
Space-Time Scheduling of Instruction-Level Parallelism

on a Raw Machine

Walter Lee, Rajeev Barua, Devabhaktuni Srikrishna, Jonathan Babb,
Vivek Sarkar, Saman Amarasinghe, Anant Agarwal�

M.I.T. Laboratory for Computer Science
Cambridge, MA 02139, U.S.A.

fwalt,barua,chinnama,jbabb g@lcs.mit.edu
fvivek,saman,agarwal g@lcs.mit.edu

http://cag-www.lcs.mit.edu/raw

December 3, 1997

Abstract

Advances in VLSI technology will enable chips with over a billion transistors within the next
decade. Unfortunately, the centralized-resource architectures of modern microprocessors are ill-
suited to exploit such advances. Achieving a high level of parallelism at a reasonable clock speed
requires distributing the processor resources – a trend already visible in the dual-register-file ar-
chitecture of the Alpha 21264. A Raw microprocessor takes an extreme position in this space by
distributing all its resources such as register files, memory ports, and ALUs over a pipelined two-
dimensional interconnect, and exposing them fully to the compiler. Compilation for instruction-level
parallelism (ILP) on such distributed-resource machines requires both spatial instruction scheduling
and traditional temporal instruction scheduling. The compiler must also orchestrate data memories
to take advantage of the on-chip distributed-memory bandwidth. This paper describes the techniques
used by the Raw compiler to handle these issues. Preliminary results from a SUIF-based compiler
for sequential programs written in C and Fortran indicate that the Raw approach to exploiting ILP
can achieve speedups scalable with the number of processors for applications with parallelism within
a basic block. Though research is still ongoing, these results offer positive indications that Raw may
provide competitive performance against existing superscalars for applications with small amounts
of parallelism, while achieving significantly better performance for applications with a large amount
of ILP or coarse-grain parallelism.

1 Introduction

Modern microprocessors have evolved while maintaining the faithful representation of a monolithic
uniprocessor. While innovations in the ability to exploit instruction level parallelism have placed greater
demands on processor resources, these resources have remained centralized, creating scalability problem

�This research is funded in part by ARPA contract # DABT63-96-C-0036 and in part by an NSF Presidential Young Inves-
tigator Award.

1

at every design point in a machine. As processor designers continue in their pursuit of an architecture
that can exploit more parallelism and thus requires even more resources, the cracks in the view of a
monolithic underlying processor can no longer be concealed.

An early visible effect of the scalability problem in commercial architectures is apparent in the in-
ternal organization of the Alpha 21264 [6] [7], which duplicates its register file to provide the requisite
number of ports at a reasonable clock speed. A cluster is formed by organizing half of the functional
units and half of the cache ports around each register file. Communication within a cluster occurs at
normal speed, but it takes an extra cycle to propagate a value from one cluster to either the register file
or the bypass logic of the remote cluster.

As the amount of on-chip processor resources continues to increase, the pressure toward this type of
non-uniform spatial structure will continue to mount. Inevitably, from such hierarchy, resource accesses
will have non-uniform latencies. In particular, register or memory access by a functional unit will have a
gradation of access time. This fundamental change in processor model will necessitate a corresponding
change in compiler technology.Instruction scheduling becomes a spatial problem as well as a temporal
problem.

The Raw machine [15] is a scalable microprocessor architecture with non-uniform register access
latencies (NURA). As such, its compilation problem is similar to that which will be encountered by
extrapolations of existing architectures. In this paper, we describe the compilation techniques used to
exploit ILP on the Raw machine, a NURA machine composed of fully replicated processing units con-
nected via a mostly static programmable network. The fully exposed hardware allows the Raw compiler
to precisely orchestrate computation and communication in order to exploit ILP within basic blocks.
The compiler handles the orchestration by performing spatial and temporal instruction scheduling, and
data partitioning using a distributed on-chip memory model. It provides parallel memory access at a
fine granularity, fast support for memory references that are statically analyzable, and a fallback mech-
anism for dynamic references. We show that the Raw compiler can extract both regular and irregular
parallelism from sequential instruction streams, thereby achieving good performance for a large class of
applications.

The rest of the paper is organized as follows. Section 2 introduces the concept of a NURA machine,
relates the Raw machine with modern processors through this concept, and illustrates its compilation
issues. Section 3 describesRAWCC , a specific instance of a compiler for NURA machines. Section 4
examines the optimization problems encountered by compilers of the Raw machine or any NURA ma-
chine, and it describes the solutions employed byRAWCC . Section 5 describes the memory model used
by Raw to handle distributed memory in a mostly static machine. Section 6 shows the performance of
RAWCC . Section 7 presents future work, and Section 8 concludes. Appendix A gives a proof of how a
mostly static machine can tolerate skews introduced by dynamic events without changing the behavior
of the program.

2 Motivation

This section motivates the Raw architecture and its compiler for exploiting ILP. We examine the scala-
bility problem of modern processors, trace an architectural evolution that overcomes such problems, and
show that the Raw architecture is at an advanced stage of such an evolution. We highlight non-uniform
register access as an important feature in scalable machines, and we explain the issues concerned with
compiling to such architectures.

2

A problem with scalability Modern processors are not designed to scale. Because superscalars re-
quire significant global hardware resources to support parallel instruction execution, architects for such
machines face an uncomfortable dilemma. On the one hand, faster machines require more hardware
resources such as register ports, caches, functional units, issue logic, instruction window, and renaming
logic. On the other hand, the quadratic area complexity of some of these resources and the need to con-
nect these resources with long global wires make it difficult for architects to add more while keeping the
cycle time low. Like a superscalar, a VLIW suffers similar scalability problems, but to a lesser extent.
It needs not implement hardware logic to discover ILP, but it still must contend with problems on issue
bandwidth, multi-ported register files, caches, and wire delays.

A logical solution: impose hierarchy Up to now, microprocessors have maintained the faithful rep-
resentation of a monolithic uniprocessor. As pressure from all sources demand computers to have more
resources and be more powerful, this monolithic view will be difficult to maintain. A crack is already
visible in the Alpha 21264. Its dual-ported cache and four functional units require eight read ports and
six write ports from the register file. A single register file is unable to provide this many ports without
incurring a large penalty in cycle time. Instead, the register file is duplicated, with each physical register
file providing half the required ports. A cluster is formed by organizing two functional units and a cache
port around each register file. Communication within a cluster occurs at normal speed, but it takes an
extra cycle to propagate a value from one cluster to either the register file or the bypass logic of the
remote cluster.

This example suggests a logical evolutionary path that resolves the scalability problem: impose a hi-
erarchy on the organization of hardware resources. [13] To address the scalability of hardware resources,
a processor can be composed from replicated processing units whose pipelines are coupled together at
the register level so that they can exploit ILP cooperatively. Once processing units are replicated and dis-
tributed, a final scalability problem remains: the scalability of the interconnect. Initially, a bus or a full
crossbar suffices to give acceptable performance. Eventually, as the number of components increases, a
point to point network will be necessary to provide the required latency and bandwidth – a progression
reminiscent of multiprocessor evolution.

NURA machines The result of the evolution toward scalability is a machine with a distributed register
file interconnected via a scalable network. In the spirit of NUMA machines (Non-Uniform Memory Ac-
cess), we call such machinesNURA machines(Non-Uniform Register Access). Like a NUMA machine,
a NURA machine connects its distributed storage via a scalable interconnect. Unlike NUMA, NURA
pools the shared storage resources at the register level. Because a NURA machine exploits ILP of a sin-
gle instruction stream, its interconnect must provide register-like latencies that are much lower latencies
than that of a multiprocessor.

