
Out-of-print

Available fran NrIS

MAC-TR-57 (THESIS)

by

James H. Morris

December 196 8

Project MAC

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Mas;achusetts Ins ti tu~e ·of Technology

Project MAC

545 Technology Square

Cambridge, Massachusetts

02139

work reported herein was supported in part by Project

MAC, an M.I.T. research project sponsored by the Advanced

Research

Office

Projects

of Naval

Agency, Department of Defense, under

Nonr-4102(01). Research Contract

Reproduction of this report, in whole or in part, is

permitted for any purpose of the United States Government.

Government contractors may obtain copies of this report from

the Defense Documentation Center, Defense Supply Agency, Cameron

Station, Alexandria, Virginia 22314.

if requests are submitted on DDC Form

available from the office in your

Response will be expedited

l, copies of which are

activity which has been

established as the focal point for requesting DDC services.

Other U.S. citizens and organizations may obtain copies of

this report from the Clearinghouse for Federal Scientific and

Technical Information (CFSTI), Sills Building, 5285 Port Royal

Road, Springfield, Virginia 22151.

,, ,.

REFERENCE ONLY
'

DO NOT RE;·,1ovE
FROM DOCUMENT ROOM

LAMBDA-CALCULUS MODELS OF PROGRAMMING LANGUAGES

JAMES HIRAM MORRIS, JR.

B.S . , Carnegie Institute of Technology
(1963)

S.M., Massachusetts Institute of Technology
(1966)

SUBMITTED IN PARTIAL FULFILLMENT OF TIIE

REQUIREMENTS FOR TilE DEGREE OF

OOCTOR OF PHILOSOPHY

at the

MASSACHUSETIS INSTITUTE OF TECHNOLOGY

December, 1968

Signature of Author ________________ _ ___________ _
Alfred P. Sloan School of Management, Decem~er 13, 1968

Certified by __________________________ __ __ _ _

Thesis Supervisor

Accepted by ________________________________ _

Chairman, Departmental Committee on Graduate Studies

LAMBDA-CALCULUS MODELS OF PROGRAMMING LANGUAGES

by

JAMES HIRAM MORRIS, JR.

Submitted to the Alfred P. Sloan School of Management on December
13, 1968 in partial fu lf illment of the requirements for the degree
of Doctor of Philosophy in Computer Science.

ABSTRACT

Two aspect of programming l anguages, recursive definitions and type
declarations are analyzed in detail. Church's A-calculus is used
as a model of a programming language for purposes of the analysis.

The main result on recursion is an ana l ogue to Kleene's first recursion
theorem: If A= FA for any A-expressions A and F, then A is an extension
of YF in the sense that if E[YF], any expression containing YF, has a
normal form then E[YF] = E[A] . Y is Curry's paradoxical combinator. The
result is shown to be invariant for many different versions of Y.

A system of types and type declarations is developed for the A-calculus
and its semantic assumptions are identified. The system is shown to be
adequate in the sense that it permits a preprocessor to check formulae
prior to evaluation to prevent type errors . It is shown that any formula
with a valid assignment of types to all its subexpressions must have a
normal form.

Thesis Supervisor: John M. Wozencraft
Title: Professor of Electrical Engineering

iii

ACKNOWLEDGEMENT

I express my appreciation to Professor John M. Wozencraft for his
active interest in and unfailing support for my thesis research.
Professors Arthur Evans, Jr. and Robert M. Graham have contributed
significantly to the successful completion of this dissertation .

A special acknowledgement is due Peter J . Landin, whose incisive
analyses of programming languages have been an inspiration for my
\olOrk.

I am grateful to Project MAC for financial support and for the
stimulating environment it has afforded me .

Finally, I shall be forever indebted to my wife, Susan . Not only has
she been a constant source of encouragement and understanding, but
she mus t have typed over a thousand ~- expressions in the past year:

Work repor ted herein was supported i n part by Project MAC, an
M. I.T research project sponsored by the Advanced Research
Projects Agency, Department of Defense, under Off i ce of Naval
Research Contract Nonr-41O2(O1) . Reproduction of this report,
in whole or in part, is permitted for any purpose of the United
States Government .

1

CONTENTS

ABSTRACT

ACKNOWLEDGMENT

I. INTRODUCTION

Synthesis and Analysis of Programming Languages
Semantics and Pragmatics
Thesis

II . THE LAMBDA- CALCULUS

iii

1

6
9

12

Express ions as Formal Objects 13
Conversion Rules 18
Basic Theorems 24
Lambda Express ions Godelized 31
Lambda- Calculus as a Model of a Programming Language 37

Ill . RECURSION

Two Views of Recursion
Extensional Equivalence
The Minimality of Fixed- Points Produced by Y
Conclusions

IV . TYPES

Motivation
Pe rspective
The Basic System
Sufficiency of the Type Sys tem
An Algorithm for Type Assignments
Drawbacks of The Type System
An Extended System
Surmnary

3

40
49
54
76

79
81
86
96

100
106
112
118

V. CONCLUSIONS

Support for the Thesis
Di rections for Fut ure Research
Remarks

REFERENCES

BIOGRAPHicAL NOTE

4

119
121
127

128

1n

LAMBDA-CALCULUS MODELS OF PROGRAMMING LANGUAGES

5

CHAPTER 1

Introduction

This dissertation presents a study of two well -known features

of programming languages, recursion and types. The main tool in this

work is Church's A- calculus [l] which we use as the model of a pro

gramming language .

A. Synthes is and Analysis of Programing Languages.

Our work is almost entirely analytic. We do not invent a new

language or add features to an existing one; but , rather, explore in

depth the two mechanisms mentioned above.

Since programing languages do not appear spontaneously, as do

natural languages, the language analyzer is somewhat dependent upon

the synthesizer for source material . In the somewhat acerbic words

of A. J. Perlis (a master - synthesizer), "In order that their [the

analyzers'] research cont inue to progress , it is necessary that we

operate very rapidly in building bigger and better languages. If we

do not, I am very much afraid that they will run out of abstractions

to play with." [2]

At present, however, there seem to be more than enough

programing languages to satisfy the needs of analyzers and programmers

6

7

alike. Indeed, the would-be computer user is offered a perp lexing array

of languages to use. Clearly, there is need for an identification

of the principles (if any) behind progranming languages and their var

ious mechanisms. The aim of such work need not be the development of

the long sought univers a l programming language. It is unlikely that

such a language is either possible or desirable.

A reasonable goal is simply the unification and rationalization

of the many f acets of mechanical languages. The beneficiaries of these

efforts include not only language us ers , but also the designers them

selves. A consistent set of principles can aid the design, implementation

and documentation of a language by resolving many of the design de

cisions in a consistent way . Which se t of principles one adopts does

not s eem to be as crit ical as remaining faithful to the ones chosen.

A consis ten t policy of design guards the user from " surprises" a fter he

has grasped the essence of a language . Consider, for example, the

many surprises awaiting an ALGOL user who understands function s but

has not learned about side effects .

One of the most fruitful techniques of language analysis is

explication through elimination. The basic idea is that one explains

a linguistic featur e by showing how one could do without it. For example ,

one explains a FORTRAN DO- loop by showing how it can be simulated by

IF - statements, t rans fers, and assignments. The important point to

remember about such explications is that they do not purport to define

the notion in question but only to explain it. For example, if the DO- loop

8

were construed as merely an abbreviation for a certain configuration of

IF-statements, transfers and assignments then one would expect that

transfers into the scope of a 00-loop were allowed (which they are

not). Similarly, if one took v(jl Neumanris explication of the ordered

as its definition, he would expect that the set union of two ordered

pair s was meaningful.+ (See Quine [3, page 257] for an illuminating

discussion of this issue.)

The products of analysis by reduction to simpler mechanisms

can be fed back into the design process in . the following way: Once we

have reduced the language in question to a simpler one, we can build

pair

up a new language by defining new facilities in terms of the primitive

base. This new language is likely to have the same flavor as the old

one but may include genuinely original features suggested by the primi

tive basis.

This phenomenon manifests itself in Landin's development of

ISWIM [4 , 5] . Fast on the heels of his explication of ALGOL-60

in terms of the ~-calculus came his presentation of ISWIM, an interest

ing language whose various mechanisms appear to mesh nicely.

In Chapter III we shall consider the mechanism of r ecursion

and its simulation in the ~-calculus . While this explication should not

be taken as the definitipn of recursion, it offers interesting possi

bilities for extensions of the notion. For example, it allows one to

make some sense of the following, rather suspic ious, recursive definition:

f(x) if x=O then 1 e lse f.

+ The pair 41,b>can be thought of as the set of sets [fa} , fa ,b}} since this
representation fulfills the basic requirement that <a,b> = < c,d> if and
only if a=c and b=d.

9

B. Semantics and Pragmatics

It is commonly accepted that the semantics of a programming

language have to do with the meaning of the legal programs. In practice

it is a catch-all term with which we designate all the aspects of the

language other than the obviously syntactical. We raise a quibble with

this usage in order to emphasize our point of view.

We interpret "semantics" in the narrow sense of C. W.

Morris [6] and define our terms as follows:

1. Syntax delineates the legal forms, or utterances ,

of a language.

2. Semantics treats with the relation between the forms,

or expressions, in the language and the objects they

denote.

3. Pragmatics treats with the relation between a

language and its users (human or mechanical).

We argue that from a strictly operational point of view, semantics

are unnecessary. To specify a language, we need only give its

syntax and pragmatics. The pragmatics are most easily specified by how

a machine, real or contrived, will react when presented with a legal

form of the language. This provides all of the information that a user

or implementor needs to know about the language.

The objects or values that certain expressions may denote

are entirely in the mind of the human interpreter of the language. It

would be futile to examine an on-going machine computation in search

of these objects. The machine is simply reading and writing symbols.

10

If anything is manipulating these illusive ob j ects , it must be

Koestler's ''ghost in the machine" [7] .

Despite the fact that semantics (in the narrow sense above)

appear superfluous to the specification and operation of a programning

language, we believe that they are important. Specifically, we hold that

the linguistic forms of a programming language should be construed as

denot i ng obj ects whenever possible and that the pragmatics (i.e. , the

treatment of expressions by mach ines) should be consistent with the

semantics.

The practical basis for this position is a simple one; people

find it convenient to think in terms of objects and operations on

these objects , and a programming language designed for people should

reflect that predel ic tion.+

As evidence f or this assertion let us consider a few pro

gramming l anguages with respect to their semantics and their acceptance

by computer users.

It seems fair to say that the average computer user prefers

FORTRAN to machine code. We see the major dis tinct ion between these

alternatives as FORTRAN ' s use of algebraic expressions; the mechanisms

f or branching and transfer of control are roughly equivalent. The

important thing is that t hey denote things - numbers - while a

sequence of computer instructions does not. The fact that FORTRAN ' s

notation is traditional we consider less vital; we wou ld be almost as

+ Whorf [8] has presented evidence that cer tain non-Indo-European
languages (and hence the i r users) make no commitment to t he exis t ence
of obj ects . If this be the case, we happily restrict our considerations
to programming languages t ailored to Indo-European computer users.

11

happy with "sum(x,y)" as "x+y" since either one denotes an object.

LISP[9] seems to have ga ined wider acceptance than IPL- V[10] .

Both languages offer approximately the same pragmatics {list processing)

but LISP has semantics while IPL- V does not. IPL-Vis modeled after

an assembly language for a computer which operates on list-structures,

and there are few forms in the language which have denotations. LISP

is an expression evaluator, and its expressions denote list structures.

We attribute part of the relative success of LISP to this distincti::oh

rather tha.-. to its use of more mnemonic. identifiers or other improvements

over IPL -V.

12

C. The~

We view the work presented in this dissertation as a semantic

analysis of the two subjects, recursion and data types. We tend to

understand these subjects pragmatically. Wben a programmer thinks of

recursion, he thinks of push-down stacks and other aspects of how re

cursion Tlworks11
• Similarly, types and type declarations are often

described as communications to a compiler to aid it in allocating stor

age, etci. .

The thesis of this dissertation, then, is that these aspects

of progra=ing languages can be given an intuitively reasonable semantic

inter pre tat ion.

Specifically, in Chapter 3 we show how a function defined by

recursion can be viewed as the result of a particular operation on an

object called a functional. In Chapter 4 we out l ine a type declaration

system in which a type can be construed as a set of ob j ec ts and a type

declarat ion as an assertion that a particular e~pression always denotes

a member of the set.

The analysis is not performed on a real prograII111ing language

but on the A-calculus. Chapter 2 presents background on the A-calculus

and how it relates to programming languages . The simplicity of the A-calculus

makes i t mo~e amenable to rigorous treatment than even a well - def i ned

programming language (e . g . ALGOL) . Of t he many formalisms used in

meta-mathemat ics it appears to bear the strongest resembl ance to a programming

language because the notions of variables .and functional app l ication are

quite explici t in its formu l ation.

CHAPTER II

The ,,.- Calculus

In this chapter we summarize a number of fac ts about

,,.- calculi which wil l be referred to in later chapters. The treat

ment here is necessarily abbreviated, and the interested reader is

referred t o [1] or [11] where thorough treatments of the subject

a re given.

A. Expressions~ Formal Objects

Since most of the work in this t hesis is involved with

manipulation of expressions, it is advisable to define the notions of

expressions, subexpressions, etc. in a precise way, To illustrate

the concepts introduced, we shal l present the definition of a class

of expressions called well- formed expressions (wfes} which constitute

the object language of a 1'- calculus. Although t his single class is

the only one we shall deal with extensively, it seems reasonable to

present the supporting concepts as general notions.

1. Operators . A class of expressions is built up from a (poss i bly

infinite} set of tokens called operators . Each operator has a fixed,

finite degree ~O which indicates how many constituent expressions it

"takes" . An operator of degree O is called an atom . A formal ex---- -
pression is either an atom or an operator of degree n, together with

n expressions ca lled its constituents . Certain restrict i ons may

13

14

be placed on a class of formal expressions to singl e

out sub-classes of interest,

The operators for wfes consist of

(a)

(b)

(c)

(d)

11. which has degree 2

y which has degree 2

an infinite number of atoms called variables:

a,b, ••• ,z,a',b 1
, •••

an infinite nU111ber of atoms called constants.

The tokens for constants may vary and will be

specified in any context where constants are

relevant. For example, 0, 1, 2, ••• might be

constants.

The first constituent of a 11.-expression must be a variable.

A specimen of an expression may be presented in a variety

of ways. We shall employ two representations, either trees or linear

symbol strings. For example, the following are two presentations of

the same wfe:

X

x(M.axy)

15

The rules governing tree representations of wfe are simple.

Each node contains an operator and has a number of depending branches

equal to the degree of the operator. The sub-trees below a given node

are its constituents and are assumed to have a fixed order, given by

their left to right ordering on the page.

To establish the rules for the linear representation, we

present the following BNF de·finition of wfe.

< wfe > : := A < variable > • < wfe > I < comb i nation >

< combination > : := < combination > < atom> \ < atom >

< atom > : : = < variable > \< constant > \ (< wfe >)

Notice that combinations nest to the left, i.e., ab c

and (ab) c denote the same wfe and correspond to the same tree:

a

2. Branches and Paths. As part of the meta-language with which we

discuss expressions, we introduce a set of tokens called~

~• These are used to single out particular components of expressions.

The branch names for wfes are .!ill! and rand for the two

components of a combination (i.e., its operator and its operand) and

bv and body for the two components of a A- expression (i.e., its

16

bound variable and its body). The terms a re due to Landin (13) . As

part of the tree presentation of a wfe, we may label the branches

with these names

rator rand

:>-. a

bv ~ody

0 0
A path is simply a sequence o f branch names . For example,

rator•bv and body • body•rand are paths .

If band care paths, we say that bis a~ of c (b:?c) if b

is an init i al segment of c. For example , rator;:::rato r •bv, and A _;Sb

for any path b.

3. Subexpressions . In terms of the tree representation, a subexpression

is simply a sub- tree,i . e . , a certain node together with the branches

and nodes depending from it . More pr ecisely, a subexpression is a

pair consisting of a path and an expression< p, e > such that tracing

the path f r om the top-most node of the whole expression leads toe . Two

subexpressions< p
1

,e
1

>and< p
2

, e
2
> of a given expression are dis

joint if neither p
1

.:, p2 nor p
2

.:, p
1

• If p
1

.:, p
2

, we say that

< p2 , e2> i s a part of< p1 ,e
1
> , For example, the subexpressions of

(:>-.x . xx)

are <A, :>-.x . xx > , < bv , x > , < body, (xx) > , < body • rator, x> and

< body • rand, x > < bv,x >and< body•rator,x > are disjoint; and

< body• rator,x> is part ·of< body, (xx)> .

17

If Sand S' are subexpressions of E and E', respectively,

we say that Sis homologous to S' if S occupies the same position

in E that S' occupies in E'. Considering an expression as a tree, the

position of Sin Eis simply the path in the tree from the topmost

node of E to the topmost node in s. Consider the two wfes depicted

below: E E'

The two circled subexpressions are homologous since they have the

same positions in E and E', namely, body• rater.

