
Lazy Reference Counting for Transactional Storage Systems

Miguel Castro, Atul Adya, Barbara Liskov

Laboratory for Computer Science,
Massachusetts Institute of Technology,

545 Technology Square, Cambridge, MA 02139

fcastro,adya,liskovg@lcs.mit.edu

Abstract

Hac is a novel technique for managing the client cache
in a distributed, persistent object storage system. In
a companion paper, we showed that it outperforms
other techniques across a wide range of cache sizes
and workloads. This report describes Hac's solution
to a speci�c problem: how to discard indirection table
entries in an indirect pointer swizzling scheme. Hac uses
lazy reference counting to solve this problem. Instead
of eagerly updating reference counts when objects are
modi�ed and eagerly freeing unreferenced entries, which
can be expensive, we perform these operations lazily in
the background while waiting for replies to fetch and
commit requests. Furthermore, we introduce a number
of additionaloptimizations to reduce the space and time
overheads of maintaining reference counts. The net
e�ect is that the overhead of lazy reference counting
is low.

Keywords: reference counting, pointer swizzling,
transactions, caching, performance

1 Introduction

Hac is a novel technique for managing the client
cache in a client-server, persistent object storage
system [4]. It combines page and object caching to
reduce the miss rate in client caches dramatically
while keeping overheads low. Hac provides im-
proved performance over earlier approaches | by
more than an order of magnitude on common work-
loads [4]. The contribution of this report is to doc-
ument lazy reference counting: the technique used
by Hac to solve the speci�c problem of discard-

This research was supported in part by the Advanced

Research Projects Agency of the Department of Defense,

monitored by the O�ce of Naval Research under contract

N00014-91-J-4136. M. Castro is supported by a PRAXIS

XXI fellowship.

ing indirection table entries in an indirect pointer

swizzling scheme.

Pointer swizzling [11] is a well-established tech-
nique to speed up pointer traversals in object-
oriented databases. For objects in the client cache,
it replaces contained global object names by vir-
tual memory pointers, thereby avoiding the need to
translate the object name to a pointer every time a
reference is used. Pointer swizzling schemes can be
classi�ed as direct [13] or indirect [11, 10]. In direct
schemes, swizzled pointers point directly to an ob-
ject, whereas in indirect schemes swizzled pointers
point to an indirection table entry that contains
a pointer to the object. Indirection allows Hac
to e�ciently evict cold objects from the cache and
compact hot objects to avoid storage fragmenta-
tion | when an object is evicted or moved, it is
not necessary to �nd and correct all pointers to
the object; instead, we can just �x the object's en-
try in the indirection table. However, it introduces
the problem of reclaiming storage in the indirection
table.

Reference counting [5] is a simple incremental
automatic storage reclamation technique. It main-
tains a count of the number of references pointing
to an item and reclaims the item when its count
drops to zero. Existing reference counting schemes
su�er from four problems [14] | space overheads,
the problem of cycles, the cost of reclaiming the
unreferenced entries, and the cost of changing ref-
erence counts at every pointer update. Our lazy
reference counting scheme overcomes these prob-
lems. First, it uses only one-byte reference counts
(with larger counts stored in a separate table). Sec-
ond, the inability to collect cyclic garbage using ref-
erence counts is not a problem here since evicting
objects from the cache breaks cycles. Third, freeing

1



an unreferenced entry is achieved by simply setting
a bit in the entry (reusing the entry is similarly
inexpensive). Finally, reference counts are not cor-
rected at every pointer update but only once at the
end of a transaction to account for all of the trans-
action's modi�cations. Furthermore, lazy reference
counting performs reference count adjustments and
frees unreferenced entries in the background while
the client is waiting for replies to fetch and commit
requests.

This report describes how lazy reference count-
ing is implemented in Hac [4] and presents the re-
sults of experiments that evaluate its performance.
The results show that the lazy reference counting
scheme has low space and time overheads.

