
 1

MIT LCS Technical Memo: MIT-LCS-TM-637

Scalable Packet Classification

Using Bit Vector Aggregating and Folding

Ji Li, Haiyang Liu, Karen Sollins

MIT Laboratory for Computer Science
Cambridge, MA 02139

{jli, hyliu, sollins}@ mit.edu

April, 2003

Abstract--- Packet classification is a central function for a
number of network applications, such as routing and firewalls.
Most existing algorithms for packet classification scale poorly in
either time or space when the database size grows. The scalable
algorithm Aggregated Bit Vector (ABV) is an improvement on
the Lucent bit vector scheme (BV), but has some limitations . Our
algorithm, Aggregated and Folded Bit Vector (AFBV), seeks to
reduce false matches while keeping the benefits of bit vector
aggregation and avoiding rule rearrangement. It combines bit
vector aggregation and folding to achieve this goal. Experiments
showed that our algorithm outperforms both the BV and ABV
schemes in synthetically generated databases.

Keywords--- packet classification; scalability; bit vector;
aggregation; rule rearrangement; folding

I. INTRODUCTION

Packet classification puts packets into classes based on
their headers. There are several network services that require
packet classification, such as policy-based routing, service
differentiation and firewall management. For these services, it
is necessary to determine which rule and action to apply to an
arriving packet in order to decide which action to take with
respect to the packet. For example, for an dubious packet
arriving at a firewall, the corresponding action may be to
discard the packet or trace back to the source.

Although the processing associated with these rules may
vary according to services, all packets arriving at the service
point need to be classified into equivalent classes based on
their headers. The classification is performed by a packet
classifier. The packet classifier has a rule database, in theory,
one for each type of packets with different headers. In this
paper, we focus on how to classify packets and not the actions
taken for each class.

There usually are some requirements in processing a packet.
For instance, in a router, forwarding at wire speed requires
forwarding minimum sized packets within the time it takes to
arrive on a link. There are two reasons that the processing
speed is crucial. First, the router may not be able to provide the
promised service to applications such as real-time video

without satisfying the minimum processing speed requirement.
Second the router may have to drop packets due to buffer
overflow. Consequently, the processing speed is the most
important metric for packet classification. As memory access is
one of the most time -consuming operations in the processing,
the number of memory accesses becomes the most important
criterion in evaluating the efficiency of a packet classification
algorithm.

In the initial stages of Internet, most rule databases were
used for firewall management , and the database size was
relatively small, with no more than a few thousand rules [5].
Subsequently, the introduction of differential service required
routers to classify packets into several distinct classes based on
the IP headers. For a core router, this is likely to result in a large
rule database containing about ten thousand rules. With the
development of the Internet, the size of rule databases can only
grow with time. Therefore, we conclude that scalability is also
an important feature for packet classification algorithms.

In this paper we propose the Aggregated and Folded Bit
Vector algorithm, a scalable algorithm for packet
classification. Our algorithm combines aggregating and
folding to reduce both false matches and the number of
memory accesses. This contrasts the Aggregated Bit Vector
algorithm [1], which uses bit vector aggregation and rule
rearrangement to classify packets. Experiments show that our
algorithm outperforms ABV in synthetically generated
databases.

The rest of the paper is organized as follows. In section 2
we introduce previous work on packet classification and their
scalability. Section 3 describes the Lucent bit vector scheme
and the ABV in detail since our AFBV algorithm borrows
several ideas from them. Section 4 proposes our AFBV in an
attempt to address the shortcomings of the rule rearrangement,
which avoids the cost of rule rearrangement while keeping the
benefit of aggregating. Experimental results are presented in
Section 5, demonstrating measured improvements. Section 6
concludes our work.

II. PREVIOUS WORK

Most previous work in packet classification either takes

 2

linear time to sequentially search through all the rules in the
database, or uses a linear amount of parallelism. The simplest
algorithm evaluates each rule sequentially until a rule that
matches all the headers of an arriving packet is found.
Obviously, it is not efficient or scalable: its time complexity is
linear to the number of rules in the database.

The Lucent bit vector scheme (BV) [2] is one such
approach. The idea in this work is to search for rules that match
each field of the packet header first, and represent the result as
bit vector of rules that match the packet in the corresponding
field. Then the rules that match the header can be obtained by
intersecting the bit vectors for all relevant fields. The scheme
can facilitate the classifying process by accessing a large
number of bits in one memory access in hardware, but it is still
a linear scheme and not scalable.

The RFC algorithm [3] proposed by Gupta and McKeown
is a multi-stage classification algorithm. It is based on the
observation that the classifiers contain considerable structure
and redundancy that can be exploited. But it consumes much
storage when there are several fields in the rule database.

