
Algorithms for Modeling and Measuring Proteins

Donna K. Slonim�

MIT Laboratory for Computer Science

545 Technology Square

Cambridge, MA 02139

slonim@theory.lcs.mit.edu

June 9, 1995

Abstract

In this paper we investigate e�cient algorithms for computing the volume and surface
area of protein molecules and for graphically displaying the molecules in real time. Protein

molecules are modeled by sets of overlapping spheres in R3. We summarize and critique
three papers in the �eld, and we add several new contributions of our own. First, we
present and discuss a new randomized algorithm for computing volumes of proteins. This

algorithm is faster than any previously-known algorithm. We also suggest several exten-
sions to this research, including ideas for detecting errors in the x-ray crystallography data

used as input. Finally, we propose applying a recent machine-learning result [BCGS95]
to determine the tolerance of errors in the data.

Keywords: computational biology, protein modeling, e�cient algorithms, protein vol-
umes, measuring unions of spheres, computational geometry.

�Supported by a grant from the Siemens Corporation.

1 Introduction

In this paper we investigate e�cient algorithms for computing the volume and surface area of

protein molecules and for graphically displaying the molecules in real time. We �rst summa-

rize and critique three papers in the �eld: \Spheres, Molecules and Hidden Surface Removal,"

by Halperin and Overmars [HO94], \The Union of Balls and its Dual Shape," by Edelsbrun-

ner [Edl93], and \Measuring Proteins and Voids in Proteins," by Edelsbrunner, Facello, Fu,

and Liang [EFFL95]. We then present several new contributions of our own. First, we give

a randomized linear algorithm that computes volumes and surface areas of proteins. This is

the best bound we know of for the problem; our algorithm is faster and simpler than that

of Edelsbrunner. We also suggest several directions for future work, including ways to detect

errors in the x-ray crystallography data used as input for these algorithms. Finally, we propose

using a new learning model [BCGS95] to determine the tolerance of errors in the data and to

ensure that the data actually contains the important structural information about the protein.

Our paper is organized as follows. The rest of this section contains some relevant background

about proteins and the de�nitions used in the rest of the paper. Sections 2 and 3 contain

summaries and discussions of previous work. In Section 4, we present our new, faster algorithm

for computing volumes of proteins. Section 5 suggests some areas for future research, and in

Section 6 we elaborate on one such suggestion: applying a recent result from learning theory

to the problem of noisy protein data.

1.1 Background Information About Proteins

Proteins are molecules that control much of the function of living cells. They play diverse

roles, from regulating RNA synthesis to facilitating chemical reactions to governing the cell

cycle. Many diseases are caused by malfunctioning or missing proteins. Thus, one challenge of

modern medicine is to understand these defective proteins well enough to design new molecules

to assist or replace them.

Structurally, proteins are long chains of amino acids folded into a speci�c three-dimensional

structure. A protein's behavior depends at least in part on this structure. Protein molecules

range in size from fewer than one hundred atoms to several thousand. Thus, even though

proteins generally contain atoms of only �ve di�erent elements, there are a vast number of

possible sequences and structures to work with. The problem of predicting structure from

sequence is currently the focus of major research e�orts, but it is not relevant to this paper.

Instead, we treat the problems of modeling proteins to display them quickly on a computer

screen, and of computing properties of proteins intended to help us better understand their

nature and function.

Proteins inside cells are surrounded by solvent molecules, primarily water. Di�erent amino

1

acids have di�erent a�nities for water, and this a�nity governs protein structure to some

degree. There are also spaces inside folded proteins, sometimes called \cavities" or \voids,"

which may contain solvent molecules. Thus the total surface area of a protein molecule is an

important property to investigate. Determining the surface of the molecule is also essential for

displaying the molecule on the screen. The volume of a protein provides information about its

packing density and thermodynamic properties. E�orts to compute volumes of proteins based

on Voronoi diagrams are at least 20 years old [Ric77]. This paper discusses recent improvements

to such approaches.

Proteins are frequently represented by a hard-spheremodel, in which each atom is considered

to be a ball in R3. The center of the ball corresponds to the nucleus of the atom, while the

sphere represents the space occupied by the atom's electron shells. The radius chosen for each

atom is the van der Waals radius of the element: the distance from the nucleus at which the

repellent forces of two such atoms exactly balance the attracting forces between the two. The

exact values for this distance are the subject of some debate, and slightly di�erent estimates of

the van der Waals radii for protein atoms are common.

Protein structure is currently determined primarily by x-ray crystallography. In this proce-

dure, x-rays are di�racted through a protein crystal and the protein's structure is derived from

the resulting di�raction pattern. Since the atoms move a little even in crystallized proteins,

and since reconstructing the structure from the di�raction pattern is a di�cult process, the

data may contain errors.

1.2 De�nitions

First we formally de�ne the hard-sphere representation of proteins. Let B = fb1; b2; : : : ; bng

be a set of n possibly intersecting balls in R3. Each ball bi has center ci and radius ri. Let

C = fci j bi 2 Bg be the set of center points. We write U(B) to denote the union of balls in B.

Several of the results discussed in this paper rely on a class of proximity diagrams commonly

used in computational geometry. A Voronoi diagram of a set S of points in Rd divides the d-

dimensional space into jSj regions. The Voronoi region of a point s 2 S is the set of all points

closer to s than to any other point in S under the Euclidean distance metric. Such diagrams

have many practical applications. For example, suppose there are a number of �re stations

spread throughout a city. When a �re alarm is raised at a particular point p, the dispatcher

�rst noti�es the station closest to p. If the Voronoi diagram of the set of �re stations is already

known, the dispatcher merely needs to determine which Voronoi region contains p; this region

corresponds to the closest �re station.

In this paper we use a variation of the Voronoi diagram called the power diagram. The

power diagram of a set of spheres is a proximity diagram using a distance metric that depends

on the radii of the spheres as well as their centerpoints. Thus the power diagram of B is exactly

the Voronoi diagram when all balls in B have radii equal to zero. The power diagram partitions

2

R3 by the planes of intersection of spheres in U(B).

