The Sensitivity of Communication Mechanisms
to Bandwidth and Latency

Frederic T. Chongf, Rajeev Barua*, Fredrik Dahlgreni, John D. Kubiatowicz*, and Anant Agarwal*

*Massachusetts Institute of Technology

tUniversity of California at Davis

{Chalmers University

Contact: chong@cs.ucdavis.edu

Abstract

The goal of this paper is to gain insight into the
relative performance of communication mecha-
nisms as bisection bandwidth and network la-
tency vary. We compare shared memory with
and without prefetching, message passing with
interrupts and with polling, and bulk transfer
via DMA. We present two sets of experiments
involving four irregular applications on the MIT
Alewife multiprocessor. First, we introduce I/O
cross-traffic to vary bisection bandwidth. Sec-
ond, we change processor clock speeds to vary
relative network latency.

We establish a framework from which to un-
derstand a range of results. On Alewife, shared
memory provides good performance, even on
producer-consumer applications with little data-
reuse. On machines with lower bisection band-
width and higher network latency, however,
message-passing mechanisms become important.
In particular, the high communication volume
of shared memory threatens to become difficult
to support on future machines without expen-
sive, high-dimensional networks. Furthermore,
the round-trip nature of shared memory may not
be able to tolerate the latencies of future net-
works.

Keywords: shared-memory, message-passing,
bandwidth, latency, multiprocessor

1 Introduction

Shared memory and message passing offer two
different mechanisms for communication on dis-
tributed memory multiprocessors. Each mecha-
nism has further variants such as shared memory
with prefetching, message passing using polling,
interrupts, and bulk data transfer. Because the

effectiveness of communication mechanisms and
their use by parallel applications has a first-order
effect on the performance of parallel applications,
much research in the past decade has focused on
their implementation and evaluation. We now
understand to a much greater extent than before
the implementation tradeoffs. Many research and
commercial machines also sport various combi-
nations of mechanisms. For example, machines
such as the BBN Butterfly have long supported
shared memory and bulk transfer, the Cray T3E
[43] supports both shared memory and messag-
ing styles of communication, the Stanford Dash
[28] supports shared memory and prefetching,
MIT Alewife [1], Fugu [30], and the Wisconsin
Typhoon [38] support several variants of shared
memory and messaging styles.

The availability of machines with multiple
mechanisms has led to an increasing amount of
insight on the effectiveness of the various mech-
anisms for different applications [8] [15] [44] [46]
[21] [10]. Message passing mechanisms, usually
in the form of user-level active messages and
efficient bulk-transfer of data, offer good per-
formance on programs with known communica-
tion patterns since data can be communicated
when produced rather than when requested by
the program, thereby allowing the program to
hide communication latency with useful compu-
tation. Messaging also allows combining synchro-
nization with data transfer, and provides sup-
port for fast message-passing based synchroniza-
tion libraries. However, it suffers from higher
overhead for fine-grained data transfers. Bulk
transfers, in turn, often requires expensive copy-
ing to and from buffers when transfer data is not
consecutive. Cache-coherent shared memory pro-
vides efficient fine-grained (cache-line sized) data
transfer and re-use of remote data using auto-

matic caching, but suffers significant overhead
when shared data is frequently modified on dif-
ferent processors, rendering caching ineffective,
and causing a large amount of cache-coherency
related invalidations and updates.

Most of the available insight on the rela-
tive performance of communication mechanisms,
however, is specific to a given machine or a given
application. Furthermore, because of the diffi-
culty of porting applications and building ma-
chines, simulators, or emulators with many mech-
anisms, relative comparisons are often available
only for a subset of the mechanisms. Because
the relative effectiveness of communication mech-
anisms is also tied to basic machine parameters
such as available bandwidth and latency, not sur-
prisingly, various studies offer differing conclu-
sions on the relative effectiveness of the mech-
anisms on the same application. For example,
the simulation study of Chandra, Rogers, and
Larus [8] using a basic machine model similar to
the CM5 found that message passing EM3D per-
formed roughly a factor of two better than the
shared memory version. The two mechanisms
were more or less indistinguishable on Alewife for
the same application. Consequently, more gen-
eral insights on the relative merits of the mecha-
nisms have been elusive.

1.1 Objective

The goal of this paper is to provide insight into
the relative effectiveness of various communica-
tion mechanisms for several applications over a
modest range of communication latencies and
bandwidth. The results are obtained with real
applications on a real machine, whose parame-
ters are varied through carefully designed scaling
experiments. In a sense, we are using the ma-
chine as an emulator for other hypothetical ma-
chines. In particular, we analyze the impact of
communication mechanisms on performance by
evaluating four programs that are written using
a variety of programming techniques on the MIT
Alewife machine with 32 processors. The pro-
gramming styles include shared memory with and
without prefetching, message passing with inter-
rupts, with polling, and with bulk transfer via
DMA. To help explain the relative performance
of various mechanisms, we also present the break-
downs of the relevant constituent components for
each communication mechanism.

Our sensitivity experiments attempt to cap-
ture the communication performance of applica-

tions on machines with different design points,
such as machines with different processor speeds,
network latencies, and network bandwidth. We
change processor clock speeds keeping the net-
work latency constant to understand the effect of
network latency. We also use context-switching
and delay loops to study the relative effect of
varying communication latency even further. We
emulate machines with different bisection band-
width by introducing cross-traffic from IO nodes
to vary bisection bandwidth. This experiment
also provides insights on how applications behave
in multiprogrammed systems with background
traffic from other applications.

Although several of these mechanisms have
been studied in isolation, such as a comparison of
shared memory and message passing barriers in
terms of speeds of the barriers themselves, and
a simulation-based study on the impact of in-
tegrating bulk transfer in cache-coherent multi-
processors (see Section 6 for details), this paper
is the first to study real, hardware-based, effi-
cient implementations of all these communication
mechanisms on real applications in exactly the
same framework. The sensitivity study in this
paper also helps relate previous results presented
by other researchers for specific design points,
and also provides insights into the relative perfor-
mance of communication mechanisms for other
machine design points.

1.2 Preview

Our results confirm that the relative performance
of several parallel communication mechanisms
can be highly dependent upon machine param-
eters. For example, we find that shared memory
performance is sensitive to the ratio of network
bisection bandwidth and processor speed, while
message passing performance is largely insensi-
tive. This result is important because this sensi-
tivity occurs in the range of ratios of network bi-
section and processor speeds exhibited by several
extant research and commercial machines. For
EM3D, this sensitivity results in the performance
of shared memory varying by about 30 percent;
for high ratios both shared memory and message
passing have roughly equal performance, while
that of shared memory degrades by 30 percent
when the ratio is reduced by 60 percent.

In general, we find that shared memory of-
fers better or comparable performance to mes-
sage passing for machine parameters in the range
of contemporary machines. The performance of

Congestion
Dominated

I I
| |
| |
| Latency
| Dominated | Latency
| ‘ Hiding
|

|

‘ !

Message : |

|

.

|

Application Runtime

Congestion
Dominated
; Latency

Hiding

|
-

Latency

|
|
|
1 Dominated

Bisection Bandwidth

Figure 1: Regions of performance in processor
cycles as bisection bandwidth varies

A
Message
Passing
|
|
|
Latency L aten
P | cy
Hiding | Dominated
[}
£ [
= |
S
o \/r
=4
2
g
g
< Shared
Memory aqgnegry
w/ Prefetch
T
Latency | Latency
Hiding = Dominated
Network Latency

Figure 2: Regions of performance in processor
cycles as network latency varies

message passing, on the other hand, is more ro-
bust to variations in the ratios of processor to
network latencies and bandwidth. Although pref-
erence of programming styles might be the ulti-
mate factor, messaging works well even on ma-
chines with lower bisections and higher latencies,
and thus might be the mechanism of choice for
low-cost machines.