Even though we focus on the implementation of
lazy reference counting in Hac, the algorithm and
most of the optimizations we introduce could be ap-
plied to solve other related problems. For example,
assume a client cache management scheme where
direct swizzling is used and pages are evicted by
read protecting the virtual page frame where they
were mapped. In this setting, lazy reference count-
ing can be used to determine when there are no
more pointers to the virtual page frame, allowing
it to be reused to map a di�erent page.

The rest of the report is organized as follows.
Section 2 presents an overview of our system and
object naming scheme. Section 3 describes lazy
reference couting. The results of our experiments
are presented in Section 4.

2 System Overview

Hac and lazy reference counting are part of
Thor-1, a new implementation of the Thor object-
oriented database system; more information about
Thor-1 can be found in [4]. This section begins
with a brief overview of the client and server
architectures. Next, it describes object naming and
indirect swizzling.

2.1 Clients and Servers

The system is made up of clients and servers.
Servers provide persistent highly available stor-
age for objects. Clients cache copies of persistent
objects. Application transactions run entirely at
clients, on the cached copies. More information
about the client interface to the database can be

found in [8]. We serialize transactions using opti-
mistic concurrency control; the mechanism is de-
scribed in [1, 7]. Our concurrency control algo-
rithm outperforms the best pessimistic methods on
almost all workloads [7].

Hac partitions the client cache into page frames
and fetches entire pages from the server. To make
room for an incoming page, Hac selects some page
frames for compaction, discards the cold objects
in these frames, and compacts the hot objects to
free one of the selected frames. The approach is
illustrated in Figure 1. This compaction process is
performed in the background while waiting for the
fetch reply.

Hot object

Cold object

Free
Frame

Before compaction

After compaction

1

2

3

4

5

6 7

tFrame 14 Frame 2 Frame 53

Frame 14 Frame 2 Frame 53

1

2

3

4
5

6
7

Figure 1: Compaction of pages by Hac

While a transaction runs, the client keeps track
of objects it used (in the read set), and objects it
modi�ed (in the write set). Additionally, when a
transaction modi�es an object for the �rst time, the
client makes a copy of the object in the undo log.
These copies are used to restore modi�ed objects to
their previous state when transactions abort. The
copies are important because they speed up the re-
execution of aborted transactions. This mechanism
is essential for our optimistic concurrency control
scheme to outperform locking alternatives [7]. The
space dedicated to holding the undo log has a
limited size; when it �lls up, no more copies are
created. We expect a small bu�er to be capable
of holding copies of all modi�ed objects for most
transactions [7].

When a transaction commits, the client sends the
new versions of all objects modi�ed or created by
the committing transaction to a server, along with

2



the names of objects that were read and written
during the current transaction. The server vali-
dates the transaction against those that have al-
ready committed or prepared (we use a two-phase
protocol if the transaction used objects at multiple
servers). If validation succeeds, information about
the committing transaction, including all its modi-
�cations is forced to the transaction log; only after
the information has been recorded on stable stor-
age does the server inform the client of the commit.

When a transaction that modi�ed object o
commits, it causes all other clients that cache o

to contain out of date information. We cause
invalid information to be ushed from caches
by sending invalidations piggybacked on other
messages already being sent.

2.2 Object References

Objects stored on disk refer to one another using
names. The name of an object identi�es the
disk page where the object is stored, but not
the location of the object's data within that
page. This is important because it allows storage
management at servers to avoid fragmentation by
moving objects within their pages independently
from other clients or servers, since no other server
or client knows the actual location where an object
resides.

