
CRL: High-Performance All-Software
Distributed Shared Memory�

Kirk L. Johnson, M. Frans Kaashoek, and Deborah A. Wallach
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract

This paper introduces the C Region Library (CRL), a new all-software distributedshared memory
(DSM) system. CRL requires no special compiler, hardware, or operating system support beyond
the ability to send and receive messages. It provides a simple, portable shared address space pro-
gramming model that is capable of delivering good performance on a wide range of multiprocessor
and distributed system architectures.

We have developed CRL implementations for two platforms: the CM-5, a commercial multi-
computer, and the MIT Alewife machine, an experimental multiprocessor offering efficient support
for both message passing and shared memory. We present results for up to 128 processors on the
CM-5 and up to 32 processors on Alewife. In a set of controlled experiments, we demonstrate
that CRL is the first all-software DSM system capable of delivering performance competitive with
hardware DSMs. CRL achieves speedups within 30% of those provided by Alewife’s native support
for shared memory, even for challenging applications (Barnes-Hut) and small problem sizes.

1 Introduction

This paper introduces the C Region Library (CRL), a new all-software DSM system for message-passing
multicomputers and distributed systems. The challenge in building such as system lies in providing the
ease of programming afforded by shared memory models without sacrificing performance or portability.
Parallel applications built on top of CRL share data through regions. Each region is an arbitrarily sized,
contiguous area of memory defined by the programmer. Regions are cached in the local memories
of processors; cached copies are kept consistent using a directory-based coherence protocol. Because
coherence is provided at the granularity of regions, instead of memory pages, cache lines, or some other
arbitrarily chosen fixed-size unit, CRL avoids the concomitant problems of false sharing for coherence
units that are too large or inefficient use of bandwidth for coherence units that are too small. We show
that CRL is capable of delivering performance competitive with hardware-supported DSM systems.

Three key features distinguish CRL from other software DSM systems. First, CRL is system-
and language-independent. Providing CRL functionality in programming languages other than C
should require little work. Second, CRL is portable. By employing a region-based approach, CRL
is implemented entirely as a library and requires no functionality from the underlying hardware or
operating system beyond that necessary to send and receive messages. Third, CRL is efficient. Very little

�Technical Report LCS-TM-517, MIT Laboratory for Computer Science, March 1995.

1

software overhead is interposed between applications and the underlying message-passing mechanisms.
While these features have occurred in isolation or in tandem in other software DSM systems, CRL is
the first software DSM system to provide all three in a simple, coherent package.

Because shared address space or shared memory programming environments like CRL provide
a uniform model for accessing all shared data, whether local or remote, they are relatively easy to
use. In contrast, message-passing environments burden programmers with the task of orchestrating
all interprocessor communication and synchronization through explicit message passing. While such
coordination can be managed without adversely affecting performance for relatively simple applications
(e.g., those that communicate infrequently or have relatively simple communication patterns), the task
can be far more difficult for large, complex applications, particularly those in which data is shared at a
fine granularity or according to irregular, dynamic communication patterns [38, 39].

In spite of this fact, message passing environments such as PVM [16] and MPI [29] are often the de
facto standards for programming multicomputers and networks of workstations. We believe that this is
primarily due to the fact that these systems require no special hardware, compiler, or operating system
support, thus enabling them to run entirely at user level on unmodified, “stock” systems. Because
CRL also requires minimal support from the underlying system, it should be equally portable and easy
to run on different platforms. As such, we believe that CRL could serve as an excellent vehicle for
applications requiring more expressive programming environments than PVM or MPI.

We have developed an implementation of CRL for Thinking Machines’ CM-5 family of multipro-
cessors. Because today’s networks of workstations offer interprocessor communication performance
rivaling that of the CM-5 [6, 30, 41, 43], we believe that the performance of our CRL implementation
for the CM-5 is indicative of what should be possible for an implementation targeting networks of work-
stations using current technology. Using the CM-5 implementation of CRL, we have run applications
on systems with up to 128 processors.

CRL is the first all-software DSM system capable of delivering performance competitive with hard-
ware DSMs. To demonstrate this fact, we ported our CRL implementation to the MIT Alewife machine
[1]. Since Alewife provides efficient hardware support for both message passing and shared memory
communication styles [23], the performance of applications running under CRL (using only message
passing for communication) can be readily compared to the performance of the same applications when
hardware-supported shared memory is used instead. Such experiments are controlled—only the com-
munication interface used by the programming system is changed: the processor, cache, memory, and
interconnect architectures remain unchanged. CRL achieves speedups within 30% of those provided by
Alewife’s native support for shared memory, even for challenging applications (Barnes-Hut) and small
problem sizes.

The rest of this paper is organized as follows: Section 2 describes a framework for classifying
DSM systems in terms of how three basic mechanisms required to provide a shared memory abstraction
are implemented. Section 3 describes the goals, programming model, and implementation of CRL.
Section 4 provides details about the experimental platforms used in this research (CM-5, Alewife).
Section 5 presents performance results for CRL and compares them with Alewife’s native shared
memory support, both in terms of low-level features and delivered application performance. Section 6
recaps the major points of the paper, discusses their implications, and identifies some areas for future
work. Section 7 provides a brief overview of related work. Finally, in Section 8, we draw our
conclusions.

2

2 Mechanisms for DSM

This section presents a framework for classifying and comparing DSM systems. This classification
scheme is primarily intended for use with DSM systems that employ a data shipping model in which
threads of computation are relatively immobileand data items (or copies of data items) are brought to the
threads that reference them. Other types of DSM systems (e.g., those in which threads of computation
are migrated to the data they reference) are also possible [4, 7, 13, 19]; a suitably generalized version
of the classification scheme presented here could likely be applied to these systems as well.

We classify systems by three basic mechanisms required to implement DSM and whether or not
those mechanisms are implemented in hardware or software. These basic mechanisms are the following:

Hit/miss check (processor-side): Decide whether a particular reference can be satisfied locally (e.g.,
whether or not it hits in the cache).

Request send (processor-side): React to the case where a reference cannot be satisfied locally (e.g.,
send a message to another processor requesting a copy of the relevant data item and wait for the
eventual reply).

Memory-side: Receive a request from another processor, perform any necessary coherence actions,
and send a response.

Using these three characteristics, we obtain the following breakdown of the spectrum of DSM
implementation techniques that have been discussed in the literature.

All-Hardware In all-hardware DSM systems, all three of these mechanisms are implemented in
specialized hardware; the Stanford DASH multiprocessor [27] is a typical all-hardware system.

Mostly Hardware As discussed in Section 4, Alewife implements a mostly hardware DSM system—
the processor-side mechanisms are always implemented in hardware, but memory-side support is
handled in software when widespread sharing is detected [9]. Dir1SW and its variations [18, 45]
are also mostly hardware schemes.

The Stanford FLASH multiprocessor [25] and Wisconsin Typhoon architecture [33] represent a
different kind of mostly hardware DSM system. Both of these systems implement the request
send and memory-side functionality in software, but that software is running on a specialized
coprocessor associated with every processor/memory pair in the system; only “memory system”
code is expected to be run on the coprocessor.

Mostly Software Many software DSM systems are actually mostly software systems in which the
“hit/miss check” functionality is implemented in hardware (e.g., by leveraging off of virtual memory
protection mechanisms). Typical examples of mostly software systems include Ivy [28], Munin [8],
and TreadMarks [14]; coherence units in these systems are the size of virtual memory pages.

Blizzard [37] implements a similar scheme on the CM-5 at the granularity of individual cache lines.
By manipulating the error correcting code bits associated with every memory block, Blizzard can
control access on a cache-line by cache-line basis.

All-Software In an all-software DSM system, all three of the mechanisms identified above are
implemented entirely in software. Several researchers have recently reported on experiences with
all-software DSM systems obtained by modifying mostly software DSM systems such that the
“hit/miss check” functionality is provided in software [37, 46].

3

Generally speaking, increased use of software to provide shared-memory functionality tends to
decrease application performance because processor cycles spent implementing memory system func-
tionality might otherwise have been spent in application code. However, CRL demonstrates that it
is possible to implement all three of these mechanisms in software and still provide performance
competitive with hardware implementations on challenging shared-memory applications.

3 The CRL Approach

This section describes the C Region Library (CRL). In terms of the classification presented in the
previous section, CRL is an all-software DSM system. Furthermore, CRL is implemented as a library
against which user programs are linked; no special hardware, compiler, or operating system support is
required.