Srinivasan et al [11] described grid-of-trie and
cross-producting for solving the least cost matching filter
problem. Grid-of-tire is specialized for two fields in the packet
header, and achieves logarithmic time and linear storage.
However, their algorithm is limited to two fields in the packet
header.

 Based on the observation that set bits are very sparse in
most bit vectors, Baboescu and Varghese [1] introduced the
novel notions of bit vector aggregation and rule rearrangement
in their ABV algorithm to make the Lucent bit vector scheme
scalable. This scheme uses aggregation to compress bit vectors
and rule rearrangement to reduce false matches caused by bit
vector aggregation. However, the rule rearrangement leads to
several problems, which, we believe, can be avoided without
reducing the benefits of bit vector aggregation. We will discuss
it in detail in the following sections.

In the next sections we investigate the Lucent bit vector
scheme and the ABV scheme. We follow this with the design
of a novel scheme to reduce false matches and thus memory
accesses – the Aggregated and Folded Bit Vector algorithm.

III. LUCENT BV AND ABV

We introduces our new scheme by first describing the
Lucent bit vector algorithm and the ABV algorithm as our
algorithm inherits their basic ideas of bit vector and
aggregation.

A. Lucent bit vector algorithm

A rule database usually consists of a sequence of rules, each
of which consists of k values corresponding to k fields in the
packet header respectively. The rule with lower order has
higher priority. Table I shows a simple rule database with only
9 rules with 2 fields per rule.

The Lucent bit vector algorithm divides the matching
problem into several independent sub-matching problems, one
for each field. That is, for each field of an incoming packet, the

Lucent bit vector algorithm searches the corresponding field of
rules in the rule database and finds all the rules that match that
field. Subsequently, all the results are combined together to
find the first rule that matches all the fields of the packet.

The Lucent bit algorithm can be implemented with a trie
structure. A trie is constructed for each field in the rule
database to show the rules that match a prefix. Each node in the
trie denotes a prefix and is associated with a bit vector. The
prefix is specified by the path from the root to the current node
in the trie. The length of each bit vector is equal to the number
of rules in the database, and a set bit in the vector means that
the rule in this position matches the current prefix. When a
packet arrives, the bit vector for each of its fields is obtained by
searching the trie for this field under the packet’s field in the
header. After obtaining all bit vectors, and intersecting them,
the first one in the resulting bit vector is the position of the first
rule in the database that matches the packet header. Fig.1
shows the two tries constructed according to the two fields in