An occurrence of e in Eis a subexpression< p, e > of E.

A~E[

For example,

i s an expression with a "hole" in it.

and

a(b [] c)

0~
"0~ 0

are presentations of the same context,

18

If E[is a context, E[A] is derived by replacing the hole

by A, where A is a wfe or another context , In the former case E[A]

is a wfe; in the latter it is a context as it still contains a hole.

B, Conversion Rules

Raving established the syntax of wfes, we now introduce a

number of rules for transforming them,

Definit i on: I f E and Fare two wfes, E - F means they are identical,

the same wfe .

follows:

in E.

The free variables of a wfe are defined inductively as

1. If E - x, a variable, then xis a f ree variable of

E.

2, If Eis a combination (RD), then xis free in E

if£ xis free in R£! xis free in D,

3. If Eis a A-expression (Ay ,M) then xis f ree in

E if£ xis free in Mand x I y.

A variable is bound in E if it occurs in E and is not free

There are three basic conversion rules for wfes ,

19

1. a -conversion. E[II.X.M) may be converted to E[Ay.M1] if y is not

free in Mand M' results from M by replacing every free occurrence of

x by y. We write E[11.X.M]=
0

E[Ay.M']. For example,

x(Aa.xa(Aa.a)) = a x(Ab.xb (M .a))

2. $-reduction. E[(11.X.M)N] is p-reducible if no variable which occurs

free in N is bound in M. (Th is proviso prevents the "capturing" of

free variables.) Specifically, E[(II.X.M)N) is reducible to E[M']

where M1 results from t he replacement of all free occurrences of x

in M by N. We write E[(AX .M)N] > p E[M'].

(11.X.(Ay.xy)x) > ~ (11.X.xx)

For example,

It should be clear that any wfe of the form (11.X.M)N can be made~-

r educible by a series of a -conversions which change the bound

variables of M so as to meet the requirement stated above. In fact,

we can define a function on expressions, subst, such that

(11.X .M)N > subst[N,x,M]

where we take> to mean convertible by a combination of a -conversions

and ~-reductions.

subst[N,x,M] -

(i) if M = x then N

(ii) if Mis a variable y-¥ x then y

(iii) if Mis a constant, then M.

(iv) if Mis a combination (RD) , then

(subst[N,x,R] subst [N,x,D])

(v) If M is a A-express ion (Ay. K)

(a) if y ~ x then M

(b) if y-¥ x and y i s .!!2! free in N, then

(Ay. subst[N,x,K])

1 I

20

(c) if y i x and y is free in N then

(~z. subst[N,x, subst [z , y,K]]) where

z is not free in Kand z ix .

This definition is from Curry [11] .

3. ~ -reduction. A wfe E[(A-X .Mx)] where xis not free in Mis reducible

(~) to E[M] . We include this kind of reduction primalily for complete

ness; it does not figure prominently in the sequel.

4 . ◊ -reduction . In addition to the foregoing conversion rules , we

allow for an indefinite class of rules called b-rules. They shall

a l ways be associated with the constants that appear in a particular

system. Each 6 -rule has the form

"E may be replaced by E' in any context."

There are several restrictions on E and E'.

(1) E has the form ((cA1) .. . ~) where c is a constant.

(2) E contains no free variab l es.

(3) No proper subexpression of Eis reducible by rul es~ ,

or any other b -rule.

(4) E' contains no free variables.

5. Terminology. We now introduce several terms related to conversion and

reduction.

(1) A redex is any expression which is reducible

by rules ~, ~ , or 6 (possibly after some a -conversions)

(2) Abstraction is the inverse operation from re-

duction. If A> B, we can say that A comes from

B via an abstraction. We may also write B < A.

21

(3) We write A~ B if A is reducible or a-convertible

to B,

(4) We define A = B inductively as follows :

A= B iff (1) A~ B ~ B ~ A

or (2) there exists a C such that A=C and C=B

For emphasis, we sometimes say A and Bare inter

convertible when A=B .

(5) A wfe is in normal form if it contains no redex

as a subexpression,

Any of these terms can be specialized to a particular kind

of conversion rule. For instance , a wfe is in ~- normal form if it

contains no ~-redex,

Example 1. Not every wfe is reducible to a normal form

(;>..x,xx)(Ay,yy) > (Ay , yy)(Ay.yy)

> (Ay,yy)(Ay,yy) > •••.

Example 2. A specific set of constants and &- rules may be employed

to construct a A-calculus applicable to a particul ar domain of dis

course. For example, a primitive system dealing with the natural

numbers might be the following:

(a) constants: 0, sue, pred, zero

(b) b-rules : an expression is a numeral if i t has the

n .
form (sue 0); e.g., 0, sue 0, sue (sue 0) are numerals,

Then the (infinite) set of rules are the following:

if xis a numeral

i

i
1-

22

(1) (pred 0) may be replaced by 0

(2) (pred (sue x)) may be replaced by x

(3) (zero O) may be replaced by true ~(Aa. Ab.a)

(4) (zero (sue x)) may be replaced by falseE(Aa.Ab.b)

Example 3. An interesting wfe, which we shall deal with extensively

later, is

Y: Af,(Ah.f(hh)}(Ah.f(hh))

Y represents a solution to the following general problem:

Given any wfe, F, find another wfe, A, such that

A (FA)

(where means convertible to}

Interpreting F as a function, we call A a ~-point of F because

F maps A into A.

It happens that every wfe F has at least one fixed point

and applying Y to F produces it! That is, for any F

(YF) = (F(YF))

For, YF: (Af.(Ah.f(hh))(Ah.f(hh)))F

> (Ah.F(hh))(Ah.F(hh)) ,

> F((Ah.F(hh)}(Ah,F(hh)))

< F(YF)

Y is called the paradoxical combinator by Curry who employs

it in an explication of Russeis paradox [11]. Y is also reminiscent

of the way Godels substitution function is employed in the proof of

his incompleteness theorem although Theorem 3 of this chapter

23

appears more anaolgous to Godel's argument. See Rogers [12 , R 202]

for further discussion on this point.

Our main interest in Y is its use in constructing wfes

defined by recursive equations. For example, using the constants

of Example 2 we seek a wfe sum such that

sum= A.X.Ay. zero x y (suc(sum(pred x)y))

< (Af.A.X.Ay. zero x y (sue (f(pred x)y))) sum

Thus, a solution is Slllll = YF where F =Af.A.X -Ay.zero x y(suc(f(pred x)y))

Notice that, if we define n ~ sucnO,

sum n;, > n + m

For example,

Slllll 1 2 > zero 12 (suc(sum(pred 1)2))

> (M.Ab.b)2(suc ...)
> (suc(sum O 2))

> (sue (zero O 2(...)))

> (suc((M.Ab.a)2(•••)))

> sue 2

Notice how (M.Ah.a) is used to "throw away" part of an

expression. This is the technique used to achieve "conditional

branching."

24

C. Basic Theorems

We now state, without proof, several basic results about

conversion. Before doing so, we must introduce certain supporting

concepts associated with the conversion rules.

1. The Father Function

I f E' i s the result of a transformation of E, we shall

define a function, father, from subexpressions of E' to subexpressions

of E. The relation,~' is the inverse of fathe r, and the relations

descendant and ancestor are their natural extensions by transitivity.

Roughly speaking, each son is a copy of its fathe r. We shall define

fathe r for each kind of expression conversion .

Let S' be a subexpression of E'.

(a) If E' is t he resul t of an a - conversion of E, then the

father of S' is the homologous subexpress ion in E.

(b) If E' arises from a ~-reduction on s ome subexpression

(;>,.x.M)N of E, then we consider three cases:

(1) If S1 is not part of the contractum (i.e.,

subst[N,x,MJ)of (;>,.x .M)N, t hen its father is

the homologous subexpression in E.

(2) If S' is part of an occurrence of N which was

substituted for x in M, then .. its father is

the homologous part of the occurrence of N

in (;>,.x.M)N.

25

(3) I f S1 is any other part o f subst[N,x,M] t hen

its father is the homologous subexpression

in t he occurrence of M in (;>,.x.M)N.

Notice t hat ne i ther the redex (AX.M)N nor any of t he free

occurrences of x in M have any sons in E' . Also , i f there are k

f ree occurrences of x in M, every subexpression of N will have k

sons in E .

Example 4 . Consider t he expressions:

E "' A.X. (;>..y. yx) (;>..a. a)

E' ;a ;>,.x . (;>..a . a)x

Some son- t o - f a t her relations are shown in the figure be l ow .

E 1. E'

;>..
1 -

X --
2 1/

- - - - -r' ~ ;>..

/
3 a a / - /

3

Each dot ted s on-to- f ather a r row ha s been l a be l ed with t he number

of the c l aus e above wh ich de f ines i t .

26

(c) If E' arises from an 'l -reduction of a subexpression

()l.x .Mx) in E, we consider two cases;

(1) If S ' is part of the contractum, M, then

its father is the homologous subexpression

IBM

(2) If S' is not part of the contractum, its father

is the homologous subexpression in E.

Notice tbat neither (l\x.Mx) nor Mx bas any sons in E'.

(d) If E ' arises from Eby a &- reduction of (c A1 .. . '\i)
and S ' is not a part of the contractum, then its father

is the homologous subexpression in E. A subpart of

the contractum has no father in E unless otherwise

specified for the particular rule.

Tbe notion of a descendant is a minor generalization of a

residual as defined by Cburch [1] and Curry [11]. Specifically, the

descendant of a redex may be cal led a residual .

2. Restricted Reductions

Let R be a set of redexes IB a wfe E and consider a series of

reductions on E in which every redex contracted is a descendant of a

member of R. We call such a reduction sequence a reduction relative to

R. A complete reduction relative to R is one in which the final

wfe conta ins no descendants of R. For example, consider

27

A =
(;>-.x.(Aa.ax) (Ac.x))(Ay. y bl

1

which contains two underlined ~-redexes, 1 and 2. We have two

reductions relative to [l , 2}

A > 0,x . (Ac. x)x) (Ay.yb)
l

> (Ac.{Ay.yb))(Ay.yb} = B

and A > (Aa.a(Ay.yb)) 0£. (Ay.yb))
2

>B

Notice that the redex in Bis a descendant of {ax) in A and

cannot be contracted in a reduction relative to fl, 2J.

The following Lemma is fundrunental and is sometimes called

the l emma of parallel moves.

Lemma 1 . {Curry)

Let R be a set of ~ and 6 redexes in B. Then

(a) Any reduction of B re l ative to R can be extended to

a complete reduction of B relative to R.

(b} Any two comp l ete reductions of B relative to

Rend on the same wfe , C, and

(c) Any part of Chas the same ancestor in B (if any)

regardless of wh i ch reduction sequence is used.

This Lei:mna roughly corresponds to Curry's Property (E)

and its proof is easily derived from his proof in [11, Chapter 4] .

28

The Lemma is not true if -redexes are considered as shown

by Curry's example

Contraction of the ~- redex, 1, yields

0,y.z)N.

which contains no descendents of (1, 2}, while contraction of the - redex,

2, yields

which contains a son of 1. Thus a complete reduction relative to (1, 2}

yields (Ay.z)N if 1 is contracted first but yields z if 2 is contracted

first.

Notice that if~-reductions are not permitted, the descendant

of a redex is always a redex.

Lemma 1 is basic to the proof of the Church- Rosser Theorem

as proved in Curry [11].

Theorem 1 . (Church - Rosser)

If X Y then there exists a

Z such that

X<!Z and Y<!Z

The proof of this theorem constitutes Chapter 4 of [11] .

29

A natural way to understand the meaning of the theorem is to

visualize the reduction process as a line proceeding f rom left t o

right i n which downward s l oping lines represent r eductions and

upward lines represent abstractions . For example , if we have

The passage from A0
to AS can be depicted as sho"Wn be l ow.

AO A AS
/

....__A2
A4 /

'-
/

'- /

~
Theorem 1 states that the transformation f rom A0 to A

5
can

be made so that there is j ust one downward sloping l ine followed by one

upward, as shown by the dotted lines above.

Corollary 1 . If X"'J' and y is in normal form , then x:;:; y. I f xis also

in normal form , then x =a y.

Thus , if we are interested in reducing wfes to normal form , it

does not matter precise l y how a given wfe is brought to normal form; the

final expression will be the same regardless of how it was derived. This

is not to say that the choice of reductions is compl etely unimportant. There

are wfes which can be reduced to normal f orm but which also can be reduced

in such a way as t o pro l ong the reduc t ion i ndefinitely. For example,

A _ (;>..:,,;. a)((A.X. xx) (r-x. xx))

> A > A

But A > a also ,

I '

30

While trying all possible reduction sequences will reduce

a yfe to normal form whenever one exis ts, there are other algorithms which

are more direct. If Sand S' are two subexpressions of a wfe , E, we

say that S is to the left of S ' if its beginning is to the left of the

beginning of S ' when Eis written linearly. If A and Bare~ and~-redexes ,

notice that either A is to the left of B or B is to the left of A or

they are the same redex.

We define a standard order reduction.

as one in which the passage from Ai to Ai+l is effected by contraction

of the left-~~ or~ redex in Ai.

Theorem 2. (Curry)

If a wfe, A, has a ~- &normal form, then a standard order

reduction beginning with A yields that normal form.

This result is easily derivable from the proof of Curry's

standardization theorem .

31

D. ~-Expressions Godelized

In order to demonstrate that certain problems related to

the A-calculus are formally unsolvable, we shall develop a formalization

of the A- 6-calculus within itself. This technique was presented by

Scott [14].

1. Natural Numbers. As a preliminary we choose a representation of

the natural numbers as A- expressions. There are many possibilities; we

choose one similar to Church's in [1]. The representation , n*, of the

number n is

Thus,

n* = AS.Ab .a¾

O* _ Aa.Ab.b

l* - r,.a.r,.b.ab

2* - Aa .Ab .a (ab)

3* = M.r,.b . a(a(a b))

e tc.

The functions, sue, pred, and eq, can be defined as A-expressions

so that for any n = 0, 1, ...

sue n* = (n+l)*

pred O* = O*

pred (n+l)* = n*

eq m"' n* = true if m=n, f alse otherwise

where true= AX.Ay.x, false = ~.Ay.y

The definitions of these functions can be found in B"6hm [15].

I'
. I

32

2. Quota tions. Suppose that the variables and constants of a A-&- calculus

are chosen from the infinite lists

and

respectively . Clearly this constitutes no formal restriction on the

system.

follows:

We define the quotation, E*, of any wfe, E, inductively as

xi*= :>-.x0.;>,.xl.:>-.x2 .AX3.x0i*

ci* = AXO.)'..xl.)'..x2.AX3 .xli*

(RD)*= :>-.x0 .;>..x1 .;>..x2 . ;>..x3 .x 2 R*D*

(AV.B)* = AX0 .;>..x1 .1-.x2 .;>..x3 .x3 V'><B*

Thus, quotation is a one - to- one mapping of the set of all

wfes to a subset of them, call it Q, Note that every wfe in Q is in

normal form, and that x* = Y* implies x = y . Notice, also, that no

member of Q contains a constant.

The question naturally arises whether there is some wfe, quote ,

such that quote x = x* for any wfe x. The answer is no, by the

following argument :

Suppose x = y but xi y ; i.e., x and y are interconvertible

but not identical. Then (quote x) = (quote y) , which implies x* = Y*

But then x = y, contradicting the supposition.

us

33

Now we make a claim, vital to the validity of any undecida

bility resu l ts.

Any effective process or decis i on procedure that a person

(or machine) can carry out on wfes can be des c ribed by a wfe which

operates on quotations .

For example, if there were a way of deciding whether any wfe

can be reduced to normal form , we claim that there would be a pa r ticular

wfe , normal such t hat

(normal x*)
= [true i f x has a normal form

false otherwise

To support this claim, we shall wr ite a simple A- calculus

function to determine whether a quotation rep r esents a wfe which is

in 13 - normal form. Specifically,

norm x*
f true if xis in

lfalse otherwise

13 - normal form

We define norm recursively as follows :

norm= /\X .x(~a . t rue)

(Aa. true)

(Aa . norm d)

(Ar' . Ad ' . norm r (norm d) false)

(Av .Ab . false))

_(Av .Ab . norm b)

Since norm is expected to work only on quotations, we know

34

Thus, x will select one of the four expressions arrayed vertically and

apply it to whatever follows xi. The algorithm can be described

as follows: To check x for normal form, see if xis a constant or

variable, in which case the answer is true . If xis a A-expression, check

its body for normal form. If xis a combination, consider its rater .

If the rater is a A-expression, the answer is false. If the rater is a

constant or variable , check the rand. Otherwise the rator is a combina

tion; check the rater and the rand - both must be in normal form.

