
How to build scalableon-chip ILP networks for a
decentralizedarchitecture

Abstract

Theeraof billion transistors-on-a-chipis creatingacompletelydifferentsetof designconstraints,
forcing radically new microprocessorarchitecturedesigns.This paperexaminesa few of the pos-
sible microarchitecturesthat arecapableof obtainingscalableILP performance.First, we observe
that the network that interconnectsthe processingelementsis the critical designpoint in the mi-
croarchitecture.Next, we characterizefour fundamentalpropertiesthat have to be satisfiedby the
interconnectionnetwork. Next, we provide casestudiesof two differentnetworksthatsatisfythese
properties.Finally, a detailedevaluationof thesenetworks is presentedto highlight the scalability
andperformanceof thesemicroarchitectures.We show thatby usingcompiletime information,we
canbuild simplernetworksandusethemefficiently.

1 Intr oduction

Microprocessordesignhasbecomeincreasinglymarked by the desireto leverageincreasedtransistor
budgets,reduceverificationanddesigncosts,andto addressthecrumblingof electricalabstractions.A
numberof contemporaryarchitectureresearchprojects,includingIBM’ sBlueGene,Raw [11], SCALE,
andSmartMemories[8], have addressedthesedesires.All of theseprojectsexchangethe monolithic
VLIW or superscalarprocessorfor adistributed,decentralizedarrayof independent,replicatedcomput-
ing elements.Theseelementsareconnectedby a network with short,local wiresthatconnectonly near
neighbors.We referto thesearchitecturesas”decentralizedarchitectures.” Figure1 depictsa decentral-
izedarchitecture.

A key featureof thesearchitecturesis that they have propertiesthat scalevery well asymptotically
with respectto thenumberof transistors.TheBlue Geneprojectproposesanarchitecturewith literally
a million processingelements.Architectureson sucha scalewill becomeincreasinglycommonplacein
thenearfuture. Althoughasymptoticanalysishastraditionallybeeninappropriatefor microprocessors,
whereconstantstendto dominate

�
, it will becomean increasinglyvaluabletool aswe seelarger and

largerdesigns.

Decentralizedarchitectureshave anumberof asympoticadvantages:

First, themicro-architecturaldesignandverificationcostof thesedecentralizedarchitecturesis es-
sentiallyconstantwith respectto the numberof transistors.Whenthe designersgain accessto more
transistors,they simplyputdown morecomputingelements.

Second,thewire lengthof thesedesignsis alsoconstantin sizewith respectto thenumberof tran-
sistors.As a result,thewire delayandroutingcongestionof thedesign,a majorproblemfor monolithic
�
A factorof two in processormeansadifferencein billions of dollarsof revenuefor AMD!

1



local interconnect

ro� uting elements

comp� ute / memory elements

Figure 1:A decentralized architecture

architectures, does not changes with the number of transistors.

Third, decentralized architectures also reduce clock complexity relative to transistor budget. In the
first method, we relax the assumption of a global synchronous, skewless clock, and have the computing
elements perform the appropriate handshaking when they exchange data. Alternatively, there is promis-
ing work [9] in online clock tuning algorithms that can correct for skews in distributed clocks. At the
very least, decentralized architectures offer very precise, geometric clock boundaries rather than a large
three-dimensional rat’s nest of wires and transistors.

Finally, these architectures may offer constant yields per unit silicon with respect to transistor count.
Processing elements with point defects could be left unused by the software. However, for particularly
nasty cases, this problem may require that a laser be used to isolate the computing element electrically
from its neighbors. The components can then be binned for number of inactive processing elements, just
as they are for clock speed today.

Now that we have motivated decentralized architectures, we will describe what it is we are going to
say about how they are designed.

Models of Parallelism Any of the proposed architectures need to take advantage of parallelism in
order to scale. The microarchitecture can target different parallelism models such as instruction level
parallelsim, pipeline parallelism, thread parallelism, or coarse-grained parallelism. The advantage of
instruction level parallelism(ILP) is that it still gives good performance for both pipeline and course-
grained parallelism, since these forms of parallelism can be converted into ILP.

In our previous work, we have develop a compiler system that is capable of obtaining scalable ILP
performance by performing both spatial instruciton partitioning as well as traditional temporal insturction
scheduling[7]. This compiler demonstrate that for a large class of applications, scalable ILP performence
is obtainable.

Manifest

2

-



Therearetwo key partsto designinga decentralizedarchitecture:the network andthe computing
element.Thispaperfocuseson thenetwork.

The computingelementsarethe part of the architecturethat areresponsiblefor performingactual
computation. Theseelementscan look like in-order processors,small-scaleout-of-orderprocessors,
FPGAlogic, clustersof ALUs, or evensinglefunctionalunits.

The “network” is the entiresystemthat is responsiblefor routing valuesin a correctfashion(i.e.,
respectingprogramdependences)betweenthecomputingelements.In a traditional5-stagepipeline,the
“network” would consistof thebypassinglogic andthebypasspaths.

Pleasenotethat whenwe refer to an ILP network, we arenot strictly implying a monolithic piece
of hardware.As RISCprinciplesandprincipalshave taughtus,thedividing line betweenhardwareand
softwareis very flexible. Somepartsof the ILP network may in fact be implementedin softwareand
with compilerinformation(aswe will demonstratein thedatasectionof thispaper.)

Wefurthershow thatthecompileris oftenessentialin reducingthecostor improve theperformance
of theseILP networks.