As the most frequently accessed type of storage element, any change in the register model has pro-
found implications on all levels of the computer system. The presence of distributed functional units and
register files in a NURA machine means that instructions should be assigned to the appropriate func-
tional units to preserve locality. Instruction scheduling becomes a spatial problem as well as a temporal
problem. This extra dimension in generating code for NURA machines means that current compila-
tion technology for exploiting ILP cannot efficiently support NURA machines. In the Alpha 21264, the
assignment of instructions to functional units is completely dynamic. For a one level hierarchy, this
solution is reasonable. As the structure grows, however, compile time analysis will be helpful if not

3

IMEM
DMEM

REGS

ALU

CL
SMEM

SWITCH

PC

PC

RawTile

Raw P

Figure1:Raw�Pcomposition.AtypicalRawsystemmightincludeaRawmicroprocessorcoupledwith
off-chipRDRAMandstream-IOdevices.

absolutelynecessaryinordertoobtainacceptableperformance.Wedescribethecompilationtechniques
necessarytohandlethisprobleminSection4.1.

RawarchitectureTheRawmachine[15]usesaNURAarchitecturemotivatedbytheneedtodesign
simpleandhighlyscalableprocessors.Raw’sfeaturesrelevanttotheexploitationofILPincludetheuse
ofasimple,replicatedtile,eachwithitsowninstructionstream,andaprogrammable,tightlyintegrated
interconnectbetweentiles,asdepictedinFigure1.Rawmachinealsosupportsmulti-granular(bitand
bytelevel)operationsaswellascustomizableconfigurablelogic,butthispaperdoesnotaddressthese
features.

EachRawtilecontainsasimpleRISC-likepipelineandisinterconnectedwithothertilesovera
pipelined,point-to-pointnetwork.Unlikecurrentsuperscalars,aRawprocessordoesnotbindspecialized
logicstructuressuchasregisterrenaminglogicordynamicinstructionissuelogicintohardware.Instead,
itfocusesonkeepingeachtilesmalltomaximizethenumberoftilesthatcanfitonachip,thereby
increasingtheamountofparallelismitcanexploitandtheclockspeeditcanachieve.Thenetworkin
aRawmachineresidesbetweentheregisterfilesandthefunctionalunitstoprovidefast,register-level
communication.Unlikemodernsuperscalars,theinterfacetothisinterconnectisfullyexposedtothe
software.

Figure2contraststheinternalorganizationofaRawmachineversusthatofasuperscalar.InaRaw
machine,theswitchisintegrateddirectlyintotheprocessorpipelinetosupportsingle-cyclesendsand
receivesofword-sizedvalues.Awordofdatatravelsacrossonetileinoneclockcycle.Theswitch
containstwodistinctnetworks,astaticandadynamicone.Thestaticswitchisprogrammable,allowing
staticallyinferablecommunicationpatterntobeencodedintheinstructionstreamsoftheswitches.This
approacheliminatestheoverheadofcomposingandroutingadirectionalheader,whichinturnallows
asinglewordofdatatobecommunicatedefficiently.Communicationinstructions(send,receive,or
route)haveblockingsemanticsthatprovidenear-neighborflowcontrol;aprocessororswitchstallsif
itisexecutinganinstructionthatattemptstoaccessanemptyinputportorafulloutputport.This
specificationensurescorrectnessinthepresenceoftimingvariationsintroducedbydynamiceventssuch

4

'ITIITIITIITI
......,,____.____...7, D ~

~-ftJLILIU
~ 'ITIITIITIITI

n

Raw

ALU

REGSREGS

ALU

REGS

ALU

Switch SwitchSwitch

MEM MEM MEM

ALU ALU

REGS

MEM

ALU

Superscalar

ALU

REGS

Figure 2: Internal organization of Raw processors versus superscalars. The Raw microprocessor dis-
tributes the register file and communicates between ALUs on a software-exposed, point-to-point inter-
connect. In contrast, a superscalar contains clusters of a register file and several function units, and it
communicates between these components via busses hidden from the software.

as cache misses (see Appendix A), and it obviates the lock-step synchronization of program counters
required by many statically scheduled machines. The dynamic switch is a wormhole router that makes
routing decisions based on the header of each message. It includes additional lines for flow control.

Raw machines draw much of its inspiration from VLIW machines, and they share many common
features. Like the VLIW Multiflow TRACE machine [5], Raw machines have a large register name
space, a distributed register file, multiple memory ports, and they rely heavily on compiler technology to
discover and statically schedule ILP. Unlike traditional VLIWs, however, Raw machines provide multiple
instruction streams. Individual instruction streams give a Raw processor significantly more flexibility to
perform independent but statically scheduled computations on different tiles, such as loops with different
bounds. They also provide better behavior in the face of dynamic events. In VLIW, instructions have
to proceed in lock-step, so that a cache miss causes the entire machine to stall. In a Raw processor, the
need to explicitly synchronize the instruction streams is obviated by the presence of near-neighbor flow
control. The effects of a cache miss are localized to a single instruction stream on a single tile; other tiles
can proceed independently. In addition, a Raw machine differs from a VLIW machine in that it explores
a software-exposed two-dimensional interconnect, and that it combines instruction and data scheduling
over this interconnect. This feature makes the space-time scheduling problem more general for Raw
machines than for VLIWs.

In addition to its scalability and simplicity, the Raw machine is an attractive NURA machine for
several reasons:

� Elimination of the ISA constraint:Raw resolves several longstanding problems with handling the
expansion of register sets. An ISA traditionally imposes troublesome restrictions on register set
expansion. Backward compatibility prohibits an ISA from exporting extra registers to the soft-
ware. Modern architectures circumvent this problem by de-coupling the number of ISA registers
from the number of physical registers, and by relying on complex dynamic renaming logic to
take advantage of the additional physical registers. This indirection, however, comes at a cost of
under-utilizing powerful static compiler analysis that can alleviate or even eliminate the burden of
dynamic renaming. Moreover, it leads to code inefficiency that is uncorrectable at run-time when
the compiler runs out of ISA registers and is forced to spill to memory. Spill code, which involves

5

a potentially expensive memory reference, cannot be eliminated at run-time even in the presence
of available dynamic registers. A Raw machine adds registers by increasing the number of tiles.
The ISA of the processors on an individual tile need not change as a result.

� Establishment of a compiler interface for locality management:Current ISAs do not provide in-
terface mechanisms to allow the compiler to control computation locality in NURA machines.
Raw fully exposes its hardware to the compiler by exporting a simple cost model for communi-
cation and computation. In turn, the compiler is responsible for the assignment of instructions to
Raw tiles. We believe instruction partitioning should be accomplished at compile time for several
reasons: First, it requires sophisticated data dependence graph analysis, for which the necessary
information is readily available at compile time but not at run-time, and second, we can ill-afford
its complexity at runtime.

� Mechanism for precise orchestration:Raw’s programmable static switch is an essential feature
for exploiting ILP in the Raw machine. First, it allows single-word register-level transfer without
the overhead of composing and routing a message header. Second, it gives the Raw compiler
the fine-grain control required to orchestrate computation and communication events to eliminate
synchronization overhead. Third, the Raw compiler can use its full knowledge of the network
status to minimize congestion and route data around hot spots. By considering congestion, the
Raw compiler can also predict the latency of communication events precisely, thus enabling it to
schedule instructions well.

3 The Raw compiler system

This section describes the Raw system, consisting of the MIT Raw prototype machine and its compiler.
Section 3.1 describes the Raw prototype targeted by the compiler. Section 3.2 describes the compiler
which exposes the ILP of sequential programs to the hardware. Section 3.3 describes a major component
of the Raw compiler, the basic block orchestrater.

3.1 Target machine model — the Raw prototype

To provide a concrete target for studying the compilation issues in Raw specifically and NURA in gen-
eral, we have designed a Raw prototype at MIT. Our results are obtained from an instruction-level simu-
lator of the prototype. This section describes the features of the prototype relevant to the exploitation of
ILP. Multigranular operations and reconfigurable logic are features orthogonal to this goal, so they are
not included in this paper.

