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Abstract

Ordinary digital signatures have an inherent weakness: if the secret key is leaked, then all signatures,
even the ones generated before the leak, are no longer trustworthy. Forward-secure digital signatures were
recently proposed to address this weakness: they ensure that past signatures remain secure even if the
current secret key is leaked.

We propose the �rst forward-secure signature scheme for which both signing and verifying are as
eÆcient as for one of the most eÆcient ordinary signature schemes (Guillou-Quisquater): each requiring
just two modular exponentiations with a short exponent. All previously proposed forward-secure signature
schemes took signi�cantly longer to sign and verify than ordinary signature schemes.

Our scheme requires only fractional increases to the sizes of keys and signatures, and no additional
public storage. Like the underlying Guillou-Quisquater scheme, our scheme is provably secure in the
random oracle model.
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1 Introduction

The Purpose of Forward Security. Ordinary digital signatures have a fundamental limitation: if the
secret key of a signer is compromised, all the signatures (past and future) of that signer become worthless.
This limitation undermines, in particular, the non-repudiation property that digital signatures are often
intended to provide. Indeed, one of the easiest ways for Alice to repudiate her signatures is to post her secret
key anonymously somewhere on the Internet and claim to be a victim of a computer break-in. In principle,
various revocation techniques can be used to prevent users from accepting signatures with compromised
keys. However, even with these techniques in place, the users who had accepted signatures before the keys
were compromised are now left at the mercy of the signer, who could (and, if honest, would) re-issue the
signatures with new keys.

Forward-secure signature schemes, �rst proposed by Anderson in [And97] and formalized by Bellare and
Miner in [BM99], are intended to address this limitation. Namely, the goal of a forward-secure signature
scheme is to preserve the validity of past signatures even if the current secret key has been compromised.
This is accomplished by dividing the total time validity period of a given public key into T time periods, and
using a di�erent secret key in each time period (while the public key remains �xed). Each subsequent secret
key is computed from the current secret key via a key update algorithm. The time period during which a
message is signed becomes part of the signature. Forward security property means that even if the current
secret key is compromised, a forger cannot forge signatures for past time periods.

Prior Schemes. Prior forward-secure signature schemes can be divided into two categories: those that
use (in a black-box manner) arbitrary signature schemes, and those that modify speci�c signature scheme.

In the �rst category, the schemes use some method in which a master public key is used to certify (perhaps
via a chain of certi�cates) the current public key for a particular time period. Usually, these schemes require
increases in storage space by noticeable factors in order to maintain the current (public) certi�cates and
the (secret) keys for issuing future certi�cates. They also require longer veri�cation times than ordinary
signatures do, because the veri�er needs to verify the entire certi�cate chain in addition to verifying the
actual signature on the message. There is, in fact, a trade-o� between storage space and veri�cation time.
The two best such schemes are the tree-based scheme of Bellare and Miner [BM99]1 (requiring storage of
about lg T secret keys and non-secret certi�cates, and veri�cation of about lg T ordinary signatures) and
the scheme of Krawczyk [Kra00] (requiring storage of T non-secret certi�cates, and veri�cation of only 2
ordinary signatures).

In the second category, there have been only two schemes proposed so far (both in the random oracle
model): the scheme of Bellare and Miner [BM99] based on the Fiat-Shamir scheme [FS86], and the scheme
of Abdalla and Reyzin [AR00] based the 2t-th root scheme [OO88, OS90, Mic94]. While needing less space
than the schemes in the �rst category, both [BM99] and [AR00] require signing and veri�cation times that
are linear in T .

Our Results. We propose a scheme in the second category, based on one of the most eÆcient ordinary
signature schemes, due to Guillou-Quisquater [GQ88]. It uses just two modular exponentiations with short
exponents for both signing and verifying.

Ours is the �rst forward-secure scheme where both signing and verifying are as eÆcient as the underlying
ordinary signature scheme. Moreover, in our scheme the space requirements for keys and signatures are
nearly the same to those in the underlying signature scheme (for realistic parameter values, less than 50%
more).

The price of our scheme is in the running times of its key generation and update routines: both are linear
in T (however, so is key generation in [Kra00], [BM99] and [AR00]). We consider this a worthwhile price to
pay for such eÆcient signing and verifying, because key generation and update are (presumably) performed

1Some improvements to tree-based scheme of [BM99] (not a�ecting this discussion) have been proposed in [AR00] and [MI].
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much less frequently than signing and verifying. Moreover, we show that, if we are willing to tolerate secret
storage of 1 + log2 T values, we can reduce the running time of the key update algorithm to be logarithmic
in T without a�ecting the other components (this, rather unexpectedly, involves a very nice application of
pebbling). For realistic parameter values, the total storage requirements, even with these additional secrets,
are still less than in all prior schemes; the only exception is the [AR00] scheme, which has very ineÆcient
signing and verifying.

Our scheme is provably secure in the random oracle model based on a variant of the strong RSA as-
sumption.

2 Forward-secure digital signature schemes

2.1 De�nitions

This section closely follows their �rst formal de�nition of forward secure signatures proposed by Bellare and
Miner [BM99]. Their de�nition, in turn, is based on the Goldwasser, Micali and Rivest's [GMR88] de�nition
of (ordinary) digital signatures secure against adaptive chosen message attacks.

Key Evolution. The approach taken by forward-secure schemes is to change the secret key periodically
(and require the owner to properly destroy the old secret key2). Thus we consider the time to be divided
into time periods; at the end of each time period, a new secret key is produced and the old one is destroyed.
The number of the time period when a signature was produced is part of the signature and is input to the
veri�cation algorithm; signatures with incorrect time periods should not verify.

Of course, while modifying the secret key, one would like to keep the public key �xed. This can be achieved
by use of a \master" public key, which is somehow used to certify the temporary public key for the current
time period (note however, than one needs to be careful not to keep around the corresponding \master"
secret key|its presence would defeat the purpose of forward security) . The �rst simple incarnation of this
approach was proposed by [And97]; a very elegant tree-based solution was proposed by [BM99]; another
approach, based on generating all of the certi�cates in advance, was put forward by [Kra00]. However, in
general, one can conceive of schemes where the public key stays �xed but no such certi�cates of per-period
public keys are present (and, indeed, such schemes are proposed in [BM99, AR00], as well as in this paper).

The notion of a key-evolving signature scheme captures, in full generality, the idea of a scheme with a
�xed public key and a varying secret key. It is, essentially, a regular signature scheme with the additions of
time periods and the key update algorithm. Note that this notion is purely functional: security is addressed
separately, in the de�nition of forward security (which is the appropriate security notion for key-evolving
signature schemes).