This paperstartsby describingthe communicationpatternsusedby programswith generalILP. It
continuesby proposinga setof fundamentalpropertiesthat a network needsin orderto facilitateILP,
independentof whetherthe computingelementsareFPGA logic, a clusterof ALUs, smartmemories,
or processors.It narrows its focuson a computationmodelwherethe computationon eachcomputa-
tion elementis totally ordered,andit studiestwo ILP network implementationsin this domain,with an
emphasisonhow they fulfill our fundamentalnetwork properties.Thepapercontinuesby giving perfor-
manceresultsfor thetwo networksonprogramscompiledby aparallelizingC/Fortrancompiler, andfor
somehand-codedapplications.It finalizesby characterizingtheusageof our ILP network design,andit
suggestssomeimprovements.

Thispapermakesthreecontributions.First, it identifiesthefundamentalfunctionalrequirementsfor
building ascalableILP network for adecentralizedarchitecture.Second,it presentstwo implementations
of ILP networks.Finally, it offerssomeinsightsinto how anILP network canbeimplementedefficiently.

Therestof this paperis organizedasfollows. Section2 characterizesthe ILP computationandthe
communicationthatarisesfrom it. Section3 describesthefundamentalrequirementsof anILP network.
Section4 describestwo ILP networks. Section5 shows theperformanceof theILP networks. Section6
concludes.

2 ILP Computation

Thissectioncharacterizesthethenatureof computationswith instructionlevel parallelism.

Thecomputationsaretypically expressedasadataflow graph.A dataflow graphis alogicalnetwork,
whichconsistsof nodesandarcs.Thenodesrepresenttheoperationsin thedataflow graph,andthearcs
representdatavaluesflowing from theoutputof oneoperationto theinput of thenext. Theexistenceof
anarcbetweenoperationsimplicatesasequentialorderingbetweentheexecutionof thetwo operations.

Memory operationsfall into a specialcase.In this case,if the compilercannotdeterminethat the
memoryoperationswill notconflict,thenthereareprobabilisticread-after-write andwrite-after-write de-
pendencesexistingbetweentheoperations.Shortof usingaspeculation(optimisticconcurrency control)
scheme,theapplicationmustsequentializetheseoperations.

3



ld
�

 a

ld b

+ >> 3

*

st b

i
�

q

sr

t
�

ld b
�
st b

+

>> *

ld a

(some PEs were removed for clarity)

i = a[j]

q = b[i]

r = q + j

s = q >> 3

t =
�

 r * 3

b[
�

i] = t

Figure 2:Dataflow Graphs and Operation Assignment

In Figure 2, the memory accesses to b[i] have a possible dependence, which creates a non-
deterministic dependence between the nodes. The computation is almost entirely sequential; only the
add and shift operations can be performed in parallel.

Typically, these dataflow graphs are enclosed in some sort of control structure: if-statements, loops,
etc. ILP compilers increase the amount of parallelism by playing tricks with looping structures to enlarge
the size of the dataflow graph and find more things that can execute in parallel. The two most common
techniques are loop unrolling [3, 4] and pipelining [6].

To execute a computation on a network of processing elements (PEs), one needs to find an assignment
from the nodes of the dataflow graph to the nodes of the network of processing elements, and route
the intermediate values between these PEs. This assignment of operations can be performed at run-
time or compile-time. Superscalar and early dynamic dataflow [1] are examples of run-time assignment
architectures, while TTA [5], VLIW, or Raw [11] are examples of compile-time assignment architectures.
If the architecture is a compile-time assignment architecture, the choice of the path that the values take
between the PEs can be done either at compile-time or run-time. TTA architectures and Raw choose the
routing path at compile-time, while VLIW architectures typically do it at runtime. In Section 4 we will
give two examples of systems where the assignment problem is handled at compile time.

The figure shows a sample assignment. Note that the load and store to the array b are located on the
same node. This is by necessity, because they both need to access the same piece of memory.

There is a classic tension in the assignment problem. On one hand, we want to spread the computation
as far out into space as possible to maximize the amount of PEs that can be used simultaneously (and thus
maximize the parallelism). On the other hand, we do not want to have operations performed too far away,
because the travel time over the networks will add up and impact the serial performance. For instance,
in the diagram, if it takes a cycle to traverse a network link, and the ops all only took one cycle, then
it would have been more effective to allocate all of the operations to one processing element (assuming
that processing element supported this.)

4

II II 



With an intuition of the structure of ILP programs, and how they are mapped to processing elements,
we can now discuss the structure of the ILP networks.

3 ILP Network

When the original ILP networks (i.e. the bypass networks) for VLIW and Superscalar processors were
created, the functionality was so implicitly encoded in the structure of the networks that it was difficult
or perhaps overly obvious to even mention what the fundamental requirements of the networks were. As
we stretch and scale and explore these networks, we find suddenly that design space is so murky that we
have to define what exactly these sorts of networks need to be. Certain properties that were once trivial
to attain suddenly become very difficult.

The initial ILP networks that we designed failed rather spectacularly because their scalable, decen-
tralized implementations were not capable of providing us with properties that we took for granted in
their less scalable cousins.

The properties which we discovered follow:

1. The ILP network must be implemented as a distributed process.

This means that there can be no global wires, global repositories for information, serial operations,
unified look-up tables, logic which incorporates state from all of the processing elements, etc, etc, ad
infinitum. The view that needs to be taken is that of a number of processing elements, running indepen-
dent state-machines that are isolated from their non-neighbors. A time cost needs to be assigned for any
transferrance of information between non-neighbors.

2. The ILP network must provide operation/operand matching.

This property highlights that fact that, in order to compute, we need the operands and the operation
to meet at some point in space to perform the computation.