Like the Raw machine described in Section 2, the Raw prototype consists of simple tiles organized
in a mesh interconnect. Each tile contains a processor and a switch. The processor supports the R2000
instruction set. It consists of a conventional five-stage pipeline, single-precision floating point unit, fully
bypassed and pipelined functional units, 32 GPRs, and memory. It does not contain any FPRs; floating
point operations manipulate GPRs instead. Table 1 lists the latencies of the basic instructions. The
switch itself contains a stripped down Mips R2000 with its own instruction sequencer and CPU, but with
a smaller register set (8 GPRs) and no data memory. It supports both a static and a dynamic network.
Since the compiler mainly generates static communication, we focus on the static network here. The
processor and the static switch are connected internally via two ports, one from processor to switch and

6

Switch

Processor

Figure 3: Communication ports for the static network on a prototype tile. Each switch on a tile is
connected to its processor and its four neighbors via an input port and an output port. The figure is not
drawn to scale.

Int Op Cycles Fp Op Cycles

ADD 1 ADDF 2
SUB 1 SUBF 2
MUL 12 MULF 4
DIV 35 DIVF 12

Table 1: Latency of common operations on the Raw prototype machine.

one from switch to processor. The switch is also connected to each of its four neighboring switches via
an input and an output port, for a total of eight external ports. Figure 3 shows the organization of ports
on a single tile.

Communication ports are exported to the software as extensions to the register set. They can be used
like normal registers as operands to any computation instruction, with the natural restriction that input
ports are read-only and output ports are write-only. Like regular registers, communication ports hold
32-bit values. They have blocking semantics, which means that an instruction attempting to read from
an empty input port or write to a full output port will stall until the port is ready.

To support the expression of static communication, the instruction set for the switches is augmented
with a ROUTE instruction.1 A ROUTE instruction consists of pairs of source and destination registers,
each pair representing a routing path. In aROUTE instruction, an input port can be listed in more than
one route to represent a “multicast” operation, but an output port can be listed in only one route. If
a port specified by aROUTE instruction is not ready (i.e. input is empty, or output is full), the entire
routing instruction stalls. Because aROUTE instruction does not consume any of the resources needed by
a computation instruction, a switch can perform both a computation instruction and aROUTE instruction
on the same cycle.

Raw’s simple communication cost model is also exposed to the compiler. It takes one cycle to
inject a message from the processor to its switch, receive a message from a switch to its processor, or
route a message between neighboring tiles. For example, a single-word message between neighboring
processors would take four cycles, as shown in Figure 4. Note, however, that it is possible for both the
send and receive instruction to be performing useful computation, so that theeffectiveoverhead of the

1It is not necessary to create new instructions to support sending and receiving of data, since these actions can be expressed
by using existing computation instructions with the appropriate communication registers.

7

I I II I I

1

2

3

0
C

yc
le

Tile(0,0) Tile(0,1)

Switch ProcSwitchProc
send(x+y)

route(proc_out,
 east_out)

route(west_in,
 proc_in)

z=w+rec()

Figure 4: The end-to-end latency of a single-word message between neighbors is four cycles. In this
example, both the send and the receive are performing useful computation, so that the effective overhead
is only two cycles.

communication can be as low as two cycles.

3.2 RAWCC

RAWCC , the compiler for the Raw prototype, is implemented using SUIF [16], the Stanford University
Intermediate Format. It supports both C and Fortran programs. The Raw compiler consists of three
phases. The first phase identifies the basic blocks. Currently, the basic block identifier comprises a
traditional control flow analysis augmented with loop unrolling. In the future, it will leverage trace
scheduling [4] or superblock [8] techniques used by VLIW compilers to increase the size of the basic
blocks.

The second phase, thebasic block orchestrater, exposes the ILP within each basic block and performs
the space-time scheduling of the basic block. It is a major component of the compiler and will be
discussed in detail below.

The final phase does the code generation for both the processors and the switches. We use the Mips
back-end developed in Machine SUIF [12], with a few modifications to handle the extra communication
instructions and communication registers.

3.3 Basic block orchestrater

The basic block orchestrater exploits the ILP within a basic block by distributing the parallelism within
the basic block across the tiles. It transforms a single basic block into an equivalent set of basic blocks
that can be run in parallel on Raw. The orchestrater generates intermediate code for both the processor
and the programmable switch on each tile.

Exploiting the ILP within a basic block consists of three steps. First, the orchestrater assigns each
instruction in the basic block to a physical processor. Second, for any value which is needed at a processor
different from where it is generated, the orchestrater generates the necessary communication instructions
to transmit that value. Finally, the orchestrater schedules all events, consisting of computation on the
tiles as well as communication on both the tiles and the switches.

The basic access model for program variables is as follows. Every variable is assigned to a home
tile, where persistent values of the variable are stored. At the beginning of a basic block, the value of a
variable is transferred from its home to the tiles which use the variable. Within a basic block, references

8

r-
-~- - - - - - ~ - - ~ - - - - - -

-------===~------

Communication
Code Generator

 Initial Code
Transformation

Instruction
Partitioner

 Data
Partitioner

 Event
Scheduler

Basic Block
 Stitcher

Task Graph
 Builder

Figure 5: Task composition of the basic block orchestrater.

are strictly on local renamed variables, allocated either in registers or on the stack. At the end of the basic
block, the updated value of a modified variable is transferred from the computing tile to its home tile.
This access model works well for simple scalar references, requires some compiler analysis for some
memory references, and fails for other memory references. For a discussion of the issues and solutions,
see Section 5.

The opportunity to exploit ILP across statically-scheduled, MIMD processing units is unique to Raw.
However, the Raw compiler problem is actually a composition of problems in two previously studied
compiler domains: the task partitioning/scheduling problem and VirtualWires’ communication schedul-
ing problem. Research in the abstract task partitioning and scheduling problem has been extensive in
the context of mapping directed acyclic task graphs onto MIMD multiprocessors(e.g., [10][18]). The
Raw task partitioning and scheduling problem is similar, with tasks defined to be individual instructions.
In VirtualWires [3], the pin limitation of FPGAs is alleviated by multiplexing each pin to communicate
more than one values. Communication events are scheduled on pins over time. In Raw, the communica-
tion ports on the processors and switches serve the same role as pins in FPGAs; the scheduling problems
in the two contexts are analogous.

The following are the implementation details of the basic block orchestrater. Figure 5 shows its
task decomposition. Each task is described in turn below. To facilitate the explanation, Figure 6 shows
the transformations performed byRAWCC on a sample program. The discussion here focuses on the
functionality of the basic system. Handing of unpredictable timing variations is discussed in details in
Appendix A, while handling of memory references is discussed in Section 5.

Initial code transformation Initial code transformation massages a basic block into a form suitable
for subsequent analysis phases. Figure 6a shows the transformations performed by this phase. First,
software renamingconverts statements of the program to static single assignment form. Such conversion
removesanti-dependencies(write after read) andoutput-dependencies(write after write) from the basic
block, which in turn exposes the available parallelism. It is analogous to register renaming performed by

9

superscalars.

Second, expressions in the source program are decomposed into instructions in three-operand form.
Three-operand instructions are convenient because they correspond closely to the final machine instruc-
tions and because their cost attributes can easily be estimated. Therefore, they are logical candidates to
be used as atomic partitioning and scheduling units.

Task graph builder The task graph builder constructs the task graph representing the basic block.
In the task graph, each node represents an instruction, and each directed edge represents a dependency
between nodes. Figure 6b shows a sample output of this phase. Nodes are labeled with the estimated
costs of running the instructions. For example, the node for a floating point add in the example is
labeled with two cycles. Edges are labeled with the data size, from which the communication cost can
be computed after the instruction mapping is known. For Raw, an edge label is always one word and is
implicit.