Thus, a key-evolving digital signature scheme is a quadruple of algorithms, FSIG = (FSIG:key;FSIG:update;
FSIG:sign;FSIG:vf), where:

� FSIG:key, the key generation algorithm, is a probabilistic algorithm which takes as input a security
parameter k 2 N (given in unary as 1k) and the total number of periods T and returns a pair (SK 1;PK ),
the initial secret key and the public key;

� FSIG:sign, the (possibly probabilistic) signing algorithm, takes as input the secret key SK j= hSj ; j; T i
for the time period j � T and the message M to be signed and returns the signature hj; signi of M for
time period j;

� FSIG:update, the (possibly probabilistic) secret key update algorithm, takes as input the secret key SK j

for the current period j < T and returns the new secret key SK j+1 for the next period j + 1.

2Obviously, if the key owner does not properly destroy her old keys, an attacker can obtain them and thus forge the \old"
signatures. Indeed, proper deletion of the old keys may be a non-trivial task. However, insisting that achieving such a proper
deletion of the old keys is the responsibility of the key owner is a reasonable requirement|certainly more reasonable than
insisting that she guarantee the secrecy of her active keys.

4



� FSIG:vf, the (deterministic) veri�cation algorithm, takes as input the public key PK , a message M , and
a candidate signature hj; signi, and returns 1 if hj; signi is a valid signature of M or 0, otherwise. It is
required that FSIG:vfPK (M;FSIG:signSK j

(M)) = 1 for every message M and time period j.

We adopt the convention that SK T+1 is the empty string and FSIG:updateSKT
returns SK T+1.

When we work in the random oracle model, all the above-mentioned algorithms would have an additional
security parameter, 1l, and oracle access to a public hash function H : f0; 1g� ! f0; 1gl , which is assumed
to be random in the security analysis.

Forward Security. Forward security captures the notion that it should be computationally infeasible
for any adversary to forge a signature for any past time period even in the event of exposure of the current
secret key. Of course, since the update algorithm is public, nothing can be done with respect to future secret
keys, except for revoking the public key (thus invalidating all signatures for the time period of the break-in
and thereafter). To de�ne forward security formally, the notion of a secure digital signature of [GMR88] is
extended in [BM99] to take into account the ability of the adversary to obtain a key by means of a break-in.

Intuitively, in this new model, the forger �rst conducts an adaptive chosen message attack (cma), re-
questing signatures on messages of its choice for as many time periods as he desires. Whenever he chooses,
he \breaks in": requests the secret key SK b for the current time period b and then outputs a signature on
a message M of his choice for a time period j < b. The forger is considered to be successful if the signature
is valid and the pair (M; j) was not queried during cma.

Formally, let the forger F = hF:cma; F:forgei. For (PK ;SK 0)
R
 FSIG:key(k; : : : ; T ), F:cma, given PK

and T , outputs (CM; b), where b is the break-in time period and CM is a set of adaptively chosen message-
period pairs (the set of signatures sign(CM) of the current set CM is available to F at all times, including
during the construction of CM)3. Finally, F:forge outputs hM; j; sigi  F:forge(CM; sign(CM); SKb).
We say that F is successful if hM; ji 62 CM; j < b; and FSIG:vfPK (M; hj; sigi) = 1. (Note: formally, the
components of F can communicate all the necessary information, including T and b, via CM be considered
independent, because they communicate state information via T; b, as well as forger state information can
be communicated to F:forge via CM .)

De�ne Succfwsig(FSIG[k; T ]; F ) to be the probability (over coin tosses of F and FSIG) that F is successful.
De�ne the insecurity function InSecfwsig(FSIG[k; T ]; t; qsig) of FSIG to be the maximum, over all algorithms
F that are restricted to running time t and qsig signature queries, of Succ

fwsig(FSIG[k; T ]; F ).
The insecurity function above follows the \concrete security" paradigm and gives us a measure of how

secure or insecure the scheme really is. Therefore, we want its value to be as small as possible. Our goal in
a security proof will be to �nd an upper bound for it.

The above de�nition can be translated to the random oracle model in a standard way [BR93]: by
introducing an additional security parameter 1l, allowing all algorithms the access to the random oracle
H : f0; 1g� ! f0; 1g, and considering qhash, the number of queries to the random oracle, as one more
parameter for the forger.

2.2 Underlying hard problem

We use a variant of the strong RSA assumption, with the restriction that the modulus is a product of
so-called \safe" primes. That is, let n be a product of two randomly generated dk=2e-bit \safe" primes p1; p2

3Note that the [BM99] de�nition, which captures what F can do in practice, allows the messages-period pairs to be added
to CM only in the order of increasing time periods and without knowledge of any secret keys. However, allowing the forger
to construct CM in arbitrary order, and even to obtain SKb in the middle of the CM construction (so that some messages
be constructed by the forger with the knowledge of SKb) would not a�ect our (and their) results. Similarly, the forger can be
allowed to obtain more than one secret key | we only care about the earliest period b for which the secret key is given to the
forger. So, the forger may adaptively select some messages which are signed for him, then request some period's secret key;
then adaptively select more messages and again request a key, etc.
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(that is, pi = 2qi + 1 where qi itself is a prime), and let �
R
 Z�

n. Let l be an integer. We assume that it is
hard to take a root � modulo n of any degree r, 1 < r � 2l+1.

More formally, let A be the adversary for this problem. Consider the following experiment.

Experiment Break-Strong-RSA(k; l; A)
Randomly choose two primes q1 and q2 of length dk=2e � 1 each

such that 2q1 + 1 and 2q2 + 1 are both prime.
p1  2q1 + 1; p2  2q2 + 1; n p1p2
Randomly choose � 2 Z�

n.
(�; r) A(n; �)
If 1 < r � 2l+1 and �r � � (mod n) then return 1 else return 0

Denote Succ(A; k; l) denote the probability that A the above experiment returns 1, and let InSecSRSA(k; l; t)
be the maximum of Succ(A; k; l) over all the adversaries A who run in time at most t.

Our results will be meaningful only if InSecSRSA(k; l; t) is small.
We note that our assumption can be reduced to subexponential hardness of RSA. Namely, if the proba-

bility of inverting the RSA function in time t for a randomly chosen exponent is at least 2k
�
for some �, and

k� � l � 1 is suÆciently large, then InSecSRSA(k; l; t) is small.

3 Our tools

A Bit of Mathematical Background. It will be helpful to �rst introduce the following two statements.
They were �rst pointed out by Shamir [Sha83] in the context of generation of pseudorandom sequences based
on the RSA function.

Proposition 3.1 Let G be any group. Suppose e1; e2 2 Z are such that gcd(e1; e2) = 1. Given a; b 2 G such
that and ae1 = be2 , one can compute c such that ce2 = a in O(lg(e1 + e2)) group and arithmetic operations.

Proof: Using Euclid's extended gcd algorithm, within O(lg(e1 + e2)) arithmetic operations compute f1; f2,
such that e1f1+e2f2 = 1. Compute c = af2bf1 , with O(lg(f1+f2)) = O(lg(e1+e2)) group operations. Then
ce2 = ae2f2be2f1 = ae2f2ae1f1 = a.

