-n.f.a. (2-d.f.a.) on~ is a system !ffi = < S, !;, M, 

s
0

, F >,where< S, :E, M, s
0 

> is an n-table (d-table), and F ~Sis 

the set of designated states. 

2-f.a. !ffi accepts v if there exists an!m-run on v which is 2-

accepting with respect to F. 

Definition: A ~-n.f.a. (2'-d.f.a.) on t1 is a system!m = < S, !;, M, 

s
0

, ~>,where< S, 2:, M, s
0 

> is an n-table (d-table), and~~ P(S) 

is the set of designated subsets. 

2'-f.a. !ffi accepts v if there exists an !IR-run on v which is 2'-

accepting with respect to~-

Definition: A 1-n.f.a. (3-d.f.a.) on~ is a system !ffi = < S, :E, M, 

s 0 , ~>,where< S, !;, M, s
0 

> is an n-table {d-table), and~~ P(S) 

is the set of designated subsets. 

3-f.a. !ffi accepts v if there exists an !m-run on v which is 3-

accepting with respect to~-

Definition: A i-n. f.a. (4-d. f.a.) on~ is a system !ffi = < s, !;, M, 

so, 0 >, where< S, ~, M, so > is an n-table (d-table), and 0 

( (R., Gi))i<n' for all i < n, R. ~ s, G. ~ s, are the subset pairs. 
l. l. l. 

4-f.a. !ffi accepts v if there exists an !m-run on v which is 4-

accepting with respect to 0 
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Definition: An !-th partial run 0£ n-table (d-table) !IR' = < S, ~, M, 

s O > on vis any mapping rt: [t+l] ➔ S such that 1) rt(t) = s
O

, and 

2) for all i E rt], rt(i) E M(rt(i+l), v(i)). 

Note that for any table !m' and any f1-sequence v, the 0-th partial 

run is the mapping r
O

(O) = s
O

, where s
O 

is !m' 's initial state. 

Definition: A mapping p: [T] ➔ S, ~ ~ w, is ~-compatible with table 

w 
!m' and E -sequence v if for all t E [T], there exists r, at-th partial 

t 

!m'-run on v, such that rt(O) = p(t). 

Definition: A !ffi'-C(compound)-run on vis any mapping r: IN ➔ S which is 

C-compatible with !ffi' and v. 

We will, also, speak of an i-th partial !In-run and an ~C-run of a 

finite automaton !mmeaning an i-th partial _!m'-run and an!m'-C-run, 

respectively, of the associated n(d)-table !IR'. The set of all i-th 

parital runs of !lJl on vis denoted P-Rn(lm, v I [i]). The set of all 

!m-C-runs on vis denoted C-RnCffi, v). 

Definition: A lc-n.f.a. (lC-d.f.a.) on f1 is a system !m = < S, E, M, 

sO, F >,where< S, E, M, sO > is an n-table (d-table), and F ~Sis 

the set of designated states. 

lC-f.a. !m accepts vis there exists an !m-C-run on v which is 

1-accepting with respect to F. 

Definition: 
w 

A l'C-n.f.a. (l'C-d.f.a.) on E is a system!m = < S, E, M, 

sO, F >,where< S, E, M, sO > is an n-table (d-table), and F ~Sis 

the set of designated states. 
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l'C-f.a. !ID accepts v if there exists an !m-C-run on v which is 

1'-accepting with respect to F. 

Definition: A 2C-n.f.a. (2C-d,f.a.) on~ is a system~=< S, I:, M, 

s0 , F >,where< S, :E, M, s
0 

> is an n-table (d-table), and F ~Sis 

the set of designated states. 

2C-f.a. rR accepts v if there exists an!m-C-run on v which is 

2-accepting with respect to F. 

Definition: A 2'C-n.f.a. (2'C-d.f.a.) on -t" is a system !IJ! = < S, ~, M, 

s 0 , ~>,where< S, ~, M, s
0 

> is an n-table (d-table), ~ ~ P(S) is 

the set of designated subsets. 

2'C-f.a. ~ accepts v if there exists an ~C-run on v which is 

2'-accepting with respect to~-

w 
Definition: A 3C-n.f.a. (3C-d.f.a.) on~ is a system !IJ! = < S, r,, M, 

s0 , ~>,where< S, ~, M, s
0 

> is an n-table (d-table), and~~ P(S) 

is the set of designated subsets. 

3C-f.a. !ID accepts v if there exists an !ID-C-run on v which is 

3-accepting with respect to~-

Definition: A 4C-n.f.a. (4C-d.f.a.) on t1 is a system !IJ! = < S, ~, M, 

s
0

, 0 >,where< S, :E, M, s
0 

> is an n-table (d-table), and O = 

((R., G.)). , for all i < n, R. ~ S, G. ~ S, are the subsets pairs. 
1 1 i<n 1 1 

4C-f.a. '.ffi accepts v if there exists an !D?-C-run on v which is 

4-accepting with respect to 0. 
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Definition: For mappings Ml: A1 ➔ Bl and M2: A2 ➔ B2, the mapping 

Ml X M2: A1 X A
2 
➔ Bl X B2 is defined Ml X M2 ((a1, a2)) = (M1(a1), M2(a2)), 

for all (a
1

, a
2

) E A
1 

X A
2

• 

Definitions of p1(A) where A~(~ X ~)w, ~-cylindrification of 
w 

B ~ ;_ , TCIJl)'f b-f.a. definable, i-f.a. !D1 equivalent to j-f.a. ~, 

i-f.a. closed under union, intersection, complementation, and projection, 

i-f.a. equivalent j-f.a., etc. are obtained by suitably modifying the 

corresponding definitions of Chapter I (i.e. by replacing (v,E) by v, 

and YI; by r1) . 
As in the preceding definitions, we will write i-f.a. only where 

both i-n.f.a. and i-d.f.a. could be written. That is, where every 

occurrence of i-f.a. ~y hinpl&ced by i-n. f.a., or every occurrence 

of i-f.a. may be replaced by i-d.f.a. 

In r3] Hartmanis and Stearnssstudy l'd.f.a. In f4] Landweber 

investigates 1-d.f.a., 1'-d.f.a., 2-d.f~a., 2'-d.f.a., and 3-d.f.a. 

In [5] McNaughton uses 3-d.f.a. and 3-n.f.a., and the important consturction 

he uses to prove 3-d.f.a. = 3-n.f.a. suggests the notion of a 4-accepting 

run. In [8] Rabin uses the notion of 4-accepting in his notion of dual 

acceptance, and in [7] Rabin uses the notion of 4-accepting run. In 

[l] Buchi uses 2-n.f.a. 
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SECTION II.I COHSEQUE~ES OF M: S XI; ➔ P(S) -(¢} 

The preceding definitions specify that a"l'JOndeterministic automaton 

has a state transition function M: S XI; ➔ P(S} - (¢}. The usual 

definition of a nondeterministic automaton allows all state transition 

functions M: S XI; ➔ P(S). That is, the usual definition allows for 

there to exist state, input symbol pairs for which there are no tran

sitions. Hence, there can be nondeterministic automata which have no 

runs on certain strings on their input alphabets. These strings are 

rejected because no accepting run on them exists. For finite automata 

on finite strings this causes no problems. In fact, by adding a non

accepting "trap" state one can easily obtain an equivalent finite 

automaton on finite strings with state transition function M: S x ~ ➔ 

P(S} - (¢}, 

However, on infinite input sequences if all state transition 

functions M: S x I; ➔ P(S} are allowed, then we get as a theorem 1-n.f.a. -

2'-n.f.a. In fact, we have the following construction. 

Given 2'-n.f.a. !m = < S, !;, M, sO, F >. Define 1-n.f.a. !I\=< SU F1, 

!;, M1, sO, Fl>, where F1 = F X (a}, for alls ES, and all a EI;, 

M1(s, a)= M(s, a) U ((f,a) f E M(s, cr) n F}, and for all (f,a) E F1, 

and all cr E ~, M1((f,a), a)= {(f',a) I f' E M(f, a) n F}. We have 

T CJJ!) = T CJ\ ) . 
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Note that the above construction uses state symbol pairs with no 

transitions in such a way that the essentially finite acceptance 

condition (of hitting an accepting state once) combined with the infinite 

condition of the existence of an infinite run in which this finite event 

occurs imply that there exists an accepting run of the 1-n.f.a. on v 

iff there exists a run of the 2ln.f.a. on v which satisfys the infinite 

2'-acceptance condition. 

Our feeling that the above is an undesirable quirk is further re

inforced when we see that the 1-d.f.a., and the 1'-, 2-, 2'-, and 3-n.f.a. 

models are not affected by allowing M: S x ~ ➔ P(S). That the 1-d.f.a. 

remains closed under projection even when 1-d.f.a. and 1-n.f.a. are not 

equivalent easily follows from the conventional subset construction for 

obtaining a'deterministic automaton from a nondeterministic automaton. 

Therefore, we defined an n-table as we did, and we have Lemma 2 

below which we would not have if we had allowed M: S X :E ➔ P(S). We 

state Lemmas 1 and 2 without proofs, because the proofs are trivial. 

Lemma 1: For any mapping p: [T] ➔ S, T ~ w, compatible with d-table 

!In'=< S, :E, M, s0 > and :E"-sequence v, there exists a uniquer E Rn(!m', v) 

such that r I [T) = p. Hence, for !In', and all v E If, we have c(Rn(!IR',v)) = 1. 

For any mapping p: [T] ➔ S, T ~ w, C-compatible with !In' and v E 

~' there exists a uniquer E C-Rn(!lR', v) such that r I [T] = p. Hence, 

for !In' and all v E If, we have c(C-Rn(!m', v)) = 1. 
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Lemma 2: For any mapping p: [T] ➔ S, T ~ w, compatible with n-talbe 

lffi' = < S, !:, M, s
0 

> and v E !fl there exists an r E Rn(!m', v) such 

that r I [T] = p. Hence, for all v E 'lf, we have RnCDt', v) I¢. 

w 
For any mapping p: [T] ➔ S, T ~ w, c-compatible with !m' and v E !: 

there exists an r E C-Rn(!m', v) such that r I [T] = p. Hence, for all 

v E 'lf, we have C-Rn(!m', v) ,/: ¢. 

SECTION III USEFUL, INITIAL OBSERVATIONS 

We can immediately make the following observations which we will 

use again and again in the following proofs. 

Every d-table is an n-table so that we have for all i E (1, 1', 2, 

2', 3, 4, lC, l'C, 2C, 2'C, 3C, 4C}, i-d.f.a. k i-n.f.a. We won't 

restate this in the following proofs, since we trust that the reader 

will detect when it is1ued without prompting. 

Given 2 1-f.a. (3-f.a., 2'C-f.a., 3C-f.a.) 9:R = < S, !:, M, s0 , 

(F
1

, •.. , Fk} >. For 1 ~ i ~ k, define 2'-f.a. (3-f.a., 2'C-f.a., 

3C-f.a., respectively) !mi = < s, ,;, M, s0 , (Fi} >. Clearly, T(!m) = 

TCffii) U T~) U ••• U TCI\_). In Theorems 12 and 13 we show by construction 

directly from the definitions of 2-f.a., 2'-f.a., 3-f.a., 2'C-f.a., and 

3C-f.a. that they are all closed under union. On the basis of these 

observations several of the following proofs are stated for 2'-f.a. 

(3-f.a., 2'C-f.a., 3C-f.a.) with a single designated subset. We trust 

that the reader will realize that the generalization indicated above is 

implied in such cases. 
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Leunna 3: 
w 

Given any 1-£.a. on :E !IR we can determine an equivalent 

1-£.a. ~ = < 8r•E, M1, s 10 , ff}> such that s10 t £, atld for all 

cr E :E, M1(£, cr) = (£}. 

Given any lC-£.a. on !f ~ we can determine an equivalent lc-£.a. 

~ = < s3, :E, M3, s
30

, F3 > such that s30 l F
3

• 

Proof: Innnediate from Lemmas 1 and 2 and the definition of 1-f.a. and 

lC-£.a. Note that if !m Cl]2) is deterministic, then we can make~ 

~• respectively) deterministic. 0 

Lemma 4: Given any l'-f.a. on !f !IR, we can determine an equivalent 

l'-f.a. ~ = < F1 U (s}, E, M
1

, s
10

, F
1 

> such that s
10 

E F
1

, and for 

all cr E :E, M1(s, cr) = (s}. 

Given any l'C-£.a. on !f ~, we can determine an equivalent l'C-£.a. 

~ = < s3, :E, M3, s 30 , F3 > such that s30 E F3. 

Proof: Innnediate from Lenmas 1 and 2 and the definitions of l'-£.a. 

and l'C-£.a. Note that if !ffi ('JJt2) is deterministic, then we can make 

~ (!IR
3

, respectively) deterministic. O 
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SECTION IV EQUIVALEK:E OF MODELS 

Our primary intention is to present a clear exposition which, 

hopefully, will speed the :beginner's acquisition of a facile, intuitive 

grasp of various notions of a finite automaton running on an infinite 

sequence. Hence, our presentation involves some redundancy. Note in 

particular that many closure properties are proven for both i-n.f.a. 

and i-d.f.a., after we have proven that i-n.f.a. - i-d.f.a. We do this 

because the constructions used work equally well for n.f.a. and d.f.a., 

and we see no reason to hide this sometimes useful fact. However, in 

order to avoid uninformative redunda11FF, we begin by showing that many 

models are equivalent. Then given a property which we wish to show 

our models have (or fail to have), we can give the proof for the model 

which has the simplest, most informative proof am we get as corollaries 

that all equivalent models have the property (fail to have the property). 

In fact, in some cases (for example, closure of l'C-f.a., 2'C-f.a., 

3C-f.a. under projection) we do not know how to prove more directly 

what follows easily from the equivalence of models. 

Theorem 1: 1-n.f.a. = 1-d.f.a. 

Proof: Given 1-n.f.a. ml=< S, :E, M, sO, F >. Define 1-d.f.a. 5i_ = 

< P(S), :E, M1, (s
0
}, F1 >, where for all A. E P(S), and all cr E :E, 

M1 (.b-, cr) = ( U M(s, cr)}, and F1 = (.-0.. E P(S) I .4.. n F =i' ¢}. 
sE,t).., 
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Suppose v E T(!Dl). Then there exist r E RnCIR, v) and t E /# such 

that r(t) E F. By the construction of !D\, if r 1 is the unique !J\-run 

on v, then r(t) E r 1(t). Hence, r 1(t) E F
1

, and v ET~). 

Suppose v ETC)\)· Then there exists r
1 

E Rn~, v) and t E /)/ such 

that r
1
(t) E F

1
. By the construction of !J\, there exists a mapping 

p: [t+l] ➔ S compatible with~ and v and such that p(t) E F. Hence, 

by Lemma 2, there exists r E Rn(!ffi, v) such that r I [t+l] = p. Hence, 

r(t) E F and v E T(!Dl). 