CRL shares many of the advantages and disadvantages of other software DSM systems when
compared to hardware DSMs. In particular, latencies of many communication operations may be
significantly higher than similar operations in a hardware-based system. CRL offsets some of this
disadvantage by being able to use part of main memory as a large secondary cache instead of relying
only on hardware caches, which are typically small because of the cost of the resources required to
implement them. In addition, because regions correspond to user-defined data structures, coherence
actions transfer exactly the data required by the application. Furthermore, CRL can exploit efficient
bulk data transport mechanism when transferring large regions. Finally, because CRL is implemented
entirely in software at user level, it is easily modified or extended (e.g., for instrumentation purposes or
in order to experiment with different coherence protocols).

3.1 Goals

Several major goals guided the development of CRL. First and foremost, we strove to preserve the
essential “feel” of the shared memory programming model without requiring undue limitations on
language features or, worse, an entirely new language. In particular, we are interested in preserving
the uniform access model for shared data, whether local or remote, that most DSM systems have in
common. Second, we were interested in a system that could be implemented efficiently in an all-
software context and thus minimized what functionality was required from the underlying hardware
and operating system. Systems that take advantage of more complex hardware or operating system
functionality (e.g., page-based mostly software DSM systems) are worthy of study, but can suffer a
performance penalty because of inefficient interfaces for accessing such features [46]. Finally, we
wanted a system that would be amenable to simple and lean implementations in which only a small
amount of software overhead sits between applications and access to the message-passing infrastructure
used for communication.

3.2 Programming Model

In the CRL programming model, communication is effected through operations on regions. Each region
is an arbitrarily sized, contiguous area of memory identified by a unique region identifier. New regions
can be created dynamically by calling rgn_create with one argument, the size of the region to create
(in bytes); rgn_create returns a region identifier for the newly created region. A region identifier is
a portable and stable name for a region (other systems use the term “global pointer” for this concept).
Thus rgn_create can be thought of as the CRL analogue to malloc.

4

Function Effect Argument
rgn_create create a new region size of region to create
rgn_delete delete a region region identifier
rgn_map map a region into the local address space region identifier
rgn_unmap unmap a mapped region pointer returned by rgn_map
rgn_start_read initiate a read operation on a region pointer returned by rgn_map
rgn_end_read terminate a read operation on a region pointer returned by rgn_map
rgn_start_write initiate a write operation on a region pointer returned by rgn_map
rgn_end_write terminate a write operation on a region pointer returned by rgn_map
rgn_flush flush the local copy of a region pointer returned by rgn_map

Table 1: Summary of the CRL interface.

CRL also provides a rgn_delete function (analogous to free), but in the current implementa-
tion, it is a no-op. We plan to implement the rgn_delete functionality eventually; doing so should
be straightforward, but we haven’t found any pressing need to do so for the applications we have
implemented to date.

Before accessing a region, a processor must map it into the local address space using the rgn_map
function. rgn_map takes one argument, a region identifier, and returns a pointer to the base of the
region’s data area. A complementary rgn_unmap function allows the processor to indicate that it
is done accessing the region, at least for the time being. Any number of regions can be mapped
simultaneously on a single node, subject to the limitation that each mapping requires at least as much
memory as the size of the mapped region, and the total memory usage per node is ultimately limited
by the physical resources available. The address at which a particular region is mapped into the local
address space may not be the same on all processors. Furthermore, while the mapping is fixed between
any rgn_map and the corresponding rgn_unmap, successive mappings on the same processor may
place the region at different locations in the local address space.

Because CRL makes no guarantees about the addresses regions get mapped to, applications that
need to store a “pointer” to shared data (e.g., in another region as part of a distributed, shared data
structure) must store the corresponding region’s unique identifier (as returned by rgn_create), not
the address at which the region is currently mapped. Subsequent references to the data referenced by
the region identifier must be preceded by calls to rgn_map (to obtain the address at which the region
is mapped) and followed by calls to rgn_unmap (to clean up the mapping).

After a region has been mapped into the local address space, its data area can be accessed in the same
manner as a region of memory referenced by any other pointer: no additional overhead is introduced on a
per reference basis. CRL does require, however, that programmers group accesses to a region’s data area
into operations and annotate programs with calls to CRL library functions to delimit them. Two types of
operations are available: read operations, during which a program is only allowed to read the data area
of the region in question, and write operations, during which both reads and writes to the data area are
allowed. Operations are initiated by calling either rgn_start_read or rgn_start_write, as
appropriate; rgn_end_read andrgn_end_write are the complementary functions for terminating
operations. These functions all take a single argument, the pointer to the base of the region’s data area
that was returned by rgn_map for the region in question. Figure 1 provides a simple example of how
these functions might be used in practice.

5

/* compute the dot product of two n-element vectors, each
* of which is represented by an appropriately sized region
* x: address at which 1st vector is already mapped
* y: region identifier for 2nd vector
*/

double dotprod(double *x, rid_t y, int n)
{
int i;
double *z;
double rslt;

/* initiate read operation on 1st vector
*/
rgn_start_read(x);

/* map 2nd vector and initiate read operation
*/
z = (double *) rgn_map(y);
rgn_start_read(z);

/* compute dot product
*/
rslt = 0;
for (i=0; i<n; i++)
rslt += x[i] * z[i];

/* terminate read operations and unmap 2nd vector
*/
rgn_end_read(x);
rgn_end_read(z);
rgn_unmap(z);

return rslt;
}

Figure 1: A simple example of how CRL might be used in practice.

6

An operation is considered to be in progress from the time the initiating rgn_start_op returns
until the corresponding rgn_end_op is called. Write operations are serialized with respect to all
other operations on a region, including those on other processors. Read operations to the same region
are allowed to proceed concurrently, independent of the processor on which they are executed. If a
newly initiated operation conflicts with those already in progress on the region in question, the call to
rgn_start_op responsible for initiating the operation spins until it can proceed without conflict. The
effect of loads from a region’s data area when no operation is in progress on that region is undefined;
similarly for stores to a region’s data area when no write operation is in progress.

In addition to functions for mapping, unmapping, starting operations, and ending operations, CRL
provides a flush call for mapped regions which causes the local copy of a region to be flushed back to
the home node; it is analogous to flushing a cache line in hardware DSM systems. Table 1 summarizes
the CRL interface.

Although the programming model provided by CRL is not exactly the same as any “standard”
shared memory programming model, our experience is that the programming overhead it causes is
minimal. Furthermore, with this modest change to the programming model, CRL implementations are
able to amortize the cost of providing the mechanisms described in Section 2 entirely in software over
entire operations (typically multiple loads and stores) instead of paying that cost for every reference to
potentially shared memory.

The current implementation of CRL supports SPMD-like (single program, multiple data) applica-
tions in which a single user thread or process runs on each processor in the system. Interprocessor
synchronization can be effected through region operations, barriers, broadcasts, and reductions. Many
shared memory applications (e.g., the SPLASH application suites [40]) are written in this style. An
initial version of CRL that supports multiple user threads per processor has recently become operational.

3.3 Memory/Coherence Model

The simplest explanation of the coherence model provided by CRL considers entire operations on
regions as indivisible units. From this perspective, CRL provides sequential consistency for read
and write operations in the same sense that a sequentially consistent hardware-based DSM does for
individual loads and stores.

In terms of individual loads and stores, CRL provides a memory/coherence model similar to entry
[5] or release consistency [17]. Loads and stores to global data are only allowed within properly
synchronized sections (operations), and modifications to a region are only made visible to other pro-
cessors after the appropriate release operation (a call to rgn_end_write). The principal difference
between typical implementations of these models and CRL, however, is that synchronization objects
(and any association of data with particular synchronization objects that might be necessary) are not
provided explicitly by the programmer. Instead, they are implicit in the semantics of the CRL interface:
every region has an associated synchronization object (what amounts to a reader-writer lock) which is
“acquired” and “released” using calls to rgn_start_op and rgn_end_op.

3.4 Prototype Implementation

We have developed an implementation of CRL for Thinking Machines’ CM-5 family of multiprocessors
and the MIT Alewife machine. In both cases, all communication is effected using active messages
[44]. CRL is implemented as a library against which user programs are linked; it is written entirely in

7

C. Both CM-5 and Alewife versions can be compiled from a single set of sources with conditionally
compiled sections to handle machine-specific details (e.g., different message-passing interfaces).