The rest of the paper is as follows. Section 2
begins with some intuition about how we expect
communication mechanisms to be affected by
bandwidth and latency. Section 3 describes the
hardware platform used in this study and the par-
allel communication mechanisms studied. While
Section 4 discusses the four applications and the
results obtained on them on the unaffected MIT
Alewife multiprocessor, Section 5 makes a para-
metric comparison which varies bandwidth and
latency. Section 6 relates our results to previous
work, while section 7 concludes.

2 The Impact of Program-
ming Model on Perfor-
mance

We would like to begin this study by develop-
ing an intuition about how various communi-
cation mechanisms (and their concomitant pro-
gramming models) are affected by variations in
network bandwidth and latency. In the next sec-
tion, we will spend time discussing the experi-
mental platform and communication mechanisms
explored for this study. For now, however, we
consider shared memory and message passing in

general terms.

In this paper, “shared memory” refers to the
presence of hardware which automatically trans-
lates load or store instructions to shared data into
messages which fetch this data. As an artifact of
the communication model, shared-memory ref-
erences typically incur round-trips latencies in
the network. Prefetching provides one standard
technique for tolerating network latency: it in-
creases performance by requesting data before it
is needed, thereby overlapping computation and
communication. Another technique for tolerat-
ing network latency is to use a relaxed mem-
ory consistency model such as release consistency,
which allows a node to have multiple pending
memory accesses and to overlap the memory ac-
cesses with computation. That is generally not
allowed by sequential consistency, which is the
most intuitive memory model for the program-
mer. Many shared-memory implementations also
permit caching of shared data; this has the effect
of depressing the overall volume of communica-
tion for applications which exhibit sufficient lo-
cality.

“Message passing” refers to communication
which is asynchronous and wunacknowledged.
Message-passing applications communicate by
interactions with the network interface (or op-
erating system). To send a message, these ap-
plications must first construct, then launch the
message. At the receiver, messages are extracted
from the network interface either by a polling
thread or an interrupt handler. Note that, in con-
trast to shared memory, message-passing commu-
nication requires only a single pass through the

network. Also, in contrast to shared memory,
message passing exhibits higher communication
overhead, since messages must be constructed ex-
plicitly in software.

2.1 Variations of Bisection Band-
width

Figure 1 illustrates how we expect the perfor-
mance of communication mechanisms to scale on
our applications as bisection bandwidth varies
with respect to processor speed. The Shared
Memory curve is indicative of performance for
applications either with or without prefetching.
The Message Passing curve is indicative of appli-
cations using interrupts, polling, or bulk transfer.
Because shared memory consumes more band-
width than message passing, we expect its per-
formance to degrade more quickly. We see three
possible regions of performance:

Latency Hiding In this region, decreases in
bisection bandwidth are hidden by low communi-
cation volume or parallel slackness in the compu-
tation. That is, the application always does use-
ful computation while waiting for communication
to travel through the network. Consequently, ap-
plication performance is unaffected by increasing
network latencies in this region.

Latency Dominated In this region, decreases
in bisection results in higher communication la-
tency which can not be hidden with useful com-
putation. In message-passing communication,
this may happen because there is too much la-
tency and not enough parallel work. In shared-
memory based on sequential consistency, latency
can often not be hidden because the processor is
stalled upon a reference to data that is not in
the cache. In an invalidation protocol, the pro-
cessor must wait for at least one roundtrip set of
messages for any reference.

Congestion Dominated In this region, con-
gestion in the network accounts for more of the
degradation in performance than the linear de-
crease in bisection bandwidth on the X-axis.
As bandwidth decreases, messages stay in the
network longer and congestion increases non-
linearly. We expect the Congestion Dominated
region to occur earlier in shared memory because,
as we shall see in the next section, it requires up
to siz times as much communication volume as
message-passing on the same application.

2.2 Variations in Latency

We also expect our mechanisms to tolerate net-
work latency differently. This is illustrated in
Figure 2. Once again, we see regions where la-
tency is hidden and where it is not. The one-
way nature of message passing allows for the
best latency hiding. Latency only becomes an
issue when lack of parallelism in the applica-
tion causes waiting for message results. Under
sequential consistency, shared memory does not
hide latency without prefetching. Furthermore,
prefetching hides latency less well than message
passing, depending upon the user or compiler
to predict future references. Because message
passing and prefetching can have some number
of outstanding requests, the slope of their per-
formance degradation is shallower than that for
shared memory without prefetching.

3 Experimental Platform

In this study, we made use of the MIT Alewife
machine[l]. Alewife provides a unique oppor-
tunity to explore the behavior of a number of
different communication mechanisms in a single
hardware environment. In the following, we first
discuss the Alewife architecture, then proceed to
describe the communication mechanisms that we
used in the rest of the paper.

3.1 The Alewife Multiprocessor

Figure 3 shows an overview of the architecture.
The nodes in an Alewife machine can communi-
cate via either shared memory or message pass-
ing. Each node consists of a Sparcle processor
(a modified SPARC), a floating point unit, 64K
bytes of direct-mapped cache with a line size of
16 bytes, 8M bytes of DRAM, an Elko-series 2D-
mesh routing chip (EMRC) from Caltech, and
a custom-designed Communication and Memory
Management Unit (CMMU). This paper uses a
32-node version of the Alewife machine with a
20MHz Sparcle processor and EMRC network
routers operating with a per-link bandwidth of
40M bytes/second.

As shown in Figure 3, the single-chip CMMU
is the heart of an Alewife node. It is responsi-
ble for coordinating message passing and shared
memory communication as well as handling more
mundane tasks such as DRAM refresh and con-
trol. It implements Alewife’s scalable LimitLESS

Aewite node Miss Home # Inv. | hw/ Miss Penalty
Type Location Msgs | sw Cycles psec

et local 0 hw 11 0.55

- remote 0 hw 38 1.90

ermory Load | remote (2-party) 1 hw 42 2.10

— remote (3-party) 1 hw 63 3.15

v remote - swt 425 21.25

Private local 0 hw 12 0.60

Memory local 1 hw 40 2.00

remote 0 hw 38 1.90

Store | remote (2-party) 1 hw 43 2.15

remote (3-party) 1 hw 66 3.30

remote 5 hw 84 4.20

remote 6 SW 707 35.35

SCS Disk Array

¥ This sw read time represents the throughput seen by a single node
that invokes LimitLESS handling at a sw-limited rate.

Typical shared memory miss penalties.

Figure 3: The MIT Alewife multiprocessor

cache coherence protocol under sequential con-
sistency, and provides Sparcle with a low-latency
interface to the network. To communicate via
shared-memory, users simply read/write from the
shared address space; the CMMU takes care of
the details of acquiring remote data and caching
the results locally. Similarly, users send and re-
ceive messages by accessing hardware network
queues directly through the CMMU.

To aid experiments, the CMMU contains hard-
ware statistics counters that allow non-intrusive
monitoring of a wide-array of machine parame-
ters and application performance characteristics.
Sample statistics include parameters such as net-
work bandwidth consumption, cache hit ratios,
memory wait time, and breakdowns of network
packet types. Also supported are profiling statis-
tics such as number of cycles spent synchroniz-
ing. Access to statistics is provided through sim-
ple, command-line facilities which are integrated
with the normal Alewife execution environment.

3.2 Communication Mechanisms

Alewife provides an integration of both shared-
memory and message-passing communication
mechanisms. In this study, we employ the follow-
ing communication mechanisms: message pass-
ing with interrupts and polling, bulk transfer
via DMA, and shared memory with and without
prefetching. We will briefly describe how each of
these operates on the Alewife machine.

Message passing with interrupts: For mes-
sage passing, Alewife supports active messages
[14] of the form:

send_am(proc, handler, args...)

which causes a message to be sent to processor
proc, interrupt the processor, and invoke handler
with args. An active message with a null handler,
no body and no arguments, only takes 102 cycles
plus .8 cycles per hop. The Alewife network in-
terface (within the CMMU memory controller)
can hold up to fourteen 32-bit arguments for an
active message.