Therefore, T(!Dl) = TCJJ1
1
), and 1-n.£.a. !;;;; 1-d.£.a. 

D 

Theorem 2: 1'-n.f.a. = 1'-,d.f:.a. 

Proof: By Lemma 4, given any l'•n. £.a. ~ we can determine an equivalent 

1'-n.f.a. !J\ = < F1 U {s}, :E, M1, s10 , F
1 

>, where s
10 

E F1, and for 

all cr EI;, M1(s, cr) = {s}. 

Define l'-d.f.a. ~ = <P(F1), :E, M2, {s10J, F2 >, wher; for all 

A. E P(F1), for all cr EI;, M
2
(4, cr) = { U Ml (s, cr)}, and F

2 
= 

sEA.. 
PA\} • J ¢} t.S. . .A.,i. 

Cl early, because the construction of !J\ eliminated all transitions 

from s into F1, the unique ~2-run r
2 

on vis such that for all t E /k', 

r 2(t) E F2 if£ there is an9i-run r 1 on v such that r
1
([t]) ~ F1. Hence, 

r 2 (fN) !;;;; F2 if£ there exists r
1 

E Rn~, v) such that r
1

(/H) !: F1. 

Therefore, T(!Dl) = T(!J\) and l'-n.f.a. !: l'-d.£.a. 
0 
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Theorem 3: 2'-n.f.a. = 2'-d.f.a. 

Proof: (This construction was suggested to me by A.R. Meyer in private 

conmrunica tion. ) 

Given 2'-n.f.a. !IR=< s, :E, M, s
0

, (F} >. Define 2'-d.f.a. ~ = 

< sl, ::E, Ml, slO' ~1 >, where sl = P(S) x P(F), 

= 

f 
for all (D, A) E s1 , and all cr E :E, 

Ml ((D, A) , cr) = 

(I) 

(D', A'), where D' = M(D, cr) and 

if A = ¢ then A I = D ' n F, 

if s
0 

E F, 

else, 

(II) if A#¢ then A' = M(A, cr) n F; and ~
1 

= (((D, A) I A#¢}}. 

Suppose v ETC!\)· Then for the unique !J\-run r 1 on v we have 

In(r1) ~ F
1

• Hence, (~T)(Vt)(T ~ t ➔ r
1

(t) E F
1
); and by (II) in the 

definition of M1, there exists r E Rn(!lR, v) such that for all t, 

T ~ t ➔ r(t) E F. Hence, In(r) ~ F and v E T(!IR). 

Suppose v E Tern). Then there exists r E Rn(!IR, v) such that In(r) ~ 

F. Hence, 

(III) (~T)(Vt)(T ~ t ➔ r(t) E F). 

Suppose there exists t 1 E IN such that 

(IV) 
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That is, such that r 1(t1) = (D, ¢), some D ~ S. Let r 1(t1+1) = (fi', A'). 

By our construction of~ we have r(t1+1) ED'. Hence, by (III) we 

have D' n FI¢. Hence, by (I) in the definition of M1, A'= D' n FI¢. 

Then by (II) in the definition of M1, and (III) above, we have for all 

t, t 1 + 1 ~ t ➔ r 1(t) E F
1

• Hence, In(r1) ~ F1, and v ET~). 

Therefore, T(!IR) = TCIDi_) and 2'-n.f.a. ~ 2'-d.f.a. D 

The above proof shows that there can be at most one time t 1 defined 

as above. The following is a 2-n.f.a. !m, and the 2'-d.f.a. !m1 obtained 

from !m by the construction in the proof above. 

2'-n.f.a. !m = < (1, 2, 3}, (0,1}, M, 1, ((2, 3}} >, where Mis given 

by the diagram: 
0 

Looking at the diagram for M we can construct the state transition 

table for Ml (For convenience we use parentheses instead of set brackets.): 

0 1 

so = ((1), ¢) so sl 

sl = ((2, 3), (2, 3)) s2 s3 

s2 = ((1, 2), (2)) s2 84 

83 = ((1, 3), (3)) so s5 

s4 = ((1, 2, 3), (~)) s2 s6 

85 = ((2, 3), (3)) s7 s3 

s6 = ((1, 2, 3), (2, 3)) s2 s8 

87 = ((1, 2), ¢) s2 s6 

s8 = ((1, 2, 3), (3)) s7 s8 
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2'-d.f.a. ~l = < {s0 , .•. , s
8
}, (0,1}, M1 , s

0
, {{s1 , s2 , s3 , s 5 , 

s 6, s
8

}} >, where M1 is given by the table above. The state transition 

diagram for M
1 

with the members of the designated subset of~ marked 

as double circles is: 

r = 1313 
w w 

is an accepting ~run on 101. is the 

w 
accepting !!\-run on 101. Note that (Vt)(3 ~ t ➔ r(t) E F), where F 

is the designated subset of~- But r 1 (4) = s
4 

is not tn~thesd~signated 

subset of~- Hence, a time t
1 

as defined in the proof of Theorem 3 

( 4) rm on 101w. does exist i.e. t
1 

= for the ~111-run 

Theorem 4: 2-n.f.a. = 3-n.f.a. 

Proof: Given 2-n.f.a. ~ = < S, ~, M, s
0

, F >. Define 3-n.f.a. !J\ = 

< S, ~. M, s0 , :11 >, where :11 = (1\ ~ S I F1 n F -I ¢}. Clearly, 

T~) = Tcm). 

1 
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Given 3-n.f.a. ~ = < s2, ~, M2, s 2O , (F2} >. Define 2-n.f.a. 

~ = < s3, ~, M3, s 2O , F3 >, where s3 = s2 U (F2 x P(F2)) U {sT}, for 

alls E s2, and all er E ~, M
3
(s, O') :;;1 M

2
(s, er); fot•a11 s E s2, and 

all er E ~, if f E M2(s, er) n F
2

, then (f, ¢) E M
3
(s, er); for all 

f E F2, all er E ~, all D ~ F
2

, and all f 1 E M2(f, er) n F2, sT E M
3
((f, D), er), 

ff~D,---l1F_l the11/(tl' DU (f}l E M3((f, D), er), if D = F2 then (f1if}) E 

M3((f, D)' er); for all er E :E, ST E M/sT, er); anLF3 ;e_F2 X (F2). 

Suppose v ET~). Then there exists r 2 E Rn(ml2, v) such that 

In(r2) =_ F2. Therefore, there exist t
O 

< t
1 

< t
2 

.•• , such that (Vt) 

(tO < t ➔ r 2(t) E F2), and for all i E W, r 2({t I ti< t < ti+l}) c 

F2, and r 2({t I ti< t ~ ti+l}) = F2. From the definition of M3, there 

exists r 3 E Rn~, v) such that r 3 ({t I t ~ t O}) ~ s2, r
3
(tO + 1) = 

(r2(t
O 

+ 1), ¢), and for all i > O, r
3
(ti + 1) = (r2(t1 + 1), F2) E F3• 

F3 is finite, hence, In(r3) n F3 I¢ a~ v ET~). 

Suppose v ET~)- Then there exists r
3 

E Rncm
3

, v) such that 

In(r3) n F3 I¢. From the definition of M3, p
1
r

3 
E Rn~, v). We 

easily see the p1r
3 

is an accepting !m
2
-run on v as follows. There exists 

some (f, F2) E F
3

, and t O < t
1 

< t
2 

••• , such that for all i E /,V, 

r 3(\) = (f, F2). From the definition of M3 for all i E W, p1r 3({t 

ti~ t < ti+l}) = F2. Hence, In(p1r
3

) = F2, p1r 3 is an accepting m2-run 

□ 
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Theorem 5: 3-n.f.a. = 3-d.f.a. 

Proof: This is McNaughton's important fundamenta~ result in [5]. 

McNaughton proved the following theorem. 

Theorem: 
w 

A set A~ r is an w-regular event iff A is 3-d.f.a. definable. 

(We will denote the content of this theorem by 3-d.f.a. = w-regular.) 

Actually McNaughton also shows that every 3-n.f.a. definable set is 

an w-regular event. This coupled with the fact that every 3-d.f.a. 

is also a 3-n.f.a. means that his construction of a 3-d.f.a. to accept 

an arbitrary w-regular event suffices to show 3-n.f.a. = 3-d.f.a. 

□ 
Alternative proof: By McNaughton [5] 3-d.f.a. = w-regular. By Theorem 

22 2-n.f.a. = w-regular. By Theorem 4 3-n.f.a. = 2-n.f.a. Therefore, 

3-n.f.a. = 3-d.f.a. 
□ 

Theorem 6: 4-n.f.a. - 3-n.f.a.~and~4~d.f.a. = 3-d.f.a. 

Proof: Given 4-f.a. !lJl = < S, r, M, s0, ((Ri, Gi))i~n >. For each i, 

0 ~ i ~ n, define 4-£.a. !Dli = < s, r, M, s0 , ((Ri, Gi)) >. Clearly, 

Tcm) = T~) U ••• U TCJ.Rn). By Theorem 12 both 3-£.a. and 4-f.a. 

are closed under union, hence the following suffices. 

Given 4-f.a. !DI=< S, r, s0 , ((R, G)) >. Define 3-f.a. ~ = 

< s, r, M, so, ~1 >, where ~1 = (F ~ S I F n R = </J & F n G :,f:. </J}. 

Clearly, Tcm) = TCDti_). Hence, 4-f.a. ~ 3-f.a. 
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Given 3-f.a. !m
2 

= < s
2

, r, M
2

, s 20 [F2} >. Define 4-f.a. ~ = 

< s2 x P(F
2
), r, M

3
, (s

20
, ¢), o3 ?, where for alls E s2, all f ~ 

F
2

, and all cr Er, if f I F2 then M3((s, f), ~) = ((s', f') If' = 

(f U (s}) n F2, ands' E M2(s, cr)}, if f = F2 then M3((s, /), cr) = 

({s', ¢) s' E M2(s, cr)}, and o3 = ((((s, f) E s2 x P(F2) I sf F2}, 

Note that if~ is deterministic then!m
3 

is deterministic. 

Clearly the above construction is very similar to the construction 

used in the proof of Theorem 4. Having seen this proof we trust the 

reader can easily complete the proof that T~) = TCffi:3)- Hence, 3-f.a. 

~ 4-f.a. 
D 
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SECTION IV.I THE C-RUN MODELS 

Professor A.R. Meyer suggested the definition of C-run to me in 

private communication. The notion behind C-run is clearly that of 

successively starting the finite automaton further and further down the 

infinite sequence, running it back to the beginning of the sequence, 

and noting its final state. Then basing acceptance on the sequence of 

final states obtained in this manner. A little thought, perhaps, is 

necessary to convince oneself that the process described above is not 

equivalent to noting the sequence of final states obtained by successively 

running the finite automaton from the beginning of the sequence to the 

end of longer and longer initial segments of the infinite sequence. 

This latter process is clearly just the notion of run used by 1-, 1'-, 

... , 4-f. a. . Thus, perhaps, the following results are slightly surprising. 

Theorem 7: lC-n. f.a. - lC-d.f.a., l'C-n.f.a. - l'C-d.f.a., 

2C-n. f.a. - 2C-d. f.a., 2'C-n.f.a. - 2'C-d.f.a., 

3C-n. f.a. - 3C-d.f.a., 4C-n.f.a. - 4C-d. f. a. 

Proof: The following proof may be summed up by saying that the subset 

construction works for this model because the possible !rn-C-runs on v 

are determined by the possible final states, r.(O), for r. E P-Rn~, v 
--- 1 1 

[i]), i E IN. 
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Given an n-table !ID' = < S, ~, M, sO >. Define ad-table !mi= 
< P(S), ~, M

1
, ( s

0
} >, where for all /4 E P(S), and all CJ E ~, 

M
1 

(-<l ,a) = ( U M(s,a)}. (Note that m1 is constructed from~• 
sE 

by the standard subset construction of conventional finite automata 

theory.) 

Clearly, for the unique r 1t E P-Rn(!m1, v I ft]), we have 

(Vrt E P-RnCJ]', v' [t]))(rt(O) E r 1t(O)), and (Vs E r 1t(O)) 

(:B:rt E P-RnCJ]', v I [t]))(rlt:(o) = s). Hence for the unique r 1 EC-Rn~' ,v), 

we have for all t E fl/, 

(I) r 1 (t) = (r(t) r E C-RnCJ]', v)} #¢,and 

(II) C-Rn(!ID', v) = (r:/N ➔ S I for all t E IN, r(t) E r 1 (t)} # ¢. 

Given lC-n. f.a. ~ = < S, 'E, M, s
O

, F >, where < S, ~, M, sO > = m' • 

Define lC-d.f.a. ~ = < P(S), ~, M1, (sO}, Fl>, where< P(S), ~, M1, 

[ sO} > = ~• , and F 1 = [ A. £;; s I ..c:1 n F .; ¢} • 

Suppose v E TCJ]). Then there exists r E C-RnCJ], v) and t E IN such 

that r(t) E F. By (I) and the definition of F
1

, r(t) E r 1(t) E F1, 

where r 1 is the unique ~-C-run on v. Hence, v ·Eii! T~). 

Suppose v ET~). Then for the unique r 1 EC-Rn(~, v) there 

exists a t E //'I such that r 1 (t) E F 1 . By the definition of F 1, r 
1 
(t) n 

F #¢,hence by (II), there exists r E C-Rn(!ID, v) such that r(t) E F. 

Hence, v E TCJ]). 

Therefore, T(lm) T~), and lC-d. f.a. - lC-n. f.a. 
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Given l'C-n.f.a. !IR=< S, t, M, s0 , F >,where< S, t, M, s 0 >=!IT!'. 

Define l'C-d.f.a. ~ = < P(S), t, M1, {s0}, Fl>, where< P(S), t, 

Ml, { so} > = ~r , and F 1 = { ,a. ~ s I -<1. n F ,/, ¢}. 

Suppose v ET(~. Then there exists r E C-RnCffi, v) such that 

r(/1/) ~ F. By (I), for all t E/N, r(t) E r 1(t) and hence, r 1(t) n F = ¢, 

where r 1 is the unique ~\-run on v. By the definition of F1 , 

r 1 UN) ~ F1• Hence, v E T('I\). 

Suppose v ETC)\), Then for the unique r
1 

E C-RnCJ]1 , v) we have 

r
1

(1!.I) ~ F
1

• Hence, for all t E/N, r
1
(t) n FI¢. Hence by (II), there 

exists r E C-RnCIJ!, v) such that R(/N) ~ F. Hence, v E TCJ)l). 

Therefore, Tr.m) = T~) and l'C-n.f,a. = l'C-d.f.a. 

Given 2C-n.f.a. !IR=< S, ~, M, s
0

, F >,where< S, t, M, s
0 

> = ~•. 