We now formally de�ne the power diagram of a set of balls. The power distance from a

ball bi to a point x, denoted pow(x; bi), is jxcij
2 � r2bi , where jxcij is the Euclidean distance

between x and ci. The power cell pi of a ball bi is the set of all points in R3 closer to ci than to

any other point in C, using power distance as the distance metric. Formally, x 2 pi () 8bj 2

B;pow(x; bi) � pow(x; bj).

The power diagram P of B is a representation of the power cells of all balls in B. These

cells cover all of R3, and they intersect only along their borders. Since the balls are in general

position, no point can be in more than four power cells. (See Figure 1 for illustrations of the

power diagram and the related diagrams de�ned below.)

If we superimpose the power diagram on U(B) and consider only the portion of the power

diagram contained in U(B), we get the diagram Q =
S
b2B qb, where each qb = pb \ b. Note

that the qb's may intersect only along their borders and that
S
b2B qb = U(B): Like the pb's, no

point may be in more than four qb's.

We can now de�ne duals to the diagrams P and Q. D, the dual of P , is a triangulation of

the convex hull of C. For T � B, let �T be the convex hull of the centers of the balls in T .

Formally, D is a simplicial complex in Rd such that �T 2 D if and only if \b2Tpb is nonempty

and is contained in P . In other words, a simplex is in D if the power cells of its vertices intersect

(touch) in P .

Finally, K is the subcomplex of D restricted to U(B). K = f�T j \b2T qb 2 Qg; that is, a

simplex is in K if the power cells of its vertices intersect inside the union of balls.

2 Displaying Molecular Surfaces

In this section we discuss the paper \Spheres, Molecules and Hidden Surface Removal," by

Halperin and Overmars [HO94], which describes algorithms for displaying and manipulating

hard-sphere models of proteins on the screen. One application of such algorithms is in drug

design, where computer-drawn models are used to design molecules that bind to speci�c proteins

or replace defective ones. The algorithms in the paper are geared to such applications.

2.1 Summary

The essence of the Halperin and Overmars paper is a straightforward but powerful theorem

with a simple proof. The authors de�ne two restrictions that they claim hold true for any

hard-sphere representation of protein molecules. They then prove that given an arrangement

of balls satisfying these two assumptions, there is a constant upper bound on the number of

balls that intersect any given ball in the arrangement.

The two restrictions are the following. Let rmax be the maximum radius of any atom in the

molecule, and let rmin be the minimum radius. The �rst assumption is that there is a constant

3

P Q

D K

Figure 1: The power diagrams and duals for a set B of �ve balls in the plane. The dashed lines de�ne power
cells. The power cell of a ball b contains all points in the plane closest to cb under the power distance metric.
Note that the power diagram P covers all of R2. Diagram Q is just the restriction of P to the union of the
balls, U(B). D, the dual of P , contains an edge between any two centerpoints whose power cells share an edge
in P . A triangle in D, therefore, corresponds to three power cells meeting at a common vertex in P . Similarly,
in K, the dual of Q, there is an edge between two centerpoints b and b0 only if cells qb and qb0 in Q share an
edge.

4

..
······--·····················

•
.

■■■■■■■■■■■■■■■■■■■ •jjl!•··

········•·

.
••• -■■■■■■■ ~··· ...

•

upper bound k � rmax=rmin. This is certainly true for any �xed data set; k can be computed

directly from the van der Waals radii. The second assumption formalizes the notion that no

two atoms can overlap too much. This seems a reasonable assumption since the repellent forces

between the atoms become stronger as their nuclei move closer together. The paper formalizes

this constraint by requiring a positive constant � such that for each bi, the smaller concentric

ball with center ci but radius � ri does not contain the center of any other ball in B.

The key to the proof is the observation that any ball intersecting bi must be contained in

the larger concentric ball with center ci and radius ri + 2rmax. It is then easy to show that at

most 216(k=�)3 balls satisfying the restrictions can �ll a ball of radius ri + 2rmax. Let Nb, the

neighbors of ball b, be the set of other balls which are contained within a ball with center cb

and radius rb + 2rmax. Then any ball which intersects b must be in Nb.

The authors derive a great deal of power from this theorem. Using a similar proof, they show

that there is a decomposition of the arrangement of spheres in R3 (e.g., the subdivision of space

induced by U(B)) with total complexity O(n). The paper describes e�cient algorithms based

on these results to answer intersection queries (to determine if a single query-ball intersects the

molecule), to compute the surface of U(B), to compute a visibility map, and to display the

molecule graphically, performing hidden surface removal. We describe some of these algorithms

briey to indicate how they rely on the main theorem.

An intersection query is a test to see whether a single query ball intersects the molecule

represented by B. Intersection queries can be used to analyze how a new molecule �ts together

with the protein or to determine that two molecules do not overlap. One can certainly test

whether the query ball intersects each of the other balls in the molecule in O(n) time. However,

with some preprocessing it may be possible to optimize the time for each intersection query.

The best bound previously known for intersection queries is due to Aurenhammer [Aur88], who

proves that by computing the power diagram of B (using O(n2) time and space for an arbitrary

arrangement of balls), the question of whether a given point intersects U(B) can be answered

in O(log2 n) time.

Halperin and Overmars use the restrictions on proteins to �nd an algorithm with O(log n)

query time, given O(n log n) preprocessing time and O(n) space. The idea behind the algorithm

is to divide the space up into cubes of size 2rmax on each side. Using a proof similar to that of

the main theorem, they show that each cube intersects only a constant number of balls in B.

Thus they can compute all the cubes and the constant-length list of the balls they intersect and

insert them into a binary search tree in O(n log n) time. To answer an intersection query, their

algorithm calculates the (at most 8) grid cubes the query ball intersects, looks up the balls of

B in each of these cubes (O(log n) time), and tests whether each ball intersects the query ball.

This method produces a list of all balls of B that the query ball intersects. Furthermore, if

the binary search tree is replaced by a randomized hash table, the bound on the algorithm is

improved to O(1) expected query time and O(n) preprocessing time.

Halperin and Overmars also give an e�cient algorithm for computing the surfaces on the

5

boundary of U(B). For each ball, they �nd the O(1) balls intersecting it and determine the

ball's contribution to the outer boundary of U(B): that portion of the surface of b not contained

in the intersection with any other ball. They then combine the boundary patches from each

ball to give a global description of the surface of the union. The main theorem implies that this

algorithm can be implemented to run in O(n) randomized or O(n log n) deterministic time.

