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Abstract

In a distributed memory multiprocessor, a program’s task is partitioned among the
processors to exploit parallelism, and the data are partitioned to increase referential
locality. Though the purpose of partitioning is to shorten the execution time of an
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splitting can further divide a partitioned loop into segments that allow the code hoisting
and strength reduction optimizations. This thesis introduces two methods of loop splitting,
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algorithms analyzed executes an average of 2 to 3 times faster after loop splitting.
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Chapter 1

Introduction

Distributed memory multiprocessors have a clear advantage over uniprocessor machines —
more than one processor allows multiple tasks to be performed simultaneously. However,
distributed memory multiprocessors also have several advantages over shared memory
machines. For example, scalability allows a network to be constructed proportional to a
specific problem size, and nonuniform access time allows referential locality to minimize
latencies of memory accesses. However, the distributed memory of the machine introduces
drawbacks as well, such as the problems of finding and exploiting locality, distributing task
and data of a program, and addressing data.

The addressing complications are manifested in the involved expressions associated
with array referencing. To reference a particular array cell, the expression must calculate
not only the memory location of the cell but also which processor's memory contains the
cell. These two address specifications are functions of the array distribution and the
network configuration.

Fortunately, possibilities exist for simplifying the array reference expressions in loops.
When the data needed by a processor is located on only one processor, parts of these
reference expressions are loop invariant (i.e., have a constant value for the duration of the
loop). To avoid recomputing these invariant parts of the address on every access, a
compiler can perform code transformations to simplify the expressions. Once performed,
these transformations allow even further code improvements by an optimizing compiler.

The end result is a less computationally expensive loop body that reduces the execution



time of the loop.

Unfortunately, the data needed by a processor is often located on more than one
processing element so that no loop invariants exist for optimization. However, because
arrays are often both accessed and distributed in segments of contiguous array cells,
intervals of a loop access data from a single processor and have their own invariants.
Thus, each such interval has its own invariants. By dividing the loop into these intervals,
the code transformations can still be performed, albeit on a smaller scale.

A compiler can isolate these intervals by performing a loop transformation called loop
splitting. Loop splitting divides a loop into subloops, which in entirety have the same effect
as the single loop. These subloops can then be reduced in computation.

In the context of distributed memory multiprocessors, this thesis explores the
improvement of array references allowed by the loop splitting transformation. More
specifically, this paper examines program speedup resulting from loop splitting, the code
transformations code hoisting and strength reduction, and the subsequent compiler

optimizations.

1.1 Overview

Section 2 describes array management in distributed memory multiprocessors. This topic
includes partitioning of task and data as well as alignment for minimal execution time.
Then, the method and complexity of array reference expressions are presented to illustrate
the problem this thesis attempts to ameliorate.

Section 3 provides an overview of loop splitting, First, the relevant loop
transformations (general loop splitting and peeling) and compiler optimizations (code
hoisting and strength reduction) are presented. Next, these elements are brought together
by describing the loop splitting transformation for compiler optimizations. Then, to
prepare for Section 4, this section presents the loop splitting framework for optimizing
array reference expressions on a distributed memory multiprocessor.

Section 4, the crux of this thesis, describes in detail the loop splitting study. This
includes the methodology and performance results of several experiments. The results are

10




then interpreted.
Section 5 concludes by summarizing both the interpretations of the study and the
contributions of this thesis.

1.2 Previous Application

Loop splitting has been used in other contexts besides simplification of array references for
distributed memory multiprocessors. One previous area of application is improvement of
register use in vector processors.

Vector processors, such as the Cray-1 ([Rus78]), are specialized for vector operations.
Vectorization of a loop removes the loop code and replaces the scalar operations of the loop
body with stand-alone vector operations. Though the operations are consequently faster, if
any of the operations share data, multiple memory references must be made for such data
because the values were overwritten by previous vector computation. To increase register
reuse (reduce the redundant memory traffic), the original loop is partitioned into
vector-length strips to produce a loop with smaller vector operations, appropriate for the
size of the register set. The operations are small enough to avoid flushing the common

data from the vector register set before it is needed again by a subsequent operation.
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Chapter 2

Array Management in

Multiprocessors

Before describing the details of loop splitting, this thesis presents some background
information on multiprocessor array management. Specifically, the multiprocessors
discussed here are distributed memory machines. This section helps to give perspective on
both the complexities of array references and the benefits of loop splitting in reducing

these expressions.

2.1 Introduction

Multiprocessors are designed with the hope that many computers can perform the job of
one computer in less time. Ideally hidden from the user, a program is run on a
communication network of processor-memory pairs, as seen in Figure 2-1. However, to
utilize more than one processor, a system of distributing the job among the processing
elements must first be devised. In the most ideal case, a load-balanced partition — an
equitable division of work among all processors — is found; and a multiprocessor terminates
a program in 1/P* the time of a uniprocessor, where P is the number of processors.

However, partitioning problems, data dependencies, processor communication, and

12



Figure 2-1: The distributed memory multiprocessor model: each node is a processor-memory
pair,

inherently sequential code! inhibit such a speedup by incurring unequal work distribution
and communication overhead. Even so, the decrease in execution time can still be
remarkable, particularly in loop- and array-oriented scientific codes.

As in any algorithm, a parallelizable algorithm, such as matrix addition, has two
types of specifications — that of the task to be performed, and that of the data on which to
perform the task. Unlike a sequential algorithm, however, the task and data of the parallel
algorithm are divided among the processors with regards to the task partitioning and data
partitioning, respectively. Each processor computes a unique section of the matrix addition,
and contains a unique portion of the matrices in its memory.

Through analysis of a program, a procedure called task and data partitioning
determine the optimal task and data partitions. First, the task partition is obtained by
dividing the work equally among processors while maximizing the reuse of data in each
division. This decreases the execution time by reducing the number of non-cache
references. Next, the data partition attempts to choose the size and shape of the data tile,
which when placed in the memory of a processor maximizes the probability that a cache
miss is satisfied in local memory. This lowers the execution time by reducing the number
of network requests. Finally, an alignment step determines which specific task and data
partition is assigned to each processor.

Though the above steps are performed with the hope of reducing the execution time

per processor, accessing array elements on a multiprocessor requires more calculation than

A simple example of nonparallelizable code is a sequence of /O instructions, such as printing the directions
of a program’s usage. In such a case, only one processor executes while the others stand idle,
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on a uniprocessor. In removing the uniprocessor, scalable multiprocessors also remove the
single memory address space. Array referencing must not only consider where in memory
an array is located, but also in which processor’s memory, thus requiring more calculation.

Virtual memory can eliminate the additional addressing calculations by providing the
abstraction of a uniform, linear address space. However, this abstraction results in an
efficiency loss because an unnecessarily large number of memory references may need to be
satisfied by a remote node.

The remainder of this section describes in more detail what has been outlined above.
First, Section 2.2 presents task and data partitioning, while introducing terms relevant to
loop splitting. Then, Section 2.3 describes the procedure for determining the optimal task
and data partitions. Section 2.4 describes the problem with array referencing on a
distributed memory multiprocessor. Finally, Section 2.5 examines a method of
multiprocessor array referencing, the complex expressions involved, and the possibility of

reducing these expressions.

2.2 Partitioning

While a uniprocessor executes an entire program, a processing element (PE) in a
distributed memory multiprocessor executes only a portion of the program. Dividing a
program into portions for the PEs is called partitioning, of which there are two types —
task partitioning and data partitioning.

2.2.1 Task Partitioning

Performed for both distributed and shared memory multiprocessors, task partitioning
assigns a portion of work to each processor such that the sum of all processor tasks is
equivalent to the original single task. Two types of task partitioning exist: dynamic and
static. Dynamic task partitioning is determined at the time of execution, where processes
spawn other processes until all processors are busy. This is achieved by fork operations,
which are later joined to merge the results of two processors onto one processor. The fork

and join operations are well-suited to recursive algorithms.
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Figure 2-2: Partitioning a 100-iteration 1-D loop: (a) the iteration space, (b) the partitioned
iteration space.