Define 2C-d.f.a. ~ = < P(S), t, M1, {s0}, Fl>, where< P(S), t, M1, 

{ so} > = ~· , and Fl = { .-<1.. ~ S I -<1 n F ,/, ¢} . 

Suppose v E TCffi). Then there exists r E C-Rn(!ffi, v) such that 

In(r) n F ,/, ¢. That is, there exist t
0 

< t
1 

< .•. , such that for all 

i E/N, r(ti) E F, hence by (I) and the definition of F1 , r 1(ti) E F1, 

where r 1 is the unique ~-C-run on v. Hence, In(r1) n F1 I¢ and 

v E TCJ.\). 

Suppose v E TCJJ\)· Then for the unique r
1 

EC-Rn~, v) we have 

In(r
1

) n F
1 

,/, ¢. That is, there exist t
0 

< t
1 

< ••• , such that for 

all i Elf, r 1 (ti) E F1, and hence by the definition of F1 , r 1(ti) n 

FI¢, and by (II), there exists r E C-Rn(!m, v) such that for all 

i E/N, r(t.) E F. Hence, v E Tcm). 
1 
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Therefore, T(m?) = T(ll\), and 2C-n. £.a. = 2C-d. f.a. 

Given 2'C-n.f.a. IJJl = < S, r, M, s
0

, {F} >,where< S, ~. M, s0 > = ~•. 

Define 2'C-d.f.a. ~ = < P(S), ~. M1, {s0}, {F
1
} >,where< P(S), ~. 

M
1

, { s
0

} > = IJJl
1
' , and F 

1 
= { ,d. k s l .-0- n F # ¢} • 

Suppose v E TCffi). Then there exists r E C-RnC!R, v) such that 

In(r) k F. Again by (I) and the definition of F
1

, In(r
1

) k F
1

, where 

r 1 is the unique ~-C-run on v. Hence, v E TO'Oti)· 

Suppose v E T(IJJl1). Then for the unique r
1 

E C-RnCJ]
1

, v) we have 

In(r1) k F
1

. Again by (II) and the definition of F
1

, we have the 

existence of an r E C-Rn(!m, v) such that In(r) k F. Hence, v E T(!m). 

Therefore, Tcm) = TCJJ!i), and 2'C-n.f.a. = 2'C-d.f.a. 

Given 3C-n.f.a. ~ = < S, t, M, s
0

, {F} >,where< S, t, M, s0 >=!ID', 

and F = {s1 , s 2, ... , sk}. Define 3C-d.f.a. im
1 

= < P(S), ~, M
1

, {s
0
}, 

:11 >, where < P(S), t, Ml, ( s
0
J > = ~• , and :11 = (Fl k P(S) 

(VA. E F 1) (-<1 n F 'F ¢) & (Vs E F) (3:4.E F1) (s EA)}. 

Suppose v E TCffi). Then there exists r E C-Rn(!m, v) such that 

In(r) = F. Hence by (I), for all A, E In(r 1), 4 n F # ¢, and for all 

s E F there exists,<'.}, E In(r
1

) such that s E,<l., where r 1 is the unqiue 

!m1-c-run on v. By the definition of :1
1

, In(r
1

) E :1
1

, and hence, 

v E TCJJ!i). 

Suppose v E T(IJJl1). Then for the unique r
1 

EC-Rn~, v) we have 

In(r1) E :11 . Hence, by the definition of ~
1

, there exist t 0 < t 1 < .•. , 

such that for all t > t
0

, r
1
(t) n F ,/.¢,and for all 1 ~ j ~ k, and all 

i E//1, sj E r 1 (tj+ki). Hence, by (II) there exists r E C-RnCJ], v) 

such that In(r) = F, and v E TCffi). 
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Therefore, T(!m) = T~), and 3C-n.f.a. = 3C-d.f.a. 

Given 4C-n.f.a. !ID=< S, ~. M, s
0

, ((R, G)) >,where< S, r, M, 

s0 >=!IR'. Define 4C-d.f.a. ~ = < P(S), r, M1, (s0), ((R1, G1)) >, 

where < P(S), ~, M1, ( s
0

) > = !I\' , R1 = ( ,(J, ;;;;; S I A.,;;; R), and G1 = 

( 4- ,;;; S 1.-0. n (G-R) # ¢} • 

Suppose v E T(l.m). Then there exists r E C-Rn(!IR, v) such that 

In(r) n R =¢and In(r) n G # ¢. Hence by (I) and the definitions.of 

R1 and G1, In(r1) n R1 =¢and In(r
1

) n c
1 

#¢,where r 1 is the unique 

~-C-run on v. Hence, v E TCT.\)· 

Suppose v ET~). Then for the unique r
1 

E C-Rn(!l\, v) we have 

In(r 1) n R1 = ¢ and In(r 1) n G1 # ¢. Hence there exist t 0 < t 1 < ... , 

such that for all t > to, r l (t) n (S-R) # ¢, ~nd for all i Ell/, 

r 1 (t
1

) n (G-R) I¢. Hence by (II), there exists r E C-RnCJ)r, v) such 

that In(r) n R = ¢ and In(r) n G # ¢. Hence, v E T(!m). 

Therefore, TCJ11) = TCJJl1), and li.C-n. f.a. = 4C-d. f.a. 
D 

Lennna 5: 1-d.f.a.;;;;; lC-n.f.a., 

2-d.f.a.,;;; 2C-n.f.a., 

3-d.f.a.,;;; 3C-n.f.a., 

1'-d.f.a.,;;; l'C-n.f.a., 

2'-d.f.a.,;;; 2'C-n.f.a., 

4-d.f.a. ;;;;; 4C-n.f.a. 

Proof: Given d-table !IR' = < S, r, M, s0 >. Define n-table ~• = 

< s1, r, M1, s 10 >, where s
1 

= (S x S) U (s
10

, sT), for all cr E ~. 

M1(s10 , cr) = ((s1 , s
2

) E (S XS) I s2 E M(s1 , cr)) U (sT), for all 

(s1, s 2) E (S x S), and all cr E ~. M1((s
1

, s 2), cr) = (s1', s 2) E (S XS) I 
s 1 E M(s1\ cr)) U (sT)' and for all cr E ~. M1(sT, cr) = [sT). 
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Clearly, for all t > 0 there exists rt E P-RnCTili_, v I [t]) such 

that rt(O) = (s
0

, s) iff for the unique r E RnCffi, v) we have r(t) = s. 

Thus, 

(I) for all t > 0 there exists r 1 EC-Rn~, v) such 

that r 1(t) =(s
0

, s) iff for the uniquer E RnCffi, v) 

we have r(t) = s; and there exists r 1 E C-RnCD'ti_, v) 

such that for all t > 0, 

(II) r 1(t) = (s0 , r(t)), whe~e r is the unique !ffi-run on v. 

Given 1-d.f.a. IJ.n = < S, t, M, s
0

, F >,where< S, t, M, s
0 

> = IJ.n'. 

By Lemma 3 we assume without loss of generality that s
0 

i F. Define 

lC-n.f.a. ~ = < s1, t, M
1

, s10 , F1 >,where< s
1

, t, M1, s
10 

> = !J\', 
and Fl= {(so, s) E s1 I s E F}. 

Clearly from (I), TCffi) = T~1). Thus 1-d.f.a. ~ lC-n.f.a. 

Given 1'-d.f.a. IJ.n = < S, t, M, s
0

, F >,where< S, t, M, s
0 

> = IJ.n'. 

By Lemma 4 we assume without loss of generality that s0 E F. Define 

l'C-n.f.a. ~ = < s1 , t, M
1

, s
10

, F
1 

>,where< s
1

, t, M
1

, s
10 

> = !1111 , 
and F1 = {(s0 , s) E (S XS) I s E F} U {s

10
}. Clearly, from (I) 

T(IJ.n) :i T~), and from (II) T(!m) ~ T(IJ.n1). Thus, l'-d.f.a. ~ l'C-n.f.a. 

Given 2-d.f.a. :Ut = < S, ~. M, s0 , F >,where< S, t, M, s
0 

> = :Ut'. 

Define 2C-n.f.a. ~l = < s1, ~. M1, s 10 , F1 >,where< s
1

, t, M
1

, s
10 

> = 

~• , and F1 = { (s
0

, s) E (S X S) I s E F}. Clearly from (I), T(!m) ::2 

TCJ\), and from (II), TCJJI) ~ TCJ]
1
). Thus 2-d.f.a. = 2C-n.f.a. 



-60-

Given 2'-d.f.a. (3-d.f.a.) IJn = < S, ~, M, s0 , ~>,where< S, ~, 

M, s0 > = !JJI'. Define 2'C-n.f.a. (3C-n.f.a., respectively) !m
1 

= < s1, 

~. M1, s 10 , ~l >,where< s
1

, ~. M1, s 10 >=~•,and ~l = {F k (S XS) 

pl (F) = { s
0
}, and p2(F) E ~}. Clearly from (I), T(!m) :2 TCJJli), and 

from (II), TCJ)l) k TC!Ri_). Thus, 2'-d.f.a. k 2'C-n.f.a. and 3-d.f.a. k 

3C-n.f.a. 

Given 4-d.f.a. I]]=< S, I:, M, s
0

, 0 >,where< S, ~, M, s0 >=!IR', 

and O = ((Ri, Gi))i<n' Define 4C-n.f.a. ~ = < s1, I:, M1 , s 10 , o1 >, 

where< s1, I:, M1, s 10 > = !l\', and o1 = ((Rli' G1i)), where for all 

i < n, Rli = {(s1, s 2) E (S XS) I s1 # s0 or s2 E Ri}, and Gli = 

{(s
0

, s) E (S XS) s E Gi}. Clearly from (I), TCJJ!) ~ T(!J\), and from 

(II), TCJ]) k TCilli_). Thus 4-d. f.a. k 4C-n. f.a. □ 

Lennna 6: lC-n.f.a. ~ 1-d.f.a., 

2C-n.f.a. k 2-d.f.a., 

3C-n.f.a. k 3-d.f.a., 

2'C-n.f.a. k 2'-d.f.a., 

4C-n.f.a. ~ 4-d.f.a. 

Proof: Given n-table !IR'=< s, I:, M, s0 >. Defined-table !J\' = < s1 , 

~. M1, s 10 >, where s1 P(S XS) U {s10J, for all cr E ~. M1(s10 , cr) = 

{{(s1, s2) E (S XS) I s2 E M(s 1, cr)}}, and for aH4E P(S XS), and all 

cr E I:, M1 (4-, cr) = { { (s1• , s2) E (S X S) I C[(s
1

, s 2) E,4.) (s
1 

E M(s
1
• , cr)}}. 

By the definition of !I\' there exists a unique r 
1 

E RnCJ]
1

1 
, v) such 

that for all t > 0, there exists rt E P-RnCJ)l', v I [t])) such that rt(O) = 

s iff (s0 , s) E r 1 (t). By Lemmas 1 and 2 for all t E /JI, P-Rn0]', v I 
[t]) # ¢. Hence, for all t E/N, r 1(t) I¢. Hence, 
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(I) C-Rn(!IR', v) = (r:/N ➔ S I r(O) = s
O

, and for all t > O, 

(s
O

, r(t)) E r
1 

(t)}, where r
1 

is the unique IJJ\' -run on v. 

Given lC-n.f.a. !UI = < S, 'E, M, s
O

, F >,where< S, 'E, M, s
O 

> = !UI'. 

By Lennna 3 we assume without loss of generality that s
O 

l F. Define 

1-d.f.a. ~ = < s1, 'E, M
1

, s
10

, Fl>, where< s
1

, 'E, M
1

, s
1O 

> = IJJ\', 
and F1 = (4. E P(S x S) IA. n ((s

O
} x F) f. ¢}. Clearly from (I), 

TCffi) ;;2 T(!IR
1
), and from (I) and s

O 
i F, T(lJI!) ~ T(IJJ\). Thus, lC-n.f.a. ~ 

1-d.f.a. 

Given 1.'C-n.f.a. !UI = < S, I:, M, s
O

, F >,where< S, 'E, M, s
O 

> = ~'. 

By Lennna 4 we assume without loss of generality that s
O 

E F. Define 

l'd-f.a. ~ = < s1, 'E, Ml, slO' Fl >, where< s1, 'E, Ml' slO > = 1.lJ\' , 
andF

1 
(,a.EP(SXS) !4,n ((s

O
} XF) f-¢} U(s

10
J. Clearlyfrom(I) 

and s
O 

E F, T(lJI!) :l T(~'\), and from (I), T(!IR) ~ T(!IR
1
). Thus, l'C-n.f.a. ~ 

1' -d. f. a. 

Given 2C-n.f.a. !UI = < S, 'E, M, s
O

, F >,where< S, r:, M, s
O 

>=!In'. 

Define 2-d.f.a. ~ = < s
1

, r:, M
1

, s
1O

, F
1 

>,where< s
1

, r:, M
1

, s
1O 

> = 

IJJ\', and Fl= (-<1,.E P(S XS) !4.n ((s
O

} X F) f. ¢}. Clearly from (I), 

T(!m) = T~). Thus, 2C-n. f.a. ~ 2-d. f.a. 

Given 2'C-n.f.a. (3C-n.f.a.) !UI = < S, r:, M, s
O

, ~>,where< S, r:, 

M, s O > = !UI'. Define 2-d.f.a. (3~d.f.a., respectively) IJJ\ = < s
1

, r:, 

M1 , s 1O , :11 >, where< s
1

, 'E, M
1

, s
1O 

> = !JJ\' , and ~l = (F
1 
~ P(S X S) 

(~FE ~)(VAE F1)(4n ((so} x F) f. ¢) & (Vs E F)(~A.E Fl)((so, s) E.o,)}. 

Clearly from (I), T(!UI) = T~). Thus, 2'C-n.f.a. ~ 2'-d.f.a. and 

3C-n.f.a. ~ 3-d.f.a. 
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Given 4C-n.f.a. !Ill=< S, r, M, s
0

, 0 >, wher~ < S, r, M, s
0 

> = ~•, 

and O = ((Ri, Gi))i<n" Define 4-d.f.a. ~ = < s
1

, r, M
1

, s 10 , 0
1 

>, 

where < s1 , r, M
1

, s 10 > = ~; , and D
1 

= ( (Rli, Gli)) i<n' where Rli = 

( A.. E P(S x S) 14..n (( so} x (S-R-i) = ¢}, and Gli = (A.. E P(S x S) I 
4.,. n ((s

0
} X (G. -R.) /=¢}. 

l. l. 

Suppose v E T(!m). Then there exists r E C-Rn(!Dl, v) such that for 

some i < n, In(r) n R. = ¢ and In(r) n G. -1- ¢. 
l. l. 

Hence, there exist 

t 0 < t 1 < t 2 ..• , such that for all t > t
0

, r(t) f. Ri and for all j E IN, 

r(t.) E G .. 
J l. 

