
More on Proofs of Knowledge

Shai Halevi* Silvio Micalit

May 4, 1998

Abstract

The notion of proofs of knowledge is central to cryptographic protocols, and many definitions
for it have been proposed. In this work we explore a different facet of this notion, not addressed
by prior definitions. Specifically, prior definitions concentrate on capturing the properties of the
verifier, and do not pay much attention to the properties of the prover.

Our new definition is strictly stronger than previous ones, and captures new and desirable
properties. In particular, it guarantees prover feasibility, that is, it guarantees that the time
spent by the prover in a proof of knowledge is comparable to that it spends in an "extraction"
of this knowledge. Our definition also enables one to consider meaningfully the case of a single,
specific prover.

Keywords: Proofs of knowledge, prover feasibility.

1 Introduction

On a very high level, a proof of knowledge is a protocol by which one party ("the Prover") proves
to another party ("the Verifier") that it "knows a secret" about a given common input. Clearly,
one such way would be exhibiting the secret in question, However, the notion becomes interesting
(and hard to formalize properly!) when the secret is not directly revealed.

Proofs of knowledge have since played a crucial role in cryptographic protocols, and ever since
their intuitive introduction [6] [3], there have been several attempts to provide them with an
adequate formalization. The first such attempts (4, 2, 8] did not address some possible scenarios
(most notably, the case where the verifier is convinced with probability which is not non-negligible,
and the case where the prover is not restricted to probabilistic-polynomial-time). These weaknesses
were observed and corrected in a later work of Bellare and Goldreich [l].

Although this last definition captures many important aspects of proofs of knowledge, we argue
below that there are still other aspects which are not addressed by it. In this paper we exhibit one
such aspect and propose to strengthen previous definitions so as to capture it.

THE COMMON CORE OF PRIOR DEFINITIONS. For the sake of simplicity, in the intuitive discussion
below we denote the common input to the prover and verifier by x and its corresponding secret by y.
According to all prior notions, saying that a prover P proves (by means of an interactive protocol)
to a verifier V that it knows the secret y, means that P "could explicitly compute y with minimal
extra effort." In all previous definitions (and in ours too) this minimal extra effort is formulated in
terms of a polynomial-time Turing machine (called the knowledge extractor) that, after interacting

•rnM Watson, P.O. Box 704, Yorktown Height, NY 10598, USA, shaihhatson. ibm.com
1MIT - Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139, USA

1

with Pa few times, outputs a secret y . (One instructing way to think of this knowledge extractor
is as the "sub-conscience" of the prover. Thus, if the prover convinces the verifier that it knows y,
then it can also reconstruct y by itself.)

On the other hand, often proofs of knowledge are zero-knowledge ones. (Informally, this means
that no polynomial-time machine can compute the secret by interacting with the prover.) This
seemingly contradicts the existence of a knowledge extractor. The reason that no such contradiction
occurs is that all prior notions assume that the prover is resettable; namely, it is possible to restore
the provers state at the beginning of the computation (including the contents of its random tape,
should the prover be a probabilistic Turing machine).

1.1 Our Notion of Proofs Of Knowledge

Assume that a prover P interacts with a Verifier Von a common input x, and succeeds in convincing
V that it knows a secret y about x. Then it ought to be the case that P's knowledge of y
is demonstrated in V's view of the conversation with P . Notice now that this view is actually
a probability distribution that it determined by both P and V (and their probabilistic choices).
Therefore, it must be this distribution that demonstrates P's knowledge of y.

However, prior definitions allow that a knowledge extractor K outputs y after interacting several
times with P in any way it wants. It is thus possible that the distribution which enables K to
compute y is totally unrelated to the one that P and V generate together. In a sense, therefore, the
ability of K to compute y stems from the "wrong reasons", and has nothing to do with the fact
that V is convinced.

THE SAME-DISTRIBUTION CONSTRAINT. Our notion closes the above "semantic gap" by demanding
that each interaction of the extractor K with the prover P has exactly the same distribution of
the prover-verifier interactions. We call a knowledge extractor that obeys this 'same-distribution'
constraint a conservative knowledge-extractor, and the resulting notion a conservative proof of
knowledge.

We stress that our definition, while insisting that each single K -P interaction is distributed just
like a random P-V interaction, allows these interactions to be dependent.

