
Addressing Partitioned Arrays in Distributed Memory

Multiprocessors { the Software Virtual Memory Approach

Rajeev Barua

David Kranz

Anant Agarwal

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139

October 1993

Abstract

Partitioning distributed arrays to ensure locality of reference is widely rec-
ognized as being critical in obtaining good performance on distributed memory
multiprocessors. Data partitioning is the process of tiling data arrays and placing
the tiles in memory such that a maximum number of data accesses are satis�ed
from local memory. Unfortunately, data partitioning makes it di�cult to physi-
cally locate an element of a distributed array. Data tiles with complicated shapes,
such as hyperparallelepipeds, exacerbate this addressing problem.

In this paper we propose a simple scheme called software virtual memory
that allows exible addressing of partitioned arrays with low runtime overhead.
Software virtual memory implements address translation in software using small,
one-dimensional pages, and a compiler-generated software page map. Because
page sizes are chosen by the compiler, arbitrarily complex data tiles can be used
to maximize locality, and because the pages are one-dimensional, runtime address
computations are simple and e�cient. One-dimensional pages also ensure that
software virtual memory is more e�cient than simple blocking for rectangular
data tiles.

Software virtual memory provides good locality for complicated compile-time
partitions, thus enabling the use of sophisticated partitioning schemes appear-
ing in recent literature. Software virtual memory can also be used in systems
that provide hardware support for virtual memory. Although hardware virtual
memory, when used exclusively, eliminates runtime overhead for addressing, we
demonstrate that it does not preserve locality of reference to the same extent as
software virtual memory.

Keywords: multiprocessors, compilers, addressing, data partitioning, loop par-
titioning, pages, virtual memory, locality.

Authors' e-mail: fbarua,kranz,agarwalg@lcs.mit.edu. Authors' phone: (617)253-8438.

1

1 Introduction

The problem of loop and data partitioning for distributed memory multiprocessors with global
address spaces has been studied by many researchers [1, 3, 6, 13]. The goal of loop partitioning
for applications with nested loops that access data arrays is to divide the iteration space
among the processors to get maximum reuse of data in the cache, subject to the constraint
of having good load balance. For architectures where non-local memory references are more
expensive than local memory references, the goal of data partitioning is to place data in the
memory where it is most likely to be accessed by the local processor. Data partitioning tiles
the data space and places the individual data tiles in the memory modules of the processing
nodes. Data partitioning introduces addressing di�culties because the data tiles can become
discontiguous in physical memory. This paper focuses on the problem of generating e�cient
code to access data in systems that perform loop and data partitioning.

Current methods for addressing data in systems that perform data partitioning fall into
two general classes. The �rst class relies on hardware virtual memory to resolve addresses.
The second class uses software address computation to determine the physical location of a
data element. In this paper, when we refer to virtual memory, we are concerned only with
the virtual to physical address translation component, and not with issues of backing store
or protection.

Systems that support global virtual memory in hardware can access data in the same
way as on a uniprocessor. Each array occupies a contiguous portion of the virtual address
space and the page tables are set up so that the data in a given tile is placed on pages that
are allocated in the local memory of the processor accessing the tile. The problem with
hardware virtual memory results from the large page sizes (for example, 4K bytes) relative
to the dimensions of data tiles. For example, a 1024-word data tile might require as many
as 1024 pages to cover it, if it is poorly aligned with the pages. The problem is even more
serious with multidimensional data tiles because the individual dimensions of data tiles can
be much smaller than the page size, even when the overall size of the data tile is large. Thus,
because the page size is �xed by the hardware, ensuring good locality with a large number
of processors may require running very large problem sizes.

Software address computation is commonly used on multicomputer architectures that do
not provide hardware support for a shared address space. In such systems, the data is divided
into blocks that are distributed across the processors. Processors maintain mapping functions
that map array elements to their physical locations. Because this mapping is accomplished
entirely in software, systems can choose block sizes of any size and shape. Systems also
have the exibility to use di�erent sizes and shapes for di�erent arrays. Unfortunately, as
demonstrated in Section 5, runtime address computations are very expensive, even for the
simplest shapes and sizes of the tiles. Hyperparallelepiped shapes, or tile dimensions that that
are not powers of two, result in even more complicated addressing functions. Therefore, in
practice, compilers use rectangular sub-blocks of the array, with individual dimension lengths
that are powers of two, resulting in a loss in locality.