Static task partitioning, on the other hand, is determined at compilation time, where
beforehand the total task is divided among processors as equitably as possible. This type of
task distribution is suitable for iterative algorithms and is attained by using a
parallelizable loop construct, such as the ForaLl® instruction. Because the task
partitioning is a distribution of the loop’s iterations across processors, it is often termed the
iteration space partitioning. This thesis is concerned with only static task partitioning, and
further mention of task partitioning will be done without ambiguity of type.

After some definitions, task partitioning is examined through two examples. A loop
construct, such as FORALL, is often used in clusters; a group of associated FORALL
instructions is called a loop nest, since the cluster represents one or more nested loops. An
N-dimensional loop nest contains N nested FORALL instructions. Two loops are perfectly
nested if both share exactly the same loop body. Two loops are imperfectly nested if one

contains the common body as well as other code.

Example 1: A 1-D Loop Nest As a simple example of task partitioning, consider a 1-D
loop nest of 100 iterations performed on a four-processor machine. Figure 2-2 shows the
iteration space and a possible partitioning among the processors. Processor Zero computes
iterations 0 through 24, Processor One computes iterations 25 through 49, and so on. Each
processor calculates 25 iterations; this is an ideal task partition because it distributes the
task equitably.

The code written by the programmer is shown on the left of Table 2.1 in C syntax, and
the task-partitioned code of a parallel compiler is depicted on the right. To simplify the

code, this thesis uses the (noninclusive) expression for(var, init, limit, step) in place of the

*The DoOALL instruction is another example.
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Original Partitioned
forall(z, 0, 100, 1){ | low = pid * 25;
... body ... } high = low + 25;
for(i, low, high, 1){
... body ... }

Table 2.1: A 1-D loop nest before and after partitioning. The processor identifier, ranging
from 0 to 3, is denoted by pid.

normal C syntax expression for{var=init; var < limit; var+=step).

The code on the right is generalized code; regardless of what processor executes the
code, the processor will perform only its assigned portion of the task. This enables a
compiler to generate one code sequence to be executed by all processors. However, other
methods exist to generalize the code. As an example, instead of computing high and low
interval boundaries, the code could use a CASE statement to assign intervals based on the
processor ID. This is particularly useful when the intervals are irregular and hard to
generalize into equations; of course, the CASE statement may be long if there are many
processors. These and other issues lead to the different methods of loop splitting and will
be discussed later.

Figure 2-2 and Table 2.1 help to introduce two new terms. The length of the intervals
in each dimension is called the task spread of that dimension. In the context of the 1-D
loop nest above, the dimension I has a task spread of 25 iterations. Furthermore, the tile
size, the product of the task spreads, is the total number of iterations each processor must
perform for the loop nest. In the 1-D example, the tile size® is 25 iterations. This thesis

focuses on rectangular tiles; however, the results generalize to parallelograms as well.

Example 2: A 2-D Loop Nest A more complex example is a pair of perfectly nested
loops with iteration intervals of 0 to 99 for both dimensions. Pictorial representations of
this loop nest are contained in Figure 2-3, which shows blocking and striping of the
iteration space.

Table 2.2 displays the code® of these two possible partitions. The code with blocking

*In this thesis, the size of a pro-cessof’s task will be called the tile size (implying two dimensions) regardless
of dimension.

*All code examples in this thesis uses a C syntax; thus, **' (asterisk) represents multiplication, ¥ integer
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Figure 2-3: Partitioning a 100x100 2-D loop: (a) the iteration space, (b) the partitioned
iteration space with blocking, and (¢) the partitioned iteration space with striping.

Original With Blocking With Striping
forall(z, 0, 100, 1){ ilow = (pid % 2) 50; idow = pid * 25;
forall(j, 0, 100, 1){ | i-high = ilow + 50; i high = ilow + 25;

... body ... }} jlow = (pid / 2) * 50; for(i, ilow, i_high, 1) {
j-high = jlow + 50; for(j, 0, 100, 1) {
for(i, i low, i-high, 1) { ... body ... }}

for(j, jlow, jhigh, 1) {
... body ... }}

Table 2.2: Two examples of task partitioning for a 2-D loop nest: the programmer’s original
code, the code after blocking, and the code after striping.

divides both dimensions into two intervals, while the code with striping divides one
dimension into four intervals. The first partitioned loop nest has a task spread of 50 for
both the I and J dimensions; and the second partitioned loop nest has an I-dimension task
spread of 25 and a J-dimension task spread of 100. In both methods of partitioning, the
tile size is 2500 iterations.

Because every processor in each example has the same tile size (total task divided by
the number of processors), these are ideal partitions and ensure load-balancing. However,
where multiple partitions are possible (in loop nests of dimension > 1), communication cost
becomes a major criterion in determining the optimal task partitioning — that leading to
the shortest execution time. Section 2.3 discusses this issue in more detail.

diﬁsian, and %’ the modulo or remainder function.
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Figure 2-4: Three examples of data partitioning for a 100x100 array on four processors:
(a) blocking, (b) striping by rows, and (¢) striping by columns. The numbers designate
assignment of the array portions to the virtual processors.

2.2.2 Data Partitioning

While the task is divided among processors for all parallel machines, the data of a program
is divided only on a distributed memory multiprocessor. In a distributed memory system,
every memory address is local to some processor node; and every processor node has its
own piece of memory, from which all nodes may read and to which all may write. The data
structure relevant to data partitioning is the array and is distributed among the memories
without duplication. Figure 2-4 shows several data distributions for a 2-D array, each with
a different mapping of the array onto the processor memories.

Figure 2-4 helps to define more terms. First, the data spread is the dimension length
of the data portion located in a processor’s memory. In Figure 2-4a both the i_spread and
j-spread are 50 array elements each; in Figure 2-4b, i_spread is 100 elements and j_spread
is 25; and in Figure 2-4¢ i_spread is 25 elements and j_spread is 100. Second, the virtual
network is the arrangement of the virtual processors on which alignment maps the data.
This virtual network is then mapped onto the (possibly different) real network of physical
processors by a procedure called placement. The dimensions of the virtual network play an
important role in array referencing (explained in Section 2.5) and are called z_proc, where
z is the dimension name. In Figure 2-4a, both the i_proc and j_proc are 2 virtual
processors; in Figure 2-4b i_proc is 1 and j_proe is 4; and in Figure 2-4¢ i proc is 4
processors and j_proc is 1.

Like task partitioning, the ideal data partitioning distributes equal amounts of data

18



to the processors, and the optimal data partitioning leads to the shortest execution time.
Also like task partitioning, many ideal data partitions may exist, but very few optimal
partitions do and may be difficult to obtain. The next section outlines the process of
obtaining optimal task and data partitions.

2.3 Optimal Partitioning

As observed in the previous section, many possible methods of task and data partitioning
exist for a specific loop nest. This section describes the process of obtaining the optimal
task and data partitions, those leading to the minimal execution time, while introducing

more terms relevant to array referencing and loop splitting.

2.3.1 Optimal Task Partitioning

As a whole, the array cells needed by a particular processor is termed the processor’s data
footprint. This represents the data required for the processor's task and aids in
determining the optimal task partition. An example data footprint on a 2-D array A is
depicted in Figure 2-5 for the expression A[é][j] = Ali+1][j+1]+ A[#+1][5+2]. Here, the white
region in the center represents the array cells for which Processor 12 computes values; this
corresponds to Processor 12's task. The shaded regions represent additional data, for which
Processors 4, 5, and 13 are responsible, needed to perform Processor 12's task.