It is easy to verify that all the known proof-of-knowledge protocols in the literature indeed have
conservative knowledge extractors. (But it is still important to find a better way of capturing what
these protocols actually accomplish.)

PROVER PROPERTIES AND SPECIFIC PROVERS. The 'same distribution' constraint essentially tells
us that the behavior of the prover when interacting with the extractor is the same as when inter­
acting with the verifier. Hence, it enables us to make assertions regarding the properties of the
prover in a proof-of-knowledge. In particular, it enables us to ask meaningfully questions of the
form "does a particular prover-program P demonstrates a knowledge of some secret?"

We note that this is in sharp contrast to previous definitions, where provers are quantified
under the 'for all' quantifier and referring to a specific prover-program is quite meaningless. To
demonstrate this point, let (P, V) be any proof of knowledge protocol, and consider the following
contrived modification of the prover-program.

Program P ' : On common input x and secret input y' (which may or may not be a 'valid secret'
with respect to x), behave just like P does, except when the verifier's query consists of the
all-zero string. In this case, perform an exponential-time exhaustive search for a valid secret
y, and sends it to the verifier.

2

It is clear that to extract y from such a contrived prover P' one may just send it the all-zero string,
but it is also clear that such extraction of y has little relation to the 'knowledge' of y that P'
demonstrated in an interaction with the verifier (when the all-zero string is not sent) . Nonetheless,
previous definitions of proofs-of-knowledge were formulated in a way which did not enabled us to
make this distinction.

We note that this is no accident. Indeed, previous definitions were explicitly formulated to
capture only the properties of the verifier. In particular, the definition in [1] goes as far as defining
a proof of knowledge only in terms of the verifier. In this paper, we argue that by adding the
'same distribution' constraint, we enforce desirable properties of the prover as well. An important
example is the prover-feasibility property, which is discussed below.

PROVER FEASIBILITY. As the notion of running-time is a central one for Turing-machines, we
argue that it is important that the amount of time it takes P to convince V that it knows y be
comparable to the time needed to extract y from P. Indeed, in many proofs of knowledge, the
secret y can typically be computed from the input x by an exponential time exhaustive search.
Therefore, a· proof that the prover P knows y is meaningless if the time that the extractor K and P
together take to compute y is exponential in Ix!. Although all prior definitions demand that K be
polynomial time, they do not address the time that P may invest when interacting with K in order
to compute y. But if, in order to compute y, the extractor must "trick the prover" into performing
an exhaustive search for y (using queries that the original verifier would never use), then, in what
sense does the original prover-verifier conversation demonstrate that the prover knows the secret
y ?

The above discussion suggests that the knowledge extractor in a proof of knowledge should have
an additional property which we term prover feasibility. Informally stated, this property means the
following:

While extracting y, the total running-time of both the knowledge-extractor and the prover
is comparable to the running-time of the prover when interacting with the verifier.

We formally define prover feasibility in Section 4, and prove that it is automatically satisfied by
our stronger notion of proof of knowledge. In Section 5 we show that prior notions only satisfy a
weaker prover-feasibility property. Moreover, they do not handle the feasibility of a single prover:
they satisfy this weaker prover-feasibility property only when "quantifying over all provers".

DE- COUPLING THE KNOWLEDGE EXTRACTORS . So far, we have argued that, for (P, V) to be a
proof of knowledge, the secret y should be efficiently computable not just by interacting with (and
resetting) Pin any way we want, but in a way that produces a few, random P-V interactions.
We now further specify that y should be manifest in the verifier's views corresponding to these
interactions.

Indeed, when the prescribed Verifier V interacts with P and becomes convinced that she knows
y, he reaches this conclusion based solely on his own view, that is, the coins he tossed during the
interaction and the messages received from P. We thus demand that y be computable from these
views alone.

Notice now that, if some machine M exchanges messages with P just as V does and then
computes y, it could do so thanks to some information encoded in its own internal state, information
that may not be derivable from just V's views.

Accordingly, we require that the process of computing y have two distinct components. The
first is an efficient sampler that interacts with (and resets) P so as to obtain views (coins and

3

messages) that are distributed exactly as the views of V interacting with P. The second is an
efficient extractor that computes the desired y from just such views.