Other func tions to deal with quotations are straight

forward but tedious to write. We shall list some useful functions

without supplying the details of their construction.

aconv"" r: true if X and y are a -c~n~ertible;

false otherwise.

reduce ,rk

eval x""

quote ,rk

For example,

yl< where y results from x by a single con

traction of the left-most ~- or G-redex of

x. We assume that the rules associated

with constants can be formalized.

yl< where y results from a standard reduction

of x, if x has a ~-a normal form. Otherwise,

eval x* itself has no normal form .

(AXO.AX1.)l.x2.)l.x3.xOO*)*

)l.x0 .AX1.AX2.AX3 .x3 (xo)* (AX1.AX2.AX3.xoO*)*

etc.

35

Tnus, quotations play a role analogous to Godel numbers in

other formal theories.

Theorem 3. (S cott)

For any wfe, F, there exists a wfe , A, such that

A= FA*

Proof: Let H = >,.x.F (Makec x(quote x))

when Makec =

(i. e . , Makec constructs a quoted combination from two

already quoted expressions)

Then, let A= H H*

A> F (Makec H*{quote H*))

> F (Makec H* (H*)*)

> F((H H*)*)

=FA*

QED

This theorem is an analogue of Kleene ' s second recursion

theorem. Its use in proving undecidability results is brought out

by the following:

Theorem 4. (Scott)

Let B be any non-empty, proper subset of all the wfes. Then

if x=y implies xsB ~ ysB, then it is undecidable whether a wfe is contained

in B.

I ,I
. 'I .

,I

36

Suppose we have a predicate, P, such that

Px"' = true if xeB, false otherwise.

Then choose some beB and aiB and define

F aa 11.X . Pxab

By Theorem 1 there is a z such that

Pz*ab

a if zeB, otherwise b

But zeB /\ z=a implies aeB

and z tB /\ z=b imp lies b eB

It follows from the contradiction that P cannot exist . There

fore, by the claim, we cannot decide membership in B.

QED

Corollary 4 It is undecidable whether a wfe has a normal form .

Proof :

The set, N, of wfes having normal form, is such that

x=y implies xeN ., yet,

QED

•

37

E. ?::-calculus ~~Model of~ Programming Language

The A-calculus provides a simple model of the variable and

subroutine facilities found in languages of the ALGOL variety. Landin's

work in "A Correspondence between ALGOL-60 and Church's A-calculus" [4]

illustrates this point in detail .

In this section we endeavor to construe the A- calculus as a

programming language in its own right. Obviously, it lacks many of

the important features found in real programming languages (most

notably, destructive assignment and jumping). Nevertheles s , it has

enough in common with real languages to give relevance to many of its

interesting properties.

We now identify several informal concepts common to pro

gramming languages and note how they correspond to features of the

A-calculus.

1. The Computer. The computer for A-expressions is simply an expression

reducer or evaluator. As input this computer accepts a wfe and attempts

to reduce it to a normal form using the rules of a , ~.~conversion

and (possibly) some rules of ~-conversion. If it ever succeeds, it

prints the resulting normal form wfe as output. If the wfe cannot

be reduced to normal form, the computer never halts.

The specific way in which the computer operates need not be

specified further since, by Corollary 1, the final norma l form does not

depend upon which way reductions are carried out. We may assume, if

we wish, that the computer performs reduction in standard order; but any

38

technique which assures getting to a normal form when one exists wil l do

as well.

2. ~ of Discourse. At first glance it appears that the A-calculus

is a language with no data objects, such as numbers or strings, to talk

about. However, these are easily introduced by constants and S-rules.

For example , the constants and ~ - rules discussed in section B provide a

language having natural numbers as its domain of discourse. It is also

possible to simulate familiar data objects with wfes themselves as

in Section C, but we shal l not pursue t hat possibil ity here.

3. Program~- Data. The distinction between programs and data is

thoroughly muddled by this system, but we can interpret a combination

(PD) submitted to the computer as ask ing it to apply program P to the

datum D. In a similar way, we might interpret ((Af
1

. Af
2

.P)F
1
F2 D) as

a request that the computer apply the p~ogram P , which uses F1 and F2

as subroutines , to the datum D. Officially, though, the computer is

just an expression reducer and such interpretations are strictly in

the mind of the beholder.

4. Conditional Branches. The ALGOL- 60 s tatement if P ~ A else B

can be simulated by the comb inat ion (PA B) where we expect that the

expression P will always reduce to trues ("'-x.Ay .x) or false s ("'-x.Ay.y).

5. Loops. Repetitive operations can be achieved by the use of recurs ion

as discussed in section B.

•

39

6. Assignment. The assignment of a value to a variable for the first

time is simply accomplished . To simulate the ALGOL-60 sequence

x:= l;

s

where S does not re-assign a new value to x, we write

(AX .S)l

This is the closest thing to assignment availab le.

7. Functions.

To define the function f(x)

f(3)* f(4) we wr i te

(~f. f(3)*f(4))(AX .x+l)

x+l , and use it to compute

"1!
i

CHAPTER III

Recurs ion

The notion of recursion is useful in computer programming.

There are many well - known examples of recursive a lgorithms . Recursion often

allows a succinctness not easily achieved by other means . In t hi s

chapte r we shall explore the mechanism of recursion by presenting an

analogue of Kleene's f i rst recursion theorem for the A-calculus . Whi l e

Kleene has emphasized the role of t h is theorem a s evidence fo r Church ' s

t hesis, our main interest in it is due to the f ac t that it brings out a

relationship be tween purely fo rmal computation and the more informal

notion of solving an equation.

A. Two Views of Recursion

Cons i der the statement

f (m,n) = if m=n then n+l else f(m , f (m- 1,n+l)) (1)

How can we interpret it as a definition of the f unct ion f? Ostensibly,

it appears t o be a statement about f and some numbers, m and n, hard ly

a definition,

1. Formal Computat i on

Equat ion (1) can be used t o deduce the val ue of f(m,n)

for various integers m and n. Let us introduc e some f ormal deduction

40

41

rules to illustrate how this might be done. Each rule tells how to

deduce a new equation from some existing ones.

I. If x and y are numerals, x+y may be replaced by the numeral

denoting the sum of x and y, and x-y may be replaced by the

numeral denoting the excess of x over y (possibly negative).

II. If x and y are the same numeral, "if '}.-=y then E1 else Ez" may

be replaced by E1. If they are distinct numerals, it may be

replaced by E
2

. E1 and E2 may _be any expressions.

III. From a given equation containing a variable, V, we may deduce

a new equation by substituting a numeral for V throughout the

equation.

IV. Given (1) an equation of the form f(a
1

, ... , ¾)=b where

a 1 , ... , ~ and bare numerals, and (2) an equation E1=E2

where neither E
1

nor E2 contain any variables and E
2

contains an occurrence of f(a1 , ... , ¾): we may derive a

new equation E1=E2 where E2 arises from E2 by replacement

of f(a 1, •. . , 3N) by b.

Rules III and IV are Kleenes rules Rl and R2 for formal

computation with equation schemata. In Kleene's system [16), Rule I

is simplified and Rule II is not used, as his system does not use if

expressions. Nevertheless, the system presented here is roughly

equivalent to his.

Now let us compute f(2,0) by attempting to deduce f(2 ,0)=k

for some k, using Rules I throug? IV.

I
I

:1

i
I!

!

I
!
I

, I
I'
I
I

I

42

1. f(m,n) = if 11Fn then m+l else f(m,f(m- 1 , n+l)) (Given)

2. £(1,1) = if 1=1 then 1+1 e l se ••.• (III applied

3. f (1, 1) 2 (I, II on 2)

4 . f(2,0) if 2=0 then 2+1 else f(2, f (2 - 1,o+l)) (III on 1)

5. f(2,0) £(2,f (l, 1)) (I, II on 4)

6. f(2,0) f(2,2) (IV on 3 ~
l

5)

7. f (2, 2) if 2=2 then 2+1 else (III on 1)

8. f (2,2) 3 (I , II on 7)

9. f (2 ,0) 3 (IV on 61 8)

Notice that we have a certain degree of latitude about the

order in which things are proved. It might be possible that certain

sets of equations would allow us to deduce dif f erent values for a

function depending upon which order of deduction we used. In such a

case we say that the equations are inconsistent. For example,

f (x)=x+l

f(x)=x

would be such a set. We claim the set consisting of just equation

(1) is not inconsistent .

Now we decree that the partial function defined by (1)

is the set of all pairs< <ln,n >, k > such that f(m ,n) = k is deducible

from equation (1) using the deduction rules. In general, a consistent

set of equations, E, defines a partial function f of n arguments as

the set of all pairs< <X1 , . .. ,xn>' y> such that f (x1 , . .. ,xn) = y is

deducible from E using the rules of· deduction.

Thus, we have given one interpretation of (1) as a definition.

to 1)

i,
I

42

1. f(m,n) = if m=n then m+l e l se f(m,f(m- 1,n+l)) (Given)

2. f(l,l) = if l=l then l+l else •••• (III applied

3. f(l,l) 2 (I, II on 2)

4. £(2,0) if 2=0 then 2+1 else f(2,f(2 - l,o+l)) (III on 1)

5. f(2,0) f(2,f(l,l)) (I, II on 4)

6. f(2 , 0) f (2, 2) (IV on 3 ~ 5)

7. £ (2 ,2) if 2=2 then 2+1 else (III on 1)

8 . £ (2, 2) 3 (I, II on 7)

9 . f(2,0) 3 (I V on 6 1 8)

Notice that we have a certain degree of latitude about the

order in which things are proved . It might be possibl e that certain

sets of equa tions would al l ow us to deduce different values for a

function depending upon which or der of deduction we used . In such a

case we say that the equations are inconsistent. For example,

f(x)=x+l

f(x)=x

woul d be such a set. we c l aim the set cons i st i ng of j ust equation

(1) is not inconsistent.

Now we decree that the partia l function defined by (1)

is the set of all pairs < -o:n,n >, k > s uch that f(m,n) = k is deducib l e

from equation (1) using the deduction r ules . In general , a consistent

set of equations, E, defines a partial function f of n arguments as

the set of all pairs< <x1 , ... ,xn>, y> such that f(x1 ,, .. ,xn) = y is

deducible from E using the rules of deduction.

Thus, we have given one interpretation of (1) as a definition.

to 1)

43

2. The~ Solution

Another possibility is to view (1) as a statement which may

be true or false for a particular partial function, f . In other words,

we assume that f is a single-valued+ subset of (NXN)XN and interpret

(1) as requiring :

(a) for all meN, << m, n >, m+l > ef

(b) for all m, neN, such that !IE'n, << m,n >, k> ef if and

only if t here exists a k' such that<< m-1,n+l >, k'> ef

and<< m,k'>, k> ef . That is: either f(m,n) and

f(m,f(m-1,n+l)) are both undefined or they are both

defined and equal .

There are many such f' s t hat satisfy (a) and (b), For example,

£
1

<< m,n >, m+l > \meN AneN

£
2

{ « m,n >, m+l > I n£n }v (« m,n >, n- 1 > J m<n }

f3 fl/\£2 = (« m,n >, m+l > I ~}

<< m,n >, m+l >

<< m,n >, n- 1 >

rri>n and (m-n) is even

m<n and H(m,n) } U

<< m,n >, m+l >! trf::n or not R(m,n)

where R(m,n) is true if£ Turing machine Im\ with input j n! halts.

Notice that £5 is not a computable function; if it were, we coul d use

it to so lve the halting problem.

As an example, consider £4 • Clause (a) is obviously satis

fied. To show clause (b) holds in one direction, we argue as follows:

Suppose for some llfl,n, << m,n >, k> ef4 • Then k=m+l,m > n, and

m-n is even . Hence m- 1 2: n+l and (m- 1) - (n+l) is even, so<< m-1,n+l >,m > ef
4

•

+ A set of pairs, B, is single- valued if< x,y > eB and< x,y' > eB
implies y=y' •

' 1

44

Since <<m,m>,m+l>€f4 the "only if" . part of clause (b) is true with

k=mtl and k'=m.

The argument for the "if" part of c l ause (b) is analogous.

Obviously, equation (1) interpreted in this way does not

constitute a definition of any single function. However, the first

Kleene recursion theorem provides a way of choosing a single function

from all the possibilities that satisfy (1). For our purposes the

theorem can be stated as follows :

Theorem 1 (Kleene). Axi.y equation of the form

f(x1 , ••• ,xn)=E[f ,x1 , ••• ,xn]

where E[f,x1 , . . • ,xn] is an expression built up from f,x1 , ... ,xn

using functional application and if clauses, has a solution for f, call

it g, such that

and

(1) g is the function defined by the formal computation

rules of section 1 and therefore is partial recur

sive (i.e., computable)

(2) if g' is another solution, g cg'

i.e., g' is an extension of g.

In light of Theorem 1, we may decree that the function defined

by (1) is the minimal solution to (1); i.e., the one which is contained

in all other solutions. If we consider the inclusion relations which

obtain among f 1 , .•• , f 5 , we arrive at the relations depicted below:

45

It happens that there are no solutions properly contained

in f
4

, so it is the partial function defined by (1) .

3. An Alternative Deduction Procedure

As a prelude to considering a recursion theorem for the

~- calculus, we shall consider a deduction system derived from the

system of section 1 by a slight change,

Instead of Rule IV we use the following, more permissive

rule:

IV'. Given an equation of the form f(x 1, ... ,~)=E where x1 , ... ,~

are variables and Eis any expression; and given an equation

r =s wheres contains an occurrence of f(A1, .. . ,~) where

A1 , . .. ,~ are any expressions; we may derive a new equat i on

r=s' wheres' is constructed in two steps.

(1) for i =l , . . . ,N replace all occurrences of

xi in Eby Ai' deriving E'

(2) replace the occurrence of f(A1, ...• ~) ins by

E' deriving s'.

This rule roughly corresponds to ~-conversion or ALGOL- 60

call - by- name.

Does the fu.~ction defined by a set of equations differ under

this new set of deducti on rules? Apparently, it does in the cases

'i

46

where constant functions are involved. Consider the following equation:

f(m,n) = if m=O then O ~ l+f(m-1,f(n-2,m))

If the new rule, IV', is to be used , we shall be able to

deduce f(x,y)=x for any numerals~ 0 and y. For example, to show

£(1,5)=1, we proceed as fo llows:

(2)

1. f(l ,5) = if l=O then 0 else l+f(l- 1,£(5- 2,1)) (by III)

2. f(l , 5) l+f(D,f(3,l)) (by I, II)

3. f(l ,5) l+[lf O=O then 0 ~ l+f(0- 1,£(£(3,1) - 2,0))] (by IV')

4 . f(l,5) 1-t-O (by II)

5 . £(1,5) 1 (by I)

On the other hand, using the old rule, IV, we find that f is

the partial function

f' (m,n)=lf m=O then O ~

lf m=l /\ n=2 ~ 1 ~ undefined

It is easy to see that f(O,n)"O (for any n) and f(l,2)=1 can

be deduced by Rules I - IV. To show that no other values can be de

duced, we need only show that

f' = { <<0,n>, 0 >jneN}u{ << 1,2>, l>}

satisfies (2) in the sense of Theorem 1. That is:

(a) for all neN, << 0 ,n >, 0 > cf'

and (b) for all !IR'O,n•N : << m,n >, k+l > ef'

if and only if t here exists a k' such that

<< n-2,m>, k'> ef' and <<m-1,k'>,k> cf'

47

To show (b) (only if)

ml'O I\<< m,n >, k+l > sf'=> m=l /\ n=2 /\ k=O

-~-;:, << n- 2,m >, k 1> = << 0,1 >, 0 > sf'

and <<m- 1,k'>,k> = << 0,0 >, 0 > sf'

To show (b) (if)

afl'O /\ <<n- 2,m >, k'> sf'/\ <<m-1,k'>, k > sf'

;,;> either n- 2=0 /\ k 1 =0 /\ m-1=0 /\ k=O

or n-2=1 /\ m=2 /\ k'=l /\ m-1=0 /\ k=O

The second alternative is impossible, and the first implies

<< m,n > , k+l > = << 1 ,2 > , 1 > ef'

Therefore, f ' is a solution to (2) and by Theorem 1, it must be the function

defined by (2), given Rules I - IV.

Is there an analogue to Theorem 1 for the deduction Rules

I - IV'? If we interpret functional equations in a slight ly different

way , we arrive at a possibility.