Run−time

Run−time

Compile−time

Assignment

Ordering

Superscalar Monsoon

Compile−time

Raw, TTA, VLIW

Figure 3:Operation Ordering and Assignment

There is an interesting taxonomy in the way in which architectures perform operation/operand match-
ing. There are two distinction: whether operations are assigned to PEs at compile-time or run-time, and
whether the order in which operations on a given PE are executed is determined at compile-time or
run-time. Figure 3 depicts shows a matrix which classifies several architectures in this manner.

In compile-time assignment architectures, the compiler assigns each operation to a processing ele-
ment. In a traditional bus-based VLIW, values are stored in a central repository (the register file), and the
instructions snoop the buses into this repository to make sure they have the latest versions to send to the
operators.

5

I I 



Whenwemoveto ascaleablecompile-timeassignmentarchitecture,weneedto getrid of thecentral
repository. Themosteffective methodof doingthis is to routetheresultof a givenoperationdirectly on
to thenext operationthatusesthatresult.Thisefficient techniquecouldnotbeperformedif theoperands
hadnotbeencompile-time.TheRaw architectureusesexactly this technique.

In run-timeassignmentarchitectures,both theoperationsandoperandscanmove aroundin thear-
chitecture,so therehasto besomesortof directoryschemewhich allows themto find eachother. In a
traditionalsuperscalar, this directoryschemeis implementedthroughglobalbusesandreservation sta-
tions.Unfortunately, theseapproachesarenot scaleable.

Theearly, seminalwork on large-scalerun-timeassignmentarchitecturesis thestaticanddynamic
dataflow machines.They discoveredvery quickly that the scaleabilityissuesraisedby this approach
werevery challenging.The solved theseproblemsmostly with the useof pipelinedsortingnetworks.
Onecould also imagineusing a home-locationscheme,not unlike directory-baseddistributed shared
memoryprotocols. Theseapproacheswereplaguedby state-explosion(differentpartsof the program
would executefar aheadof the others,filling up all of the machine’s executionstorage)anddeadlock
issues.Perhapsmostimportantly, thelatency of operationsweregreatlymultiplied,soserialperformance
suffered.

Run-timeassignmentis especiallyattractive becauseit effectively performsrun-timeloadbalancing
of processingelements,which is very usefulfor adjustingto variablelatenciesin thecomputation.

Ultimately, somedataflow work switchedto ahybridassignmentmodel,whichhadrun-timeassigned
threads,composedof compile-timeassignedoperations.Thesethreadsarecreatedandcommunication
throughexplicit instructions,ratherthanasanautomaticfunctionof the ILP network. In a sense,they
moved the run-timeassignmentpartup to thecompilerandos level, out of thehardware. The latency
costof this run-timethreadassignmentweremitigatedbecausethecommunicationat thethreadlevel is
morecourse.

In theMonsoondataflow project,a givenfunctioncouldbedynamicallyassignedto a givenPE,but
all of theoperationsinsidethefunctionwouldbecompile-timeassignedto thesameprocessingelement.
They creditedthisapproachwith providing themwith improvedlocality.

In compile-timeoperationordering,thecompilerdeterminestheorderin which operationswill exe-
cuteon agivenprocessingelement.Both Raw andVLIWs employ compile-timeoperationordering.

In run-timeoperationordering,theorderingof instructionson a givenprocessingelementis deter-
minedby the arrival of the operands.Superscalarsemploy run-timeoperationordering. Interestingly,
Monsoonperformscompile-timeassignmentbut run-timeordering. Run-timeorderinghelpstolerate
memoryaccesslatency andothereventswith unpredictabletiming.

3. The ILP network must gauranteefinite arri val time.

This propertyhighlightsthefact that the ILP network hasto gauranteedelivery of operandsto pro-
cessingelementsso that thecomputationis robust. Currently, our architecturesstill have the luxury of
assumingphysicallyreliability (althoughthat changeswith theBlue Genemachine!).However, it has
becomea difficult questionto determineif a ILP network is logically reliable.

Theoriginal ILP architecturesusedbusesto communicatevaluesbetweenprocessingelements,and
hadacentralizedway in whichoperandscouldbeflowedcontrolledsothatthebuseswouldnotbeover-
committed.Whenweswitchto adecentralizedarchitecture,suchglobalknowledgebecomesimpossible.
As a result,controllingtheoccupancy of thenetwork becomesvery difficult. If theprocessingelements

6



independentlyproducemorevaluesthanthe network hasstoragespace,theneitherdata-lossor dead-
lock mustoccur. This is a frighteningprospect;somethingthatthenon-scaleableILP network designers
seldomhadto worry about.

In particular, if dynamicnetworks arebeingemployed in the chip, very carefulmeasureshave to
be exertedin order to gauranteethat deadlockcannothappen,or that if it doeshappen,that it canbe
recovery from. The early dataflow machinepapersdemonstratedthat they had tremondousproblems
with theovercommitmentof storageanddeadlock.

4. The ILP network must beable to tolerate timing variations.

This propertyrecognizesthe fact that computationsoften have timing characteristicsthat can be
unpredictableat compile time. Their timing or cachebehaviour may vary with the input dataset,or
synchronizationwith anexternaldevice (like an interrupt)maychangethetiming behaviour of a given
processingelement. If the ILP network cannottoleratetiming variation, it will either fail or severely
reducethesortsof computationsthatcanbeperformed.

In earlymachines,it waspossibleto runaglobalstallsignalacrossthechip in orderto keepprocess-
ing elementssynchronizedwhena timing variationeventoccurred.This is clearlynotanalternative in a
scaleablemachine.As a result,a moredistributedmechanismfor handlingtiming variationneedsto be
developed.