Lemma 3.2 Let G be a �nite group. Suppose e1; e2 2 Z are such that gcd(e1; e2) = g and gcd(g; jGj) = 1.
Given a; b 2 G; such that ae1 = be2 , one can compute c such that ce2=g = a in O(lg e1+e2

g ) group and
arithmetic operations.

Proof: Since gcd(g; jGj) = 1, (zg = 1) ) (z = 1) for any z 2 G. Let e01 = e1=g; e02 = e2=g. Then
(ae

0
1=be

0
2)g = 1, so ae

0
1 = be

0
2 , so we can apply and Proposition 3.1 to get c such that ce

0
2 = a.

The GQ Scheme. In [GQ88], Guillou and Quisquater propose the following three-round identi�cation
scheme. Let k and l be two security parameters. The prover's secret key consists of a k-bit modulus
n (a product of two random primes p1; p2), an (l + 1)-bit exponent e that is relatively prime to �(n) =
(p1 � 1)(p2 � 1), and a random s 2 Z�

n. The public key consists of n; e and v where v � 1=se (mod n).
In the �rst round, the prover generates a random r 2 Z�

n, computes the commitment y = re (mod n)
and sends y to the the veri�er. In the second round, the veri�er sends a random l-bit challenge � to the
prover. In the third round, the prover computes and sends to the veri�er z = rs�. To check, the veri�er
computes y0 = zev� and checks if y = y0 (and y 6� 0 (mod n)).

The scheme's security is based on the assumption that computing roots modulo composite n is infeasible
without knowledge of its factors, and can be proven using Lemma 3.2. Informally, if the prover can answer

6
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algorithm GQ:key(k; l)
Generate random dk=2e-bit
primes p1; p2

n p1p2

s
R
 Z�

n

e
R
 [2l; 2l+1), s.t. gcd(e; �(n)) = 1

v  1=se mod n
SK  (n; s; e)
PK  (n; v; e)
return (SK ;PK )

algorithm GQ:sign(M; (n; s; e))

r
R
 Z�

n

y  re mod n
�  H(y;M)
z  rs� mod n
return (z; �)

algorithm GQ:vf(M; (n; v; e); (z; �))
if z � 0 (mod n) then return 0
y0  zev� mod n
if � = H(y;M) then return 1 else return 0

Figure 1: The GQ Signature Scheme

two di�erent challenges, � and � , for the same y, then it can provide z� and z� such that ze�v
� = ze�v

� .
Hence, v��� = (z�=z� )

e. Note that e is l + 1-bits long, hence e > j� � � j, hence g = gcd(� � �; e) < e,
so r = e=g > 1. By Lemma 3.2, knowing v; � � �; z�=z� and e allows one to eÆciently compute the r-th
root of v (to apply the lemma, we need to have g relatively prime with the order �(n) of the multiplicative
group Z�

n, which is the case by construction, because e is picked to be relatively prime with �(n)). Thus,
the prover must know at least some root of v (in fact, if e is picked to be prime, then the prover must know
precisely the e-th root of v, because g = 1 and r = e). Note that it is crucial to the proof that e > 2l and e
is relatively prime with �(n).

The standard transformation of [FS86] can be applied to this identi�cation scheme to come up with the
GQ signature scheme, presented in Figure 1. Essentially, the interactive veri�er's l-bit challenge � is now
computed using a random oracle (hash function) H : f0; 1g� ! f0; 1gL applied to the message M and the
commitment y.

4 Our scheme

4.1 Main ideas for forward security

The main idea for our forward-secure scheme is to combine the GQ scheme with Shamir's observation
(Lemma 3.2). Namely, let e1; e2; : : : ; eT be distinct integers, all greater than 2l, all pairwise relatively prime
and relatively prime with �(n). Let s1; s2; : : : ; sT be such that seii � 1=v (mod n) for 1 � i � T . In time
period i, the signer will simply use the GQ scheme with the secret key (n; si; ei) and the veri�er will use
the GQ scheme with the public key (n; v; ei). Intuitively, this will be forward-secure because of the relative
primality of the ei's: if the forger breaks-in during time period b and learns the eb-th, eb+1-th, : : : ; eT -th
roots of v, this will not help it compute ej-th root of v for j < b (nor, more generally, the r-th root of v,
where rjej).

This idea is quite simple. However, we still need to address the following two issues: how the signer
computes the si's and how both the signer and the veri�er compute the ei's.

Computing si's. Notice that if the signer were required to store all the si's, this scheme would require
secret storage that is linear in T . However, this problem can be easily resolved. Let fi = ei �ei+1 � : : : �eT . Let
ti be such that tfii � 1=v (mod n). During the j-th time period, the signer stores sj and tj+1. At update

time, the signer computes sj+1 = t
fj+2
j+1 mod n and tj+2 = t

ej+1
j+1 mod n. This allows secret storage that is
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independent of T : only two values modulo n are stored at any time. It does, however, require computation
linear in T at each update, because of the high cost of computing sj+1 from tj+1.

We can reduce the computation at each update to be only logarithmic in T by properly utilizing pre-
computed powers of tj+1. This will require us, however, to store (2 lg T � 1) secrets instead of just two.
Because this optimization concerns only the eÆciency of the update algorithm and a�ects neither the other
components of the scheme nor the proof of security, we present it separately in Section 5.2.

Computing ei's. In order for the scheme to be secure, the ei's need to be relatively prime with each
other4 and with �(n), and greater than 2l. The signer can therefore generate the ei's simply as distinct
(l+1)-bit primes. Of course, to store all the ei's would require linear in T (albeit public) storage. However,
the signer need only store ej for the current time period j, and generate anew the other ei's for i > j during
key update. This works as long as the signer uses a deterministic algorithm for generating primes: either
pseudorandom search or sequential search from �xed starting points. The fact that ei's are not stored but
rather recomputed each time slows down the update algorithm only (and, as we show in Section 4.3, not
by much). Note that the way we currently described the update algorithm, for the update at time period j
the signer will need to compute ej+1; : : : ; eT . With the optimization of Section 5.2, however, only at most
(2 lg T � 2) of the ei's will need to be computed at each update.

We have not yet addressed the issue of how the veri�er gets the ei's. Of course, it could simply generate
them the same way that the signer does during each key update. However, this will slow down veri�cation,
which is undesirable. The solution is perhaps surprising: the veri�er need not know the ei's at all! The
value of ej can be simply included by the signer in every signature for time period j. Of course, a forger
is under no obligation to include the true ej . Therefore, to avoid ambiguity, we will denote by e the value
included in a signature. It may or may not actually equal ej .

After some consideration, it becomes clear that e should satisfy the following requirements for security
of the scheme:

1. e should be included as an argument to the hash function H, so that the forger cannot decide on e
after seeing the challenge �;

2. e should be greater than 2l, for the same reasons as in the GQ scheme;

3. e should be relatively prime with �(n), for the same reasons as in the GQ scheme; and

4. e should be relatively prime with the eb; : : : ; eT (where b is the break-in time period), so that the
knowledge of the root of v of degree eb � eb+1 � : : : � eT does not help the forger compute any root of v
of degree rje.