Instruction partitioner The instruction partitioner maps instructions to physical tiles. It generates
partitions that balance the benefits of parallelism against the overheads of communication. This problem
is decomposed into three sub-problems: clustering, merging, and placement. In clustering, instructions
are clustered to eliminate as much as possible the effects of communication overhead on the run-times
of critical paths. In merging, clusters of instructions are merged until the number of clusters equals the
number of available tiles. Finally in placement, the clusters are mapped onto physical tiles. This last
step takes into account the machine configuration. Figure 6c shows a sample output of the instruction
partitioner. We discuss the partitioning problem in more detail in Section 4.1.

Data partitioner The data partitioner assigns data values to “home” tile locations. Home locations
are needed to store values communicated between basic blocks. Within basic blocks, renaming localizes
most value references, so that only the initial reads and the final write of a variable need to communicate
with its home location. Figure 6d shows the assignment of data values to home locations. Note that
variables introduced byinitial code transformation(e.g.,y 1 and tmp 1) do not need home locations
because they are only referenced within the basic block. Currently the data partitioner uses a round-
robin assignment algorithm. A more intelligent algorithm would consider data usage pattern as well. For
a discussion on the allocation policy for larger objects such are arrays and structs, see Section 5.2.

Basic block stitcher The basic block stitcher generates the necessary communication, calledstitch
code, between basic blocks. In the unoptimized case, a variable’s value is sent from its home tile to its
read-tiles at the beginning of a basic block. Conversely, its value is sent from its write-tile to its home
tile at the end of a basic block.2

Control flow analysis helps optimize the stitch code. In one optimization, calledone-distance for-
warding, values needed by each tile in a given basic block are automatically forwarded to the right loca-
tions by its preceding basic blocks. For values which are produced by the preceding basic blocks, this
optimization short circuits the producer-to-home and home-to-consumer communication into a single
producer-to-consumer communication.

2With renaming, all values are single assignment, so each value has a unique write-tile per basic block.

10

read(a)

4
z_1=a*a

write(z)

write(x)

4
tmp_1=y_1*a

read(b)

write(y)

tmp_2=y_1*b
4

send(a)

y_1=rcv()

a=rcv()

send(y_1)

read(b)

write(y)

x_1=tmp_1*5
4

y_2=tmp_2*6
4

y_1=a+b
2

y_1=a+b

y_2=tmp_2*6
44

tmp_1=y_1*a

y_1=rcv()

write(z)

4
z_1=a*a

send(a)

x_1=tmp_1*5
4

read(a)

write(x)

P0

P1

route(s0,p1)

route(p1,s0)

P0 P1

x_1=tmp_1*5 y_2=tmp_2*6

z_1=a*a y_1=a+b

4
tmp_1=y_1*a tmp_2=y_1*b

4

4 2

4 4

a->P0

b->P1

x->P0

y->P1

read(a) read(b)

y_1=a+b
4

z_1=a*a

write(z)

write(x)

x_1=tmp_1*5 write(y)

4
tmp_1=y_1*a

tmp_2=y_1*b
4

y_2=tmp_2*6

2

4

4

P0 P1

x_1=tmp_1*5 y_2=tmp_2*6

z_1=a*a y_1=a+b

4
tmp_1=y_1*a tmp_2=y_1*b

4

4 2

4 4tmp_2=y_1*b

y_2=tmp_2*6

y_1=a+b

z_1=a*a

tmp_1=y_1*a

x_1=tmp_1*5

y_1=a+b

z_1=a*a

x_1=y_1*a*5

y_2=y_1*b*6

y=a+b

z=a*a

x=y*a*5

y=y*b*6

route(p0,s1)

route(s1,p0)

route(s0,p1)

route(p1,s0)

S0 S1

route(p0,s1)

route(s1,p0)

S0 S1 P1

P0

tmp_2=y_1*b
4

a=rcv()

send(y_1)

2

(a) (b)

(c) (d) (e)

(f)

(g)

Figure 6: An example of the program transformations performed byRAWCC . (a) shows the initial
program undergoing transformations made byinitial code transformation; (b) shows result oftask graph
builder; (c) shows result ofinstruction partitioner; (d) shows result ofdata partitioner; (e) shows result
of basic block stitcher; (f) shows result ofcommunication code generator; (g) shows final result from
event scheduler. 11

- - - - - - - - - - - - - - - - - - ' ,,-- - - - - - - - - ' ,,-- - - - - - - - - ' - - - - - - - - - - - - - - - - - - '
I I f I I

'
-----------,

' '-----------

, _________ .,,,

~--~)'

~~)'

In practice, stitch code is inserted into the basic blocks by creating dependency edges between
dummy nodes representing program variables and instruction nodes that produce or consume those vari-
ables. The stitch code is then scheduled by the event scheduler like any other communication arising
from the basic block body. As a result, the overhead of distinctive, synchronizing initialization and fi-
nalization phases is avoided. Figure 6e shows a sample output of the stitcher. The example assumes no
optimization, so that variable values are communicated to and from their home locations. Other basic
blocks not shown in the figure follow the same convention, so that the persistent value of each variable
is always available at its home location at the beginning of each basic block.

Communication code generator The communication code generator translates each non-local edge
(an edge whose source and destination nodes are mapped to different tiles) in the instruction task graph
into communication instructions which route the necessary data value from the source tile to the destina-
tion tile. Figure 6f shows an example of such transformation. To minimize the volume of communication,
edges with the same source are serviced jointly by a single multicast operation. Communication instruc-
tions includeSEND and RECEIVE instructions on the processors as well asROUTE instructions on the
switches. New nodes are inserted into the graph to represent the communication instructions, and the
edges of the source and destination nodes are updated to reflect the new dependence relations arising
from insertion of the communication nodes.

Event scheduler The event scheduler schedules the computation and communication events within
a basic block with the goal of producing the minimal estimated run-time. Because routing in Raw is
itself specified with explicit switch instructions, all events to be scheduled are instructions. Therefore,
the scheduling problem can be specified as a generalization of the traditional instruction scheduling
problem.

The task of scheduling communication instructions carries with it the responsibility of ensuring the
absence of deadlocks in the network. The Raw compiler satisfies this condition by scheduling the instruc-
tions on the same communication path all at once in an end-to-end fashion. By reserving the appropriate
time slot at the node of each communication instruction, the compiler reserves the corresponding channel
resources needed to ensure that the instruction can eventually make progress.

Though event scheduling is a static problem, the schedule generated should remain deadlock-free
and correct even in the presence of dynamic events such as cache misses. Raw uses the static ordering
property, implemented through near-neighbor flow control, to ensure this behavior. The static ordering
property states that if a schedule does not deadlock, then any schedule with the same order of commu-
nication events will not deadlock. Because dynamic events like cache misses only add extra latency but
do not change the order of communication events, they do not effect the correctness of the schedule.
Appendix A gives an informal proof of the static ordering property.

The static ordering property also allows the schedule to be stored as compact instruction streams.
Timing information needs not be preserved in the instruction stream to ensure correctness, thus obviating
the need to insert no-op instructions. Figure 6g shows a sample output of the event scheduler. Note, first,
the proper ordering of the route instructions on the switches, and, second, the successful overlap of
computation with communication onP0, where the processor computes and writesz while waiting on
the value ofy 1. Section 4.2 discusses the event scheduling problem in more detail.

12

-

4 Optimization problems

Ignoring the implementation details, parallelizing a basic block in a Raw machine is mainly a three-step
process: instruction partitioning, communication code generation, and event scheduling. For a NURA
machine with dynamic routing between register files, communication code generation would be rendered
unnecessary, and the task simplifies to instruction partitioning and event scheduling.

The current compilation strategy assumes that network contention is low, so that the choice of mes-
sage routes has negligible impact on the code quality compared to the choice of instruction partitions
or event schedules. Therefore, communication code generation inRAWCC uses dimension-ordered rout-
ing and is completely mechanical. This section focuses on the remaining, more important optimization
problems that are also those faced by the compiler of any NURA machines: instruction partitioning and
event scheduling.