Thus, for the purposes of computing y, the sampler does not furnish the extractor with infor­
mation about its own internal state. This ensures that y is manifest in the views themselves, and
independent of the specific nature of samplers and extractors (though for concreteness we let them
be polynomial-time Turing machines) .1

ORGANIZATION OF THE PAPER. The rest of the paper is organized as follows: In Section 2 we intro­
duce a few notations. In Section 3 we present our definition of a conservative proof-of-knowledge.
In Section 4 we define the notion of prover feasibility and prove that our definition enjoys that
property. In Section 5 we show that prior definitions possess a weaker notion of prover feasibility.

2 Preliminaries

In this section we introduce a few notations which we use throughout the paper. Since the syntax
required to describe protocols may become quite awkward, we choose in this extended abstract to
use somewhat informal syntax rather than an exact one.

INTERACTIVE TURING MACHINES. We rely on the intuitive notion of an interactive Turing-machine
(ITM) as a machine which can send and receive messages during its computation. The reader is
referred to [6] for a more formal definition. A pair of interactive Turing machine (P, V) defines a
protocol in the usual way. For convenience, given our application, we refer to the first machine in
this pair as the "Prover" and to the second machine as the "Verifier".

TRANSCRIPTS AND VIEWS. Let (P, V) be a protocol and let (a, b) be the input to this protocol (so
that a is a private input to P, and bis a private input to V). Consider an execution of (P, V) on
input (a, b); then, the sequence of messages exchanged between P and V in this execution is called
the transcript of the execution. A verifier-view for this execution consists of the transcript of the
execution and V's coin tosses in it. We denote by viewv{P(a) ~ V(b)} the distribution of the
verifier-views in a random execution of protocol (P, V) on input (a, b).

RUNNING-TIME. With each execution of (P, V) on input (a,b), we consider the running-time of
the Prover P during this execution. If D is any distributions over executions, then we denote by
timep{D} the corresponding distribution of the running time of P.

ACCEPTANCE. We say that an execution of (P, V) on (a, b) in accepting, if at the end of the
execution the Verifier V enters a designated accept state. The event of accepting execution is
denoted accept{P(a) ~ V(b)}.

!TM-ORACLE MACHINES. Here too we rely on the intuitive notion of an ITM having as an oracle
another ITM. We denote an !TM-oracle machine K with access to an interactive machine P by KP.
KP has the ability to interact with P several times, each time resetting it to its initial configuration
(which includes the original random tape) .

1
Notice that such model independence might not a.rise if y were computed by a. single efficient component , for

ins ta.nee, by a. single efficient Turing ma.chine M interacting with P. In this case, in fa.ct, M could use its own internal
state - e.g. , the content of its working tapes - for computing y , a.nd internal states a.re not easily "exportable"
a.cross different models of computation.

4

BINARY RELATIONS. We prove knowledge about polynomially-bounded binary relations. Let R C
E* X E* be a binary relation. We say that R is polynomially-bounded if there is a polynomial Q
such that, for all (x,y) ER, IYI ~ Q(lx l) . For every string x we denote the set of strings which are

R-related to x by R (x). Namely, R(x) ~f {y: (x,y) ER}.

3 Conservative Proofs of Knowledge

Our notion of proof of knowledge is based on the syntactic concept of a valid experiment .

VALID DISTRIBUTIONS. Let Q be any polynomial, (P, V) be a protocol and x an input. (Below,
we consider x to be an input to the Verifier only because, for future purposes, a Prover's input can
always be "wired in" P's description.) Consider running protocol (P, V) on input x for Q(lxl) times,
each time giving the Prover the same random tape rp, and consider the sequence of Verifier-views
thus obtained. We say that a distribution 'D over such sequence is valid (P, V,x, Q}-distribution if

(a) r p has been randomly selected, and

(b) each entry in the sequence is distributed as the Verifier's view in an execution of (P, V), with
input x, where the Prover's tape is rp and the Verifier's tape is uniformly selected.

Of course, one way of generating V consists ofrunning protocol (P, V) on input x for Q(lxl) times,
each time using rp as the Prover's tape and an independently and uniformly selected tape for
the Verifier. Notice, however, that this is not the only way. Indeed, in a sample according to V,
although each Verifier-view is uniformly selected, the views may be dependent.