Justification for the additional data is seen by studying the reference expression.
Consider the single array cell in the center of Figure 2-5a. If this cell is A[2][5], then A[2][6]
and A[2][7] are added to assign its new value. These two cells are the pair next to the
single cell. Of course, in general, cell A[i][j] needs cells A[i+1][j+1] and A[i+1][;+2] to
obtain a new value. From this, it is obvious that the array cells along the border of
Processor 12's task require values outside the central white region, namely, the cells for
which Processors 4, 5, and 13 compute values.

The optimal task partition, represented by the aspect ratio I/J, is found by
minimizing the interprocessor communication (the shaded region of Figure 2-5) while

maintaining the tile size constraint (I x J = total task size + number of processors). Such
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Figure 2-5: The data footprint of a processor (a) for the expression Afi][j] = Ai+1][j+1]+
Ali+1][j+2] and (b) for the more general expression in which di+ and dj+ are the largest
positive offsets for the induction variables i and j, respectively; and di— and dj— are the
smallest negative offsets. The white area represents data for which a value is calculated,
while the shaded areas are the additional data needed for the calculations.

a partitioning groups closely associated iterations on one processor, thereby increasing the
temporal locality by maximizing data reuse. When an iteration needs a particular array
cell, the cell is cached and available to later iterations on the same processor. Because a
network or memory access occurs only once per unique array cell, and because the
suggested tile dimensions minimize the number of different array references; such a task
partition minimizes the total access time and is optimal.

The details of optimal task partitioning are contained in [AKIN92], but determining
the optimal aspect ratio for a 2-D loop nest will quickly be presented here.

The derivation of the optimal (to a first approximation) aspect ratio is rather simple.
Finding the I and J resulting in minimal communication we compute their ratio I#J. This is
performed in the following manner.

The tile size is k = I x J. Communication (to a first approximation) is the number of
rows and columns of nonlocal data. Where « is the number of rows and 3 is the number of

columns, the total communication in a multiprocessor with caches is
k k
c=af+ﬁ-?3a1+ﬁf:cs}-+ﬁur.

To obtain the I and J that minimize communication, we calculate the derivative of
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communication with respect to the variable and find where it has zero value:

de k Bk
d—I'—ﬂ_BI"’i—ﬂ:‘FI— E E2‘1]
de k ak
E}—ﬁ_ﬂﬁ”ﬂ;hr_ _‘-‘ﬁ (2’2}

The optimal aspect ratio is the ratio of equation 2.1 to equation 2.2, which becomes

# rows of communication

i o v *L:‘—k & ﬁ = E = # columns of c,nmmugjcatiu;l
J I,.'%rs |I,' A

Thus, the optimal aspect ratio for Figure 2-5a is I/J = 1/2, and the ratio for Figure 2-5b is

I _ diptdi
= S

2.3.2 Optimal Data Partitioning

When only one loop nest and one array exist, the optimal data partition is exactly the
optimal task partition. Such a data partition reduces most of the network accesses to local
memory accesses by locating directly on a processor the cells for which it is responsible to
compute values. In Figure 2-5a, the white portion would be in Processor 12's memory, and
the shaded region would be the remote data needed from Processors 4, 5, and 13.

In general, however, the optimal data partition is harder to obtain. Alignment is the
process of attempting to place the data footprint accessed by a task on the same processor
as the task. Details of obtaining the optimal data partition parameters can be found in
[AKN92].

2.4 The Problem

Most programs are not of the single loop nest, single array type. Instead, multiple loop
nests with multiple arrays make alignment difficult. The resulting poor alignment induces
fragmentation of a processor’s array references, causing accesses across several memory

modules over the execution of the loop nest.
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For example, in the context of the previous 2-D loop nest, a task partition with
blocking (Figure 2-3b) and a data partition with striping by rows (Figure 2-4b) have poor
alignment. Even with optimal placement (virtual processors 0, 1, 2, 3 map to real
processors 3, 2, 1, 0, respectively), only half of a processor’s data footprint is in its local
memory. Processor Zero (with virtual PID 3) would require data in both local memory and
the memory of Processor One (with virtual PID 2). For Processor Zero to reference the
data, it must not only specify the address of an array cell but also the processor's memory
in which it is located.

Thus, the very definition of a distributed memory multiprocessor leads to
complications in referencing the program’s dispersed data. The complication appears in the
form of involved reference expressions, which adversely affect the execution time of a
program. The next section describes these expressions and illustrates the possibilities for

simplification.

2.5 Array Referencing

Methods of array referencing on distributed memory multiprocessors vary; the method
described here is used by the Alewife effort ([Aet al.91]) at MIT. This thesis concerns itself
with rectangular task and data partitioning and barrier synchronization of parallel loop
nests, both of which are provided by the Alewife compiler.

Array referencing in Alewife is implemented in software. The general expression to
access an array cell is

aref (aref (array, pid), offset),

where aref is the array reference procedure, array is the name of the array, pid is the
unique ID of the processor whose memory contains the cell, and offset is the offset into that
memory. The reference procedure aref has two arguments — a list structure and an offset
into the structure, and returns the element in the structure located at the offset. In the
general expression above, the inner aref determines the memory segment in which the cell
resides from both array’s dope vector (a list of pointers to memory segments) and the
processor ID. The outer aref uses the memory segment and offset to obtain the actual
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location of the array element.

Figure 2-6 illustrates this array reference scheme with a 2-D array distributed over a
network of processors. To reference a particular array cell, pid indexes the dope vector to
determine the memory segment. Offset is then added to the address of the memory
segment to locate the array cell. This procedure is traced by the path shown in bold. In
general, the array cells are mapped to contiguous memory addresses so that, regardless of
the array dimension, one offset identifies a cell’s address. The dope vector itself lies in the
memory of one processor and has potential of becoming a bottleneck.

As example reference expressions, the code fragments of Figure 2-7 are array
references to cells Alil, B[il[jl, and C[i][jl[k]. I and J are loop index variables so that the
first expression is contained in at least a 1-D loop nest, the second is in at least a 2-D loop
nest, and the third is in at least a 3-D loop nest. Further, the constants i_spread, j_spread,
i_proc, etc. represent values described in the previous sections.

The validity of the first expression shall be justified to give a sense of how pid and
offset are calculated. In the 1-D situation, the array is divided into P sections of i_spread
contiguous elements, where P is the number of processors. A procedure given [ can
identify the segment with I/ i_spread and find the offset into the section with I % i_spread.
Because each section is contained in a unigue processor, calculating the section helding an
element is tantamount to calculating the virtual processor node holding that element.
Thus, I/ i_spread is the virtual processor ID, and I % i_spread is the offset into that
processor’s memory segment holding the section of the array.

The second and third expressions (and any N-dimensional reference for rectangularly
partitioned arrays) have the same structure — compute the processor ID and calculate the
offset in the processor’s memory. Of course, the expression to find the ID and the offset

becomes more complicated with an increase in the dimension of the array.
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aref (aref (A, I /i-spread) , I % i-spread);

aref (aref (B, (I /i-spread) + (i-proc * J / j-spread)),
(I % i-spread) + i-spread * (J % j-spread));

aref (aref (C, (I /i-spread) + i-proc * ((J / j-spread) + (j-proc * K / k-spread))),
(I % i-spread) + i-spread * ((J % j-spread) + j-spread * (K % k-spread)));

Figure 2-7: Array reference expressions for one-, two-, and three-dimensional arrays.
2.6 Simple Optimization of Array Calculation

When the interval of a loop is sufficiently® small (one iteration, if necessary), some
reductions in calculation are possible. First, all divisions with an induction variable as the
dividend have a constant value for the duration of the loop. This allows the constant to be
computed once outside the loop so that all iterations require no computation for the value.
Second, any modulo functions with an index variable as the first argument can be replaced
with a new variable whose value increments or decrements on successive iterations. This
is allowed by the nonperiodicity of the modulo expression (i.e., it does not flip back to zero),
guaranteed if the interval is sufficiently small. Section 3 explains these reductions in
calculation in greater detail.

