
Hybrid Caching for
Scalable Object Systems
(Think Globally, Act Locally)

James O'Toole

Massachusetts Institute of Technology

Cambridge, Massachusetts, USA

Liuba Shrira

Massachusetts Institute of Technology

Cambridge, Massachusetts, USA

Abstract

Object-based client caching allows clients to keep more frequently ac-
cessed objects while discarding colder objects that reside on the same
page. However, when these objects are modi�ed and sent to the server,
it may need to read the corresponding page from disk to install the up-
date. These installation reads are not required with a page-based cache
because whole pages are sent to the server.

We describe a hybrid system that permits clients to cache objects and
pages. The system uses a simple cache design that combines the best of
object caching and page caching. The client increases its cache hit ratio
as in object-based caching. The client avoids some installation reads by
sending pages to the server when possible. Using simulated workloads
we explore the performance of our design and show that it can o�er a
signi�cant performance improvement over both pure object caching and
pure page caching on a range of workloads.

1 Introduction

In a client/server persistent object system, objects are fetched from the server
over the network into the client cache, manipulated locally, and the modi�-
cations are sent to be committed at the server. In a scalable system many
clients will be competing for server resources. Given current hardware trends,
we assume that the server will be disk I/O bound. Therefore it is important
to design the client/server caching system to reduce the disk I/O bandwidth
consumed at the server.

Previous studies have shown that when hot data is densely packed on pages,
page-based caching performs well. When the hot objects are sparsely packed,

This research was supported in part by the Advanced Research Projects Agency of the De-

partment of Defense, monitored by the O�ce of Naval Research under contract N00014-91-
J-4136, in part by the National Science Foundation under Grant CCR-8822158, and in part
by the Department of the Army under Contract DABT63-92-C-0012.

1



object-based caching works better because it is able to hold more hot objects in
the cache. However, there is an additional cost associated with object caching:
On commit, an object cache sends to the server the modi�ed object, but it
does not send the page. To install the modi�ed object onto its containing page,
the server may need to read the page from the disk if it is not present in the
server cache. In a previous study [13] we have shown that the cost of these
installation reads can be signi�cant.

In this paper we present a design of a hybrid cache that manages at the
client both pages and objects. We suggest a hybrid cache management policy
that uses a simple eviction rule to avoid some installation reads. The modi�ed
eviction rule protects some objects from eviction in order to help keep pages
intact. By keeping a page intact, the client can send the whole page to the
server when it modifys an object on that page. This enables the server to avoid
an installation read.

To study the performance of the hybrid cache we construct a simple perfor-
mance model that focuses on the I/O costs in object and page caching. Using
simulation we compare the throughput of a system with object-based caching,
page-based caching and hybrid caching over a range of workloads. We consider
the workloads where page caching is advantageous (densely packed hot objects)
workloads where object caching is advantageous (sparsely packed hot objects)
and workloads that represent a combination of both. Our results show that
when disk I/O is the performance bottleneck, the hybrid system can outper-
form both pure object caching or pure page caching.

In the following sections, we introduce the basic scalable persistent object
system design (Section 2) and describe the hybrid cache and its policy (Sec-
tion 3). We then introduce our simulationmodel (Section 4), present the exper-
imental system con�gurations (Section 5), and present simulation results that
illustrate the value of our techniques (Section 6). Finally, we discuss related
research (Section 7) and our conclusions (Section 8).

2 Persistent Object Systems

This section introduces our baseline persistent object system and describes the
context of our work. The system supports atomic modi�cations to persistent
objects. We briey discuss our assumptions about the client-server architecture.
The persistent objects are stored on disk at the server. We assume that objects
are grouped into pages. Pages are the unit of disk transfer and caching at the
server. Objects are small and a page can contain many objects. Client cache
performance is the dominant factor that we consider because our focus is on
reducing the disk load at the server. Our own recent work shows that in an
object-based architecture, installation reads can be a signi�cant source of disk
load at the server [13].