The �rst two conditions can be easily enforced by the veri�er. The third condition can be enforced by having
n be a product of two primes p1; p2 that are of the form pi = 2qi + 1, where q is prime. Then the veri�er
simply needs to check that e is odd (then it must be relatively prime with �(n)|otherwise, it would be
divisible by q1, q2 or q1q2, which would imply that the forger could factor n) . But how can the veri�er
check the last condition without knowing b and the actual values of eb; : : : ; eT ? The idea is to split the entire
interval between 2l and 2l+1 into T consecutive buckets of size 2l=T each, and have each ei be a prime coming
from the i-th bucket. Then the veri�er knows that the actual values ej+1; : : : ; eT are all at least 2l(1 + j=T )
and prime. Thus, as long as e in the signature for time period j is less than 2l(1 + j=T ), it is guaranteed to
be relatively prime with ej+1; : : : ; eT , and hence with eb; : : : ; eT (because b > j). So all the veri�er needs to
check is that e is odd, is between 2l and 2l(1 + j=T ) and is included in the hash computation.

4In fact, this requirement can be relaxed. We can allow the ei's not to be pairwise relatively prime, as long as we rede�ne
fi as fi = lcm(fi; fi+1; : : : ; fT ), and require that ei be relatively prime with �(n) and ei= gcd(ei; fi+1) > 2l. However, we see
no advantages in allowing this more general case; the disadvantage is that the ei's will have to be longer to satisfy the last
requirement, and thus the scheme will be less eÆcient.
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4.2 The scheme

Our scheme (called IR) based on these ideas is presented in Figure 2. As in the GQ scheme, let H : f0; 1g� !
f0; 1gl be a hash function.

4.3 EÆciency

Signing and Verifying. The strength of our scheme is in its signing and verifying performance. Both
are the same as the already eÆcient ordinary GQ scheme (signing has the additional, negligible component
of testing whether e is in the right range and odd). Namely, they each take two modular exponentiations,
one modular multiplication and an application of H, for a total time of O(k2l) plus the time required to
evaluate H. (Note that, just like the GQ scheme, one of the two modular exponentiations for signing can
be done o�-line, before the message is known; also, one of the two modular exponentiations for verifying is
of a �xed base v, and can bene�t from precomputation.)

Key Generation and Update. We need to make strong assumptions on the distributions of primes in
order to estimate eÆciency of key generation and update algorithms. First, we assume that at least one
in O(k) dk=2e-bit numbers is a prime, and that at least one in O(k) of those is of the form 2q + 1, where
q is prime. Then, generating n takes O(k2) primality tests. Each primality test can be done in O(k3) bit
operations [BS96], for a total of O(k5) bit operations. Similarly, we will assume that at least one in O(l)
integers in each bucket [2l(1 + (i � 1)=T ); 2l(1 + i=T )) is a prime, so generating each ei takes O(l4) bit
operations.

In addition to generating n and the ei's, key generation needs to compute the product of the ei's
modulo �(n), which takes O(Tkl) bit operations, and three modular exponentiations, each taking O(k2l)
bit operations. Therefore, key generation takes O(k5 + l4T + k2l + klT )) bit operations.

Key update cannot multiply all the relevant ei's modulo �(n), because �(n) is not available (otherwise, the
scheme would not be forward-secure). Therefore, it has to perform O(T ) modular multiplications separately,
in addition to regenerating all the ei's. Thus, it takes O(k

2lT + l4T ) bit operations.
Note that the l4T component is present in the running time for the update algorithm because of the

need to regenerate the ei's each time. However, for practical values of l (on the order of 100) and k (on the
order of 1000), l4T is roughly the same as k2lT , so this only slows down the key update algorithm by a small
constant factor. Moreover, in Section 5.1 we show how to reduce the l4T component in both key generation
and update to (l2 + lg4 T )T (at a very slight expense to signing and verifying).

Finally, as shown in Section 5.2, if we are willing to increase secret storage to roughly 2k lg T , then
we can replace the factor of T in the cost of update by the factor of lg T , to get update at the cost of
O((l4 + k2l) lg T ) (or, if optimization of Section 5.1 is additionally applied, O((k2l + l2 + lg4 T ) lg T )).

Sizes. All the key and signature sizes are comparable to those in the ordinary GQ scheme.
The public key has l + 1 fewer bits than the GQ public key, and the signatures have l + 1 more bits,

because e is included in the signature rather than in the public key. In addition, both the public key and the
signature have lg T more bits in order to accommodate T in the public key and the current time period in
the signature (this is necessary in any forward-secure scheme). Thus, the total public key length is 2k+lg T
bits, and signature length is k + 2l + 1 + lg T bits. Optimization of Section 5.1 shortens the signatures
slightly, replacing l + 1 of the signature bits with roughly lg T bits.

The secret key is k+2 lg T + jseed j bits longer than the GQ scheme in order to accommodate the current
time period j, the total time periods T , the value tj+1 necessary to compute future keys and the seed
necessary to regenerate the ei's for i > j. Thus, the total secret key length is 3k+ l+1+ jseed j+2 lg T bits
(note that only 2k of these bits need to be kept secret). If the optimization of Section 5.2 is used, then the
secret key length increases by roughly 2k lg T bits, all of which need to be kept secret.
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algorithm IR:key(k; l; T )
Generate random dk=2e � 1-bit primes q1; q2 such that pi = 2qi + 1 are both prime
n p1p2

t1
R
 Z�

n

Generate primes ei such that 2l(1 + (i� 1)=T ) � ei < 2l(1 + i=T ) for i = 1; 2; : : : ; T .
(This generation is done either deterministically or using a small seed seed and
H as a pseudorandom function.)

f2  e2 � : : : � eT mod (�(n)) (where �(n) = 4q1q2)

s1  tf21 mod n
v  1=se11 mod n
t2  te11 mod n
SK 1  (1; T; n; s1; t2; e1; seed)
PK  (n; v; T )
return (SK 1;PK )

algorithm IR:update(SK j)
Let SK j = (j; T; n; sj ; tj+1; ej ; seed )
if j = T then return �
Regenerate ej+1; : : : ; eT using seed

sj+1  t
ej+2�:::�eT
j+1 mod n; tj+2  t

ej+1
j+1 mod n

return SK j+1(j + 1; T; n; sj+1; tj+2; ej+1; seed )

algorithm IR:sign(M;SK j)
Let SK j = (j; T; n; sj ; tj+1; ej ; seed )

r
R
 Z�

n

y  rej mod n
�  H(j; ej ; y;M)
z  rs� mod n
return (z; �; j; ej )

algorithm IR:vf(M;PK ; (z; �; j; e))
Let PK = (n; v)
if e � 2l(1 + j=T ) or e < 2l or e is even then return 0
if z � 0 (mod n) then return 0
y0  zev� mod n
if � = H(j; e; y;M) then return 1 else return 0

Figure 2: Our forward-secure signature scheme (without eÆciency improvements)
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4.4 Security

The security of our scheme (in the random oracle model) is comparable to the security of the schemes of
[BM99, AR00]. The proof closely follows the one in [AR00], combining ideas from [PS96, BM99, MR99].