4.1 Instruction partitioning

The instruction partitioning problem in NURA machines mirrors that of the task partitioning problem for
mapping a directed acyclic task graph onto MIMD machines. The Raw compiler leverages work in this
domain [10][18].

The input to the task partitioning problem is a machine specification and a directed acyclic task
graph. The machine specification specifies the number of tiles, the network configuration between the
tiles, and the latency and bandwidth of the communication channels. For Raw, the network configuration
is a mesh, with a latency of one cycle for every hop and bandwidth of one word per cycle. In the task
graph, nodes represent tasks and edges represent communication between the tasks. Each node is labeled
with its cost of computation; each edge is labeled with its communication volume, from which the cost of
communication can be estimated. In Raw, every edge has a unit label, representing one word of transfer.

The MIMD task scheduling problem differs from the classical task scheduling problem in that the
cost of non-local communication is non-zero. This difference leads to the interesting observation that
even the problem of finding the optimal partition for infinite number of processors becomes non-trivial. A
good partition must balance the benefits of parallelism against the overheads of communication. Driven
by this motivation,RAWCC uses the following decomposition of the problem:

Clustering The purpose of clustering is to group together instructions that either have no parallelism,
or whose parallelism is too small to exploit relative to the communication cost. Subsequent phases
guarantee that instructions in the same cluster will be mapped to the same tile. The clustering tech-
nique approximates communication cost by assuming an idealized fully-connected switch with uniform
latency.

RAWCC uses the Dominant Sequent Clustering heuristic [18], an efficient, one-pass greedy algorithm
that works as follows. Initially, each instruction node belongs to a unit cluster. The algorithm visits
instruction nodes in topological order. At each step, it selects from the list of candidates the instruction
on the longest execution path. It then checks whether the selected instruction can merge into the cluster
of any of its parent instructions to reduce the estimated length of the critical path. Estimation of the
critical path length takes into account the cost of computation as well as communication. The algorithm
completes when all nodes have been visited.

Merging This phase merges clusters to reduce the number of clusters down to the number of tiles, again

13

assuming an idealized switch interconnect. Two useful heuristics in merging are to maintain load balance
and to minimize communication events. Currently,RAWCC relies on clustering to reduce communication
events; it uses only the load balance heuristics during merging.

RAWCC generates load balanced partitions as follows. It initializes N empty partitions (where N is
the number of tiles), and it visits clusters in decreasing order of size. When it visits a cluster, it merges
the cluster into the partition with the smallest number of instructions.

PlacementThe placement phase maps the merged clusters to physical tiles, and removes the assumption
of the idealized interconnect and takes into account the non-uniform network latency. In this phase,
RAWCC tries to minimize communication bandwidth. It initially assigns clusters to arbitrary tiles, and
it looks for pairs of mappings that can be swapped to reduce the total number of communication hops.
This greedy algorithm can be replaced by one with simulated annealing for better performance.

4.2 Event scheduling

In the event scheduling problem, the inputs are a set of computation and communication instructions,
a directed acyclic graph representing the dependencies between the instructions, a machine dimension
specification, and the mapping from instruction to either processor or switch. The phase outputs a sched-
ule of the constituent instructions for each tile and each switch, optimized for parallel run-time. In
other words, the scheduling problem consists of placing instructions into a matrix, with processor/switch
numbers on one axis and time on another.

From one perspective, the event scheduling problem in Raw is a generalized instruction scheduling
problem. However, keeping track of the ready status of a communication instruction is tricky and requires
explicit management of communication buffers. Instead, we treat a single-source, multiple-destination
communication path as an atomic event to be scheduled. When a communication path is scheduled,
contiguous time slots are reserved for instructions in the path so that the path incurs no delay in the
static schedule. By reserving the appropriate time slot at the node of each communication instruction,
the compiler reserves the corresponding channel resources needed to ensure that the instruction can
eventually make progress.

In a NURA machine with dynamic routing, the compiler schedules computation but not communica-
tion. The event scheduling problem then maps directly to the traditional MIMD task scheduling problem.
In Raw, by considering a communication path as a single task to be scheduled, theRAWCC scheduling
problem becomes a composition of MIMD processor’s task scheduling problem [17] and VirtualWires’
communication scheduling problem [11]. We employ a hybrid solution leveraging research in both ar-
eas. We propose a greedy task scheduling algorithm that uses a priority scheme to select tasks to be
scheduled, where a task is either a computation instruction or a communication path. A communication
path is scheduled as a unit at the earliest time slot when it can proceed without intermediate stalls.

The greedy algorithm keeps track of a ready list of tasks. As long as the list is not empty, it selects
and schedules the task on the ready list with the highest priority. At the heart of the algorithm is the
priority scheme that determines the order in which the ready tasks should be processed. This priority
scheme is derived as follows. Clearly, tasks whose scheduling contribute most toward minimizing the
length of the schedule should have the highest priorities. On the other hand, minimizing the schedule
length is equivalent to maximizing the efficiency of the processors. To maximize efficiency, two types
of tasks should get high scheduling priorities. First, tasks on the critical path should get high priorities
to reduce the length of time during which processors are to be kept busy. The reduction in time in turn

14

reduces the amount of work needed to keep the processors busy. Second, tasks with a large number of
descendent tasks should get high priorities in order to expose as much parallelism as early as possible.
To capture the two effects, we define the priority of a task as a weighted sum of two quantities: itslevel,
defined to be the maximum distance between the task and any of its exit nodes; and itsfertility, defined
to be the number of descendent tasks.

Like a traditional uniprocessor compiler,RAWCC faces a phase ordering problem with event schedul-
ing and register allocation. Currently, the event scheduler runs before register allocation; it has no register
consumption information and does not consider register pressure when performing the scheduling. The
consequence are two-fold. First, instruction costs may be underestimated because they do not include
spill costs. Second, the event scheduler may exposetoo muchparallelism, which cannot be efficiently
utilized but which comes at a cost of increased register pressure. The experimental results for fpppp-
kernel in Section 6 illustrate this problem. We intend to explore the interaction between event scheduling
and register allocation in the future.

5 Memory model

In the spirit of the Raw philosophy of keeping resources decentralized and therefore scalable, Raw dis-
tributes its memory across the tiles. Distributed memory allows parallel access to memory and makes
the on-chip cache and memory bandwidth scale automatically with the number of tiles.3 A distributed
memory model has major implications on the compilation of sequential programs. The Raw compiler
has to partition program data, and it must be able to support arbitrary memory operations, even those that
cannot be statically analyzed. This section discusses the issues and the solution employed by the Raw
compiler.

5.1 Overview

TheRAWCC approach to the distributed memory problem is to provide fast access of memory references
that are statically analyzable, and to provide adequate mechanisms for statically unanalyzable ones.4 The
compiler classifies a memory reference based on two attributes: whether the location (tile number) of the
data is a statically known constant, and whether its dependence relation with other memory references can
be statically determined. Knowledge about the location of the data determines whether the reference can
be fetched using the static network; knowledge about its dependence relation determines how accurately
the instruction task graph can be constructed.

Data location A memory reference whose data location is known at compile-time can be seamlessly
handled under the Raw compilation framework. The compiler simply assigns the memory reference
instruction to its known home tile. Once the instruction is appropriately placed, any necessary communi-
cation to propagate values needed or supplied by the memory instruction will be automatically generated
in the same way as communication generated for other instructions. When the data location is known,

3Although bandwidth to external memory is still limited by the number of pins, a large amount of on-chip memory mitigates
this problem.

4We use “memory references” to refer to both loads and stores. To keep the discussion concrete and avoid excessive
verbiage, we describe only the details for loads whenever convenient.

15

(b)(a)

M1 M2 M3M0

A[]

0 0723

32 0

la(23:4)

la(3:0)

local address tile id

tile id

Figure 7: Low order interleaving. (a) An array object is interleaved element-wise across four memories.
(b) A 24 bit local address combines with with an 8 bit tile id to form an address to a low-order inter-
leaved memory. The interleaving granularity determines the point at which the symbolic address is split.
(sizeof(low order chunk) = log2(16))

a remote memory reference turns into a local memory reference followed by a send through the static
network.