This paper, introduces a new method, called software virtual memory, that combines the
e�ciency of hardware virtual memory with the exibility of software address computation.
Software virtual memory is akin to hardware virtual memory in that it covers data tiles
with one-dimensional pages, allowing a simple address translation. It di�ers from hardware

2

virtual memory in that runtime software is used to translate virtual addresses to physical
addresses, thus allowing arbitrary page sizes that can be di�erent for di�erent arrays. The
resulting exibility is of tremendous advantage because if pages are made small enough, one
can approximate closely any shape in the data space, thus allowing smaller problem sizes on
a large machine.

How is software virtual memory di�erent from software address computation? Previous
methods of software address computation can be viewed as attempting to cover data arrays
with \pages" whose shape and size are identical to those of the data tiles, and using software
to accomplish the mapping function. For example, a system that performs software address
computation views a three dimensional array tiled using cubical blocks as a three dimensional
array covered with relocatable pages that are themselves three dimensional. As demonstrated
in Section 4, address computations for multidimensional pages with complicated shapes incur
severe runtime overhead. Software virtual memory can be viewed as a software address
computation scheme that restricts the relocatable units to be small, one-dimensional pages.
Software virtual memory borrows the use of one-dimensional pages from hardware virtual
memory to simplify the mapping function.

The above three systems trade o� the cost of computing the location of an array element
and the ratio of local to remote memory accesses. Hardware virtual memory eliminates the
the cost of computing the location of array elements, but su�ers from poor locality when
the pages are larger than data tile dimensions. Software address computation optimizes
locality of reference, with a signi�cant loss in addressing e�ciency. Software virtual memory
allows a compiler to make the tradeo� between locality and addressing e�ciency. In general,
smaller pages result in better locality, but result in larger software tables and more cache
pollution, while large pages result in poor locality and reduced addressing overhead. By
choosing appropriate page sizes, we demonstrate that a compiler can retain near-perfect
locality, while incurring only a modest loss in addressing e�ciency over the hardware virtual
memory scheme. Note that in distributed memory machines without a shared address space,
software virtual memory has more to o�er because hardware virtual memory is not supported.

We have implemented the software virtual memory scheme in the compiler and runtime
system for the Alewife machine [2], a globally cache-coherent distributed-memory multipro-
cessor. We use the method of loop and data partitioning described in [3]. In this paper we
demonstrate that:

� The overhead of software virtual memory is small in general. Furthermore, if rectangu-
lar data partitions can be used, simple compiler transformations can eliminate almost
all of the overhead.

� Software virtual memory can use page sizes as small as 32 bytes without signi�cant
loss in e�ciency. This allows precise covering of arbitrary data tile shapes, and near
optimal locality.

� For many realistic problem sizes, the large size of hardware virtual memory pages can
cause very poor data locality.

� Software virtual memory has signi�cantly lower addressing overhead than software ad-
dress computation.

3

The rest of the paper is organized as follows. Section 2 describes issues involving loop
and data partitioning. Section 3 gives an overview of the problem of distributed array access
and related work. Section 4 describes the software virtual memory scheme and estimates
its cost compared to other approaches. Section 5 contains some experimental results on the
locality/addressing tradeo�. We conclude in Section 6 .

2 Loop and Data Partitioning

Most existing work in compilers for parallel machines has focused on parallelizing sequential
code and executing it on machines where each processor has a separate address space, e.g.
CM-5 or Intel iPSC. It is usually assumed that the programmer speci�es how data is dis-
tributed and the compiler tries to optimize communication by grouping references to remote
data so the high cost of remote accesses can be amortized [5, 7, 8, 10, 9, 11, 12, 14, 16]. These
methods only work well when the granularity of the computation is large and regular.

Some recent work has looked at compilation for machines with a shared address space,
physically distributed memory and globally coherent caches [3, 6]. In these machines, each
processor controls a local portion of the global memory; references to the local portion have
lower latency than references that access remote data over the communication network. On
such machines there is more opportunity to compile �ner-grain or less regular programs be-
cause the hardware supports �ner-grain remote data access and prefetching. The formulation
of the problem in this context is as follows. The compiler takes an explicitly parallel program
as input. This program may have been written by a user or produced from a sequential
program by a parallelizing tool, and is assumed to consist of some number of parallel loop
nests and arrays that they access. It is the compiler's job to divide the loop iterations and
data among the processors so as to maximize data reuse and minimize the number of remote
memory accesses.