Using names as references is not appropriate for
the objects cached at the client, because every
dereference requires a translation of the name to
the location of the cached object. Instead we use
an indirect form of lazy swizzling on discovery [13];
references are swizzled to point to an entry in an
indirection table that points to the object's �elds.
Swizzling is performed when a reference is loaded
from an instance variable into a local variable. This
is implemented using edge marking [10]; references
are marked as swizzled or unswizzled using one
bit. When a reference is loaded from an instance
variable into a local variable, a check is performed
to determine whether the reference is swizzled or
not. If the reference is not swizzled, the object
name is translated into a pointer to the object's
entry in the indirection table (this may require
fetching the object if it is not cached), and the
resulting value is stored both in the local variable
and back in the instance variable.

In our system, the indirection table is also a

swizzle table; it is used to translate object names
into pointers to indirection table entries. The
table is implemented as an overow chaining hash
table. Each entry in the indirection table contains
a pointer to the �elds of some object (or null if that
object has been discarded), a reference count, and
a next pointer used to link the entries that make
up a hash table bucket.

3 Reference Count Management

Indirection table entries are freed using the lazy
reference counting scheme. The scheme takes ad-
vantage of the copies maintained by our concur-
rency control algorithm in the undo log to up-
date reference counts and free entries e�ciently at
commit time (other schemes maintain similar undo
logs [12, 2]).

The lazy reference counting scheme is optimized
for the common case | transactions whose base
copies of modi�ed objects �t in the undo log
and whose accessed objects �t in a small fraction
of the client cache [7]. We start by presenting
the algorithm that handles the common case
and later explain how it is extended to handle
transactions that access and modify a large number
of objects. We �nish the section by describing key
implementation details.

3.1 The Base Algorithm

Let e be an entry in the indirection table. The
reference count �eld of e keeps an approximate
count of the number of swizzled references to e.
We call this count the current reference count of
e or CRC(e). The actual reference count of e or
ARC(e) is the exact number of swizzled references
that refer to e in the stack, registers or instance
variables of cached objects. We de�ne stack(e)
as the number of swizzled references to e from
the stack or registers. The function refs(o; e) is
de�ned as the number of swizzled references in the
instance variables of object o that refer to e, and
the function refd(o) maps o to the multiset whose
elements are the indirection table entries pointed
to by each swizzled reference in o.

Eager reference counting schemes ensure that
CRC(e) is always equal to ARC(e) for all e, but in
our lazy reference counting scheme they are usually
di�erent. Instead, our system satis�es the following
invariant:

3



Invariant 1: For each entry e in the indirection

table and all objects y modi�ed during the current

transaction, the actual number of swizzled refer-

ences to e is given by:

ARC(e) =CRC(e)+stack(e) +
P
(refs(y; e)�refs(y0

; e))

where y0 is the copy of y in the undo log.

The invariant captures two important features
of our algorithm. First, CRC(e) never accounts for
references in the stack or registers. Second, CRC(e)
does not account for references in the new versions
of objects modi�ed during a transaction until it
commits, but accounts for the swizzled references
in the objects' copies in the undo log. The
�rst feature is similar to what deferred reference

counting [6] provides but the second is new.
We now prove that the system preserves Invari-

ant 1 by induction on the length of the execution,
and simultaneously explain the various steps in our
algorithm. The invariant holds vacuously for the
base case because initially there are no objects in
the cache. For the induction step, there are six
operations that can change the reference counts in
the system; we show that the invariant is preserved
in all these cases:

(a) Swizzling: When a reference to entry e

from object o is swizzled, ARC(e) increases by
one. If o has not been modi�ed, our algorithm
increments CRC(e) by one and the invariant is
preserved. Otherwise, the algorithm leaves CRC(e)
unchanged, but refs(o; e) increases by one and the
invariant is maintained.
(b) Creation of copy in undo log: Our system
creates a copy y0 of an object y in the undo
log, the �rst time y is modi�ed during a transac-
tion. The invariant is preserved because initially
refs(y; e) = refs(y0; e) for all e.
(c) Reference modi�cation: Suppose a reference
�eld is updated in object y such that it now refers
to entry f instead of containing a reference to
object o 1. No CRC is modi�ed by our algorithm
when this happens. Let us consider two cases:

� If the reference to o was swizzled and pointed

1The technique we use to swizzle references ensures that,

when a new reference value is assigned to a reference �eld,

the new value is swizzled.

to o's corresponding indirection table entry e,
ARC(f) increases by one and ARC(e) decreases
by one. The invariant is preserved because
refs(y; f) increases by one while refs(y; e) de-
creases by one.

