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1. Introduction

In the February 1992 issue of the American Mathematical Monthly, J. E. Connett
[1] asked whether it is possible to construct a 'light trap': a reective-sided container
with the property that a beam of light, shone into it from an appropriate direction,
would be reected inside it over and over again and never escape. Connett suggests
that such a trap might be of value as a device to store light rays; however, the
market for escape-proof golf holes might be even more lucrative!

In order to make the problem interesting, we should insist that the container be
of �nite size, and that the walls of the container be smooth everywhere, or at least
everywhere where the beam of light hits. It is not su�cient to focus the beam of
light to a spot on the wall of the container where the container fails to be smooth,
and hence where the reection of the beam is not well-de�ned. Rather, the beam
must be reected in such a way that it can keep traveling forever without leaving
the container.

2. Examples of light traps

Our �rst, simplest, example of such a light trap consists of two confocal parabolic
mirrors, one reecting on the inside and one on the outside (Figure 1), joined by
an arbitrary smooth arc. If a beam of light crosses the segment ab parallel to the
y-axis, it will be reected at a point p1, towards the focus f . The reected beam
will strike the inner mirror at a point q1, and be reected to be once again parallel
to the y-axis. Continuing in this manner we obtain a sequence of reection points
(p1; q1; p2; q2; : : : ; pi; qi; : : : ).

It is clear that, for any line through f meeting the two parabolic arcs in points
pi and qi as shown,

0 <
jf � qij

jf � pij
< 1:

As the arcs are compact, we can �nd �; � such that

0 < � <
jf � qij

jf � pij
< � < 1:

It is clear that, if the original beam enters along the line x = x0, the x-coordinate
xi of qi (and of pi+1) satis�es

0 < �ix0 < xi < �ix0

Date: October 9, 1996.

1



2 R. J. MACG. DAWSON, B. E. MCDONALD, J. MYCIELSKI, AND L. PACHTER

and thus as i!1 the successive reected rays approach the y-axis but never reach
or cross it. From this, it follows that the beam can never escape.
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Figure 1

This construction may clearly be extended into three or more dimensions, creat-
ing, for example, a three-dimensional light trap between two confocal paraboloids.
disappointingly, the three dimensional theory of light traps does not seem to have
any new surprises for us; it seems that once we know about the properties of light
traps in the plane, the higher-dimensional theories are simple generalizations.

The light trap of Figure 1 has the property that nowhere along the beam of light is
there a focal point at which the light is in�nitely bright. However, this is somewhat
misleading; for while the light is not focused anywhere in the conventional sense,
any beam which crosses ab parallel to the y-axis passes in�nitely often through
any open neighborhood of any point on the chord cd. So, while no point on cd is
illuminated, any neighborhood of such a point is, in a sense, illuminated in�nitely
brightly!
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Can we create a convex light trap? Yes; Figure 2 shows an example of such a
curve, obtained by attening a short section cd of an ellipse into a parabola.
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Figure 2

To see that this actually works, note that if x is on the boundary of the ellipse to
the left of the right focus g, and if the ray from x through the right focus g meets
the ellipse again at a point y, then y is to the right of g, and

jx� gj

jy � gj
>

1 + �2

1� �2
> 1;

where � is the eccentricity of the ellipse. (This property of an ellipse is well-
known; see, for instance, [4], page 239-241). Thus, each successive reection will be
strictly closer to the x-axis than the previous one, and we may create a window on
one side of the axis, and modify the shape of a small region on the other, without
a�ecting the region in which any later reections will take place.

We remove a section ab of the ellipse, as the window through which light will
enter, and select cd to be a region to the left of the focus g. We now atten the arc
cd from the elliptical arc (which would focus a divergent pencil of rays from f to
g) to a parabolic arc which will focus a parallel beam coming through the window
ab onto g. This is clearly atter than the original elliptical arc, but still convex.
Thus, the resulting light trap is convex (similar constructions to this one have been
discovered independently, see [3], [2]).

Can we design a light trap that will trap light from more than one direction?
Such a trap would be necessary if we wished to trap di�use light, or to have some
margin for error in the orientation of the trap. Clearly, simple modi�cations of the
designs above will allow us to trap a pencil of rays coming from all directions but
focussed through one point; for instance, consider an ellipse with a window, which
will trap a pencil of beams focussed through f and striking the boundary to the
left of f . We can also trap pencils of rays from a �nite, or even countable, number
of directions; imagine the arc cd in Figure 2 broken up into an in�nite sequence of

- -
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little parabolic mirrors, of length 1
2 ;

1
4 ;

1
8 ; : : : , each focusing light from a di�erent

direction onto the focus g (Figure 3).
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Figure 3

Unfortunately, in the following section we show that we cannot hope to do much
more than that:

3. Trapping light from arbitrary directions

Before we can state a theorem we must give a precise de�nition of what we will
consider a 'light trap':

De�nition 1. A light trap C is a subset of Rn with smooth boundary and �nite n

dimensional volume V .