A memory reference whose data location is not known at compile-time is handled by the dynamic
network. The run-time address for this reference contains both its home tile number and the local address
within the tile. To service the reference, a dynamic message containing the local address is sent to the
tile identified by the run-time address. A remote-memory message handler at the home tile receives the
local address, performs the memory operation, and sends back the requested data.

Dependence relations Knowing full dependence relations between a memory reference and other
memory references in the same basic block gives the compiler maximal freedom to reorder the reference
with respect to other references without changing the behavior of the program. If the dependence infor-
mation is incomplete, the compiler has two choices. It can either make conservative assumptions that
ensure correctness but may be over-restrictive about memory reordering, or it can aggressively reorder
the references, relying on the run-time system to detect speculation failure and jump to the appropri-
ate patch-up code. The Raw compiler currently takes the former approach, but it will adapt the latter
approach in the future.

5.2 Low-order interleaving

Exploitation of fine-grained parallelism requires parallel access of memory at a fine granularity. Raw
provides this access by usinglow-order interleavingof memory. Low-order interleaving distributes
small logically contiguous blocks of memory across the tiles. Figure 7 shows a low-order interleaved
object and the bit layout of a low-order interleaved address.

For objects whose access patterns are regular and statically analyzable, the compiler can tailor the
layout of the object, and thus low-order interleaving is not pertinent. Many objects, however, have access
patterns that are either irregular or unanalyzable. For these objects, low-order interleaving is a best-effort
attempt at achieving parallelism in the absence of any specific information. It caters to the spatial locality
of memory accesses in programs.

16

D

I I

5.3 Staticizing affine function accesses of arrays in loops

For obvious reasons, loops consume a large fraction of the runtime in many programs. Performance of
programs can greatly improve if every memory reference inside a loop can be communicated via the
static network. The basic requirement is thestatic reference property, which states that every memory
access in the final code sequence of the loop must have the same home tile every time it is executed. This
property usually does not hold for even the simplest of cases. For example, consider the following:

For (i=0; i<100; i++)
A[i] = i;

EndFor

If the first 100 elements ofA[] do not reside on the same tile, the referenceA[i] will not satisfy this
property.

Assuming that arrays are low-order interleaved element-wise, we have devised a technique to trans-
form a common class of loops to a form that satisfies the static reference requirement. The technique
applies to FOR loops with array accesses whose indices are arbitrary affine functions of the loop in-
duction variables. The key observation is that for affine function accesses, the home location of the
element accessed by a memory-referencing instruction follows a repetitive pattern across iterations. This
repetitive pattern is compile-time determinable. For example, consider the loop below:

For (i=0; i<100; i++)
A[i] = A[2i];

EndFor

Given low-order interleaving over four tiles, consecutive accesses of A[i] produce the tile numbers
[0, 1, 2, 3, 0, 1, 2, 3 ...], yielding a repetition distance of 4. For A[2i], the pattern is [0, 2, 0, 2 ...], with a
repetition distance of two. Similar patterns can be found for any affine access. If the loop is unrolled by
a factor equal to the least common multiple of the repetitive distances of every memory operation in the
loop, then every access through a given memory operation in the unrolled code will have the same home
processor.

Through analysis, we have obtained symbolic expressions for the unroll factor required in the case of
a k-dimensional loop nest with d-dimensional array accesses. The derivation is beyond the scope of this
paper; we summarize the major results instead. The unroll factor per loop dimension is always at most
N , the number of tiles on the machine. Hence, the overall code expansion for a k-dimensional loop is at
most a factor ofNk. For simple affine index functions of the form�i� constant, however, the overall
code expansion is at mostN irrespective of k. This rule of thumb covers common cases such as A[i,j],
A[j,i] and A[100-i,j+2].

Our technique works even in the presence of irregular control flow and is fully integrated into the
control-flow handling mechanism described in Section 3.2. Unknown loop bounds cause no difficulty
either. For many programs, the compiler is able to identify FOR loops even when the input program
contains while loops.

17

Benchmark Source Lang. Lines Array size Seq. RT Description
of code (cycles)

life Rawbench C 118 32�32 1.08M Conway’s Game of Life
vpenta Nasa7:Spec92 Fortran 157 32�32 2.56M Inverts 3 Pentadiagonals Simultaneously
cholesky Nasa7:Spec92 Fortran 126 3�15�15 1.79M Cholesky Decomposition/Substitution
tomcatv Spec92 Fortran 254 32�32 214M Mesh Generation with Thompson’s Solver
fpppp-kernel Spec92 Fortran 735 - 8.98K Electron Interval Derivatives
mxm Nasa7:Spec92 Fortran 64 32�64, 64�8 5.98M Matrix Multiplication
jacobi Rawbench C 59 32�32 0.17M Jacobi Relaxation

Table 2: Benchmark characteristics. ColumnSeq. RTshows the run-time for the uniprocessor code
generated by the Machsuif Mips compiler.

Benchmark N=1 N=2 N=4 N=8 N=16 N=32

life 0.91 1.2 1.6 1.8 1.9 *
vpenta 0.92 1.2 1.8 2.2 2.6 3.0
cholesky 0.90 1.3 2.1 3.3 5.3 *
tomcatv 0.97 1.7 2.7 3.8 5.6 7.8
fpppp-kernel 0.51 0.92 1.9 4.0 8.1 13.7
mxm 0.92 1.8 3.3 6.3 10.2 *
jacobi 0.97 1.6 3.4 5.6 15 22

Table 3: Benchmark Speedup. Speedup compares the run-time of theRAWCC -compiled code versus the
run-time of the code generated by the Machsuif Mips compiler.

6 Results

This section presents some performance results of the Raw compiler. We show that Raw can achieve
good speedups for programs with basic blocks containingeither regular or irregular parallelism. We use
selective Spec92 benchmarks as well as programs from the Raw benchmark suite [2]. Experiments are
performed on the Raw simulator, which simulates the Raw prototype described in Subsection 3.1. The
simulator also assumes that every memory reference into local memory is a cache hit with a two-cycle
latency.

The benchmarks we select include programs from the Raw benchmark suite, program kernels from
the nasa7 benchmark of Spec92, tomcatv of Spec92, and the kernel basic block which accounts for 50%
of the run-time in fpppp of Spec92. Since the Raw prototype does not support double-precision floating
point, all floating point operations in the original benchmarks are converted to single precision. Table 2
gives some basic characteristics of the benchmarks.

We compare results of the Raw compiler with the results of a basic Mips compiler provided by
Machsuif [12]. Table 3 shows the speedups attained by the benchmarks for Raw machines of various
sizes. The results show that the Raw compiler is able to exploit ILP profitably across the Raw tiles for
all the benchmarks. Speedup figures range from a low 1.9 on 16 tiles for life to a decent 22 on 32 tiles
for jacobi. The results can be classified into three categories:

18

Low speedup Life and vpenta have low speedups caused by the same underlying problem: loop un-
rolling is unable to create large basic blocks. Larger basic blocks expose more parallelism to the Raw
compiler, and they reduce the communication overhead between basic blocks. The failure to create large
basic blocks has two causes. First, although unrolling removes control flow at the boundaries of the
unrolled loop, it is unable to remove any control flow inside the body of the loop. (This is the reason
life is unable to achieve the same levels of massive speedups as in our early multi-FPGA system [15].)
Second, the affine function theory discussed in Section 5.3 sometimes requires unrolling the outer loop
to meet the static reference property. Unrolling the outer loop replicates the inner loop, but it does not
create larger basic blocks.

A solution to both of these problems is an optimization that allows higher-level control flow structures
to be treated as schedulable macro-instructions by the basic block orchestrater. Such an optimization
allows basic blocks to extend across control flow statements. We plan to implement this optimization in
the near future.