Notethatthis timing variation,like all of theconceptsin ILP networks,doesnot needto behandled
strictly in hardware. The PEs,for instance,could handletiming variationthroughthe useof periodic
handshakes in software. Given this note, a numberof researchprojectsstartedwith software timing
variation tolerancy and moved it in to hardware for performanceandsystem-complexity reasons.In
particular, both Raw andWarp startedwith cycle-countednon-flow-controlledinterconnectsbetween
processingelementsandswitchedto distributedflow-controlledversions.

In thenext section,wewill describeour implementationof apairof ILP networks,andshow it meets
thepropertiesthatwe describedin this section.

4 Two casestudies

This sectionpresentstwo casestudiesof ILP networks. The casestudiesareperformedon the Raw
microprocessor, a distributedmicroprocessorwith compile-timeoperationorderingandassignmenton
eachof its computingelements.The Raw microprocessoris an interestingplatform for our purpose
becauseit containsboth a generaldynamicnetwork and a static network that provide register level
communication.We considerhow bothnetworks cansupportILP computation.For eachnetwork, we
discusshow it supportsvariationtolerance,operation/operandmatching,andreliabledelivery.

4.1 Compilation framework

Compilersupportfor exploiting ILP on theRaw microprocessoris providedby Rawcc. Rawcc extracts
ILP out of sequentialprogramsandorchestratesit acrossthe independentprocessingnodesof theRaw
microprocessor. It performsloop unrolling andcontrol flow localizationto expandthescopein which
it looks for parallelism[7]. For convenience,we refer to this scopeasa basic block, even thoughit
technicallycanspanmore than onebasicblock. Orchestrationof parallelismis donein two phases:

7



instructionpartitioning and cross-tileinstructionscheduling. Instructionpartitioning statically maps
eachinstructionto a processingnode. The compilerenablesa memoryinstructionto be mappedto a
singleprocessingnodeby ensuringthat theportionof memoryit canpotentiallyaccessis mappedonto
asingleprocessingnode.[2]. Cross-tileinstructionschedulingprovidesatotalorderingof computations
on eachprocessingnodewhile takinginto accounttheeffectsof inter-nodecommunicationlatencies.

4.2 Supporting ILP communicationon the Raw dynamic network

TheRaw dynamicnetwork is a generaldynamicnetwork supportingmulti-word messages.Eachmes-
sageon the dynamicnetwork is precededby a headerthat containsthe lengthanddestinationof the
message.Routingdecisionsaremadeasfollows. Whenamessageheaderarrivesat aswitch,theswitch
interpretsit to determinehow thatmessageshouldberouted.Thelatency for routingawordusuallyone
cycle perswitch. Becauseof theinterpretationcost,themessageheaderincursanextra cycle of latency
whenit makesa turn.

Thedynamicswitchemploys dimensionorderedrouting to avoid network level deadlocks.Worm-
holeroutingallows theheadof a messageto beroutedto thenext nodebeforetheendof a messagehas
beenreceived. Routingresourcesareallocatedon a first-come,first-serve basis;if two messagesarrive
simultaneously, arbitrationis resolvedarbitrarily. Thenetwork hasblockingsemantics:a switchblocks
andwaits if it tries to routefrom an emptyinput port or routeto a full outputport. Messagescanbe
receivedvia eitherinterruptor polling.

The dynamicnetwork provides naturalsupportfor variation tolerance,becausemessagescan be
arbitrarily delayedwithout effectingits routability. This flexibility, however, leadsto uncertainty, which
in turncomplicatesdestinationmessageordering(theactof creatinganorderingof valuescorresponding
to the compile-timeoperationordering)andreliabledelivery. We discusseachissuein detail. Unless
explicitly statedotherwise,thediscussionapplieswhethermessagesarereceivedvia interruptor polling.

Destinationmessageordering

A generalway to handlepotentiallyout of ordermessagesin a totally orderedcomputationmodel
is as follows. The network containsan associative buffer into which messagesare received, which
we term a demultiplexing buffer. Eachelementof the associative buffer hasa full-empty bit. Every
messagein thissystemis taggedwith anid. This id is known apriori to boththesenderandthereceiver.
Whena nodereceivesa message,it usesthe id to index into the associative buffer, storethe message
in the correspondingelement,andsetthe corredpondingfull bit. It is an error to write to a full buffer
element.Themaincomputationprocessthesemessagesin its statictotal order, resetttingthefull-empty
bit whenever it no longerneedsa message.This mechanismdecouplesmessagereceive from message
processing,allowing messagesto arrive in a different order than the processorexpects. We call this
schemethebuffer demultiplexing scheme.

In theRaw dynamicprotocol,boththeassociative buffer andits full-empty bits areimplementedin
memory.

We defineseveral termsconcerningthe buffer demultiplexing scheme. A messageis said to be
retired whenits buffer elementcanbereused;a buffer elementis saidto be free if all messageswritten
to it hasbeenretired.Messageretirementneedsnot,andusuallydoesnot,correspondto thepoint when
amessageis originally received.

Normally, therearemoremessagesin theprogramsthantherearenumberof elementsin thedemul-

8



tiplexing buffer. Thusthebuffers needto besharedamongmany messages.This requirementleadsto
two issues:theassignmentof messagesto buffer elementsandbuffer reusesynchronization.Thelatter
is neededto ensurethattwo messagesdestinedfor thesamebuffer elementdo not clobbereachother.

Buffer assignment Theprimarygoalin assigningmessagesto buffer elementsis to minimizetheamount
of buffer reusesynchronizationrequired. This goal, in turn, suggeststhat messagesreusingthe same
buffer shouldbe asfar away aspossible. Here is onepossibleassignmentmechanism.The compiler
assignsa distinct virtual buffer elementto eachmessagein a basicblock. A messagegetsits virtual
buffer elementfrom thoseon its destinationnode,and the pools of virtual buffers on eachnodeare
distinct. Basicblocksthatcontainmorevirtual buffer elementsthantherearephysicalbuffer elements
needto bedividedinto smallerbasicblocksbeforeassignment.