When a message arrives, the receiving proces-
sor is interrupted and it runs the handler asso-
ciated with the message. This interrupt-driven
approach is the most intuitive notion of active
messages, but processor interrupts can be very
expensive.

Message passing with polling: Active mes-
sages come in two flavors, those received via in-
terrupt and those received via polling. In fact, on
systems such as the Thinking Machines CM5 [45],
the expense of interrupts led to the predomi-
nant use of polling. For active-message reception
via polling, the receiving processor is computing
along its main thread of computation, and if mes-
sages arrive they are deferred until the computa-
tion reaches a point where the user or compiler
has explicitly inserted a polling call in the code.
We use the Remote Queues abstraction [5], which
supports polling with selective interrupts for sys-
tem messages.

Bulk transfer: Bulk transfer is accomplished
in Alewife by adding (address, length) pairs that
describe blocks of data to the end of an active
message. The CMMU uses a DMA mechanism
to append this data to the outgoing message, af-
ter the handler arguments. On the receive side,
the handler is invoked with its arguments and
may either direct the CMMU to store the data to
memory via DMA or consume the data directly
from the network interface.

Shared Memory: Alewife provides hardware-
based, sequentially-consistent shared memory,
using the LimitLESS cache-coherence protocol.
The LimitLESS hardware directly tracks up to
five copies of data, trapping into software for data
items that are more widely shared. A shared-
memory read miss handled in hardware takes 42
or 63 processor cycles depending on whether the
block is dirty or clean, plus 1.6 cycles per hop in
the network to the processor where the data re-
sides. The table in Figure 3 summarizes shared
memory costs on Alewife.

Shared Memory with Prefetching: As a
means to tolerate memory latency, Alewife sup-
ports non-binding software prefetch of both read-
shared and read-exclusive data through special
prefetch instructions. These instructions take an
address and check to see if data for this address
is present on the local node; if not, they initiate a
transaction to fetch this data into a local prefetch
buffer but do not wait for data to return. Later
references to the data will transfer it from the
prefetch buffer into the cache.

4 Alewife-Specific Results

In this section, we describe our applications and
their performance on Alewife. This will give us a
starting point from which to vary bandwidth and
latency in Section 5. Figure 4 summarizes the
performance of each communication mechanism
on each of our four applications. Execution time
is broken down into four components:

1. Synchronization time, which includes time
spent in barriers, acquiring locks, and spin-
waiting on synchronization variables.

2. Message Overhead, which includes processor
overhead to send messages and receive mes-
sages, either via interrupts or polling. For

synch
= message overhead
memory + NI wait

K1 compute
g 15 | . |
2 10
=1 NN NN S
5 N N N
0 R
int-mp poll-mp bulk sm pre-sm
EM3D
1000
% 800
S 600 [| q .
S 00 S § § S N
200
7 N N N
int-mp poll-mp bulk sm pre-ssm
UNSTRUC
g]
8 6+
(&) 4
>
Q 4] i .
2 - N N N N
0- s

int-mp poll-mp bulk sm pre-sm
ICCG
1500
| | |
:21000 Q Q Q Q Q
fol NN Y
L N N N NN

int-mp poll-mp bulk sm

MOLDYN

Figure 4: Summary of Performance on Alewife

bulk transfer, this time also includes gather-
scatter copying time.

3. Memory + NI Wait time, which includes
all time the processor is stalled waiting
for cache misses and network interface re-
sources. For shared memory, this time in-
cludes remote misses. For message passing,
this time includes waiting for space in net-
work input queues.

4. Compute time, the time the processor spends
computing. Note that “useful work” would
include both compute time and a portion of
memory time.

Overall, we see that shared memory mecha-
nisms performed well, even though our irreg-
ular computations have little data re-use and
are data-driven. This is primarily because of
the low remote-miss penalty on Alewife (recall
Figure 3), which makes shared memory a data-
transfer mechanism competitive with message
passing.

Prefetching, however, only achieves significant
gains on one of the four applications, EM3D.
This is because EM3D has a lower computation
to communication ratio than the others, mani-
fested as a small inner loop with communication
in every iteration. While UNSTRUC and MOLDYN
also show benefits on prefetching, the benefits
are small, as they have higher computation to
communication ratios. In the case of 1CCG, the
low ratio of remote data causes most prefetches
to be useless, and add overhead, thus slowing
down the prefetching version. It may be noted
that programs in which we statically can predict
which references are remote perform better under
prefetching, as useless local prefetches are elimi-
nated. A runtime check for remoteness is just as
expensive as a useless prefetch, and hence is not
performed.

Bulk transfer fails to achieve a significant ad-
vantage on any application. The irregularity
of the applications makes gather-scatter copying
costs and idle time a significant factor. Gather-
scatter costs can be as high as 60 cycles per 16-
byte cache line of data. With shared-memory and
message-passing overheads as low as 100 cycles,
bulk transfer shows little gain on Alewife.

On applications with high messaging overhead,
polling worked well versus message-passing with
interrupts. On ICCG, in particular, frequent
asynchronous message interrupts produced un-
even processor progress and high synchronization

times. We also observe this effect, to a lesser de-
gree, on EM3D and UNSTRUC.

The remainder of this section provides brief ap-
plication descriptions and more detail on perfor-
mance results.

4.1 EM3D

EM3D is a small benchmark code originally de-
veloped at UC Berkeley to exercise the Split-
C parallel language [11]. It models the propa-
gation of electromagnetic waves through three-
dimensional objects using algorithms described
in [31].

EM3D operates on an irregular bipartite graph
which consists of E nodes on one side, represent-
ing electric field value at that point, and H nodes
on the other, representing magnetic field value
at that point. Each iteration consists of two
phases, representing updates on the E nodes, and
then the H nodes. In each phase, the nodes need
the values of their neighboring nodes to calculate
new values. This involves propagating old val-
ues along edges of the graph and calculating new
values at each node using those values. When
edges are between nodes on two different proces-
sors, communication must occur. In contrast to
ICCG, described later, the graph is undirected
and updates are independent within each of the
two phases. The code is barrier-synchronized be-
tween iterations and phases.

We started with shared-memory and CM-5
bulk-transfer codes from the University of Wis-
consin at Madison [8]. The interrupt and polling
message-passing versions were developed from
the bulk-transfer code, which was itself first
adapted to Alewife. Program parameters were:
10000 nodes, degree 10, 20 percent non-local
edges, span of 3, and 50 iterations.

4.1.1 ©EM3D with Message Passing

For simplicity and efficiency, our message pass-
ing implementations perform a communications
step before computing in each phase. This step
makes sure that all non-local data necessary for
the subsequent computation is available before
any computation starts.

Pre-communicating all the data simplifies the
computation step. It requires, however, that
non-local data be stored in buffers until they
are needed in the computation. Berkeley Split-
C study [11] calls these buffered copies “ghost

nodes,” and they are equivalent to software man-
aged cache.

Our fine-grained message-passing implementa-
tions communicate values of these ghost nodes
five double-words at a time. Each double-word
represents the value of one remote node to be
copied into a ghost node. Values are sent with
an active message indicating which specific node
handler that will take care of the values at the
destination node.

Calls to active message sends perform indirect
references to irregular data, effectively perform-
ing a gather into the network send queue. Upon
reception, the message causes the node handler to
be executed and write the values into the ghost
nodes, and the computation is preprocessed to
use the values in that block in-place.

Our bulk-transfer implementation explicitly
copies, or gathers the nodes into a contiguous
buffer for subsequent DMA transfer. This copy-
ing cost can degrade performance. The undi-
rected graph of EM3D, however, allows for large
enough DMA transfers to cover this cost. Once
the data arrives, preprocessing of the graph al-
lows it to be used in-place. This preprocessing
code, however, is extremely complex and repre-
sents high coding effort.

The computation for updating each node in-
volves 2 double-precision floating point opera-
tions (FLOPs) for each edge incident to the node:
a multiply of a coefficient and a value, and a ad-
dition to accumulate the result with the node’s
value.