In addition to the basic region functions shown in Table 1, CRL provides a modest selection of
global synchronization operations (barrier, broadcast, reductions on double-precision floating-point
values). Extending the set of global synchronization operations to make it more complete would be
straightforward. On Alewife, CRL implements these operations entirely in software; on the CM-5, we
take advantage of the special hardware support for global operations.

3.4.1 Protocol

CRL currently employs a fixed-home, directory-based invalidate protocol similar to that used in many
hardware DSM systems. Responses to invalidation messages are always sent back to a region’s home
node (which collects them and responds appropriately after they have all arrived); the “three-party
optimization” in which such responses are sent directly to the requesting node is not used.

In order to handle out-of-order message delivery, a common occurrence when programming with
active messages on the CM-5, CRL maintains a 32-bit version number for each region. Each time a
remote processor requests a copy of the region, the current version number is recorded in the directory
entry allocated for the copy and returned along with the reply message; the current version number is
then incremented. By including the version number for a remote copy of a region in all other protocol
messages related to that copy, misordered protocol messages are easily identified and either buffered or
dropped, as appropriate.

Hardware-based directory protocols typically include provisions for sending a negative acknowl-
edgement (nack) in response to protocol requests that show up at times when it would be inconvenient
or difficult to handle them. Upon being nack-ed, requesting nodes are responsible for resending the
original request. The overhead of receiving an active message can be significant, even in the most
efficient of systems. Thus, employing such an approach in CRL could raise the possibility of livelock
situations in which a large number of remote nodes could “gang up” on a home node, saturating it
with requests (that always get nack-ed and thus resent) in such a way that forward progress is impeded
indefinitely. CRL avoids these problems by never nack-ing protocol requests; those that show up at
inconvenient times are simply queued for later processing. Other solutions to this problem are possible
(e.g., nack inconvenient requests, but use some amount of backoff before resending them), but we have
not investigated them.

3.4.2 Caching

CRL caches both mapped and unmapped regions. First, when an application keeps a region mapped
on a particular processor through a sequence of operations, the data associated with the region may
be cached between operations. Naturally, the local copy can be invalidated due to other processors
initiating operations on the same region. As in hardware DSM systems, whether or not such invalidation
actually happens is effectively invisible to the end user (except in terms of any performance penalty it
may cause).

Second, whenever a region is unmapped and no other mappings of the region are in progress locally,
it is entered into a software table called the unmapped region cache (URC); the state of the region’s
data (e.g., invalid, clean, dirty) is left unchanged. Inserting a region into the URC may require evicting
an existing entry. This is accomplished in two steps. First, the region to be evicted is flushed in order

8

to inform its home node that the local copy has been dropped and, if necessary, write back any changes
to the data. Second, any memory resources that had been allocated for the evicted region are freed.

Attempts to map remote regions that are not already mapped locally are satisfied from the URC
whenever possible. By design, the URC only holds unmapped regions, so any call to rgn_map that is
satisfied from the URC also causes the region in question to be removed from the URC.

The URC serves two purposes: First, it allows the caching of data (as described above for regions
that remain mapped through multiple operations) between different mappings of the same region. If
a region with a valid copy of the associated data is placed in the URC (after being unmapped by
an application) and the data is not invalidated before the next time the region is mapped, it may be
possible to satisfy subsequent calls to rgn_start_op locally, without requiring communication with
the home node. Second, it enables the caching of mappings. Even if the data associated with a region
is invalidated while the region sits in the URC (or perhaps was already invalid when the region was
inserted into the URC), caching the mapping allows later attempts to map the same region to be satisfied
more quickly than they might be otherwise. Calls to rgn_map that cannot be satisfied locally require
sending a message to the region’s home node requesting information (e.g., the size and current version
number), waiting for the reply, allocating a local copy for the region, and initializing the protocol
metadata appropriately. CRL currently uses a fixed-size URC with 1024 entries.

3.4.3 Status

Our CRL implementation has been operational for several months. We have used it to run a handful
of shared-memory-style applications, including two from the SPLASH-2 suite, on a 32-node Alewife
system and CM-5 systems with up to 128 processors. A “null” implementation that provides null or
identity macros for all CRL functions except rgn_create (which is a simple wrapper around malloc)
is also available to obtain sequential timings on Alewife, the CM-5, or uniprocessor systems (e.g.,
desktop workstations).

We plan to make our CRL implementation and CRL versions of several applications available for
anonymous ftp sometime during the summer of 1995.

4 Experimental Platforms

This section describes the two platforms that are used for the experiments described in this paper:
Thinking Machines’ CM-5 family of multiprocessors and the MIT Alewife machine.

4.1 CM-5

The CM-5 [26] is a commercially available message-passing multicomputer with relatively efficient
support for low-overhead, fine-grained message passing. The experiments described in this paper were
run on a 128-node CM-5 system running version 7.3 Final of the CMOST operating system and version
3.2 of the CMMD message-passing library. Each CM-5 node contains a SPARC v7 processor (running
at 32 MHz) and 32 Mbytes of physical memory.

Application codes on the CM-5 can be run with interrupts either enabled or disabled. If interrupts
are enabled, active messages arriving at a node are handled immediately by interrupting whatever
computation was running on that node; the overhead of receiving active messages in this manner is
relatively high. This overhead can be reduced by running with interrupts disabled, in which case
incoming active messages simply block until the code running on the node in question explicitly polls

9

the network (or tries to send a message, which implicitly causes the network to be polled). Running with
interrupts disabled is not a panacea, however. With interrupt-driven message delivery, the programmer
is not aware of when protocol messages are processed by the local node. In contrast, if polling is used,
the programmer needs to be aware of when these events happen and to ensure that the network is polled
frequently enough to allow those protocol messages to be serviced promptly.

Our CRL implementation for the CM-5 works correctly whether interrupts are enabled or disabled.
If it is used with interrupts disabled, users are responsible for ensuring the network is polled frequently
enough, as is always the case when programming with interrupts disabled. All CM-5 results presented
in this paper are obtained by running with interrupts enabled. It may be possible to obtain somewhat
better performance by adding the necessary polling code to applications and running with interrupts
disabled; we plan to investigate these issues further in the near future.

In a simple ping-pong test, the round-trip time for four-argument active messages (the size CRL
uses for non-data carrying protocol messages) on the CM-5 is approximately 34 microseconds (1088
cycles). This includes the cost of disabling interrupts on the requesting side1, sending the request,
polling until the reply message is received, and then reenabling interrupts. Message delivery on the
replying side is interrupt-driven.

For large regions, data-carrying protocol messages use the CMMD’s scopy functionality to effect
data transfer between nodes. scopy achieves a transfer rate of 7 to 8 Mbytes/second for large transfers,
but because it requires prenegotiation of a special data structure on the receiving node before data
transfer can be initiated, performance on small transfers can suffer. To address this problem, CRL
employs a special mechanism for data transfers smaller than 384 bytes (the crossover point between
the two mechanisms). This mechanism packs three payload words and a destination base address into
each four-argument active message; specialized message handlers are used to encode offsets from the
destination base address at which the payload words should be stored in the message handler. While
this approach cuts the effective transfer bandwidth roughly in half, it provides significantly reduced
latencies for small transfers by avoiding the need for prenegotiation with the receiving node.

Networks of workstations with interprocessor communication performance rivaling that of the
CM-5 are rapidly becoming reality [6, 30, 41, 43]. For example, Thekkath et al. [42] describe the
implementation of a specialized data-transfer mechanism implemented on a pair of 25 MHz DECstations
connected with a FORE ATM network. They report round-trip times of 45 microseconds (1125 cycles)
to read 40 bytes of data from a remote processor. Since this latency is on par with that measured for the
CM-5, we expect that the performance of our CRL on the CM-5 is indicative of what should be possible
for implementations targeting networks of workstations using current- or next-generation technology.

4.2 Alewife

Alewife [1] is an experimental distributed memory multiprocessor. The basic Alewife architecture
consists of processor/memory nodes communicating over a packet-switched interconnection network
organized as a low-dimensional mesh (see Figure 2). Each processor/memory node consists of a Sparcle
processor [2], an off-the-shelf floating-point unit (FPU), a 64-kilobyte unified instruction/data cache
(direct mapped, 16-byte lines), eight megabytes of DRAM, the local portion of the interconnection
network, and a Communications and Memory Management Unit (CMMU). Because Sparcle was

1Disabling interrupts is required when using CMAML rpc to send an active message; CMAML rpc must be used because
CRL’s coherence protocol does not fit into the simple request/reply network model that is supported somewhat more efficiently
on the CM-5.