OuR DEFINITION. We consider a proof of knowledge system to be a protocol (P, V), where P is
the honest prover, and V the specified verifier. We require that, if the canonical way of proving
knowledge (i.e., P) is followed, then one can convince V all the time. There is, however, a prob­
ability that a cheating prover may convince V without actually having any knowledge about the
common input x. Following [1], we refer to this probability as the error probability of the proof of
knowledge system, and denote it bye. More generally, a (possibly cheating) prover P' may have
some probability p of convincing V. As long asp> e, our definition requires that it is possible to
extract the knowledge from .such a P' with probability (polynomially) close top - e .

Definition 1: Let e be a real number, 0 ~ e ~ 1. A Conservative Proof of Know ledge with error
e for a binary relation R, consists of a protocol (P, V) with the following properties:

Completeness. For all (x,y) ER, Pr[accept{P(x,y) +-+ V(x)}] = 1

Validity with error e. There exists a polynomial-time !TM-oracle machine K, a polynomial-time
algorithm EXTRACT, a constant c > 0, and a polynomial Q such that, for every x E E* such
that R(x) f= 0 and every Interactive Turing machine P',

l KP'(x) is a valid (P', V,x,Q)-distribution, and

2 EXTRACT(KP'(x)) E R(x) U {..l}, and

3 Pr [ExTRACT(KP' (x)) E R(x)] ~ (p- e)°

where p ~f Pr [accept{P' +-+ V(x)}].

5

We call a pair (K ,EXTRACT) as above a conservative knowledge extractor (for the conservative
proof of knowledge (P, V)).

REMARKS :

1. The above definition can be slightly strengthened by requiring that P, V and K be uniform
and polynomial in log(l/.s) . That is, each of P, V,K in the definition above is given another input
l k, and we require that the error be at most 2-k. We chose the above weaker formulation to be
consistent with previous definitions in the literature.

2. Following [1], we too define the validity condition only for strings x such that R(x) f= 0. The
reader is referred to [1] for a discussion of this choice.

3.1 The case of a specific prover.

One advantage of the above definition is that it enables us to talk about the extent in which the
verifier's view of a conversation with a specific prover demonstrates knowledge of a secret.

Definition 2: Let V be a verifier in a conservative proof of knowledge for a relation R, let P'
be some specific prover, and let viewv { P' t-t V(x)} be the distribution of conversations between
V (with input x) and the specific prover P'. We say that this distribution demonstrates knowledge
of some y E R(x) with probability p, if the accepting views have probability weight of p in this
distribution.

We stress that Definition 1 implies that as long asp 2'. c, one can indeed extract an element y E R(x)
from a few views which are sampled according to the distribution viewv{P' ~ V(x)}.

By contrast, the reader may notice that (like for all prior definitions) adapting the definition
of proof of knowledge due to Bellare and Goldreich to a single prover P' is not meaningful (as
discussed in our introduction).

4 Conservative Proofs of Knowledge Are Prover-Feasible

In this section we show that conservative proofs of knowledge possess the desired prover-feasibility
property. Recall that, informally, prover feasibility entails that, when communicating with the
knowledge-extractor, the prover spends about the same time as it does when communicating with
the verifier. This is defined formally below

Definition 3: Let V be an interactive Turing machines and let K be an !TM-oracle machine.
We say that K maintains the feasibility of interacting with V if there exists a polynomial Q (·) such
that for every input x and every Interactive Turing machine Pit holds that

E [timep{KP(x)}] ~ Q(lxl) · E [timep{P t-t V(x)}]

where the expectation is taken over the random coins of K , V and P.
Theorem 1: Let (P, V) be a conservative proof of knowledge system for the binary relation R,
and let (K, EXTRACT) be a conservative knowledge extractor for (P, V) . Then, K maintains the
feasibility of interacting with V .

Proof: For any input x E ~ and any Interactive Turing Machine P'. Since KP' (x) generates
a valid -(P', V,x,Q)-distribution, then each instance of KP'(x) consists of exactly Q(lxJ) Verifier­
views. Moreover, for i = 1,2,···,Q(lx l), the distribution of the i'th Verifier-view in KP(x) is
identical to the distribution of the verifier-view in a random execution of (P', V) on x. Therefore,

E [timep,{KP' (x)}] = Q(lxl) · timep,{P' t-t V(x)}

□
6

5 A Weak Version Of Prover Feasibility

One measure of the meaningfulness of our definition is provided by the fact that proofs of knowledge
in our sense enjoy prover feasibility, a property that we have argued to be crucial in its own right .
We may however ask whether other notions of proof of knowledge possess this property. The
purpose of this section is to show that previous definitions do enjoy some weaker prover-feasibility
property. For the purpose of this extended abstract, we exemplify this for the notion of Bellare
and Goldreich (though it may be also enjoyed by other prior notions). To avoid confusion we refer
to their notion as a liberal proof of knowledge.