First, we state the following theorem that will allow us to upper-bound the insecurity function. The full
proof of the theorem is very similar to the one in [AR00] and is contained in Appendix A.

Theorem 4.1 Given a forger F for IR[k; l; T ] that runs in time at most t, asking at most qhash hash queries
and qsig signing queries, such that Succfwsig(IR[k; l; T ]; F ) � ", we can construct an algorithm A that, on
input n (a product of two safe primes), � 2 Z�

n and l, runs in time t
0 and outputs (�; r) such that 1 < r � 2l+1

and �r � � (mod n) with probability "0, where

t0 = 2t+O(lT (l2T 2 + k2))

"0 =

�
"� 22�kqsig(qhash + 1)

�2
T 2(qhash + 1)

�
"� 22�kqsig(qhash + 1)

2lT
:

Proof Idea. A will use F as a subroutine. (Note that A gets to provide the public key for F and to answer
its signing and hashing queries.) A bases the public key v on � as follows: it randomly guesses j between 1
and T , hoping that F 's eventual forgery will be for the j-th time period. It then generates e1; : : : ; eT just like

the real signer, sets tj+1 = � and computes v as v = 1=t
fj+1
j+1 mod n, where, as above, fj+1 = ej+1 � : : : � eT .

Then A runs F . Answering F 's hash and signature queries is easy, because A fully controls the random
oracle H. If A's guess for j was correct, and F indeed will output a forgery for the j-th time period,
then F 's break-in query will for the secret of a time period b > j. A can compute the answer as follows:

tb+1 = t
fj+1=fb
j+1 = �ej1 �:::�eb and sb = t

fb+1
b = �ej1 �:::�eb�1�eb+1�:::�eT (the other components of SKb are not secret,

anyway). Suppose A's guess was correct, and in the end F outputs a signature (z; �; j; e) on some message
M . We will assume that F asked a hash query on (y;M; j; e) where y = zev� mod n (if not, A can make
that query for F ).

Then, A runs F the second time with the same random tape, giving the same answers to all the oracle
queries before the query (y;M; j; e). For (y;M; j; e), A gives a new answer � . If F again forges a signature
(z0; �; j; e) using the same hash query, we will have that y � zev� � z0ev� (mod n), so (z=z0)e � v��� �
�fj+1(���) (mod n). Note that because e is guaranteed to be relatively prime with fj+1, and � � � has
at least one fewer bit than e, gcd(fj+1(� � �); e) = gcd(� � �; e) < e (as long as � 6= �). Thus, r =
e= gcd(fj+1(� � �); e) > 1 and, by Lemma 3.2, A will be able to eÆciently compute the r-th root of �.

Please refer to Appendix A for further details.
This allows us to state the following theorem about the insecurity function of our scheme.

Theorem 4.2 For any t, qsig, and qhash,

InSecfwsig(IR[k; l; T ]; t; qsig; qhash) �

T

q
(qhash + 1)InSecSRSA(k; l; t0) + 2�l+1T (qhash + 1) + 22�kqsig(qhash + 1) ;

where t0 = 2t+O(lT (l2T 2 + k2)).

Proof: The insecurity function is computed simply by solving for ("� 22�kqsig(qhash + 1))=T the quadratic
equation in Theorem 4.1 that expresses "0 in terms of " to get

("� 22�kqsig(qhash + 1))=T = 2�l(qhash + 1) +
q
2�2l(qhash + 1)2 + "0(qhash + 1)

� 2�l(qhash + 1) +
q
2�2l(qhash + 1)2 +

p
"0(qhash + 1)

= 2�l+1(qhash + 1) +
p
"0(qhash + 1);
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and then solving the resulting inequality for ".

5 Further Improving EÆciency

5.1 Finding the ei's faster

Finding ei's takes time because they need to be l+1-bit primes. If we were able to use small primes instead,
we could search signi�cantly faster, both because small primes are more frequent and because primality tests
are faster for shorter lengths.5

We cannot use small primes directly because, as already pointed out, the ei's must have at least l + 1
bits. However, we can use powers of small primes that are at least l + 1 bits. That is, we let �i be a small

prime, �(�i) be such that �
�(�i)
i > 2l and ei = �

�(�i)
i . As long as � is a deterministic function of its input �

(for example, �(�) = l=blog2 �c), we can replace e in the signature by �, and have the veri�cation algorithm
compute e = ��(�).

Of course, the veri�cation algorithm still needs to ensure that e is relatively prime to �(n) and to
eb; : : : ; eT . This is accomplished essentially the same way as before: we divide a space of small integers into
T consecutive buckets of some size S each, and have each �i come from the i-th bucket: �i 2 [(i � 1)S; iS).
Then, when verifying a signature for time period j, it will suÆce to check that � is odd and comes from a
bucket no greater than the j-th: � < jS. It will be then relatively prime to �b; : : : ; �T , and therefore e = ��(�)

will be relatively prime to eb; : : : ; �T .
When we used large primes, we simply partitioned the space of (l+ 1)-bit integers into large buckets, of

size 2l=T each. We could have used smaller buckets, but this o�ered no advantages. However, now that we
are using small primes, it is advantageous to make the bucket size S as small as possible, so that even the
largest prime (about TS) is still small.

Thus, to see how much this optimization speeds up the search for the ei's, we need to upper-bound
S. S needs to be picked so that there is at least one prime in each interval [(i � 1)S; iS) for 1 � i � T .
It is reasonable to conjecture that the distance between two consecutive primes Pn and Pn+1 is at most
(ln2 Pn) [BS96]. Therefore, because the largest prime we are looking for is smaller than TS, S should be
such that S > ln2 TS. It is easy to see that S = 4 ln2 T will work for T � 75. (As a practical matter,
computation shows that S = 282 will work for T up to about 3.5 million, because the largest gap between
consecutive primes up to 1 billion is 282.) Thus, the �i's are all less than 4T ln2 T , and therefore the size
of each �i is O(log T ) bits. Thus, �nding and testing the primality of the �i's and then computing the ei's
takes O(T (log4 T + l2)) time, as opposed to O(T l4) without this optimization.

The resulting scheme will slightly increase veri�cation time: the veri�er needs to compute e from �. This
takes time O(l2) (exponentiating any quantity to obtain a roughly (l + 1)-bit quantity takes time O(l2)),
which is lower order than O(k2l) veri�cation time. Moreover, it will be impossible to get ei to be exactly
l+1 bits (it will be, on average, about l+(log T )=2 bits). This will slow down both veri�cation and signing,
albeit by small amounts. Therefore, whether to use the optimization in practice depends on the relative
importance of the speeds of signing and verifying vs. the speeds of key generation and update.