10

Alewife Machine

Alewife Node

cache

Sparcle network

DRAMFPU

CMMU

Figure 2: Basic Alewife architecture.

derived from a SPARC v7 processor not unlike that used in the CM-5 nodes, basic processor issues
(instruction set, timings, etc.) are quite similar on the two machines.

Alewife provides efficient support for both coherent shared-memory and message-passing com-
munication styles. Shared memory support is provided through an implementation of the LimitLESS
cache coherence scheme [9]: limited sharing of memory blocks (up to five remote readers) is supported
in hardware; higher-degree sharing is handled by trapping the processor on the home memory node
and extending the small hardware directory in software. In general, Alewife’s shared memory system
performs quite well, enabling speedups comparable to or better than similarly scalable systems.

In addition to providing support for coherent shared memory, Alewife provides the processor
with direct access to the interconnection network for sending and receiving messages [24]. Efficient
mechanisms are provided for sending and receiving both short (register-to-register) and long (memory-
to-memory, block transfer) messages. Using Alewife’s message-passing mechanisms, a processor can
send a message with just a few user-level instructions. A processor receiving such a message will
trap and respond either by rapidly executing a message handler or by queuing the message for later
consideration when an appropriate message handler gets scheduled. Scheduling and queuing decisions
are made entirely in software.

Two non-fatal bugs in the first-run CMMU silicon warrant mention here. First, because of a timing
conflict between the CMMU and the FPU, codes that make significant use of the FPU are limited to
running at 20 MHz instead of the target clock rate of 33 MHz. Because of this, all Alewife performance
results presented in this paper assume a 20 MHz clock. Second, in order to ensure data integrity when
using the block transfer mechanism, it is necessary to flush message buffers from the memory system
before sending or initiating storeback on the receiving processor. This overhead cuts the effective peak
bandwidth of the block transfer mechanism from approximately 2.2 bytes/cycle (44 Mbytes/second)
to roughly 0.9 bytes/cycle (18 Mbytes/second). Both of these bugs will be fixed in a planned CMMU
respin.

For the same simple ping-pong test described in Section 4.1, the round-trip time for four-word
active messages (using interrupt-driven message delivery on both ends) on Alewife is approximately
14 microseconds (280 cycles). Even in terms of absolute time (without correcting for the differences
in clock speed), this is more than a factor of two faster than the CM-5. In our current Alewife CRL
implementation, active message latencies are somewhat higher, however, because all protocol mes-
sage handlers are effectively transitioned into full-fledged threads that can be interrupted by incoming
messages. This transition prevents long-running handlers from blocking further message delivery and

11

CM-5 Alewife Alewife (native)
cycles �sec cycles �sec cycles �sec

start read hit 80 2.5 47 2.3 — —
end read 96 3.0 50 2.5 — —
start read miss, no invalidations 1763 55.1 580 29.0 38 1.9
start write miss, one invalidation 3459 108.1 978 48.9 66 3.3
start write miss, six invalidations 4157 129.9 1935 96.7 707 35.4

Table 2: Measured CRL latencies, 16-byte regions (in both cycles and microseconds). Measurements
for Alewife’s native shared memory system are provided for comparison.

CM-5 Alewife
cycles �sec cycles �sec

start read miss, no invalidations 3581 111.9 642 32.1
start write miss, one invalidation 5312 166.0 1046 52.3
start write miss, six invalidations 6006 187.7 2004 100.2

Table 3: Measured CRL latencies, 256-byte regions (in both cycles and microseconds).

causing network congestion. Currently, this transition adds approximately 248 cycles (12.4 microsec-
onds) to the round-trip time, but minor functionality extensions planned for the CMMU respin will
make it possible to reduce this overhead by at least an order of magnitude.

A sixteen-node Alewife machine has been operational since June, 1994; this system was expanded
to 32 nodes in November, 1994. Larger systems will become available over the course of the next year.

5 Results

This section presents performance results for CRL. These results are described in two subsections: the
first discusses the latencies of various basic events as measured with a simple microbenchmark; the
second presents results from three applications (blocked LU, Water, and Barnes-Hut). In all cases,
results are presented not only for the two CRL implementations (CM-5 and Alewife), but also for
Alewife’s native shared memory support.

The basic latencies for Alewife CRL presented in Section 5.1 do not include the overhead of flushing
message buffers and transitioning message handlers into threads as discussed in Section 4; these figures
were obtained using a version of the Alewife CRL implementation in which code related to flushing
message buffers and transitioning handlers into threads had been removed. Thus, these latencies are
indicative of what will be possible after the Alewife CMMU respin. In the existing Alewife CRL
implementation, these overheads cause applications to see latencies between 55 to 75 percent larger
than those shown here. All other Alewife CRL results reported in this paper include this additional
overhead and are thus somewhat worse than what should be possible after the respin.

12

5.1 Basic Latencies

The following simple microbenchmark is used to measure the cost of various CRL events. Some number
of regions are allocated on a selected home node (the measurements presented here were taken with 64
regions). Situations corresponding to desired events (e.g., a start write on a remote node that requires
other remote read copies be invalidated) are constructed mechanically for some subset of the regions;
the time it takes yet another processor to execute a simple loop calling the relevant CRL function for
each of these regions is then measured. We compute the time for the event in question by repeating
this process for all numbers of regions between one and the number allocated and computing the linear
regression of the number of regions against measured times; the slope thus obtained is taken to be the
time per event.

Invocations of rgn_map that can be satisfied locally (e.g., because the call was made on the
home node for the region in question, the region is already mapped, or the region is present in the
URC) are termed “hits.” On both Alewife and the CM-5, invocations of rgn_map that are hits cost
between 80 and 170 cycles, depending on whether or not the region in question had to be removed from
the unmapped region cache. Calls to rgn_map that cannot be satisfied locally (“misses”) are more
expensive (roughly 820 cycles on Alewife and 2300 cycles on the CM-5). This increase reflects the
cost of sending a message to the region’s home node, waiting for a reply, allocating a local copy for the
region, and initializing the protocol metadata appropriately. Invocations of rgn_unmap take between
30 and 100 cycles; the longer times corresponding to the cases in which the region being unmapped
needs to be inserted into the unmapped region cache.

Table 2 shows the measured latencies for a number of typical CRL events, assuming 16-byte regions.
The first two lines (“start read, hit” and “end read”) represent events that can be satisfied entirely locally.
The other lines in the table show miss latencies for three situations: “start read, miss, no invalidations”
represents a simple read miss to a remote location requiring no other protocol actions; “start write, miss,
one invalidation” represents a write miss to a remote location that also requires a read copy of the data
on a third node to be invalidated; “start write, miss, six invalidations” represents a similar situation in
which read copies on six other nodes must be invalidated.

Latencies for Alewife’s native shared memory system are provided for comparison. The first two
cases shown here (read miss, no invalidations, and write miss, one invalidation) are situations in which
the miss is satisfied entirely in hardware. The third case (write miss, six invalidations) is one in which
LimitLESS software must be invoked, because Alewife only provides hardware support for up to five
outstanding copies of a cache line. Note that for 16-byte regions (the same size as the cache lines used
in Alewife), the CRL latencies are roughly a factor of 15 larger than those for a request handled entirely
in hardware; this factor is entirely due to time spent executing CRL code and the overhead of active
message delivery.

Table 3 shows how the miss latencies given in Table 2 change when the region size is increased to
256 bytes. Note that for Alewife, these latencies are only 60 to 70 cycles larger than those for 16-byte
regions; the fact that the differences are so small is a testament to the efficiency of Alewife’s block
transfer mechanism.