In such a loop with a sufficiently small number of iterations, the three previous array
references become those in Figure 2-8, in which the div- and rem- variables have
replaced the division and modulo functions, respectively.

However, an optimizing compiler can reduce the calculation further. The newly
introduced constants from the division reduction can propagate to form more constants.
For example, the in the 2-D reference, (i-n * J / j-spread) becomes a product of two
constants (i-n * div-b-j), which itself is an interval invariant. Thus, the entire expression
can be removed from the loop body. With further propagation of constants, the second and
third expressions become those in Figure 2-9 so that all array references have a loop

invariant as the processor ID. Table 2.3 summarizes the total reduction in operations for

“To be specified later.
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Figure 2-6: Referencing a single array cell on a distributed memory multiprocessor.
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aref (aref (A, div-a-1), rem-a-i);

aref (aref (B, div-b-i + (i-n * div-b-j)),
rem-b-i + (i-spread * rem-b-j));

aref (aref (C, div-c-i + i-proc * (div-¢-j + (j-proc * div-c-k))),
rem-c-i + i-spread * (rem-c-j + j-spread * rem-c-k));

Figure 2-8: The same references with all the divisions replaced by interval invariants and
all modulos replaced by an incrementing counter.

aref (aref (B, pid-B-ij), rem-b-i + (i-spread * rem-b-j));

aref (aref (C, pid-C-ijk), rem-c-i + i-spread * (rem-c-j + j-spread * rem-c-k);

Figure 2-9: The 2-D and 3-D reference expressions after further compiler optimization.

each reference.

An optimizing compiler could even further reduce the calculation by replacing the
multiplication by i_spread in the second reference (j_spread in the third reference) with an
addition of i_spread (j_spread) on each iteration. This type of optimization, called strength
reduction, is described in Section 3.3.2.

In the context of rectangular partitioning, “sufficiently small” interval values are
those that keep the loop nest occupied with a single processor. If this condition is met, the
processor ID is constant, and the offset into the processor’s memory can be determined

with monotonically increasing or decreasing counters. Thus, appropriate intervals can

[ Number of Operations Per Array Reference ]

Reference | Before Optimization | After Optimization
mod | + | X - mod [+ x| +

0 [0]O] O
0 |01 1
¢ |[o|8| =

Table 2.3: Reduction in operations for array references by an optimizing compiler.
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reduce the array referencing computation to offset calculation alone, which is less taxing
than before. The key, then, is to determine a loop partition such that the above conditions

are met.

2.7 Summary

The task and data of a parallel loop nest are divided on a distributed memory
multiprocessor. The task is divided among processors while minimizing the communication
between tasks (thus maximizing the reuse of data within a task). The data is then
distributed by assigning to each processor the data its task requires while minimizing
communication among processors; this creates a virtual network of processors. Placement
then maps the virtual network onto the real processors of the physical multiprocessor. In
this way, alignment and placement attempt to minimize the processor communication, in
turn minimizing execution time.

However, array reference expressions require complex calculations, which increase
dramatically with array dimension. If the intervals of a loop nest are chosen sufficiently
small, however, these complex calculations can be reduced in execution cost — the divisions
can be removed from inside the loop and the modulos can be replaced by counters.

The next section describes loop splitting — a technique to obtain a loop nest with
“sufficiently small” intervals that still computes the original calculations.
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Chapter 3

Overview of Loop Splitting

Now that array referencing on multiprocessors has been presented, this section continues
the background presentation by defining the term loop splitting. This includes describing
the loop and code transformations comprising loop splitting as well as its application to

simplifying array reference expressions.

3.1 Introduction

As supported by Section 2.5, array references can require involved calculations. For
example, in a simple matrix transpose (2-D loop with body Alil[jl = B[jlli]), the assignment
requires 4 each of modulos, divisions, multiplications, and additions. In matrix addition
(A[i1G] = BLIG] + CLEIGD, of the 6 modulos, 6 divisions, 6 multiplications, and 7 additions,
only one addition was specified by the programmer. All of this array reference overhead
significantly inhibits a loop nest's execution performance.

However, loop splitting is an attempt to minimize this overhead by altering the loop
structure. By modifying the intervals of the loop nest and introducing another nesting
level, not only are the array reference operations fewer in number, but they are also no
longer performed on every iteration. This reduction in calculation leads to faster program
execution time.

This section presents sufficient descriptions of the components of loop splitting.

Section 3.2 describes the two loop transformations composing loop splitting, and Section
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Original | After Arbitrary Loop Splitting
for(i,0,100,1) | for(i,0,50,1) for(:,0,10,1)
{body(i);} {body(i);} {body(i);}

for(i,50,100,1) | for(i,10,30,1)
{body(i} | {body(i)}
for(i,30,100,1)
{body(i);}

Table 3.1: Transformation of a 1-D loop nest into two different code sequences illustrating
arbitrary loop splitting. The loop body is a function of the index variable 1.

3.3 describes the two compiler optimizations allowed by loop splitting. Section 3.4 then
presents these two transformations and two optimizations together as the one
transformation loop splitting. Finally, Section 3.5 explains the application of loop splitting

to improvement of the array references described in Section 2.5.

3.2 Two Loop Transformations

This section introduces the two loop transformations performed in compile-time loop
splitting for distributed memory multiprocessors. The first transformation is general loop
splitting — the splitting of a loop into more than one subloop. The second is peeling,
duplicating a loop body te remove iterations from a loop at the beginning or end of the

iteration interval.

3.2.1 General Loop Splitting

The general loop splitting transformation is weakly defined as dividing one loop into
several loops. These loops as a whole accomplish the same task as the single loop.
Dividing the loop into subloops can be arbitrary, as Table 3.1 shows. Here, one loop has
been separated into two equal-length loops and into three unequal ones. Obviously, this
arbitrary style of loop splitting replicates the loop body for each division, endangering a
program with code growth.

This thesis, however, defines loop splitting so that it must create subloops of equal
length. These equal-length loops avoid the code expansion by allowing a generalization of
each loop. A generalized loop, as the body of an appropriate outer loop, can represent the

29




[ Ten 1-D Loop Nests One 2-D Loop Nest
for(i,0,10,1) {body(:);} | for(I_step,0,100,10) {
for(i,10,20,1) {body(i);} | for(i,I.step,] step+10,1)
for(i,20,30,1) {body(i};} {body(i);}}

for(i,90,100,1) {body(i);}

Table 3.2: Ten separate loops of equal iteration length can be reduced in code to two nested
loops.

Peeled Iterations | Grouped Into Loops
body(i=0); |

body(i=1); for(i,0,2,1) {body(i);}
for(i,2,97,1) {body(i);} | for(i,2,97,1) {body(i);}
body(i=97); for(i,97,100,1) {body(i);}
body(i=98):

body(i=99);

Table 3.3: The original loop with a prologue and epilogue both peeled away and grouped into
loops themselves.

subloops in entirety. For example, the code on the left of Table 3.2, comprised of ten
subloops of equal length (10 iterations), can be represented by the much smaller code on
the right. With this definition of loop splitting, code expansion is no longer a concern, and

the extra loop overhead is negligible provided the subloops have a moderate iteration size.

3.2.2 Peeling

This thesis defines peeling as the removal of a small number of iterations from either end
of a loop's iteration interval. These peeled iterations result in a prologue (the first few
iterations) and an epilogue (the last few iterations) around the modified loop. Table 3.3
shows the original loop of Table 3.1 with two iterations peeled into a prologue and three
peeled into an epilogue. Of course, if the number of peeled iterations is large enough, loop
overhead may be favored over code expansion so that the prologue and epilogue become
loops themselves, as Table 3.3 also illustrates.