Client Caching

In a persistent object system, clients fetch data from a server and operate on it
in a local cache. In an object-based architecture, clients fetch objects, update
them, and send back updated objects in a commit request to the server. In a



page-based architecture, the client and server exchange whole pages, as shown
in Figure 1.

fetch(page) commit(pages)

disk

client
cache

client
cache

network

page cacheserver

Figure 1: Clients using a Page Server

Extensive previous work shows that each approach may be superior to the
other depending on how the objects (on pages) are accessed by application
programs. When the clustering of objects on pages corresponds to the client
access pattern, the page-based architecture should work well. On the other
hand, object-based systems may pack frequently accessed objects more densely
into the client cache. There are also other issues that complicate matters:
swizzling, object prefetching, object clustering strategies, etc. Our focus is on
disk performance, so we are ignoring these issues here.

Transaction Validation

We assume a server architecture similar to that of the Thor persistent object
system [10]. The features that we assume are optimistic concurrency control
with in-memory commit [2]. If the client and server are using a page-based
architecture, then we assume that the page server also uses optimistic concur-
rency control and in-memory commit.

The server uses a concurrency control scheme ensuring that all commit-
ting transactions are serialized and that client caches are \almost" up-to-date.
Committing transactions are validated by the server using a method that does
not require disk access; see Adya [2] for the details. We use an optimistic con-
currency control scheme, so a transaction that reads stale objects is aborted
when the server rejects its commit request.

When considering the choice between page and object servers we ignore
the question of whether the server uses page level or object level concurrency
control. Though this choice of granularity is important to the semantics and
performance of transaction validation, it is orthogonal to the I/O costs that
concern us here.



Installing Modi�cations

When a transaction commits in a page-based architecture, the entire page is
returned to the server. For simplicity, we assume that the server is implemented
using a non-volatile memory so that committing a transaction does not require
an immediate disk write. Without non-volatile memory, the server would record
committed modi�cations in a log on a dedicated disk and the same issues would
arise.

When a transaction commits in an object-based architecture, the client
sends modi�ed objects back to the server. After validation, the server records
the modi�ed objects in a non-volatile log. Later, modi�cations from the log are
applied to their corresponding pages; we call this update process installation.

client
cache

client
cache

network

Log

commit(objects)

install(object)page
cache sched

fetch

opportunistic
server

disk info

disk

Figure 2: Object Server with Opportunistic Log

Note that installing an object modi�cation may require a disk read if the
corresponding page is not in the server cache. In recent work, we found that
these installation reads have a large impact on the performance of reliable
object servers [13]. We also showed that their cost can be signi�cantly reduced
by processing the log opportunisticly. As Figure 2 illustrates, the transaction
log provides a large pool of pending installation reads that can be scheduled
e�ciently.

3 Hybrid Caching

In practice, we expect the objects that are frequently used by a client to be
sometimes packed densely into pages and sometimes not. Therefore, we are
motivated to design a hybrid system that permits clients to cache both objects
and pages. This allows clients to selectively retain some objects from a page and
discard the others, or to keep a page intact. Our own recent work shows that
in an object-based architecture, installation reads can be a signi�cant source



of disk load at the server [13]. In a hybrid system, clients may be able to
take advantage of increased cache memory utilization while also avoiding some
installation reads.