0

0 0 1

1

001000011 110010100 000101001

000010100 000000001

Trie of field 1

Figure 1. Lucent BV tries associated with the

rule database in Table I

0

0 0 1

1

010000111 100000100 001001000

000000100

Trie of field 2

000000000

000110000

1

TABLE I. A RULE DATABASE EXAMPLE

Rule Filed 1 Field 2

R0 00* 00*

R1 00* 01*

R2 10* 11*

R3 11* 10*

R4 0* 10*

R5 11* 11*

R6 0* 0*

R7 10* 01*

R8 1* 01*

I
/~

~~~-II 1~1 _ 



 3 

Table I.  

The Lucent bit vector is a linear scheme, but it provides a 
good idea for further improvement. 

B. ABV algorithm   

In the ABV algorithm the authors made two major 
observations: firstly that the set bits in bit vectors are sparse, 
and secondly that a packet matches only a few rules. The two 
key ideas were introduced in ABV to take advantage of these 
two observations: rule aggregation and rule rearrangement. 

The purpose of rule aggregation is to construct a reduced 
size bit vector that captures partial information from the whole 
bit vector. This allows us to guess whether a rule applies 
without comparing the bits in the original bit vectors. 
Furthermore, the construction of the aggregated bit vector 
should be efficient. In ABV, an aggregation size A is selected 
to optimize the performance of the algorithm. This means that a 
new aggregated bit vector is defined containing one bit for each 
group of A bits in the original bit vector. The aggregate bit will 
be set if any of the A bits in the original bit ve ctor are set to 1; 
otherwise the bit will be cleared. Aggregation can be 
performed recursively.  

While aggregation does often reduce the number of 
memory accesses, it also leads to false matches, as we cannot 
determine which bit or bits in the original bit vector have led to 
a 1 in the aggregated bit vector. The worst case occurs when a 
false match occurs for every aggregate bit. 

To reduce the probability of false matches, the rules are 
rearranged before aggregation so that multiple rules matching a 
specific prefix are placed close to each other. This is done by 
first sorting the rules according to one field. Then the rules are 
grouped together according to the length of prefixes within that 
field in a non-decreasing order. Next, rules are sorted by prefix 
value within each group, thereby grouping together all filters 
with the same prefix value. Subsequently, the rules are sorted 
by the other fields in each group with the same prefix. This 
process is repeated recursively. 

Table II shows the database in Table I after rule 
rearrangement. Fig.2 shows the new tries obtained from Table 
II. The aggregate bit vectors are shown before the original but 
sorted bit vectors. 

IV.  AFBV:  

AGGREGATED AND FOLDED BIT VECTOR ALGORITHM 

The bit vector aggregation ideally can create a logarithmic 
algorithm, which is more scalable than the Lucent Bit Vector 
algorithm. Realizing vanilla bit vector aggregation performs 
poorly when there are a large number of false matches, 
Varghese and Baboescu [1] tried to manipulate bit vectors with 
rule rearrangement, which suffers various drawbacks in the 
following.  

• Expensive “all-match” rule matching. Rule 
rearrangement makes it necessary to find all matching 
rules and choose the one with the lowest cost. This 
property does not affect the number of memory access in 
the worse case, but significantly increases the average 

cost, which, in turn greatly reduces the classifier 
throughput. If we can avoid rule rearrangement, we will 
only need to do first match, as compared to all-match. 

• Large variance in performance. ABV provides a simple 
sorting method. But this sorting scheme separates prefixes 
with their sub-prefixes. For example, 0* and 000* will be 
separated if there is a 1*. It is hard to find a systematic way 
to choose a generally effective rule rearrangement method. 
Furthermore, it is important yet difficult to determine the 
order of fields to sort by in a large rule database with 
several fields. And with more fields, it is hard to tell how 
such sorting will affect the performance. Therefore, the 
performance can vary greatly, depending on the rule 

Figure 2. ABV tries associated with the rearranged rule 

database in Table II (Aggregate size = 3) 

0 

0 0 1 

1 

111: 001001100 110: 110110000 101: 001000011 

100: 110000000 

100: 001000000 

Trie of field 1 

0 

0 0 1 

1 

101: 010000010 110: 100100000 

001: 000000101 

100: 100000000 

Trie of field 2 

000: 000000000 

110: 101011000 

1 

TABLE II. THE DATABASE AFTER RULE   
REARRANGEMENT 

Rule Filed 1 Field 2 

R6 0* 0* 

R4 0* 10* 

R8 1* 01* 

R0 00* 00* 

R1 00* 01* 

R7 10* 01* 

R2 10* 11* 

R3 11* 10* 

R5 11* 11* 

 



 4 

databases and the way that rules are rearranged.  

• Rule mapping back cost. The mapping from rules in the 
original order to the rearranged one must be pre-computed. 
After all the matches are found, matched rules must be 
mapped back to the original order so as to find the one with 
the lowest cost (the rule with the lowest order). This 
requires additional memory accesses, and is expensive if 
there are a number of matches. 

• Preprocessing / update cost. Although rule rearrangement 
is supposed to be done during the preprocessing, it is still 