Finally, Halperin and Overmars show how to implement hidden surface removal to display

the molecule in O(n log n) time. Given a depth order on the objects to be displayed, one would

normally use a painter's algorithm for hidden surface removal: display the farthest objects �rst,

then draw the closer ones later so they appear to be in front. However, for an arrangement of

intersecting balls there may be no valid depth order on the balls, so it is not clear how to display

them. Halperin and Overmars prove that by determining the faces on the surface of U(B) and

by restricting attention to the parts of these faces on the hemispheres facing the viewer, it is

possible to construct a depth order on the faces simply by sorting the balls in B. Again, the

e�ciency of the algorithm is due to the main theorem; for a general arrangement of balls, this

algorithm might require �(n2) steps.

2.2 Discussion

Halperin and Overmars have used their main theorem to improve the analysis of a number

of algorithms commonly used in displaying and manipulating proteins. Some of the ideas

behind their main theorem and its applications have appeared elsewhere. Yip and Elber [YE89]

present an O(n) algorithm for determining neighboring atoms by dividing the space into cubes.

Independently, Varshney and Brooks [VB93] note that each protein atom has only a constant

number of neighbors. They use this information to compute the accessible surface of the

molecule in linear time, or in O(n=p) time on p parallel processors. Perrot et al. [PCG+92]

describe an O(nk) algorithm for approximating the surface area, where k is the average number

(over the molecule) of neighbors per atom. However, Halperin and Overmars are the �rst to

put all these ideas together and to apply them to real-time computer-aided molecule design.

One essential issue to address is the validity of the assumptions behind the model. Even

the �xed-sphere model of atoms is subject to criticism. Atoms in proteins are not stable but

move with respect to one another. The standard protein data banks list for each atom both a

position, which is essentially the average position over time, and a quanti�cation of how much

the atom moves. However, it is hard to model the motions of all the individual atoms in a

protein molecule, and it is not clear that the added complexity needed to do so is worth the

improvement in accuracy [LTK95]. Representation by �xed balls is thus fairly common, and

appears to be accurate to a �rst approximation [Mez93, Ric77].

The main theorem's restrictions that the atoms' radii are bounded in size and that no two

nuclei can be too close seem reasonable for the reasons outlined in Section 2.1. However, there

might be comparable formalizations of these ideas which are better suited to our purposes. For

6

example, superoxidise dismutase, a typical molecule from the paper, has constants k = 1:95

and � = :76. Thus the main theorem states that at most 3648 atoms intersect any single atom

in the molecule. On the other hand, simulation of the molecule has shown that on average,

each atom intersects 5.5 others; the maximum number of others that a single atom intersects

is 16. These bounds are not a uke; for the nine atoms simulated in both the conference and

technical report versions of the Halperin and Overmars paper, no atom intersects more than

16 others, and the average over each molecule ranges from 4.5 to 7.5. In all cases the constant

bound derived by the theorem is at least two orders of magnitude larger. Surely something can

be done to close the gap.

There are several possible causes of this gap. One is that the proof of the theorem uses a

worst-case analysis; k is an upper bound on the ratio rmax=rmin. In fact, this bound is probably

seldom realized; an average-case factor corresponding to k might give a more accurate predic-

tion. Also, � is generally computed from the x-ray crystallography data directly. This means it

is particularly susceptible to errors in the x-ray crystallography data, which are common. We

address this issue in Section 5.2.

Another issue is that the theorem does not account for repulsive forces between atoms or

for the fact that atoms in proteins generally have some space between them. Richards [Ric77]

analyzes the packing of atoms in proteins and concludes that there is little empty space. How-

ever, he derives this conclusion by comparing the number of protein atoms with the number of

non-overlapping balls that can theoretically be packed in the same space. Thus, there are two

opposing tendencies to account for when evaluating his conclusions: the fact that the balls over-

lap somewhat, and the fact that they repel each other. It is therefore unclear how Richards's

results would change by accounting for both factors. It might be interesting to obtain similar

statistics comparing the number of atoms in a protein with the number of overlapping balls

that could �ll the same space, subject to the main theorem's constraint on �.

Varshney, Wright and Brooks [VWB94] study the general problem of packing unit spheres

inside a larger sphere. They motivate their work by the problem of calculating the number

of neighbors of protein atoms under some simplifying assumptions about the atoms' radii and

the average bond length. Their best bound for the average number of neighbors of an atom

satisfying their assumptions is 139. This bound is substantially tighter than the theoretical

bounds derived from Halperin and Overmars's paper, but it is still quite large compared to the

experimentally observed values.

Another question one might ask is whether the algorithms from this paper are easily paral-

lelized. Since one goal of the paper is real-time computer-aided molecule design, it is essential

to represent the molecule on the screen quickly, and parallel implementation might provide the

necessary speed. The problem of computing each ball's contribution to the surface of U(B) can

easily run in O(n=p) time on p processors. However, displaying the molecule relies on sorting

the balls; the time for sorting in parallel depends on the structure of the parallel network and

is in any case no better than O(log n) [Lei92]. Thus, even with n processors it is not possible

7

to implement Halperin and Overmars' method to display molecules in constant time.

Finally, the algorithms presented in this paper assume that the initial data on the structure

of the algorithms, generally derived from x-ray crystallography, is accurate. However, x-ray

crystallography is a di�cult science and errors in the determined protein structures are common.

The algorithms given in this and the following papers do not account for these errors and do

nothing to detect them. In sections 5.2 and 6 we suggest some ways to use these algorithms to

detect and possibly correct errors in the x-ray crystallography data.

3 Measuring Proteins

The papers \The Union of Balls and its Dual Shape," by Edelsbrunner [Edl93], and \Measuring

Proteins and Voids in Proteins," by Edelsbrunner, Facello, Fu, and Liang [EFFL95], discuss the

same algorithms and are therefore treated together. The latter paper describes the implemen-

tation of algorithms for determining surface area and volume of various protein models, while

the former treats the theoretical justi�cation for the algorithms.