� If the reference to o was not swizzled, only
ARC(f) changes; it increases by one. The in-
variant is preserved because refs(y; f) increases
by one. (Note that even if o has an associated
entry e, refs(y; e) will not change in this case.)

(d) Eviction: When an object o is evicted, the
ARC of entries in refd(o) decreases. Our algorithm
decrements the CRC for all these entries and
therefore maintains the invariant. (In the current
version of the system, we never evict objects
modi�ed by the current transaction [4].)
(e) Invalidation: Servers send invalidations to a
client when an object o in that client's cache
is modi�ed by another client. When such an
invalidation is received, o is removed from the
cache. Thus, like in the eviction case, the ARC of
entries in refd(o) decreases. Two cases may occur:

� If the invalidated object was not modi�ed by
the current transaction, the object is simply
evicted using procedure (d).

� If the invalidated object o was modi�ed by
the current transaction, our algorithm preserves
Invariant 1 by decrementing the CRC(e) for
each e in refd(o0) and discarding o0 (o's copy).

After processing the invalidation, if any invali-
dated object was used by the current transaction,
the transaction aborts triggering the abort process-
ing described next.
(f) Transaction commit: We distinguish two cases:

� If the commit is successful, our lazy reference
counting algorithm computes the value of refs
for each modi�ed object y and its copy y0;
increments CRC(e) by

P
(refs(y; e)�refs(y0; e))

for each entry e; and clears the transaction logs.
Thus, the invariant is maintained.

� If the transaction aborts, the system reverts
all modi�ed objects to their copies and clears
the transaction logs. Therefore, the value of
ARC(e) decreases by refs(y; e)�refs(y0; e) for
every entry e and modi�ed object y. The
invariant is preserved because y is reverted to
the value in its copy.

4



In the current implementation of our system,
there are no swizzled references on the stack or reg-
isters at commit time, i.e., stack(e) = 0 for all en-
tries e. Therefore, just after the commit processing
described in (f) is performed ARC(e) =CRC(e) for
every e. At this point, our algorithm frees entries e
such that CRC(e) = 0, ensuring the following basic
safety and liveness properties.

Theorem 1 (Safety): Indirection table entries

are freed only if there are no swizzled references

referring to them.

Theorem 2 (Liveness): Indirection table entries

with no swizzled references referring to them are

freed when a transaction terminates (unless the

entry corresponds to an object that is still cached).

3.2 Algorithm Extensions

When objects are evicted, the ARC of some
indirection table entries may drop to zero. For
transactions that access a large amount of data
and incur many client cache misses, the amount
of storage wasted by unreferenced indirection table
entries may be signi�cant. This section explains
how the algorithm is extended to allow freeing of
indirection table entries during transactions and to
handle transactions that modify more data than
what �ts in the undo log.

Let eager be a subset of the objects modi�ed by
the current transaction. The extended algorithm
updates reference counts eagerly to account for
modi�cations to references contained in objects in
the eager set. The algorithm inserts into eager
modi�ed objects whose copies do not �t in the
undo log. Additionally, when the amount of
storage wasted by unreferenced entries is signi�cant
relative to the total client cache size (e.g., when the
storage used up by entries whose CRC dropped to
zero is 1% of the client cache size), the algorithm
inserts all modi�ed objects in eager in order to
allow freeing of entries during the transactions.
This involves incrementing the reference counts of
entries pointed to by modi�ed objects (that are still
not in eager) and it is performed while waiting for
the reply to a fetch request.