quite a burden for a large rule database. Moreover, it 
makes rule database update much more expensive since 
the rule order has been changed by rearrangement. 

The above problems motivate us to design a new scheme 
that avoids rule rearrangement but still keeps the benefit of bit 
vector aggregation.  

In this section we propose a novel approach to packet 
classification that makes use of bit vector aggregation and 
folding. Our scheme inherits the bit vector and trie structure 
from the Lucent bit vector scheme and the bit vector 
aggregation from the ABV scheme. Our scheme avoids the 
drawbacks suffered by rule rearrangement by using multiple 
aggregated bits to reduce false matches. 

We use a hash function to compress bits from the  original 
vectors effectively into a small number of bits while still 
retaining a sufficient  amount of information pertaining to the 
set bit position from the original vectors because only those set 
bits are important. This allows us to filter out a large portion of 
false match cases, which cannot be detected by a single-bit 
aggregation without accessing the original bit vector.  Second, 
hashing allows us to trace back to the original set-bit positions 
easily from the hash bits. This property reduces the number of 
memory accesses when there is a real match. Last but not least, 
the hash function will never miss a real match. We investigate 
bit vector folding as the hash function in this paper because it 
satisfies all the  three criteria described above , and can be 
executed at negligible cost. 

A. Bit vector folding 

In the ABV algorithm, A (the aggregation size) bits in the 
original bit vector are aggregated to one bit, indicating whether 
there is any set bit in the aggregate group of the original vector. 
In our AFBV algorithm, in addition to the bit, another f (the 
folding size) bits are used to store the original bit vector in a 
folded form. The f bits are generated by bit-wise OR-ing f 
groups of bits in the A bits. In other words, bits in the original 
aggregation group whose position has the same mod-f value, 
say j, are OR-ed together and occupy the position j in the 
folded vector. (If the last fold has less than f bits, zero padding 
is used to extend the bit vector to exactly f bits). 

This scheme uses f bits (f is much smaller than A) to store 
set-bit information of an A-bit vector. Only set bits at positions 
with the same mod-f value can cause false matches. In ABV, 
set bits at any position can cause false matches. If there is a 
match with the folded vector at position k (0 = k = f - 1), we 
know that  the real match positions in the original bit vector 
must take form of (i · f + k). Finally if there is a real match in 

the aggregation group, the folded vector of this group will 
definitely generate a match, and thus no real match would be 
missed using our folding scheme. This property guarantees the 
correctness of our AFBV algorithm. 

A design option is the granularity of the folding group, i.e., 
the folding range. By now the folding is performed with one 
aggregation group, but the folding range can be a whole bit 
vector (global folding), a single aggregation group (local 
folding), or multiple aggregation groups (regional folding). 
The choice on the granularity depends on the computational 
complexity and the requirement on storage usage. If there is a 
strict limitation on the storage, a global folding may be a better 
choice. Otherwise, single folding or double folding is better 
since they use smaller folding sizes and thus require less 
memory access in each match of the aggregate bit vectors. For 
example, if the length of a bit vector is 2048 and a global 
folding size is 64, the storage used by global folding is only 
1/32 (about 3%) of the original bit vector; if the aggregation 
size is 128 and the local folding size is 16, the storage used by 
the folding is 1/8 (12.5%) of the original bit vector. We can 
also cut down the storage usage in the local folding scheme by 
using a smaller folding size, but this also cuts down the effect 
of the folding since it now carries too little information. 
However, in global folding, the 64 bits must be accessed in 
each matching process while in local folding only 16 bits need 
to be fetched from the storage. Furthermore, the large folding 
size in global folding needs more computation to locate the 
matching positions. Regional folding provides a balance 
between the two extremes. The performance comparison of the 
three methods is shown in the next section. 

The aggregation can be viewed as a special case of folding 
size 1 and then the folding range is equal to the aggregation 
size, as compared with the more general case of folding size f in 
AFBV. Meanwhile, in global folding if the folding size is equal 
to the aggregation size, then folding and aggregation is 
orthogonal to each other. So their combination provides much 
information on the original bit vector. 

B. Multiple Folding 

Besides granularity, the number of foldings is another 
design issue. For one folding group, we can use single folding 
(one folded bit vector for each folding range), double folding 
(two folded bit vectors for each folding range), or even more 
folded bit vectors. The more the number of folding sizes, the 