For the remainder of this thesis, the term loop splitting will refer not to the general
transformation of Section 3.2.1, but specifically to the combination of general loop splitting

and peeling to allow for parallel compiler optimizations, which Section 3.4 describes.
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Original After Code Hoisting
le=..2 C= e
for(i,40,60,1) temp = 6%c;
{Ali] = 6% + 10% + i%35;} | for(i,40,60,1)
{Ali] = temp + 10% + i%35;}

Table 3.4: A loop before and after code hoisting.
3.3 Two Compiler Optimizations

Before continuing the discussion of loop splitting, this section introduces two compiler
optimizations — code hoisting and strength reduction. These two code improvements are
precisely the ones allowed by loop splitting and are the motivation for performing this loop
transformation.

3.3.1 Code Hoisting

The code hoisting compiler optimization for loops, also known as factoring loop-invariants,
avoids redundant computations by pulling an expression out of a loop body to precede the
loop code. This expression must have a constant value for the entire duration of the loop.
After code hoisting, the expression’s value is computed only once and is used by every
iteration of the loop.

Table 3.4 shows a simple example of code hoisting for loops. The original code, on the
left, computes the value 6%c one hundred times, while the optimized code on the right
computes it once and assigns the value to a temporary variable. This variable is then used
in place of the expression in the loop body.

Obviously, as the number of iterations in a loop nest increases and as the expression
removed grows in calculation complexity, code hoisting significantly reduces the execution

time of a loop.

3.3.2 Strength Reduction

The strength reduction compiler optimization replaces an expensive (with regards to time)
operation with a less expensive one. For example, in loops multiplications with a constant

can be replaced by additions with the constant. Because multiplication on a processor is

31



Reduction of Multiplication Reduction of Modulo
B G0
I .mult_10=400; Irem. 35 = 5;
for(,40,60,1) for(i,40,60,1)
{Ali] = 6*c + I.mult_10 + i%35; {Ali] = 6*c + 10* + I.rem_35;
I mult_10+=10;} [rem_35++; }

Table 3.5: The same code after strength reduction on the multiplication and the modulo
function.

typically three to ten times slower than addition, such a strength reduction can lead to
noticeable speedups in loop execution time.

The left of Table 3.5 displays the original code of Table 3.4 after strength reduction on
the multiplication. The expression 10%; in the loop has been replaced by the variable
I mult 10, whose value is increased by ten on every iteration. Thus, by modifying the loop
variables, an expensive multiplication has been reduced to a faster addition.

Figure 3.5 also shows strength reduction in the much more complex modulo function,
which requires repeated divisions until a remainder is found. Here, the modulo is replaced
by a faster variable increment. Because divisions are slower than additions and modulos
require multiple divisions, this reduction is a significant improvement on execution time.
However, there is one very important condition for performing this optimization; the
modulo function must never reset back to zero. Here, the modulo’s range of values is 5 to
24. If the initial 7 value were 0, however, the modulo expression would have values from 0
to 34 and then from 0 to 24. In such a case, this strength reduction cannot be performed
because incrementing a variable can never lead to cyclic values.

Though the acyclic requirement may seem stringent, strength reduction on modulo
functions will always be available in loop splitting for parallel compilers of distributed

memory multiprocessors, as explained in the next section.

3.4 Loop Splitting for Compiler Optimizations

Now that the relevant loop transformations and code optimizations have been introduced,
loop splitting for compiler optimizations is examined. Specifically, loop splitting allows the

code hoisting and strength reduction optimizations of the previous section. This section
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| Optimization | Example Generalization
None || for(,0,100,1) for(i, LL,UL,1)
{Ali] = i/20 + i%30;} {Ali] = ifa + i%b;}
" Code Hoisting || for{I_step,0,100,20){ for(Istep,LL,UL,a){
of the I.div 20 = [_step/20; Idiv_a = I_step/a;
Division for(i,I step,] step+20,1) for(i,] step,l.step+a,l)
Expression {Ali] = Idiv_20 + i%30;}} {Ali] = Ldiv.a + i%b;}}
Strength || for(I_step,0,100,30){ for(I_step,LL,UL,b){
Reduction Irem 30 = 0; Iremb=0;
of the for(i,I step,l step+30,1) for(i,I step,]_step+b,1)
Modulo {Ali] =i/20 + I.rem_30;} {Ali] = i/fa + Irem_b;}
Expression Irem 30++;} I rem.b++;}
Both || for(I_step,0,100,10){ for(Istep,LL,UL,gcd(a,b)){
I div_20 = [_step/20; Idiv_a = I_step/a;
Irem_30 = I _step%30; Irem b = I_step%b;
for(i,I_step,l_step+10,1) for(i,I step,] step+ged(a,b),1)
{Ali] = Idiv_20 + ILrem_30;} {Ali] = ILdiv_a + I.rem b;}
Irem 30++;} Irem b++;}

Table 3.6: Eight code sequences showing various forms of optimization; the right column is
generalization of the example on the left, where a and b are positive integer constants.

describes the realization of these optimizations with loop splitting and presents a method

of allowing induction variables with constant offsets.

3.4.1 Optimizing Code

To clearly explain how loop splitting can help improve code, this section fully analyzes a
detailed loop splitting example.

The top of Table 3.6 shows code segments for a one-dimensional loop that assigns
array cells with an expression composed of a division and a modulo function. Both terms in
the expression are functions of ¢, the induction variable of the loop, which is monotonically
increasing. This thesis restricts its focus to induction variables with step size +1, typieal of
array-modifying loop nests.

If a compiler were to perform loop splitting with an interval length of 20, as in the
code sequence second from the top, the division expression becomes a loop-invariant of the
inner loop and can be hoisted to the outer loop. The division is then reduced from 100 to 5

executions. The interval length can be any factor of 20; however, an increase in interval
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size leads to a decrease in calculation so that 20 iterations is the optimal interval size.

If, instead, a compiler were to simplify only the modulo function, the largest loop
splitting interval would be 30. The third code sequence of Table 3.6 shows the resulting
code after strength reduction, where the modulo function has been replaced with addition
by one.

In order to optimize both expressions with loop splitting, the loop splitting interval in
the example must be yet a different length. Upon inspection of the original code, one can
see the largest interval length is 10 iterations. The bottom left code sequence of Table 3.6
depicts this fully optimized case.

In general, in order to perform code hoisting on all divisions and strength reduction
on all modulos in a loop, the loop splitting interval must be a common divisor of all the
divisors and modulo bases, thereby guaranteeing the requirements of code hoisting and
strength reduction. Of course, the greatest common divisor (ged) would remove the most
computation. The bottom right of Table 3.6 illustrates this.

Before continuing this section, it is helpful to realize the consequences of the loop
splitting interval length. The second and third code sequences of Table 3.6 are optimally
split for the division and modulo expressions, respectively, because they minimize the
number of calculations for each. However, to allow optimization of both expressions, the
fourth code sequence re-introduces redundant computations. Here, ten divisions and
modulos are performed though the minimum computations are five divisions and three
modulos.

The additional five divisions and seven modulos represent the trade-offs associated
with choosing which expressions to optimize. In the best case, all expressions to be
optimized lead to the same loop splitting interval length, and all are optimized to the
minimal computation needed. However, in the worst case, they lead to a greatest commaon
divisor of 1, where the resulting code is “fully optimized” but performs the same number of
divisions and modulos as the original code. Indeed, this extreme case is actually worse
than the original code due to the extra loop overhead of the outer loop! Deciding the
interval length and which expressions to optimize leads to different loop splitting methods,

of which two are presented in Section 4.
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Original After Loop Splitting
for(i,0,100,1) | for(Istep,0,100,10){
{Ali] = ((+1)/10 + (i-2)%10;} [div_10 = I step/10;
Irem_ 10 = I_step%10;
for(i ] step,] step+10,1)
{Ali] = Ldiv_10 + Lrem_10;}}

Table 3.7: A one-dimensional loop erroneously transformed by loop splitting.