3.1 Hybrid Server

To enable the client to cache pages, the server must provide whole pages to
the client when responding to fetch requests. Then the client will be able to
return whole pages to the server, at least when it has retained the whole page
in its cache. Previous work tells us that object servers can help avoid fetches
by sending groups of related objects in response to fetch requests. We would
expect a hybrid system to do this just as well, but we note that sending objects
instead of pages may produce more installation reads.

client
cache

client
cache

network

Log

install(object)page
cache sched

fetch commit
object

commit
page

hybrid
server

disk info

disk

Figure 3: Hybrid Server accept Page and Object Commits

So the hybrid server provides whole pages to the client. The server accepts
commit requests from the client for either whole pages or individual objects, as
shown in Figure 3. When the server receives a commit request that provides a
page, it validates the transaction according to the individual object that was
modi�ed. If the transaction is valid, then the server can consider whether to use
the containing page to avoid an installation read. This is possible if the other
objects on the page are not stale. Otherwise, it is still possible that the valid
objects on the page can be combined with pending installations to produce the
whole page. But in any case, we should at least expect the hybrid server to be
able to avoid an installation read whenever a page-based system would avoid
lock conicts within the page.



3.2 Cache Tradeo�s

When the client receives a page from the server after a cache miss, it may
already have information about how hot the objects on the page are. This kind
of information could be used to guide promotion or eviction policies in any kind
of cache. In a hybrid design, this information could be especially useful.

If the page contains just a few hot objects, it might be best to keep these
objects but discard their cold companions. Discarding the rest of the page will
prevent a later page-commit, and may very likely mean that more installation
reads are required at the server. However, the memory occupied by these
cold companions might be better used to hold yet more hot objects. This is
what makes object-based caching work. Also, as we show in citeopplog-asplos,
installation reads can be made much less expensive than disk reads produced
by fetch operations, so the tradeo� generally favors increasing the client cache
hit ratio at the expense of installation reads.

In contrast, when a page contains mostly hot objects, it may be worth keep-
ing a few cold companions in the cache to avoid generating more installation
reads at the server. If the cache is very e�ective, the memory occupied by a
few cold objects may not be so valuable. Keeping the cold objects that help
eliminate installation reads is then bene�cial (to the server). In some sense we
intend that the client cache manager think globally and act locally.

3.3 Cache Policy

We do not know how to make perfect caching decisions in a hybrid system.
In the discussion here, we present the motivation and intuition for the hybrid
cache design rules. The concrete cache design that results from these rules is
presented in Section 5.2. Here are some basic design rules for how a hybrid
cache should work:

� When objects arrive in the cache they should be treated fairly, because
they may be either hot or cold. If the cache is working well, then incoming
objects will usually be cold. Otherwise, they will usually be hot.

� When an object in the cache is accessed, it should be promoted individ-
ually, because we infer that it may be hot, but we are not so sure about
its page-companions.

These two ideas reect basic facts about object caching, but promoting based
on page relationships will be sometimes useful. We've chosen to ignore this issue
to simplify our work. If page-relationships can be used in object promotion,
the hybrid cache should do what the best object cache does.

The new idea in our hybrid design is to avoid installation reads when possi-
ble. This new motivation should a�ect the caching policy primarily in the area
of eviction because eviction (hopefully) relates to cold objects. Here is a simple
rule that captures the essential idea:

� When an object is about to be evicted, and it is the �rst object of its
page to be evicted, give it another chance if its page-companions appear
to be hot.



This policy expresses the basic motivation behind hybrid caching and completes
our hybrid cache design. It seems likely to protect a cold object when doing so
is likely to eliminate installation reads. It will not protect cold objects that are
from mostly-cold pages.

Ideally, we would also like to base our eviction decisions on how likely the
hot objects are to be written. There is no reason to protect a cold object whose
hot page-companions are rarely modi�ed. So predictive information about the
frequency of update of objects would also be useful.

In practice, it seems entirely likely that the best sources of predictive in-
formation about object access patterns will depend on the application. Object
types or historical information might be useful and could be collected by the
server or the client. However, we do not aspire here to solve this part of the
cache design problem. Our goal is to examine the factors that should a�ect the
caching policy in a hybrid design.

We know from previous work that installation reads can be optimized to
be less costly than fetch reads. Therefore, we want the hybrid cache to behave
mostly like an object cache and obtain the maximum possible bene�t from
packing hot objects into the client cache. When the pressure to evict cold
objects is reduced, the hybrid cache should keep the cold objects that will
eliminate the most installation reads.