Modest speedup Cholesky and tomcatv have modest speedups. These applications, along with mxm
and vpenta, have traditionally been parallelized for multiprocessors by distributing loop iterations with
no loop-carried dependence across the processors. Raw detects the same parallelism by partially un-
rolling the loop and distributing individual instructions across the tiles. A mature and fully cooperative
instruction and data partitioner, along with the macro-instructions optimization described above, would
be able to perform at least as well as the traditional parallelization method. On the other hand, Raw
can be viewed as a multiprocessor with extremely low communication latency. As such, it can profitably
exploit parallelism at a much finer grain and for much smaller problem sizes than traditional multiproces-
sors. This advantage of the Raw architecture is demonstrated by the results for cholesky and mxm from
the nasa7 benchmark, both of which have relatively small problem sizes. Traditional multiprocessors
require larger problem sizes to amortize their overheads; they are unable to exploit parallelism of such
granularity [1].

Good speedup Fpppp-kernel, mxm and jacobi attain good speedups. They are applications with large
basic blocks and ample instruction-level parallelism. These results highlight the exciting prospects of a
processor whose hardware can absorb as much parallelism as an application can produce.

For the fpppp-kernel on a single tile, the code generated by the Raw compiler is significantly worse
than that generated by the original Mips compiler. The reason is that our current compiler attempts to
expose the maximal amount of parallelism without regard to register pressure. As the number of tiles
increase, however, the number of available registers increases correspondingly, and the spill penalty of
this instruction scheduling policy reduces. The net result is excellent speedup, occasionally attaining
more than a factor of two speedup when doubling the number of tiles.

The fpppp-kernel also demonstrates an interesting aspect of the Raw compilation technique because
it contains large amount of irregular, ILP-type parallelism that the compiler can gainfully exploit. It is an
application for which speedup have traditionally been difficult to attain. Superscalars perform poorly on
such an application because they lack enough registers. Multiprocessors cannot attain speedup because
the application does not contain loop level parallelism [1]. In contract, the Raw compiler is able to attain
performance improvement that scales well for up to 32 tiles.

Like a VLIW compiler, the Raw compiler expects to use trace scheduling to obtain large basic blocks
with significant ILP parallelism. Fpppp-kernel is an application with a large basic block with such

19

 inf-reg
� base
� 1-cycle

|

0
|

4
|

8
|

12
|

16
|

20
|

24
|

28
|

32

|0

|4

|8

|12

|16

 Fpppp - Performance

 Nprocs

 S
pe

ed
up

�
�

�

�

�

�

�
�

�

�

�

�

Figure 8:Performance of fpppp-kernel under various machine configurations.Baseis the baseline
machine;inf-reg is a machine with infinite number of registers per tile;1-cycleis a machine with single-
cycle instructions. The cycle count for baseline number ofbaseandinf-reg is 7478, and the cycle count
of the baseline number of1-cycleis 3998.

irregular parallelism. Therefore, we use it to better understand the performance benefits derived from
Raw for this type of applications. Figure 8 shows the performance of fpppp-kernel under various machine
configurations. The plot contains speedup curves for the baseline machine with 32 registers per tile and
instruction latencies from Table 1 (base), a machine with infinite registers (inf-reg), and a machine with
single-cycle instructions (1-cycle). Inf-reg shows the potential performance improvement Raw can attain
if it can reduce its problem with register spills.1-cyclereduces the computation to communication ratio
compared tobase, and thus increases the relative weight of communication overhead on performance.
Therefore, the curve for this processor is a lower bound on the performance of fpppp-kernel. Although
the speedup for1-cycle is lower than that forbase(13.7 versus 6.2 on 32 tiles), performance scales
reasonably for up to 32 processors.

7 Future Work

The Raw compiler is a fertile ground for future research. The most immediate extension toRAWCC

is trace scheduling, a technique used by VLIW compilers to merge basic blocks in commonly executed
program paths to produce large basic blocks [4]. BecauseRAWCC exploits basic block parallelism, larger
basic blocks can dramatically improve performance.

Many traditional compiler research problems have their variants inRAWCC . RAWCC faces several in-
terface issues between related compiler phases. As in a traditional uniprocessor,RAWCC has to solve the
classic interference problem between instruction scheduling and register allocation. The Raw compiler
also needs to reconcile instruction partitioning with data partitioning – a problem shared with multipro-
cessors. In order for the latter problem to be resolved satisfactorily, instruction partitioning between
basic blocks must also cooperate to preserve data locality.

The Raw compiler can perform more powerful static analysis if supplemented with run-time infor-
mation generated by a software run-time system. As in the Multiscalar [13],RAWCC can aggressively
speculate on memory operations, relying on the run-time software system to detect speculation failure
and jump to the appropriate patch-up code. Raw can also deploy a fast code partitioner and scheduler

20

in the run-time system to generate instruction streams for run-time traces, similar to the DIF-cache tech-
nique of dynamic code generation for VLIW machines [9] and the instruction-trace technique in [14].

8 Conclusion

This paper presents the Raw architecture and compiler system. Together, they exploit instruction-level
parallelism in applications to achieve high levels of performance by physically distributing resources and
exposing them fully. The resulting non-uniform access times creates many challenging compiler prob-
lems. Physically distributed register files result in non-uniform register access times causing instruction
scheduling to become a problem in both space and time. Non-uniform memory access times further
requires the compiler to partition data as well as instructions. The ability to use the fast static network
to communicate remote memory references in Raw adds yet another challenge: identifying memory
operations with static home locations.

This paper describes the Raw compiler’s approach to handling the above problems. First, the Raw
compiler detects and orchestrates instruction level parallelism within basic blocks by adapting techniques
from MIMD task partitioning and scheduling, as well as from VirtualWires communication scheduling.
Second, it uses low order interleaving as the default memory allocation policy to exploit fine-grain par-
allelism. Finally, it introduces a technique to transform loops that access arrays using affine functions of
loop induction variables into loops that execute with only static communication.

A Raw compiler based on SUIF has been implemented. The compiler accepts sequential C or Fortran
programs, discovers instruction-level parallelism, and schedules the parallelism across the Raw substrate.
Reflecting our ILP focus, the compiler currently does not exploit coarse-grain parallelism through SUIF’s
loop-level parallelization passes, although it can be easily extended to do so. This paper presents some
promising results on the potential of the Raw compiler. The compiler is capable of realizing 14-way
parallelism on 32 tiles for the fpppp-kernel, an irregular application that has historically resisted attempts
at speeding it up. Since a Raw microprocessor is already suitable for many other forms of parallelism,
including coarse-grain loop level parallelism, stream processing, and static pipelines, its ability to exploit
ILP is an important step in demonstrating that the Raw machine is an all-purpose parallel machine.

References

[1] S. Amarasingle, J. Anderson, C. Wilson, S. Liao, B. Murphy, R. French, and M. Lam. Multiprocessors from
a Software Perspective.IEEE Micro, pages 52–61, June 1996.

[2] J. Babb, M. Frank, V. Lee, E. Waingold, R. Barua, M. Taylor, J. Kim, S. Devabhaktuni, and A. Agarwal.
The raw benchmark suite: Computation structures for general purpose computing. InIEEE Symposium on
Field-Programmable Custom Computing Machines, Napa Valley, CA, Apr. 1997.

[3] J. Babb, R. Tessier, M. Dahl, S. Hanono, D. Hoki, and A. Agarwal. Logic emulation with virtual wires.IEEE
Transactions on Computer Aided Design, 16(6):609–626, June 1997.

[4] J. A. Fisher. Trace Scheduling: A Technique for Global Microcode Compaction.IEEE Transactions on
Computers, 7(C-30):478–490, July 1981.