3.1 Summary

The primary breakthrough in these papers is a polynomial-time simpli�cation of the inclusion-

exclusion formula for computing volumes. The basic inclusion-exclusion formula states that the

volume of the union of a family B of potentially intersecting sets is

X
T�B

(�1) jT j�1volume(\b2T b):

This formula is accurate but unfortunately requires computation time exponential in the size

of B. In general, approximations to the formula consisting of fewer than
�
np
n

�
terms are

inaccurate [LN90]. However, Edelsbrunner proves that the volume of U(B) in d dimensions can

be computed exactly using an inclusion-exclusion formula where all subsets have size at most

d. The formula does not include all subsets of size d; only those sets of balls whose power cells

intersect in Q are considered.

In \The Union of Balls and its Dual Shape," Edelsbrunner presents a topological proof of

the following formula:

volume(U(B)) =
X

T�B j �T2K
(�1) jT j�1volume(\b2T b):

To evaluate this formula one need only consider O(jKj) sets of size at most d + 1. The paper

further explains that it is possible to speed up the computation by calculating the volume of

all simplices in K directly and then adding the volume of the fringe, the part of U(B) not

contained in K. The volume of the fringe can be computed by summing only subsets of up to

d balls.

8

-

The implementation paper applies the algorithms to arrangements of balls in R3 and ana-

lyzes the running time of the algorithms. To compute the volume of a protein, the algorithm

�rst computes the regular triangulation D and then uses D to deriveK. An unsupported claim

argues that for proteins, jDj = O(n). The algorithm then computes D and K in O(n log n)

expected time and evaluates the inclusion-exclusion formulas in time proportional to jKj � jDj.

Thus if jDj is O(n), then the total running time of their algorithm is O(n log n). However, in

section 4.1 we show that, while jDj might be larger than O(n), it is possible to compute the

volume of a protein molecule obeying the restrictions from Halperin and Overmars in O(n)

steps.

Edelsbrunner's algorithm also computes the number and volume of the cavities in the mol-

ecule. This information can help determine whether solvent molecules such as water might be

trapped in cavities inside the protein molecule. The algorithm can also compute the number

of vertices and arcs on the surface of the molecule, although it is unclear what purpose such

statistics serve.

More exciting, therefore, are some of the topological properties of molecules that Edelsbrun-

ner proves in the \Union of Balls: : : ." He �rst shows homotopy equivalence between U(B) and

the space occupied by K. (Homotopy equivalence is similar to homeomorphism except that

it need not preserve dimension.) This result yields an e�cient algorithm for computing the

homology groups of U(B). Donald and Chang [DC91] explain that homology groups can be

used to determine if two structures are topologically equivalent. This might be useful when de-

signing a new molecule to ful�ll the function of a missing or malfunctioning protein. Homology

groups can also tell if a structure can be embedded in R3, another essential test for molecule

design.

The proof of the inclusion-exclusion formula relies on a variation of the Euler relation for

convex polyhedra also derived in the paper. Using an inductive argument, Edelsbrunner shows

it is possible to determine if a point x is contained in a convex polyhedron P in d dimensions

by considering only sets of up to d of the de�ning half-spaces. He generalizes this result to

any compact convex set, and to some non-convex compact sets as well. He then shows how to

measure the volume of the intersection of a convex set A and a polyhedron P by integrating over

all points in the intersection. Using the Euler relation, he derives a formula for the intersection

which again considers only sets of d half-spaces.

Finally, the general inclusion-exclusion formula for U(B) is proved by embedding Rd as a

hyperplane in Rd+1. The hyperplane is mapped to its dual sphere in Rd+1; the balls in B are

mapped from their containing hyperplane to dual half-spaces intersecting the sphere. Thus,

the intersection of the half-spaces de�nes a polyhedron P and the sphere is a convex set A, so

the volume of P \ A, determined using the shallow inclusion-exclusion formulas above, maps

to U(B).

9

3.2 Discussion

The fact that it is possible to compute the volume of U(B) using an inclusion-exclusion formula

whose terms contain intersections of at most d + 1 balls is quite a surprising and interesting

result. It may very well have applications to other areas where inclusion-exclusion formulas are

used, such as cryptography and approximation algorithms. The result is particularly surprising

in light of the hardness bounds for general approximation of such formulas (with fewer than
�
np
n

�

terms) given by Linial and Nisan [LN90]. However, in order for the inclusion-exclusion result to

be accessible to the computer science communities that might use it, it needs a more intuitive

proof. The proof would be most appropriate in the \Measuring Proteins: : :" paper, which

currently describes the algorithms at an intuitive level but refers to \The Union of Balls: : :" for

all proofs. The proofs in the latter paper, however, are inaccessible to anyone unfamiliar with

topology and lack the basic de�nitions needed to be self-contained. It would thus be extremely

helpful to present a short proof or at least some intuition in future applications papers.

The analysis of the implementation in \Measuring Proteins: : : " relies on the statement that

\for dense distributions common to proteins," the number of simplices in D is generally O(n).

(The worst-case theoretical bound for jDj in R3 is O(n2) [Aur88]. The paper states that such

arrangements are unlikely in practice but does not support this claim.) Since the paper states

that the software \makes no use of the fact that the union of balls is de�ned by a molecule," it

implies that the time bounds it derives hold for general unions of balls in R3, which is untrue.

In the general case, the new algorithm for �nding the volume of U(B) is no more e�cient than

the best previously known, Aurenhammer's simpler O(n2) algorithm for computing volumes of

unions and intersections of balls in R3. Some implementation results might help to support the

claim that jDj = O(n). For example, the running times needed to compute volumes of various

proteins could illustrate that the algorithm e�ectively scales as n log n.

It is once again worth asking whether the algorithms in these papers could be implemented

e�ciently in parallel. The di�cult part is the parallel computation of the power diagram. Using

algorithms due to Amato, Goodrich, and Ramos [AGR94], one can construct a power diagram

for n 3-dimensional balls in parallel in O(log n) time in the EREW PRAM model. Once K has

been derived, evaluating the inclusion-exclusion formula takes constant time for each simplex

in K and can be done in parallel.