4 Simulation Model

To examine cache performance tradeo�s, we built a simulator for a system
of clients and a reliable server. The simulator emphasizes the disk I/O re-
quirements of the server because we expect client cache performance to a�ect
aggregate system throughput by loading the disk. The simulation model is
described by the parameters shown in Table 1. We discuss simpli�cations and
assumptions in the sections that follow.

4.1 Network

The network provides unlimited bandwidth and a �xed message delivery la-
tency. Each message transmission also incurs a small cpu overhead. We ignore
contention because we assume that network bandwidth will not signi�cantly
a�ect the performance of reliable servers. If network bandwidth were a limit-
ing factor, then we would expect object caching to bene�t because objects are
smaller than pages, so commit messages for objects are smaller. In general we
use low message costs to reect our expectation that network performance will
be improving much faster than disk performance in the foreseeable future.

4.2 Disk

The disk services requests issued by the server in FIFO order. The disk geom-
etry and other performance characteristics are taken from the HP97560 drive
described by Wilkes [14]. We chose this disk because it is simple, accurate, and
available.



Network
Message latency 1 msec
Per-message cpu overhead 100 �secs

Disk
Rotational speed 4002 rpm
Sector size 512 bytes
Sectors per track 72
Tracks per cylinder 19
Cylinders 1962
Head switch time 1.6 msec

Seek time (� 383 cylinders) 3:24 + 0:4
p
d ms

Seek time (> 383 cylinders) 8:00 + 0:008d ms

Server

Database size (full disk) 335,500 pages
Page size 4 Kbytes
Log-size 100 pages
Log-entries-per-page 5
Server memory (1% of database) 3,355 pages
ValidationTime 5 �secs
InstallationTime 1 msec
WriteTrigger > 2000 dirty pages
IReadTrigger < 50 empty log entries

Table 1: System Parameters

4.3 Server

The server processes fetch and commit requests from clients by reading and
writing relevant database pages that are stored on an attached disk. The
server has a non-volatile primary memory that holds cached pages. When a
fetch request is received from a client, the page corresponding to the requested
object is read from the disk into the server cache if necessary. The entire page
is then sent to the client.

The non-volatile primary memory is also used as a transaction log. Log-
size pages of the primary memory are statically allocated to hold log entries.
The Log-entries-per-page parameter de�nes the number of log entries that can
be stored per page of log memory. The log entries represent the collection of
modi�ed objects that have not yet been installed.

Concurrency control at the server is described by the ValidationTime pa-
rameter, which de�nes the cpu time required to validate a transaction. Aborted
transactions are indistinguishable from read-only transactions for our purposes.
If the client has provided an entire page containing a modi�ed object in the com-
mit request, then the server stores the page into its cache memory and marks
it dirty. The server then sends a con�rming message to the client. When the
number of dirty pages in the cache exceeds the Write-trigger threshold, the
server writes one dirty page to the disk. The page is selected using the shortest
positioning time algorithm [15].



Client Workload Parameters
Number of clients 50
Client cache size 1000 pages
ClientThinkTime 100 msec
Page Access Pattern 90% Hot, 10% Cold
HotWriteRatio 20%
ColdWriteRatio 0%
Objects-per-page 10
Object Access Pattern 99% to hot (per page)
Number of hot pages (various, see section 6)
Hot objects per page (see section 6)

Table 2: Workload Parameters

If the client provides only the modi�ed object in the transaction commit
request, then the server adds the object to the log and sends a con�rming
message to the client. If the page containing the object is in the cache, then
the object is installed immediately. However, if the page is not in the cache,
then the installation is postponed. When the number of empty log entries
decreases below the IReadTrigger threshold the server issues an installation
read to obtain the page needed for a pending log entry. The server selects the
pending installation from the log opportunisticly, as described in previous work.
An installation read is initiated for the page that has the shortest positioning
time [13].