more information we can carry. Again, our discussion is under 
the same amount of storage. Subsequently, we can use one 
large folding size for a single folding and smaller folding sizes 
for multiple folding. 

The advantage of multiple folding is that it becomes 
increasingly difficult for false matches to survive with multiple 
folded vectors that store the same set-bit position information 
using different folding sizes. This property can help to locate 
real match positions without accessing all bits in the original 
vector. With multiple folded vectors, the possible match 
positions can be narrowed further. The following sections 
show how bit vector multiple folding scheme helps filter out 
false matches and locate real match positions.  



 5 

1) Detecting False Matches  
Fig.3 shows two bit vectors (corresponding to the same 

aggregation bits of two fields) wi th the folding length 48 bits. 

The example in Fig.3 shows that there are several set bits in 
the original bit vector of for Field 1 and Field 2. Therefore, if 
the aggregation size is 48 bits, the intersection of the two 
aggregation bit vector  would indicate there might be a match in 
the original bit vector . In AFBV, before checking the original 
48 bits, we turn to the folded vectors first. Note that the folded 
vector 1 with f = 7 has no match and folded vector 2 with f = 9 
has three matches. Since a real match would have matches in 
folded vectors no matter how the folding is done, we can 
conclude that there is no match in the original bit vectors. In 
this case, we only need to fetch the 7-bit folded vector to 
conclude it is a false match instead of accessing the original all 
48 bits as required in BV and ABV. In multiple folding, we can 
conclude a false match if any of the folding bit vectors, in this 
case, 7 or 9, does not have a match. 

2) Locating real match positions 
Single folding can locate the match positions, but multiple 

folding can greatly increase the locating accuracy. The more 
the number of folding, the more accurate we can determine the 
possible matching positions. But under the same bit vector 
storage, a larger number of folding imply a smaller folding 
size, hence, we need to reach a balance between the folding 
size and the number of folding.  

In Fig.4, both folded vectors have matches at positions 1 
and 4 in folded vector 1, positions 4 and 6 in folded vector 2. 
The positions in the original bit vector 1 that satisfy the result 
are {1, 8, 15, 22, 29, 36, 43} for position 1 in the folded bit 
vector 1 (mod 7 = 1), and {4, 11, 18, 25, 32, 39, 46} for 
position 4  (mod 7 = 4), so the first set S1 = {1, 4, 8, 11, 15, 18, 
22, 25, 29, 32, 36, 39, 43, 46}. Similarly, the positions in the 
original bit vector 2 are {4, 13, 22, 31, 40} for position 4, and 
{6, 15, 24, 23, 42} for position 6, so the second set S2 = {4, 6, 
13, 15, 22, 23, 24, 31, 40, 42}. The intersection of the two sets 
is S = {15, 22}. So only positions 15 and 22 at the original 
vector might have real matches. Therefore, in AFBV only the 
bytes that contain bits 15 and 22 need to be fetched to verify if 
there are real matches. In this example, position 15 is the real 
match we are looking for.  

To locate real match positions, global folding provides 
more information than local folding and regional folding, 
assuming that the storage for each folding scheme is constant. 
For example, suppose that the bit vector is 512 bits, the 
aggregation size is 128 bits, and the memory for the folding is 
32 bits. Then the aggregated bit vector is 4 bits. In global 
folding, the 32 folding bits are used for the whole bit vector 
while in local folding each aggregation group has 8 bits to carry 
the information. If two aggregated bit vectors are 1100 and 
1010, then the intersection result is 1000, so only the first 128 
bits in the original bit vector may have real matches .  In global 
folding, 32 bits are used to carry information pertaining to the 
128 bits while in local folding there are only 8 bits. Therefore, 
global folding gives more information to locate the matching 
positions than local folding, as the intersection of the 
aggregation groups reduces the possible matching positions for 
global folding. However, as we mentioned before, more bits 

are fetched each time in global folding, which reduces the 
performance in case of many false matches in the aggregate bit 
vectors. 

C. AFBV algorithm 

We use local folding in this section to show how the 
algorithm works. In the preprocessing phase, the trie structures 
are constructed, as shown in Fig.5. The number of rules in the 
database is 9, the aggregate size is 9, the folding range is also 9, 
and the folding sizes are 2 and 3. The first line in each node is 
the aggregate bit vector, folded vector 1 and folded vector 2, 
respectively. The second line is the original bit vector. 

Note that not all the bit vectors are necessary. Only those 
bit vectors in which their corresponding nodes that do not have 
two children need to be stored. For example, in Fig.1 the bit 
vector for 1* in the trie of field 1 is not necessary because the 
packet header will not stop at this node but go down the trie. 
Similarly, the bit vectors of 0* and 1* in the trie of field 2 are 