We may consider equation (2) to be a statement about an

unknown~ function from DXD to D ..iiere D=Nu{ w} where w is an

object not in N. Intuitively, w means undefined . Now, for such a

function to satisfy (2), we must have the following:

(a) for all nsD, f(O,n)=O

(b) for all ml'O, nsD. f(m,n)=l+f(m- l,f(n-2,m))

Now the function

f'(m,n) = if m=O then O else

g m=l /\ n=2 ~ 1 else w

does not satisfy (b) . For example, f'(l,O)=w while (b) requires that

f'(l,O)=l+f'(O,f'(- 2,1))

Since f'(- 2,1) eD, we have f(l,O)=l+o =l

48

We conjecture that the following analogue of Theorem 1 is

true :

Theorem 2 (conjectured) . If

f(x
1

, ••• ,xn)=E[f,x1 , • •• ,xN]

is an equation as in Theorem 1, then if there is any solution for f,

there is one, call it g, such that

(1) g is a total function on D=N U {wJ

(2) g is computable by Rules I - IV'

(3) if his any other total solution, then it is

an extension of gin the sense that if

g(a 1 , • • • ,an)=l>Fw for some ai€D t hen

h(a 1 , ••• ,an)=b

We feel that t his theorem would follow from the minimal

fixed - point theorem to be presented in a succeeding section. Speci

fically , if the equation schemata defining functions were translated

into A- 6 - calculus formulae, the rule of ~- conversion would serve as

Rules III and IV', and the function denoted by a wfe would be the

one singled out by Theorem 2.

As an example, let us translate equation (2) into a A-~- calculus

equality. (We assume that the rules associated with if expressions

and arithmetic expressions are given by b - rules.)

£=Ff (3)

where F=Ag . Am. An. if m=O then O else l+g(m- l)(g(n-2)m)

49

Now if we interpret= to mean °interconvertib le, we know that

YF satisfies (3). It turns out that YFxy reduces to x if xis a

numeral :!eO, but has no normal f orm if x«l.

A simpler A- calculus example is given by the following:

f=(4 .=)f (4)

Three solutions for fare Y(AX.xxx), 4.Ay,x and AX,Ay . y,

as may be easily verified . See Wozencraft [25] for further examples.

In Section C we shall show that the solution given by Y

is the minimal one in the sense that it will give rise to a normal

form in the fewest possib l e contexts. Before doing so, however, we

develop the supporting concept of extensional equivalence.

B. Extensional Equivalence

There does not seem to be any natural, set-theoretic way

to interpret a wfe as a partial function. To motivate our definition

of extensional equivalence, we present a somewhat contrived interpre

tation.

Consider the machine, presented in Chapter II, Section E,

which reduces wfes to normal form. we shall interpret a wfe as

a partial function on wfes as follows : The function of n arguments

(n~l) denoted by the wfe F is defined as the set of all pairs

<<K1 , ... ,xn>,y:> such that the machine, when given the wfe (Fx1x2 ... xn)

as input , halts and give the wfe y as output . Thus, if * (E) is taken
n

as the interpretation of E as a function of n arguments

50

~n(F) [<4 , ... ,x >, Y> l (Fx
1
... x) has a normal form y}

1 n n

It is clear that two wfes may denote the same function but

still not be interconvert ible. For example, (:>,.x.xx)()\x.xx) and

(:>-x.xxx)(:>,.x.xx) are not interconvertible, but both denote the null

function of n arguments , for any n.

We shall now develop a relation between wfes which leads

t o a definition of extensional equivalence.

Definition: A extends B, written A::iB, if for all contexts E[] :

if E[B] has a normal form t hen E[A]=E[B]; i .e., E[A] is convertible

to E[B] and hence has the same normal form. (See Chapter II , Section

A for the definition of a context.)

Intuitively, A:,B means that A is a "better" wfe than B, for

we may replace B by A in any context and be assured of getting the

same answer (i.e. , normal form) if we were going to get an answer by

using B. In addition , we may get an answer tn certain contexts where

using B would not provide an answer .

Theorem 3. If A::iB then, for any n,.Q. (A) is a functional extension
n

or4 (B). n

Proof : If we consider j ust these contexts, E[] where E[F] =Fx
1

. .. xn

51

for some wfe's x1, ••• ,xn we see that functional extension is simply

a special case of wfe extension

QED

Henceforth, we shall consider only wfe extension as defined

above .

Obviously, :::, is r eflexive and t ransitive. Furthermore ,

it is monotonic in the sense of the following :

Theorem 4. If A :::>B then for any context E[], E[A] :::>E[B]

Proof: Assume A:::>B and let E1[J be any context . Let E2[] be any

context. Then E2[E1[]] = E
3

[] is a context, and E
3

[B] havi ng a normal

form impli es E
3

[A]=E
3

[B]. Thus, since E2 [] was chosen arbitrarily,

we have E1 [A] :::, E1 [BJ

QED

It follows from the Church-Rosser theorem that A=B impli es

A:::, B and B :::,A . Further, if B has a normal form, and A::> B, then A=B.

On the other hand, A:::, B and B:::, A does not imply A=B; we therefore

make the following

Definition: A=-B iff A:::>B and B ::>A.

52

Obviously,~ is transitive, reflexive and symetric. Thus,

it is an equivalence relation .

In tuitively, A."'<l means that it makes no difference whether

A or Bis used in any interpretation where we are u ltimately interested

only in normal forms. If either E[A] or E[B] has a normal form, then

E[A]=E[B].

Le t us briefly review the three kinds of equivalence possible

between two wfes.

1 . Identity. We say AeeB if A and B denote i dentical

wfes. For example:

Q-y .a) _ (Ay.aJ

(AX.X) i (Ay.y)

2. Convertibility . We say A=B if A can be converted

into A' by a series of a , !l and 1 - conversions, and

A' es B. Thus

(AX .x)

(Aa.a)b

(Ay.y)

b

(a-conversion)

(!! - convers ion)

(r..x .xx) (r..x.xx) 1- (AX.xx) (AX.xx) (r..x.xx)

3. Extensional Equivalence. We say A~ B if the wfes,

A and B, extend one another

Example: (AX.xx)(AX .xx) (AX .=) (AX .xx)

I

\

53

It is natural to ask whether there are larger , non-trivial

equivalence relations than~ which are monotonic in the sense of .

Theorem 4 . The following theorem , due to B·ohm [24] allows us to

answer the question with a qua lified negative for a pure ~-calculus

without $-rules.

Theorem 5. (Bohm) If A and Bare in normal form, and A#B, then there

exists a context E[] such that E[A]=C and E[B]=D for any arbitrary

C and D. (= here means a , ~. ~ - ~onvertible)

Corollary 5. Suppose~ is an equivalence relation such that

(a) Non-tr ivial (i.e., there exist C, D such that C 1'D)

(b) An extension of = (i.e., A=B implies A ~B)

(c) Monotonic (i.e . , A ~B implies E[A] ~E[B])

(d) Normal (i.e . , A ~B implies either both A and B

have normal forms or both do not)

Then A~B implies A""B.

Proof: Suppose that there is an equivalence relation~ obeying

(a) - (d). Suppose F if. G. By the defin it ion of~, there exists an

E[] such that either

(i) E[F] has normal form and E[G] does not

(ii) E[G] has normal form and E[F] does not

(iii) E(F] and E[G] have normal form and E[F] f E[G]

In case (i) and (ii) we have E[F] /., E[G] by property (d);

hence F,I, G by property (c) .

In case (iii), choose any C, D, such that C /., D (b~ Property

(a)) . By Theorem 5 there exists an E' such that E' [E[F]] = C and

E' [E[G]] = D. Therefore, by property (c), F /.,G.

54

Thus, we have shown that F cf G-=?F,f,Gor that F ~ G "-9

l""'G. Hence,= contains any equiva l ence relation t ha t obeys (a)-(d).

QED

c. The Minimality of Fixed-~ Produced b'. !•

In this section we shall show that YF is, in a sense, the

worst solution for A in the equation A=FA. We assume throughout that

only a and~ conversions are permissable; i.e., A=B means A and B

are interconvertible by rules a and~ and A::>B means either E[B] does

not have a ~-normal form or E[A]=E[BJ ,for any E[] • Apparently,

the results can be extended to a system permitting b-reductions; but

we shall not undert ake to do so. The failure of Lemma 1 in Chapter II

for a system permitting 1-conversions prevents extension of the r esults

to such systems. Nevertheless, it seems likely t hat t he results remain

true for a full ~-1-b-calculus ; and we regard the theorems in th i s

section as settling t he most difficult parts of the matter.

Definition: Let R be a set of disjoint subexpressions of a wfe, A.

We say that A~ B except£ R if A can be transformed into B by

rep lacement of only subexpressions in R.

Example 1. Consider the two wfes

A - (Aa.(Az.a)a)(b£)~

and B - (Aa.(xa)a)(be)f

A matches B except at the three underlined subexpressions; for

replacement of (~z.a) by (xa), c bye, and d by f transforms A into B,

r

55

Lemma 1. Suppose A matches B except at Rand A' results from a ~-contract ion

of a redex of A such that

(1) the redex is not a part of a member of Rand

(2) the rator of the re dex is not a member of R.

Then there exists a B' such that a single ~-contraction on B yields B'

and A' matches B' except at R' where R1 is contained in the set of sons

of members of R.

Example 1. (continued)

Since R consists of the three underlined subexpressions of

A, requ i rements (1) and (2) are true of the redex (1-.a. Q,z. a)a) (b£);

but the redex (;\z. a)a fails requirement (2).

Proof (of Lemma 1) :

Let (ll.x.M)N be the redex in A. By hypothesis it is not a

part of a member of R, nor is (A.X.M) a member of R. Therefore,

the replacements that car ry A into B must leave an homologous sub

expression (A.X.M"")N* in B where 11>< and N* result f r om certain r e

placements in Mand N, respectively . Let B' be the result of

contracting that redex.

The relations between A, A' , Band B' are depicted below.

II

I l

'.1

I
ii

l
I

l
ii

l
i

56

R stands for the replacements which carry A into B. Q

stands for the r ep lacement of (11.x.,M)N by subst [N ,x,M]. (f' stands

for the replacement of (11.x. ,Mf;)N>'< by subst [N*,x ,Mk], The operations

denoted by R1 remain to be derived.

Let us subdivide the members of R into three groups.

~ subexpressions disjoint from the r edex (11.x..M)N

~ parts of M

R3 parts of N

By the definition of the father relat i on, the sons of~

in A' are homologous to the ir fathers i n A and disjoint from the

contractum of (11.x.,M)N. Therefore, we can transfonn A' into B' by

rep l acing the sons of~ by whatever they were replaced with before,

and r eplacing the contractum of (r,,.x.M)N by the contractum of (11.x..M'k)N* .

Thus , to prove the Lemma, we need only show that subst[N~ x,Mk] can

be derived from subst [N ,x ,M] by replacements of sons of~ and R
3

• The

set R' will then consist of the sons~ and certain sons of~ and R3•

Example 1 (cont i nued).

Consider

A= (M. (l,z ,a)a)(b.£)!!
2 3 1

A= (~z.(bc))(b.£)!!
2 3 3 1

B'= (x(be))(be)f

57

We have designated the members of R
1

,R2 and R
3

in A and their

sons in A' by appropriate numbering of the underlinings. Clearly A'

is transformed into B' by r eplacement of d by f and (Az.(bc)) (b£) by

(x(be)) (be) .

Let us consider how subst[N* ,x,M*] might be derived from M

in two steps.

Example

la . Replace all the members of R2 in M to derive M*.

2a. Replace the free occurrences of x in M* by N* .

Now consider the following alternative operations on M.

lb . Replace the free occurrences of x i n M by N,

yielding subst [N,x,M] .

2b . Rep lace t he sons of 1½ in M by the homologous

expressions in subst[N*,x,M*]

3b. Consider the rema ining sons of R
3

in the occurrences

of N which were not displaced by Step 2b . Replace

t hose so as t o transform each occurrence o f N into

an occurrence of N* .

1. (conc l uded)

Step la. carries (Az. a) a into (xa)a

Step 2a . carries this into (x (be)) (be)

Step l b . carries (Az . a) a in t o (Az . (be)) (b£)

Step 2b . carr i es this into (x (be))Cb.£)

Step 3b. carries this into (x (be)) (be)

i'
I

.I'
·I!
"I I,
:i
11

58

We argue that this second sequence of operations derives

the same expression from Mas the first. Hence, since the result of

Step 2a is subst [N* ,x,MI<) and the result of Step lb is subst[N,x,M),

Steps 2b and 3b carry subst[N,x,M] into subst[N*,x,MI<]. Notice t ha t

the replacements are of disjoint subexpressions . Thus , these sub

expressions, together with the sons of I½_, constitute R' and are all

sons of R.

QED

The purpose of this Lemma is to allow us to carry out parallel

reductions of expressions which differ from each other in parts that

are never vital to a given ~-reduction,

Exampl e 2

Let A '= (11.X.xx) (1>.X,XX)

It is clear that A 1 B for Ax is convertible only to Ax while Bx is con

vertible to B. On the other hand, A~ B. We shall show t hat B :::> A;

the proof that A:::> B follows from a similar argument .

Suppose for some E[], E[A) has a normal form. Then there is

a standard reduction

where En is in normal form. We shall construct a reduction of E[B]

> F n

so that for each i the following is true: Ei matches Fi except at the

59

descendants of A (where Fi has a descendant of B instead).

This condition is obviously true for i=O.

Suppose the condition has been shown for some i<n. I f the left

most redex in Ei is a descendant of A, it is of the form (1'.X.xx)(1'.X.xx).

Then Ei cannot have a normal form, for contraction of that

redex yields (1'.X.xx)(1'.X.xx) again which must be the left- mos t redex

in Ei+l" Since A contains no proper subexpressions which are re

dexes and cannot be a rator of a redex, the left- most redex in Ei

must fulfill t he condit ions of Lemma 1 . Therefore, choose Fi+l

by Lemma 1 so that Fi+l matches Ei+l except at t he descendants of

A.

Now since En contains no redexes, and every descendant of A

is a redex, En can contain no descendants of A (they mus t have been

cancelled). Thus, since Fn can be derived from En by replacement of

descendants of A, we must have Fn; En.

Thus, s ince E[] was chosen arbitrarily, B::::, A.

60

The following theorem relies upon the Lemma of parallel

moves stated in Chapter II (Lemma 1). It provides the bas.is

for the main result of this section .

Theorem 6. Let M = (:>.h.F(hh))(Ah.F(hh)) for any wfe, F. For any

context E[] , if E[M] has a ~-normal form, then there exists a number

N such that E[FN(M)] can be reduced to ~-normal form without the con-

traction of a part of a descendant of the occurrence of M.

Outline of Proof: The proof of this theorem is l ong and nnpleasant.

It is most simply visualized as the construction of a matrix of wfes

as depicted below.

'<~J+l)I

A(i+l)(j+l)

I
I

I
I

l - - - ----➔-

AON

The sequence of wfes across the top (A
00

, . .. ,A
0

N) constitutes

the given standard order reduction o·f E[M] to ~-normal form. The

sequence down the left-hand side (A00 , . .. ,¾
0

) constitutes a reduction

of E[M] to E[FN(M)] . The sequence across the bottom (¾
0

, . .. ,~)

is the required reduction of E[FN(M)] to normal form, in which no

61

descendant of Mis contracted. The sequence of expressions AON' ".•~

on the right hand side are all the same (i.e., AON= A1N = . .. = ~)

and in normal form.

We shall define all the Aij by specifying how each one is

derived from the one above it (A(i - l)j) . Then~ show that each

Aij can be reduced to its neighbor on the right (Ai(j+l))' thus com

pleting each small rectangle.

Consider the standard order reduction of E[M]:

E[M] = Aoo > AOl > . . . > AON

where AON is in J3 -norma1 form. We shall define an (N+l) by (N+l) matrix of

expressions as depicted below

Aoo r~:t- -- AON

7A1N AlO 1
I I
I !~ ~o

I
~1 ❖ ~

where Aij ;;: A(i+l)j.

Associated with each Aij will be N disjoint

R?J., ... , R~. which are parts of the expression A ~ ~

A .. and the R~. inductively as follows:
l.J l.J

sets of redexes

We define the

0 1. A00 = E[MJ and R00

of M in E[M] .

consists of just that occurrence

k
All other ROO are empty .

2. Given A0j and
0 N

ROj' ... , R0 j suppose AO{j+l) is derived

from A
0

j by contraction of a redex Qj.

'II

111

62

We cons ider the following two cases:

Case 1. Q. is not a member of R!' . for any P• Then
J OJ

Case 2,

k k
Ru(j+l) = (the sons of Ruj} for all k.