Thus by (I) for all t > t
0

, r
1

(t) i Rli' and for all 

j E/N, r 1 (tj) E Gli' where r 1 
is the unique ~-run on v. Hence, 

In(r1 ) n Rli = ¢ and In(r1 ) n Gli -1- ¢. Hence, v E T(!\)-

Suppose v E TCJ\)- Then for the unique r
1 

E Rn~, v) we have for 

some i < n, In(r1) n Rli =¢and In(r
1

) n Gli -1- ¢., Hence there exist 

t
0 

< t
1 

< t 2 .•. , such that for all t > t
0

, r
1
(t) ~ Rli' and for all 

j E/#, r/tj) E Gli. Thus by (I), there exists r E C-RnCJll, v) such 

that for all t > t
0

, r(t) r/. R., and for all j E/N, r(t.) E G .. Hence, 
l. J l. 

In(r) n R. = ¢ and In(r) n G. -1- ¢. Hence, v E T(!m). 
l. l. 

Therefore, T cm) = T CJlll) ' and 4C-n.f.a. ;;;;; 4-d. f.a. 

□ 
Theorem 8: lC-f.a. - 1-f.a., l'C-f.a. - l'f.a., 

2C-f. a. - 2-d.f.a., 2'C-f.a. - 2'-f.a., 

3C-f.a. - 3-f.a., 4C-f. a. - 4-f. a. 
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Proof: Inmediate from Le11DJ)lls 5 and 6, 1-n.f.a. = 1-d.f.a. (Theorem 1), 

1'-n.f.a. = l'd-f.a. (Theorem 2), 2'-n.f.a. = 2'-d.f.a. (Theorem 3), 

3-n.f.a. = 3-d.f.a. (Theorem 5), 4-f.a. = 3-f.a. (Theorem 6), and 

Theorem 7. 
□ 

SECTION V CLOSURE PROPERTIES 

We now show that for certain i E (1, 1', 2, ••• , 4C} there exist 

procedures which given an i-f.a. !IR (i-f.a. 's ~ and !m2) yield an 

i-f.a. ~ which defines the complement (projection, union, etc.) of 

the set(s) defined by !IR CD\ and~)- For example, the reader will 

have attained a good understanding of the proof that 1-n.f.a. are closed 

under projection when he thinks something to the effect, "Of course, 

this is exactly how you should change machine !IR in order to obtain machine 

We trust that the reader can inmediately see how to transform any 

i-f.a. (i E (1, 1', 2, ••• , 4C}) on t~ !IR into an i-f.a. (t1 X t 2)w 

!I\ such that TCIJ}
1

) = r
2
-cylindrification of T(!Dl). Hence, we claim 

without further proof that all of our models are closed under cylin

drification. 

Theorem 9: 1-, 1'-, 2-, 3-n.f.a. are closed under projection. 

Proof: Given n-table !IR'=< S, t 1 X t 2, M, sO >. Define n-table ~• = 

< S, r
2

, M
1

, s
O 

>, where for alls ES, and all cr
2 

E t 2 , M1(s, cr
2

) = 
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w 
Let v E (~1 X ~2) . For each r E RnCffi', v) there exists 

(I) r
1 

E RnCIDi_' , p
2
v) such that for all t Ell(, r(t) = r 1 (t). 

(II) 
w 

Let v
2 

E ~
2

. For each r
1 

E Rn(gJ/
1

1 
, v

2
) there exists v E 

w 
(~

1 
X ~

2
) , p

2
v = v

2
, and r E RnCffi', v) such that for all 

t E/K, r(t) = r 1(t). 

Given 1-n.f.a. (1'-n.f.a., 2-n.f.a.) ~ = < S, ~l X ~2, M, s0 , F >, 

and 2'-n.f.a. (3-n.f.a.) ~ 2 = < S, ~l X r2~ M, s
0

, ~>,where< S, 

~l X ~2, M, s0 > = g,Jl'. Define 1-n.f.a. (1'-n.f.a., 2-n.f.a., respectively) 

~l = < S, ~2, M1, s
0

, F >, and 2'-n.f.a. (3-n.f.a., respectively) !.m
3 

= 

< S, ~2, M
1

, s
0

, ~ >, where < S, ~
2

, M
1

, s
0 

> = ~
1
• . From (I) we have 

p2(T0])) ~ TCIDi_) and p/T~)) ~ T~). From (II) we have p2(TCffi)) :l 

T~) and P2(T(l_m2)) :? T(!I\). D 

It is interesting to note that the above construction does not 

work for le-, •.• , 4C-n.f.a. For example, given 2'C•d.f.a. !.In=< {s0, 

2 
s1, s2 , R}, {O, l} , M, s

0
, {{s1 , s

2
}} >, where Mis given by the diagram: 

(1,0) 

(0,0) 
(0, 1) 
(1,0) 
(1, 1) 

" 



-65-

(p2(In(v)) = (O} & p1(v(//{)) = (l}) or (p2(In(v)) = (l} & 

( O})} • 

The construction in the preceeding proof yields 2'C-n.f.a. ~ with 

state transition diagram: 

0 1 

9 • 
0 1 

p2(Tr.m)) = (v I In(v) = (O} or In(v) = (l}}. TCID
1

) = (0, l}w ;·p
2

(Tcm)). 

Theorem 10: 1-f.a. are closed under union and intersection. 

Proof: Given 1-,f.a. 's ~ = < s1, r, M1, s 10 , Fl> and~ = < s2, r, 

M2, s20, F2 >. 

Define 1-f.a. ~ = < s1 x s2, r, M1 x M
2

, (s
10

, s
20

), F3 >, where 

F3 = (F
1 

X S
1

) U (S1 X F2). Clearly, TCffi
3

) = T(~
1

) U TCJ]2). 

By Lemma 3 for i = 1, 2 we can determine 1-f.a. 's ~--' = < S.' , I:, 
1 1 

Mi' , siO' , (fi} >, where for all cr Er, Mi' (fi, cr) = (fi}, and such 

that !IR. and ~-' are equivalent. 
1 1 

Define 1-f. a. '"' = < S ' X S ' " M' x M' (s ' s ' ) ( (f .,,,,Z.. 1 2 ' L.,' 1 2 ' 10 ' 20 ' l' 
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Theorem 11: 1'-f.a. are closed under union and intersection. 

Proof: Given l'-f.a.'s ~ = < s
1

, ~, M
1

, s
10

, F
1 

>, and !m
2 

= < s2 , 

~, M2, s20' F2 >. 

Define 1'-f.a. ~ = < s
1 

X s
2

, ~, M
1 

X M
2

, (s
10

, s
20

), F
3 

>, where 

F3 = F1 X F2 . Clearly, T~) = T~) n T(!m2). 

By Lenuna 4 for i = 1, 2 we can determine 1'-f.a. 's !m.' = < S', ~, 
1 i 

Mi' , sio' , Fi' >, where Si' = Fi' U ( sTi}, sio' E Fi' , and for all 

a E ~, M'(sTi' a)= (sTi}· 

Define l' -f.a. !IR
4 

= < s
1

1 X s
2

1 
, ~, M

1
1 X M

2
' , (s

10
1 

, s
20

' ) , F 
4 

>, 

where F
4 

= (S
1

1 X F
2

1 
) U (F

1
1 X s

2
1

). By Lemmas 1 and 2, for i = 1, 2 

w 
we have (Vv EI: )(RnCffii, v) f:. ¢). Hence, if there is an accepting~-

run on v, or an accepti~ ~-run on v,,or both, then there is an 

accepting !m
4

-run on v. Therefore, T(!m
4

) :? T~) U T(!m
2
). By the 

construction of !IJI.' 
1 

w 
for all v E I: , (Vr E RnCJ)l., v)) (Vt) (r(t) E F .' 

1 1 

implies r ( [ t]) ~ Fi' ) . Hence, there is an accepting :m
4 
-run on v only 

if there is an accepting~' -run on v, or an accepting !1Jl2 -run on v, or 

0 
Theorem 12: 2-f.a. are closed under union and intersection. 

Proof: Given 2-f.a. 's !IJl
1 

= < s
1

, I:, M
1

, s
10

, F
1 

> and :m
2 

= < s
2

, I:, 

M2' s20' F2 >. 
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First we show closure under union. Define 2-f.a. ~ = < s1 X s2, 

'E, Ml X M2, (s
10

, s
20

), F3 >, where F
3 

= (S1 X F
2

) U (Fl X s
2
). By 

w 
Lennnas 1 and 2, for i = 1, 2, and all v E 'E, Rncm., v) # ¢. Hence, 

1. 

if there is an accepting ~-run on v, or an accepting :m2-run on v, then 

there is an accepting ~-run on v. Hence, TCJ]
3

) ::1 T(!l\) U T(:ffi2). 

w 
For all v E 'E, and all r

3 
E Rn(:ffi

3
, v), p

1
r

3 
E Rn(!!\, v) and p

2
r

3 
E 

Rn(!JJ/2 , v). Hence from the definition of F
3

, if r
3 

is an accepti-pg 

~-run on v then either p1r
3 

is an accepting !J\-run on v, or p
2

r
3 

is 

an accepting ~-run on v, or both. Hence T~) ,;;; TCJJ1i_) U T(:ffi2). 

We now show closure under intersection. Define 2-f.a. !J]
4 

= < s
4

, 

'E, M4' (slO' s20' 1), F
4 

>, where s
4 

= s 1 X s2 X (1, 2} ' for all (sl, 

s2, i) E s4 , and all cr E 'E, M4 ((sl, s2, i)' cr) = { ( s1' ' I 

s2' j) E s4 

S I 

1 

F2 X [2}. 

Note that if~ and :m2 are deterministic then :m4 is deterministic. 

Suppose v E T~) n T~). Hence, there exist r 1 E Rn~, v) and 

r 2 E Rn(:ffi2, v) such that In(r
1

) n F1 I¢ and In(r
2

) n F
2 

I¢. From 

the definition of M4 , there exists r
4 

E Rn(:ffi
4

, v) such that p
1
r

4 
= r

1 

and p2r4 = r2 (in fact, r
4 

is unique). Suppose there exists a 'T E IN 

such that .for all t ~ 'T, r
4

(t) ([ F4. But there exist tl, t2, t I 

2 
such 

that 'T < t2 < t 1 < t;, r 1(t1) E Fl, r2(t2) E Fi and r 2 ( t2' ) E F 2. 

Clearly from the definition of M4' for some t, t 2 ~ t ~ tl, r
4

(t) E 

F4 • Hence, no such 'T exists, and In(r
4

) n F
4 

I¢. Hence, r
4 

is an 

accepting lffi4-run on v and v E T(:ffi
4
). 



-68-

Suppose v E T(!DV. Then there exists r 4 E Rn(!IR
4

, v); such that 

In(r
4

) n F
4 

# ¢. Hence, there exist t
0 

< t
1 

< .•. , such that for 

all i Ef/, r
4

(ti) E F4• By the definition of M
4

, p
1
r
4 

E RnCDli_, v) 

and p2r 4 E Rn~, v). We have immediately from the definition of F4 , 

that for all i Ell, p2r 4(ti) E F
2

• Hence, In(p2r 4) n F2 #¢,and 

v E T~). By the definition of M
4

, there exist t 0
1 < t 1

1 < ... , such 

that t 0
1 < t 0 < t 1

1 < t 1 .•• , and for all i E ff(, p
1
r
4
(ti') E F1• Hence, 

In(pir4) n Fl # ¢, and v E TCDti> · Hence, v E T(!I\) n T(!IR2). 

Therefore, T(IJ.\) = T~) n T~2). O 

Theorem 13: 2'-f.a., 3-f.a., 4-f.a., 2'C~f.a., 3C-f.a., and 4C-f.a. are 

all closed under intersection and union. 

~: Given 2'-f.a.'s (3-f.a.'s, 2'C-f.a.'s, 3C-f.a.'s) ~ = < s1, E, 

Ml' slO' ~1 > and. !Dl2 = < 82' r, M2, s20' ~2 >. 

Define 2'-f.a. (3-f.a., 2'C-f.a., 3C-f.a., respectively)~=< s1 X 

s2, E, M1 x M
2

, (s10 , s
20

), ~3 >, where ~
3 

= (F ~ (s
1 

X s2) I p1F E 

~l & p2F E ~2}. Clearly, T~) = T(IJ)\) n T~). 

Define 2'-f.a. (3-f.a., 2'C-f.a., 3C-f.a., respectively) !J\_ = < s1 X 

s2j,r, Ml X M2, (slO' s20), ~4 >, where ~4 = (F ~ (S1 X S2) I plF E ~1 

or p2F E ~2}. As in Theorems 10, 11, and 12 after an appeal to Lemmas 1 

and 2, it is clear that T(!Dl4) = TCDli_) U T~). 

Given 4-f.a.'s (4C-f.a.'s) ~ = < s5, r, M5, s 50 , ((RSi' G5i))i~n > 

and !m6 = < s6, r, M6, s 60 , ((R6j, G6j))j~m >. 
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First we show 4-f.a. and 4C-f.a. are closed under union. Define 

4-f.a. (4C-f.a., respectively)~=< s 5 x s 6, ~, M5 X M6, (s50 , s 60), 

~>,where 0 7 = ((R?k' G7k))Ic:,;n+m+l' and for all Os; ks; n, R7k = 

R5k x s6 and G7k = G5k X s
6

, and for all n+l s; k ~ n+ntt-1, R7k = s5 X 

R6(k•n-l) ancl G7k = S5 X G6(1'-n-l)' 

Suppose v ET~). Then there exists r 7 E Rn~, v) such that 

1) for some i s; n, In(p
1
r

7
) n R5i = ¢ and In(p

1
r

7
) n G5i ; ¢, or 

2) for some j s; m, In(p2r
7

) n R6. = ¢ and In(p2r
7

) n G6j ; ¢, or both. 
J, 

Since p
1 
r 

7 
E RnClR

5
, v) and p

2
r 

7 
E RnClR

6
, v), in case 1) v E T(!m5) and 

in case 2) v E TClR6). Hence, v E TClR
5

) U T(gJV. 

Suppose v E T<!Dls)· Then there exists r 5 E Rn~, v) such that 

for some is; n, In(r5) n RSi =¢and In(r5) n c5i; ¢. By Lemmas 1 

and 2,.Rn0}l6, v); ¢, and hence, there exists r
7 

E Rn~, v) such that 

p1r 7 = r 5• Clearly, In(r7) n (RSi X s 6) =¢and In(r7) n (GSi X s 6) # ¢ .. 

Hence, r 7 is an accepting ~-run on v, and v ET~)- Similarly, if 

V E T(~Jv' then V E T~). 

Therefore, T~) = T(~) U TCJJV. 

Finally, we show 4-f.a. and 4C-f.a. are closed under intersection. 