Fromthesevirtual buffer assignments,physicalbufferscanbedeterminedeitherstaticallyor dynam-
ically. In staticallocation,eachvirtual buffer is simply mappeddirectly to a physicalbuffer. Dynamic
allocationworksanalogousto thewaystackallocationisperformed.Oneachnode,abuffer pointerkeeps
trackof thefirst buffer elementthathasnot beenused.At thebeginningof a basicblock, thepointeris
incrementedby themaximumnumberof messagesthatcanbesentto any onenodein thatbasicblock.	
If thebuffer hasoverflowed,all thenodessynchronizeandthebuffer pointeris resetandreincremented.
Regardless,a physicalbuffer numberis determinedby subtractingthe virtual buffer numberfrom the
buffer pointer.

The tradeoff betweenstaticanddynamicallocationareas follows. Dynamicallocationonly per-
formsbuffer reusesynchronizationwhenthedemultiplexing buffer runsout of space,but it payssome
overheadin buffer pointermanipulationandbookkeeping. Staticallocation,on the otherhand,avoids
theoverheadsof thebuffer pointer, but it mustperformbuffer reusesynchronizationbetweeneverybasic
block. In general,dynamicallocationfavors largedemultiplexing buffers,while staticallocationfavors
smallones.

Buffer reuse synchronization Beforea sendercansenda message,it needsto know thatthereceiver has
retiredall previousmessagesmappedto thesamebuffer element.In ourenvironment,thisconditioncan
beenforcedasfollows. Let 
��� � and 
�� betwo consecutive messagesthatusethesameid � duringthe
executionof a program.For correctness,theprotocolneedsto guaranteethat thereexistsa sequenceof
messagesfrom thereceiver to thesenderthatoccursbetweentheretirementof 
��� � andthesendingof
message
�� .

It would beprohibitly expensive to explicitly synchronizeeachpair of consecutive messagesdesig-
natedfor thesamebuffer element.Instead,a compilercanoptimizethebuffer reusesynchronizationin
several ways. Synchronizationcanbe piggy-backed onto existing communicationwith zerooverhead.
Whenexplicit synchronizationis needed,selective placementof asinglemessagemaybeableto satisfy
thesynchronizationrequirementsof multiple messageids.

We proposetwo mechanismsthatcanberun at thebeginningof a basicblock to allow buffer reuse
for eitherourstaticor dynamicallocationscheme.A simplemechanismis abarrier. Thisschemewould
besufficient for systemswith efficientbarriersupport,or if thereareenoughbuffersto tolerateinfrequent
synchronization.

If synchronizationis frequenton a systemwithout efficient barriersupport,however, the following
mechanism,which we term explicit batch synchronization, can be more efficient. In this scheme,a
�
Thispointerupdatemechanismlosessomebuffer spacedueto non-uniformdistributionof messagesacrossthedestination

nodes,but it keepstheoverheadof thethepointerbookkeepingtolerable.

9



receivenodereservesabuffer elementwith eachpotentialsenderfor synchronizationpurposes.For each
processingnode � , thecompilerexaminesthe list of messagesto besentandreceived in theorderthey
arescheduled.It keepstrackof nodesfrom which � hasreceivedaswell asthenodesto which � hassent.
Whenit encountersa message
 with sourcenode � anddestinationnode � , it checkswhetherthere
existsaprecedingmessagebetweenthetwo nodes,eitherform � to � or viceversa.If thismessagedoes
not exist, a synchronizationmessageis insertedfrom � to � before 
 . The synchronizationmessages
insertedby thisalgorithmensuresthatourconditionfor buffer reuseis satisfied.Note,however, thatthis
algorithmscalesquadraticallywith thenumberof pairsof communicatingnode,so that if many nodes
communicatewith eachother, asoftwarebarriercouldstill bemoreefficient.

Optimizing the fast path with polling Buffer demultiplexing throughmemoryhasa large overheadand
decreasesthe benefitsof having a registermappedcommunicationnetwork. We can,however, design
a fastpath for messagehandlingthat writes the messagevaluedirectly into a register. The ideais to
takeadvantageof compile-timeinformationto insertpolling codeatplaceswherethecompilerexpectsa
messageto bereceived. Includedin thepolling codeis a fastpaththatis optimizedfor themessagethat
thecompilerpredictsthe receive nodewill receive. The fastpathis inlined alongsidethecomputation
codesothatit getsgoodregisterallocationanddoesnot incur any proceduraloverhead.If theexpected
messageis processedby its optimizedpolling code,its valueis written directly into a registerandthe
correspondingbuffer elementcanbeimmediatelyretired.

Reliably delivery The Raw dynamicnetwork doesnot drop messages.Therefore,reliabledelivery
reducesto theability to handledeadlocks.Deadlocksoccursif all thereceiversareblockedon message
sendsthatcannotcompletedueto blockagein thenetwork.

Therearetwo generalapproachesto dealwith deadlocks.Deadlockavoidanceavoidsdeadlocksat
all times;deadlockrecovery allows transientdeadlocksthateventuallytriggera recovery system.This
sectionwill only discussdeadlockavoidancemechanisms.

The specificsof a deadlockavoidancemechanismdependson the way in which messagesarere-
ceived. Thereare threeways in which messagescanbe received on the dynamicnetwork: dedicated
receive hardware,interrupt,or polling.