Q. i s a member of ,,P_ . Then if lvtp+l,
J "'oJ
k k p+l

Ru(j+l) = {the sons of ¾jJ . To define R6(j+1)'

we note that Qj must be a redex of the form

M'= (Ah.F'(hh))(Ah . F'(hh)) which differs f rom

M only in that certain free var iables of F

have been replaced yie lding F'. The contractum

of Qj is then F'(M') . p+l
Now R O(j+l) consis t s

of that new occurrence of M' (which is t he

son of t he fi rst (hh) and therefore a member

k
of no other Ru(j+l))' together with al l the

p+l
sons of R6j •

Notice that ~j must be empty if k > j since

k+l . k+l k
Ril(j+ l) *~implies either Ri,j *~or QjeRi,j·

3 . Given Aij and ROij'" "" , RNi j' we derive A(i+l)j by a complete reduction

r elat i ve t o t he set of redexe s Ri . . • By Lemma 1 of Chapter II,
1]

this unique ly defines A(i+l)j despite t he vagueness about t he order

in which t his complete reduction is carried out .

k
The R (i+l)j are def ined a s follows:

63

(a) If k*i+l then R~i+l)j = (the descendants of R~j 1- Notice

that if ks i, R~i+l)j happens to be empty s ince the

complete reduction at stage k eradicated ~j-

(b) Now every contraction in the complete reduction of

R~. produces a contractum of the form F'(M ') as in Case
iJ

2 above. Each of these new M's has descendants in

k
A(i+l)j and none of them belong to any R(i+l)j(for

k#+l). i+l
R(i+l)j consists of all these descendants of

i+l
new M's together with the descendants of R ij.

k
This completes the definition of the Aij and Rij" Roughly

k
speaking, each member of Rij is a pseudo - descendant of the original

occurrence of Min A
00

. I t has arisen from k successive contrac t ions

of the form M' > F'(M') .

There are several degenerate cases which follow immediately

from the definition.

1.

2.

3.

i k
AiO as E[F (M)] for Os i,; N; and RiO is empty unless

i=k and in that case contains one member, the sole oc -

currence of Min AiO'

Since AON has no redexes,

= ~ and

k
RON is empty for all k. Hence,

k
RiN is empty for all i, k .

k
ROj is empty if j < k . This is vacuously true for k=O;

and, fork> 0, it follows from the def inition by an in

ductive argument . Thus , we were justified in limiting

the superscripts of the R's to being less than or equal

t o N.

I
i
I

' I
I
I
i

!
, l
iii!'

64

To prove the theorem, we need only demonstrate, for j=O, .. . ,N- 1,

that eithe r ~j = ~(j+l) or ~j > ~(j+l)

which is not a part of any redex in ~j "

via a contraction of a redex

our strategy shall be to construct the "ladder" depicted

below for any j.

AOj % AO{j+l)

I

Qi
I

A . .
l.J

A(i+l) j
Qi+l

r,Cj+l)

A(i+l)(j+l)
I
I

QN I

~j ~"N(j+l)

Each "rung" of the "ladder", Qi' is either null in the case that

Aij = Ai(j+l) (in which case, all "rungs" below it must be null), or

it is a reduction of a redex, Qi' in Aij"

Case 1: Suppose Go is a member of R~j for some p.

Lemma A. For all O ~ i ~ p there exists Qi such that

(1) Qi is a member of Rfj and is the left -most redex in

Aij"

(2) Contraction of Qi carries Aij into Ai(j+l)

k
(3) For all O ~k ~N, Ri(j+l) consists of just the sons

k
of Rij with respect to the contraction of Qi .

Proof: By induction. For i=O (1) and (2) are true by assumption and

k
(3) is true by definition of RO(j+l)"

65

Suppose the conditions are true for i < p.

Pictorially we have A ~ A

R~j1 R~(j+l)

Qi+l

~j] i(j+l)

A(i+l)j \i+l)(j+l)
By (3) t he passage from Aij to Ai(j+l) to A(i+l)(j+l) is a complete

reduction of A . . re lative to the set of redexes {Q. Ju R~ .. Since,
~ 1 ~

by (1), Qi is the left -most redex in Aij ' it has a unique descendant

via the complete reduction relative to R~j' which we call Qi+l·

It is a member of RP("•l). which establishes (1) for i+l. Then the
. 1.-r J

complete reduction relative to Rij followed by a contraction of

Qi+l is again a complete reduction relative to {Qi} R~ ..
1J

Therefore,

by Lemma 1 of Chapter 2, the result is A(i+l) (j+l) which establishes (2) for i+l.

k k
By (3) for i, the Ri(j+l) are the descendants of Rij for all k . By

Lemma 2 ever y subexpression in A(i+l)(j+l) has the same ancestor in

Aij regardless of which reduction sequence is chosen. Thus, each

k
member of R(i+l)(j+l) as determined by the reduction via Qi is also

a descendant of a redex in R~. via the reduction ending with a con-
1J

traction of Qi+l· More specifically, each member of R~i+l)(j+l)
k

is a son of a member of R(i+l) j " Thus, we have shown (3) for i+l.

QED

Ther efore, the Lemma is proved, specifically for i =p. Now we

assert that A(p+l)j = A(p+l)(j+l) . For the contraction of Qp followed

by a complete reduction of R~(j+l) is, by the foregoing Lemma, a com-

plete reduction of A . relative to RP __
PJ PJ

But the passage from Apj to

A(p+l)j is, by definition, a complete reduction relative to R~j "

66

Hence, we have Aij ~ Ai(j+l) for i=p+l, ... ,N. In particular, we have

Case 2. Suppose% is not a member of R~j for any p.

Le=a B. For all O ~ i ~ N there exists a Qi such that

(1) Qi is not part of a member of any Rtj' and is the

left-most redex in Aij"

(2) Contraction of Qi carries Ai j into Ai(j+l)

(3) For all O ~ k ~ N, R~(j+l) consists of just the
k

sons of Rij with respect to the contraction of Qi.

Proof: By induction. Since

Q
0

can be a part of a me.mber

the reduction of A
00

to AON is standard

of R~. only if it is a member itself
LJ

since every member of R~. is a redex. This estab l ishes (1); (2) and
LJ

(3) are obviously true.

Suppose the conditions are true for i < N. By the arguments

of Lemma A, there is a unique descendant of Qi in A(i+l}j' which we

call Qi+l' Further, since Qi is to the left of all the redexes in

Aij' Qi+l must be to the left of all the redexes

particular, it is to the left of all the redexes

in \Hl)j'

. Rk
rn (i+l)j

In

and thus

cannot be a part of any of them . This establishes (1) for i+l.

(2) and (3) can be established by the arguments used in

Lemma A.
QED

67

In the final case i =N, we have shown that ~j > ~(j+l) by

N
contraction of a redex which is not a part of any member of Rij which

N
is the set of descendants of M in ~O ;a E[F (M) J.

Since we have shown this for all j, we have a sequence:

in which no part of a descendant of M was contracted

QED

Theorem 7. If A =i FA then A :=i YF.

Proof: Suppose for any E[], E[YF] has a ~- normal form. Then by

Theorem 6, there is an N such that E[FN(M)](where M ;a (Ah .F(hh))

(Ah .F(hh)) <YF) can be reduced to normal form without a contraction

of a part of a descendant of M. Let the reduction be

N E[F (M)] ;a BO > B1 > ... > Bk

when Bk is in normal form. We shall construct a reduction

E[FN(A)] ; co> cl> ck

such that Bi matches Ci except at the descendants of M (where Ci

has a descendant of A) .

Clearly, the condition is true for i~O. Suppose it holds

from some i < k . Since the passage from Bi to Bi+l does not involve

a contraction internal to a descendant of M, and since no descendant

of M can be the rator of a redex, LeIIll!la 1 applies. We can choose

Ci+l < Ci by Lemma 1 so that Bi+l matches Ci+l except at the des

cendants of M.

\

I
I

: 1J
i j:
jf,
:t

'f '!

q
I

,i

68

Thus, by finite induction, Bk matches Ck except at the

descendants of M. But since Bk is in normal form, it may contain

no descendants of M since they must be redexes. Therefore, C.k = ~-

Since E[) was chosen arbitrarily, we have shown FN(A)::> FN(M).

Further, we have YF > M > F (M) ; i (M) > . . . > FN (M) and also

A:::, F(A) :::, F2 (A) :::, ... FN(A) by the monotonicity of :::i. Therefore,

A =, FN (A) =, FN (M) = YF.

QED

Corollary 7(a). If A = FA then A =, YF.

Proof. Immediate since A=FA implies A :::, FA.

Corollary 7(b). If A=FA then ,P.. (A) is a functional extension of
n

'+ (YF) for any n. n

Proof. Innnediate from Corollary 7(a) and Theorem 3.

Remarks:

It is easy to see, intuitively , that A must be an extension

of YF if A is convertible to FA. In a sense, YF ~ be converted to

F(YF) if it is to serve a purpose in any larger reduction while A

~ be converted to FA but may also reduce in some other way. Thus,

the would-be reducer of an expression has more options available if

A is used instead of YF.

69

Example 3. Consider the following PAL [20] definitions

F (x)(y) = H(x)

where~ H(z) = pzy(H(mz))

and ~ G(a) (b) = pab(G(ma)b)

It should be clear that F and G denote the same function;

the only difference seems to be that G passes the argument bat each

recursion while F does not pass y. Recasting these definitions as

simple wfes, we have

F = 11.X./l.y.YHx

H = /l.f./1.z.pzy(f(mz))

G = YK

K = /l.g./1.a./l.b.pab(g(ma)b)

We shall show that F = G. First , we show F:JG. By Corollary 7(a)

we need only sho"1 that K(F) = F. This is easily done by a sequence

of contractions and expansions of K(F).

K(F) > /l.a,/l.b.pab((/1.x. /l.y.YHx)(ma)b)

> /l.a./1.b.pab(YH'(ma))

(where H' = subst [b,y,H])

< /l.a./1.b. (/1..z.pzb(YH ' (mz)))a

< /l.a . /1.b .YH'a

I
q

,J

I I

t,
I

70

Thus, we have K(F) = F, hence F :::,YK = G

To show that G :::,F, notice that

G > M ,;\b.pab(YK(ma)b)

< A.B.,;\b.pab((;\z.YKzb)(ma))

and F > ;\x.;>,.y,pxy(YH (1IIX))

= o: A.a.)l.b. pab (YH' (ma))

Thus, by the monotonicity of:::,, we need only show that

Example 4

(Az .YKzb) :::, YH'

Consider H' (t,:,t;YKzb) >)l,z ,pzb(()l.z,YKzb)mZ))

>)l.z . pzb(YK(mz)b)

and (:>-.x.YKzb) >)l.z .K(YK)zb

>)l.z, (M .)l.b.pab(YK(ma)b))zb

>)l.z .pzb(YK(mz)b)

Thus, H'(;>..z .YKzb) = ()l.z,YKzb) and by Corollary 7a.

(Az.YKzy) :::, YH'

For any wfe, A, A=()l.x . x)A, hence A :::,Y()l.x .x). Notice, however,

that Y(;\x .x) = ()l.h.hh)(;>,.h.hh) which is equivalent to the null function.

Bohm [15] has given a technique by which we may generate an

infinite number of (apparently) non- interconvertible versions of Y.

Each Yi has the property that

71

We define, Yi, inductive l y as follows:

Y
0

= Y = M.(Ah .f(hh))(Ah.f(hl,))

and Yi+l = YiG

where G = Ay.M.f(yf)

Theorem 8. For all i, Y. = GY.
l. l.

~: For i=O

Y
0
> M.f((Ah.f(hh))(Ah.f(hh)))

< M.f(Y0f)

< GYO

Suppose we have Yi = GYi f or some i. Then

Yi+l = YiG ~ (GYi)G = (Ay.M.f(yf))YiG

> G(YiG) = GYi+l

Thus, by induction, it is established for all i

Corollary 8 (a) . For all i, and all wfes, F,

Proof: Immediate from Theorem 8..

Example 5.

Y
1

(Ah.Af.f(hhf))(Ah.M.f{hhf))

QED

I
I
I

:I I

> (M. f cYl))

Y
2

= Y
1

G > ()-.f.f(Y
1
f))G

> G(Y1 G)

> A.f.f(Y1Gf)

72

B·~hm has shown that y
0

:j: Y
1

• It seems likely that Yi :j: Y j

for i:j:j.

Are all these Yi' s equivalent (~) ? Does Theorem 7 still

hold if we substitute some Yi for Yin its statement? We give a

partial answer to these questions with the following:

Corollarx ~b2. For all i,2: o

(1) for any wfes, A and F: if A::::, FA

then A::::, Y.F.
l.

(2) Yi::::, Yi+l

(3) If i > 0 then Yi+l ::::,Y,.
l.

Proof: First notice that, for any i, (1) ~ - (2). For by

Theorem 8, Yi= GYi. Substituting Y1 for A and G for Fin (1) we

arrive at Yi ::::, GYi =;> Yi ::::, y / = Yi+l · Hence Yi ::::, Yi+l'

Now we prove the corollary by induction on i .

for i=O, (1) is simply Theorem 7 and (3) is vacuously true.

Suppose (1), (2) and (3) hold for all i ~ k. Yk ::::,Yk+l

implies YkF ::::,Yk+l F,for any F, by the monotonicity of::::, . Tnus, for

any A, A ::::, FA~ A ::::, YkF ::::, Yk+l F. Thus, (1) and (2) are established

for k+l.

73

To show (3), notice that Yk+2 = G(Yk+Z) implies

Yk+Z =>YkG = Yk+l' by (1) fork. Thus, (1), (2) and (3) are established

for all i $ k+l .

QED

This corollary shows that Theorem 7 is true for any Yi and

that y 0 :::,Y1 ::: Y2 ::: ... zYi·· · · It is probably true that Y1 :::,Y0 ,

but it is not so easily proved.

Example 6. Recursion Induction

Suppose we have two wfes, A and B, which we wish to prove

equivalent in a certain class of contexts. One way of doing this is

to show that

(1) A FA

(2) B FB

and (3) E[YF] has a normal form

for certain contexts , E[].

From Theorem 7, it follows that A :::,YF and B :::,YF. Thus, if E[YF] has

a normal form, E[A] = E[YF] = E[B], and A is equivalent to Bin t hose

contexts .

This t echnique is quite reminiscent of McCarthy's Pr inc iple

of Recurs ion I nduction [17]. To show the simi l arity, we carry out a

typical proof by recursion induction, f ound in ~7], justifying most

of the steps by A- calculus conversions. This has the effect of

lengthening the proof considerably.

I,

I I,
.J :!I

.~, , I
1, 11

!j I
!, •.I
f i,,

·:~! 11

!l11 rl
';

i I I

I
I I

. I:
, I I

I·
ll
In .,

I

prove that

74

The problem is , given the following recursive definition:

m+n = if n=O then m else m' + n

(where m'=m+-1 and n- = n- 1)

(mt-n) I m'+n

We trans late this problem into a more formal, A- calculus,

one as follows:

(1) Introduce the constants sand p fo r the successor

and predecessor functions; i.e ., (sx) means x'

and (px) means x

(2) Define

A eeyp

where P"'Aa ,Am.An . if n=O then m else a (sm)(pn)

(3) Prove C :::'. B

where C = (Am .An.s(A mn)) and B= (Am .An .A(sm)n)

for any context E[] where m and n are bound only

to numerals.

Now let F = Af .Am .An . if n=O then (sm) else f (sm) (pn)

C= Am , An . s(A mn)

> Am ,An . s (if n=O then m else A (sm) (pn))

::::, Am ,An. if n=O then sm else s(A (sm)(pn))

we have

75

< Nn.An. if n:aQ t hen sm else (Nn . m.S(A mn)) (sm) (pn)

< F(Nn.An. (PLUS mn)) = FC

Thus, we have C ::, FC; hence .C. ::::, YF.

B = Nn ,An. A (sm)n

> /\.III.An. if n:aQ then sm else A (s(~m))(pn)

< Am . An. _g_ n:aQ t hen sm else (Am.An. A (sm)n)(sm)(pn)

< F(r,.m.An. A (sm)n) FB

Thus, we have B = FB, hence B::::, YF.

Assuming that YFxy has a normal form , if x and y are numera ls,

Cxy = Bxy for any numerals x and y .

Notice that t he meaning of sand p never entered into t he

proof (this i s no t always t he case),

76

D. Conc lusions

1. Summary

a . Kleene's fi rst r ecursion theorem provides a simpl e ,

semantic characterizat ion of the function defined

by a recursive equation.

b . Kleene's theo rem is E.21 true if the computat ion pro

cedure is changed to a l low unrestricted substi tutes

ana l ogous to ~- conversion . The functions computed by

the alternate rules may be ex tensions

of the functions computed by the origina l ru les .

c. The notion of one wfe being an extension of another

(::::i) i s de rived from the assumption that a wfe's not

having a normal form i s analogous to a computa tion's

not termina ting .

d . Extensional equiva lence (=) is defined and its proper

ties stud ied .

e . The main result of the chapter i s an analogue to Kleene' s

t heo rem for the A-calculus : For any wfe , F, if A=FA,

then A ::::i YF .

77

d, The result is shown to be invariant over many equivalent

wfes, Yi' each of which has the property that YiF = F(YiF)

for all F.

2. Support of Thesis

If one interprets a wfe, F, as a functional, then YF may

be interpreted as that fixed-point of F which is extended

by every other fixed -point of F . We argue that this is a

semantic interpretation of recursion as opposed to the

purely mechanical one depending upon the definition of Y.

The fact that many different versions of Y are

equivalent but not interconvertible makes the semantic

characterization more attractive than one based on any

particu l ar vers ion of Y.