Whenever a page enters the cache, whether due to a disk read or from the
client, all modi�ed objects that belong to that page are installed onto it. Every
installation consumes InstallationTime cpu time at the server.

5 Experimental Setup

For our simulations we chose a workload setup that provides skewed accesses
both among pages and within individual pages. We also implemented several
cache designs for comparison in our simulations. The workload setup and cache
designs are described separately below.

5.1 Client Workload

Each simulated client contains a cpu and a local memory for caching objects.
The client executes a sequence of transactions, each operating on a single object
in the database. If necessary, the client sends a fetch request for the object to
the server and waits for the server to respond with a full page containing the
object. The client then computes for ClientThinkTime and possibly modi�es
the object (WriteRatio). Finally the client ends the transaction by sending a
commit request to the server. After the commit is con�rmed by the server, the
client immediately starts its next transaction. Table 2 lists the parameters that
control the workload generated by the clients.



We expect scalable object systems to have many clients that compete for
the server memory. However, we found it impractical to simulate more than
100 clients because our simulator uses too much memory. Therefore, we arti�-
cially chose a very small server memory (1% of the database).

We expect each client in real systems to operate mostly on private data
and to cache most or all of this data locally. Each simulated client directs
90% of its operations at some set of hot pages within the database. These hot
pages do not overlap with the hot pages of other clients. The other 10% of the
transactions use the rest of the database, including the hot pages belonging to
other clients.

In order to experiment with hot pages that have hot objects more densely
or more sparsely packed upon them, we designate some of the objects on each
page to be hotter than the others. Each page contains 10 objects, and 99%
of the transactions that access the page choose one of the hot objects on that
page. The number of hot pages and hot objects within pages varies by actual
workload and is described with the experimental results in Section 6.

We chose this access pattern so that the page-based cache will be unaware of
the number of hot objects per page, because changing the number of hot objects
on a page does not change the frequency of access for the page. However, this
means that the hot objects on a sparsely-hot page will be much hotter than on
a densely-hot page. We don't know whether this aspect hot object distribution
is realistic. Section 6.3 discusses the relevance of the hot object distribution to
the relative performance of hybrid and non-hybrid cache designs.

5.2 Cache Designs

The cache designs treat the client memory as a chain of objects. This \usage
chain" is nearly an LRU chain. We implemented three client cache designs for
use with the simulation model. The cache designs di�er in how objects are
promoted and how they are selected for eviction. Figure 4 depicts how each
cache design moves data into, within, and back out of the cache.

Page Cache

In the page cache design, a page that is fetched from the server is entered into
the middle of the usage chain. If a later transaction references the page, then it
is promoted to the top of the usage chain. Whenever a page enters the cache,
the page at the bottom of the chain is evicted to make room. The client always
sends whole pages to the server when committing a modi�ed object.

Object Cache

In the client object cache, as in the page cache, the page received from the
server in response to a fetch request is placed in the middle of the usage chain.
However, when an object that is cached is referenced, only that object is pro-
moted to the top of the chain. When a page enters the cache, some objects at
the bottom of the chain are evicted to make room. The client sends only the
modi�ed object to the server in a transaction commit message.



page cache

new page

eviction

page promotion

new page

eviction

object promotion

object cache

new page

eviction

object promotion

hybrid cache
object protection

Figure 4: Movement of Data in the Cache Designs

Hybrid Cache

In the hybrid cache, the client enters and promotes objects in the usage chain
exactly as in the object cache. However, the eviction rule is biased against
evicting an object that belongs to a well-used page. When space is required,
the object at the bottom of the chain is examined. If all of its page-companions
are in the cache, and if more than half of them are currently in the upper-half of
the usage chain, then this object is not evicted. Instead, this object is moved to
the middle of the chain. When the client is committing a transaction, the whole
page containing the modi�ed object is sent to the server if all of the objects on
that page are available in the client cache. Otherwise, only the modi�ed object
is supplied to the server.