4 An O(n) Algorithm for Volume and Surface Area

In this section we apply the assumptions about proteins from Halperin and Overmars's main

theorem to obtain an faster algorithm for computing the volume of U(B). Our algorithm is a

simple extension of Halperin and Overmars's algorithm for computing the boundary of U(B).

Recall that their main theorem assumes that all proteins satisfy the following constraint:

10

-

Protein Constraint:

Let rmax be the maximum radius of any atom in the molecule, and let rmin be the mini-

mum radius. Then there exist positive constants k; � such that rmax=rmin < k and for each

bi 2 B, the concentric ball with center ci and radius � ri does not contain any other centerpoint

cj 2 C j j 6= i.

Our algorithm runs in randomized linear time for proteins obeying this constraint, whereas

Edelsbrunner's algorithm requires O(n log n) time. Note that the O(n log n) bound for Edels-

brunner's algorithm holds even with the constraint, since the algorithm requires the computa-

tion of D. We show here that it is enough to determine the neighbors of each ball and that this

can be done without computing D. A corollary of our result is that jKj = O(n) for proteins

satisfying the constraint.

Recall that Nb is the set of balls contained within the sphere with center cb and radius

rb+2rmax. Any ball which intersects b must be in Nb. Also recall that Halperin and Overmars's

main theorem proves that for any set B of balls satisfying the protein constraint, the number

of neighbors of each atom (and therefore, the number of other atoms intersecting each atom)

is a constant.

4.1 The Algorithm and Proof

We determine the volume of U(B) by computing the volume of qb for each ball b. Recall that

qb = pb \ b. Since for any two balls b and b0, the interiors of qb and qb0 are disjoint, and since

U(B)=
S
b2B qb , the volume of U(B) is exactly the sum over all b 2 B of the volumes of qb .

If we were to compute qb by �nding pb and taking its intersection with ball b, the time

needed to compute each qb could be as large as �(n). Even in sets of balls satisfying the protein

constraint there may be a ball whose power cell has �(n) bounding halfplanes. However, as

we show below, we can compute qb from Nb without constructing all of pb. Thus, in the special

case of protein molecules we can compute each qb in constant time, so we can compute qb for

all the balls in O(n) time overall. To show this we need the following de�nitions.

Let Hij be the halfspace such that pow(x; bi) � pow(x; bj). Note that Hij is bounded by

the plane that would separate the power cells of bi and bj if there were no other balls in B.

De�ne the feasible cell of b, Fb, as
T
b02Nb

Hbb0 . Note that the power cell pb =
T
b02BHbb0, so

pb � Fb.

For our argument we also need the following lemma, which is stated in Edelsbrunner [Edl93]

without proof.

Lemma 1 8b0 2 B; pb \ b0 � pb \ b:

Proof: If pb \ b0 = ; then the lemma is trivially true. So suppose pb \ b0 is not empty.

Let x be any point in pb \ b0. By de�nition, if x 2 pb then pow(x; b) � pow(x; b0). Thus,

11

jxcbj
2 � r2b � jxcb0j

2 � r2b0. Since x is also in ball b0, jxcb0j � rb0, so jxcb0j
2 � r2b0 � 0. Thus,

jxcbj
2 � r2b � 0, so jxcbj � rb, showing that x is also in b. 2

Lemma 1 immediately yields this corollary, which we will use to prove Theorem 3.

Corollary 2 If pb \ b0 6= ;, then b \ b0 6= ;:

We can now show that it is possible to compute the volume of U(B) in linear time. The

following theorem states that qb , the part of the power cell of b restricted to within ball b, can

be computed just from the feasible cell; that is, by considering only the neighbors of ball b.

Theorem 3 Fb \ b = pb \ b = qb :

Proof:

Note that the second equality is true by de�nition; we need only prove the �rst one. Recall

that Fb � pb; so Fb \ b � pb \ b: For the theorem to be false, there would have to be some

points in Fb \ b but not in pb \ b. So suppose that there were some ball � 62 Nb such that

halfspace Hb� borders pb \ b but not Fb \ b. Since Hb� borders pb \ b; there exists some point

x on the boundary of Hb� such that x 2 Hb� \ pb \ b. Since x is on the boundary of Hb�,

pow(x; b) = pow(x; �). And since x 2 b, pow(x; b) � 0. Thus, pow(x; �) � 0; so x 2 � as well.

Thus x 2 pb \ �; showing that pb \ � 6= ;. Then by Corollary 2, b \ � 6= ;: Since Nb contains

all balls that intersect b, this contradicts the assumption that � 62 Nb. 2

Thus, we can �nd qb from the feasible cell without determining the entire power cell.

Let X = fHb;b0 j b0 2 Nbg so that the feasible cell Fb=
T
Hb;b02X Hb;b0 , and let constant

k = jXj. We now show how to compute the surface area and volume of U(B), given X,

by determining the surface area and volume of each qb = Fb \ b.

To compute Fb from X, we use the technique of Varshney and Brooks [VB93, PS85, pp.

316 �.]. They compute the dual point for each halfspace in X, take the convex hull of the

dual, and then compute the dual of the hull to �nd the vertices of the convex (but potentially

unbounded) polyhedron Fb. More speci�cally, they express each halfspace Hbi as an equation of

form aix+ biy+ ciz+ di � 0, where all the di < 0. (It may be necessary to translate the origin

to make all the di < 0, but this will have no e�ect on the area or volume of the intersection.)

Then the dual of each halfspace is the point (ai=di; bi=di; ci=di). There will be O(k) such points,

so �nding their convex hull in R3 takes O(k log k) time [PS85]. There can be only O(k) points

on the hull, each corresponding to the intersection of three halfspaces (since the balls are in

general position), so computing the duals in both directions takes only O(k) time.

The above procedure produces a list of adjacent vertices of Fb, along with the halfspaces

whose intersection de�nes each vertex. The next job is to test whether each vertex is contained

in the ball b. If the vertex is not contained in b, the intersection of the bounding halfplanes

with the surface of ball b de�nes a spherical patch of b on the surface of U(B). The dimensions

of this patch can be computed from the radius of the ball and the intersection of the sphere

and halfspaces. Thus, we can compute the surface area of qb .