Further discussion of the thesis appears in Chapter V,

3 . Order of Evaluation

The correspondence between our theorem and the Kleene

recursion theorem is complicated by the fact that a wfe

may be reduced in any order while Kleene's system of formal

computation restricts substitutions. The difference

between the t heorems can be related to ALWL-60:

Kleene's result applies to recursive functions in which

all pa rameters are given by value while ours applies to

cases in wh ich call by name is used. The example of

,r
I

78

Section A, Part 3, may be translated into ALGOL to

illustrate the point .

integer procedure f(m,n); value m,n;

if m=O then f:=O else f:= f(m-l,f(n- 2,m))

With this definition, f(m ,n), is defined only if m=O

or m=l and n=2. If we erase "value m,n" then f(m,n) is

defined whenever m;:: 0.

While the unrestricted order of reduction is an in

teresting property of the A-calculus, we believe that a

realistic programming language based on the A- calculus should

use a restricted reduction order analogous to call by

value. The algorithm of Landin' s SECD machine [13] or

LISP's eval are examples of restricted reduction rules

of this nature .

Aside from purely pract ical reasons for this preference,

we cite the more comp l icated definition of extension in

Theorem 2 (p . 48) which was necessary to characterize

the minimal nature of the fixed - point solution produced

by Yin a system with unrestricted reduction rules .

CHAPTER IV

Types

A. Motivation

A typical programming language (e.g., ALGOL or FORTRAN)

has many different kinds of things in its universe of values. For

example, an ALGOL variable may denote a number , string, function,

label or switch. A programmer is usually required to declare which

type of object each variable in his program may assume.

In general, the~ system of a programming language

calls for a partitioning of the universe of values presumed for the

language. Each subset of this partition is called a type.

From a pure l y formal viewpoint, types constitute something

of a complication. One would feel freer with a system in which there

was only one type of object. Certain subclasses of the universe may

have distinctive properties, but that does not necessiate an~ priori

classification into types. If types have no official status in a

programming l anguage, the user need not bother with declarations or

type checking. To be sure, he must know .mat sorts of objects he is

talking about , but it is unlikely that their critical properties can

be summarized by a simple type system (e.g . , prime numbers , ordered

lists of numbers, ages, dates, etc.).

79

'i"

\,

80

Nevertheless, there are good, pragmatic reasons for in

cluding a type system in the specifications of a language . The basic

fact is t hat people believe in types . A number is a different kind of

thing from a pair of numbers; notwithstanding the fact that pairs

can be represented by numbers. It is unlikely that we would be in

terested in the second component of 3 or the square root of< 2,5 >

Given such predispositions of human language users, it behooves the

language designer to incorporate distinctions between types into his

language. Doing so permits an implementer of the language to choose

different representat ions for different types of objects, taking ad

vantage of the l imi ted contexts in which they will be used.

Even though a type system is presumably derived from the natural

prej udices of a general user community, there is no guarantee that the

tenets of t he type system will be natural to individual programmers.

Therefore it is important that the type restrictions be simple to explain

and learn . Furthermore, it is helpful if the processors of the language

detec t and report on violations of the type restrictions in programs sub

mitted to t hem . This activity is called ~ -checking .

81

B. Perspective

It is clear that the k ind of undefinedness associated with

nonterminating computations cannot be prevented if the language in

question is a universal one. Our only aim is to pr ovide for the un

definedness that arises f r om so - called don't-care conditions in lan

guage specifications.

For purposes of discussion, let us assume that a language

has been specified by

(1) a par tial mapping from character strings

to formal expressions (as in Ch . 2 A); and

(2) a program that interprets fo rmal expressions.

We shall not. concern ourselves with the details of (1); we

shall simply assume that it filters out certain "illegal" character

strings and produces a tree structure. The interpreter (2) accepts

a parse tree and performs certain manipulations on it and may even

tual l y halt yielding a final tree , the answer. At certain points in

the interpreter, don't care conditions are indicated by conditiona l

expressions involving the special word ERROR . The intent is that

any t r ee that causes the interpreter to reach ERROR i s illegal in

some sense.

Examp le 1. LISP [9]

LISP is a language which does not happen to require phase (1)

in any significant way . Phase (2) is embodied in the functions apply

and eval. Simple changes in the definitions of these func tions wil l

make the don't care conditions more explicit. For example, we may

replace the phrase

eq[fn; CAR] - caar [x]

I
•Ii
'11
i .,

82

in apply by

eq[fn; CAR] - [atom [car[xll - ERROR; T- caar [x]J .

This makes explicit the fact that the~ of an atom is undefined.

Naturally, a specification of this kind is easily transformed

into an implementation , albeit inefficient. We need only choose a

representation for parse trees and write the interpreter progr am . The

interpreter would be expected to render suitable diagnostics when an

ERROR was reached. We often say that such an implementation uses

d)'namic ~ checking; each object would include an indication of its

type, and each application of a primitive function would follow a

check to insure that the arguments have proper type.

A more efficient implementation calls for further process

ing of the tree to produce a representation that can be interpreted

more easily, preferably by the hardware of the target computer. We

are not concerned here with code generation problems but only with

the treatment of the don't care situations. In the cause of efficiency

a natural inclination is to take advantage of them by not checking

types at run time and lett ing the bits fall where they may, so to

speak, if don't care situations arise. To do such while maintaining

the integrity of the implementation requires that the preprocessing

of the parse tree filter out and report on trees which , when evaluated,

will end in an ERROR. We call this activity static~ checking .

83

Once committed to any significant preprocessing of the tree,

we shall require the ability to preprocess, or compile, different

parts of an expression independently, for the overhead associated

with the compiling prohibits recompiling large expressions after making

small changes. We have been implicitly unifying the notion of program

and data; an expression may be thought of as program or data .

In the expression CFX) (F applied to X) the expression F

may be considered a program and X data. Thus, our notion of in

dependent compilation includes also the standard situation in which

a program, F, may be compiled and then applied to many different data

sets, X, which may have been compiled themselves. If we consider FORTRAN

in this light, we note that it does not provide a facility for compiling

its data independently, but, rather, compiles it at run- time with input

routines. Natura l ly, independent compilation also includes the meshing

of different programs.

The need for independent compilation places further require

ments on any proposed scheme for type-checking. It will be necessary

to insure that any individual expression submitted for compilation

be free from ERRORs, and when two compiled expressions are combined in

any way, the operating system must insure that their interaction will

not promote ERRORs.

The general approach we shall take runs roughly as follows:

(a) Wnen an expression is submitted for compilation,

it is checked for type errors. If it passes, the out

put consists of the compiled representation to-

gether with a certain amount of type information .

I.

I

84

(b) When two compiled expressions are combined, the

operating system checks their type information

to insure that they can be combined and, if so,

derives some new type information to be associated

with the combined whole.

The major subject of this chapter is the design of this type

information component.

The main emphasis of our work is on functional types, i.e. ,

types of function variabl es. While t his may appear strange, g iven the

rather sparing use of function variables by most programmers , we argue

that it is a reasonable approach .

First, function var iables do appear in many languages, (ALGOL,

FORTRAN, MAD, LISP) and the type checking problems they introduce

must be solved if complete checking is to be possib le.

Second, functional types can be assigned to primit ive

operators such as '+', as we ll as programmer-defined functions or

function variables . This unification allows us to handle the usual

type-checking problems associated with primitive operators in a con

sistent way. After all, aside from syntax, a primitive operator

symbo l is just a function variable whose value is fixed for the

language.

Third, some of the problems associated with independently

compiled func tions gain perspicuity when looked upon as function

variable prob lems. For example, if the function (~.A) refers to

another function B which is to be defined and compiled e l sewhere

85

the loading process can be assumed to carry out the application of

(i-Jl.1'.x.A) to Bin some way or another.

Finally, we feel that the functional is an elegant notion

but that its use is not wel l understood or appreciated. An attempt

t o reconcile functionals with the requirement of type checking should

be of interest independent of its practical significance.

86

C. The Basic System

We shall describe a very simple, primitive l anguage - a

)I. - b - calculus - which has certain don't care conditions. Then we shall

introduce a system of types to allow a preprocessor to insure that

a given expression will not give rise to a don't care condition.

1. ~ Object Language

We shall consider a restricted A- calculus in which only

~-reductions and a certain type of ~-reductions are permitted. The

rule of ~-reduction is as described in Chapter II, section B

(i.e., (AX .M)N may be replaced by subst[N,x ,M)). Each b- rule has

the following form:

(c1c2) may be rep l aced by c
3

where c1 , c2 and c
3

are specific constants.

Furthermore, we define the father of c
3

in the resulting

expression to be the combination (C
1
c2) that occurred in the original

expression. Recall that the f ather ftmction was defined for ~- reduction

in Chapter II, sect ion C.

For the sake of discussion , let us choose a particular se t

of constants and rule s to carry out arithmetic. There will be an

infinite number of constants and rules, but it will be clear that

evaluation is an effective process. There are t nree c lasses of constants.

Numera ls: 0,1,2, ... , - 1 , - 2,-3, . . .

Unary Functions: add
0

, add
1

, add2 , ... , add_
1

, .. .

sub
0

, sub 1 , sub2 , .. . , sub_
1

, . . .

Binary Functions: sum , difference

87

The rules are as follows:

if n is a numer al denoting the number n ,

(a ddin) may be replaced by-;;::j:T

(subin) may be replaced by n- i

(sum n) may be rep l aced by addn

(di f f erence n) may be replaced by subn

Thus, ((sum ;;)i) = {add m) = ;;;-+;
n

and (difference nm)= (subnm) = m - n

For the moment, l et us assume t hat the computer for this

language reduces expressions by the standard order rule (i.e . , left -mos t

r edex first). The evaluator thus specified def ine s a partial function

f rom the set of a ll wfes to those in normal form. However, assuming

that the int ended use of this language is to do arithmetic, there are

many wfes which are not significant. For example (3 2) or (add0 (,-x . x))

would not be meaningful in any context ; i . e., they are don't care

expressions.

These don 't care situations could be filled in by the follow

ing additional rule: Suppose C is a constant, and Eis any expression

in normal f orm with no f ree variables. I f (C E) cannot be r educed by any other

rules, then (CE) may be replaced by the new constant ERROR.

The type checking problem can then be phrased as follows:

Given a wfe , insure that evaluation of it will not resul t in a wfe

,,,

I
I

i,
11

I
, I

I

88

containing ERROR. A second problem, the one we shall actually consider,

is : Given a wfe, insure that no series of reductions, in~ order,

will result in a wfe containing ERROR. Obviously, this second condition

guarantees the first, but not vice versa . For example, the evaluator

will reduce ((A.X.5)(1 2)) to 5 and halt while this expression is also

reducible to ((A.X . S)ERROR).

We argue that neither one of t hese problems is recursively

decidable; i.e ., t here is no general algorithm for deciding whether

a wfe has the required property. Suppose there was a procedure for

deciding either of the questions; then we could use it to decide whether

any wfe containi ng no free variables or constants had a norma l form

by the following stratagem:

Given A, a wfe with no constants or free variables, con

struct the wfe (CA) where C is one of the constants in the language

(e.g., O).

If (CA) is reducible to a wfe containing ERROR, the reduction

that introduced ERROR must have been the replacement of (CA') by

ERROR where A' is the normal fonn of A. This follows from the facts

(1) that no reductions inside A can cause ERRORs since A contains no

constants; and (2) (C X) is reducible only if X is in normal form.

Thus, A must have a normal form.

Conversely, if A has a normal form then (CA) is reducib le to

ERROR if C is chosen so that it is applicable only to constants.

89

Thus, applying the alleged decision procedure to (CA)

will yield an answer to the question of whether A has a normal form -

a question which we know to be undecidable (see Corollary 4, Chapter

II) . Therefore, no such procedure can exis t.

Al though this argument depends upon the somewhat peculiar

features of the system and its h- rules, we claim that the same sort of

result would hold for other systems of a similar kind . For example,

the question of whether a LISP S- expression , when evaluated,

results in an error (e.g., car applied to an atom) is also undecidable.

We shall now introduce a type system which, in effect,

singles out a decidable subset of those wfes that are safe; i.e.,

cannot given rise to ERRORs. This will disqualify certain wfes which

do not, in fact, cause ERRORS and thus reduce the expressive power of

the language.

2. The ~ System

The type system is inspired by Curry's theory of functionality [Ill

which be developed in relation to combinatory logic. The purpose of

that work was to formulate a very sunple logistic system as the basis

for any formal logic and to · explicate certain phenomena such as the

paradoxes. Our more mundane goals will permit a considerably less

rigorous development with emphasis on the more pragmatic features of

the theory.

t,

-
90

Syntax

A tYpe expression (te) is either

or a functional ~ which has a domain 'Which is a type expression

and a range which is a type expression

The written representation of type expressions is given by the following

BNF productions.

< type expressions >

< pr i.ma:ry >

< atomic type >

: :=

: :=

< primary > I < primary > - < type expression >

< atomic type >1 (<type expression>)

Semantics

We assume that every type expression denotes a subset of

the tmiverse of discourse and that these subsets are mutually ex

clusive and collectively exhaustive; i.e., that every object in the

universe is in one, and only one, type. This is rather a l arge as

sumption, and we shall refer to it as The Stratification H:ypothesis .

A particul ar type expression may be interpreted by the

following rules:

l. The symbols t
1

, t 2 , ... , denote se ts of

atomic objects (e.g. , numbers, strings, etc.)

2 . If a denotes the set A and I! denotes the set B,

then a - I! denotes the set of all functions

(including partial functions) which map A into

B. That is, fe a - I! means f is a single-valued

subset of A x B.

91

We shall distinguish two . kinds of undefinedness for the

application of one object to

possible results for f(x):

Specifi~ally, there are three

1. If, for some types a and ~' feet - ~ and

xeo: and < x,y> ef for some y then f(x) = y;

i.e., f(x) is defined

2. If, for some types a and ~, fe a- ~ and XtOI but

f or no y is< x ,y> cf then f(x) = w; i.e., f(x)

is !£-undefined

3. If, for!!£ types is it true that fe a-~ and xe(X

then f(x) = ERROR; i .e., f(x) is ~- undefined.

Intuitively, w-undefinedness is the intrinsic kind of

undefinedness associated with non- terminating computations while

E-undefinedness is associated with "type errors."

Let us particularize type expressions to deal with the

arithmetic system described in the previous section. There is just

one atomic type, N (for number); it follows that

Any numeral is contained in N

for all i, addi eN - N

for a ll i, subi eN - N

sum eN - N - N (i.e., N - (N - N))

difference eN - N - N

In addition, ~ might say

(sum 3) eN - N

(AX.sum xx) eN - N

It
'I
ii

I
i

92

On the other hand, (3 2) and (add
2

sub
1

) are E- undefined and are not

contained in any type .

In general, we assume that each constant in the language is

assigned a fixed type. These permanent type assi~nts should re

flect the reduction rules. Specifically, we require that (C1 c2) be

reducible to c3 only if \ ea,.. fl, c2 e: a and c
3

e: ll, for some a and

fl. If these conditions are not fulfil l ed for c
1

and c2 the combination

(C1 c2) is reducible to ERROR.

Returning to the specific arithmetic cons tan ts, we see that

those conditions are fulfilled . The following productions define the

set of combinations , composed solely of constants, which the evaluator

will process without encountering an ERROR.

< legal exprs > : := < number > \ < function > \ sum \ difference

<function> (sum < number >) \ (difference < number >) \

< add > \ < sub >

< number > . . (< function > < number >) I < numeral >

< add > .. add0 I add1 J add_ 1

< sub > .. subo I sub1 / sub - 1

< numeral > .. ·= o I 1 I ... I - 1

93

3. ~ Assignments

The type language and the object language are related through

the notion of the~ assignment, a minor generalization of the type

declaration. Roughly speaking, the assignment of a type expression

to a wfe of the object language is a declaration that the wfe

wil l either be w-undefined , or that its value will bel ong to the set

denoted by the type expression.

A~ assignment for a wfe consists of the association of

a type with every subexpression of the wfe. The type assignment is

valid if it obeys the fo llowing rules , which are motivated by the

semantics discussed above:

1. If s
1

, s
2

are occurrences of the same variable,

and both are free in the same subexpression, then

they are assigned the same type.

2. If Sis an occurrence of a ~- expression (A;>C.M) and

x i s assigned type a and M is assigned type ~,

then S is assigned type a - !l. Thus , we give a

~- expression the natural interpretation as a

function of its botmd variable.

3. If Sis an occurrence of a combina tion (RD) and

is assigned type~, while Dis assigned type a ,

then R is assigned type a-~ -

4. A constant is always assigned its permanent type.

Rules 2 and 3 may be illustrated graphically.

Rule 2:

I

I

94

Rule 3:

In the seque l we shall take type assignment to mean valid

type assignment.

Example 2.