A light ray will be thought of as consisting of a set of points in Rn. A point along
the ray is de�ned by its position and the direction in which the ray is traveling at
that point:

De�nition 2. A 2n � 1 tuple in Rn � Sn�1 consisting of the position of a point

and the direction it is traveling in will be called a path point.

The phase space is the set of all possible path points. Because the coordinates
of a point in the phase space contain enough data to determine the future behavior
of the 'point of light', each point lies on a 'trajectory' which corresponds to its past
and future history. The following elementary observation is important:

Note 1. If two 'points of light' coincide in phase space, they are not only in the
same place but going in the same direction; thus they have been, and will remain,
coincident forever.

We are interested in studying the behavior of light as it bounces around in the
trap. Let the initial set of path points in the trap be denoted by S(0). Let t be the
variable corresponding to time and let S(t) be the set of path points obtained from
S(0) after the light has reected for a period of time t inside the trap. Assume,
also, that each point in S(0) has been inside the trap at most time �.
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Let dx be the uniform distribution on Rn and let d! be the uniform distribution
on Sn�1. Take the measure on Rn� Sn�1 to be the product measure dx � d!. If
the measure of Sn�1 is 
 then the measure of the trap in Rn� Sn�1 is 
V .

Theorem 1. Let C be a light trap with �nite n dimensional volume V . IfZ
S(0)

dx � d! > 0

then some light will escape from the trap.

The quantity
R
S(0) dx � d! measures how much phase space is 'occupied' by the

light at any instant. The theorem states that if the initial light has nonzero measure
in the phase space, it cannot be trapped.
Proof of theorem: We begin with the following crucial lemma:

Lemma 1. Z
S(t)

dx � d!

is invariant with respect to time.

Proof of lemma: Observe that the measure dx � d! is invariant under transla-
tion and rotation. Equivalently, the quantity above is preserved if the light does not
reect, or reects o� a at mirror. By approximating the mirror with polyhedral
mirrors we can show that any reection is measure preserving.

Let S0(t) be a set of path points with the property that S0(t) reects o� of C
between time t and t + � only once (where � has been chosen to be su�ciently
small). Notice that S0(t + �) = F (S0(t)) for some smooth function F . Let

E =

Z
S0(t)

dx � d!:

Consider a polygonal approximation to the mirror both in position and orienta-
tion.

Partition S0(t) into sets S0
k(t) such that S0

k(t) is a set of path points reecting
o� of only one face of the polygonal approximation. Let T be the set of path points
in S0(t) that go into a corner (this light is lost).

Thus,

S0(t) = T [
[
k

S0
k(t)

where T has measure 0. Notice that for each k, there exists a smooth function
fk such that

S0
k(t + �) = fk(S

0
k(t)):

Given any integer n, pick a polygonal approximation good enough so that

jJfk(x)� JF j
S0

k
(t)
(x)j <

1

nE
8k; 8x 2 S0

k(t):

Here J denotes the Jacobian and F jS0

k
(t) is F restricted to S0

k(t).
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Observe that

j
X
k

Z
S0

k
(t)

JF j
S0

k
(t)
(x)dx � d! �

X
k

Z
S0

k
(t)

Jfk (x)dx � d!j

�
X
k

Z
S0

k
(t)

jJfk(x)� JF j
S0

k
(t)
(x)jdx � d!

�
X
k

Z
S0

k
(t)

1

nE
dx � d! =

Z
S0(t)

1

nE
dx � d! =

1

n
:

Thus, the error introduced by approximating the mirror is arbitrarily small,
hence the lemma.

Lemma 2. Let tk = k� and let m;n be positive integers with n 6= m. The sets

S(tn) and S(tm) satisfy

S(tn) \ S(tm) = ?:

Proof of lemma: The proof is by induction. Clearly if n = 0 then

S(t0) \ S(tm) = ?

for m � 1. This is because we are assuming that the initial light came from outside
the trap.
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Figure 4

Similarly,

S(tn) \ S(tm) = ?

when m � n.
Suppose x 2 S(tn)\S(tm) and n � 1. It must be the that x 2 S(tn�1)\S(tm�1),

but by induction the two sets are disjoint.
By Lemma 1, S(0); S(�); S(2�); : : : all have the same nonzero measure and by

Lemma 2 they are disjoint sets. The region of phase space corresponding to the
interior of the trap has �nite measure 
V and thus the sets S(0); S(�); S(2�); : : :
cannot all lie inside the trap, and some light must eventually escape.

□ 

□ 

□ 
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