The extended algorithm veri�es a modi�ed in-
variant (this can be shown using a proof similar to
the one presented in Section 3.1):

Invariant 2: For each entry e in the indirection

table, all objects y 62 eager modi�ed during the

current transaction, and all copies x0 of objects

x 2 eager, the actual number of swizzled references

to e is given by:

ARC(e) =CRC(e)+stack(e)�
P
refs(x0

; e)+
P
(refs(y; e)�refs(y0

; e))

where y0 is y's copy in the undo log.

The term
P
refs(x0; e) reects the fact that

CRC(e) accounts for both the references that point
to e in objects in eager and in their copies. This
guarantees that entries e that are pointed to by
copies have CRC(e) > 0 until the transaction
commits (or aborts). Therefore, these entries are
not freed during a transaction making it possible
to revert the state of modi�ed objects in eager to
their copies if the transaction aborts.

The extended algorithm works as follows:

(a1) Swizzling: When a reference to entry e from
an object y 2 eager is swizzled, the algorithm
increments CRC(e) by one. For objects not in
eager, it proceeds as described in (a).

(b1) Creation of copy in undo log: If the undo
log is full the �rst time an object y is modi�ed
during a transaction, the algorithm adds y to eager.
Otherwise, the algorithm proceeds as in (b).

(c1) Pointer modi�cation: When a pointer con-
tained in object y 2 eager is modi�ed to point to
entry f instead of containing a reference to object
o, the algorithm increments CRC(f) by one. If
the reference to o was swizzled and pointed to o's
corresponding indirection table entry e, CRC(e) is
decremented by one. For objects not in eager, the
algorithm behaves as described in (c).

(d1) Eviction: While waiting for the reply to a
fetch request, the algorithm computes the value of
refs for each modi�ed object y 62 eager; increments
CRC(e) by

P
refs(y; e); and adds all y to eager.

Then for each evicted object o, it decrements
CRC(e) for each e in refd(o) and frees e ifCRC(e) =
0 ^ stack(e) = 0.

(e1) Invalidation: If the client receives an invalida-
tion for an object y 2 eager, the algorithm decre-
ments CRC(e) for each e 2 refd(y). If y has a
copy y0 , the algorithm decrements CRC(e) for each
e 2 refd(y0). The algorithm also performs the pro-

5



cessing described in (e).

(f1) Transaction commit: We distinguish two
cases:

� If the commit is successful: The algorithm
decrements CRC(e) for each e 2 refd(y0) (where
y0 is a copy of some object in eager. No
processing is performed for objects in eager
without a copy. For objects not in eager, the
algorithm proceeds as described in (f).

� If the transaction aborts: For each y 2 eager,
the algorithm decrements CRC(e) for all e in
refd(y). If y has a copy y0, the algorithm also
decrements CRC(e) for each e 2 refd(y0) and
reverts y to its copy. No processing is required
for objects not in eager.

Once more, just after the commit processing
described in (f1) is performed ARC(e) =CRC(e)
for every e and the algorithm frees entries with
CRC(e) = 0. Using invariant 2 it is possible to
show that the extended algorithm also veri�es the
safety and liveness theorems.

3.3 Implementation and Optimizations

This section describes the key overheads in the
implementation of lazy reference counting and
presents the techniques used to reduce them.

3.3.1 Space Overheads

The reference count �eld in the indirection table is
only 1 byte, which should be enough to store the
CRC of most entries. If an overow occurs, the
�eld takes the value 255 and the actual reference
count is stored in a hash table keyed by the index
of the entry in the indirection table. The algorithm
also uses 2 bits in the object header: the pointer-

update bit which is set if and only if a pointer in the
object was modi�ed during the current transaction;
and the eager bit which is set if and only if the
object is in the eager set. The pointer-update bit
is set by code that is automatically generated by
our Theta [9] compiler.