A simpleway to avoid deadlocksis to beableto guaranteethatall receive nodesarealwayssinking
messages.Oneway to provide this guaranteeis to provide hardwaresupportfor a receive mechanism
that runsindependentlyof theprocessingnode. Similarly, if a processingnodereceivesa messagevia
interrupt,deadlockscanbe avoidedby alwayskeepingthe interrupton. In thegeneralcase,interrupts
needto be turnedoff during messagesends,becausean interrupt handleritself may needto senda
messagethat would interferewith any partially constructedmessages.If we assumethat a network is
usedexclusively for ILP communication,however, theinterruptfor thatnetwork needsnotbeturnedoff
becausewe know its interrupthandlersdo not needto sendmessages.This approachcanalsobeused
with ahybridprotocolthatusesinterruptfor theslow pathandpolling for fastpath.

Deadlockavoidancefor a protocol that relies exclusively on polling is more complicated. Here,
theuncertaintyof messagearrival is not very compatiblewith thecertaintyof polling. Onecorrectbut
conservative schemeoperateasfollows. Beforeasendingnodesendsamessage,it checksthatits output
buffer hasenoughroom for it to completethe messagesendwithout blocking. If the querysucceeds,
the messageis sent. Otherwise,the sendingnodestartssinking any incomingmessagesuntil its send
buffer freesup enoughspace.Compileranalysiscanreducetheamountof polling codethatneedsto be
inserted.For example,if the compilercanprove that no messagecanarrive at a nodethat is trying to

10



sendamessage,thatnodeneedsnot checktheoutputbuffer beforesendingamessage.

Interrupt vs polling Thetradeoff betweeninterruptandpolling is asfollows. Polling is advantageous
becauseits codecan be inlined and register allocated. Interrupt is advantageousbecauseit simplies
deadlockavoidance.A goodreceive mechanismis to usea combinationof both– polling for a fastpath
thatusescompilerinformationto predictwhenandwhatmessagewill arrive; interruptfor theslow path
thatguaranteestheabsenceof deadlock.

4.3 Supporting ILP communicationon the Raw static network

TheRaw staticnetwork is anetwork whoseroutinginformationresideswith theswitchratherthanwith
eachmessage.Eachswitch hasits own instructionmemory;routing decisionsaremadebasedon the
switchinstructions.Theswitchis pipelinedto allow wordsto beroutedin a singlecycle; near-neighbor
communicationlatency is threecycles.Switchinstructionsaregeneratedby thecompilerduringglobal
instructionscheduling.Eachswitchallowsany numberof sourcesto routeto any numberof destinations,
aslong aseachdestinationis specifiedby at mostonesource.This schemesupportsmulticasts(single
sourceto multiple destination)aswell asmulti-routes(multiple independentmessagesto multiple des-
tination). Theswitchhave blockingsemantics:it blocksif its routinginstructionspecifiesaninput port
that is emptyor an outputport that is full. The processorinterfacesto the network throughregisters;
accessesto thoseregisterslikewisehave blockingsemantics.

In additionto routing instructions,theswitch instructionsetalsocontainscontrolflow instructions.
For ourpurpose,however, theconditionsfor thosecontrolflow instructionswill alwaysbegeneratedby
theits processor, sothat its flow of controltracksthatof theprocessor. In theglobalview, all processor
andswitchcooperateto exploit theparallelismin abasicblock,

TheRaw staticnetwork maintainsaninterestingcontractwith thecompilerin orderto supportvari-
ation tolerance,destinationmessageordering,andreliabledelivery. For eachbasicblock, thecompiler
orchestratesa static communicationschedulebasedon its compile-timeknowledgeaboutthe depen-
dencesandlatenciesof operations.It guaranteesthat the scheduleis correctanddeadlockfree given
thoselatencies.At run-time,however, dynamiceventssuchascachemissesandinterruptscancausethe
timingsof operationsto bedifferentfrom thatof thestaticschedule.Throughtheblockingsementicsof
theswitches,however, thestaticnetwork guaranteesthattheorder of eventsoneachprocessorandswitch
remainsasspecifiedby thestaticschedule.Thus,theorderof messagearrival on eachprocessingnode
to remainconsistentwith thatexpectedby theprocessor. In addition,theorderof resourceallocationon
theswitchesremainsconsistentwith thatspecifiedby thecompilerschedule.Thus,thepropertythatthe
scheduleis deadlockis invariantover timing variations. In summary, the Raw staticnetwork provides
thefollowing guaranteewithin a basicblock: it ensuresa statictotal orderingof communicationevents
on every processorandevery switch. This property, in turn, providesdestinationmessageorderingand
reliabledelivery without any protocoloverhead.

5 Results

This sectionpresentsthe ILP performanceon both the static and the dynamicnetworks of the Raw
microprocessor. We presentdataon thecommunicationpatterngeneratedby theRaw compilerto help
understandtheusefulnessof variousnetwork featuresin thiscommunicationspace.

11



Benchmark Source Lines Seq.RT Description
of code (cycles)

Cholesky Nasa7:Spec92 126 34.3M Cholesky Decomposition/Substitution
Fpppp-kernel Spec92 735 8.98K ElectronInterval Derivatives
Jacobi Rawbench 59 2.38M JacobiRelaxation
Life Rawbench 118 2.44M Conway’s Gameof Life
Vpenta Nasa7:Spec92 157 21.0M Inverts3 PentadiagonalsSimultaneously
Moldyn CHAOS 805 63M MolecularDynamics
Unstructured CHAOS 850 150M ComputationalFluid Dynamics

Table1: Benchmarkcharacteristics.ColumnSeq. RT shows therun-timefor theuniprocessorcodegeneratedby
theMachsuifMIPScompiler.