not necessary either. In this way we can save some storage.  

AFBV works in the following steps: 
1. Check two aggregate bit vectors to find the aggregation 

bits where there might be matches in the original bit vector they 
represent. This is the same as ABV. 

2. If matches are found in the aggregate bit vectors, check 
the corresponding folded vectors to see if there is a match. If 
there are matches, go to step 3; otherwise there is no match in 

011000000001000100010000001000100000010000010000 Field 1 

100010000000001000000100000010000000000110000000 Field 2 

Folded vector 1  

F= 7 

0110010 

1000100 
Folded vector 2  

F= 9 

110110111 

100111000 

0000000 100110000 

No Matching Can’t determine 

Figure 3. Multiple folding: Detecting false matches 

011000000001000100010000001000100000010000010000 Field 1 

100010000000001100000000000000000000000010000000 Field 2 

Folded vector 1  

F = 7 
0110110 

1100100 

Folded vector 2  

F= 9 
01011011

10001110

0100100 00001010

N%7 = 1, 4  

N%9 = 4, 6 N=15, 22 

Figure 4. Multiple folding: Locating matching positions 

BB 
I I .____I___. 
n n 

'---------'I I~~ 

BB 
I I I I 

c::::___:___::: 

□q 



 6 

the original bit vectors. 

3. Compute all the possible match positions using the 
matching positions in folded vectors, as shown in Fig.4. 

4. Fetch bits from the original  bit vectors starting from the 
lowest possible match position obtained in step 3, and check 
for is a real match. Only the first match position needs to be 
found. 

AFBV offers the following benefits:  

• Only the first match needs to be found, unlike ABV, where 
all-match is required. This helps to achieve  much smaller 
average memory accesses in AFBV as compared to ABV, 
especially when there are a number of matching rules for 
the incoming packet. 

• AFBV is scalable in terms of the number of matching 
rules. When the number of matching rules increases, the 
rule mapping back required by rule rearrangement 
performs poorly. Since AFBV only needs to find the first 
match, the increased number of matching rules does not 
degrade its performance. 

• No complex pre-processing of rule rearrangements is 
needed. This also speeds up bit vector update when rule 
database changes. Rule rearrangement requires sorting all 
the rules, whose complexity is O(N2).  

• In addition to detecting false matches, folded vectors can 
narrow the possible match positions to a small range, and 
thus effectively reduce the number of memory accesses for 
fetching the original bits.  

• ABV cannot afford a large aggregation size, because the 
greater the size, the higher the chances of false matches 

and the greater the cost of detecting false match. A large 
aggregation size can be used in AFBV since it has the 
folded vectors to filter out false matches to some extent.  

V. PERFORMANCE EVALUATION 

A. Experimental Platform 

For purposes of simulation, we assume the machine word 
size is 32 bits. 

The experiment is based on several synthetic rule 
databases. The rule databases have only two fields. Their sizes 
are: 1024 rules, 2048 rules, 4096 rules, 8192 rules and 10240 
rules. The prefix distribution in each field length is shown in 
Table III. In this table, 32 represents the length of IP address, 
and the prefix length distribution is based on the observation of 
the real rule databases in BGP described in [1]. 16 represents 
the length of port number, 8 represents the length of the 
protocol type, and their prefix length are evenly distributed. 
The databases are randomly generated. 

B. Storage requirement comparison 

Suppose that the number of rules in a database is R, the 
number of bit vectors in the trie is N, the aggregate size of ABV 
is Aabv, the aggregate size of AFBV is Aafbv, the sum of the 
folding sizes F1, F2, … , Fk in ABFV is F, and the folding range 
is B (B = m · Aafbv, 1= m = R / Aafbv).  

The storage requirement of ABV bit vectors is: 

Sabv = N · R+ N · R / Aabv, 

The storage requirement of AFBV bit vectors is: 

Safbv = N · R+ N · R / Aafbv+ N · F · R / B  

     = N · R+ N · R / Aafbv+ N · F · R / (m · Aafb v) 

So the storage ratio of the two algorithms is: 

T = Safbv / Sabv = (1+ (1 + F / m) / Aafbv) / (1+1 / Aabv), which 
depends on the parameters only, not the number of rules in the 
database. 

When m = R/Aafbv, T = (1+1 / Aafbv +F / R) / (1+ Aabv), which 
also depends on the number of rules in the database besides 
those parameters.  

In Table IV, Aabv is fixed to the word size of 32 bits. m  is 
the number of aggregation groups that a folding range covers. 
When the folding range is one aggregate group, i.e., m = 1, 
about 20% additional storage is required when Aafbv = 4 · F, and 
less than 10% is required when Aafbv = 8 · F. When m = 2, about 
10% additional storage is required when Aafbv = 4  · F, and less 
than 5% is required when Aafbv  = 8 · F. Therefore, the AFBV 

TABLE III. PREFIX DISTRIBUTION IN SYNTHETIC DATABASES 

Field Length 32 16 8 

Prefix Length 0-15 16 17-23 24 25-32 

Percentage 1% 8% 35% 55% 1% 
Even Even 

 

Figure 5. AFBV tries associated with the rule 

database in Table I  (Aggregate size = 9, Folding 

range = 9, Folding size = 2, 3) 

1:10:100 

000000100 

0 

0 0 1 

1 

1:11:111 