5.2 Optimizing key update

The key update in our scheme requires computing si such that seii � 1=v mod n. Knowledge of si�1, such
that s

ei�1

i�1 � 1=v mod n, does not help, because ei and ei�1 are relatively prime. The easiest way to compute

si requires knowledge of �(n): si  1=v1=ei mod �(n) mod n. However, the signer cannot store the factors of
n|otherwise the forger would obtain these factors during a break-in, and thus be able to produce the past

5In fact, when a table of small primes is readily available (as it often is for reasonably small T ), no searching or primality
tests are required at all.
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periods' secrets (and signatures). The factors of n can be used only during the initial key generations stage,
after which they should be securely deleted.

To enable generation of current and future si's without compromising the past ones, we had de�ned
(in Section 4) a secret ti for time period i, from which it was possible to derive all future periods' secrets
sj�i. The update of ti to ti+1 can be implemented eÆciently (1 exponentiation). However, in this approach
the computation of each si from ti requires �(T � i) exponentiations. This computation can be reduced
dramatically if the storage is increased slightly.

Speci�cally, in this section we demonstrate how replacing the single secret ti with log2 T secrets can
reduce the complexity of the update algorithm to only log2 T exponentiations.

Abstracting the Problem. Consider all subsets of ZT = f1; 2; : : : ; Tg. Let each such subset S corre-

spond to the secret value tS = t
Q

i=2S ei
1 . For example, t1 corresponds to ZT , ti corresponds to fi; i+1; : : : ; Tg,

v�1 corresponds to the empty set, and each si corresponds to the singleton set fig. Raising some secret
value tS to power ei corresponds to dropping i from S.

Thus, instead of secrets and the exponentiation operation, we can consider sets and the operation of
removing an element. Our problem, then, can be reformulated as follows: design an algorithm that, given
ZT , outputs (one-by-one, in order) the singleton sets fig for 1 � i � T . The only way to create new sets
is to remove elements from known sets. The algorithm should minimize the number of element-removal
operations (because they correspond to the expensive exponentiation operations).

Fairly elementary analysis quickly demonstrates that the most eÆcient solution for this problem (at least
for T that is a power of 2) is the following divide-and-conquer algorithm:

Input: An ordered non-empty set A.
Output: Singleton sets fxg, for x 2 A, in order.
Steps: If A has one element, output A and return.

Remove the second half of A's elements to get B.
Recurse on B.
Remove the �rst half of A's elements to get C.
Recurse on C.

This algorithm takes exactly T log2 T element-removal operations to output all the singletons. Moreover,
the recursion depth is 1 + log2 T , so only 1 + log2 T sets need to be stored at any time (each set is just a
consecutive interval, so the bookkeeping about what each set actually contains is simple).

This recursive algorithm can essentially be the update algorithm for our scheme: at every call to update,
we run the recursive algorithm a little further, until it produces the next output. We then stop the recursive
algorithm, save its stack (we need to save only log2 T secrets, because the remaining one is the output of
the algorithm), and run it again at the next call to update. A little more care needs to be taken to ensure
forward-security: none of the sets stored at time period i should contain elements less than i. This can
be done by simply removing i from all sets that still contain in (and that are still needed) during the i-th
update. The total amount of work still does not change.

Because there are T calls to update (if we include the initial key generation), the amortized amount of
work per update is exactly log2 T exponentiations. However, some updates will be more expensive than
others, and update will still cost �(T ) exponentiations in the worst case. We thus want to improve the
worst-case running time of our solution without increasing the (already optimal) total running time. This
can be done through pebbling techniques, described below.

Pebbling. Let each subset of ZT correspond to a node in a graph. Connect two sets by a directed edge
if the destination can be obtained from the source by dropping a single element. The resulting graph is
the T -dimensional hypercube, with directions on the edges (going from higher-weight nodes to lower-weight
nodes). We can traverse the graph in the direction given by the edges. We start at the node corresponding
to ZT , and need to get to all the nodes corresponding to the singleton sets fig.
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One way to accomplish this task is given by the above recursive algorithm, which has the minimal total
number of steps. However, we would like to minimize not only the total number of steps, but also the number
of steps taken between any two \consecutive" nodes fig and fi + 1g, while keeping the memory usage low.
We will do this by properly arranging di�erent branches of the recursive algorithm to run in parallel.

To help visualize the algorithm, we will represent each set stored as a pebble at the corresponding node
in a graph. Then removing an element from a set corresponds to moving the corresponding pebble down the
corresponding directed edge. The original set may be preserved, in which case a \clone" of a pebble is left at
the original node, or it may be discarded, in which case no such clone is left. Our goal can be reformulated
as follows in terms of pebbles: �nd a pebbling strategy that, starting at the node ZT , reaches every node fig
in order, while minimizing the number of pebbles used at any given time (this corresponds to total secret
storage needed), the total number of pebble moves (this corresponds to total number of exponentiations
needed), and the number of pebble moves between any two consecutive hits of a singleton (this corresponds
to the worst-case cost of the update algorithm).

The Pebbling Algorithm. We shall assume that T > 1 is a power of 2. The following strategy uses at
most 1 + log2 T pebbles, takes T log2 T total moves (which is the minimum possible), and requires at most
log2 T moves per update.

Each pebble has the following information associated with it:

1. its current position, represented by a set P � ZT (P will always be a set of consecutive integers
fPmin ; : : : ; Pmax g);

2. its \responsibility," represented by a set R � P (R will also always be a set of consecutive integers
fRmin ; : : : ; Rmax g; moreover jRj will always be a power of 2).

Each pebble's goal is to ensure that it (together with its clones, their clones, etc.) reaches every singleton
in its set P . If R ( P , then the pebble can move towards this goal by removing an element from P . If,
however, R = P , then the pebble has to clone (unless jP j = jRj = 1, in which case it has reached its
singleton, and can be removed from the graph). Namely, it creates a new pebble with the same P , and
responsibility set R0 containing only the second half of R. It then changes its own R to R�R0 (thus dividing
its responsibility evenly between itself and its clone). Now both the pebble and the clone can move towards
their disjoint sets of singletons.

We start with a single pebble with P = R = ZT . The above rules for moving and cloning ensure that
the combined moves of all the pebbles will be the same as in the recursive algorithm. Thus, the steps of the
pebbles are already determined. We now have to specify the timing rules: namely, when the pebbles take
their steps. A careful speci�cation is important: if a pebble moves too fast, then it can produce more clones
than necessary, thus increasing the total memory; if a pebble moves too slowly, then it may take longer to
reach its destination singletons, thus increasing the worst-case cost of update.