In this paper we assume that loop and data partitioning has been done and look at the
question of how to generate code to access the data. If we look at the portion of the iteration
space running on some processor P, we can determine the footprint in the data space, i.e.
the set of data elements accessed. We would like to allocate those data elements to the local
memory of P. Doing this for all of the loops and data will yield a function that maps array
element indices to physical memory locations. The code for this mapping must be executed
at each array reference and will result in overhead o. The tradeo� we examine is between
making o small and having a large number of references be local. This follows from the fact
that a simple mapping implies that the data will be mapped to processors in large, regular
chunks. These chunks may not match the data mapping that would minimize the number of
remote memory accesses.

This tradeo� is captured in the following equation that expresses estimated running time
of a loop iteration:

T = ctime+M � (o+ ncachehits � C + nlocal � L+ nremote �R)

where C is the cache hit time, M is the number of memory references in the loop, o is the
overhead introduced by software virtual memory, L is the local memory latency and R is the
remote memory latency. ctime is the time spent in actual computation.

4

The loop and data partitions determine the fraction of cache hits (ncachehits) and cache
misses that go to local memory (nlocal), while the target architecture determines C and L. R,
the remote memory latency, is a more di�cult parameter to account for because it depends on
nremote as well as the architecture. If nremote is large, contention and bandwidth limitations
of the interconnect in the multiprocessor may increase R signi�cantly. In the rest of the
paper we look at various mappings, their access costs, and their e�ects on data locality.

3 The Addressing Problem

In this section we de�ne the addressing problem and study the various alternatives to solving
it.

Addressing an element involves �nding its physical address { speci�ed by a processor
number and o�set within that processor's memory. In a shared memory machine this infor-
mation is usually contained in one global address. As discussed earlier, there are two general
approaches to solving the addressing problem: software address computation and hardware
virtual memory (HVM). This section describes these two methods and the e�ciency of ad-
dressing of each, and the next section describes software virtual memory (SVM).

3.1 Software Address Computation

There are many approaches to software address computation. One approach is to calculate the
address of an element by linearizing the points in the data tile, and using some geometrically
derived formula to �nd the processor number and o�set. The special case for rectangular
data tiles is commonly referred to as blocking, and is the most widely used form of data
allocation in multiprocessors. Figure 1(a) shows a two dimensional array blocked among
processors. Processor numbers are assigned in row or column major order, as are the o�set
numbers within a block. Figure 1(b) shows an example address calculation for this scheme
for a 2-D array.

The steps for addressing an element using blocking are:

1. A processor index calculation (division) in each of n processor dimensions in the data
space.

2. A row major computation on the above to �nd the processor number.

3. n subtractions and one row-major computation to �nd the o�set within the block.

4. A load from a vector of distributed block base addresses.

5. An add of the base to the o�set to get the desired address.

We note that compiler footprint analysis may be able to perform a loop-invariant code
hoisting of steps 1 and 2. Strength reduction optimizations may also be possible for step 3.
We shall show the code needed for addressing an element using software virtual memory in
Section 4, and see that it is always signi�cantly simpler.

5

Array A[0..199, 0..99]

0

99

0 199

0 1 2 3

4 5 6 7

137

60

(a) Data Space showing blocks

To �nd the address of A[137,60]:
Processor index (dim 1) = b137=50c = 2
Processor index (dim 2) = b60=50c = 1
) Processor number = 2 + 1 * 4 = 6 (row major)
O�set = (137 - 100) + (60 - 50) * 50 = 537

(b) An example address calculation

Figure 1: Blocking of a distributed array.

Doall (i=0:149, j=0:49)

A[i,j] = B[i+j,j]+B[i+j+1,j+2]

EndDoall

Figure 2: Example of code requiring a parallelogram partition.

Another software approach is to allocate data tiles of complex shapes, for example, par-
allelograms, to each processor. This is a generalization of blocking. As shown in [3], paral-
lelogram partitions are often required to ensure optimal locality when array accesses contain
a�ne index functions.

Let us illustrate the di�culty of addressing parallelogram data tiles with the following
example. Consider the nested Doall loop in Figure 2. Suppose the iteration space is par-
titioned uniformly using a rectangular tile shape as depicted in Figure 3. The shape of the
data tile that comprises the data elements of array B accessed by the loop tile (also known
as the footprint of the loop tile) is shown in Figure 4.