By writing the wfe (Af.Ag.1'.x.f(gx))Q-z.z) in tree form we

can illustrate a type assignment by writing the type expressions beside

each node.

b-<b

z b

Inspection of the picture should reveal that replacement of a and

b by any two type expressions will result in a valid type assignment

95

Example 3 .

Certain wfes admit to no type assignment even if they contain

no constants. The wfe (AX .=) cannot have a type assigrurent.

13

X Ct

In the tree above it is clear that no type expressions o; and j3 can

satisfy Rule 2 for we must have

a "' a - 13

and no type expression can be equal to a subpar t of itself. Notice

that we use_ for equality between type expressions since they are

equal only if identical. This is a consequence of the stratification

hypothesis.

[I

I'
'I

,I
I

96

D. Sufficiency of the~ System

In this section we shall show that the type system is

sufficient in the sense that any wfe with a valid type assignment will

not result in an ERROR when evaluated. This fact will follow from

the demonstration that any wfe with a type assignment will, in a

sense, bequeath a s imilar type assignment to any wfe it can be reduced

to by the evaluator rules. Thus, every stage in an evaluation will

involve a legal wfe.

Suppose E has a type assignment and E' is the result of

a singl e evaluation step upon E (i.e. , e ither a ~ or fl - reduction) .

Consider a type assignment to E' which gilres each subexpression in

E' the type of its father+ in E . We shal l show that such an assign

ment is valid in the sense that Rules 1 through 4 are obeyed.

It should be clear that if the evaluation step was a & -
reduction then the new type assignment is valid. For

becomes

because of our restrict ion on ~-reduction.

Theorem 1:

If E has a valid type ass ignment T, and E' resul ts from

Eby a ~- redu~tion, then E' has a val i d type assignment T' in which

every subexpression is assigned the same type as its father in E.

'. Rf~all that father is a function associating subexpress ions
in with subexpressions in E. (See Chapter II, section c.)

97

Proof; Assume that a redex of the form 0,.X.M)N in Eis contracted,

yielding E' .

We need only show that the type assignment, T' , is a valid

one, i .e. , that it obeys Rules 1, 2, 3 and 4.

As for Rule 1: Suppose two occurrences of some variable, V,

are free in a subexpression of E'. Consider the largest expression, S,

in which they are both free; either Sis E', the entire expression , or

it serves as the body of a A-expression having Vas its bound variable.

In either case the father s of the two occurrences lllllSt have been free

in the father of S. This is a consequence of the fact that a free

variable cannot be captured by a ~-reduction. Since T was a val id

type assignment, the fathers of these occurrences of V had the same

type. Therefore, they are assigned the same type by T'.

The validity of T' with respect to Rules 2 and 3 depends

upon their being obeyed for every three nodes, A, Band C, which

occur in E' and have the configuration shown below.

If the fathers of A, Band C were in the same relation to

each other in E, then Rule 2 or 3 (whichever applies) must be obeyed

by the validity of T. Thus, we need only consider those cases where

their fathers -were not adjacent in the same way. The only such cases

are when B or C is the son of the rand of the redex contracted or the

son of the body of the rator.

A

j,

11

98

First, let us dispense with the special case 1-b:ere M = x ; i . e . , the

redex has t he fonn (A.X . x)N . Schematic ally, we must have

in E -with t he t-ype assignme·nt shown; and

in E' with each node assigned the type of its father in E.

No" if M ,t x, let B
1

, •• • ,BN (N 2: 0) be t he nodes in M immediately

superior to the free occurrences of x in M.

Suppose the re levant nodes are assigned types as shown be l ow.

X a

Contraction of the redex yields

99

Here each node has been assigned the type of its father.

Since the nodes immediately inferior to A and the Bi in E have the

same types as the nodes inferior to A and the Bi in E, the assigmnent

must continue to be valid with respect to Rules 2 and 3.

Since ~-reduction does not introduce any new constants every

constant in E' is the son of one in E and thus has its proper type.

Hence, Rule 4 is obeyed.

QED

This theorem and the preceding consideration show that the

type system is adequate in the sense that it effectively restricts

the class of wfes to those which will not lead to don't care situations

during evaluation. The system requires that these don't care conditions

be codified as permanent types for all the constants, and that the

reduction rules for constants be compatible with their types. The

substance of the theorem is that ~-reduction is compatible with the

type rules for a ll wfes.

It is to be noted that the adequacy of the type system does

not depend upon the order of reduction employed by the evaluator

(left to right). There are many expressions which cannot have a

type assignment which the evaluator will process without ERROR. For

example, Q,.x.5)(3 1) has no type ass ignment but yields S upon left -to

right evaluation. In general, a wfe is legal (has a type assignment)

only if every subexpression is legal.

100

E. Ar. Algorithm for~ Assignments

We claim that the type checking process carried out by a

compiler for a language such as ALGOL- 60 is analogous to deriving a

type assignment for a wfe. We develop the analogy as follows:

(a) We assume that all the primitive operators like

+ , - etc . are constants with functional types

known 11a. ~ to the compiler.

(b) The declarations (e.g . , real x or ~ procedure

f) serve to assign types t o various nodes in the

tree which are variables.

(c) The compiler endeavors to extend the partial type _

assignment to a complete one and rejects the program

if it cannot.

For our simp l e language , expl icit type declarations are

unnecessary i f the only purpose of a type assignment is to insure that

no ERRORs occur. All that is needed is a check to insure that a

given wfe has at l east one type assignment , and we shall show how

this can be done f airly ef.ficiently. Of course , practical languages

use type declarations for other things such as determining storage

allocation, but we are not concerned wit h these problems here.

The fo l lowing algorithm checks a wfe for potential type

ERRORs by attemp t ing to give it a type ass i gnment. We shall inter

sperse an example with the statement of the algorithm.

a

Assign a distinct type variable, Vi, to each node of the

wfe and write down the equations required by Rules (1) - (4) in the

definition of type ass ignroent .

Example 4.

Consider the wfe

(1'.z.z add
2

x)(fx)

We shall use integers instead of Vi's as type variabl es and

assign them as shown below-

The equations required by (1) are

7 se 9

4 = 10

The equation required by (2) is

2 se4 - 5

The equations required by (3) are

10 = 11 - 8

,j
'1

I!
i

'I
i

·:·1
I
i
J

I
,,

' '
11

·I I

102

8 - 9 - s
6 - 7 - 3

2 = 3 -1

The equation required by (4) is

11 =N-N

Now the problem is simply to discover if there is a

"solution" to these equations; i.e., wnether there are type expressions

T
1

, ... ,T
11

for which the equations are true. A simple iterat ive process

will suffice.

Use any equivalences of the form Vi = Vj or Vi = ti

(i.e., ti is an atomic type) to eliminate Vi from the equations of

the form A = B - C.

If any contradictions appear, halt; there is a type error.

A contraction is any equation of the form ti= t j for i*j or ti= A - B

for any A, B.

Example 4. (continued)

We eliminate 7 and 4 from the equations and rewrite

a. 2 = 10 - 5

b . 10 _ 11 - 8

c. 8 - 9 - 5

d . 6 _ 2. - 3

e. 2 _ 3 - 1

f. 11 _ N - N

103

~

If two equations have the same left-hand side, A - B - C

and A= B' - C', eliminate one and add the equivalence

B1
- B

C' - C

Return to Step 2.

Example 4. (continued)

We note that equations a. and e. fulfill the condition.

Eliminate e. and add

3 - 10

and 1 - 5

Carrying out

a. 2 -

b. 10 =

c. 8 -

d. 6 =

f. 11 -

Step 2' we have

10 - 5

11 8

9 5

9 10

N - N

104

Evidently, no contradictions have appeared, and Step 3 is

no longer applicable.

If the conditions of Step 3 are not met, check all the

equations of the form A = B ➔ C for circularities. For example , the

two equations

vl = v2 ➔ v3

v2 = v3 -+ vl

contain a circul arity requiring that

v1 = (V3 -+ v1) ➔ v3 ; i.e., that v
1

be a proper subpart

of itself. If a circularity exists, there can be no type assignment,

Otherwise, there is at least one type assignment.

Example 4 (concluded).

By disp l aying equations a. - £. in graphical form, we see

that they contain no circularity.

•

105

The type variables, 9 and 5, are unrestrained in tha t we may

· choose any type expressions for them to define a type assignment,

For example, by choosing 9 = 5 = N, we define a type assignment in

which 8 = N - N, 10 = (N - N) - (N - N), etc .

This completes the statement of the algorithm.

Example 5 . Consider the wfe

(;>,x . fxf)

Assigning type variables yields

02 3

7

and (among others) the equations

6 - 5

6 - 7 4

4 - 5 3

which lead to a circularity

6 = 7 - (6 - 3).

i
')''

1:

106

F. Drawbacks of the ~ System

There are many progrannners who f ee l that the type systems of

higher leve l languages , with their attendent requirement that all

var i ables be declared, are a nuisance. Sooner or later, most FORTRAN

programmers f ee l the need to "fool" the compil er t hrough the use of

EQUIVALENCE statements: The use of such devices leaves one open to

such epithets as "bit - twiddler" or "pr ogramming bum. "

We shall endeavor to show that the type system we have im

posed on our s imple language has a genuinely deleterious effect on

its expressive power . While the implications of this for practical

programming languages -are not direct, we claim that certain of their

type declaration requirements in the area of function variables

are closely related to the type system presented here:+

A:n attractive feature of the type- free ~-calculus

is that one may relentlessly abbreviate a given wfe by abstracting

on common s ubexpress ions . In doing s o, we may pass from a wfe with

a type assignment to one with none.

Example 6 . Suppose a particular language has two atomic types, N (for

number) and S (for character string). Further, suppose square is a

+ A FORTRAN EQUIVALENCE statement allows one to ass ign two distinct
variables to the same storage location• By letting one variable have
type integer and the other have type real, one can treat the contents
of the location as either kind of number.

*significantly, ALGOL- 60 does not r equire full declarations of function
var iables; but two recent languages , ALGOL- 68 [18] and BASEL [19] de re
quire that every function designator (i.e . , variable) have its domain
and range types declared .

107

function of type N-+ N and trunc is a function of type S -+ S. Then

the wfe

(. .. square (square 5) ... trunc (trunc "ABC") ...)

may be abbreviated to

(>-. twice . (... twice square 5 . . . twice trunc "ABC" ...))

(M .A-X.f(f x))

Now the second expression cannot have a type assignment

because twice appears in contexts where it must have both of the

types

(N-+ N) -+ (N -+ N) and (S -+ S) -+ (S -+ S) .

Example 7 . The wfe Y = >--f.(>--h.f(hh))(>-.h.f(hh)) obviously cannot have

a type assignment as i t contains a subexpression (hh). (See Exampl e

2.) This is rather significant since Y is used to effect recursive

definitions.

The most revealing fact about the effect of imposing a type

system is given by the following:

Theorem 2.

If a wfe has a type assignment, then it has a ~-normal form.

Proof: Assume a type assignment has been made to E. For any ~-redex

in E define the degree of that redex to be the number of " -+ "s in the

type expression assigned to its rator.

If E contains a ~-redex of degree m and no ~- redex of greater

108

degree, contract a redex (r,,x.M)N with degree m such that N contains no

other redex of degree m. Evident ly, such a redex can always be fotmd.

(Choose the right-most redex of degree m, for example .)

Now we show that the resulting expression, E' , must have

one less redex of degree m than E does.

Any redex, (,..y .K)L in E' must be the son of a combination

in E. The rator of that combination is either

or

or

(1) a A-expression

(2) a variable

(3) a combination

In case (1) the father itself is a redex. If it is a redex

of degree less than m, its son also has degree less than m. If it has

degree m, then it did not occur in N and therefore has only one son

(namely, (Ay .K) L) . Thus, since the redex contracted, ()l.x.M)N, has

no son, there is one less redex of degree m wb.ose father was a redex.

In case (2) a A-expression has replaced a variable in a

combination. Since only free variables of Mar e replaced by the con

traction, the redex must have had the following form:

a

K

and its contraction is of the form

G~
~

0 0

•

109

Now since a contains fewer " ➔ 11 s than a ➔ ll, this redex in E' must

have degree less than m.

In case (3) a ~-expression has replaced a combination. Since

!! -contraction replaces only one combination in an expression, namely,

the redex itself, the redex (~.M)N must be a rator of another com

bination. There are two cases to consider: First, M may be a

~-expression so its imnediate context appears as follows:

X

and its contractum is of the form

y K

Since ll contains fewer " ➔ "s than a ➔ ll, this redex in E '

must have degree less than m.

In the second sub - case of (3), M may be x, (Le., "-'<-M ., AX.x)

and N - ~y . 10. Schematically ,

¾

110

and its contract1.nn has the form

y

Since ex contains fewer " ➔ "s than cx➔CX the new redex must have

degree less than m.

Thus, we can reduce any expression possessing a type assign

ment to ~- normal form by choosing the re dex according to the afore

mentioned rule at every stage. Notice that redexes with degree less

than m may increase at any stage, but we will eventually reach a stage

where m;l and thus eliminate all the remaining redexes.

QED

Corollary 2. If a wfe has a type ass ignment, then all its sub -expressions

have a ~- normal form.

Proof. Illll!1E!diate, since each subexpression must have a type assignment.

This result was proved by Curry in his theory of functionality.

The proof here is quite different and was arrived at independently.

This theorem illustrates that imposing the type system on

the A-calculus restricts its power in a quite significant way. Not

only do we eliminate the possibility of E- undefinedness through don't

care situations, we a l so exclude non- terminating computations, or

111

w- undefinedness, from the system. The colloquialism "throwing out the

baby with t he bath-water" seems appropriate here ; our efforts to make

the language safe have made it too weak to be universal .

l

ll2

G. An Extended System

In order to add perspective to the treatment of types

presented in the foregoing, we briefly out line an extended language

and type system.

The formal syn t ax is extended by adding several operators

(see Chapter II, section A) to the system. In addition to A, y,

the variables and the constants we have the following operators :

if with degree 4

rec with degree 1

, with degree 2

h with degree 1

! with degree 1

switch with degree 3

tagl with degree 1

~with degree 1

To specify the written representation of expressions in

volving these new operators, we give the BNF for a fully parenthesized

wfe .

< wfe >

(<wfe> <wfe>) I (combination)

(A <var iable>. <wfe>) I (/1. - expression)

UJ. <wfe> = <wfe> then <wfe> e lse <wfe>) I (condit ional)

(.!.!:£ <wfe>)

(<wfe>, <wfe>)

(!! <wfe>)

I (recursion)

I (pair)

I (head selection)

113

(E, < wfe >)

(switch < wfe > into

(tagl < wfe >

(tail sect ion)

< wfe > or< wfe >)j (switch)

(tagr < wfe >

<variable> I< constant>

(tag left)

(tag right) ,

We shall present and discuss the type rules and reduction

ru-les for the new constructs seperately.

1 . Conditionals.

The type constraints on

(if A= B then L else R)

are depicted below

That is: A and B must have the same types while L, R, and the entire

expression must have the same type.

A conditional expression is reducible if both A and Bar e

in normal for m with respect to all other reductions. If A and B

are identical, then it is reducible to L, otherwise, it is reducible

to R.

The rationale for the type rules is as follows: Requiring

that the expressions A and B have the s ame type reflects a prejudice

n

114

that only objects of the same sort can be compared. It also allows

an implementation to choose the same r epr esentat ion for objects of

different type and still be able to carry out the test. It is also

reasonable to require a to be an atomic type; but we do not bother

to do so . Tne requirement that L, R and the if node share a common

type is simply to assure that the type assignment is preserved by a

reduct ion.

2, Recurs ion. The type rule for (~ E) is shown below

That is, E must be a function type with identical domain and range, a,

and the~ node must have type a

The reduction rule is: ~ E) may be repl aced by (E ~ E)) .

Pic t orially

becomes

Thus, ~ E p l ays the same role as YE in the type- free A-calculus. It

introduces the possibility of a wfe with a type assignment but no

normal form . Not ice that the type assignment is preserved by the re

duction rule.

115

We introduce a new kind of type expression, the cartesian

product . If A and Bare type expr essions, then Ax Bis a type

expression . This type corresponds to McCarthy's cartesian product

in [1~. The type rules for pairs, head- selections and tail- selections

are depicted below.

cf.S,
The reduction rules are

~(A, B) becoo,es A

!(A, B) becomes B

X fl

Hence a type assignment is preserved under these reduction rules.

4. Switches and Tags

The mechanism presented here is intended to restore some of

the freedom found under a type- free system. It allows one to declare

a variable with an "ambiguous type" and test it dynamically. It is our

version of McCarthy's disjoint union (17] and the union of ALGOL-68 [18]

and BASEL [19) .

First, we introduce a new type . If A and B aye type expressions,

A+ B, the join of A and B, is a type expression. The type rules

governing switch statements and~ statements are depicted below-

G j:1--+,r

The reduction r ules are

and

~
tagr~ & ~~~

116

becomes

becomes

,·I

117

Intuitively, a switch operator takes a tagged object, x and

two fnnctions, F and G. It applies F to x if x was tagged with tagl.