Interestingly, these latencies indicate that with regions of a few hundred bytes in size, CRL achieves
a bandwidth similar to that provided by hardware-supported shared memory (a 16-byte cache line @ 1.9
microseconds = 8.4 Mbytes/second; a 256-byte region @ 32.1 microseconds = 8.0 Mbytes/second).
While such a simple calculation ignores numerous important issues, it does provide a rough indication
of the data granularity that CRL should be able to support efficiently when built on top of fast message-
passing mechanisms. Note that because the CM-5 provides less efficient mechanisms for bulk data

13

Blocked LU Water Barnes-Hut
CM-5 Alewife CM-5 Alewife CM-5 Alewife
CRL CRL SM CRL CRL SM CRL CRL SM

sequential 24.89 52.05 52.05 10.63 22.41 22.41 11.67 22.83 22.83
1 proc 25.35 53.56 52.15 12.21 23.85 22.49 23.07 34.97 22.96
32 procs 1.62 2.36 2.62 1.33 1.19 1.01 1.70 1.90 1.36

Table 4: Application running times (in seconds).

Blocked LU Water Barnes-Hut
CM-5 Alewife CM-5 Alewife CM-5 Alewife

CRL, 1 proc map count (x 1000) 84.58 84.58 — — 983.60 983.60
op count (x 1000) 84.63 84.63 269.32 269.32 992.22 992.22

CRL, 32 procs map count (x 1000) 2.81 2.81 — — 30.76 30.76
(miss rate, %) 15.30 15.30 — — 1.27 1.25

op count (x 1000) 2.78 2.78 8.68 8.68 31.27 31.14
(miss rate, %) 14.29 14.29 7.84 9.23 4.73 4.77

msg count (x 1000) 1.65 1.65 2.56 3.03 5.89 5.90

Table 5: Application characteristics when running under CRL (measurements are average values
expressed on a per-processor basis.)

transfer, the CM-5 implementation of CRL requires much larger regions to provide effective remote
data access bandwidth approaching that delivered by Alewife’s hardware-supported shared memory.

5.2 Application Performance

While comparisons of the performance of low-level mechanisms can be revealing, end-to-end perfor-
mance comparisons of real applications are far more important. The remainder of this section presents
results obtained from running three applications (Blocked LU, Water, and Barnes-Hut) on top of both
CRL implementations and Alewife’s native shared memory support.

For all of the applications discussed in this paper, judicious use of conditional compilation allows the
same set of sources to be compiled to use either CRL (on either Alewife or the CM-5) or shared memory
(Alewife only) to effect interprocessor communication. The shared-memory versions of applications
use the hardware-supported shared memory directly and contain no calls to the CRL functions described
in Section 3 (for brevity’s sake, the rest of the paper uses the term “Alewife SM” to refer to this case).
None of the applications employ any prefetching.

Table 4 summarizes the running times for the sequential, CRL, and shared memory (SM) versions
of the three applications. Sequential running time is obtained by compiling each application against
the null CRL implementation described in Section 3 and running on a single node of the architecture in
question; this time is used as the basepoint for computing application speedup. Note that the running
times for the CRL versions of applications running on one processor are larger than the sequential
running times. This difference represents the overhead of calls to CRL functions—even CRL calls that

14

| ||0

|10

|20

|30

|40

|50

 number of processors

 t
im

e
(s

ec
)

1 2 4 8 16 32

Alewife (SM)

Alewife (CRL)

CM-5 (CRL)

 linear speedup
� Alewife (SM)
� Alewife (CRL)
� CM-5 (CRL)

|

0
|

8
|

16
|

24
|

32
|0

|5

|10

|15

|20

|25

 number of processors

 s
p

ee
d

u
p

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 3: Absolute running time (left) and speedup (right) for Blocked LU (500x500 matrix, 10x10
blocks).

“hit” incur overhead, unlike hardware systems where hits (e.g., in a cache) incur no overhead.
Table 5 presents event counts obtained by compiling each application against an instrumented ver-

sion of the CRL library and running the resulting binary. The instrumented version of the CRL library
collected many more statistics than those shown here; applications linked against it run approximately
10% slower than when linked against the unmodified library. Table 5 shows counts for three different
events: “map count” indicates the number of times regions were mapped (because calls to rgn_map
and rgn_unmap are always paired, this number also represents the number of times regions were un-
mapped); “op count” indicates the total number of operations executed (paired calls torgn_start_op
and rgn_end_op); “msg count” shows the number of protocol messages sent and received during
the time in question. For the 32 processor results, miss rates are also shown; these rates indicate the
fraction of calls to rgn_map and rgn_start_op that cannot be satisfied locally (without requiring
interprocessor communication). All counts are average figures expressed on a per-processor basis.

Map count and miss rates for Water are shown as ‘—’ because the application’s entire data set is kept
mapped on all nodes at all times; regions are mapped once at program start time and never unmapped.
While this may not be a good idea in general, it is reasonable for Water because the data set is relatively
small (a few hundred kilobytes) and is likely to remain manageable even for larger problem sizes.

5.2.1 Blocked LU

Blocked LU implements LU factorization of a dense matrix; the version reported on here is based on
one described by Rothberg et al. [34]. In the CRL version of the code, a region is created for each
block of the matrix to be factored. The results presented here are for a 500x500 matrix using 10x10
blocks; thus the size of each region is 800 bytes.

Figure 3 shows the performance of the three different versions of Blocked LU (CM-5 CRL, Alewife
CRL, Alewife SM) on up to 32 processors. The left-hand plot shows absolute running time, without
correcting for differences in clock speed between the CM-5 (32 MHz) and Alewife (20 MHz). The

15

| ||0

|5

|10

|15

|20

|25

 number of processors

 t
im

e
(s

ec
)

1 2 4 8 16 32

Alewife (SM)

Alewife (CRL)

CM-5 (CRL)

 linear speedup
� Alewife (SM)
� Alewife (CRL)
� CM-5 (CRL)

|

0
|

8
|

16
|

24
|

32
|0

|5

|10

|15

|20

|25

 number of processors

 s
p

ee
d

u
p

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

Figure 4: Absolute running time (left) and speedup (right) for Water (512 molecules).

right-hand plot shows speedup; the basepoints for the speedup calculations are the sequential running
times shown in Table 4 (thus both Alewife curves are normalized to the same basepoint, but the CM-5
speedup curve uses a different basepoint).

All three implementationsperform well, delivering speedups of between 15 and 20 on 32 processors.
This is not particularly surprising; it is relatively well known that Blocked LU decomposition does not
present a particular challenging communication workload. The data in Tables 4 and 5 confirm this
belief, indicating acceptable miss rates and large granularity: an average of roughly 9,400 (CM-5) and
12,300 (Alewife) cycles of useful work per operation. (This figure is obtained by dividing the sequential
running time by the number of operations executed by the CRL version of the application running on
one processor.)

Somewhat surprising, however, is the fact that Alewife CRL outperforms Alewife SM by roughly
15% on 32 processors. This occurs because of LimitLESS software overhead. On 16 processors, only a
small portion of the LU data set is shared more widely than the five-way sharing supported in hardware,
so LimitLESS software is only invoked infrequently. On 32 processors, this is no longer true: over
half of the data set is read by more than five processors at some point during program execution. The
overhead incurred by servicing some portion of these requests in software allows the performance of
Alewife CRL to outstrip that of Alewife SM.

5.2.2 Water

The Water application used in this study is the “n-squared” version from the SPLASH-2 application
suite; it is a molecular dynamics application that evaluates forces and potentials in a system of water
molecules in the liquid state. Applications like Water are typically run for tens or hundreds of iterations
(time steps), so the time per iteration in the “steady state” dominates any startup effects. Therefore, to
determine running time, we run the application for three iterations and take the average of the second
and third iteration times (thus eliminating timing variations due to startup transients that occur during
the first iteration).

16

, ,

/. ,,;:::::;,,

/,~::;:,' >;/'' ---------------

.·, .,

| ||0

|10

|20

|30

|40

 number of processors

 t
im

e
(s

ec
)

1 2 4 8 16 32

Alewife (SM)

Alewife (CRL)

CM-5 (CRL)

 linear speedup
� Alewife (SM)
� Alewife (CRL)
� CM-5 (CRL)

|

0
|

8
|

16
|

24
|

32
|0

|5

|10

|15

|20

 number of processors

 s
p

ee
d

u
p

�

�

�

�

�

�

�
�

�

�

�

�

��
�

�

�

�

Figure 5: Absolute running time (left) and speedup (right) for Barnes-Hut (4096 bodies).

In the CRL version of the code, a region is created for each molecule data structure; the size of
each such region is 672 bytes. Three small regions (8, 24, and 24 bytes) are also created to hold several
running sums that are updated every iteration by each processor. The results presented here are for a
problem size of 512 molecules.