12

b

e d
c

a

cβ

qb

b

e d
c

a

cβ

α

a) b)

Figure 2: a) The ball � and �ve half-planes, a through e, de�ned by balls in N� . The shaded area represents
the region satisfying all the inequalities. We want to determine the area of qb, the intersection of the ball � and
all the half-spaces. Notice that only e; b; and d are on the border of qb. b) The triangulation divides qb (the
shaded region) into three triangles adjoining the centerpoint, and a sector with internal angle �. We can easily
compute the area of all these components of qb .

To compute the volume of qb , we divide b \ (
T
x2X x) into tetrahedrons, each of which is

incident to the center of ball b, and into sectors where the surface of b is on the surface of qb .

(Aurenhammer [Aur88] shows how to do this in R3 in O(k2) time.) Thus, we can compute the

volume of qb by summing the volumes of all such tetrahedrons and adding the volumes of all

the sectors.

We illustrate the two-dimensional analog of this algorithm in Figure 2. The lines in the

�gure are the borders of halfplanes in X; the shaded area represents the region satisfying all

the inequalities. The convex-hull procedure determines that the vertices on the hull of
T
x2X x

are the points of intersection of halfspaces e\b; b\d; d\a and a\e. Since the �rst two of these

are contained in the ball �, we compute only the intersection of the border of � with halfplanes

e and d. This gives us the triangulation of qb shown in Figure 2b, along with the sector with

internal angle �. (We can determine � from the coordinates of e \ �; d \ �; c�, and radius r�.)

Thus, we can compute the length of the circular portion of q�, and we �nd the area of q� by

summing the area of the three triangles and the sector.

The results of Halperin and Overmars imply that, given O(n) preprocessing time and ran-

domized perfect hashing, we can determine the constant number k of halfspaces in Nb in O(k)

steps. Thus, the computation of qb 's contribution to the surface area and volume of U(B)

13

should take O(k2) time for each ball b 2 B. (The dominant term is the time needed to di-

vide the three-dimensional polytope into tetrahedrons.) Thus, if kmax is an upper bound on

the number of elements in any Nb, we can compute the surface area and volume of U(B) in

O(nk2max) steps. For proteins kmax is a constant, so this algorithm runs in randomized linear

time.

Finally, we observe that given a list of the adjacent vertices and faces of Fb \ b = qb , it is

easy to compute K. Each qb corresponds to a vertex of K; any face on the border of qb de�ned

by the intersection of balls b and b0 corresponds to an edge bb0 2 K; and so on. Therefore, our

algorithm yields the following interesting corollary:

Corollary 4 For any arrangement of balls satisfying the protein constraint, jKj = O(n) and

K can be computed in O(n) expected time.

4.2 Discussion and Extensions

We �rst consider the problem of implementing our algorithm in parallel. In the CREW PRAM

model, the core of the algorithm can be implemented in constant time on n processors (or

O(n=p) time on a p-processor machine). The preprocessing needed to do intersection queries

can be done independently for each ball in constant time, and only constant time is needed

to compute each Nb in parallel in any concurrent-read model. Therefore the volume of all the

individual qb can be computed in constant time, given enough processors. The limiting step of

the computation is thus summing the volumes of each of the n components to �nd the total

volume.

Our new algorithm has both advantages and disadvantages when compared to that of Edels-

brunner. Our result certainly does not diminish the importance of the inclusion-exclusion result

in \The Union of Balls and its Dual Shape." However, our algorithm can calculate the volume

and surface area of proteins obeying some simple assumptions in linear time, and can easily

be implemented in parallel. The improved speed of our algorithm is clearly an advantage.

Furthermore, the simplicity of the approach of summing the volumes of each qb makes our algo-

rithm more accessible than that of Edelsbrunner, even for sets B that do not satisfy the protein

constraint.

One important advantage of the Edelsbrunner algorithm, however, is that it provides addi-

tional information about the cavities in the molecule which our algorithm currently does not.

Edelsbrunner's algorithm computes not only the volume of U(B), but the volume of each indi-

vidual cavity in the molecule. It also determines which surface patches border each cavity. This

information, along with the coordinates of the vertices in K, can help determine which cavities

of the molecule are large enough to contain solvent molecules such as water. Our algorithm

provides only information about the space occupied by the molecule itself; it says nothing about

interior and exterior surfaces or volume.

14

--

It would therefore be interesting to know if we can determine in linear time the faces of

U(B) that are inside cavities of the molecule and the volumes of each of these cavities. We

discuss some approaches to this problem here.

4.2.1 Measuring Cavities in Protein Molecules

To derive information about the cavities of the molecule, it is useful to discuss the subdivision of

R3 by the spheres in B, called the arrangement A(B). A corollary of Halperin and Overmars's

main theorem is that for sets of balls B satisfying the protein constraint, the arrangement

A(B) has linear complexity. However, the vertical decomposition of this arrangement into

simple pieces may have quadratic complexity. Halperin and Overmars show that by dividing

the space into cubes with unit sides 2rmax and then �nding the vertical decomposition of each

cube, one can obtain a linear-sized decomposition of A(B) into simple pieces. Since A(B)

describes the complement of U(B) as well as U(B) itself, there is hope that this decomposition

will enable us to compute the volume of the cavities in a molecule e�ciently.

In order to determine which surface patches are on the interior of the molecule, we need only

determine the connected components of the surface. Since each face of the surface is determined

by the balls bordering it, our algorithm can easily compute the connected components of the

surface by starting at one face and moving to adjacent ones. This can be done in O(n) steps

(although it is worthwhile to note that such an algorithm is inherently sequential). Then the

only question is which of the components is the exterior one. The exterior component can be

found in linear time by choosing some vantage point outside of U(B) and �nding some face of

the surface visible from that vantage point. The connected component of the surface containing

this face must be on the exterior; all other components are interior surfaces.

The question of computing the volume of the cavities is somewhat more di�cult. One

approach uses the fact that by Corollary 4, we know we can compute K for proteins in linear

time. (Note that the corollary says nothing about the size of D, which may still be �(n log n)).

So perhaps if we determine which balls border each cavity, we could �nd a way to �ll the cavity

with additional balls satisfying the protein constraint without adding too many balls. Then the

volume of the original molecule subtracted from the volume of the augmented molecule would

be the volume of the cavity.