Now, suppose the data array is tiled using the parallelogram from Figure 4 to maximize
locality, as illustrated in Figure 5. Finding the address of an element now involves a coor-
dinate transformation to �nd the processor number, and another to �nd the o�set. Both
operations are very expensive at runtime. A common simpli�cation is to allocate the small-
est enclosing rectangular window around the data tile, but this still requires the processor
number calculation, and wastes memory. Using this simpli�cation, the steps for addressing

6

----- ----- - -----y

I
I
I
I

(0,25)

(50,0)

Figure 3: Loop tile at the origin of the iteration space. (50; 0) and (0; 25) are the bounding
vectors of the loop tile.

(25,25)

(50,0)

Figure 4: Data tile in the data space corresponding to the references to array B.

an element are:

1. A basis resolution along the parallelogram basis to �nd a processor index for each of n
dimensions.

2. A oor operation on each of the above.

3. A row major computation on the above to �nd the processor number.

4. n subtractions and one row-major computation to �nd the o�set within the block.

5. A load from a vector of distributed block base addresses.

6. An add of the base to the o�set to get the desired address.

Step 4 may be strength reducible.

(50, 0) (150,0) (225,0)

(25,25)

(0,50)

(0,75)

(0,0)

Figure 5: Data tiling of array B using parallelograms.

7

L 7

Figure 6: Loss of locality due to large hardware pages.

3.2 Hardware Virtual Memory

An alternative to software address calculation schemes is to use hardware virtual memory.
In a shared-address space machine, hardware virtual memory allows arrays to be distributed
pagewise, with di�erent pages possibly allocated to di�erent processors. A page is placed on
a processor with maximum overlap with it. In this paper we are concerned only with the
address translation provided by virtual memory and not with backing store or protection
issues.

Pages are one-dimensional (linear) blocks that cover the distributed arrays, which may be
multidimensional. The virtual memory approach in hardware or software has an advantage
over blocking because the only multidimensional row major computation is to compute the
virtual address. Blocking needs to do another to calculate the processor and o�set.

The problem with hardware virtual memory, however, is that most real machines have
page sizes that are too big to allow linear pages to approximate multidimensional data tiles
unless the tiles are very large. Hardware virtual memory deals with actual movement of data
through paging and a large page size is needed to amortize large I/O costs. Figure 6 shows
how hardware pages can be used to cover the tiled data array from the previous example.
The shaded pages are allocated to a single processing node. As we can see, large page sizes
result in a poor approximation of the data tile, resulting in poor locality. On the other
hand, hardware virtual memory systems that support multiple page sizes might reduce some
of the problems with �xed page sizes. Although multiple-page-size systems merit further
exploration, they do not appear very promising because only the simplest of these solutions
are practical to build [15], and the need to support very small pages further complicates the
hardware.

To overcome the problems of the above approaches we propose using the same type of
paging structure as hardware virtual memory, but performing the address translation in

8

Figure 7: Approximation of a parallelogram data tile by small software pages.

software, so that the compiler can choose page sizes to �t data tile shapes.

4 Software Virtual Memory

The method of software virtual memory (SVM) is the following. Given a loop and data
partitioning, the compiler stripes the data array with small pages as indicated in Figure 7.
The compiler also constructs a pagemap that stores the processor at which each page will
be allocated. A pagesize estimator �nds the largest pagesize which is still small enough to
give good locality. Each page is placed according to its relation to a data tile. If a page is
contained wholly within a data tile it is allocated the processor with the most accesses to
that tile. If a page crosses the boundary between tiles, it is allocated as if it were contained
in the data tile that has maximal overlap with the page. For e�ciency of translation, page
sizes are required to be a power of two. This pagemap will be used at load time to construct
a page table in memory.

Figure 7 shows the approximation of a parallelogram data tile pattern by small software-
allocated pages. Virtual addresses of elements are the same as in a uniprocessor, in either
row-major or column-major order. By using small enough pages we can approximate the
shape of any data tile and get good data locality.

At runtime, the following steps are needed for an array access. These steps are overhead
beyond the normal index computation for array accesses on a uniprocessor.