3.4.2 Accounting for Integer Offsets

The previous section showed the problem of choosing both the loop splitting interval and
which divisions (of the form i/a) and modulos (of the form i%a) to optimize. However, loop
splitting experiences a further complication. Because integer offsets of induction variables
are very common, loop splitting must handle the more general expression i+¢, where ¢ is
an integer constant. This section illustrates the code modification loop splitting requires to
optimize expressions of the form (i+e¢)/a and (i+¢)%b.

As noted earlier, expressions of the form i/a and i%b can be fully optimized by loop
splitting with an interval length of a and b, respectively. In such a case, the value of i/a is
constant through all a iterations. However, an expression (i+c¢)/a would have two different
values: one for |c¢%a| iterations and another for a — |c¢%a| iterations. More specifically, the
values are val — 1 and val for ¢ < 0, and val and val + 1 for ¢ > 0, where val = i/a + ¢/a. Of
course, when ¢ = 0 (mod a), the interval has only one value; and when ¢ = 0, the situation
is exactly that described in the previous section.

The example of Table 3.7 illustrates this claim. The original code on the left has been
erroneously transformed into the code on the right by loop splitting, where the interval
was computed as ged(10,10) = 10. Two errors can be seen. First, the division expression
has the wrong value on the last iteration of an interval. For example, when i = 9 (the last
iteration of the first interval) the value used is 0; it should be (i+1)/10= (9+1)/10=1
instead. Because the last iteration is treated the same as all others in the loop structure,
the loop code cannot account for this discrepancy between the last iteration and the first 9
iterations.

Second, the modulo function has the wrong values for every iteration. The computed

value is always 2 (mod 10) higher than the correct value. For example, the very first
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Original Generalization
for(I_step,0,100,10){ OriginalLoop
i=I_step; Ali] = (i+1)/10 + (i-2)%10; {body;}
i=Lstep+1; Ali] = (i+1)/10 + (i-2)%10;
Idiv_10 = I_step/10; IntervalLoop {
Irem_10 = I step%10; HeadLoop
for(i,]_step+2,] step+9,1) {body;}
{Ali] = I.div.10 + Irem_10; BodyLoop
Irem 10++;} {optimized body;}
i=1_step+9; Ali] = (1+1)/10 + (i-2)%10;} TailLoop
{body;}}

Table 3.8: The previous example with correct loop splitting, showing peeled iterations; the
general loop splitting transformation.

iteration (i = 0) uses the value 0 in place of the modulo function, where —2%10 = 8 is the
correct value. Because the range of values for the modulo in the interval is from 8 to 9 and
then from 0 to 7, the restriction of Section 3.3.2 (a modulo cannot flip to zero in a loop
splitting interval) has been violated. Clearly, the loop splitting interval cannot account for
the offsets correctly.

One solution is to optimize only expressions without offsets. When many such division
and modulo expressions exist, this option may be appealing, especially if optimizing the
expressions with offsets reintroduces redundant computations by reducing the interval
length. Of course, if all expressions have offsets, none are optimized.

A better, more general solution is to divide the interval into segments of continuous
iterations with common values. In the example of Table 3.7, the ten-iteration interval is
divided into three segments — iterations 1 and 2, iterations 3 through 9, and iteration 10.
The first group of peeled iterations accounts for the modulo’s negative offset, and the third
group accounts for the division's positive offset. Table 3.8 shows the same loop with the
first, second, and last iterations peeled away. All iterations now have the correct value,
though only the middle segment has been optimized.

In general, many different offset values may exist, leading to the appearance of many
small segments at both ends of the original interval. This thesis groups these little
segments into two segments, one representing the maximum positive offset, and the other

representing the minimum negative offset. Because they contain different sets of values,
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aref (aref (A, 1/ i-spread) , I % i-spread);

aref (aref (B, (I /i-spread) + (i-proc * J / j-spread)),
(I % i-spread) + i-spread * (J % j-spread));

Figure 3-1: The 1-D and 2-D array reference examples of Section 2.5.

these offset segments cannot be optimized.

Because offsets are very often small relative to the interval length, the simplicity of
loop code outweighs the negligible cost of loop overhead; therefore, a loop represents each
offset segment. While the head loop represents the initial iterations of the loop splitting
interval and accounts for the negative offsets of the induction variable, the fail loop
represents the final iterations of the interval and accounts for the positive offsets. The
optimized loop representing all other iterations is called the body loop. Table 3.8 also
depicts this general loop structure.

3.5 Loop Splitting for Array Referencing Optimizations

Now that sufficient background has been presented regarding both array referencing and
loop splitting for compiler optimizations, this section explains how the loop splitting
transformation can be applied to reduce the calculation complexity of distributed memory
array references.

Section 2.5 described the expressions needed to reference an array; the two examples
presented have been duplicated in Figure 3-1. In these expressions, the divisors and
modulo bases are spreads of the data partition for the array. From the claims of Section
3.4, the loop splitting interval required for optimization is the greatest common factor of
the spreads. Table 3.9 shows the original and optimized reference code for a general 1-D
array reference Ali].

Because the data spread is the length of one dimension of a processor’s array chunk,
intervals based only on the spreads group iterations focused on only one chunk. In other

words, spread-based intervals group iterations that reference the memory of only one
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Source Code Reference Code After Loop Splitting

for(;,LL,UL,1) | for(;,LL,UL,1) for(I step,LL,UL,i_spread){
{temp = Al[i];} {temp = aref (aref (A, i/i_spread), I_div = I step/i_spread;
i%i_spread);} Irem = | step%i_spread;

‘ for(i,I_step,]_step+i_spread,l)
{temp = aref (aref (A, I.div),
Irem);

[rem++:}}

Table 3.9: The optimized general 1-D array reference.

processor. As mentioned in Section 3.5, the processor ID becomes constant (removing much
of the computation), and the offset into that processor’s memory can be computed with
increments to variables rather than modulo functions (simplifying the remaining

computation).

3.6 Summary

In this thesis, loop splitting is a combination of both splitting a loop into equal-sized
intervals and peeling iterations from the intervals to account for induction variable offsets.
Code hoisting and strength reduction are the two compiler optimizations allowed by loop
splitting. In the context of array referencing on a distributed memory multiprocessor, the
loop splitting intervals are determined by the data partitioning of the arrays. Such
intervals allow a compiler to improve the code, reducing the execution time for array
references.

Although loop splitting improves array references, the extent of the improvement is
unclear. The next section attempts to clarify this issue by describing two loop splitting
methods and the methodology of a loop splitting study. Experimental results are presented
and interpreted.
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Chapter 4
Loop Splitting Analysis

From the descriptions in the preceding sections, it seems clear that loop splitting can only
improve program performance; but, it is unclear just how much. This section describes two
loop splitting implementations and provides a quantitative analysis of their improvement

on loop performance.

4.1 Introduction

When the task and data partitions are identical and all references have no induction
variable offsets, the optimal code is easy to produce. In this case, all references in a
processor’s task are associated with data at a single processor'. Every iteration of the task
has the same reference constants, and all remainder operations can be modeled with
monotonically increasing or decreasing counters. No actual loop splitting needs to be
performed, but code hoisting the divisions and reducing the remainders in strength must
be done if an optimizing compiler were to improve code quality.

The optimal code becomes harder to produce, however, when the task and data
partitions are different. Here, a processor’s task is composed of subtasks, each of which
corresponds to accessing data at a particular processor and has dimensions equal to the
data spreads. Each subtask has different division constants and remainder behavior. Now,

loop splitting is required in order to reduce the number of reference calculations, and the

*With proper placement, these two processors are one and the same,
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loop splitting interval size for each dimension of the loop nest has the value of the data
spread.