Our construction of~ such that TCffis) = T0}l
5

) n TCJ)l6) is somewhat 

complicated. However, it is merely an obvious extension of the con

struction used in Theorem 12 to show that 2-f.a. are closed under 

intersection, and we trust the reader will easily grasp the simple 

motivating notions behind our regrettably complex machinery. The state 

set of~ will be s
8 

= s
5 

X s
6 

x ~.where~= (BI Bis an (n+l) by 

(m+l) matrix, B = (bij)is;n, jS:m, each of whose entries is either 5 

or 6, b .. E (5, 6}}. 
J.J 
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Define 4-f.a. (4C-f.a., respectively)~=< s
8

, r, M8 , s80 , 08 >, 

where s8 is as above, for all (s
5

, s
6

, B) E s
8

, and all cr Er, 

M8((s5, s 6, B), cr) = { (s
5

1 
, s

6
1 

, B') E s
8 

I s 5
1 E M

5
(s

5
, cr) & s 6

1 E 

M6(s6, cr) & (b .. I = b .. 
1] 1] 

s60' BO), where for all 

where R
8 
.. = 
1] 

{ B E ~ j b .. = 6}. 
1] 

iff s 
b .. 

1] 

i ~ n, j 

r/. c5i and sh .. l G6j)}, s80 = (s50' 
1] 

0 = 5; and O = ((R8ij' G8ij))i~n, ~ m, b .. 
1] 8 

Note that if~ and !D16 are deterministic then !J\ is deterministic. 

Suppose v E TCffi8). Then there exists r
8 

E Rncm
8

, v) such that 

for some i ~ n, and some j ~ m, In(r8) n RBij =¢and In(r8) n GBij f ¢. 

Clearly from the definitions of M
8 

and 0
8

, we have p
1
r

8 
E Rn(i_m

5
, v), 

In(p1r 8) n RSi = ¢, p2r 8 E RnCJ)16, v), and In(p2r
8

) n R6j = ¢. There 

exist t 0 < t 1 < t 2 ... , such that for all i E/,1, r 8 (ti) E GBij. From 

the definition of 0
8

, for all i E/N, p2r
8
(ti) E c

6
j. From the definition 

of M8 , there exist t
0

1 < t
1

1 < t
2

1 
••• , such that t

0
1 < t

0 
< t

1
1 < t

1 
... , 

and for all i E/N, p1r 8(ti) E G5i. Hence, In(p1r
8

) n G5i f ¢ and 

In(p2r
8

) n c6j f ¢. H~·e; p1r 8 is an accepting !m
5
-run on v and p

2
r

8 

is an accepting !\-run on v. Therefore, v-E 'l'Cfl
5

) n 1'(!.m
6

) • 

Suppose v E TCJ]l5) n T(!m
6
). Then there exist r

5 
E Rn(!!\, v) and 

r 6 E RnCJ]l6, v) such that for some i ~ n, and some j ~ m, In(r5) n R5i = ¢, 

In(r5) n GSi f ¢, In(r6) n R6j = ¢, and In(r6) n G6j f ¢. Clearly, 

there exists a (unique, in fact) r 8 E Rn(!l\, v) such that p1r 8 = r 5 

and p2r 8 = r 6 . Clearly, In(r8) n RBij = ¢. 

j~m' 
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Suppose there exists a T E/N such that for all t ~ T, r 8 (t) ~ GSij" 

There exist ts, t
6

, t 6
1 such that T < t

6 
< tS < t 6' , and r S(tS) E_ GSi, 

r 6 (t6) E G6j, and r
6 
(t6

1 
) E G6j. But then from the definition of M

8
, 

there must exist t such that t 6 ~ t ~ t 6 and r 8 (t) E GSij; and this 

contradicts our assumption about T. Thus no such T exists and Tn(r
1

) n 

GSij ~ ¢. Hence, r 8 is an accepting ~-run on v. 

□ 
For nondeterministic finite automata there is an obvious alternative 

construction of a "union machine" as follows. 

Given tables~' = < sl, I:, Ml' slO > and m2' = < s2' I:, M2' s20 >. 

Define n-table ~• = < s 3 , I:, M3, s30 >, where s 3 = s
1 

U s 2 {s
30

}, M3 

(S1 U s 2) = Ml U M2, and for all cr EI:, M
3

(s
30

, cr) = M
1

(s
10

, cr) U 

M2(s20' cr). 

Clearly, for all v E I:w, Rnc:,:R3
1 

, v) = (r
3

:/N ➔ s
3 

I r 3 (0) = s
30 

& 

(there exists r 1 E Rn~•, v) such that for all t > O, r/t) = r 1(t), 

or there exists r 2 E RnCJ)?2', v) such that for all t > O, r 3(t) = r 2(t))}. 

Using this observation the correctness of each of the following con

structions is immediate. 

Given 1-f.a.'s (1'-f.a.'s, 2-f.a.'s, lC-f.a.'s, l'C-f.a., 2C-f.a.'s) 

!m1 = < s1 , I:, M1, s10 , Fl> and m
2 

= < s
2

, I:, M
2

, s
20

, F2 >, where 

< s1' I:, Ml, slO > = ml and < s2, ~. M2, s20 > = !JJ't2' . Define 1-n. f.a. 

(1'-n.f.a., 2-n.f.a., lC-n.f.a., l'C-n.f.a., 2C-n.f.a., respectively) 

~ = < s 3 , I:, M3, s
30

, F
3 

>, where for m
3 

a 1-n.f.a. or a lC-n.f.a. 
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F = 
3 

for~ a l'-n.f.a. or a l'C-n.f.a. 

F = 
3 

else, 

and for~ a 2-n.f.a. or a 2C-n.f.a. F
3 

= F
1 

U F2. TCJ.R3) = T~) U 

TCJ]2). 

Given 2'-f.a.'s (3-f.a.'s, 2'C-f.a. 's, 3C-f.a. 's) ~ = < S1, r, 

M
1

, s 10 , ~l > and !ffi2 = < s2, r, M2, s 20 , ~2 >,where< s2, r, M2, 

s
20 

> = IJJl2' and< s
1

, r, M
1

, s
10 

> = ~
1
•. Define 2'-n.f.a. (3-n.f.a., 

2'C-nif.a., 3C-n.f.a., respectively) !ln
3 

< s
3

, r, M
3

, s30 , ~
3 

>, where 

~ 3 = ~ l U ~ 2. T (!ln
3

) = T ~) U T CIR2) . 

Given 4-f.a.'s (4C-f.a.'s) ~ = < s1 , r, M1, s 10 , ((Rli' G1i)) 1~n >, 

and~=< s2, ~. M2, s 20 , ((RZi' G2i))i~m >,where< s1, ~. M1, s 10 > = 

~• and < s2, ~. M
2

, s
20 

> = !m
2

1 
• Define 4-n. f. a. (4C-n. f. a., respectively) 

~ = < s3, ~. M3, s30 , 0 >, where O = ( (RlO, G10 ), ... , (Rln' Gln), 

(R2()' G2 ~, •.. , (RZm' G2m)). TCJ]3) = TCJJ\) U T(!ffi2). 

Theorem 14: 3-d.f.a. are closed under complementation. 

Proof: Given 3-d.f.a. 'ill=< s, ~. M, s
0

, ~ >. Define 3-d.f.a. m1 = 

< S, ~, M, s 0 , P(S)-~ >. 

Because !ffi and~ are deterministic and have exactly the same run 

w 
on each v E ~, clearly we have (~r E Rn('.ffi, v))(In(r) E ~J iff not 

w 
Therefore, T(!ffi1) = ~ -TCffi). 0 
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SECTION VI COMPARISONS OF MODELS 

In a natural intuitive sense j-f.a. are more powerful than i-f.a. 

(i-f.a. are incomparable in power to j-f.a.) when j-f.a. =i i-f.a. 

(when (i-f.a. ~ j-f.a. & i-f.a. i j-f.a.), respectively). In this 

intuitive sense, this section deals with the comparison of models. 

Many of the results of the form i-f.a. c j-f.a. are innnediate 

corollaries of the failure of i-f.a., the weaker model, to be closed 

under complementation (projection), the closure of j-f.a., the stronger 

model, under complementation (projection), and a simple construction 

for obtaining an equivalent j-f.a. given an i-f.a. In fact, this is 

how we proceed in most of the following. However, we do not always 

proceed in the above manner. For example, we show 2-d.f.a. c 2-n.f.a. 

by showing 2-n.f.a. = 3-n.f.a. and 2-d.f.a. c 3-n.f.a. (2-d.f.a. c 

2-n.f.a., also, follows from 2-d.f.a. are not closed under projection, 

and 2-n.f.a. are closed under projection). 

As is usual with negative results, the negative results in this 

section (for example, 2-d.f.a. are not closed complementation) are 

harder to prove than the positive results of the last section (for 

example, 2-d.f.a. are closed under union). Perhaps this is because 

rather than explaining, for example, how to put two 2-d.f.a. 's together 

into a new "union" machine, we must first find a task which no 2-d. f.a. 

can do, and then we must ~xplain why no trick (no matter how brilliant) 

can devise a 2-d.f.a. which does the task. Hence, these negative results 
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Lemma 9: 2-n.f.a. !;; 3-d. f.a., 2'-n.f.a. ~ 3-d.f.a. 

Proof: Given 2-n. f.a. !IR= < S, ~, M, so, F >. Define 3-n. f.a. !J\ = 

< s, ~, M, SO' :11 >, where :11 = {F1 ~ S I F1 nF/¢}. Clearly, 

TC!\) = Tera). Hence, 2-n. f.a. !:;; 3-n. f.a., and by Theorem 5, 2-n. f.a. 

!:;; 3-d.f.a. 

Given 2'-d.f.a. ~ = < s2, ~, M2, s 20 , :12 >. Define 3-d.f.a. ~ = 

< s2, ~, M2, s
20

, :1
3 

>, where :1
3 

= (F
3 

!;; s
2 

I for some FE ~
2

, F
3 

!:;; F}. 

Clearly, T~) = TCffi2) · 

2~-n.f.a. !:;; 3-d.f.a. 

Hence, 2'-d.f.a. !:;; 3-d.f.a. and by Theorem 3, 

D 
Theorem 15: A!:;; ~w is 1-d.f.a. definable iff Ac= 

w 
~ - A is 1'-d.f.a. 

definable. 

Proof: Given 1-d.f.a. !ill=< S, ~, M, s0 , F >. Define 1'-d.f.a. ~ = 

< S, ~, M, s0 , S-F >. Given 1'-d.f.a. ~ = < s2, ~, M2, s20 , F
2 

>. 

Define 1-d.f.a. ~ = < s
2

, ~, M2, s
20

, s2-F
2 

>. 
w 

For all v E ~, !II and~ have precisely the same unique run on v. 

Hence, (:11:r E Rn(!D'1, v) )(t(/N) n F I </J) iff ttot.~(:irr E ~ft~, v}) (r(t,f') !;; 

S-F). Thi!refcl>re, T-~) = Jf - T(!IR). ~,Jl .. 

w For ally E ~,~and !m
3 

have precisely the same unique run on 

v. Hence, (:11:r E RnCffi:2, v))(r(/N) !;; F2) iff not (:11:r E Rn~, v)) 

(r(/lt/) n s2-F2 I¢). Therefore, T~) = ~ - T~). 

□ 
Lemma 10: 

w 
A1 = 0 is not 1-n.f.a. definable. 
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Proof: Suppose A1 = Ow is defined by 1-n.f.a. mt=< S, {O, l}, M, 

w 
Then there exists r E Rn(!m, 0 ) and 'f E /N such that r ('f) E F. 

Consider O'f•lw .. rl [-r+l] is compatible with !In and O'f•lw. Hence, 

by Lennna 1, there exists r' E RnCJ,n, O'f•lw) such that r' I [-r+l] = 

r I [-r+l]. 
'f w 

But r'(-r) = r(-r) E F, and hence, 0 •l ET(~. Contrary 

w 
to assumption IJJ1 does not define O. 

definable. 

Therefore, Ow is not 1-n.f.a. 

□ 
Lenuna 11: w * w {v E (0, l} I 1 E v(/N)} = 0 •l• {O, l} is not 1'-n.f.a. 

definable. 

Proof: Suppose A~ is defined by l'-n.f.a. !01 = < S, {O, l}, M, 

s(J, F >, _where c (S) = n. 

n w 
Hence, there exists r E Rn(IJJ1, 0 • 1 ) such that r (//Y) ~ 

F. c ( ( 0, ••• , n}) > n, hence for some t 1 < t 2 ~ n, r(t
1

) = r(t2). Hence, 

w 
there exists r' E RnCJ,n, 0) such that r' = r(O)•r(l) .•.•.• r(t1-l)• 

(r(t1) .•• r(t2-l))w. Clearly r' (J/V') ~ F, and hence, Ow E Tcm). Therefore, 

C 
contrary to assumption A1 is not 1'-nf.a. definable. O 

Theorem 16: 1-f.a. and 1'-f.a. are not closed under complementation, 

1-f.a. aro 1'-f.a. are incomparable, 1-n.f.a. c 2-d.f.a., 1-n.f.a. c 

2'-d.f.a., 1-n.f.a. c 3-d.f.a., l'-n.f.a. c 2-d.f.a., 1'-n.f.a. c 2'-d.f.a., 

1'-n.f.a. c 3-d.f.a. 

Proof: A~= {v E (0, l}w I 1 E v(/N)} is defined by 1-d.f.a. IJJ1 = < (s0 , 

s 1}, (0, l}, M, s0 , (s
1
} >, where Mis given by: 

0 

1 

• 
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Hence by Lennna 10, 1-f.a. are not closed under complementation. 

w 
A1 = 0 is defined by 1'-d.f.a. ~ # < {s0 , s 1}, {O, l}, M, s0 , 

{s0} >, where Mis as in the diagram above. Hence, by Lennna 11, 

1'-f.a. are not closed under complementation. 

The remaining parts of the theorem are innnediate from the above, 

and Lennnas 7, 8, 10, and 11. D 

It is interesting to note that A2 = 1* Ow is nei~her 1-n.f.a. 

definable nor 1'-n.f.a. definable; but A2 is both 2-d.f.a. definable 

and 2'-d.f.a. definable. 

Theorem 17: A~~ is 2-d.£.a. definable if£ ~w-A is 2'-d.£.a. definable. 