5.1 ILP Performanceon Raw

Experimental setup Our experimentsareperformedon beetle,a cycle accuratesimulatorfor theRaw
microprocessor[10]. Beetlecontainsbothastaticandadynamicnetwork thatprovidecommunicationat
theregisterlevel. Integeroperationlatenciesareonecycle for simpleoperations,two-cycle integermul-
tiplies,36-cycle integerdivides,singlecyclestores,three-cycle loads.Floatingpoint operationlatencies
arethree-cycle addsandsubtracts,three-cycle multiplies,ten-cycle divides,andthree-cycle converts.A
branchhasasingledelayslot. In thisstudy, we assumethatall memoryaccessesarecachehits.

Compilersupportedis providedby Rawcc,asdescribedin Section4. In orderto stressthecommu-
nicationnetwork for thisstudy, weuseanon-zerobut smallcommunicationcostwhendeterminingwhat
granularityof parallelismto partitionup. Therealcostof communicationis thenusedduringinstruction
scheduling.

For thepurposeof contrastingILP performanceon thestaticanddynamicnetwork, we selectsev-
eralmicro-benchmarksthat have enoughparallelismto profitably exploit 32 tiles. For communication
characterization,we addtwo lessparallelapplications.Table1 describesthesebenchmarks.

Our protocolfor performingILP communicationon the Raw dynamicnetwork is asfollows. The
mechanismperformsstaticbuffer assignmentin every basicblock. For buffer reusesynchronizationat
thebeginningof a basicblock, theprocessingnodeseitherperforma globaltreebarrieron thedynamic
network or anexplicit batchsynchronization,whichever is cheaper. Messagesarereceivedvia polling,
with a fastpaththatoptimizesfor correctcompile-timepredictionof theidentificationof thenext mes-
sage.Deadlocksareavoidedby checkingtheconditionof theoutputbuffer beforesendinga message,
andsinkingoutstandingmessagesif theoutputbuffer hasinsufficient spacefor thesend.

Thestaticprotocolfor ILP communicationis exactlyasdescribedin Section4.

Performanceresults

Table2 andTable3 show theend-to-endperformancefor thedynamicandstaticprotocol,respec-
tively. Thedynamicprotocolis only ableto achieve modestspeedupfor severalapplicationson32 tiles.
Thestaticprotocol,however, is ableto attainspeedupfor all theapplications.For 32 tiles, theperfor-
mancedifferencerangesfrom afactorof four for fpppp-kernelto a factorof tenfor jacobi.Theseresults
show thata network requiresmorethanregisterlevel communicationin orderto efficiently exploit ILP.

Table4 considersthe end-to-endoverheadof variouscomponentsof our dynamicprotocol. Static
is thestaticperformance,with single-cycle sendsandreceives,three-cycle latenciesbetweenneighbors,

12



Benchmark N=1 N=2 N=4 N=8 N=16 N=32

jacobi 1.0 0.52 0.60 0.79 1.03 1.65
life 1.0 0.41 0.60 0.84 1.84 2.47
cholesky 1.0 0.52 0.62 0.55
vpenta 1.0 1.38 1.41 1.17
fpppp-kernel 1.0 1.12 0.54 0.94 1.46 1.48

Table 2:ILP performance on dynamic network. Each entry is speedup with respect to one tile.

Benchmark N=1 N=2 N=4 N=8 N=16 N=32

jacobi 1.0 1.39 2.95 5.37 10.33 16.85
life 1.0 1.61 2.90 4.93 9.67 19.22
cholesky 1.0 1.53 2.81 4.62 6.37 7.22
vpenta 1.0 1.98 2.80 3.32
fpppp-kernel 1.0 1.64 2.66 4.46 6.90 5.96

Table 3:ILP performance on static network. Each entry is speedup with respect to one tile.

and zero overhead for destination message ordering and reliable delivery. The remaining rows are various
dynamic implementations, in increasing order of functionality.Dyn-ordered is the dynamic performance
when we include only the protocol cost of message sends, receives, and destination message ordering.
+Expl-batch-sync adds the overhead of explicit batch synchronization between buffer reuses.+Smart-
reuse-sync uses a more intelligent synchronization scheme that determines the cost of explicit batch
synchronization versus tree barrier at compile-time, and selects the one that is the cheapest.+Reliable
takes+smart-reuse-sync and adds the overhead of deadlock avoidance.

Results suggest that the base cost of our dynamic network implementation contributes most to the
overhead and will benefit most from additional hardware support. No component, however, is cheap
enough to be overlooked.

5.2 Communication characterization

This section characterizes the communication pattern extracted by the compiler, in order to help us
evaluate the costs and benefits of the various network features.

Table 5 shows some benchmark communication statistics when Rawcc targets an 8x4 Raw machine.
The statistics are collected from the version of Rawcc targeting the static network, but the timing inde-
pendent statistics apply to the dynamic version also. These data suggest the following. The relatively
small number route per cycle across the machine suggests that in the absence of spatial or temporal
hotspots, the network has sufficient communication bandwidth. The non-unitRec/Send suggests that the
communication has modest fanout.Route/Send reflects routing distance, and it indicates a large amount
of non-near-neighbor communication. The maximum number of receives per basic block is a useful
guideline when determining hardware support for buffer demultiplexing in the dynamic protocol.

Table 6 shows the usefulness of multicast on the Raw static network. Five of the applications use
multicasts over 10% of the time, with a maximum of over 40% for cholesky.

13

I I I I I I I 

I I I I I I I 



Benchmark N=1 N=2 N=4 N=8 N=16 N=32

static 1.0 1.38 2.95 5.37 10.32 16.85
dyn+ordered 1.0 0.80 1.06 1.56 3.02 3.64

+expl-batch-sync 1.0 0.73 0.86 1.08 1.05 0.84
+smart-reuse-sync 1.0 0.73 0.86 1.08 1.46 2.63
+reliable 1.0 0.52 0.61 0.81 1.05 1.69

Table 4:Jacobi performance breakdown. Each entry is speedup with respect to one tile.