In order to specify the timing rules, we will imagine having a clock. The clock \ticks" consecutive integer
values, starting with �T=2 + 1. After each clock tick, each pebble will decide whether to move and, if so,
for how many moves, as follows:

1. The original pebble always makes two moves per clock tick, until it reaches the singleton f1g. After
reaching the singleton it stops, and then removes itself from the graph on the next clock tick.

2. After a new pebble is cloned with responsibility set R, it stays still for djRj=2e clock ticks. After
djRj=2e-th clock-tick following its birth, it starts moving at one move per clock tick. After jRj such
moves, it starts moving a two moves per clock tick, until it reaches its leftmost singleton. After reaching
the singleton it stops, and then removes itself from the graph on the next clock tick.

We remark that the above rules may seem a bit complex. Indeed, simpler rules can be envisioned: for
example, allowing each pebble at most one move per clock tick, and specifying that each pebbles moves
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following a given clock tick only if it absolutely has to move in order to reach its leftmost singleton on time.
However, this set of rules will require roughly 2 log2 T pebbles (even though at most log2 T of them will be
moving at any given time). Having pebbles move at variable speeds allows us to delay their cloning, and
thus reduces the total number of pebbles, as shown by the following theorem.

Theorem 5.1 Suppose T > 1 is a power of two. If i is the value most recently ticked by the clock, then the
total number of pebbles under the above rules never exceeds 1+blog2(T � i)c (if i � 0) or (log2 T )�blog2�ic
(if �T < i < 0). The number of moves occurring immediately following the clock tick i also never exceeds
this quantity. For each i, 1 � i � T , a pebble reaches the singleton i+ 1 immediately before the clock ticks
the value i+ 1, and is removed before the clock ticks i+ 2.

Proof: The proof is by induction on log2 T .

For T = 2, we start with a single pebble with P = R = f1; 2g. After the clock ticks 0, this pebble clones
the pebble with R0 = 2, and itself moves to P = f1g. The clone waits for one clock tick and then, after the
clock ticks 1, the clone moves to P = f2g.

Suppose the statement is true for some T that is a power of two. We will now prove it for T 0 = 2T .
After clock tick �T + 1, we have two pebbles: one responsible for f1; : : : ; Tg, and the other responsible for
fT + 1; : : : ; 2Tg. For the next T=2 � 1 clock ticks, the �rst pebble will move at two steps per tick, and the
second one will stay put (thus, the number of moves does not exceed the number of pebbles). After the
clock ticks �T=2, the �rst pebble will arrive at position P = f1; : : : ; Tg. Thus, starting at t = �T + 1, the
inductive hypothesis applies to the all the pebbles that will cover the �rst half of the singletons: there is a
single pebble until t = �T=2 + 1 and it is in position P = f1; : : : ; Tg after clock tick �T=2 + 1.

The second pebble will reach the position P 0 = f2; : : : ; Tg after the clock ticks T=2. Thus, again, after
the clock ticks 1, the inductive hypothesis applies to all the pebbles that will cover the second half of the
singletons, except that time is shifted forward by T . That is, if 1 � i < T , then the number of pebbles in
the second half does not exceed (log2 T ) � blog2(T � i)c, and if t � T , then the number of pebbles in the
second half does not exceed 1 + blog2(2T � i)c.

The key to �nishing the proof is to realize that the �rst half will lose a pebble just as the second half gains
one. To be precise, we can consider the following four cases.

� For �T < i < 0, we have (log2 T ) � blog2�ic pebbles in the �rst half (by the inductive hypothesis),
and one pebble in the second half, so we have a total of (log2 2T )� blog2�ic pebbles, as required.

� For i = 0, we have 1+ log2 T = log2 2T pebbles in the �rst half (by the inductive hypothesis), and one
pebble in the second half, for a total of 1 + log2 2T pebbles, as required.

� For 0 < i � T , we have 1 + blog2(T � i)c pebbles in the �rst half and (log2 T )� blog2(T � i)c pebbles
in the second half (both by the inductive hypothesis), for a total of 1 + log2 T = 1 + blog2(2T � i)c
pebbles, as required.

� For i > T , we have no pebbles in the �rst half and blog2(2T � i)c pebbles in the second half (by the
inductive hypothesis), as required.

It is easy to see that in each of the above four cases, the number of moves does not exceed the number of
pebbles (because for every pebble moving at two steps per clock tick, there exists a pebble that is standing
still|namely, its most recent clone).

Security. It is, of course, crucial to ensure that the above changes to the update algorithm do not
compromise the security of our scheme. It suÆces to prove that every secret stored following the clock tick
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i can be derived in polynomial time from ti+1. In other words, it suÆces to prove that, following the clock
tick i, no pebble's position P satis�es i 2 P . This can be easily done by induction, as long as each pebble
moves towards its goal by removing the smallest possible element from its position P (the inductive step
is proved as follows: if 2T is the total number of time periods, then the single pebble responsible for the
second half of the singletons will have removed f1; : : : ; T=2g from its position following the clock tick 1, and
will have removed f1; : : : ; Tg following the clock tick T=2 + 1).
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A Details of the Proof of Theorem 4.1

First, we assume that if F outputs (z; �; j; e) as a forgery, then the hashing oracle has been queried on
(j; e; y;M), where y = zev� mod n (any adversary can be modi�ed to do that; this may raise the number
of hash queries to qhash + 1.) We will also assume that F performs the necessary bookkeeping and does not
ask the same hash query twice.6 Note that F may ask the same signature query twice, because the answers
will most likely be di�erent.

Recall that A's job, given � and n, is to �nd (with F 's help) � and r > 1 such that betar � �
(mod n). First, A has to guess the time period for which F will output the forgery: it randomly selects j,
1 < j � T (sometimes A may also succeed if the forgery is for a time period i < j, but this not necessary
for our argument). A then generates e1; : : : ; eT just like the real signer, sets tj+1 = � and computes v as

v = 1=t
fj+1
j+1 mod n, where, as above, fj+1 = ej+1 � : : : � eT .

A then comes up with a random tape for F , remembers it, and runs F on that tape and the input public
key (n; v; T ). If F breaks in at time period b, then A can provide F with the secret key as long as b > j:
knowing tj+1 will allow A to compute sb and tb+1. If b � j, then A aborts (because, in particular, F 's
forgery cannot be for time period j in that case).

To answer F 's signature and hash queries, A maintains two tables: a signature query table and a hash
query table.

Signature queries can be answered almost at random, because A controls the hash oracle. In order to
answer a signature query number s on a message Ms during time period js, A selects a random zs 2 Z

�
n and

�s 2 f0; 1g
l, computes ys = zs

ejsv�s , and checks its signature query table to see if a signature query on Ms

during time period js has already been asked and if ys used in answering it. If so, A changes zs and �s to
the z and � that were used in answering that query. Then A adds the entry (s; js; ejs ; ys; �s; zs;Ms) to its
signature query table and outputs (zs; �s; js; ejs).