4.1.2 ©EM3D with Shared Memory

The shared memory implementation of EM3D
is much simpler because no pre-communication
step is required. This eliminates communica-
tion and buffer-management code. More impor-
tantly, significant graph preprocessing code is
eliminated. The remaining code just computes
each phase, using simple memory references to
graph structures, and all non-local data is com-
municated via the shared memory protocol. Bar-
riers provide synchronization between phases and
iterations.

Prefetching was inserted as follows. A write-
prefetch is issued to get write-ownership of a node
just before the computation for that node begins.
This overlaps the computation to update a node
with writing the result to the node. The write
requires invalidating the copies cached in proces-
sors containing neighbors to that node.

Read prefetches were inserted to fetch 2 edge-
values two edge-computations (4 FLOPs) ahead.
That is, we fetch values for the (i + 2)-the and
(¢ 4+ 1)-th edges while updating a node with edge
i. Inserting these prefetches was straightforward,
requiring only 3 lines of code.

4.1.3 EM3D Performance

For EM3D, the results in figure 4 show that
for Alewife, shared-memory performs competi-
tively to message-passing. Bulk-transfer gains
from lower overheads of DMA transfer, but pays
the costs of message aggregation and software
caching. The fine grained versions suffer from
higher message overhead, which offset the bene-
fits from avoiding copying for message aggrega-
tion.

EM3D is our only application which benefits
significantly from prefetching. As explained ear-
lier in this section, this stems from its low ratio of
computation to communication, making its com-
munication time gains more significant.

4.2 UNSTRUC

UNSTRUC [35] simulates fluid flows over three-
dimensional physical objects, represented by an
unstructured mesh. The code operates upon
nodes, edges between nodes, and faces that con-
nect three or four nodes. We used MESH2K as an
input dataset, a 2000 node irregular mesh pro-
vided with the code.

The shared-memory versions obtained were
optimized for data distribution and privatiza-
tion. The message-passing versions were devel-
oped from the shared-memory versions.

Similar to EM3D, UNSTRUC computes upon an
undirected graph. EM3D, however, uses an im-
plicit red-black computation on a bipartite graph,
so buffering between iterations is not necessary
for shared-memory implementations. UNSTRUC,
more typical of graph computations, computes
upon every node of the graph every iteration.
This means that old values must be buffered so
that the current iteration does not modify them
before they are no longer needed. This buffering
is necessary in all our implementations and thus
makes implementation effort more even between
shared-memory and message-passing versions.

UNSTRUC performs significantly more compu-
tation per edge of its graph than either EM3D
or 1IcCG. Every edge of the graph results in
75 single-precision FLOPs of computation, com-

puting, 3 single-precision results for each node.
The high FLOPs per edge makes good perfor-
mance likely, because of a high computation-to-
communication ratio.

4.2.1 UNSTRUC with Message Passing

The fine-grained message-passing implementa-
tion uses active messages to both read and write
remote values while computing values for an
edge. A remote read is needed to fetch a non-
local node value to compute results associated
with an edge. Reads are done prior to the com-
putation phase rather than on request, leverag-
ing on the known communication patterns, thus
avoiding round trips needed for a read-on-request
model. Remote writes are used during the com-
putation phase, to write the results back to re-
mote nodes as soon as produced.

The bulk transfer implementation of UNSTRUC
also uses remote reads and writes, except of entire
arrays of node values instead of individual node
values. Gather and scatter steps are necessary
to copy node values into the contiguous arrays
used for bulk transfer. The active messages are
the same as for the fine-grained implementation,
except that, instead of individual node values,
an array of values is transfered via DMA. The
values are used in-place once the data arrives at
its destination buffer.

4.2.2 UNSTRUC with Shared Memory

The shared-memory implementation is essen-
tially the same as the fine-grained message-
passing implementation, which basically simu-
lates shared memory. As mentioned before,
buffering node values was necessary to isolate val-
ues between iterations. However, the message-
passing codes required buffering the receive mes-
sage data. This extra buffering is not needed
in the shared memory implementation, since re-
mote values are stored in cache. This results in
moderate savings in buffer management code and
memory usage.

Our prefetching implementation inserts two
write prefetches, two edge-computations ahead,
to get write ownership of upcoming node values.
Once again, prefetching required only minor code
modifications.

4.2.3 UNSTRUC Performance

We note that the shared memory implementa-
tions do not perform better than message-passing

despite their avoidance of message aggregation
and extra buffering. This is primarily because
they incur locking overhead while protecting up-
dates to shared node data. Message passing
avoids locking as the non-interruptible nature
of handlers automatically provides mutual exclu-
sion of writes.

Compared to bulk-transfer, the fine-grained
versions avoid message aggregation overhead, but
have higher message handling overheads. The
lower per-message overhead of the polling ver-
sion allows it to outperform the interrupt based
version.

4.3 1CCG

ICCG is a general iterative sparse matrix solver
using conjugate gradient preconditioned with an
incomplete Cholesky factorization. When run on
irregular datasets, ICCG is one of the most chal-
lenging and fine-grained applications in the lit-
erature. Similar to EM3D and UNSTRUC, ICCG
performs a graph computation. Each node of
the graph represents the solution (by substitu-
tion) for an unknown in a sparse linear system.
1cCG is different, however, in that its computa-
tion graph is a directed acyclic graph rather than
an undirected graph. This means that commu-
nication and computation can not be easily bro-
ken up into separate phases. Instead, each graph
node must wait for all of its incoming edges to be
communicated, perform a 2 FLOP computation
(subtract and multiply) for each edge, and then
communicate data along its outgoing edges.

We measure the performance of the 1cca
sparse triangular solve kernel running on a large
structural finite-element matrix, the BCSSTK32
2-million element automobile chassis, obtained
from the Harwell-Boeing benchmark suite [12].

We started from existing parallel 1CcCG algo-
rithms [20] [41] and implemented an interrupt
message-passing version. The remaining four ver-
sions were all derived from the initial message-
passing code. Implementation details are avail-
able in [9].

4.3.1 1ccG with Message Passing

The 1CCG computation graph is essentially a
dataflow computation [3] and is easily imple-
mented via active messages. Non-local edges, i.e.
edges between nodes on different processors, are
communicated with active messages. Each pro-
cessor keeps a presence counter per local node

to keep track of how many incoming edges have
been satisfied for each node in its local memory.
Once all incoming edges for a node have been
satisfied, the outgoing edges can be processed.

Bulk transfer is also straightforward. We
buffer up multiple non-local edges into buffers in
memory, one buffer for each processor that edges
are destined for. Unfortunately, this buffering
incurs significant cost in memory operations and
idle time.

4.3.2 1ccG with Shared Memory

The use of shared memory is somewhat less ob-
vious for this computation. The problem with
shared memory is that processor 0 can perform
a remote write to shared memory on processor 4
to communicate value v, but there is no synchro-
nization event that tells processor 4 to subtract
v from x4. We can avoid this problem by adopt-
ing a producer-computes model, which specifies
that the producer of the edge value, processor
0, compute the subtraction via a remote read-
modify-write using shared memory. In fact, we
keep a node’s presence counter in the same cache
line with its value, so that a single remote read-
modify-write can be used to compute the node’s
value and decrement its counter. We also use a
spin-lock per node to enforce atomicity. Gener-
ally, up to four messages are required for every
non-local edge: a write ownership request to the
home node, an invalidate to the previous writer,
a cache-line transfer from the previous writer to
the home node, and a cache-line transfer from the
home node to the current writer. Additional mes-
sages may also be required to successfully acquire
the spin lock. On Alewife, the lock request can be
piggy-backed on the write ownership request. For
prefetching, two write prefetches were inserted
two nodes ahead of our computation loop.