It applies G to x if it was tagged with tagr. Thus , it is possible

for x to be of different tYPes at differ ent times .

For example , if x were of type integer and strings, the

expression

switch x into ("-Y. y+l) ~ length

would have type integer (assuming length e string ➔ string).

S. Properties of the Extended Language

If we define the father function for each of the new kinds of

reduction in an appropriate way it is easy to prove an extension to

Theorem 1. Specifically, if a wfe in the extended language has a type

assignment then any wfe that is reduc ible to has a type assignment in

which each son has the type of its father .

It should also be clear that the type assignment algorithm of

section E can be extended to account for the new types and type rules.

(We continue to assume that type expressions are equal only if identical.)

Any wfe containing the~ operator obviously does not have

a normal form since reduction of ~ E) creates a new occurrence of~ E).

Thus no extension of Theorem 2 holds . If a wfe contains no occurrence of

rec and has a type assignment, we believe that it will have a normal form;

but we are not able to prove t his at present:

+ The argument of Theorem 2 cannot be extended to wfes containing conditional s
since t ypes of redexes inside of the test part at a conditional are effectively
de-coupled from the type of the conditional expression itself.

118

H. Summary

a. The question of whether a given wfe wi l l cause an ERROR

when evalua~ed is undecidable.

b. Imposition of a "reasonable" type declaration system on

the language defines a decidable subset of wfe's which

do not cause ERRORs.

c. Explicit declarations are not required to carry out the

type checking algorithm.

d. The subset does not contain many useful wfes that would

not cause ERRORs, most notabl y Y or any other wfe not havi ng

a normal form.

e. Some of the power of the language can be recovered while

retaining the type system by introducing the special operator,

CHAPTER V

Conclusions

A. Support for the Thesis

Our contention that recurs ion and type declarations can be

given reasonable semantic interpretations is vague but not vacuous .

To be sure, the reasonableness and adequacy of a semantic model are

always debatable; but we are happy to defend the interpretations pre

sented in the foregoing as being reasonable and fairly successful in

reflecting the mechanisms in question.

We claim that the notion of a fixed-point of a functional is

natural and that an operation on functional s which produces fixed -

points is conceivable, if not obviously computable. The main contribution

of Chapter III is to establish a semantic characterization of the fixed

point produced by the operation corresponding to Y, an obviously computable

operation. Specifically, we i ntroduce the relation of extension(::,)

between wfes and show how it is related to the simpler idea of one

function containing another (Theorem 3, p. SO). We then show that YF

is the minimal or "worst" fixed - point of Fin the sense that any other

fixed - point of is an extension of it (Co r ollary 7(a), p. 68) . The

apparent lack of a natural set-theoretic model for the ~ -calculus pre

vents us from presenting a more precise interpretation of YF.

The relevant (to our thesis) postulates of the type system

presented in Chapter IV are:

119

120

1 . Types are sets of values.

2. A declaration is a statement that a particular variable

(more generally, an expression) assumes values only

from a particular type .

3. The universe of values is partitioned into atomic types,

function types, functional types, etc . ; i.e. each value

belongs to one and only one type . (The Stratification

Hypothesis)

Postulates land 2 are neither original nor controversial.

We claim that they constitute a quite reasonable interpretation of type

declarations as found in extant programming languages. Postulate 3

is implicit in any language which calls for declaration of the domain

and range of function variables. It appears to be the simplest general

ization of the assumption that an object cannot be both a function and

an atom.

Therefore, we construe the initial part of Chapter III (sections

A through G) as a rational construction of a l anguage with type declarations

from the type- free A-calculus and the aforementioned postulates. This

construction is shown to be lacking in section F, especially by Theorem

2 (p.107), which shows that the type system makes the A-calculus an

uninteresting programming language; i.e. one without non-terminating

computations.

Rather than reject the postulates we adopt the simple expedient

of introducing recursion by fiat, with the new operator rec (p.114) .

This allows the possibility of non- terminating computations. (The other

121

extensions are made for less vital r easons, mainly to add per spective .)

This extension of the operators is not entirely without semantics . Indeed,

the results of Chapter III provide a natural way of interpreting~ F) -

precisely the way we interpret (Y F). The only distinction is that~

denotes no object in a universe of discourse while Y migh t , if we could

think of a suitable universe. The expression~ F), however,~ be

interpreted in the stratified universe: if Fe a-,a then(~ F)e a and is

the minimal fixed point of F .

To conclude: we assent that the analyses of recursion and type

declarations develop interpretations that are:

1 . Semantic in the sense that they relate expressions to

objects in a reasonable universe.

2 . Adequate in that they reflect the purely mechanical

definitions of the notions.

B. Directions for Future Research

We confess that the work of Chapter IV is only partially directed

at the semantic analysis discussed above. We are interested in more

concrete problems associated with static type checking. Our work has

suggested a few alternate possibilities for the design of type declaration

systems, and we outline chem here. Each involves rejections or modifications

of the three postulates presented in section A above.

l. overlapping~

Requiring each object in the universe of values to belong

to only one type seems arbitrary; this has been pointed out by Landin

(in personal communication). We relax postulate 3 as follows: Tbe

122

universe is still stratified in the sense that atoms, functions, etc.

are distinct, but the types at any level may intersect . For example,

certain atomic types such as real and integer may share members (e.g . 3)

and certain functional types such as integer - integer and real - real

may share members (e.g . the function abs, for absolute value).

We may now consider additional operations on types such as

union (v) and intersection (f\). Declaring that variable x s real v string

would mean that the value of x would either be a real or a string at

any time. Declaring that a variable abs s integer - integer" real - real

would mean that abs was a function which maps integers into integers and

reals into reals.

The rules for type assignments (p.93) can be relaxed. Specifically

we might restate rule 3 to require only that certain inclusion

relations obtain between the function, argument, and result of a combination.

The usefulness of such semantic revisions of the type system

depends on our ability to devise the appropriate type-checking algorithm

to match the semantics. There seems little point in devising a declaration

language which cannot be processed by a type-checker.

2. Circular~

We see no pragmatic drawbacks in permitting the circular

type expressions which were explicitly disallowed by Step 4 of the type

assignment algorithm (p . lOQ). Examination of the proof of Theorem

(p.96) reveals that it was unnecessary to assume that the type

expressions used in the type assignment were finite, (i.e., non- circular).

Thus, it appears that a wfe with a type assignment involving circular

type expressions will not cause errors.

123

We have only limited intuition about what kind of an object

a circular type express ion might denote (possibly, a set of functions,

some of which have themselves as arguments and values) . Circular

types are difficult to reconcile with postulates 1 and 3, but squeamishness

on semantic grounds seems counter- productive here.

If we permit circular type expressions, Y can be given the

type assignment shown below

f

where~= B - a . It is interesting to note that the top - most node does

not have a circular type since it involves only a .

· The usefulness of circular types is more obvious if we consider

cartesian products and joins as defined in t he extended language (p .).

We need the circular type

S = A + SxS

to descr i be LISP $-expressions (which seem to have become the sine~ .!!2E:

for type description systems). We simula te S- e.>..7>ressions as follows:

write tagr(x,y)

write h X

write ! X

for

for

for

cons [x;y]

car [x]

cdr [x]

To create an "atom" f r om any object, x, write tagl x.

1.

124

The LISP function definition

ff[x] = atom [x] - x ; T - ff [car x]

can then be rendered as

ff = r ec (Af . AX . switch x into (Ax . x) or ('-X . fQ!x)))

We disp lay the corresponding type assignment below .

S=A+SxS

SxS - A

------ A sxs Bs
I 0 SxS

Allowing circular func tional types does not solve a ll prob l ems .

For example ,

(Ax . xx) twice square 3

r educe s to

square4 3

but the revised type assignment algorithm will still r eject i t , reaching

a contradiction of t he for~ N N - N.

3 . Programmers' Polymorphic Funct ions

This term was coined by Chris topher Strachey [26] t o descr ibe

func tions such as twice of Example 6 . The problem is: design a language

and type system in which a progr ammer may define func tions whose para

meters may have different types for dif ferent calls of the function .

125

To do so we must reject pos tulate 2 .

A simple approach to a solution of this problem is based upon

the observation that a wf e which cannot be given a typ e a ssignment is

sometimes r educible to one that can.

A type checking procedure which would admit certain polymor phic

function definitions would be the following:

1 . Perform a complete reduction relative t o all the ~-redexes

in the wfe.

2 . Apply the type a ssignment algorithm of Section E to the

r esulting wfe .

For example, consider the wfe

(;>,twice . (twice square 3),(twice trunc "ABC"))(;>,.f.4.f(f x))

A single reduction yields

(;>,.f. ;>,.x . f(f x)) square 3, (;>,.f.1'.x . f(f x)) trunc "ABC" ·

which may be given the type assignment NxS .

What can we say about the class of wfes that would be accepted

by this revised type- checking algorithm? (E . g . does theorem 1 of

Chapter l!V still hold?) How can the algor ithm be made more efficient ?

We l eave these question s for future investigation .

4. Completely Dynamic~

The most rad ical approach consists in rejecting t he notion

of static type checking entirely.

A persuasive case can be made for l anguages which do not

attempt to constrain the values of var iables in any way. Thr ee such

languages a r e LISP, PAL [20], and BCPL [21] . To be sure, each of these

-

126

l anguages has distinctly different types of objects i n its univers e of

values as evidenced by the explicitly specified undefinedness of certain

primitive operations (e . g ., car applied to an atom in LISP). We do not

argue that t he programmer should not know what kinds of values the

variables in his program will assume, but we ca nnot think of a formal

type declaration system adequate to describe .many of the possibilities .

One remedy for this problem is the development of more elaborate

and expressive type description f ac ilities. The wo r k of Perlis and

Galler [22], Standish [23], van Wijngaarden [18], and Fischer and Jorrand

[19] include such developments. While the systems presented incorporate

many interes ting ideas, none allows the freedom of a language without

declarations .

How does one implement a language without type declarations?

We cannot think of any entir ely satisfactory answer to this que s tion .

Two extreme alt e rnatives are

a. Write an interpreter for the language which detects type errors and

r epor ts on them when they occur (PAL).

b. Wri te a compiler and al l ow t ype errors to cause implementation

dependent responses (BCPL).

The fi r st alternative makes a n implementation inefficient

while the second makes programs difficult to debug and the trans fer of

programs between machines a dubious venture.

Finding a reasonabl e dist ribution of type - checking res ponsibility

between the programmer, the compiler and the run- t ime system calls for

c reat ive language design . We consider this a difficult but i mportant

area fo r f urthe r r esear ch .

127

c. Remarks

The ideas sketched above illustrate the advantages and shortcomings

of semantic analysis as a tool for language design. The possibility of

overlapping types is clearly suggested by the semantics developed fo r

type declarations. By thinking of types as sets we open the way fo r

many extensions of the type system which would not occur to us were we

to restrict ourselves to pur e pragmatic reasoning . The problem remains,

however, of mechanizing the set - theoretic extensions-- a highly non-

trivial problem. In contrast, the suggestions for circular types and

polymorphic functions are almost entirely derived from our understanding

of the mechanics of the type system. We have no obvious semantic basis

to guide their development, but we have few doubts about our ability

to implement them as described. If these ideas contribute to a useful

type declaration system it is folly to ignore them simply because we cannot

concoct semantics to explain them. Such a policy would be like that of

a caveman who avoids the use of fire until a suitable fi re - god is

identified or a baseball pitcher who eschews curve- bal ls until the aerodynamic

principles are established.

We believe that the art of programming language design is

forwarded by both semantic analysis and pragmatic innovation. Our

dissertation follows the former approach, which heretofor seems to have

been neglected in the pursuit of bigger and better languages . In a

sense, we have been led a merry chase by the ad hoc inventors of languages;

but we have enjoyed the exercise!

[l]

[2]

[3]

[4]

[SJ

(6]

[7]

[8]

[9]

[11]

[12]

128

REFERENCES

Church, A. , The Calculi of Lambda Conversion, Anna ls of
Mathematics Studies , No .6, Princeton, N.J . , Princeton
University Press, 1941 .

Perlis, A. J., General Discussion at Close of a Working
Conference on Mechanical Language Structures, CACM, Vol. 7 ,
No . 2, February, 1964 , p. 136.

Quine, W. V. O. , Word and Object , The M. I.T. Press,
Cambridge, Mass . , 1960.

Landin, P . J ., "A Co rrespondence between AI..COL- 60 and
Church's A- notation," CACM, Vol. 8, February and March,
1965, PP• 89- 101 , 158- 165 .

Landin , P . J., "The Next 700 Progra=ing Languages , 11 CACM,
Vol . 9, No. 3, March, 1966, pp. 157- 164.

Morris, C. W., "Foundations of the Theory of Signs, 11

Internationa l Encyclopedia of Unified Science, Vol . 1,
No . 2 , University of Chicago Press , Chicago, 1955 .

Koestler, A. , The Ghos t in the Machine, MacMillan, New
York, 1968 .

Wharf , B. L., Language, Thought and Realty : Selected
Wri tings of Benjamin Lee Wharf, (J . B. Carrol, ed.),
The M. I .T . Press, Cambridge , Mass . , 1956 .

McCarthy, J., et al., LISP 1:..:.2. Programme r•~ Manual , The
M.I.T . Press, Cambridge, Mass., 1962.

Newell, A., ed. Information Processing y_ Manual, Prentice
Hall, Englewood Cliffs, N.J ., 1961 .

Curry, H. B. and Feys, R., Combinatorv Logic, Nort h
Holland, Amsterdam , 1958 .

Rogers, H. , Jr . , Theory of Recursive Functions and
Effective Computability, McGraw- Hill, New York, 1967.

129

[13] Landin, P . J., "A ;,.._- ca lculus Approach," in Advances in
Programming and Non- numerical Computation, Permagon
Press , New York, 1966 .

[14] Scott, D., "A System of Functional Abstraction, " Unpublished
Notes, Stanford University, September, 1963.

[15] Bohm, "The CUCH as a Formal and Description Language ," in
Formal Language Description Languages for Computer Programming,
T . B. Steel, Ed., North Holland , Amsterdam, 1966 .

[16] Kleene, S. C. , Introduction to Metamathematics, D. Van Nostrand,
Princeton, N.J., 1950 .

[17] McCarthy, J . , "A Basis for a Mathematical Theory of Computation,"
in Computer Programming and Formal Systems (P. Braffort and
D. Hirschberg, eds.), North Holland, Amsterdam, 1967 .

[18] Van Wijngaar den, e t al ., Draft Report on the Algorithmic Language
ALGOL 68, Mathematish Centrum, Amsterdam, 1968

[19] Fi scher, A. E. and Jorrand, P., "Basel: The Base Language
for an Extensible Language Facility," Computer Associates, Inc . ,
Report CA- 6806- 2811, Wakef ie ld, Mass . , 1968 .

(20] Evans, A., "PAL - A Reference Manual and a Primer, " M.l.T.,
Department of Electrica l Engineering, Cambridge, Sep tember, 1968 .

[21] Richards, M., "BCPL Reference Manual," Project MAC Memorandum
M- 352- 1, February, 1968 .

[22] Galler, B. A. and Perlis , A. J., "A Proposal for Definitions in
ALGOL," CACM, Vol. 10, No . 4 , April, 1967, pp. 204- 219.

[23] Standish, T . A., "A Data Definition Facility for Programming
Languages," PhD . Dissertation, Carnegie I nstitute of Technology,
Pittsburgh, Penna., 1967 .

[24] Bohm , C. , "Alcu.n.e Proprieta Delle Forme !l -7(_- normali nel
A- K- calcolo," Consiglio Nazionale Delle Ricerche , No. 696 ,
Rome, 1968 (Italian) .

[25] Wozencraft, J . M. , "Programming Linguistics," Classroom
Notes (6.231), M.I.T., Department of Electrical Engineering,
Cambridge, Mass ., 1968 .

[26) Strachey, C,,"Fundamental Concepts in Programmi ng Languages", NATO
·Conference , Copenhagen, 1967 .

Biographical Note

James H. Morris, Jr.was born in Pittsburgh, Pennsylvania, on October 11,
1941. He attended Shady Side Academy there, graduating in 1959 . He
received a B. S. in mathematics from Carnegie Institute of Technology
where he was the recipient of a George Westinghouse Scholarship .

At M. I . T. he held a National Defense Education Act Fellowship for three
years and a research assistantship at Project MAC in the following years.
He received a master's degree in mana gement from the Sloan School of
Management in 1966 .

In September, 1967, he married the former Susan A. Schumacher of Pittsburgh.

Mr. Morris is a co- author of On-~ Computation and Simulation : The
OPS-1 System, published by the M. I .T . Press.

He is presently an assistant professor of Computer Science at the University
of California at Berkeley .

131