010000111 

1:10:100 

100000100 

1:11:001 

001001000 

Trie of field 2 

0:00:000 

000000000 

1:11:110 

000110000 

1 

0 1 

1:11:011 

001000011 

1:11:110 

110010100 

1:11:101 

000101001 

1:10:110 

000010100 

1:10:001 

000000001 

Trie of field 1 

0 0 1 

□ DD 

D D 
/ 

□□DD 
I I I I I I I I 



 7 

algorithm does not require much additional storage  compared 
to the original bit vectors. In AFBV we can use a larger 
aggregation size than ABV, so we need even less storage than 
ABV in some cases, especially when a large folding range is 
used. 

C. Performance comparison 

We compare the performance of the Lucent BV, ABV and 
AFBV on the databases with different sizes. The performance 
is indicated by the number of bytes accessed by each algorithm. 
We limit the additional storage required by the folded bit 
vectors to 3%-10% of the whole storage. The experiment result 
is shown in Fig. 6, Fig.7, Fig.8 and Fig.9. Fig.6 and Fig.7 show 
the graphs for using a single folding while Fig.8 and Fig.9 
show the graphs for double folding. The keys of the figures are 
explained in Table V. BV is the Lucent bit vector algorithm. 
ABV-32 and ABV-64 are the aggregated bit vector algorithm 
with aggregation size of 32 bits and 64 bits respectively. We 
test AFBV with three folding methods: local folding 
(AFBV-1-64,8), regional folding (AFBV-2-64,16) and global 
folding (AFBV-R-64,64).  

Fig.6 shows the average performance, which is obtained by 

0

50

100

150

200

0 1024 2048 4096 8192 10240

Number of rules

Me
mo

ry
 a

cc
es

s

0

100

200

300

400

0 1024 2048 4096 8192 10240

Number of rules

Me
mo

ry
 a

cc
es

s

0

100

200

300

400

0 1024 2048 4096 8192 10240

Number of rules

M
em

or
y 

ac
ce

ss
 

0

50

100

150

200

0 1024 2048 4096 8192 10240

Number of rules

M
em

or
y 

ac
ce

ss
 

BV ABV-32 ABV-64

AFBV-1-64,8 AFBV-2-64,16 AFBV-R-64,64

Figure 6. Performance on average in single folding 

Figure 7. Performance in the worse case in single folding 

Figure 8. Performance on average in double folding 

Figure 9. Performance in the worse case in double folding 

TABLE IV. MEMORY REQUIREMENT 
COMPARISON 

Safbv / S abv 
(Aabv, Aafbv, F) 

m = 1 m = 2 

(32, 64, 8) 1.106 1.045 

(32, 64, 16) 1.227 1.106 

(32, 64, 32) 1.470 1.227 

(32, 128, 8) 1.038 1.008 

(32, 128, 16) 1.098 1.038 

(32, 128, 32) 1.220 1.098 

(32, 128, 64) 1.462 1.220 

(32, 256, 8) 1.004 0.989 

(32, 256, 16) 1.034 1.004 

(32, 256, 32) 1.094 1.034 

(32, 256, 64) 1.216 1.095 

(32, 256, 128) 1.458 1.216 

 

TABLE V. KEYS IN FIGURE 6 - 9 

Folding Size Parameter 
Key s 

Aggregation 
Size 

Folding 
Range Single 

folding 
Double 
folding 

BV N/A N/A N/A N/A 

ABV-32 32 N/A N/A N/A 

ABV-64 64 N/A N/A N/A 

AFBV-1-64-8 64 64 8 (3,5) 

AFBV-2-64,16 64 128 16 (7,9) 

AFBV-R-64,64 64 All 64 (25,39) 

 

1------
1 -------

-·-·:7~-------
.,.,.,. 

,# 

,,,.,.,-,.,./· 

~;;;:~-4 

--------------.'-

.~ 4///·~:~~~-/// 
------:·-----•·-•----=~ ----------•··· I 

/ 
~~;;;::.·:i 



 8 

summing the number of bytes accessed by all the cross 
products of bit vectors and then dividing the result by the 
number of cross products. The figure shows that the average 
performance of local folding and regional folding (m = 2) is 
much better than that of ABV, but the performance of the 
global folding (AFBV-R-64,64) is much worse than ABV. 
This is due to the large folding size of the global folding 
scheme. In this case, 64 bits are fetched for each match in the 
intersection of the aggregate bit vectors. As the number of rules 
increases, local folding and regional folding still work better 
than ABV, but global folding performs even worse. 

Among the three folding methods, global folding has the 
worst performance. With a big folding range, global folding 
does not work if the folding size is too small because the folded 
vectors will be full of set bits; however, if the folding size is 
large, it requires much memory access to check the folded bit 
vectors for each match in the aggregate bit vectors. Local 
folding and regional folding with m = 2 perform similarly, and 
much better than global folding especially when the database 
grows larger. 

Fig.7 shows the performance in the worst case. In this case, 
the advantage of the AFBV is not as obvious as Fig.6. Usually 
the worst case for AFBV happens when there are several 
contiguous set bits in the original bit vector and the first match 
position is near the end of the original bit vector. So AFBV 
does not performs much better than ABV, sometimes even 
worse. As to the three folding methods, global folding is still 
the worst due to the same reasons stated above. 

AFBV in Fig.8 and Fig.9 performs a little better than that in 
Fig.6 and 7 under the same storage requirements. This implies 
that multiple folding does better than single folding in 
detecting false matches and locating match positions. 

D. Parameters discussion 

1)  Folding size selection 
In multiple folding, the folding size is important to 

performance. The straightforward idea is that two folding sizes 
should have no common divisor. We test double folding under 
local folding on a database with 2048 rules. The aggregate size 
is 128 bits, and the folding range also 128 bits. In this table, (5, 