9

srl r2,log(pagesize),r3 # get page number (shift right)
sll r3,2,r3 # convert to o�set into page table (shift left)
ld [r1+r3],r4 # get physical page base
and r2,pagesize-1,r3 # get o�set within page (mask)
lddf [r4+r3],fp0 # do real load (double precision)

Figure 8: Code sequence for software virtual memory

1. A fetch from the page table generated by the compiler using the page number obtained
from the virtual address.

2. An add of the o�set obtained from the virtual address to the physical page base.

Figure 8 shows the SVM code for a doubleword memory reference, assuming the base of
the page table is in r1 and the virtual address is in r2. The sequence adds an overhead of
only four instructions (the lddf would be done anyway).

On the Sparcle processor [4] used in Alewife, these 4 instructions require 5 cycles, assuming
all instructions and the page table lookup hit in the cache. We expect that the cache hit rate
will not degrade signi�cantly even for small page sizes, because the page table entries are
small compared to a page. For example, the software page tables for 128-byte pages occupy
less than than �ve percent of the area occupied by the data. Furthermore, the software page
table comprises read-only entries, each of which is accessed multiple times for each page.
Thus, the cache is not signi�cantly polluted, and subsequent accesses to a given entry hit in
the cache. This issue is discussed further in Section 5.

It is important to note that when data partitions are simple rectangles, a simple compiler
transformation similar to loop invariant code hoisting can be performed on this sequence by
subdividing the inner loop to iterate across a page. This transformation would eliminate
almost all of the SVM overhead.

Hardware virtual memory would give us the functionality of the �rst four instructions in
this sequence for free, assuming TLB hits, but at the possible cost of making the real load
remote rather than local.

This code sequence is always better than what would be obtained by n-dimensional block-
ing because an n-dimensional calculation is required to obtain the block number and o�set.
Thus, software virtual memory can better approximate arbitrary data tiles and is more e�-
cient than the commonly used partitioning methods.

5 Experimental Data

We have described a software memory scheme and explained why it should compare favorably
to software blocking and have a small overhead compared to hardware virtual memory. In
this section we give some quantitative measure of what these overheads are. Because the
overhead of memory references, both from addressing costs and the cost of remote references,
depends so strongly on the ratio of computation to communication, we will just present data
from two small programs that have a realistic number of memory references.

10

5.1 Comparison to HVM

To compare software virtual memory to hardware virtual memory we have to consider these
questions:

� What is the general overhead of doing the address translation in software?

� Given that the main advantage of SVM is the ability to use small pages, how does
address translation overhead depend on the size of the page?

� What is the overhead due to reduced data locality if large page sizes are used?

We examine these questions in the context of the equation introduced in Section 2, re-
peated here:

T = ctime+M � (o+ ncachehits � C + nlocal � L+ nremote �R)

Since software virtual memory increases o in order to reduce nremote, the right tradeo� may
be very di�erent for di�erent target architectures and machine sizes. In large machines it may
be worth a higher �xed array access overhead in order to reduce nremote because available
bandwidth may not grow linearly with the number of processors. It should also be noted
that if a program does a lot of calculation on the data it accesses, or reuses data in the cache
most of the time, performance will be largely insensitive to the details of data partitioning,
as in matrix multiply.

We ran two small programs on a simulator for the Alewife machine: [description of
Alewife in full paper] a Jacobi relaxation that can achieve good locality with rectangular
data partitions and a synthetic application that needs a parallelogram data partition for good
locality, (pgram). To compare with HVM, we modi�ed the simulator to perform address
translation for free, thus modeling a perfect HVM system with no TLB misses. To be
conservative, the optimization of lifting the address translation out of the inner loop was
not performed in any of these programs. We know that in the cases where this optimization
is possible the generated code will be almost exactly the same as if we had hardware virtual
memory.

5.1.1 Rectangular Partitions

Each inner-loop iteration of the Jacobi program has �ve memory references, four additions,
and a division. The total grid size was 128x128 double precision elements and the program
was run on 16 processors, each one operating on a 32x32 submatrix. We ran this program
on page sizes ranging from 32 bytes to 4-Kbytes and with SVM and HVM. The results are
shown in Figure 9. The page size chosen by our compiler's heuristic was 128 bytes.

Given the same page size for both, the straight overhead of SVM over HVM is the di�er-
ence between the two curves. For the 128 byte page size the compiler chose, the SVM time
is 32% greater. We note that the results include the cost of cache misses on the page table
entries in the software scheme.