A more promising approach uses the linear decomposition of A(B) as described by Halperin

and Overmars. We �rst break up the space into unit cubes. By the protein constraint, each

cube intersects only a constant number of balls. The vertical decomposition of the cube has a

constant number of pieces, where each piece is essentially a box with some well-de�ned spherical

patches removed. Thus, we should be able to determine the volume of each of these patches

in constant time (given a fast method for determining which balls border which piece of the

decomposition). If so, we need only determine which patches of the decomposition are in the

interior of the molecule and which are exterior. We can do this by checking if any de�ning

15

spherical patch of the decomposition is on an external face of the molecule (using the linear-

time surface area algorithm described above). So we could sum the volumes of all pieces of

cavities to get the total description of the cavities of U(B). Some additional work would be

needed to describe individual cavities by re-assembling cavities that span multiple cubes.

5 Ideas for Future Work

The previous sections have contained several suggestions for expanding and improving the

individual papers and for improving the linear volume algorithm to provide information about

cavities. The following are some additional directions that might be interesting starting points

for future research.

5.1 Using Secondary Structure to Bound jNbj

As we suggested in section 2.2, the constant bound on the number of neighbors per atom from

Halperin and Overmars's main theorem appears to be far from tight. We have already suggested

some possible methods for improving the bound. Here we suggest two di�erent approaches.

One option is to use whatever information is known about the secondary structure of the

molecule to predict the amount of space between atoms. If, for example, we know that the

protein consists primarily of �-helices, then we can use information about the space between

atoms in �-helices to derive a more accurate bound for at least the main chain atoms. If we

know that hairpin-�-motifs are common, we can analyze the spacing in those.

It might even be possible to use general information about how �-helices and �-strands

�t together, along with some estimate of what fraction of protein atoms are in one of these

structures, to derive general bounds on � for all proteins or for certain classes of proteins. These

bounds might be useful in error-detection, as discussed below.

Another method might be to analyze the bonding forces acting on the atoms. There are

only �ve elements found in proteins: hydrogen, carbon, nitrogen, oxygen, and sulfur. Perhaps

with more chemical information about minimum covalent bond lengths, hydrogen bonds and

van der Waals forces for each type of atom, one could derive a better estimate of the degree

of overlap expected between each pair of elements. This information might lead to a tighter

bound on the number of neighbors.

5.2 Error Detection for X-Ray Crystallography Data

If our estimates of � and k are derived from some source other than our x-ray crystallography

data for a speci�c molecule, (for example, if derived as in section 5.1 above), we could use

these values to detect and ag some errors in the x-ray crystallography data. One common

error [Hal95] occurs when a single atom is described with two slightly di�erent centers, so that

16

there appear to be two di�erent atoms. Certainly, this sort of error might be detected by

applying secondary structure information, although it may be di�cult to map that information

onto the x-ray crystallography data. But if � is derived from other sources it would be easy

to check for pairs of atoms of the same element whose centerpoints violate the � constraint. If

the centers are extremely close, or if the atoms are known to move a lot, then it is likely that

these pairs represent a single atom. An algorithm that agged cases in which individual atoms

violated the pre-determined constraints might detect other types of errors in the data as well.

6 Learning Proteins with Unreliable Boundary Queries

A recent paper by Blum, Chalasani, Goldman and Slonim [BCGS95] describes a model of

learning with a limited type of noise: noise near the boundary of the target concept. Because

of the unreliability of x-ray crystallography data, which derives estimates of stationary posi-

tions for moving atoms, the unreliable boundary query (UBQ) noise model seems particularly

appropriate for representing proteins.

Dyer, Frieze and Kannan [DFK91], in their paper on estimating volumes of convex bodies,

suggest using a model in which information about the body is derived usingmembership queries.

A membership query for this problem just asks whether a point in R3 is contained in U(B) or

not. We considered the Dyer, Frieze and Kannan approach to computing volumes as a possible

method for improving Edelsbrunner's algorithms but decided that the amount of sampling

needed to estimate volumes accurately is inherently superlinear. (The best known bound using

these methods is an O(n5) algorithm for general convex bodies [Kan94]. While this might

be improved for unions of \fat" bodies such as spheres, we believe it unlikely that we can

approximate the volume of U(B) in o(n log n) time using this method.)

However, this work sets a precedent for a membership-query representation of a molecule.

Furthermore, we argue that it is a reasonable representation for some design applications.

Halperin and Overmars have already shown that intersection queries can be answered in O(1)

expected time. (Note that membership queries are simply intersection queries for a query ball

with radius zero.) For an application focused on the protein's interaction with a new molecule,

de�ning the protein by a set of membership queries may be reasonable. Finally, we now suggest

how a modi�ed membership query model would be a good representation of the type of noise

we expect in x-ray crystallography data.

An \unreliable-boundary query" is one in which an oracle answers if the query point is

an element of the target concept, but is allowed to answer incorrectly if the point is within

a constant distance of the target concept's boundary. The distance measure here depends on

the individual task; the Blum, Chalasani, Goldman and Slonim paper describes the application

of these queries in both geometric and boolean domains. For proteins the Euclidean distance

measure is appropriate. The border size could be determined as some function of the van der

Waals radii of adjacent atoms. Then a query would be required to be correct in the interior

17

of the molecule, but could be a bit \fuzzy" near the border. Learning in such a model means

deriving an approximation to the target concept which is accurate everywhere except perhaps

on the border. In other words, we do not require that the learner have a better idea of the

target concept than its teacher, but it must be as good, even though the learner is only allowed

a small polynomial number of queries to learn in an exponentially large or even in�nite domain.

The errors likely to be derived from x-ray crystallography are precisely those in which the

border of the molecule is undetermined. Choosing potentially inaccurate van der Waals radii

for the atoms makes it even more likely that such errors will occur. Thus the UBQ model is a

good model for representing proteins.

It would therefore be exciting to show that one can accurately learn proteins (or unions

of balls satisfying the protein constraint) in this model. Such a result would show that even

though the x-ray crystallography data may be inaccurate near the boundary, we derive a good

idea of the structure of most of the protein, proving that the model is accurate everywhere

except near the boundary. It is possible that in fact we do not get an accurate model of protein

structure from the noisy data. If so, the learning results can quantify the needed improvements

in accuracy. We could therefore use the UBQ model to determine the optimal temperature

at which to perform x-ray crystallography so that the noise does not dominate the resulting

structure.