4.3.3 1¢cG Performance

1ccG shows the largest improvement from mes-
sage passing with interrupts to polling. The low
computation-to-communication ratio of ICCG re-
sults in a large number of messages, which makes
interrupt overhead significant. Polling cuts this
overhead by about 35 percent. More importantly,
interrupts cause dramatically more synchroniza-
tion time than polling. Asynchronous interrupts
can cause some processors to fall behind in the
computation, causing long idle times in others [6].
Progress is more important to ICCG than the

10

other applications because of the data dependen-
cies in its DAG computation. Polling provides
greater control of message reception and compu-
tation progress, which allows for more balance
processor progress in the computation [5]. The
other mechanisms also avoid imbalance. Shared
memory mechanisms do not use interrupts and
are similar to polling. Bulk transfer uses fewer
messages than finer-grained message-passing and
thus few interrupts.

4.4 MOLDYN

MOLDYN is a molecular dynamics application,
and like UNSTRUC, it was developed by the Uni-
versity of Maryland and the University of Wis-
consin at Madison [35]. The molecules are uni-
formly distributed over a cuboidal region with a
Maxwellian distribution of initial velocities. A
molecule’s position is determined by its own ve-
locity and the force employed by other molecules
within a certain cut-off radius. The molecules are
partitioned into groups to minimize the commu-
nication between the groups, which is done with
the RCB algorithm from [4]. These groups of
molecules are then allocated on the nodes.

Instead of relating each molecule to every other
at each iteration of the application, a list of po-
tentially interacting molecule-pairs is created ev-
ery 20 iterations based on twice the cut-off radius.
The most important data structures are the list
of interactions and the lists of coordinates, forces,
and velocities of each molecule in three dimen-
sions. The list of interactions is built every 20 it-
erations and is local to the nodes. The velocities
are local to each processor, the coordinations are
written by the local processor and read by other
processors, and the forces are updated by both
local and remote processors. These data struc-
tures are distributed among the nodes according
to the result of the RCB algorithm.

4.4.1 MOLDYN with Message Passing

The bulk-transfer implementation sends all the
local molecules to the remote node. The remote
node thereafter does the calculations of all in-
teractions between the two nodes, collects force-
deltas to each molecule for all interactions, and
then returns them in a bulk transfer. We tried
a fine-grained implementation which interleaves
communication and computation, but we found
that the message handlers tied up network re-
sources for too long and caused network conges-

tion. Instead, we implemented a communica-
tion phase similar to bulk transfer, attempting
to overlap sending and receiving of messages.

4.4.2 MOLDYN with Shared Memory

The shared-memory version is a straight-forward
implementation, where each node reads all inter-
acting molecules’ coordinations, and calculates
force-deltas. Thereafter, the local node updates
the forces of its own molecules based on force-
deltas from other nodes.

Prefetching was inserted as follows. For writes
to remote force-delta locations, those locations
were write-prefetched to gain exclusive write
ownership, one iteration prior to when they were
actually written. Remote coordinates were simi-
larly read-prefetched one iteration prior to use.

4.4.3 MOLDYN Performance

The high computation-to-communication ratio of
MOLDYN tends to mask differences in our imple-
mentations. An interesting point, however, is
that Alewife’s message-passing mechanisms had
some difficulty on the application. Interrupts
had trouble receiving messages quickly enough
to avoid network congestion. Polling was also
difficult to implement. Although polling often
worked well, bursty traffic forces us to be conser-
vative when inserting polling calls.

The shared memory versions used locks to pro-
tect writes to shared data just like UNSTRUC.
However, the locks performed much better here,
because of lower contention. The prefetching ver-
sion did only about one percent better, despite
static knowledge of remote data, because com-
putation was dominant in MOLDYN.

5 Parametric Experiments

The previous section has presented detailed com-
parisons of communication mechanisms on the
Alewife multiprocessor. To the extent that
Alewife is a “balanced” architecture indicative
of future trends, our comparisons are interest-
ing. In general, however, the relative perfor-
mance of shared memory and message passing
are dependent upon the relative speeds of pro-
cessors, memory systems, network interfaces, and
network switches in a particular multiprocessor
design. In Section 2, we developed an intuition
about how multiprocessor communication mech-
anism scale with network bandwidth and latency.

11

This intuition centered around Figures 1 and 2.
As a goal of the current section, we would like
to explore the space of these figures by actually
measuring the variation in performance for dif-
ferent versions of our applications as a function
of network parameters.

To this end, we present three sets of exper-
iments on the Alewife machine to investigate
scaling of communication performance. First,
we examine the variations in communication vol-
ume produced by different communication mech-
anisms. Second, we vary network bandwidth by
introducing cross traffic to simulate reduced net-
work bandwidth and increased congestion. Fi-
nally, we vary network latency by altering the
clock speed of the processing nodes to change the
relative latency of the network.

Before we begin, however, we might ask the fol-
lowing question: Why do different research stud-
ies report contradictory results when comparing
communication mechanisms? As shown in Ta-
ble 1, the answer is that machines have widely
differing parameters, thereby inhabiting vastly
different regions of the communications perfor-
mance space.

5.1 Communication Volume

As a first step toward exploring the performance
space, we measure a key statistic: communi-
cation volume. Communication volume is the
amount of data injected into the network over the
course of an execution. Figure 5 shows the av-
erage communication volume for each version of
each of our applications. Although shared mem-
ory provides the most performance for the coding
effort, it also causes a significantly higher strain
on network bandwidth than message passing or
bulk transfer. That increase in communication
volume, however, would be lower for systems with
alarger cache line size for most applications. Fig-
ure 5 further breaks the communication volume
into the following four components:

1. Invalidates — all traffic associated with inval-

idating cached copies of remote data.
Requests — read, write, and modify requests.

Headers (for data) — all message headers for
message passing; message headers for cache-
line transfers for shared memory.

Data — message-passing payload and shared-
memory cache lines.

Machine Proc | Topology Bisection Bandwidth | Network | Remote Local Refs
(32 Processors) MHz Mbytes/s bytes/ | Latency Miss Miss
cycle Latency | Latency
MIT Alewife 20.0 | 4 x 8 Mesh 360 18.0 15 50 11 [1]
TMC CM5 33.0 | 4-ary Fat-Tree 640 19.4 50 N/A 16 || [45][27]
KSR-2 20.0 | Ring 1000 50.0 ? 126 18 [7]
MIT J-Machine 12.5 | 4 x 4 x 2 Mesh 3200 256.0 7 N/A 7 || [36]
MIT M-Machine #100.0 | 4 x 4 X 2 Mesh 12800 128.0 10 154 21 [16][23]
Intel Delta 40.0 | 4 x 8 Mesh 216 5.4 15 N/A 10 || [13] [34]
Intel Paragon 50.0 | 4 x 8 Mesh 2800 56.0 12 N/A 10 || [22] [34]
Stanford DASH 33.0 | 2x4 480 14.5 31 120 30 [28]
4-proc clusters
Stanford FLASH *200.0 | 4 x 8 Mesh 3200 16.0 62 352 40 [19]
Wisconsin T0 #200.0 | none simulated N/A N/A 200 1461 40 || [39][37]
Wisconsin T1 #200.0 | none simulated N/A N/A 200 401 40 || [39][37]
Cray T3D 150.0 | 4 x 2 x 2 Torus 4800 32.0 15 100 23 || [40] [2]
2-proc clusters
Cray T3E 300.0 | 4 x 4 x 2 Torus 19200 64.0 110 | 300-600 80 43][42]
SGI Origin 200.0 | Hypercube 10800 54.0 60 150 61 || [25][17]
4-proc clusters

* projected, # simulated, latencies given in processor cycles.

Table 1: Parameter estimates for various 32-processor multiprocessors. Network Latency is for one-
way network transit time of a 24-byte packet. Remote Miss Latency is an average of best- and

worst-case write misses.

Message interrupts and polling produce the
same message volume, since they send the same
messages, but only receive them differently. Bulk
transfer saves on message headers. Note, how-
ever, that bulk transfer for 1ccG loses the sav-
ing in header traffic to padding in the payload.
DMA on Alewife requires double-word align-
ment, which ends up producing a significant ef-
fect on 1¢CcG’s small bulk transfers.