Proof: Given 2-d.£.a. ~ = < S, ~, M, s0 , F >. Define 2'-d.£.a. ~ = 
w 

< S, ~, M, s
0

, {S-F} >. For all v E ~, !m and~ have precisely the 

same unique run on v. Hence, (ir E Rn(!m, v))(In(r) n F ~ ¢) iff not 

(3:r E Rn(~, v))(In(r) ~ (S-E)). 
C 

Therefore, TCTT!i) = (Tern)) . 

w 
Given 2'-d.f.a. on~ ~' possibly with many designated subsets, 

we can find (by Theorem 21) a 2' -d. £. a. ~ equivalent to ~ and such 

that~ = < S3, ~, M3' s30' {F
3
} > (note that !m

3 
has only one designated 

subset). Define 2-d.£.a. ~4 

~w, ~ and ~
4 

have precisely 

Rn~
3

, v))(In(r) ~ F
3
)iff not 

Therefore, T(I_Ul
4

) = (T(~))c 

= < S3, ~, M3, s30' 

the same unique run 

0 

S3-F3 >. For all V E 

on v. Hence, (3:r E 
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The reader may be tempted to say that closure of the family of 2-d.f.a. 

definable sets under projection is a corollary of Theorem 17, reasoning 

as follows. 

If set A is 2-d.f.a. definable, then set Ac is 2'-d.f.a. definable. 

Hence, p
1

(Ac) is 2'-d.f.a. definable (by Theorems 3 and 8). Hence, 

CC • CC CC 
(p 1(A )) is 2-d.f.a. definable. But, in general, (p1(A )) I p1((A) ) = 

p
1
A, because complementation and projection on regular events and on 

w-regular events, in general, and,on 2-d.£.a •. definable sets, in par~ 

ticular, do not connnute. 

We will see that the family of 2-d.f.a. definable sets is, in fact, 

not closed under projection (Theorem 19). 

Lennna 12: w * w A3 = {v E {O, l} I 1 f/. In(v)} = {O, l} •O is not 2-d.f.a. 

definable. 

Proof: Suppose A3 is defined by 2-d.f.a. !In=< S, {O, l}, M, s
O

, F >, 

where c(F) = k. 

Let v
O 

= Ow. S. E A 1.nce v O ~, v 
O 

E T cm) • Therefore, for the 

unique r O E Rn(!In, vO), we have In(r
O

) n FI¢. Let TO be the least 

t E /N such that r O(t) E F. 

For i < w, define vi+l' ri+l' Ti+l inductively as follows. Let 
w 

vi+l = vi(O)•vi(l) .•• vi(Ti-1)•1•O. Let ri+l be the unique !In-run 

on v i+l. ~ince v i+l E A3~ In(ri+l) n F I ¢. Therefore, we can 

let Ti+l be the least t > Ti such that ri+l(t) E F. 
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Using Lemma 1 we can show by induction that for all i ~ k+l, we have 

rk+l I [T.+l] = r. I [T.+l]. (Note that Lennna 1 is not true for 2-n.f.a.'s. 
. 1 1 1 

This is an essential use of !In's determinism.) 

= r.(i-.) E F. 
1 1 

Since 

c(F) = k, there exist h, j such that h < j ~ k+l and rk+l(Th) = rk+l(Tj). 

We have the picture: 

time: 

time: 

0 

0 

T.-1 
1 

0 

1 •.... 

0 

T. 
1 

1 

0 

0 •••• 

T 
k+l 

1 

1 

and r(Th) = rk+l(Th) E F. Hence, In(r) n FI¢, and r is an accepting 

m-run on v. But v(T h) = vk+l (Th) = 1, hence, 1 E In(v), and v l A3 . 

Therefore, contrary to our assU1Dption, A
3 

is not 2-d.f.a. definable. 

□ As we noted the preceding proof makes essentail use of the deter-

minism of machine IJ.n. In fact, Lennna 12 is not true for 2-n.f.a. 's. A3 

where Mis given by: 1 

0 

0 
0 
1 

• 
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Lemma 13: A;= {v E {O, l}w I 1 E In(v)} = (O*•l)w is not 2'-n.f.a. 

definable. 

Proof: --
C 

Suppose A3 is defined by 2'-n.f.a. !In=< S, {O, l}, M, s0 , ~ >, 

where c(S) = n. 

n w 
v = (0 •l) E A3, and hence, v E T(!m). Therefore, there exists 

r E Rn(!m, v) such that for some FE~, In(r) ~ F. Then there exists 

~ E IN such that for all t ~~,we have r(t) E F. Choose any k > ~ 

such that v(k) = 1. n 
Then v(k+l)•v(k+2) ... v(k+n+l) = 0, and for all 

t, k < t ~ k+n-t-2, we have r(t) E F. Now F ~ S, and hence, c(F) ~ n 

and there must exist t
1

, t 2 such that k < t
1 

< t
2 
~ k+n-t-2, Ami 

r(t1) = r(t2). 

We have the picture: 

time: k-1 k k+l k+n+l k+n-t-2 

v: 0 1 0 0 1 

r: r(k) r(k+l) i~1c+n+2) 

~ _) 
y 

k < t
1 

< t 2 ~ k+n-t-2 • 

Let v1 = v(O) ... v(t1-l)•(v(t
1

) .•• v(t2-l))w. Let r
1 

= r(O) 

w 
r(t1-l)•(r(t1) ... r(t2-l)) . Clearly, r

1 
E Rn(~, v1) and In(r

1
) ~ ~n(r) ~ F. 

Hence, r 1 is an accepting IJ.n-run on v
1

• But v
1 

E 

to our assumption, A; is not 2'-n.f.a. definable. 

C 
A3, and hence, contrary 

□ 
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Theorem 18: 2-d.f.a. and 2'-f.a. are not closed under complementation, 

2-d.f.a. and 2'-f.a. are incomparable, 2-d.f.a. c 3-d.f.a., 2-d.f.a. c 

2-n.f.a., 2'-n.f.a. c 3-d.f.a., and 2'-n.f.a. c 2-n.f.a. 

Proof: ---
C * W A3 = (0 •l) is defined by 2-d.f.a. !m = < {s0 , s 1}, {O, l}, M, 

s 0 , {s1} >, where Mis given by: 

0 

1 

1 

0 • 

Hence by Lemma 12, 2-d.f.a. are not closed under complementation. 

* w A3 = {O, l} •O is defined by 2 1-d.f.a. ~ = < {s
0

, s 1}, {O, l}, 

M, s0 , ({s
0

}} >, where Mis given by the state transition diagram above. 

Hence, by Lemma 13, 2'-f.a. are not closed under complementation. 

The remaining parts of the theorem are innnediate from the above, 

Lemmas 9, 12, and 13, and Theorems 4 and 5. 
D 

Theorem 19: 2-d.f.a. are not closed under projection. 

* w Proof: Let A4 = {(O, 1), (1, 0), (1, l)} •(O, O) . A
4 

is defined by 

2 
2-d.f.a. !m = < {s0 , s 1, s 2}, {O, l} , M, s

0
, (s

1
} >, where Mis given by: 

0 1 1 

* w pl (A4) = {O, l} •O = A
3

. By Lennna 12, A
3 

is not 2-d.f.a. definable, 

and hence, 2-d.f.a. are not closed under projection. 
D 



-82-

Remark 1: Let AS= (v E (0, l}w I v(O) = 1 ➔ 1 f In(v) and v(O) = 0 ➔ 

1 E In(v)} * w * w = 1 • (O, 1) •O U O•(O 1) • AS is neither 2-d.f.a. 

definable nor 2'-n.f.a. definable; but AS is 3-d.f.a. definable. 

Proof of Remark 1: Suppose AS is defined by 2-d.f.a. !In=< S, (0, l}, 

M, s0 , F >. Define 2-d.f.a. !JJl1 = < s
1

, (0, 1), M
1

, s 10 , F1 >, where 

s1 =SU (s10J, for alls ES, and all cr E (0, l}, M1(s, cr) = M(s, cr), 

M1(s10 , 0) = (s10J, M1(s10 , 1) = M(s0 , 1), and Fl= FU (s10J. 
w 

Let v
1 

be any (0, l} -sequence. 

Case 1: 1 E v
1 
(/It). 

Let T be the least t such that v1(t) = 1. Let v = v1(T)•v1(T+l)· 

v1(T+2) ... v1(T+n) ...• Let r be the unique !ID-run on v. 

Clearly, for the unique !JJ\-run r
1 

on v
1 

we have for all t ~ T, 

r 1(t) = s 10 , and for all k > O, r 1{,4k) = r(k). Hence, v1 ET(~) iff 

v E T(!m) if£ 1 f In(v) if£ 1 f. In(v1). 

Case 2 : 1 f v 1 (//I ) . 
w w w 

Then v1 = 0 and the unique r 1 E Rn(!m1, 0) is r 1 = s 10 . We have 

s 10 E F
1 

and hence, v
1 

E TCJ.Jl
1
). Clearly, 1 f In(v

1
). This completes 

Case 2. 

Therefore, T~) = (v E (0, l}w I 1 l In(v)} = A3• But by Lemma 12, 

A3 is not 2-d.f.a. definable and we have a contradiction. Hence, contrary 

to our assumption, A
5 

is not 2-d.f.a. definable. 
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Suppose A5 is defined by 2'-n.f.a. ~ = < s2, {O, l}, M2, s 20 , ~2 >. 

Define 2'-n.f.a. ~ = < s3, (0, l}, M
3

, s
30

, ~
3 

>, where s3 = s2 U {s30}, 

for alls E s
2

, and all cr E {O, l}, M
3

(s, cr) = M
2

(s, cr), M
3

(s30 , 1) = 

{s30}, M3(s30' 0) = M2(s20' 0), and ~3 = ~2 U {{s30}}. 
w 

Let v3 be any {O, l} -sequence. 

Case 1: 0 E v///O. 

Let T be the least t such that v
3
(t) = 0. Let v2 = v

3
(T)•v

3
(T+l)• 

v3 (T+2) .•. v
3

(T+n) ••.. Clearly, for each r
3 

E RnCffi
3

, v
3

) there exists 

an r 2 E RnCffi2 , v
2

) such that for all k > 0, r
3

(T+k) = r 2(k); and for 

each r 2 E RnCffi2 , v2) there exists an r
3 

E RnCD1
3

, v
3

) such that for all 

k > 0, r
2

(k) = r
3

(T+k). Hence, there exists r
3 

E Rn(!m
3

, v
3

) such that 

In(r3) ~ F E ~3 iff there exists r
2 

E RnCin
2

, v
2

) such that In(r2) ~ F E ~

Hence, v3 ET~) iff v2 E T('!L\) iff 1 ~ In(v
2

) iff 1 € In(v3) • 

Case 2: 0 ~ v3 (Af). 

w w 
Then v3 = 1, ani the unique ~-run on v3 is r 3 = s

30 
Since 

{s30} E ~3, v3 ET~). This completes Case 2. 

w I C Therefore, TCJ]3) = (v E (0, l} 1 E In(v)} = A
3

• But by Lennna 13 

A~ is not 2'-n.f.a. definable, and we have a contradiction. Hence, 

contrary to our assumption, AS is not 2'-n.f.a. definable. 

AS is defined by 3-d.f.a. m4 = < {•o• a1 , s2, s 3 , s4}, (0, l}, M4 , 

s0 , ({s1}, (s3, s4}, (s3}} >, where M
4 

is given by: 

0 
1 1 

0 

0 
0 

• 1 
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l'-f.a. 
l;_) 

0 I: 

A~ 0 ,'c • l • [ 0, l I W = [ V E [ 0, 1) W 1 E V (/N)} 

··/; w 
1 • 0 

s'c W l;i 
(0 • 1) = [v E (0, 11 l 1 E In(v)} 

2'-f.a. 

\ 
\ 

··kw ·-kW W 
l•[0, 11 •0 U 0•(0 •l) = [v E [O, l} f (v(0) = 1 ➔ l It- In(v)) 

& (v(0) = 0 ➔ 1 E In(v))} 

FIGURE 3 
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SECTION VIII RESTRICT!~ THE w-AUTOMATA MODELS 

Sometimes the most natural, general definition of an automaton model 

may be restricted so as to yield a model which is easier to handle for 

some proofs, and which is still as powerful as the unrestricted, original 

w 
model (i.e., the same sets of~ -sequences are definable using either 

model). We have already seen two examples of this in Lemmas 3 and 4, 

which show that certain convenient restrictions may be placed on the 

initial state and the state transition functions of 1-f.a.'s and l'-f.a.'s. 

In fact, Lemma 3 yields the following. 

Theorem 20: Given a 1-n.f.a. (1-d.f.a.) we can determine an equivalent 

1-n.f.a. (1-d.f.a., respectively) with a single designated state. 

Proof: Immediate from Lemma 3. □ 
If we didn't restrict state transition functions to be mappings 

M: S X ~ ➔ P(S) - (¢), then Theorem 20 would hold for 1-d.f.a.'s, but 

not for 1-n.f.a.'s. 

Theorem 20 does not hold for 1'-f.a. '• ,fpt:'~it is.:.triv,-al tchellew 

that A8 = (Ol)w is l'-d.f.a. definable, but that A
8 

is not definable 

by any 1'-n.f.a. with only one us·iapat•tstate. 

It is, also, quite easy to show that A
8 

is both 2'-d.f.a. and 3-d.f.a. 

definable, but that A8 is not definable by any 2'-n.f.a. or 3-n.f.a. all 

of whose designated subsets are singleton sets. 
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w w 
It is easy to show that A

7 
= 0 U 1 is both 2-d.f.a. and 3-d.f.a. 

definable, but that A7 is not definable by any 2-n.f.a. (3-n.f.a.) with 

only one designated state (subset, respectively). 

Theorem 21: Given a 2'-n.f.a. (2'-d.f.a.) we can determine an equivalent 

2'-n.f.a. (2'-d.f.a., respectively) which has only one designated subset. 

Proof: Given 21 -f.a. !In=< s, r, M, s
0

, {F
1

, .•. , Fk} >. For each 

1 s; i s; k, define 2'-f.a. m1 = < S, r, M, s
0

, {Fi} >. Clearly, T(!m) = 

TCJJ!i) U ••• U TC]\). Hence, the following suffices. 

Given 2'-f.a. 's ~ = < s
1

, r, M
1

, s 10, {F
1

} > and !m2 = < s2, r, M2, 

s0 , {F2 ). >. Define 21 -n.f.a. ~ = < s1 U S2 U {s30}, r, M3, s
30

, 

{F1 U F2} >, where for all cr Er, M
3

(s
30

, ~) ~ M1(s10 , cr) U M2(s20 , cr), 

and M3 I s1 U s2 = M
1 

U M2. Note that this is the same construction 

presented itmnediately after the proof of Theorem 13. 

Clearly, for all v E rw, Rn~, v) = {r3 : IN ➔ s3 I r 3(0) = s 30 & 

(there exists r 2 E Rn~, v) such that for all t > O, r 3(t) = r 2(t), 

or there exists r 1 E RnCID
1

, v) such that for all t > 0, r 1(t) = r
3

(t))}. 

Heu:e, there exists r 3 E Rn~, v) such that In(r1) !;;; f't U'f, B.#f ', 

there exists r 1 E Rn~, v) such that In(r
1

) !;;; F
1

, or there exists r 2 E 

RnCIDi, v) such that In(r2) !;;; F2• Therefore, TC!ffi:3) = T(!m1) UT~). 