Figure 4 shows the absolute running time and speedup curves for the three versions of Water.
Both Alewife SM and Alewife CRL perform quite well (speedups of 22.3 and 18.9 on 32 processors,
respectively), but the performance of CM-5 CRL on this application is somewhat disappointing (a
speedup of 8.0 on 32 processors).

Examining the granularity of Water helps explain the disappointing speedup for CM-5 CRL. The
data in Tables 4 and 5 indicate granularities of approximately 1,260 and 1,660 cycles of useful work
per operation, nearly a factor of eight smaller than those for Blocked LU. Even given a relatively low
miss rate (7.84%), this granularity is small enough that the larger miss latencies for CM-5 CRL begin to
contribute a significant portion of the total running time, thus limiting the possible speedup. In contrast,
Alewife’s more efficient communication mechanisms allow Alewife CRL to support this granularity
with only a modest performance hit (less than 20% worse than Alewife SM).

In spite of the fact that CRL is an all-software DSM system, it performs comparably with existing
mostly software DSM systems. The CM-5 CRL speedup for Water (4.8 on eight processors) is slightly
better than that reported for TreadMarks [14], a second-generation page-based mostly software DSM
system (4.0 on eight processors, the largest configuration results have been reported for)2.

5.2.3 Barnes-Hut

The Barnes-Hut application is also taken from the SPLASH-2 application suite; it employs hierarchical
n-body techniques to simulate the evolution of a system of bodies under the influence of gravitational
forces. As was the case with Water, applications like Barnes-Hut are often run for a large number of

2The SPLASH-2 version of Water used in this paper incorporates the “M-Water” modifications suggested by Cox et al.
[14].

17

iterations, so the steady-state time per iteration is an appropriate measure of running time. Since the
startup transients in Barnes-Hut persist through the first two iterations, we determine running time by
running the application for four iterations and taking the average of the third and fourth iteration times.

In the CRL version of the code, a region is created for each of the octtree data structure elements in
the original code: bodies (108 bytes), tree cells (88 bytes), and tree leaves (100 bytes). In addition, all
versions of the code were modified to use the reduction functionality provided by CRL for computing
global sums, minima, and maxima. The results presented here are for a problem size of 4,096 bodies
(one-quarter of the suggested base problem size). Other application parameters (∆t and �) are scaled
appropriately for the smaller problem size [40].

Barnes-Hut represents a challenging communication workload. First, communication is rela-
tively fine-grained, both in terms of region size (roughly 100 bytes) and the potential computation-
to-communication ratio: the granularity of useful work per operation—376 and 460 cycles on the
CM-5 and Alewife, respectively—is roughly a factor of 3.5 smaller than for Water. Second, while
Barnes-Hut exhibits a reasonable amount of temporal locality, access patterns are quite irregular due
to large amounts of “pointer chasing” through the data structure around which Barnes-Hut is built. In
fact, Barnes-Hut and related hierarchical n-body methods present a challenging enough communication
workload that they have been used by some authors as the basis of an argument in favor of aggressive
hardware support for cache-coherent shared memory [38, 39].

Figure 5 shows the absolute running time and speedup curves for the three versions of Barnes-Hut.
Once again, Alewife SM delivers the best performance, achieving a speedup of 16.9 on 32 processors,
but Alewife CRL is not far behind with a speedup of 12.0. Thus, while Alewife’s aggressive hardware
support for coherent shared memory does provide some performance benefit, the reduction in running
time over Alewife CRL’s all-software approach is somewhat less than one might expect (roughly 30%;
other experiments indicate that this gap decreases slightly for larger problem sizes).

The Barnes-Hut speedups for CM-5 CRL are somewhat smaller (6.9 on 32 processors). As was the
case with Water, this is primarily due to the small granularity of useful work per operation (376 cycles);
this granularity is small enough that even in the face of fairly low operation miss rates (4.73%), the
larger miss latencies for CM-5 CRL cause significant performance degradation.

Because larger problem sizes lead to decreased miss rates for Barnes-Hut, such performance
problems tend to decrease with larger problem sizes. Figure 6 demonstrates this fact by plotting the
performance of the CM-5 CRL version of Barnes-Hut on up to 128 processors for both the 4,096 body
problem size discussed above and the suggested problem size of 16,384 bodies. For the larger machine
sizes (64, 96, and 128 processors), the increased problem size enables speedups between a factor of 1.5
and 2.0 better than those for 4,096 bodies.

5.3 Summary of Results

We draw two major conclusions from the results presented in this section. First, the CRL implemen-
tation on Alewife demonstrates that an all-software DSM system can achieve application performance
competitive with hardware-supported DSM systems. For Barnes-Hut with 4,096 particles, the speedup
on 32 processors using Alewife CRL is within 30% of that for Alewife SM. As discussed above, we
expect this gap to narrow somewhat after the Alewife CMMU respin.

Second, our measurements drive home the point that messaging substrates must provide both low
latency and high bandwidth. In particular, communication performance on the CM-5 is not sufficient
for CRL to be competitive with hardware-supported DSMs. Communication performance closer to that
provided by Alewife is necessary for an implementation of CRL targeting networks of workstations to

18

 linear speedup
� CM-5 (CRL, 16k bodies)
� CM-5 (CRL, 4k bodies)

|

0
|

32
|

64
|

96
|

128

|0

|5

|10

|15

|20

|25

|30

 number of processors

 s
p

ee
d

u
p

�

�

�

�

�

�

�

�
�

�

�

�

�
�

Figure 6: Barnes-Hut performance for larger problems (16,384 bodies) and machine sizes (128-node
CM-5).

be competitive with hardware systems.

6 Discussion and Future Work

Section 3.1 described three goals that guided the development of CRL; we believe that our current CRL
implementations meet these goals. Our experience porting several applications to CRL and judiciously
inserting preprocessor directives so the same sources can be compiled for use with either CRL or shared
memory confirm that CRL preserves the essential “feel” of shared memory. Our implementation meets
the all-software criteria; CRL should port easily to other systems with support for an active message
communication style. Finally, the performance results of the previous section validate the notion that
CRL is amenable to simple and lean implementations where the amount of software overhead between
applications and the message-passing infrastructure is kept to a minimum.

CRL requires programmers to insert library calls to delimit operations on regions. This modest
diversion from “standard” shared memory programming models enables CRL implementations to
amortize the cost of providing the mechanisms described in Section 2 over entire operations (typically
multiple loads and stores) instead of incurring comparable overhead on every reference to potentially
shared memory. Annotations similar to those required by CRL are necessary in aggressive hardware
DSM implementations (e.g., those providing release consistency) when writing to shared data. CRL
requires such annotations whether reading or writing shared data, similar to entry consistency [5]. Based
on our experience with the applications described in this paper, we feel that the additional programming
overhead of doing so is minimal. Therefore, we believe CRL is an effective approach to providing a
distributed shared memory abstraction.

Calls to CRL library functions also provide a performance advantage. For example, calls that initiate
operations provide “prefetch” information that is not available to a hardware-based DSM. We plan to
investigate this issue by inserting prefetch instructions into the shared memory versions of applications
and measuring the changes in execution time; we expect any improvements to be relatively modest.

19

Several promising research directions follow from work described in this paper. First, we plan
to investigate whether there is any performance benefit to a mostly software CRL implementation
that leverages off of virtual memory protection mechanisms in a manner similar to page-based mostly
software DSM systems. We believe that the value of doing so will probably be greatly enhanced by
operating system structures that allow low-overhead, flexible access to these mechanisms from user
level. Second, the results presented in this paper reiterate the need for network interfaces that provide
not only low latency but also high bandwidth. Any furthering of the state of the art in that domain
would not only help CRL but likely have broad impact across the spectrum of distributed systems.

7 Related Work

Except for the notion of mapping and unmapping regions, the programming interface CRL presents to
the end user is similar to that provided by Shared Regions [35]; the same basic notion of synchronized
access (“operations”) to regions (“objects”) also exists in other DSM programming systems [3, 11].
The Shared Regions work arrived at this interface from a different set of constraints; their goal was to
provide software coherence mechanisms on machines that support non-cache-coherent shared memory
in hardware. CRL could be provided on such systems using the same implementation techniques and
defining rgn_map and rgn_unmap to be null macros.