Of course, this is for an idealized HVM system that supports 128 byte pages without
TLB misses. If we compare the 128-byte page size using SVM to a more realistic 4-Kbyte
hardware page size (still, with zero TLB faults), the overhead drops to 7%.

11

 SVM
� HVM

|

32
|

64
|

128
|

256
|

512
|

1024
|

2048
|

4096

|0

|50

|100

|150

|200

|250

 page size (bytes)

 t
im

e
(c

yc
le

s
x1

00
0)

�
� � � �

� � �

Figure 9: Running times for Jacobi with di�erent page sizes.

In the �gure, the decrease in performance when we go from 512 to 1024 byte page sizes is
so large because the dimension of each processor's tile is 512 bytes. When we try to cover this
with larger pages some processors experience very poor locality. Even though some processors
may still have good locality, the execution time is the time of the slowest processor. Alewife
actually has a farily low remote latency. Machines with higher remote memory latencies
would su�er more when large page size causes poor locality.

These results also show that the overhead of software virtual memory is not very sensitive
to the page size. The SVM curve is at in the region of good locality and the runtime for 32
bytes is only 3% more than the runtime for larger page sizes. Large page tables are not a big
concern because even with a 128-byte page size used for all program data, and one word per
page table entry, only 3% of the memory will be used by the page table.

5.1.2 Parallelogram Partitions

We also ran a synthetic application (pgram) that requires a parallelogram data partition to
get good locality. The data accessed by each processor was about 32x32 double precision as
in Jacobi. The count of operations was roughly the same but with no divisions. The results
for parallelogram partitions are shown in Figure 10. These results show that, as expected,
smaller page sizes are more important for parallelogram partitions. In this case the SVM
page size of 32 bytes gave the best performance, and actually had better performance than
the HVM with a 4-Kbyte page size. Compared to Jacobi, the steep dropo� in performance
happened at 512 instead of 1024 bytes because smaller tiles are required to accurately cover
a parallelogram.

12

 SVM
� HVM

|

32
|

64
|

128
|

256
|

512
|

1024
|

2048
|

4096

|0

|25

|50

|75

|100

 page size (bytes)

 t
im

e
(c

yc
le

s
x1

00
0)

�
�

�

�

� � � �

Figure 10: Running times for pgram with di�erent page sizes.

5.2 Comparison to Software Blocking

Because software blocking is normally used on multicomputers with no shared address space,
we cannot make a direct comparison of runtimes. We just note that for multicomputers, good
performance is only possible if remote references can be aggregated into large messages. This
will only be possible it the data tiles are large and rectangular.

We have not implemented an optimized version of software blocking for shared address-
space machines but simply observe that the data locality using SVM will always be at least as
good as in software blocking and the addressing overhead will always be smaller. How much
di�erence will depend on the application. For example, in the Jacobi case with a 128 byte
page size, there was about a 50000 cycle di�erence between SVM and HVM that is due to the
address overhead. Thus each cycle of address computation that software blocking imposes
would add an extra 10000 cycles (because the SVM overhead is 5 cycles per reference).

6 Conclusions

The performance of multiprocessors with physically distributed memory depends greatly on
the data locality in applications. The goal of this research has been to provide a method to
address distributed data automatically, while providing good data locality and low addressing
overhead. This method, software virtual memory, is a signi�cant improvement over previous
methods of data partitioning. The shape of data tiles can be closely approximated by using
small one-dimensional pages resulting in good data locality.

We have implemented software virtual memory in a compiler for shared address-space

13

machines with distributed memory. Simulations of one such machine, Alewife, indicate that
the addressing overhead is modest when compared to an idealized hardware virtual memory,
and insigni�cant when compared to hardware virtual memory with realistic page sizes. In
the special case of simple rectangular tiles, a straightforward code transformation similar to
loop invariant hoisting can reduce the overhead to almost zero.

In summary, software virtual memory can have several advantages over hardware virtual
memory or blocking.

� Software virtual memory has a modest array access overhead compared to hardware
virtual memory, but it results in better locality. As shown in section 5, the improved
locality a�orded by software virtual memory results in roughly the same performance as
hardware virtual memory for small machines. We expect its performance to surpass that
of hardware virtual memory for machines that are larger than the ones we simulated,
where remote memory access costs are greater.

� Software virtual memory is more e�cient than simple blocking of data, as argued in
section 4.

� Software virtual memory provides an illusion of continuity of the data space (over
blocking or other direct calculation methods), which allows the user pointer arithmetic
on virtual addresses. Blocking fragments the data space.