6 Experiments

In the sections that follow, we focus on aggregate system throughput when the
disk drive is fully utilized. We use one workload to illustrate the importance
of installation reads. We use another to show the importance of object caching
in increasing the client cache hit ratio. Finally, we examine a more realistic
workload and show that hybrid caching performs much better than the other
methods.

6.1 Dense Hot Workload

To illustrate how installation reads can hurt the performance of an object cache,
we chose a workload in which each client directs its hot accesses to 600 hot
pages. In this workload, 9 of the 10 objects on each page are hot objects.
There are thus 5,400 hot objects packed very densely onto the hot pages.

The table in Figure 5 shows the throughput of all three designs when the

'--Ii ---t---------'+-

'--1 F ___ t---------'+-



Metrics for 50 clients
Cache Design %hit tx/sec I-Cost I-Disk

Pages 90% 375 | 0%
Objects 85% 228 6.0 ms 21%
Hybrid 90% 373 5.8 ms <1%

Figure 5: Dense Workload (600 hot pages, all are dense)

system is fully loaded. We can see that the page cache performs much better
than the object cache. The table also provides the client cache hit ratio and
installation read costs. The last two columns of the table provide the individual
installation read cost in milliseconds and the aggregate cost of all installation
reads as a percentage of total disk bandwidth.

Of course, the page cache produces only page-commit requests at the server,
so there are no installation reads. In contrast, in the pure object system, every
writing transaction can potentially cause an installation read. Installation reads
consume 21% of the available disk bandwidth in this simulation, and account
for all of the di�erence in performance between objects and pages. The hybrid
design converted almost all object commits into page commits, eliminating
essentially all installation reads.

Yet, in this example the biggest improvement still comes from the client
cache hit ratio. The page and hybrid systems get a 90% hit ratio, but the
object system only achieves 85%. The page system is keeping all hot pages
in the cache because when a hot access takes place that hits in the cache, the
entire page is promoted. The hybrid design also performs well, but because of
its eviction rule. The modi�ed eviction rule is making it less likely that hot
data will be removed from the cache. Eliminating installation reads freed up
21% of the disk bandwidth, but the increase in the cache hit ratio decreased the
disk load due to fetch operations by an even greater amount (about 33%). The
result is that the hybrid design nearly equals the page server in throughput.
However, the lesson is that for the hybrid design to compete with a page server
on a very dense workload, changes to the promotion rule might be needed.

6.2 Sparse Hot Workload

As another extreme case, we examine a workload where the hot objects are
scattered across many pages, one per page. Each client directs its hot accesses
to 1,000 hot pages. On each hot page, only a single one of the 10 objects are
designed as hot. In this workload, there are one thousand hot objects scattered
very sparsely one per page. Object caching should now perform much better
than page caching because page caching will not be able to keep the hot pages
entirely within the client cache.

The table in Figure 6 contains the performance metrics for 50 clients using
the sparse hot workload. The object cache achieves a much higher hit ratio and
also higher system throughput. The improvement in throughput is obtained in
spite of the installation reads, which now consume 28% of the disk bandwidth.

Note that each installation read consumes only 6 milliseconds of disk time,

I I I I 



Metrics for 50 clients
Cache Design %hit tx/sec I-Cost I-Disk

Pages 77% 198 | 0%
Objects 89% 262 6.3 ms 28%
Hybrid 89% 296 5.8 ms 18%

Figure 6: Sparse Workload (1000 hot pages, all are sparse)

although the average seek time for this disk is approximately 19 milliseconds.
This is due to the e�ect of the opportunistic log [13]. Without this improve-
ment, the object system would have had much worse performance than the
page system.

In the simulation shown here, the hybrid design converted about one third
of the object commits to page commits, presumably because many of the colder
objects on the hot pages are resident in the cache. It appears that some hot
pages are being kept whole. Since the hottest objects �t easily into the object
cache, it makes sense that the hybrid eviction rule helps.