!m3 has only one designated subset. Heu:e, this completes the proof 

for 2'-n.f.a. 's. 

Using the construction in the proof of Theorem 3, from 2'-n.f.a. ~ 

we can construct an equivalent 2'-d.f.a. !m
4 

which has only one designated 

subset. □ 
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The direct construction of a 2 1-d.f.a. with only one designated sub

set from a 2'-d.f.a. with two designated subsets is complicated. In 

the preceding proof we avoided this complicated construction by the 

judicious use of previous, simpler constructions. 

The more complicated the model is the more ways there are to restrict 

it. Indeed, the 4-f.a. model may be restricted in several useful ways. 

For example, the following three remarks are innnediate from the definition 

of 4-accepting. 

Remark 2: 4-f.a. (4C-f.a.) !IR=< S, t, M, s0 , ((Ri, G.)). > is 
1 1~n 

equivalent to 4-f.a. (4C-f.a., respectively) !I\=< S, E, M, s
0

, 

((Ri' (G.-R.)))i >. 
i i ~n 

Remark 3: Given 4-f.a. (4C-f.a.) !IR=< s, E, M, s
0

, ((R., G.)) . .,,. >. 
1 1. 1;::,,n 

For each i ~ n, define 4-f.a. (4C-f.a., respectively) !IJ!i = < S, E, M, 

s0 , ((Ri, Gi)) >. Clearly, TCJJ!) = T~) U ... U TCffin). 

Remark 4: Given 4-f.a. (4C-f.a.) ~ = < S, E, M, s
0

, ((R, G)) >, where 

G = (s
1

, ... , sk}. Define 4-f.a. (4C-f.a., respectively)~=< S, E, 

M, s
0

, ((R, (si}))~i~ >. Clearly, T(!IR) = TCJ\), 

Theorem 22: Given any 4-n.f.a. we can determine an equivalent 4-n.f.a. 

with subset pairs O = ((¢, G)). 

Proof: Given a 4-n.f.a. !IR on Ew by Theorem 6 (4-f.a. = 3-f.a.), and 

Theorem 4 (2-n.f.a. = 3-n.f.a.), we can determine an equivalent 2-n.f.a. 

!I\=< sl, E, Ml, slO' Fl>. 

((¢, F
1
)) > is eq~ivalent t~ ~ and henc~ to !OL 

D 
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Given a 4-n.f.a. we can not in general find an equivalent 4-n.f.a. 

with subset pairs O =((¢,ff})). For example, it is easily shown 

w w 
that the set A7 = 0 U 1 is not defined by any 4-n.f.a. with subset 

pairs O = ((¢, (f})). 

Given a 4-d.f.a. we can not in general find an equivalent 4-d.f.a. 

with subset pairs O = ((¢, G)). In fact, the set A3 = (v E (0, lJwl 

1 l In(v)) is 4-d.f.a. definable, but A
3 

is not defined by any 4-d.f.a. 

with subset pairs O = ((¢, G)), for if it were, then we would 

immediately have a 2-d.f.a. defining A3, and this would contradict 

Lemma 12. Similarly, we see that Theorem 22 does not hold for 4C-n.f.a.'s, 

for if A3 were defined by some 4C-n.f.a. with pairs O = ((¢, G)), 

then we would immediately have a 2C-n.f.a. defining A3, but A3 is not 

2C-n.f.a. definable (by Lemma 12 and Theorem 7). 

SECTION IX COMMENTS ON THE C-RUN MODELS 

All of the following are quite easily shown directly by construction: 

1) le-, l'C•, 2'C-, and 3C-f.a. are closed under anion and intersection, 

2) 2C-f.a. are closed under union, 

3) lC-n.f.a. are closed under projection, 

4) 3C-d.f.a. are closed under complementation, 

5) lC-f.a. k 2C-f.a., lC-f.a. k 2'C~f.a., lC-f.a. k 3C-f.a., 

6) l'C-f.a. k 2C-f.a., l'C-f.a. k 2'C-f.a., l'C-f.a. k 3C-f.a., and 
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7) 2C-f.a. ~ 3C-f.a., 2'C-f.a. ~ 3C-f.a. 

All of the following, which we deduce from the results in sections 

4, 4.1, and 5, seem quite hard to show directly: 

1) 2C-f.a. are closed under intersection, 

2) l'C-, 2'C-, 3C-n.f.a. are closed under projection, 

3) 2C-n.f.a. are not closed under projection, 

4) le-, l'C-, 2C-, 2'C-d.f.a. are not closed under complementation 

(and hence, lC-n.f.a. c 2C-d.f.a., lC-n.f.a. c 2'C-d.f.a., .•• 

..• , 2'C-n.f.a. c 3C-d.f.a.), and 

5) 4C-f.a. = 3C-f.a. 

There ts a well known construction in conventional finite automata 

theory which, given any nondeterministic automaton on finite strings 

(n.f.a.f.), determines an equivalent n.f.a.f. with precisely one accepting 

state. From this same construction it easily follows that corresponding 

to any lC-n.f.a. (2C-n.f.a.) there exists an equivalent lC-n.f.a. 

(2C-n.f.a., respectively) with precisely one designated state; that 

corresponding to any l'C-n.f.a. there exists an equivalent l'C-nLf.a. 

with precisely two designated states one of which is the initial state; 

and that corresponding to any 2'C-n.f.a. there exists an equivalent 

2'C-n.f.a. each of whose designated subsets is a singleton set. 

I suspect but have not proven: 
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1) there is a set which is lC-d.f.a., l'C-d.f.a., and 2C-d.f.a. definable 

which is not defined by any lC-d.f.a., l'C-d.f.a., or 2C-d.f.a. with 

only one designated state, 

2) there is a set which is both 2'C-d.f.a. and 3C-d.f.a. definable 

which is not defined by any 2 1 -d.f.a. or 3-d.f.a. all of whose 

designated subsets are singleton sets, 

3) there is a set which is both 2'-d.f.a. and 3-d.f.a. definable, which 

is not defined by any 2'-n.f.a. or 3-n.f.a. with only one designated 

subset. 

SECTION X w-REGULARITY 

The following remark is rather obvious and we state it without proof. 

Remark 5: 
w 

A~~ is 1-f.a. definable iff for some regular event a~ 

* w 
~ , A = a-~ . 

We have characterized 1'-f.a., 2-d.f.a., and 2'-f.a. definable sets 

in similar ways. Because these characterizations are much more complicated 

and seem to be of no real value, we won't present them hsl'e., 

The set of 2-n.f.a. (3-n.f.a., 3-d.f.a., etc.) definable sets is 

elegantly characterized as the set of w-regular events as we now show. 

Lemma 16: If A~ rw is an w-regular event, then A is 2-n.f.a. definable. 

Proof: By Theorem 12 the family of 2-n.f.a. definable sets is closed 

under union. 
w 

Hence, it suffices to show that thew-regular event a~ 

is 2-n.f.a. definable. 
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By the definition of w-regular, a k 6* and~ k 6+ are regular 

events. Hence, there exist n.f.a.f. 's !ma=< Sa' 6, Ma' saO' {fc} > 

and !ID~=< S~, 6, M~, s~0, {f~} > such that T~a) = a and T~~) = ~
w 

Using gna and !In~ we construct a 2-n.f.a. defining a~ as follows. 

Define 2-n.f.a. !ID=< S, 6, M, saO' {sp} >, where S = Sa US~ U {sp}' 

for alls ES - (f}, and all cr E 6, M(s, cr) = M (s, cr), M(f, cr) = a a a a 

Ma(fa' cr) U M~(s~0 , cr), for alls ES~, and all 

and if f~ E M~(s, cr) then sp E M(s, cr); and for 

M(s~0 , cr). 

cr E 6, M(s, cr) ~ M~(s, cr) 

all cr E 6, M(s, cr) = 
p 

For example, a partial state transition diagram of an !m obtained 

by the above construction is shown in Figure 4. 

0 

Transitions added to !ma and!)]~ in constructing !In appear as dahed 

lines. 

FIGURE 4 
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w 
Suppose v Ea~. Then there exist t 0 < t 1 < t 2 •.. , such that w = 

(v(O) ..• v(t0-l)) E a, and for all i E /1/, yi = (v(ti) v(ti+l) .•. 

v(ti+l-1) E ~- Hence, there exists r E Rn(!IRa' w) such that r(t0) = fa' 

and for each i E //(, there exists ri E Rn(!IR~, y i) such that ri (ti+l-ti) = 

f~. Hence, from the definition of M, there exists r E Rn(!IR, v) such 

that r(t0) = f, and for all i > O, r(ti) = s. Therefore, s E In(r) 
a P P 

and r is an accepting !ID-run on v. Hence, v E T(!m). 

Suppose v E Tcm). Then there exists r E Rn(!IR, v) such thats E 
p 

ln(r). Hence, there exist t 1 < t 2 < t
3 

< .•• , such that for all i > 0, 

we have r(ti) = sp. From the definition of M there must be a t 0 < t 1 

such that r(t0) = fa. Hence, we have: 

(v(O) ... v(t
0
-l)) Ea, and for all i E IN, 

w 
Therefore, v Ea~. 

□ 
The above proof with trivial modifications suffices to show that 

3-n.f.a. ~ w-regular. In fact, a 3-n.f.a. defining a~w (as above) 

is !DI=< S, r, M, saO, ~>,where S, M, so<> are as above and~= 

(F~sls EF}. 
p 

Lemma 17: 
w 

If A~ r is 2-n.f.a. definable, then A is an w-regular event. 

Proof: Given 2-n.f.a. !IR=< S, r, M, s0, (s1, •.. , sk} >. For each 

1 ~ i ~ k, define 2-n.f.a. !IR. = < S, r, M, s
0

, (s.} >. Clearly, Tcm) = 
1 1 

TC}\) U •.. U TCJ\)· Since w-regular events are closed under union, 

the following suffices. 
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Given 2-n.f.a. !Di=< S, r, M, sO, {s1} >. Define n.f.a.f.'s 

Let T(!Dl) = a 

a and T(!m~) - {A.} = ~- Clearly, it will suffice to show that T(!Dl) = 
w 

a~ . 

Suppose v E Tcm). Then there exists r E Rn(![R, v) such that s
1 

E 

In(r). Hence, there exist t
0 

< t 1 < t
2 

< ••• , such that for all i EI,//, 

r(ti) = s1• Let w = v(O) v(l) ... v(t0-l), and for all i Et//, let 

y •••• Let 
n 

ra = r(O)•r(l) .•. r(t0), and for all i El,¥, let ri = r(ti) r(t1+1) 

r(ti+l). We have the picture: 

w: 

r : a 

y.: 
1 

r.: 
1 

r(ti) 

v(O) 

r(l) 

r : . 
0 

= s 1 ••••......•. 

r(t) = 
0 

Yi+l: 

ri+l: 

r(ti+l) 

r(ti+l) = 

= sl 

v<\+1) 

sl 

... 
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Clearly, r is an accepting !ID -run on w, and for all i E ///, r. 
ot ot l. 

is an accepting !m~-run on Yi· Hence, w E ot, and for all i E/N, Yi E p. 

Therefore, 
w 

VE otP • 

w 
Suppose v E ot~. Then there exist t

0 
< t

1 
< t

2 
< ... , such that 

v(O)•v(l) •.. v(t
0
-l) E a, and for all i E /N, v(ti) •v(ti+l) ..• v(ti+1-1) 

E ~- Let w = v(O) ..• v(t0-1), and for all i E t,I, yi = v(ti) ... v(ti+l-1). 

There exists r an accepting !Dt -run on w, and for all i E/#, there exist 
ot ot 

ri an accepting !mp-run on yi. From the definitions of !D!Q' and !Dt~, we 

have r°'(O) = s0, r°'(t0) = s1, and for all i EM!, ri(O) = s 1 and ri(ti+i"'ti)-: 

s
1

. We have the picture: 

w: 

v(t. -1) 
l. 

v(O) 

r (1) 
ot 

r. 1(t.-t. 1) = s
1 1.- l. 1.-

y,: 
l. 
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Hence, there exists r E Rn(IJ}l, v) such that r = ra•r
0
·r1 ... 

Clearly, for all i E /1-,;, r(ti) = s
1

. Hence, s
1 

E In(r), r is an 

accepting '.ill-run on v, and v E T(ITTl). 

w 
Therefore, T(lffl) = ry~. 

□ 

r 
n 

Theorem 23: A c;;; rw is 2-n. f. a. definable iff A is an w-regular event. 

Proof: Immediate from Lemmas 16 and 17. 

D 
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Appendix I 

The Emptiness Problem for Finite Automata on Infinite Trees 

I appreciate Charles Rackoff's extensive help and advice in achieving 

these results and in writing this presentation of them. 

Definition: An f.a.t. (finite automaton on infinite trees) with subset 

pairs is a system Ol = < S, 'E, M, s
0

, 0 >, where < S, 'E, M, s 0 > is an 

n-S-table (as defined in Chapter I), and O = ((R., G.)).~ are the 
1 1 1:::..n 

subset pairs. 

that: 

An tTl-run on 'E-tree t = (v,T) is any mapping r: T ➔ S such 
--------- X X 

1) r(x) = s
0

, 2) for ally ET, (r(yO), r(yl)) E M(r(y), v(y)). 
X 

The set of all 01-runs on twill be denoted by Rn(OT, t). 

An accepting Ul-!..!:!,!! on t = (v, T) is any r E Rn(Ol ,t) such that for 
X 

all paths TI c T, (r I TI) is 4-accepting with respect to 0. 
X 

CTl accepts t if there exists an accepting 07-run on t. 

T(OT) = (t = (v, T ) I 07 accepts t}. X -

An OT-!..!:!,!! .Q.!! finite ~-tree ~ = (v, Ex) is any Ot' -run on e 

(as defined in Chapter I), where at'=< S, 'E, M, s
0 

>. We denote 

the set of all 01. -runs on e by Rn(07, e). 

Given f.a.t. with subset pairs ()'( = < S, I:, M, s, 0 >, we wish 
0 

to determine whether or not T(Ol) = ¢. Consider the f.a.t. with 

pairs 0T = < S, {O},t~,,,s1', tl·>',, 0 w1:iere for alls ES, M(s, 0) = 

lJ M(s, O'). Clearly, T(O'{) = ¢ iff T(01) = ¢. 
crE'E 
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Thus the emptiness problem is reduced to the case of automata 

with input alphabet (O}, and henceforth, we restrict our attention 

to this case. Since for every infinite tree T and every finite tree 
X 

E there exists just one (0}-tree (v, T) and just one finite (OJ-tree 
X X 

(v, E ), we will omit mention of the valuation v and talk abour 01-runs 
X 

on T and E. 
X X 

Definition: If for some path TT we have x E TT and y E TT, then we denote 

by [x,y] the set (w x ~ w ~ y}. Note that when. y < x, we have [x,y] = ¢. 