3.3.2 Time Overheads

We now discuss the time overhead introduced by
each step in the lazy reference counting algorithm
and the optimizations used to reduce it. We focus
on the common case where all data modi�ed by

a transaction �ts in the undo log and no entries
are freed during a transaction (i.e., the eager set is
empty).

Adjusting reference counts when a reference
is swizzled can potentially add an extra cache
miss. To avoid this overhead, our swizzle table
is also the indirection table. Therefore, when a
reference is swizzled its corresponding entry in the
indirection table is accessed and the reference count
adjustment is inexpensive.

When an object is evicted, its references are
scanned and for each swizzled reference, the refer-
ence count of the target entry is decremented and if
it drops to zero the entry's index is appended to the
zero log (if the corresponding object was discarded
from the cache). Similarly, if the entry being dis-
carded also has a null reference count it is added to
the zero log. This process is memory intensive and
relatively expensive. To reduce the overhead of ad-
justing reference counts when objects are evicted,
our system performs this processing while waiting
for the reply to a fetch request. Unless the client
is multi-threaded or multi-programmed, this allows
us to completely overlap eviction time adjustment
of reference counts with the fetch delay. Therefore,
eviction time processing usually introduces no over-
head.

Commit time processing is divided in two steps.
The �rst step adjusts reference counts to reect
the current state of modi�ed objects. It compares
modi�ed objects with their copies to determine
which references were modi�ed, and adjusts refer-
ence counts accordingly. As an optimization, the
comparison is only performed if the pointer-update
bit is set because otherwise it is known that no ad-
justments are required.

In a system that performs pointer swizzling,
the client must unswizzle references in modi�ed
objects before it sends their new states to the
server in a commit request. Our implementation
takes advantage of this by dividing the �rst step
into an increment phase and a decrement phase.
The increments are all performed when references
are unswizzled and introduce a negligible overhead
because the unswizzling code accesses the entries
whose counts need to be incremented. The
decrement phase is performed in the background
while waiting for the reply to the commit request
and introduces no additional delay (unless the

6



client is multi-threaded or multi-programmed in
which case it may introduce some delay). Entries
whose reference counts drop to zero during the
decrement phase are marked as free. However,
since these entries are pointed to by the copies
of modi�ed objects, the changes performed while
freeing them are logged such that they can be
undone in case the transaction aborts.
The second step, iterates over the zero log and

marks as free any entry whose reference count
is still zero and whose corresponding object was
discarded from the cache. The second step is also
performed in the background while waiting for the
reply to the commit request. No logging is required
in this case because the objects that referred to
these entries were discarded from the cache.

If marking an entry as free required removing
the entry from its hash bucket chain in the swizzle
table and inserting it in some free list, commit
time processing could be excessive. We avoid this
overhead by simply setting a bit in the entry. The
free entry remains linked to its hash bucket chain
and will be reused when a new object (whose
name hashes to the same bucket) is installed
in the indirection table. This technique works
well in practice because our multiplicative hashing
function spreads the entries across buckets very
uniformly.

4 Performance Evaluation

This section shows that the overheads introduced
by our lazy reference counting scheme are low.

4.1 Experimental Setup

The experiments ran a single client on a DEC
3000/400 workstation, and a server on another,
identical workstation. Both workstations had
128 MB of memory and ran OSF/1 version 3.2.
They were connected by a 10 Mb/s Ethernet
and had DEC LANCE Ethernet interfaces. The
database was stored on a Seagate ST-32171N disk,
with a peak transfer rate of 15.2 MB/s, an average
read seek time of 9.4 ms, and an average rotational
latency of 4.17 ms. The server cache was 36 MB
and the client cache was 12 MB. We used 8 KB
pages.