6.3 Mixed Workload

Finally, we examine a somewhat more realistic workload where some of the hot
pages are densely packed with hot objects and some are not. We now set the
total number of hot pages to 1,200, of which 600 pages have 9 hot objects per
page and the other 600 pages each have only one hot object.

Metrics for 50 clients
Cache Design %hit tx/sec I-Cost I-Disk

Pages 67% 142 | 0%
Objects 82% 197 6.0 ms 18%
Hybrid 85% 251 6.0 ms 11%

Figure 7: Mixed Density Workload (1200 hot pages, 600 are dense)

Figure 7 shows the results for the mixed workload. The hybrid cache now
performs signi�cantly better than the other designs. It has a much higher hit
ratio than the page cache because there are sparsely-hot pages in the workload.
It also causes far fewer installation reads than the object cache because it keeps
densely-hot pages intact in the cache and uses page commits when updating
them.

As in the densely hot workload, some of the improvement of the hybrid
system relative to the object system is due to an increase in cache hit ratio.
However, the important feature of the hybrid cache design is that it biases
eviction policy against removing a cold object that has hot page-companions.
This policy helps eliminate installation reads for all the accesses that go to
densely-hot pages.

I I I I I 

I I I I 



It is important to note that the hot objects in this workload are not equally
hot. The sparsely-hot pages get just as many total accesses as the densely-
hot pages, even though there are 5,400 densely packed hot objects and only
600 sparsely-hot objects. We should consider whether this reects plausible
assumptions about how objects might be clustered onto pages.

We imagine it to be more likely that the hottest objects would be better
packed. We plan to simulate such a workload soon, but we can already guess
what results we will see. Because most operations will then involve densely
packed objects, the hybrid system will save a much larger fraction of the in-
stallation reads as compared to a pure object system. Yet, as long as there are
some hot objects that are sparse within their pages, the increase in cache hit
ratio due to squeezing them into the cache will ensure that the hybrid system
performs better than the page system.

In summary, the relative advantage o�ered by a hybrid cache design on real
workloads may be larger than for the mixed workload shown here.

7 Related Work

To put our work in perspective we consider studies addressing the overall ar-
chitecture choice for persistent object systems, and studies comparing object
and page based client cache designs.

Many persistent object systems use the more traditional page based ar-
chitecture where all interaction between clients and servers takes place at the
granularity of individual pages [7, 11, 12, 1]. Other systems [9, 5] use object
server architectures but do not speci�cally address the problem of installation
reads.

Dewitt et. al. [6] is one of the �rst studies that investigated the design choices
for a persistent object system architecture. The study focused on the question
of distributing the functionality of the persistent object system between the
client and the server. It measured and compared a page based system and an
object system that fetched a single object at a time. Though the functionality
of their object server is di�erent from ours, and single object fetching a�ects
the comparison, our work capitalizes on Dewitt's basic �ndings that the relative
performance of page and object caches are very sensitive to how well hot objects
are packed on pages and the relative sizes of the client cache and the client
working set.

Similarly, Cheng and Hurson [3] demonstrated how an object server archi-
tecture can enable more e�cient client cache utilization.

Numerous studies [4, 16, 8, 17] have addressed issues related to comparing
object and page based client cache designs, emphasizing the importance of
pointer swizzling costs to the client. Some of these studies considered using
hybrid approaches. The important contrast with our work is that our focus is
on the impact of client caching decisions on the critical shared resource: the
server disk.

We are not aware of any other work that explores a hybrid object and page
based client cache design in light of the cost imposed by installation reads on
the server disk.



8 Conclusion

Previous studies considered the tradeo�s in the performance of an object and
page based client cache in terms of the cost of in memory data structure ma-
nipulation [4, 16, 8, 17] and in terms of recovery cost [16]. In a scalable ob-
ject system, client cache design has important e�ects on the disk load at the
server [13].