The presence of different data partitions in the same loop nest also complicates loop
splitting. An example of how different data partitions are possible is adding two matrices
A and B, of which B was computed previously as a matrix product. While A4’s distribution
iz influenced solely by the addition (a two-dimensional loop nest), B's partition is
influenced by both the addition and the multiplication (a three-dimensional loop nest). In
such a case, either array references are selectively optimized or the loop splitting interval
becomes a function of the different data partitions.

As described in Section 3.4.2, induction variable offsets also complicate loop splitting.
In such a situation, there is communication between different segments. In other words, in
some of the iterations, data is located on more than one processor. In such iterations, array
references do not all have division constants in common, and so these reference values are
computed on every iteration, as in the original code. This problem is addressed by the head
and tail loops of peeling.

With the above factors, it is hard to predict how well loop splitting will improve code.
Therefore, to obtain a better understanding experiments were performed to determine the
value of loop splitting. Code quality is a function of code size, loop overhead, register use,
and number of operations, among other contributors. This thesis, however, uses execution
time as the sole determinant of code quality. From the execution times, the performance
improvement of the loop code was determined. This improvement was calculated as the
ratio of the execution time before loop splitting to the execution time after loop splitting.

The following subsections determine the quantitative benefits of loop splitting in the
presence of the above complications. First, two implemented methods of loop splitting are
introduced, and the procedure for performance analysis is described. Then, the
experimental results are presented, and the benefits of loop splitting are interpreted from
the analysis.
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4,2 Implemented Methods

Before proceeding to describe the experiments, this section presents the two methods of

loop splitting used in the study — rational splitting and interval splitting.

4.2.1 Rational Splitting

Rational splitting is the method outlined in Section 3.4.1, where the first detailed
explanation of loop splitting was presented. The following is a more specific description.

Each loop in the original loop nest is divided into subloops; however, these subloops
have the same number of iterations. In order to optimize all references, the subloop size
must obey all constraints imposed by the data spreads in the references. To have such a
quality, the loop splitting interval must be a common divisor of the data spreads. The
trivial common divisor is one, which is the subloop size of the original loop code. However,
to minimize the amount of redundant computation, the number of subloops must also be
minimized (their size maximized). A size equal to the largest common divisor achieves this
so that the optimal subloop size for rational loop splitting is the greatest common divisor
(ged) of the data spreads. Thus, a single number (the ged) specifies how the loop is split;
this minimal information keeps code size small.

Unfortunately, as mentioned earlier, it is likely that the data spreads will have a ged
of one. In such a case, no references are optimized, and the resulting code is slower than

the original due to the extra loop overhead on every iteration.

4.2.2 Interval Splitting

Interval splitting is a different approach to the problem of multiple data partitions. Where
rational splitting uses a single number to divide a loop into subloops, interval splitting
uses a list of numbers, explicitly specifying the subloops. With this list, the compiler has
already decided exactly how to divide the loop for each processor so that all redundant
computations are avoided.

Unfortunately, because each processor can have a unique list of intervals, as the

number of processors increases the code size also increases. With a 256 processor network,
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for example, the case statement assigning the interval lists contains 256 lists. On a

thousand-node network, very simple code can become alarmingly large.

4.3 Methodology

To study the effects of loop splitting on multiprocessor performance, the preceding
transformations were added to the Alewife precompiler. The following describes the
analysis procedure used to perform the experiments.

First, a statically parallel program was transformed by the precompiler and then
compiled by the Orbit optimizing compiler ([Kra88]) so that full advantage was taken of
the optimizing opportunities provided by loop splitting (as described in Section 3.5). The
resulting object code was then executed by Asim ([Nus91]), the simulator for the Alewife
multiprocessor architecture, which tabulated the total number of execution eycles for the
program. To isolate the loop execution time, the simulation time when starting the loop
was subtracted from the simulation time at completion.

To keep the results focused on loop splitting, Asim was used with the following
multiprocessor model. First, every memory reference was considered a cache hit. This not
only prevented the memory latency from affecting loop performance but also allowed
comparisons among different programs with different references by making memory access
time constant (subsequent memory accesses are not favored over the first one, which would
normally be a cache miss). Second, all network requests were resolved immediately,
removing the effects of communication (network topology, routing, placement) from the
results.

The experimental plots improvement of loop performance against the number of
processors. Improvement was computed as the ratio of the original loop’s execution time to
that of the loop after loop splitting. For comparison and generality, improvement was
calculated with the original and transformed codes both optimized by the Orbit compiler
and unoptimized. The number of processors was the variable in the experiments because it
determined the task and data partitions, in turn determining the data spreads that affect
the loop splitting intervals.
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Figure 4-1: The performance improvement in addition on 5000-element vectors and 100x50-
element matrices.

The programs used to analyze loop splitting effects were chosen to be representative
of the various routines found in scientific code. These programs are vector addition, matrix
addition, matrix multiplication, and matrix transposition. Appendix A contains the source
code for these programs as well as the object code of the precompiler after the different

states of transformation.

4.4 Results

The simulation results of the experiments on vector and matrix addition are shown in
Figure 4-1, and the results of the matrix multiplication and transposition are shown in
Figure 4-2.

Several interesting phenomena can be discerned from the graphs. First, while vector
and matrix addition show a rather steady decrease in the performance gain due to loop
splitting, matrix multiplication and transposition exhibit sawtooth behavior as their
performance decreases with an increase in processors. The cause of local minima in
performance is the presence of incongruent data spreads, requiring more calculation than
well-behaved ones.

Second, Figure 4-1 also shows that the two loop splitting methods have more
improvement when an optimizing compiler is used on the code both before and after loop

splitting. This makes sense because loop splitting not only reduces the reference
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position of a 100x50 matrix: without additional compiler optimizations (top) and with the
optimizations (bottom).
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calculations, but also allows more opportunities of which an optimizing compiler can take
advantage.

Third, with or without an optimizing compiler, the rational and interval splitting
methods produce the same performance gain in the vector and matrix addition. This is due
to the fact that all the arrays have the same partition in these programs.

In Figure 4-2, the optimized and unoptimized cases are separated to show the results
more clearly. We can see that the interval splitting method behaves as an upper bound on
loop splitting performance. It is also apparent that 2, 8, and 32 processors lead to
incongruent data spreads because the improvement from loop splitting degrades at those
points, especially at 8 and 32 processors where rational splitting often performs worse than
the original code (improvement is less than one). At these numbers of processors, interval
splitting is much more resistant to the incongruency by retaining a higher performance

improvement.

4.5 Interpretation

From the plots in the previous section, several interpretations have been made.

First, in general loop splitting clearly improves loop execution time. However, if
performed incorrectly with incongruent data spreads, the performance gain can actually
become a performance loss. Therefore, it is important to produce code with partitions that
are multiples of each other or are the same. If this cannot be done, then interval splitting
should be performed since it resists the incongruencies better by avoiding any redundant
computations.

Second, incongruent data spreads are not uncommon. None of the preceding
experiments were contrived to show how badly rational splitting can perform. Therefore, in
order to reduce the calculation in array referencing, a compiler with loop splitting should
take care not to create data partitions that are very similar but not exactly the same, since
those are the types that require more calculation from interval splitting (proportional to
the number of different partitions) and cause rational splitting to perform worse than the

original code (by having a ged of 1).
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Third, loop splitting of any type should be performed with further compiler
optimizations following. Since the loop splitting produces new constants, the potential for

additional optimization should be used.
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Chapter 5

Conclusions

This section summarizes the results and contributions of this thesis, and suggests a

possible path for future research.

5.1 Summary

Array referencing on a distributed memory multiprocessor requires costly calculations. An
array cell is not only identified by its position in memory, but also in which processor’s
memory.