A number of other approaches to providing coherence in software on top of non-cache-coherent
shared-memory hardware have also been explored [15, 22]. Like the Shared Regions work, these
research efforts differ from that described in this paper both in the type of hardware platform targeted
(non-cache-coherent shared memory vs. message passing) and the use of simulation to obtain controlled
comparisons with cache-coherent hardware DSM (when such a comparison is provided).

Chandra et al. [10] propose a hybrid DSM protocol in which annotations similar to those described
in this paper are used to demark access to regions of shared data. Coherence for regions annotated
thusly is provided using software DSM techniques analogous to those used by CRL; hardware DSM
mechanisms are used for coherence on all other memory references. All synchronization must be
effected through hardware DSM mechanisms. In contrast, CRL is an all-software DSM system in
which all communication and synchronization is implemented using software DSM techniques.

Several all-software DSM systems that employ an object-based approach have been developed (e.g.,
Amber [13], Orca [3]). Like CRL, these systems effect coherence at the level of application-defined
regions of memory (“objects”). Any necessary synchronization, data replication, or thread migration
functionality is provided automatically at the entry and exit of methods on shared objects. Existing
systems of this type either require the use of an entirely new object-oriented language [3, 20] or only
allow the use of a subset of an existing one [13]. In contrast, CRL is not language specific; the basic
CRL interface could easily be provided in any imperative programming language.

Scales and Lam [36] have described SAM, a shared object system for distributed memory machines.
SAM is based on a new set of primitives that are motivated by optimizations commonly used on
distributed memory machines. These primitives are significantly different than “standard” shared
memory models. Like SAM, CRL is implemented as a portable C library. Both CRL and SAM achieve
good performance on distributed memory machines.

Midway is a software DSM system based on entry consistency [5]. Both mostly software and
all-software version of Midway have been implemented [46]. CRL differs from Midway in provided a
simpler programming model that bundles synchronization and data access. To the best of our knowledge,
Midway has only been implemented on a small cluster of workstations connected with an ATM network.

20

Cid [31], like CRL, is an all-software DSM system in which coherence is effected on regions
(“global objects”) according to source code annotations provided by the programmer. Cid differs from
the current CRL implementation in its potentially richer support for multithreading, automatic data
placement, and load balancing. To date, Cid has only been implemented and run on a small cluster of
workstations connected by FDDI [32]. Unlike Midway and Cid, CRL runs on two large-scale platforms
and has been shown to deliver performance competitive with hardware DSM systems.

Several researchers have reported results comparing the performance of systems at adjacent levels
of the classification presented in Section 2 (e.g., all-hardware vs. mostly hardware [9, 18, 45], mostly
software vs. all-software [37, 46]), but to our knowledge, only Coxet al. [14] have published results from
a relatively controlled comparison of hardware and software DSM systems. While their experiments
kept many factors fixed (e.g., processor, caches, compiler), they were unable to keep the communication
substrate fixed: they compare a bus-based, all-hardware DSM system with a mostly software DSM
system running on a network of workstations connected through an ATM switch. Furthermore, their
results for systems with more than eight processors were acquired through simulation. In contrast,
the results presented in this paper were obtained through controlled experiments in which only the
communication interfaces used by the programming systems were changed. Experimental results
comparing hardware and software DSM performance are shown for up to 32 processors (Alewife);
software DSM results are shown for up to 128 processors (CM-5).

Klaiber and Levy [21] describe a set of experiments in which data-parallel (C*) applications are
compiled such that all interprocessor communication is provided through a very simple library interface.
They employ a simulation-based approach to study the message traffic induced by the applications
given implementations of this library for three broad classes of multiprocessors: message passing, non-
coherent shared memory, and coherent shared memory. In contrast, this paper shows results comparing
the absolute performance of implementations of CRL for two message-passing platforms and compares
the delivered application performance to that achieved by a hardware-supported DSM.

In terms of comparing message passing and shared memory, most other previous work has either
compared the performance of applications written and tuned specifically for each programming model
[8, 12] or looked at the performance gains made possible by augmenting a hardware DSM system with
message passing primitives [23]. Such research addresses a different set of issues than those discussed
in this paper, which takes a shared memory programming model as a given and provides a controlled
comparison of hardware and software implementations of distributed shared memory.

Schoinas et al. [37] describe a taxonomy of shared-memory systems that is similar in spirit to that
provided in Section 2. Their scheme differs from that in Section 2 in its focus on processor-side actions
and emphasis of specific implementation techniques instead of general mechanisms.

8 Conclusions

This paper introduces CRL, a new all-software region-based DSM system. Even though it requires
no special compiler, hardware, or operating system support beyond the ability to send and receive
messages, CRL provides a simple, portable shared address space programming model that is capable of
delivering good performance on a wide range of multiprocessor and distributed system architectures.

The paper describes CRL implementations for two platforms, the CM-5 and the MIT Alewife
machine, and presents results for up to 128 processors on the CM-5 and up to 32 processors on Alewife.
We demonstrate that CRL performs well on the CM-5, delivering speedups comparable to other state-
of-the-art software DSM systems. Furthermore, we show that the Alewife implementation of CRL

21

delivers speedups within 30% of those provided by hardware-supported DSMs, even for challenging
applications (Barnes-Hut) and small problem sizes.

These results suggest that the CRL approach can be used to provide an efficient distributed shared
memory programming environment without any need for hardware support beyond that required for
high-performance message-based communication.

9 Acknowledgements

The research was supported in part by ONR contract # N00014-94-1-0985, in part by NSF Experimental
Systems grant # MIP-9012773, and in part by an NSF Young Investigator Award.

References

[1] Anant Agarwal, Ricardo Bianchini, David Chaiken, Kirk L. Johnson, David Kranz, John Kubiatowicz, Beng-
Hong Lim, Ken Mackenzie, and Donald Yeung. The MIT Alewife Machine: Architecture and Performance.
In Proceedings of the 22nd Annual International Symposium on Computer Architecture, June 1995. To
appear.

[2] Anant Agarwal, John Kubiatowicz, David Kranz, Beng-Hong Lim, Donald Yeung, Godfrey D’Souza, and
Mike Parkin. Sparcle: An Evolutionary Processor Design for Multiprocessors. IEEE Micro, pages 48–61,
June 1993.

[3] H.E. Bal, M.F. Kaashoek, and A.S. Tanenbaum. Orca: A language for Parallel Programming of Distributed
Systems. IEEE Transactions on Software Engineering, pages 190–205, March 1992.

[4] Henri E. Bal and M. Frans Kaashoek. Object Distribution in Orca using Compile-Time and Run-Time
Techniques. In Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA’93), pages 162–177, September 1993.

[5] Brian N. Bershad, Matthew J. Zekauskas, and Wayne A. Sawdon. The Midway Distributed Shared Memory
System. In Proceedings of the 38th IEEE Computer Society International Conference (COMPCON’93),
pages 528–537, February 1993.

[6] Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawik, Charles L. Seitz, Jakov N.
Seizovic, and Wen-King Su. Myrinet: A Gigabit-per-Second Local Area Network. IEEE Micro, pages
29–36, February 1995.

[7] Martin C. Carlisle, Anne Rogers, John H. Reppy, and Laurie J. Hendren. Early Experiences with Olden.
In Conference Record of the Sixth Workshop on Languages and Compilers for Parallel Computing, August
1993.

[8] John B. Carter. Efficient Distributed Shared Memory Based On Multi-Protocol Release Consistency. PhD
thesis, Rice University, August 1993.

[9] David L. Chaiken and Anant Agarwal. Software-Extended Coherent Shared Memory: Performance and
Cost. In Proceedings of the 21st Annual International Symposium on Computer Architecture, pages 314–324,
April 1994.

[10] Rohit Chandra, Kourosh Gharachorloo, Vijayaraghavan Soundararajan, and Anoop Gupta. Performance
Evaluation of Hybrid Hardware and Software Distributed Shared Memory Protocols. In Proceedings of the
Eighth International Conference on Supercomputing, pages 274–288, July 1994.

[11] Rohit Chandra, Anoop Gupta, and John L. Hennessy. Data Locality and Load Balancing in COOL. In
Proceedings of the Fourth Symposium on Principles and Practices of Parallel Programming, pages 249–
259, May 1993.

22

[12] Satish Chandra, James R. Larus, and Anne Rogers. Where is Time Spent in Message-Passing and Shared-
Memory Programs? In Proceedings of the Sixth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 61–73, October 1994.