Benchmark Cycle Send/Cycle Rec/Cycle Route/Cycle Rec/Send Route/Send Max Rec/BB

jacobi 483660 0.84 1.38 3.26 1.64 3.89 34
life 256361 0.96 1.47 3.30 1.53 3.45 33
fpppp-kernel 321 0.57 1.14 3.52 2.00 6.17 36
cholesky 646464 0.07 0.52 0.83 7.37 11.86 68
vpenta 975848 0.14 0.37 1.04 2.56 7.25 25
moldyn 26535036 0.32 0.46 1.78 1.43 5.49 256
unstructured 9602683 0.51 0.65 2.82 1.26 5.51 258

Table 5:Benchmark communication statistics when Rawcc targets an 8x4 Raw machine. The statistics are execu-
tion counts from the static network. BB stands for basic block.

Rawcc currently does not take advantage of multi-routes. However, there are two reasons why we
believe multi-routes are not performance critical. First, the low utilization of the network suggests that
route crossings are infrequent. Second, unlike multicasts, the lack of multi-route does not increase the
processor occupancy cost of communication.

6 Conclusion

This paper examines the general problem of providing a scalable interconnect for exploiting ILP on a
decentralized architecture. We introduce a classification of execution model that is based on whether
instruction assignment and instruction ordering are performed at compile-time or run-time. We present
the fundamental requirements that a network has to satisfy in order to exploit ILP in this broad domain.
We narrow our focus on compile-time assignment and ordering of instructions, and we present two
ILP network implementations in this domain in the context of the Raw architecture, a decentralized
architecture.

We draw several insights from this exercise. First, we are able to leverage compile-time knowledge
about instruction assignment and operand ordering to improve either the performance or the hardware
requirement of our protocols. Examples of this principle include the simplification of instruction issue
logic through a total ordering of instructions on each processing node, optimizing buffer reuse synchro-
nization on the dynamic network, and providing a fast path for message receives on a general dynamic
ILP network that relies on the compiler’s ability to predict the next incoming message. Second, we show
that the Raw static network is able to satisfy the fundamentals of an ILP network by guaranteeing a static
ordering of communication events on every processor and switch, with little protocol overhead at the
cost of some run-time routing flexibility.

14

I I I I I I I I 



Benchmark 1 2 3 4

life 0.876 0.093 0.031 0.000
jacobi 0.880 0.086 0.025 0.010
moldyn 0.934 0.057 0.007 0.002
vpenta 0.841 0.116 0.030 0.013
cholesky 0.569 0.327 0.101 0.003
fpppp-kernel 0.855 0.128 0.017 0.000
unstructured 0.963 0.029 0.007 0.001

Table6: Distributionof thenumberof outputportsaccessedby a routeinstructionfor an8x4Raw machine.

References

[1] Arvind andS.Brobst. Theevolution of dataflow archiectruesfrom staticdataflow to p-risc. In Proceedings
of Workshop on Massive Parallelism: Hardware, Programming, and Applications, 1990.

[2] R. Barua,W. Lee,S.Amarasinghe,andA. Agarwal. Maps:A Compiler-ManagedMemorySystemfor Raw
Machines.In Proceedings of the 26th International Symposium on Computer Architecture, Atlanta,GA, May
1999.

[3] J. A. Fisher. Tracescheduling:A techniquefor global microcodecompaction. IEEE Trans. Comput., C-
30(7):478–490,July1981.

[4] J.A. Fisher, J.R. Ellis, J.C. Ruttenberg, andA. Nicolau. Parallelprocessing:A smartcompileranda dumb
machine. In Proceedings fo the ACM SIGPLAN 84 on Compiler Construction, SIGPLAN Notices, pages
37–47.ACM, June1984.Vol. 19,No. 6.

[5] J. Janssenand H. Corporaal. Partitionedregister file for ttas. In Proceedings of the 28th International
Symposium on Microarchitecture, pages303–312,1996.

[6] M. Lam. Softwarepipelining:An effectiveschedulingtechniquefor VLIW machines.In Proceedings of the
SIGPLAN ’88 Conference on Programming Language Design and Implementation, pages318–328,Atlanta,
Georgia,June22–24,1988.

[7] W. Lee,R. Barua,M. Frank,D. Srikrishna,J.Babb,V. Sarkar, andS.Amarasinghe.Space-TimeScheduling
of Instruction-Level Parallelismon a Raw Machine. In Architectural Support for Programming Languages
and Operating Systems, pages46–57,SanJose,CA, Oct.1998.

[8] K. Mai, T. Paaske, N. Jayasena,R. Ho, W. Dally, andM. Horowitz. Smartmemories:A modularreconfig-
urablearchitecture.In Proceedings of the 27th International Symposium on Computer Architecture, 2000.

[9] G. PrattandJ.Nguyen.”DistributedSynchronousClocking. IEEE Transactions on Parallel and Distributed
Systems, pages314–328,Mar. 1995.

[10] M. Taylor. DesignDecisionsin the Implementationof a Raw ArchitectureWorkstation. Master’s thesis,
MIT, Departmentof ElectricalEngineeringandComputerScience,September1999.

[11] E. Waingold,M. Taylor, D. Srikrishna,V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank,P. Finch, R. Barua,
J. Babb,S. Amarasinghe,andA. Agarwal. Baring It All to Software: Raw Machines. IEEE Computer,
30(9):86–93,Sept.1997.Also availableasMIT-LCS-TR-709.

15