Where message passing uses a single message
to communicate a value along each edge of a
graph problem, shared memory (using an invali-
dation protocol) must use at least four: the writer
must invalidate the reader’s copy, the reader ac-
knowledges the invalidate, the reader later re-
quests a valid copy, and the write responds with
valid copy. Additional messages may be required
if the writer must invalidate cached copies on
more than one reader. Additional traffic is gen-
erated when spin-locks are necessary to enforce
atomic read-modify-writes.

Interestingly, this increased volume does not
impact performance on Alewife. Even when
message-passing traffic causes network conges-
tion to the point of a network overflow software
trap (see Section 3.1), the corresponding shared
memory traffic does not cause congestion. The
key factor is occupancy at the endpoints. Shared
memory pulls messages out of the network much
faster than message passing, resulting in a clearer

12

network even at higher volume. As we shall see
in the next section, however, the effect of low oc-
cupancy can only compensate for network band-
width up to a point.

5.2 Bisection Bandwidth Emula-
tion

In this section, we show that decreasing bisection
bandwidth causes shared memory performance to
degrade more quickly than message passing per-
formance, resulting in a cross-over point when
other Alewife parameters are held constant.

Using background cross-traffic, we emulate
the performance of systems with lower bisection
bandwidth (per processor cycle) than Alewife.
In addition to compute nodes, Alewife has I/O
nodes which can be added in columns at either
side of the 2-dimensional mesh. We use these I/O
nodes to send messages from the edges of the 2D
mesh across the bisection in both directions (see
Figure 6). On a 32-node machine, the network
has 8 nodes in the X-direction and 4 nodes in the
Y-direction. We use 4 I/O nodes on each edge to
send messages off the opposite edge of the mesh.
The messages travel off the edge of the network
without disturbing our applications on any of the
compute nodes.

The bisection of the emulated system is
calculated by taking Alewife’s bisection (18

¥4 invalidates

W requests
headers (for data)
K data
’ /
i g 7
s
=1
N
I\ \
int-mp poll-mp bulk sm pre-sm
EM3D
:
9 40
& 30 .
= 20 N\ §
’ N
0 N\
int-mp poll-mp bulk sm pre-sm
UNSTRUC
o s
g 400
>
m
N
* 200 _ § \
1 N N N
int-mp poll-mp bulk sm pre-ssm
ICCG
20 i
g 15
s
5 \ §
I\ \
int-mp poll-mp bulk sm pre-sm

MOLDYN

Figure 5: Breakdowns of communication volume
for each communication mechanism.

Bisection Bandwidth

/10
Traffic

110
Traffic

AAAA

Yyyvyy

I/Oﬁodes Compute Nodes I/OiNodes

Figure 6: I/O Traffic in Cross-Traffic Experiment

13

194 7 —~—intmp8
——int-mp 16
@ 184 ——int-mp 32
9 ——int-mp 64

O 174 ——pre-sm8
= —pre-sm 16
164 ——pre-sm 32
15 —=—pre-sm 64

5 10 15
Bisection (bytes/Pcycle)
EM3D

Figure 7: Sensitivity to IO-traffic message length.

bytes/Pcycle) and subtracting the amount of
cross traffic sent. The smaller the cross-traffic
messages used, the more accurate our emulation.
Small messages, however, limit the rate at which
the I/O nodes can send cross-traffic, preventing
the emulation of systems with lower bisection.
Figure 7 shows the sensitivity of our experiments
to cross-traffic message length. For the remainder
of our experiments, we chose 64-byte cross-traffic
messages, a relatively small size which still allows
a wide range of bisection emulation.

Figure 8 plots application performance as the
amount of I/O cross-traffic varies. The X-axis
plots bisection bandwidth in bytes per proces-
sor cycle. The Y-axis plots application runtime
in processor cycles. We can see that the high
communication volume of shared-memory mech-
anisms cause application performance to degrade
dramatically faster than message-passing mecha-
nisms as bisection bandwidth decreases. While
our results have shown that shared-memory
mechanisms perform very well while adequate
network performance is available, we can see
a performance crossover with message-passing
mechanisms as bisection bandwidth decreases.
Referring back to Table 1, we see that most ma-
chines have much higher bisection bandwidth per
processor cycle than our cross-over point. How-
ever, we notice that low-dimensional mesh archi-
tectures such as DASH and FLASH ! approach
the cross-over points. As processor speed in-
crease, providing adequate bisection bandwidth
will become increasingly expensive.

INote that FLASH has been redesigned to use the Ori-
gin network since [19].

——int-mp
—=—poll-mp
——bulk-mp
—— M
——pre-sm
22
820
[&]
>
O 18-
=

—e—o

—— —

—
10 15

Bisection (bytes/Pcycle)
EM3D

—

4 ‘
5

16+

5

10 15
Bisection (bytes/Pcycle)
ICCG

Figure 8: Execution time (in cycles) versus bi-
section bandwidth. Alewife is at 18 bytes/cycle
(See Table 1).

——int-mp
—=—poll-mp
—— bulk-mp
—— SM
——pre-sm
194
g 181
8 J—
g" 17 7//
S 164
15
14 T T T 1
12 14 16 18
Network Latency
EM3D
9
88
IS
e
= —
5 T T T 1
12 14 16 18
Network Latency
ICCG

Figure 9: Network latencies emulated by varying
node clock. Latency is for 1-way delivery of 24-
bytes (see Table 1). Alewife is at 15.

14

——int-mp

—=—poll-mp
—— bulk-mp
——SMm
——pre-sm
35
830
[&]
325
=20 .
15 omr——
50 100
Network Latency

EM3D

Figure 10: Network Latencies Emulated with
Context-Switching.

5.3 Network Latency Emulation

We also perform an experiment which demon-
strates that shared memory is less tolerant of net-
work latency than message passing. The Alewife
machine has a programmable clock generator
which can vary the clock speed of the processing
nodes from 14 MHz to 20 MHz. The Alewife net-
work is asynchronous and communication latency
through the network is unaffected by the change
in processor clock. Consequently, we can incre-
mentally slow down the Alewife processing nodes
from their normal 20 MHz to 14 MHz, giving the
nodes the appearance of a faster and faster net-
work. If we plot application performance in pro-
cessor cycles, we can see the performance trend
as relative network latency varies.

Figure 9 gives such a plot. The X-axis plots
network latency (in processor cycles) to deliver
a 24-byte message, as used in Table 1. The Y-
axis plots application runtime in processor cy-
cles. The points were obtained by varying pro-
cessor clock speed as just described. We can see
that both shared memory implementations are
more susceptible to increased network latency
than message passing implementations. This is
because network latency shows up as processor
stall time when the processor blocks on a shared
memory operation. Prefetching hides this la-
tency somewhat, but not as well as message pass-
ing.

To emulate higher network latencies, we use
Alewife’s fast context-switching mechanism. On
every remote miss, we perform a context switch
to a thread running a delay loop. The resulting
execution emulates an ideal network with uni-
form access times and infinite bandwidth. Fig-

Machine Bsctn BW Net Lat in
(32 Processors) bytes/Icl-miss | Icl-miss times
MIT Alewife 198 1.3
TMC CM5 310 3.1
KSR-2 900 ?
MIT J-Machine 1792 1.0
MIT M-Machine 2688 0.5
Intel Delta 54 1.5
Intel Paragon 560 1.2
Stanford DASH 435 1.0
Stanford FLASH 1248 0.5
Wisconsin TO N/A 5.0
Wisconsin T1 N/A 5.0
Cray T3D 736 0.7
Cray T3E 5120 1.4
SGI Origin 2700 1.2

Table 2: Multiprocessor parameter estimates re-
calculated in terms of local cache-miss latency.

ure 10 shows our results. Note that prefetch-
ing is not precisely modeled, since the success
of a prefetch is dependent upon Alewife’s orig-
inal network latency rather than the emulated
latency. The message-passing and bulk transfer
curves are plotted for reference only. Their net-
work latencies are not varied and are based upon
Alewife network latencies. However, since our
message-passing applications use asynchronous,
unacknowledged communication, we expect that
message-passing performance will remain rela-
tively constant. Other studies [32] have found
that asynchronous implementations of applica-
tions such as EM3D are relatively insensitive to
microsecond-latencies on networks of worksta-
tions.