[5] J. A. Fisher. Very Long Instruction Word Architectures and the ELI-512. InProceedings of the 10th Annual
International Symposium on Computer Architecture, pages 140–150, Stockholm, Sweden, June 1983.

[6] B. Gieseke and et al. A 600MHz Superscalar RISC Microprocessor with Out-Of-Order Execution.1997
IEEE International Solid-State Circults Conference. Digest of Technical Papers, pages 176–178, 1997.

21

[7] L. Gwennap. Digital 21264 Sets New Standard.Microprocessor Report, pages 11–16, Oct. 1996.

[8] W. mei Hwu, S. Mahlke, W. Chen, P. Chang, N. Warter, R. Bringmann, R. Ouellette, R. Hank, T. Kiyohara,
G. Haab, J. Holm, and D. Lavery. The superblock: An effective technique for vliw and superscalar compila-
tion. The Journal of Supercomputing, 7(1), Jan 1993.

[9] R. Nair and M. E. Hopkins. Exploiting Instruction Level Parallelism in Processors by Caching Scheduled
Groups. InProceedings of the 24nd Annual International Symposium on Computer Architecture, pages 13–
25, 1997.

[10] V. Sarkar. Partitioning and Scheduling Parallel Programs for Multiprocessors. Pitman, London and The
MIT Press, Cambridge, Massachusetts, 1989. In the series, Research Monographs in Parallel and Distributed
Computing.

[11] C. Selvidge, A. Agarwal, M. Dahl, and J. Babb. TIERS: Topology independent pipelined routing and schedul-
ing for VirtualWire compilation. In1995 ACM International Workshop on Field-Programmable Gate Arrays,
pages 12–14, Berkeley, CA, February 1995. ACM.

[12] M. D. Smith. Extending suif for machine-dependent optimizations. InProceedings of the First SUIF Com-
piler Workshop, pages 14–25, Stanford, CA, Jan. 1996.

[13] G. Sohi, S. Breach, and T. Vijaykumar. Multiscalar Processors. InProceedings of the 22nd Annual Interna-
tional Symposium on Computer Architecture, pages 414–425, 1995.

[14] S. Vajapeyam and T. Mitra. Improving Superscalar Instruction Dispatch and Issue by Exploiting Dynamic
Code Sequences. InProceedings of the 24nd Annual International Symposium on Computer Architecture,
pages 1–12, 1997.

[15] E. Waingold, M. Taylor, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank, P. Finch, S. Devabhaktuni, R. Barua,
J. Babb, S. Amarasinghe, and A. Agarwal. Baring It All To Software: Raw Machines.Computer, pages
86–93, Sept. 1997.

[16] R. Wilson and et al. SUIF: A Parallelizing and Optimizing Research Compiler.SIGPLAN Notices, 29(12):31–
37, December 1994.

[17] T. Yang and A. Gerasoulis. List scheduling with and without communication.Parallel Computing Journal,
19:1321–1344, 1993.

[18] T. Yang and A. Gerasoulis. DSC: Scheduling parallel tasks on an unbounded number of processors.IEEE
Transactions on Parallel and Distributed Systems, 5(9):951–967, 1994.

A Static Ordering Property

Dynamic events such as cache misses prevent one from statically analyzing the precise timing of a
schedule. The Raw compiler relies on the static ordering property of the Raw architecture to generate
correct code in the presence these dynamic events. The static ordering property states that the result
produced by a static schedule is independent of the specific timing of the execution. Moreover, it states
that whether a schedule deadlocks is a timing independent property as well. Either the schedule always
deadlocks, or it never does.

To generate a correct instruction schedule, Raw orders the instructions in a way that obeys the in-
struction dependencies of the program. In addition, it ensures that the schedule is deadlock free assuming
one set of instruction timings. Static ordering property then ensures that the schedule is deadlock free
and correct for any execution of the schedule.

22

route(I, O)

read_z(O)

read_z-1(O)route(X,Y)

route(X,O)

y-1:

y:

write_x(I)

Node N_rNode N_s Node N

Port I Port O

ti
m

e

Figure 9:Dependent instructions of a communication instruction.Each long rectangle represents an execu-
tion node, and each wide rectangle represents an instruction. Spaces between execution nodes are ports. Edges
represent flow of data. The focal instruction is the thick rounded rectangle. Its dependent instructions are in thick
regular rectangles.

We provide an informal proof of the static ordering property. We restrict the static ordering property
to the practical case: given a schedule that is deadlock free for one set of instruction timings, then for
any set of instruction timings,

1. it is deadlock free.

2. it generates the same results.

First, we show (1). A deadlock occurs when at least one instruction stream on either the processor
or the switch has unexecuted instructions, but no instruction stream can make progress. A non-empty
instruction stream, in turn, can fail to make progress if it is attempting to execute a blocked communi-
cation instruction. A communication instruction blocks when either its input port is empty, or its output
port is full. Computation instructions do not use communication ports; they cannot cause deadlocks and
are only relevant in this discussion for the timing information they represent.

Consider a communication instructionc. We derive the conditions under which it can execute. Three
resources must be available: its input value, its execution node (processor or switch), and its output
ports.5 The resource requirements can also be represented by execution of a set of instructions. First,
note that ports are dedicated connections between two fixed nodes, so that each port has exactly one
reader node and one writer node. Let instructionc be thexth instruction that reads its input port I, the
yth instruction that executes on its node N, and thezth instruction that writes its output port O. Then the
resources for instructionc become available after the following instructions have executed:

1. thexth instruction that writes port I.

2. they � 1th instruction that executes on node N.

3. thez � 1th instruction that reads (andflushes) port O.

See Figure 9.

The key observation is that once a resource becomes available for instruction c, it willforeverremain

5The three resources need not all be applicable. ASEND instruction only requires an output port and a node, while a
RECEIVEinstruction only requires the input value and a node.

23

• • •

• • • • • • • • •

• • • • • •
• • • • • •

available until the instruction has executed. The value on the input port cannot disappear; the execution
node cannot skip overc to run other instructions; the output port cannot be full after the previous value
has been flushed. The reservation of the resources is based on three properties: the single-reader/single-
writer property of the ports, the blocking semantics of the communication instructions, and the in-order
execution of instructions.

Therefore, a communication instruction can execute whenever its dependent instructions, defined by
the enumeration above, have executed.

Now, consider the schedule that is deadlock-free for one known set of timings. Plot the execution
trace for this set of timings in a two dimensional grid, with node-id on the x-axis and time on the y-axis.
Each slot in the execution trace contains the instruction (if any) that is executed for the specified node at
the specified time. The plot is similar to Figure 9, except that real execution times, rather than the static
schedule orders, are used to place the instructions temporally.

Finally, consider a different set of timings for the same schedule. Lettnew be a point in time for the
new timings when the schedule has not been completed, and letEnew(tnew) be the set of instructions
that have executed before timetnew. We use the above deadlock-free execution trace to find a runnable
instruction at timetnew. Find the smallest timet in the deadlock-free execution trace that contains an
instruction not inEnew(tnew). Call the instructionc. The dependent instructions ofc must necessarily
be contained inEnew(tnew).6 Therefore,c must be be runnable at timetnew for the new set of timings.

Having found a runnable instruction for any point in time when the schedule is not completed, the
schedule must always make progress, and it will not deadlock.

The second correctness condition, that a deadlock-free schedule generates the same results under two
different sets of timings, is relatively easy to demonstrate. Changes in timings do not affect the order
in which instructions are executed on the same node, nor do they change the order in which values are
injected or consumed at individual ports. The blocking semantics of communication instructions ensures
that no instruction dependence can be violated due to a timing skew between the sender and the receiver.
Therefore, the values produced by two different timings must be the same.

6This statement derives from two facts:
1. All dependent instructions ofc must execute beforec in the deadlock-free execution trace.
2. Sincec executes at timet and all instructions executed before timet are inEnew(tnew), all instructions executed

beforec in the deadlock-free execution trace are inEnew(tnew).

24