The experiments ran the single-user OO7 bench-
mark [3]. The OO7 database contains a tree of as-
sembly objects, with leaves pointing to three com-

posite parts chosen randomly from among 500 such
objects. Each composite part contains a graph
of atomic parts linked by connection objects; each
atomic part has 3 outgoing connections. We used
the medium database which has 200 atomic parts
per composite part and a total size of 37.8 MB. We
implemented the database in Theta [9], following
the speci�cation [3] closely.

We ran traversals T1 and T2b. These traversals
perform a depth-�rst traversal of the assembly tree
and execute an operation on the composite parts
referenced by the leaves of this tree. T1 is read-
only; it reads the entire graph of a composite part.
T2b is identical to T1 except that T2b modi�es
all the atomic parts. All pointer updates in T2b
are due to pointer swizzling; therefore, we added a
new traversal called R2b that has pointer updates
due to both pointer swizzling and assignments
to pointer variables. Traversal R2b is similar to
T2b except that it swaps the second and third
connections in the set of incoming connections of
an atomic part.

The code was compiled with GNU's gcc with
optimization ag -O2. Each traversal was run in a
single transaction as speci�ed in [3]. The traversals
were run on an isolated network.

4.2 Experiments

Figure 2 shows the time spent managing reference
counts and freeing indirection table entries for T1,
T2b and R2b. The bars labeled Con�guration

2 correspond to a con�guration with a 512 KB
undo log and the lazy reference counting algorithm
con�gured to start freeing indirection table entries
during a transaction when the storage used up by
entries with null reference counts reaches 1% of the
client cache size. This is our default con�guration
which was used to obtain the results presented
in [4].

T1, T2b and R2b run in a single transaction,
access signi�cantly more data than what �ts in
the client cache, and T2b and R2b modify more
data than what �ts in the undo log (T2b modi-
�es approximately 4 MB of data and R2b modi-
�es approximately 3.5 MB of data). Therefore, the
bars labeled Con�guration 2 correspond to trans-
actions that do not fall in the common case for
which we designed our lazy reference counting al-
gorithm. We believe these transactions are uncom-

7



monly large [7]. To simulate the behavior of the
system with smaller transactions, we also ran T1,
T2b and R2b with an undo log large enough to hold
copies of all modi�ed objects and without freeing
entries in the middle of transactions. The bars la-
beled Con�guration 1 correspond to the latter con-
�guration.

The tops of the bars in Figure 2 were erased to
represent the portion of the time spent managing
reference counts that is overlapped with fetch and
commit delays.

The experimental methodology we followed to
obtain the overheads presented in Figure 2 con-
sisted in comparing the execution times of our sys-
tem and a version of our system from which all
reference counting code was removed. Therefore,
the numbers we present include the overheads due
to increased instruction cache and TLB misses. In
fact, the foreground overhead of reference counting
in traversals T1 and T2b is signi�cantly higher than
we expected and we believe this is due to conicts
in our processor's direct-mapped code cache.

T1 T2b R2b
0

5

10

T
im

e 
O

ve
rh

ea
d 

(s
ec

on
ds

)

Configuration 1 (4MB log, 20% waste)
Configuration 2 (0.5MB log, 1% waste)

Figure 2: Reference Count Management Overhead
(the white bars represent overhead that was over-
lapped with fetch and commit delays)

The results in Figure 2 show that the system
performs better in Con�guration 1 which we expect

will be the behavior in the common case. This
happens because reference count updates and
freeing entries can be delayed until the end of
a transaction which reduces the total amount
of work to be performed. The results also
show that performing reference count management
operations in the background reduces the overhead.
Table 1 shows the reference counting overhead

relative to the total traversal time. This table
shows best case and worst case overhead for each
traversal. The best case corresponds to Con�gu-

ration 1 with overlapping and the worst case cor-
responds to Con�guration 2 without overlapping.
The important fact to retain is that the overhead
is low; it is lower than 8% in the worst case, lower
than 4% in the best case, and we expect most
traversals to fall in the best case.