Referring back to Table 1, we see that net-
work latency is a serious issue for shared memory
that will worsen as processor speeds increase. All
modern machines have considerably higher net-
work latencies than Alewife.

5.4 Compute- vs. Memory-bound

Processor cycles, however, are only a useful
frame of reference for compute-bound applica-
tions. For many applications with irregular and
large datasets, local cache-miss latency is the lim-
iting factor to sequential performance. For these
memory-bound applications, we should use local
cache-miss latency as our basis for comparison.
Recalculating our numbers from Table 1, we see
in Table 2 that network latencies are much more
comparable.

15

6 Related Work

Not only has our work has been strongly in-
fluenced by studies from Wisconsin, Stanford,
and Maryland, but these previous results help
confirm the general context established by our
emulations. Our comparison of communication
mechanisms is similar to Chandra, Larus and
Rogers [8], but we have available a larger set of
mechanisms and we generalize to a range of sys-
tem parameters. This generalization is similar
to the study of latency, occupancy, and band-
width by Holt et. al [21], which focuses ex-
clusively upon shared-memory mechanisms. Al-
though the Alewife machine provides an excellent
starting point for the comparison of a large num-
ber of communication mechanisms, our results
are greatly enhanced by our use of emulation, an
approach inspired by the work at Wisconsin [38].

Chandra, Larus and Rogers compare four
applications on a simulation of a message-
passing machine similar to a CM-5 multipro-
cessor against a simulation of a hypothetical
machine also similar to a CM-5, but extended
by shared-memory hardware. Their results are
a good point of comparison for our emulation
results, since both Alewife and the CM-5 are
SPARC-based architectures with very similar pa-
rameters. They found that message passing per-
formed approximately a factor of two better than
shared memory while simulating a network la-
tency of 100 cycles. Referring back to Figure 10,
assuming that message-passing continues to hide
latency, our network latency emulation shows the
same result.

Our results also agree well with studies from
Stanford. Holt et al. found latency to be crit-
ical to shared-memory performance, as we did.
They also found that node-to-network bandwidth
was not critical in modern multiprocessors. Our
study shows, however, that bandwidth across the
bisection of the machine may become a critical
cost in supporting shared memory on modern
machines. Such costs will make message passing
and specialized user-level protocols [15] increas-
ingly important as processor speeds increase.

Woo et al. [46] compared bulk transfer with
shared memory on simulations of the FLASH
multiprocessor [19] running the SPLASH [18]
suite. They found bulk transfer performance to
be disappointing due to the high cost of initiat-
ing transfer and the difficulty in finding compu-
tation to overlap with the transfer. Although,
Alewife’s DMA mechanism is cheaper to initiate

than theirs, we also found bulk transfer to have
performance problems. Our problems arose from
the irregularity of our application suite, which
caused high scatter /gather copying costs and lim-
ited data transfer size.

Concurrent work at Berkeley [32] explores the
effect of message-passing latency, overhead and
bandwidth on networks of workstations. They
measured performance of several programs writ-
ten in Split-C and compared their results with
predictions from the LogP model. The effects of
overhead and gap on applications were predicted
well by LogP. The effects of latency and band-
width, however, were too complex for a simple
model. Our study focuses on these more com-
plex effects and how they differ for a variety of
communication mechanisms. As we have seen,
their empirical results on latency are consistent
with ours.

Several of our applications were borrowed
from a Maryland-Wisconsin study, Mukherjee et.
al.[35]. We extended their codes by developing
optimized implementations for each of our com-
munication mechanisms. They studied a differ-
ent problem, in that results on a software shared-
memory interface run on a message-passing ma-
chine were compared to those directly obtained
on the message-passing machine.

Another group of studies simulated message
passing on a shared memory machine, and com-
pared the performance of message passing pro-
grams using this simulation, against programs
using shared memory directly. This class in-
cludes papers by Lin and Snyder [29], Martonosi
and Gupta [33], and LeBlanc and Markatos [26].
These studies however do not compare machine
implementations, as all programs ultimately used
shared memory only.

Klaiber and Levy [24] study the performance of
programs which accesses shared memory or mes-
sage passing runtime libraries. These libraries
generated traces for shared memory and mes-
sage passing simulators, to generate statistics on
message traffic. However, their programs were
not fined tuned for any particular architecture,
and hence not fair to either. Our programs are
highly optimized for the mechanisms and perfor-
mance parameters of a machine supporting both
communication methods. Further, their machine
independant libraries tend to introduce unneces-
sary overheads for both methods, leading to addi-
tional loss of comparison accuracy. Finally they
report only message traffic, not execution time
numbers. They do not show how message traffic

16

impacts runtime.

7 Conclusion

Our results provide a framework from which to
evaluate mechanisms on systems with differing
bisection bandwidth and network latency. We
find that shared memory provides good general
performance with minimal coding effort. Our
experiments, however, each show performance
cross-overs between shared memory and message
passing as system parameters change. We eval-
uate these crossover points with respect to real
systems. Although most existing multiprocessors
provide adequate bisection bandwidth to support
shared memory, providing this bandwidth in fu-
ture systems will be at least as important. Net-
work latency is an even more severe problem, but
depends heavily upon whether an application is
compute- or memory-limited.

References

[1] Anant Agarwal, Ricardo Bianchini, David Chaiken,
Kirk Johnson, David Kranz, John Kubiatowicz,
Beng-Hong Lim, Ken Mackenzie, and Donald Ye-
ung. The MIT Alewife machine: Architecture and
performance. In Proc. 22nd Annual International
Symposium on Computer Architecture, June 1995.

[2] R. Arpaci et al. Empirical evaluation of the Cray
T3D: A compiler perspective. In Proceedings of the
22nd Annual Symposium on Computer Architecture,
1995.

[3] Arvind, David E. Culler, and Gino K. Maa. As-
sessing the benefits of fine-grained parallelism in
dataflow programs. In Supercomputing ‘88. IEEE,
1988.

[4] M. J. Berger and S. H. Bokhari. A partitioning
strategy for PDEs across multiprocessors. In Inter-
national Conference on Parallel Processing, August
1985.

[5] Eric A. Brewer, Frederic T. Chong, Lok T. Liu,
Shamik D. Sharma, and John Kubiatowicz. Remote
queues: Exposing message queues for optimization
and atomicity. In 1995 Symposium on Parallel Ar-
chitectures and Algorithms, Santa Barbara, Califor-
nia, July 1995.

[6] Eric A. Brewer and Bradley C. Kuszmaul. How to get
good performance from the CM-5 data network. In
International Parallel Processing Symposium, Can-
cun, Mexico, April 1994.

[7] H. Burkhardt, S. Frank, B. Knobe, and J. Rothnie.
Overview of the KSR1 Computer System. Technical
Report KSR-TR-9202001, Kendall Square Research,
February 1992.

[8] S. Chandra, J.R. Larus, and A. Rogers. Where is
Time Spent in Message-Passing and Shared-Memory
Programs ? In Sizth International Conference on
Architectural Support for Programming Languages

(11]

(12]

(13]

(14]

(15]

and Operating Systems (ASPLOS VI). ACM, Oc-
tober 1994.

Frederic T. Chong and Anant Agarwal. Shared mem-
ory versus message passing for iterative solution of
sparse, irregular problems. Technical report, mit-
les-tr-697, MIT Laboratory for Computer Science,
Cambridge, MA, October 1996.