[13] Jeffrey S. Chase, Franz G. Amador, Edward D. Lazowska, Henry M. Levy, and Richard J. Littlefield. The
Amber System: Parallel Programming on a Network of Multiprocessors. In Proceedings of the Twelfth
Symposium on Operating Systems Principles, pages 147–158, December 1989.

[14] Alan L. Cox, Sandhya Dwarkadas, Pete Keleher, Honghui Lu, Ramakrishnan Rajamony, and Willy
Zwaenepoel. Software Versus Hardware Shared-Memory Implementation: A Case Study. In Proceed-
ings of the 21st Annual International Symposium on Computer Architecture, pages 106–117, April 1994.

[15] Alan L. Cox and Robert J. Fowler. The Implementation of a Coherent Memory Abstraction on a NUMA
Multiprocessor: Experiences with PLATINUM. In Proceedings of the Twelfth Symposium on Operating
Systems Principles, pages 32–44, December 1989.

[16] A. Geist, A. Beguelin, J. J. Dongarra, W. Jiang, R. Manchek, and V. S. Sunderam. PVM 3 User’s Guide and
Reference Manual. Technical Report ORNL/TM-12187, Oak Ridge National Laboratory, May 1993.

[17] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy. Memory Consistency
and Event Ordering in Scalable Shared-Memory Multiprocessors. In Proceedings of the 17th Annual
International Symposium on Computer Architecture, June 1990.

[18] Mark D. Hill, James R. Larus, Steven K. Reinhardt, and David A. Wood. Cooperative Shared Memory:
Software and Hardware for Scalable Multiprocessors. In Proceedings of the Fifth International Conference
on Architectural Support for Programming Languages and Operating Systems, pages 262–273, October
1992.

[19] Wilson C. Hsieh, Paul Wang, and William E. Weihl. Computation Migration: Enhancing Locality for
Distributed-Memory Parallel Systems. In Proceedings of the Fourth Symposium on Principles and Practice
of Parallel Programming (PPoPP), pages 239–248, May 1993.

[20] Vijay Karamcheti and Andrew Chien. Concert – Efficient Runtime Support for Concurrent Object-Oriented
Programming Languages on Stock Hardware. In Proceedings of Supercomputing ’93, November 1993.

[21] Alexander C. Klaiber and Henry M. Levy. A Comparison of Message Passing and Shared Memory Architec-
tures for Data Parallel Programs. In Proceedings of the 21st Annual International Symposium on Computer
Architecture, pages 94–105, April 1994.

[22] Leonidas I. Kontothanassis and Michael L. Scott. Software Cache Coherence for Large Scale Multiproces-
sors. In Proceedings of the First Symposium on High-Performance Computer Architecture, pages 286–295,
January 1995.

[23] David Kranz, Kirk Johnson, Anant Agarwal, John Kubiatowicz, and Beng-Hong Lim. Integrating Message-
Passing and Shared-Memory: Early Experience. In Proceedings of the Fourth Symposium on Principles and
Practice of Parallel Programming, pages 54–63, May 1993.

[24] John Kubiatowicz and Anant Agarwal. Anatomy of a Message in the Alewife Multiprocessor. In Proceedings
of the International Conference on Supercomputing, pages 195–206, July 1993.

[25] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Simoni, Kourosh Gharachorloo, John
Chapin, David Nakahira, Joel Baxter, Mark Horowitz, Anoop Gupta, Mendel Rosenblum, and John Hen-
nessy. The Stanford FLASH Multiprocessor. In Proceedings of the 21st Annual International Symposium
on Computer Architecture, pages 302–313, April 1994.

[26] Charles E. Leiserson, Zahi S. Abuhamdeh, David C. Douglas, Carl R. Feynman, Mahesh N. Ganmukhi,
Jeffrey V. Hill, W. Daniel Hillis, Bradley C. Kuszmaul, Margaret A. St. Pierre, David S. Wells, Monica C.
Wong, Shaw-Wen Yang, and Robert Zak. The Network Architecture of the Connection Machine CM-5. In
Proceedings of the Fourth Annual ACM Symposium on Parallel Algorithms and Architectures, 1992.

23

[27] D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta, J. Hennessy, M. Horowitz, and M. Lam. The
Stanford Dash Multiprocessor. IEEE Computer, pages 63–79, March 1992.

[28] Kai Li. IVY: A Shared Virtual Memory System for Parallel Computing. In Proceedings of the International
Conference on Parallel Computing, pages 94–101, 1988.

[29] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, May 1994.

[30] Ron Minnich, Dan Burns, and Frank Hady. The Memory-Integrated Network Interface. IEEE Micro, pages
11–20, February 1995.

[31] Rishiyur S. Nikhil. Cid: A Parallel, “Shared-memory” C for Distributed-Memory Machines. In Proceedings
of the Seventh Annual Workshop on Languages and Compilers for Parallel Computing, August 1994.

[32] Rishiyur S. Nikhil. Personal communication, March 1995.

[33] Steve K. Reinhardt, James R. Larus, and David A. Wood. Tempest and Typhoon: User-Level Shared
Memory. In Proceedings of the 21st Annual International Symposium on Computer Architecture, pages
325–336, April 1994.

[34] Edward Rothberg, Jaswinder Pal Singh, and Anoop Gupta. WorkingSets, Cache Sizes, and Node Granularity
Issues for Large-Scale Multiprocessors. In Proceedings of the 20th Annual International Symposium on
Computer Architecture, pages 14–25, May 1993.

[35] Harjinder S. Sandhu, Benjamin Gamsa, and Songnian Zhou. The Shared Regions Approach to Software
Cache Coherence on Multiprocessors. In Proceedings of the Fourth Symposium on Principles and Practices
of Parallel Programming, pages 229–238, May 1993.

[36] Daniel J. Scales and Monica S. Lam. The Design and Evaluation of a Shared Object System for Distributed
Memory Machines. In Proceedings of the First USENIX Symposium on Operating Systems Design and
Implementation, pages 101–114, November 1994.

[37] Ioannis Schoinas, Babak Falsafi, Alvin R. Lebeck, Steven K. Reinhardt, James R. Larus, and David A.
Wood. Fine-grain Access Control for Distributed Shared Memory. In Proceedings of the Sixth International
Conference on Architectural Support for Programming Languages and Operating Systems, pages 297–306,
October 1994.

[38] Jaswinder Pal Singh, Anoop Gupta, and Marc Levoy. Parallel Visualization Algorithms: Performance and
Architectural Implications. IEEE Computer, pages 45–55, July 1994.

[39] Jaswinder Pal Singh, John L. Hennessy, and Anoop Gupta. Implications of Hierarchical N-body Methods
for Multiprocessor Architecture. Technical Report CSL-TR-92-506, Stanford University, 1992.

[40] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stanford Parallel Applications for
Shared-Memory. Computer Architecture News, pages 5–44, March 1992.

[41] Chandramohan A. Thekkath and Henry M. Levy. Limits to Low-Latency Communication on High-Speed
Networks. Transactions on Computer Systems, pages 179–203, May 1993.

[42] Chandramohan A. Thekkath, Henry M. Levy, and Edward D. Lazowska. Separating Data and Control Trans-
fer in Distributed Operating Systems. In Proceedings of the Sixth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 2–11, October 1994.

[43] Thorsten von Eicken, Anindya Basu, and Vineet Buch. Low-Latency Communication Over ATM Networks
Using Active Messages. IEEE Micro, pages 46–53, February 1995.

[44] Thorsten von Eicken, David Culler, Seth Goldstein, and Klaus Schauser. Active Messages: A Mechanism for
Integrated Communication and Computation. In Proceedings of the 19th Annual International Symposium
on Computer Architecture, May 1992.

24

[45] David A. Wood, Satish Chandra, Babak Falsafi, Mark D. Hill, James R. Larus, Alvin R. Lebeck, James C.
Lewis, Shubhendu S. Mukherjee, Subbarao Palacharla, and Steven K. Reinhardt. Mechanisms for Coopera-
tive Shared Memory. In Proceedings of the 20th Annual InternationalSymposium on Computer Architecture,
pages 156–167, May 1993.

[46] Matthew J. Zekauskas, Wayne A. Sawdon, and Brian N. Bershad. Software Write Detection for a Distributed
Shared Memory. In Proceedings of the First USENIX Symposium on Operating Systems Design and
Implementation, pages 87–100, November 1994.

25