5.1 The Bellare-Goldreich Definition

Casting their definition in our syntax we get

Definition 4: [1): An interactive Turing-machine Vis a knowledge-verifier for a binary relation
R with error t: if it satisfies the following

Completeness There exists an interactive Turing machine P (the "legitimate prover") such that for
all (x , y) ER, Pr[accept{P(x,y) ~ V (x)}] = 1.

Validity with error t: There exists a probabilistic, expected polynomial-time !TM-oracle machine
K, so t hat for every x E I;• such t hat R(x) -::/- 0 and every Interactive Turing-machine P',
KP' (x) E R(x) U {-l} and

Pr [KP' (x) E R (x)] 2'._ Pr [accept{P' ~ V(x)}] - t:

If Pis a "legitimate prover" (from the Completeness condition), we call the protocol (P, V)
a liberal proof of knowledge for R (with error t:) . An !TM-oracle machine K which satisfies
the Validity condition is called a liberal knowledge extractor for the proof system (P, V) .

REMARK. We argue t hat the main difference between this definition and ours is that in the above
definition the knowledge extractor is not limited in the ways that it can communicate with an
alleged prover P' . There are, however, a few other technical differences between these definitions.
1. Our definition is stated in terms of a protocol (P, V) , while the above definition is stated in
terms only of the verifier V (where the prover Pis quantified in the Completeness condit ion). This
difference is only a matter of presentation-style.
2. The Bellare-Goldreich definition allows the knowledge extractor K to run in expected polynomial
time and requires that it succeeds with probability which is at least as large as the probability that
the verifier is convinced. Instead, our definition requires that K be strict polynomial time, and
allows its probability of success to be polynomially smaller. As long as the probability that the
verifier is convinced is non-negligible , these two notions are equivalent, but otherwise they are
incomparable (i.e., none of them implies the other) . We chose the later form for our definition
since we need it for the strong prover-feasibility property.2 As we show below, for the weaker
prover-feasibility property, the former choice suffices.

2The reason for that is the well known problem with composition of expected polynomial-time algorithms.

7

5.2 A Weaker Property

Let (P, V) be a liberal proof of knowledge and let K be a liberal knowledge extractor for (P, V).
It is clear that we cannot hope to prove that K maintains the feasibility of interacting with V,
since as soon as K deviates in any way from the behavior of V, there exists a machine P' which
runs for a very long time on exactly those conversations which happen with higher probability in
the communication with K than in the communication with V. We therefore have to settle for a
weaker notion of prover feasibility.

Intuitively, we show that a liberal knowledge extractor "does not quite need" the conversations
which cause P' to run for a very long time. Namely, the extractor would still be able to extract
the knowledge if it were given access to a modified prover which does not generate these long
conversations. However, as we shall see, getting hold of such a modified prover may not be easy.

TRUNCATED PROVERS. To formalize the above intuition, we define a notion of a truncated prover.
Informally, if P' is any Interactive Turing machine which may communicate with V, then the
truncated version of P' (which we denote by P'I) is another Interactive Turing machine which
behaves exactly like P', but has a time-out mechanism. Once the running-time of P' exceeds some
threshold, the truncated version simply terminates its computation. Formally, we have

Definition 5: Let (P, V) be a liberal proof-of-knowledge system. Fix some x E ~•, and some

Interactive Turing-machine P' and denote T' ~f E [timeP'{P' +-+ V(x)} I accept{V}P' +-+ V(x)]
and q' ~f Pr[accept{P' +-+ V(x)}].

The truncated version of P' (with respect to V , x), which we denote by P 'I it an Interactive
Turing machine which in every execution behaves just like P' as long as the running-time of P' is
less than 2T', and halts as soon as the running time exceeds this threshold.