Frederic T. Chong, Beng-Hong Lim, Ricardo Bian-
chini, John Kubiatowicz, and Anant Agarwal. Appli-
cation performance on the mit alewife multiproces-
sor. IEEE Computer: Special Issue on Emerging Ap-
plications for Shared-Memory Multiprocessors, De-
cember 1996.

David E. Culler, Andrea Dusseau, Seth Copen
Goldstein, Arvind Krishnamurthy, Steven Lumetta,
Thorsten von Eicken, and Katherine Yelick. Parallel
programming in Split-C. In Supercomputing, Novem-
ber 1993.

Ian S. Duff, Roger G. Grimes, and John G. Lewis.
User’s guide for the Harwell-Boeing sparse matrix
collection. Technical Report TR/PA/92/86, CER-
FACS, 42 Ave G. Coriolis, 31057 Toulouse Cedex,
France, October 1992.

Thomas H. Dunigan. Communication performance
of the Intel Tochston Delta mesh. ORNL Report
ORNL/TM-11983, Oak Ridge National Laboratory,
January 1992.

Thorsten von Eicken et al. Active messages: a mech-
anism for integrated communication and computa-
tion. In Proceedings of the 19th Annual Symposium
on Computer Architecture, Queensland, Australia,
May 1992.

Babak Falsafi, Alvin R. Lebeck, Steven K. Rein-
hardt, Ioannis Schoinas, Mark D. Hill James R.
Larus, Anne Rogers, and David A. Wood.
Application-specific protocols for user-level shared
memory. In Supercomputing 94, 1994.

Marco Fillo, Stephen W. Keckler, W.J. Dally,
Nicholas P. Carter, Andrew Chang, Yevgeny Gure-
vich, and Whay S. Lee. The M-Machine Multicom-
puter. In Proceedings of the 28th Annual Interna-
tional Symposium on Microarchitecture, pages 146—
156, Ann Arbor, MI, November 1995. IEEE Com-
puter Society.

Mike Galles. The SGI SPIDER chip. Available from
http://www.sgi.com/Technology /spider_paper/,
1996.

Maya Gokhale, William Holmes, Andrew Kopser,
Sara Lucas, Ronald Minnich, Douglas Sweeney, and
Daniel Lopresti. Building and using a highly parallel
programmable logic array. Computer, 24(1), January
1991.

Mark Heinrich, Jeffrey Kuskin, David Ofelt, John
Heinlein, Joel Baxter, Jaswinder Pal Singh, Richard
Simoni, Kourosh Gharachorloo, David Nakahira,
Mark Horowitz, Anoop Gupta, Mendel Rosenblum,
and John Hennessy. The performance impact of flex-
ibility in the Stanford FLASH multiprocessor. In
ASPLOS VI, pages 274-285, San Jose, California,
1994.

Bruce Hendrickson and Robert Leland. The Chaco
user’s guide. Technical Report SAND94-2692, Sandia
National Laboratories, July 1995.

17

(21]

(22]
(23]

(24]

(25]

(26]

(28]

(29]

(30]

(32]

(33]

(34]

(35]

C. Holt, M. Heinrich, J. P. Singh, E. Rothberg,
and J. Hennessy. The effects of latency, occupancy
and bandwidth on the performance of cache-coherent
multprocessors. Technical report, Stanford Univer-
sity, Stanford, California, January 1995.

Paragon XP/S product overview. Intel Corporation,
1991.

Steve Keckler. Personal communication, November
1996.

A. Klaiber and H. Levy. A comparison of message
passing and shared memory for data-parallel pro-
grams. In Proceedings of the 21st Annual Symposium
on Computer Architecture, April 1994.

James Laudon and Daniel Lenoski. The SGI Origin:
A ccNUMA highly scalable server. In Proceedings
of the International Symposium on Computer Ar-
chitecture, pages 241-251, 1997.

T. LeBlanc and E. Markatos. Shared memory vs.
message passing in shared-memory multiprocesors.
In Fourth IEEE Symposium on Parallel and Dis-
tributed Processing, 1992.

Charles E. Leiserson et al. The network architec-
ture of the connection machine CM-5. In Symposium
on Parallel Architectures and Algorithms, pages 272—
285, San Diego, California, June 1992. ACM.

Daniel Lenoski, James Laudon, Kourosh Gharachor-
loo, Wolf-Dietrich Weber, Anoop Gupta, John Hen-
nessy, Mark Horowitz, and Monica S. Lam. The
Stanford Dash multiprocessor. Computer, 25(3):63—
80, March 1992.

C. Lin and L. Snyder. A comparison of programming
models for shared-memory multiprocessors. In ICPP,
August 1990.

Kenneth Mackenzie, John Kubiatowicz, Anant Agar-
wal, and M. Frans Kaashoek. @ FUGU: Imple-
menting Protection and Virtual Memory in a Mul-
tiuser, Multimodel Multiprocessor. Technical Memo
MIT/LCS/TM-503, October 1994.

N. K. Madsen. Divergence preserving discrete surface
integral methods for Maxwell’s curl equations using
non-orthogonal unstructured grids. Technical Report
92.04, RIACS, February 1992.

Richard P. Martin, Amin M. Vahdat, David E.
Culler, and Thomas E. Anderson. Effects of com-
munication latency, overhead, and bandwidth in a
cluster architecture. In Proceedings of the Interna-
tional Symposium on Computer Architecture, pages
85-97, 1997.

M. Martonosi and A. Gupta. Tradeoffs in Message
Passing and Shared Memory Implementations of a
Standard Cell Router. In Proceedings of the 1989 In-
ternational Conference on Parallel Processing, pages
IIT 88-96, 1989.

Steven A. Moyer. Performance of the iPSC/860 node
architecture. Technical Report IPC-TR-91-007, In-
stitute for Parallel Computation, School of Engi-
neering and Applied Science, University of Virginia,
Charlottesville, VA 22903, May 1991.

S.S. Mukherjee, S.D.Sharma, M.D.Hill, J.R.Larus,
A.Rogers, and J.Saltz. Efficient Support for Irreg-
ular Applications on Distributed-Memory Machines.
In Principles and Practice of Parallel Programming
(PPoPP) 1995, pages 68-79, Santa Clara, CA, June
1995. ACM.

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

M.D. Noakes, D.A.Wallach, and W.J. Dally. The
J-Machine Multicomputer: An Architectural Evalu-
ation. In In Proceedings of the 20th Annual Interna-
tional Symposium on Computer Architecture 1993,
pages 224-235, San Diego, CA, May 1993. ACM.

Steven K. Reinhardt. Personal communication,
November 1996.

Steven K. Reinhardt, J. R. Larus, and D. A. Wood.
Tempest and Typhoon: User-level shared memory.
In Proceedings of the International Symposium on
Computer Architecture, 1994.

Steven K. Reinhardt, Robert W. Pfile, and David A.
Wood. Decoupled hardware support for distributed
shared memory. In Proceedings of the 23rd Annual
Symposium on Computer Architecture, 1996.

Steven P. Reinhardt and Winnie Williams. Cray T3D
Software: Delivering the performance. 55 min. video,
1994.

R. Schreiber and W. Tang. Vectorizing the conju-
gate gradient method. In Proceedings Symposium
CYBER 205 Applications, Ft. Collins, CO, 1982.

Steve Scott. Personal communication, November
1996.

Steven L. Scott. Synchronization and communica-
tion in the T3E multiprocessor. In ASPLOS VII,
Cambridge, Massachusetts, 1996.

Jaswinder Pal Singh, Chris Holt, and John Hennessy.
Load balancing and data locality in adaptive hierar-
chical N-body methods: Barnes-hut, fast multipole,
and radiosity. Journal of Parallel and Distributed
Computing, 27(2), June 1995.

Thinking Machines Corporation, Cambridge, MA.
CM-5 Technical Summary, November 1993.

S. C. Woo, J. P. Singh, and J. L. Hennessy.
The Performance Advantages of Integrating Block
Data Transfer in Cache-Coherent Multiprocessors.
In Sizth International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS VI). ACM, October 1994.

18