7 Acknowledgements

A preliminary version of this paper was submitted as part of the MIT Area Exam in EECS Area

II. I would like to thank Albert Meyer, Bonnie Berger, and Tomas Lozano-Perez for serving on

my exam committee and for encouraging publication of this paper. I am especially grateful to

Danny Halperin for helpful discussions of his paper, for his comments on an earlier draft of this

paper, and for the suggestion that his work on decompositions of arrangements might provide

a linear algorithm for computing the volumes of cavities, as described in section 4.2. Thanks

are due also to Esther Jesurum for valuable comments on an earlier draft of the paper, to

Andy Oakland for explaining the graphics algorithms mentioned in the Halperin and Overmars

paper, and to Lisa Tucker-Kellogg for helpful discussions of X-ray crystallography and protein

structure.

References

[AGR94] Nancy Amato, Michael Goodrich and Edgar Ramos. Parallel algorithms for higher-
dimensional convex hulls. In Proceedings of the 35th Annual Symposium on Foun-

dations of Computer Science, pages 683{693, 1994.

[Aur88] F. Aurenhammer. Improved algorithms for discs and balls using power diagrams.
Journal of Algorithms, 9:151{161, 1988.

18

[BCGS95] Avrim Blum, Prasad Chalasani, Sally Goldman and Donna Slonim. Learning with
unreliable boundary queries. To appear in the Proceedings of the Eighth Annual

ACM Conference on Computational Learning Theory, July, 1995.

[BT91] Carl Branden and John Tooze. Introduction to protein structure.Garland Publishing,
Inc., New York, 1991.

[CEG+90] K. L. Clarkson, H. Edelsbrunner, L. J. Guibas, M. Sharir and E. Welzl. Combi-
natorial complexity bounds for arrangements of curves and spheres. Discrete and

Computational Geometry, 5:99{160, 1990.

[Con83] M. L. Connolly. Solvent-accessible surfaces of proteins and nucleic acids. Science,
221:709{713, 1983.

[DE92] C. J. A. Del�nado and H. Edelsbrunner. An incremental algorithm for betti numbers
of simplicial complexes. Technical Report UIUCDCS-R-93-1787, Computer Science
Department, University of Illinois at Urbana-Champaign, 1992.

[DC91] B. R. Donald and D. R. Chang. On the complexity of computing the homology type
of a triangulation. In 32nd Annual Symposium on Foundations of Computer Science,
pages 650-661, 1991.

[DFK91] M.E. Dyer, A. Frieze, and R. Kannan. A random polynomial time algorithm for
approximating the volume of convex bodies. Journal of the ACM, 38:1{17, 1991.

[Dug70] James Dugundji. Topology. Allyn & Bacon, Inc., Boston, 1970.

[EFFL95] H. Edelsbrunner, M. Facello, P. Fu and J. Liang. Measuring proteins and voids
in proteins. In Proceedings of the 28th Annual Hawaii International Conference on

System Sciences, pages 256{264, 1995.

[Edl93] H. Edelsbrunner. The union of balls and its dual shape. In Proceedings of the 9th

Annual Symposium on Computational Geometry, pages 218{231, 1993.

[FV82] James D. Foley and Andries van Dam. Fundamentals of Interactive Computer Graph-
ics. Addison-Wesley, Reading, MA, 1982.

[HO94] Dan Halperin and Mark H. Overmars. Spheres, molecules, and hidden surface re-
moval. In Proceedings of the 10th Annual Symposium on Computational Geometry,
pages 113{122, 1994.

[Hal95] Dan Halperin. Personal communication.

[Kan94] Markov chains and polynomial time algorithms. In 35th Annual Symposium on Foun-

dations of Computer Science, pages 656{671, 1994.

[LR71] B. Lee and F. M. Richards. The interpretation of protein structure: Estimation of
static accessibility. Journal of Molecular Biology, 55:379{400, 1971.

19

[Lei92] F. Thomson Leighton. Introduction to Parallel Algorithms and Architectures. Mor-
gan Kaufmann, San Mateo, CA, 1992.

[LN90] Nathan Linial and Noam Nisan. Approximate Inclusion{Exclusion. In Proceedings of
the 22nd Annual ACM Symposium on Theory of Computing, pages 260{270, 1990.

[Mez93] P. G. Mezey. Shape in chemistry: An introduction to molecular shape and topology.

VCH Publishers, Inc., New York, 1993.

[PCG+92] G. Perrot, B. Cheng, K. D. Gibson, J. Vila, A. Palmer, A. Nayeem, B. Maigret and
H. A. Scheraga. MSEED: A program for rapid determination of accessible surface
areas and their derivatives. Journal of Computational Chemistry, 13:1{11, 1992.

[PS85] F. P. Preparata and M. I. Shamos. Computational Geometry | An Introduction.

Springer Verlag, New York, 1985.

[Ric77] F. M. Richards. Areas, volumes, packing, and protein structures. In Ann. Rev. Bio-

phys. Bioeng., 6:151{176, 1977.

[Sei91] R. Seidel, et al. Class Notes for Computational Geometry, University of California
at Berkeley, Spring 1991.

[LTK95] Lisa Tucker-Kellogg. Personal communication.

[VB93] A. Varshney and F. P. Brooks, Jr. Fast analytical computation of Richards's smooth
molecular surface. In Proc. Visualization, pages 300{307, 1993.

[VWB94] A. Varshney, W. Wright, and F. P. Brooks, Jr. Estimating the number of unit
spheres inside a larger sphere. Technical Report TR93-039, Department of Computer
Science, University of North Carolina at Chapel Hill, May 1994.

[WHR+87] J. Watson, N. Hopinks, J. Roberts, J. Steitz, and A. Weiner. Molecular Biology of

the Gene. Benjamin/Cummings, Menlo Park, CA, 1987.

[YE89] V. Yip and R. Elber. Calculations of a list of neighbors in molecular dynamics
simulations. Journal of Computational Chemistry, 10: 921{927, 1989.

20