The idea behind the following theorem is that if P' convinces V with a certain probability
then P'I must convinces V with similar probability, and therefore the success probability of the
knowledge extractor K when talking to P' I must be similar to the success probability while talking
to P'. This argument is made formal in the following

Theorem 2: Let (P, V) be a liberal proof of knowledge, let K be a liberal knowledge extractor
for (P, V). Then there exists some polynomial Q(·) so that for any x E ~• and any Interactive
Turing-machine P', the truncated version of P' (with respect to V, x) satisfies

1. E[timep,1{executions of K(x)P'I}] :,; Q(lxl) · 2T'

2. Pr [K (x)P'I E R(x)] 2 f- £

where q' ~£ Pr[accept{P' +-+ V(x)}] and

T' ~£ E[timep,{P' +-+ V(x)} I accept{P' - V(x)}] .

Proof:
1. Since K is expected polynomial time then there exists a polynomial Q(·) such that the expected
length of thee-transcript of K(x)P' I is bounded by Q(lxl). The fact that P' I never runs for more
than 2T' steps in each execution completes the proof.

2. Since the expected running time of P' in an accepting conversation with V on x is T', then

Pr [timep,{P' - V(x)} > 2T' I accept{P' +-+ V(x)}] < t
8

which implies that
q' q'

Pr[accept{P' I - V(x)}] ~ Pr[accept{P' - V(x)}] - 2 ~ 2
and the theorem follows from the definition of K. □

5.3 Why Weaker

We note that the theorem above is weaker than Theorem 1 in several ways. Not only does it
require that we modify the alleged prover P' (so as to omit the long conversations), but in fact this
modification is highly non-uniform. Namely, the truncated P' depends not only on P' itself, but
also on (the verifier and) the specific common input x. Even if one fixes an alleged prover P', there
may be no single machine P" that can play the role of P' I for every input x .

One may try to overcome this non-uniformity of the truncated prover by experimenting with
the original alleged prover P' in order to estimate the cutoff time T'. This, however, does not work.
Assume, for example, that P' happens to runs in polynomial time on the accepting conversations,
but only convinces V with a sub-polynomial probability. Then, even hitting a single accepting
conversation of P' with V (let alone estimating the average running time of such conversations) takes
time which is not polynomial in the running time of P'. (Of course, one may achieve uniformity,
but at the expense of multiplying the running time of the truncated prover by a factor of 1/q'.)

6 In Sum

In sum, we provide a new definition of a proof of knowledge with a tighter semantics and achieving
some desirable properties (such as prover feasibility). Our definition does not rule out prior proof­
of-knowledge protocols, but provides a more satisfying explanation of why they "work". It wants,
however, to rule out the possibility that one may design a formally correct but "semantically wrong"
proof of knowledge in the future.

References

[1] 0. Goldreich and M. Bellare, "On Defining Proofs of Knowledge" . In Advances in Cryptology:
CRYPTO '92,, Lecture Notes in Computer Science, volume 740, Springer-Verlag, 1992. Pages
390-420

[2] U. Feige and A. Fiat and A. Shamir. "Zero-knowledge proofs of identity". In Journal of
Cryptology, 1(2), 1988. Pages 77-94

[3] M.J. Fischer, S. Micali and C. Rackoff, "A Secure Protocol for Oblivious Transfer (Extended
Abstract)" In Journal of Cryptology, 9(3), 1996. Pages 191-195 (first presented in Eurocrypt
'84).

(4] U. Feige and A. Shamir. "Witness indistinguishable and witness hiding protocols". In Proc.
of the 22nd Annual ACM Symposium on Theory of Computing, 1990. Pages 416-426

[5] 0. Goldreich, S. Goldwasser and S. Micali. How to Construct Random Functions. In Journal
of the ACM, Vol. 33, no. 4, 1986, pp. 792-807

9

[6] S. Goldwasser, S. Micali and C. Rackoff. "The knowledge complexity of interactive proof
systems" . In SIAM Journal on Computing, 18(1) , 1989. Pages 186-208 (Preliminary version
appeared in Proc. of the 17th Annual ACM Symposium on Theory of Computing, 1985. Pages
291-304)

[7] 0. Goldreich, S. Micali and A. Wigderson, "Proofs that Yield Nothing but their Validity or
All Languages in NP Have Zero-Knowledge Proof Systems" , Journal of the ACM, vol. 38, no.
1, 1991, pp. 691-729.

[8] M. Tompa and H. Woll. "Random self-reducibility and zero knowledge interactive proofs of
possession of information". In Technical report CS92-244, Univ. of California at San-Diego,
1992. (Preliminary version appeared in 28th Annual Symposium on Foundations of Computer
Science, IEEE, 1987. Pages 472-482)

10