Definition: Let a be a string. Let n and m be positive integers such 

that n ~ m. Th~n; a(;n) denotes the nth element (from the left) of a, 

and a([n,m]) = (a(i) In~ i ~ m}. 

Definition: Let Ebe a tree (finite or infinite) with root A. For x EE, 

* * x = (cr1 cr2 ... crk) E (0, l} , and r: E ➔ S, we denote the S -sequence 

r(A)•r(cr1)•r(cr1 cr2) .•. r(x) by ar,x· 

* Definition: Let 01 = < S, (O}, M, s0 , ((Ri, Gi))i~n >, and let a E S 

have length p. We say that a is good with respect to trr if there 

exist integers h,and j such that 1) h ~ j < p, 2) a(j) = a(p), 

3) a([h,j]) = a([j,p]), and 4) there exists i ~ n such that 

a( [ j , p]) n R. = ¢ and a( p) E G . 
i i 

Theorem 1: For any f.a.t. with subset pairs UT=< S, (O}, M, s0 , 

((Ri' Gi))i~n >, T(Ol) I¢~ for some finite tree E there exists a 

mapping r: E ➔ S such that 
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1) r E Rn(Ol, E), 

2) there exist mappings J: Ft(E) ➔ E-Ft(E) and H: Ft(E) ➔ 

E-Ft(E), such that for all x E Ft(E), 

a) 

b) 

c) 

d) 

H(x) ~ J(x) < x, 

r(J(x)) = r(x), 

r([H(x), J(x)]) = r([J(x), x]), and 

for some i ~ n, r([J(x), x]) n R. =¢and r(x) E G .• 
1 1 

Proof: Suppose T (Ol) I- ¢. Then there exists r, an accepting OT-run 

on T. Clearly, for every path TI c T there exists x E TI, such that 

a is good with respect to OT, because for every path TI c T we have r,x 

r I TI is 4-accepting with respect to O = ((R., G.)).,. Let C = (x 
1 1 1.::,,n 

a is good with respect to 01 and for ally< x, a is not good 
r,x r,y 

with respect to Ol}. C is a finite frontier. If we let E be the 

finite tree with frontier C, then clearly from the definition of good 

string, there exist mappings J and H, which together with r IE satisfy 

conditions 1 and 2 in the statement of Theorem 1. This completes the 

proof of ⇒ in Theorem 1. 

Suppose there exist E, r, J and H satisfying conditions 1 and 2 

in the statement of Theorem 1. Then we show that there exists an 

accepting OT-run on T (and hence, T(01) I-©) as follows. 

Let~: T ➔ Ebe defined inductively as follows: 

1) ~(J\) = J\. 
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2) if ~(x) has been defined, then for~ E (0, l}, 

a) if ~(x) E E-Ft(E), then ~(x cr) = ~(x)•cr, 

b) if ~(x) E Ft(E), then ~(x cr) = J(~(x))•cr. 

Let r: T ➔ S be defined as follows. For all x ET, r(x) = r(~(x)). 

Clearly,~ E Rn(O'l, T) so that it only remains to show that for all 

paths TT c T, r I TT is 4-accepting with respect too. That is, r 

is an accepting 01-run on T. 

Let TT c T be any specific path. Let y
0 

= A, and for all i < w, 

let Yi+l be the least (under~) x F TT such that x > yi and ~(x) E 

Ft(E). Clearly, y
1
y2 .•• yk ..• is the infinite sequence of all nodes 

in TT mapped into Ft(E) by~ listed in the order one would encounter 

them going from the root down along TT. Let v: IN ➔ Ft(E) x Ft(E) be 
TT 

defined as follows. For all i E IN, v (i) = (~(y.), ~(y.+1)). TT 1 1 

For all i E IN we have by the construction of~: 

(II) r([yi, Yi+l]) = r([J(~(yi)), ~(Yi+l)]). Hence, 

(III) In(r I TT)= U r([J(zl)' z2]). 

(z1,z2)Ein(vTT) 

* Clearly, there exists a finite sequence x0x1x2 •.. xm e (Ft(E)) 

such that x0 = xm and In(vTT) = ((x0 , x1), (x1 , x2), ... , (xm-l' xm)}. 

Henceforth, let x0x1x2 .•. xm be a specific such sequence. Let J. 
i 

denote J(x.) and H. denote H(x.). By (I), (II), and (III) we have: 
i i i 
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m-1 
(IV) In(r I TT) = u r([Ji, xi+l])' and 

i=O 

(V) for all O s; i < m, Ji < xi+l· 

We now prove three lemnas about finite trees. Then we use the 

last lemna to complete the proof of Theorem 1. 

Lemma 1: There exists M, 0 s; Ms; m, such that for all i, 0 s; is; m, 

Induction hypothesis: (0 s; k < m): There exists an integer M', 

0 s; M's; k, such that for all i, 0 s; is; k, l\t, s; Hi. 

Induction step: 

¾• s; Hk, by the induction hypothesis. 

Hk s; Jk, by clause 2a in the statement of Theorem 1. 

By clause 2a in the statement of Theorem 1, we also have Hk+l < 

~+l" Hence,¾• and Hk+l are comparable (under s;). Clearly, 

min{¾,, Hk+l} s; Hi, for all i, 0 s; i s; k+l. 
□ 

If M # m, then we can rename the nodes as indicated in the 

following diagram for the case M = 3 and m = 6. The nodes are rep

resented as circles Q 
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x6 

x3 XQ 

0 0 

x4 0 0 x2 xlo D 

0 0 0 
0 0 

new naming 

Clearly, in general after a renaming as above, (IV), (V), and the 

conditions in the statement of Theorem 1 still hold. Hence, we may 

assume Hm = min{H0, •.. , Hm}, without loss of generality. 

Lennna 2: If Hm = min{H0 , ... , Hm}, then for all i, 0 ~ i ~ (m-1), 

r ( [H , x. +l l ) :1 r ( [H , x. ] ) . m 1 m 1 

XS 

Proof: --- Let i be any integer such that 0 ~ i < m. H ~ H ~ J < x
1
.+l' 

m i i 

and J. < x., hence we have the picture: 
1 1 

x. 
1 

H 
m 

H. 
1 

J. 
1 
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Hence, r([H , x.+1]) :l r([H , H.]) U r([H., J.]). By 2) c) of Theorem 
m i m i i i 

1, r([Hi, Ji])= r([Ji, xi]). Hence, r([Hm, xi+l]) :l r([Ji, xi]), 

and therefore, r( [Rm' xi+l]) :l r ( [Hm, xi])• 0 

Lennna 3: If Rm= min{H8, ... , Hm}, then for all i, 0 ~ i ~ (m-1), 

r([Hm' xm]) :l r([Ji, xi+l]). 

Proof: Let i be any integer such that O ~ i ~ (m-1). 

By Lemma 2 r([H, x ]) :l r([H, x 1J), r([H, xm-l]) :l r([H, m m m m- m m 

H 
m 

Hence, r( [H , x ]) :l 
m m 

• 

Completion of the Proof of Theorem 1: Without loss of generality we 

assume H = min{Hft, .•• ,HJ. 
m - " m 

r( [H , x ]) 
m m 

By Lennna 3, 

□ 



By part 2) d) of Theorem 1 we have for some i, 0 ~ i ~ n, r([J, x ]) n m m 

L. =¢and r(x) EU .. By part 2) c) of Theorem 1, r([H, x ]) = 
1 m 1 m m 

r([J, x ]). Hence, 
m m 

and 

Therefore, by (II) (r I TI) E (O]. 
D 

Theorem 2: The emptiness problem for f.a.t. 's with subset parts 

is decidable. 

Proof: Let {I(=< S, (O}, M, s0 , 0 >,bean f.a.t. with subset pat~s. 

Let B =r( (y, 11) E Y(O} I there exists an OT-run a: lOljV(v;';E).uaiJcl~~kat for 

all x E Ft(E), a is good with respect to CJ'l}. r,x 

Clearly, we can oenstmict a deterministic finite automaton on 

finite strings which defines the set of all good strings with respect 

to 07. Hence, we can determine a 3-f.a.f.t. {1(
1 

such that T(QT
1

) = 

B. By Theorem 11 of Chapter I, T(Of
1

) =©is decidable. By Theorem 1 

in this appendix, T(Ul) = ¢ iff T(OT1) = ¢. 

□ 
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Appendix II 

Definition: An f.a. t. with designated subsets is a system O'T = < S, 

~, M, s
0

, ~>,where< S, ~, M, s
0 

> is an n-S-table, and~~ P(S) 

is the set of designated subsets. 

An OT-!,£!!£.!!~-~!, Rn(OT. t), and 01-!.!!,!! £.!! finite ~-tree~, 

and Rn(OT, e) are all as in Appendix I for the f.a.t. with subset pairs. 

An accepting QI.-!.!!,!!£.!!~-~!= (v, T) is any r E Rn(OT, t) 
X 

such that for all paths TT c T, In(r I TT) E ~-
x 

OT accepts t if there is an accepting OT-run on t. 

T(O'{) = (t = (v, T ) I there exists an accepting Ol -run on t}. 
X 

Theorem 3: For any f.a.t. with designated subsets 01 = < S, (O}, M, 

s
0

, ~ >, T(07) I¢~ for some finite tree E there exists a mapping 

r: E ➔ S such that 

1) r E Rn(OT, E), 

2) there exist mappings J: Ft(E) ➔ E-Ft(E) and H: Ft(E) ➔ E-Ft(E) 

such that for all x E Ft(E) 

a) H(x) ~ J(x) < x, 

b) r(J(x)) = r(x), and 

c) r([H(x), J(x)]) = r([J(x), x]) E ~-

Proof: The proof of the implication to the right(~) is essentially 

the same as in Theorem 1 of Appendix I. 

The proof of the implication to the left(~) follows from a 

simple extension of the proof of Theorem 1 using the following leDIIl8.. 
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The following lemma is independent of Lemmas 1, 2, and 3 of 

Appendix I. In extending the proof of Theorem 1 to a proof of Theorem 

2, Lemma 4 could be reasonably placed just before Lemma 1 or just after 

Lemma 3. Lenma 4 should be evaluated as if it appeared in the just 

mentioned context. In the following, let x
0

, ••• , 

1, 2, and 3 in Appendix I. 

x be as in Lenmas 
m 

m-1 
Lemma 4: For all k, 0 :5: k :5: m, LJ (Ji, xi+l] ~ [Jk, ~]. 

i=O 

(Note that Lemna 4 is another lemma about finite trees, as were 

Lemmas 1, 2, and 3. Note, also, that unlike Lemnas 2 and 3, Lemma 4 

does not involve the OT-run r. Lenma 4 is simply about sets of nodes 

of T.) 

Proof: The facts about the seq~nce of nodes x
0

x 1 ... xm which the 

following proof uses are: 

(I) X = X , 
0 m 

Definition: For O :5: i, j :5: m, let the brag;kl-point B(i, j)be the 

g.1.b. (under :5:) in T of (xi, xj}. That is, B(i, j) is the unique 

y ET such that 1) y :5: xi & y :5: xj, and 2) (Vw E T)(w :5: xi & w :5: xj ➔ 

w :5: y) • 

Observe that for all O :5: i < m, Ji< xi & Ji< xi+l' and hence, 

Ji :5: B(i, i+l). 

As noted in Appendix I, we can rename the nodes, -x
0

, x1, ••. , 

so that node~ becomes node x
0 

and (I) holds for the new sequence 

X • 
m 

Hence, we prove Lemma 4 by proving: 

X , 
m 
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m-1 
(II) LJ [Ji, xi+l] ~ [J0 , x0 ]. 

i=O 

(III) 

We prove (II) by proving by induction on h, 0 ~ h ~ (m-1), 

h 
LJ [J., x.+1] ~ [J

0
, B(O, h+l]; 

i=O 1 1 

m-1 
for when h = m-1 this gives us U [Ji, xi+l] ~ [J

0
, x

0
] (since xm = 

i=O 
x

0 
and hence, B(O, m) = x

0
). 

Therefore, the following induction completes the proof of Lemma 4. 

h 
Induction hypothesis: (0 ~ h ~ m-1)): i~O [Ji' xi+l] ~ [J0 , B(O, h+l)]. 

Basis: [J0 , x0 ] ~ [J
0

, B(O, 1)). 

Induction step: B(O, h+2) < x
0 

& B(O, h+l) <~hence, B(O, h+l) and 

B(O, h+2) are comparable, so that either case 1 or case 2 holds. 

Case 1: B(O, h+2) ~ B(O, h+l). 

We have the picture: B(O, h+2) 

~ 
B(O, 

• 

From the picture it is clear that [J0, B(O, h+l)] ~ [J
0

, B(O, h+2)]; 

and hence by the induction hypothesis, 
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Clearly, we have [Jh+l' ~+2 ] ~ [B(O, h+l), B(O, h+2)]. Since 

[J
0

, B(O, h+2)] w [J
0

, B(O, h+l)] U {B(O, h+l), B(O, h+2)], we have 

by tbe·it1du0tl11Jt0hypethesis, 

h+l 
lJ [Ji, xi+ll ~ [Jo, B(O, h+2)]. 

i=O 

This completes the induction and the proof of Lemma 2. 

□ 
The extension of the proof of Theorem 1 needed to prove Theorem 

3 is as follows. 

By Lemmas 3 and 4, if H = min{H
0

, .•. , H }, then 
m -- m 

r([J , X ]). 
m m 

Then by clause 2c in the statement of Theorem 3, 

m-1 
In(r I TT)= U r([J., xi+l]) = r([J, x ]) E ~. 

i=O i m m 

the proof of Theorem 3. □ 

This completes 

Theorem 4: The emptiness problem for f.a.t.'s with designated subsets 

is decidable. 

The proof of Theorem 4 using an appropriate definition of good 

string and Theorem 3 is essentially the same as the proof of Theorem 2 

in Appendix I. 
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Remark: Let f.a.t. 01 (with subset pairs or with designated subsets 

have q states. For either definition of good string (i.e., the 

definition appropriate for the proof of Theorem 2 or the definition 

appropriate to Theorem 4) we can flonstruct a nondeterministic finite 

automaton on finite strings,~. which defines the set of good strings 

and which has at most 22q(q+l) states. By the subset construction we 

can design a deterministic finite automaton~ equivalent to !.m and 

2iq(q+l) 
such that~ has at most states. Using~ we can easily 

construct a 3-f.a.f.t. 07
1 

such that T(OT1) = ¢ iff T(OT) =¢,and such 

that the state set of 01
1 

is the cross product of the state sets of 

= q 2iq(q+l) Ol and·~. Hence, 01
1 

has at most Q states where Q 

By Theorem 11 of Chapter I, we can determine whether T(0"(1) =¢in 

q3 computational steps. 
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