We explored a cache design that takes in account a previously overlooked
aspect of the server disk load: installation reads. We proposed that after �rst
optimizing the client cache to reduce the disk load due to fetches, it is then
important to concentrate on avoiding unnecessary installation reads.

We designed a hybrid system that permits clients to cache both objects
and pages. The cache uses a simple eviction policy to reduce unnecessary
installation reads. To investigate the performance of the hybrid system, we
built a simulator and compared the throughput of I/O bound systems with
object based caching, page based caching and hybrid caching. Our results
show that when disk I/O is the system performance bottleneck, the hybrid
system can outperform both pure object caching and pure page caching.

References

[1] Using the EXODUS Storage Manager V2.0.0. Technical report, Depart-
ment of Computer Sciences, University of Wisconsin-Madison, January
1982. Technical documentation.

[2] Atul Adya. A distributed commit protocol for optimistic concurrency
control. Master's thesis, Massachusetts Institute of Technology, February
1994.

[3] Jia bing R. Cheng and A. R. Hurson. On the performance issues of object-
based bu�ering. In Proceedings of the Conference on Parallel and Dis-
tributed Information Systems, pages 30{37, 1991.

[4] M. Day.Managing a Cache of Swizzled Objects and Surrogates. PhD thesis,
miteecs, In preparation.

[5] O. Deux et al. The story of o2. IEEE Trans. on Knowledge and Data
Engineering, 2(1):91{108, March 1990.

[6] David J. DeWitt, Philippe Futtersack, David Maier, and Fernando Velez.
A study of three alternative workstation-server architectures for object
oriented database systems. In Proceedings of the 16th Conference on Very
Large Data Bases, pages 107{121, Brisbane, Australia, 1990.

[7] M. Hornick and S. Zdonik. A Shared, Segmented Memory System for an
Object-Oriented Database, pages 273{285. Morgan Kaufmann, 1990.

[8] Antony L. Hosking and J. Eliot B. Moss. Object fault handling for persis-
tent programming languages: A performance evaluation. In Proceedings
of the ACM Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA), pages 288{303, 1993.



[9] W. Kim et al. Architecture of the orion next-generation database system.
IEEE Trans. on Knowledge and Data Engineering, 2(1):109{124, June
1989.

[10] B. Liskov, M. Day, and L. Shrira. Distributed object management in

Thor. In M. Tamer �Ozsu, Umesh Dayal, and Patrick Valduriez, editors,
Distributed Object Management. Morgan Kaufmann, San Mateo, Califor-
nia, 1993.

[11] D. Maier and J. Stein. Development and implementation of an object-
oriented dbms. In B. Shriver and P. Wegner, editors, Research Directions
in Object-Oriented Programming. MIT Press, 1987.

[12] MA Object Design Inc., Burlingtom. An introduction to object store,
release 1.0. 1989.

[13] James O'Toole and Liuba Shrira. Opportunistic Log: E�cient Reads in
a Reliable Object Server. Technical Report MIT/LCS-TM-506, March
1994. Submitted for publication, available via FTP from psrg.lcs.mit.edu,
directory pub/james/papers, �lename asplos-submission.ps.

[14] Chris Ruemmler and John Wilkes. Modelling disks. Technical Report
HPL-93-68rev1, Hewlett-Packard Laboratories, December 1993.

[15] M. Seltzer, P. Chen., and J. Ousterhout. Disk scheduling revisited. In
Proceedings of Winter USENIX, 1990.

[16] Seth J. White and David J. DeWitt. A performance study of alternative
object faulting and pointer swizzling strategies. In Proceedings of the 18th
VLDB Conference, pages 419{431, 1992.

[17] Paul R.Wilson. Pointer swizzling at page fault time: E�ciently supporting
huge address spaces on standard hardware. Computer Architecture News,
19(4):6{13, June 1991.