Hash queries are also answered at random. To answer the t-th hash query (y0t;M
0
t ; j

0
t; e

0
t), A �rst checks

its signature query table to see if there is an entry (s; js; ejs ; ys; �s; zs;Ms) such that (ys;Ms; js; ejs) =

6This may slightly increase the running time of F , but we will ignore costs of simple table look-up for the purposes of this
analysis.
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(y0t;M
0
t ; j

0
t; e

0
t). If so, it just outputs �s. Otherwise, it picks a random �0t 2 f0; 1g

l, records in its hash query
table the tuple (t; y0t;M

0
t ; j

0
t; e

0
t; �

0
t) and outputs �0t.

Assume now the break-in query occurs during time period b > j, and the valid forgery (z; �; i; e) is output
for a time period i � j (if not, or if no valid forgery is output, A fails). Let y = zev�. Because we modi�ed
F to �rst ask a hash query on (y;M; i; e), we have that, for some h, (h; y;M; i; e; �) = (h; y0h;M

0
h; j

0
h; e

0
h; �

0
h)

in the hash query table (it can't come from the signature query table, because F is not allowed to forge a
signature on a message for which it asked a signature query). A �nds such an h in its table and remembers
it.

A now resets F with the same random tape as the �rst time, and runs it again, giving the exact same
answers to all F 's queries before the h-th hash query (it can do so because it has all the answers recorded
in the tables). Note that this means that F will be asking the same h-th hash query (y;M; i; e) as the �rst
time. As soon as F asks the h-th hash query, however, A stops giving the answers from the tables and comes
up with new answers at random, in the same manner as the �rst time. Let � be the new answer given to
the h-th hash query, and assume � 6= �.

Assume again the break-in query occurs during time period b > j, and the valid forgery (z0; �0; i0; e0) is
output for a time period i0 � j. A again computes y0 = z0e

0
vsigma0 ; by the same reasoning as before, F had

to ask a hash query on (y0;M 0; i0; e0). Let h0 be the number of that query. A �nds h0 and fails if h0 6= h. If,
however, h0 = h, then (y;M; i; e) = (y0;M 0; i0; e0), simply because the h-th hash query had to be the same in
both runs of F . Also then �0 = � . Therefore,

zev� � z0
e
v� ) (z=z0)e � v��� � �fj+1(���) (mod N):

Note that because e is guaranteed to be relatively prime with fj+1 (as long as i � j), and � � �
has at least one fewer bit than e, gcd(fj+1(� � �); e) = gcd(� � �; e) < e (as long as � 6= �). Thus,
r = e= gcd(fj+1(� � �); e) > 1 and, by Lemma 3.2, A will be able to eÆciently compute the r-th root of �.

Running Time Analysis. A runs F twice. Preparing the public key and answering hashing and signing
queries takes A no longer than it would take the real oracles (ignoring the costs of table look-ups). To
�nd which hashing query the signature corresponds to and to apply Lemma 3.2 takes O(lT (l2T 2 + k2)) bit
operations.

Probability Analysis. We will need the following lemma in our analysis.

Lemma A.1 Let a1; a2; : : : ; a� be real numbers. Let a =
P�

�=1 a�. Let s =
P�

�=1 a
2
�. Then s � a2

� .

Proof: Let b = a=� and b� = b� a�. Note that
P�

�=1 b� = �b�
P�

�=1 a� = a� a = 0. Then

�X
�=1

a�
2 =

�X
�=1

(b� b�)
2 = �b2 � 2b

�X
�=1

b� +
�X

�=1

b2� � �b2 =
a2

�
:

First, consider the probability that A's answers to F 's oracle queries are distributed as those of the true
oracles that F expects. This is the case unless, for some signature query, the hash value that A needs to
de�ne has already been de�ned through a previous answer to a hash query (call this \A's failure to pretend").
Because z is picked at random from Zn�, z

ev� is a random element of Z�
n. The probability of its collision with

a value from a hash query in the same execution of F is at most (qhash+1)=jZ�
nj thus, the probability (taken

over only the random choices of A) of A's failure to pretend is at most qsig(qhash+1)=jZ
�
nj � qsig(qhash+1)2

2�k

(because jZ�
nj = 4q1q2 > 2k�2). This is exactly the amount by which F 's probability of success is reduced

because of interaction with A rather than the real signer. Let Æ = "� qsig(qhash + 1)22�k.
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Let "b be the probability that F produces a successful forgery and that its break-in query occurs in time
period b. Clearly, Æ =

PT+1
b=2 "b (if b = 1, then F cannot forge for any time period). Assume now that A

picked j = b� 1 for some �xed b. The probability of that is 1=T .
We will now calculate the probability of the event that F outputs a valid forgery based on the same hash

query both times and that the hash query was answered di�erently the second time and that the break-in
query was b both times. Let ph;b be the probability that, in one run, F produces a valid forgery based on
hash query number h after break-in query in time period b. Clearly,

"b =

qhash+1X
h=1

ph;b

Let ph;b;S (for a suÆciently long binary string S of length m) be the probability that, in one run, F produces
a valid forgery based on hash query number h after break-in query in time period b, given that the string S
was used to determine the random tape of F and the responses to all the oracle queries of F until (and not
including) the h-th hash query. We have that

2mph;b =
X

S2f0;1gm

ph;b;S:

Given such a �xed string S, the probability that F produces a valid forgery based on the hash query number
h after break-in query in time period b in both runs is p2h;b;S (because the �rst forgery is now independent
of the second forgery). The additional requirement that the answer to the hash query in the second run be
di�erent reduces this probability to ph;b;S(ph;b;S � 2�l). Thus, the probability qh;b that F produces a valid
forgery based on the hash query number h in both runs and that the answer to the hash query is di�erent
in the second run and that the break-in query was b in both runs is

qh;b =
X

S2f0;1gm

2�mph;b;S(ph;b;S � 2�l) = 2�m

0
@ X

S2f0;1gm

p2h;b;S � 2�l
X

S2f0;1gm

ph;b;S

1
A

�
2�m (ph;b2

m)2

2m
� 2�lph;b = p2h;b � 2�lph;b

(by Lemma A.1).
The probability that F outputs a valid forgery based on the same hash query both times and that the

hash query was answered di�erently in the second run and that the break-in query occurred in time period
i is now

qhash+1X
h=1

qh;b �

qhash+1X
h=1

p2h;b �

qhash+1X
h=1

2�lph;b �
"2b

qhash + 1
� 2�l"b

(by Lemma A.1).
Note that if this happens, then the forgery occurs in time period i < b = j + 1 (because the forgery has

to occur before the break-in query), so A will be able to take a root of �.
Finally, we remove the assumption that A picked j = b� 1 as the time period to get the probability of

A's success:

"0 �
1

T

T+1X
i=2

�
"2b

qhash + 1
� 2�l"b

�
�

Æ2

T 2(qhash + 1)
�

Æ

2lT

(by Lemma A.1).
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