11), (7, 9), (11, 21) perform better than the others with the same 
sum of folding sizes. This implies that the difference between 
the couple of sizes should not be too much or too little. The key 
is to make two folded bit vectors contain unrelated information 
of the original bit vector. 

2) Folding size vs. Folding range 
In our algorithm, the folding size and the folding range are 

the most important parameters. By now we determine these 
parameters by the storage requirement. In this section, without 
considering this requirement, we test the relationship between 
the two parameters by the number of memory access under 
several combinations of the two parameters on a database with 
10240 rules, 2 fields with 16 bits for each field. The schemes 
are local folding and double folding. The aggregation size is 32 
bits. The relationship can be seen clearly from Fig.10 and 
Fig.11. In Fig.10, when the folding range is 32 bits, the best 
folding size is 16 bits; when the folding range increases to 64 

bits, 16 is still the best size, but the performance difference 
between the folding sizes 16 bits and 32 bits becomes smaller; 
when the folding range changes to 128 bits, the best 
performance is achieved with a folding size of 32 bits; when 
the folding range reaches 256 bits and 512 bits, 64 bits become 
the best folding size; when the folding range increases to more 
than 1024 bits, there is little difference between 8, 16 and 32, 
because they are insignificant compared to the folding range. 
The performance in the worse case is similar to that of average 

0

50

100

150

200

250

300

350

400

5 6 7 8 9 10

Me
mo

ry
 a

cc
es

s

(3,5)

(5,11)

(9,23)

(27,37)

 

0

20

40

60

80

100

120

5 6 7 8 9 10

Me
mo

ry
 a

cc
es

s (3,5)

(5,11)

(9,23)

(27,37)

 

Figure 10. Performance on average 

Log2  Folding_range 

Figure 11.  Performance in the worst case  

Log2  Folding_range  

TABLE VI. FOLDING SIZE SELECTION 

DATABASE SIZE: 2048 RULES 
AGGREGATION SIZE: 128 BITS 
 

Folding size Average  
Memory Access 

Worst  
Memory Access 

(3, 13) 16 72 

(5, 11) 14 64 

(7, 9) 14 62 

(7, 25) 15 59 

(9, 23) 15 44 

(11, 21) 14 46 

(13, 19) 16 56 

(15, 17) 16 42 

 
 
 
 

[] 



 9 

case, shown in Fig.11. 

From this experiment, the proper relationship between 
folding range B and folding size F is: B = (4~8) · F, which 
implies about 10-20% additional storage.   

VI. CONCLUSIONS 

Packet classification is a central function of a number of 
network activities. This project is addressing the problem of 
improving performance in the selection of rules for 
classification of  packet headers. There is significant previous 
work in this area. Our work is an improvement on the ABV 
scheme, which in turn is an improvement in the linear Lucent 
bit vector scheme. The Lucent bit vector scheme  scales to 
medium size databases. ABV introduces the concepts of bit 
vector aggregation and rule rearrangement to make the scheme 
more scalable. Our investigation suggests that aggregation is 
an excellent idea but rule rearrangement has several  problems.  

In this paper we presented a novel approach for scalable 
packet classification by combining bit vector aggregation and 
folding. Folding helps to not only reduce false matches, but 
also locate real matches. Our algorithm avoids the limitations 
of rule rearrangement and effectively reduces false matches 
while preserving the benefits of bit vector aggregation.  

In our simulations of relative performance we compare the 
BV algorithm, the ABV algorithm and our new AFBV 
algorithm, and evaluate both performance and space 
utilization.  Preliminary results show that AFBV outperforms 
ABF on average, and can achieve the similar level of 
performance in worst cases, with about a 10% increase in 
memory utilization, for the additional, folded vectors.  

REFERENCES 
[1]   F. Baboescu, G. Varghese. Scalable Packet Classification. In 

Proceedings of ACM SIGCOMM '01, Aug.2001, San Diego, California, 
USA. 

[2]    T. Lakshman and D.Stidialis. High speed policy-based packet forwarding 
using efficient multi-dimensional range matching. In Proc.ACM 
Sigcomm’98, Sep.1998. 

[3]    P. Gupta, N. McKeown. Packet classification on multiple fields. In 
Proceedings of ACM SIGCOMM '99 (Cambridge, Massachusetts, USA, 
Sept. 1999). 

[4]     M. Waldvogel etc. High-Performance Packet Classification for Filtering 
and Forwarding. IBM Zurich Research Laboratory, 2001. 

[5]     Lili Qiu, George Varghese, Subhash Suri. Fast Firewall Implementations 
for Software and Hardware-based Routers. 2001. 

[6]     P. Warkhede, S. Suri, G. Varghese. Fast Packet Classification for 
Two-imensional Conflict-Free Filters. IEEE INFOCOMM 2001.01 

[7]     V. Srinivasan, S. Suri and G. Varghese. Packet Classification using Tuple 
Space Search. Proc. of Sigcomm, 1999. 

[8]     M. Waldvogel. Multi-dimensional prefix matching using line search. In 
Proceedings of IEEE Local Computer Networks, Nov. 2000. 

[9]     F. Baboescu, G. Varghese. Aggregated Bit Vector Search Algorithms for 
Packet Filter Loo 

[10]  Kups. Technical Report cs2001-0673, June 2001. 

[11]  V. Srinivasan, et al. Fast scalable level four switching. In Proc. ACM 
Sigcomm’98 Sept. 1998. 