T1 T2b R2b

Worst Case 6% 8% 8%
Best Case 3% 4% 3%

Table 1: Reference Counting Overhead Relative to
Total Traversal Time

5 Conclusion

In a companion paper [4], we introduced a novel
cache management technique, Hac, and showed
that it outperforms other techniques across a wide
range of cache sizes and workloads. This report's
main contribution is a detailed description of lazy
reference counting; a technique that solves a spe-
ci�c problem inHac: how to discard indirection ta-
ble entries in an indirect pointer swizzling scheme.
This report also shows that lazy reference count-
ing has a low cost because it reduces the amount
of reference count management work and performs
a signi�cant portion of this work in the background
while waiting for the replies to fetch and commit
requests.

References

[1] A. Adya, R. Gruber, B. Liskov, and U. Mahesh-
wari. E�cient optimistic concurrency control us-
ing loosely synchronized clocks. In Proceedings of

the SIGMOD International Conference on Man-

agement of Data, pages 23{34. ACM Press, May
1995.

8

I I I I 

--



[2] M. Carey et al. The EXODUS extensible DBMS
project: An overview. In Readings in Object-

Oriented Database Systems, pages 474{499. Mor-
gan Kaufmann, 1990.

[3] M. J. Carey, D. J. DeWitt, and J. F. Naughton.
The OO7 bench-
mark. Technical Report; Revised Version dated
7/21/1994 1140, University of Wisconsin-Madison,
1994. At ftp://ftp.cs.wisc.edu/OO7.

[4] Miguel Castro, Atul Adya, Barbara Liskov, and
Andrew C. Myers. HAC: Hybrid Adaptive Caching
for Distributed Storage Systems. In 16th ACM

Symp. on Operating System Principles, Saint-
Malo, France, October 1997.

[5] G. Collins. A method for overlapping and erasure
of lists. Communications of the ACM, 2(12),
December 1960.

[6] L. Deutsch and D Bobrow. An e�cient, incremen-
tal, automatic garbage collector. Communications

of the ACM, 19(9), October 1976.

[7] R. Gruber. Optimism vs. Locking: A Study of Con-

currency Control for Client-Server Object-Oriented

Databases. PhD thesis, M.I.T., Cambridge, MA,
1997.

[8] Barbara Liskov, Atul Adya, Miguel Castro, Mark
Day, Sanjay Ghemawat, Robert Gruber, Umesh
Maheshwari, Andrew C. Myers, and Liuba Shrira.
Safe and e�cient sharing of persistent objects
in Thor. In Proc. SIGMOD Int'l Conf. on

Management of Data, pages 318{329, June 1996.

[9] Barbara Liskov, Dorothy Curtis, Mark Day, San-
jay Ghemawat, Robert Gruber, Paul Johnson,
and Andrew C. Myers. Theta Reference Man-

ual. Programming Methodology Group Memo 88,
MIT Laboratory for Computer Science, Cam-
bridge, MA, February 1994. Available at
http://www.pmg.lcs.mit.edu/papers/thetaref/.

[10] J. Eliot B. Moss. Working with persistent objects:
To swizzle or not to swizzle. IEEE Transactions

on Software Engineering, 18(3), August 1992.

[11] Kaehler T. and Krasner G. LOOM|Large Object-

Oriented Memory for Smalltalk-80 Systems, pages
298{307. Morgan Kaufmann Publishers, Inc., San
Mateo, CA, 1990.

[12] S. J. White and D. J. Dewitt. Quickstore: A high
performance mapped object store. In SIGMOD

'94, pages 187{198, 1994.

[13] Seth J. White and David J. Dewitt. A perfor-
mance study of alternative object faulting and
pointer swizzling strategies. In Proceedings of

the Eighteenth International Conference on Very

Large Data Bases, pages 419{431, Vancouver, BC,
Canada, 1992.

[14] P. Wilson. Uniprocessor garbage collection tech-
niques. ACM Computing Surveys, 1996.

9