� Software virtual memory can be used for any complex data tiling pattern with no extra
overhead.

� Software virtual memory could possibly be used to dynamically allocate distributed
data.

In the future we would like to look more closely at the question of the general importance
of data partitioning taking prefetching and architectural issues into account. We would also
like to run our experiments for larger data sets.

References

[1] S. G. Abraham and D. E. Hudak. Compile-time partitioning of iterative parallel loops to
reduce cache coherency tra�c. IEEE Transactions on Parallel and Distributed Systems,
2(3):318{328, July 1991.

[2] Anant Agarwal, David Chaiken, Godfrey D'Souza, Kirk Johnson, David Kranz, John Ku-
biatowicz, Kiyoshi Kurihara, Beng-Hong Lim, Gino Maa, Dan Nussbaum, Mike Parkin,
and Donald Yeung. The MIT Alewife Machine: A Large-Scale Distributed-Memory
Multiprocessor. In Proceedings of Workshop on Scalable Shared Memory Multiproces-
sors. Kluwer Academic Publishers, 1991. An extended version of this paper has been
submitted for publication, and appears as MIT/LCS Memo TM-454, 1991.

[3] Anant Agarwal, David Kranz, and Venkat Natarajan. Automatic Partitioning of Parallel
Loops for Cache-Coherent Multiprocessors. In 22nd International Conference on Parallel
Processing, St. Charles, IL, August 1993. IEEE. A version of this paper appears as
MIT/LCS TM-481, December 1992.

14

[4] Anant Agarwal, John Kubiatowicz, David Kranz, Beng-Hong Lim, Donald Yeung, God-
frey D'Souza, and Mike Parkin. Sparcle: An Evolutionary Processor Design for Multi-
processors. IEEE Micro, 13(3):48{61, June 1993.

[5] Saman P. Amarasinghe and Monica S. Lam. Communication Optimization and Code
Generation for Distributed Memory Machines. In Proceedings of SIGPLAN '93, Con-
ference on Programming Languages Design and Implementation, June 1993.

[6] Jennifer M. Anderson and Monica S. Lam. Global Optimizations for Parallelism and
Locality on Scalable Parallel Machines. In Proceedings of SIGPLAN '93, Conference on
Programming Languages Design and Implementation, June 1993.

[7] J. Ferrante, V. Sarkar, and W. Thrash. On Estimating and Enhancing Cache E�ective-
ness, pages 328{341. Springer-Verlag, August 1991. Lecture Notes in Computer Science:
Languages and Compilers for Parallel Computing. Editors U. Banerjee and D. Gelernter
and A. Nicolau and D. Padua.

[8] D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache and local memory manage-
ment by global program transformation. Journal of Parallel and Distributed Computing,
5:587{616, 1988.

[9] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiling Fortran D for
MIMD Distributed Memory Machines. Communications of the ACM, 35(8):66{80, Au-
gust 1992.

[10] F. Irigoin and R. Triolet. Supernode Partitioning. In 15th Symposium on Principles of
Programming Languages (POPL XV), pages 319{329, January 1988.

[11] K. Knobe, J. Lukas, and G. Steele Jr. Data Optimization: Allocation of Arrays to Reduce
Communication on SIMD Machines. Journal of Parallel and Distributed Computing,
8(2):102{118, 1990.

[12] C. Koelbel and P. Mehrotra. Compiling Global Name-Space Parallel Loops for Dis-
tributed Execution. IEEE Transactions on Parallel and Distributed Systems, October
1991.

[13] J. Ramanujam and P. Sadayappan. Compile-Time Techniques for Data Distribution in
Distributed Memory Machines. IEEE Transactions on Parallel and Distributed Systems,
2(4):472{482, October 1991.

[14] Anne Rogers and Keshav Pingali. Process Decomposition through Locality of Reference.
In SIGPLAN '89, Conference on Programming Language Design and Implementation,
June 1989.

[15] Madhusudhan Talluri, Shing Kong, Mark D. Hill, and David A. Patterson. Tradeo�s
in Supporting Two Page Sizes. In Proceedings of the 19th International Symposium on
Computer Architecture, Gold Coast, Australia, May 1992.

[16] M. Wolfe. More Iteration Space Tiling. In Proceedings of Supercomputing '89, pages
655{664, November 1989.

15