To reduce the calculation needed for array referencing in a static parallel program,
loop splitting can be employed to divide a single loop into subloops. Once these subloops
expose invariants, code hoisting and strength reduction improve the code quality. These
code transformations allow further calculation reduction by an optimizing compiler.

We have introduced two methods of loop splitting that improve all array references of
a loop — rational splitting and interval splitting. While rational splitting creates subloops
of length equal to the greatest common divisor of the data spreads, interval splitting
explicitly defines the subloops in order to remove all redundant computations.

Implementations of the above methods were created and used to analyze the
improvement of loop execution time. The results on four different benchmarks in two
compiler settings were presented. The following summarizes the interpretations of the

study.
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Overall, loop splitting is an effective technique to lower the computation cost of array
references on a distributed memory multiprocessor. In most cases, it is easy to improve the
execution time of a loop to 2 to 3 times faster.

The rational splitting method has code size independent of the number of processors
but has good probability of reintroducing much of the array reference computations. In
some cases, where data partitions were similar but not identical, rational splitting
performs worse than the original code. Interval splitting, on the other hand, minimizes the
number of computations but has the potential of large code size with a high number of
processors. However, incongruent data partitions still greatly diminish its effectiveness.

Two solutions to the problems above seem apparent. First, where data partitions are
similar, they can be forced identical, greatly improving the gains of loop splitting by
avoiding data spreads with a ged of 1. Because the partitions were similar, the change will
not have a major effect on communication, load balancing, etc. Second, interval splitting
should be used only on a relatively small number of processors, such as 256 and lower,
depending on how large a reasonable-size program is defined. In a real multiprocessor
with more than 256 nodes, communication would likely be the major contributor to

execution time, in which case loop splitting would hardly be helpful.

5.2 Future Work

The research of this thesis is by no means complete. To extend the study, several
suggestions are made below.

Currently, the Alewife compiler does not support 3-D arrays. Implementing
n-dimensional arrays would help evaluate the growth of array reference complexity with
array dimension.

In addition to the two methods described in this thesis, other techniques of loop
splitting are possible. One such example that has been considered is single partition
splitting. This method selects a single representative partition to dictate the loop splitting
intervals. While every reference to arrays with this partitioning is fully optimized (no

redundant computations), all other references remain unchanged.



This method was not implemented due to many difficulties. One problem with this
method is deciding the rules for choosing the “representative” partition. It is not hard to
produce problematic programs in which a particular heuristic either optimizes the minimal
number of references, or optimizes none at all. Also, the references not optimized become
slower than they previously were either due to the computation needed to reconstruct
behavior of the induction variables before loop splitting or due to the extra registers
simulating that behavior.

Though single partition splitting possesses these difficulties, an analysis of its
performance would offer concrete evidence of its effectiveness. Therefore, perhaps an
implementation of the single partition method should be created, and the resulting
performance improvement compared with the two methods analyzed.

Further, results with more aggressive benchmarks, such as Wave or a 3-D relaxation,
may prove interesting; and, the performance of loop splitting should be evaluated in a real

system with communication, caches, etc.
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Appendix A

Performance Benchmarks

Each benchmark is shown as it would look in the four states of the loop splitting
experiments on a multiprocessor of 8 PEs. The four states are: the programmer’s source
code, the precompiler’s object code, the object code after rational splitting, and the object
code after interval splitting. The code is shown in the language Mul-T, a parallel version of
T (a dialect of Lisp). In the interest of saving space, only the loop is shown in the object
code.

The reference functions jref and Iref correspond to J-structures and L-structures, two
methods of synchronization. They behave the same way as aref in terms of referencing an

array cell.
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A.2 Matrix Add 100x50

The 5000-element 2-D array is distributed among six processars in groups of 850

array cells; therefore, the data spread of the data partitioning 1s 50x17.
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al
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After Interval Splitting
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A.3 Matrix Multiplication
40x40

The 1600-plement 20 nrray is distributed i eight B ors in groups. of
280 mrray cells; therefore, the data spread of the data partitioning is 20x14.

Source Code

{define imaini
(define x {latzuce (40 &0) 1)
(define ¥ (arzay 140 401 331
(dafine = {arzay (40 400 201
|format & "Begirming the loop!~%~|
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IJREF X
IFR= (FX/ I.2681 201
[FX® 2 (FX/ J.2682 14))0)

(FX= (Pi-REM I.2681 20)
(Fa= 20 (FX-PEM J.2682 1400100
(FICTN-MITLTIFLY

(LET [((Z.2683 I_2§)
6. 2684 WL 32}
[ARETF
[JREF ¥
[FX= [PEf T.3683 200
(FE* 2 IFES 2.2684 11110}
[Fi+ [FX-REM I._2&83 20)
(FE~ 20 (PE-REM J.2684 141100
1LET (12588 K 33
[J.2688 J_2811
|AREF
|GREF T
{FE= {FX; I.2585 20)
(EX™ 2 iFX/S J.26B6 14)00)
|F¥= (FE=EEX I.2685 20}
(P 20 (FPX-BREW J.2886 L300 FPFRRRRDNNDDY

After Rational Splitting

{RALT - SRR -OOMPFLETE
{FREE=-ZPANN 1
(LAMBOA (TID ()
{LET* [(OFFIET (FX-REM TID 20}
{70
[ PE=
(VREF '#(0 1) CFFEET)
[FX= TID QFFSETINND
{LET* (il (FX-REM TID 2}]
[J |FE-REM [(FXs TID 2) 2Z})
[K IF¥f TID 41}
[I=MIN (FX+ (FX*™ T 20} Qi)
[T=MIN (FX¥= (FX* J 20) &))
iE-HIN (FXs (FX* X 200 30
fI=Max
[FIOEM-MIN (FX+ I-MIM 200 &£3))
{T=MRX
(FIOER-MIN [FXs J-MIN 20) 40))
| E-HAX
|FIORRE-MIN (FXs E-MIN I0] 401))
(EET* [ [I-BMIN I-HWIN)
(I-EMAN [FX- I-MAX Lil)
[ =]
{I-REM-20 (FX-REM I-BHIN I0Q)
[FE= T=-REM=30 L[]]]
| {FE>= I-REM-I0 (FR-EEM I-BMAX 23040
[Bex]
[ [ J-LO0P-START
{FE®" 14 [FX/ JF=MIN Id])
{FEs J-LOOP-STaART 1d11)
{{Frn J-LOOP-START J-MAX))
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CLET® ((J=-BMIN (FX™ 20 J-FEM~-14111

(FIXNUM =N J=MIN (PLORR=MULTIPLY
{FX+» J-LOCP-START 0)11 (AREF DIV-Y-I20-K1d
i -EHA (Fxs I=REM-30
|FE= [Fx= 20 E-BEM-1411]
(FIERI-HIN J-MAX {AREF DIV-Z-K20=J1i4
{F¥es J=LOOP-START 14]] (FE+ K-REM-20
nl (Fx* 20 J-REM-14) FFF00II10100000010
{DIV-E-T1f0~-J1d

{TREF X After Interval Splitting
(FXe (PN T-BHIN 20)
(PR
[P/ J-BIN 1811111
(oo
| (3-REM-14 [FX-EM J-ZMIN 14)
(FXe J-mEM-14 1}))
| (Fi= J-REM-14 (FX-REM J-BMAX 14]}}
(oo
| (R-LOOP-START
(FX* 2 (PR/ F-MIN 2))
{PXs E-LODP-START 211
{ (PXa= K-LOGE-START K-3AX1)
(LET® [ (R-BMIN
[FTXNN=MAX W-MIN

IWATT=BPAMN-CIMPLETE
ITREE-SFARN 1
|LAMBOA (TID (1)
[LET* [(QFFSET [FE-REM TID 31)
(o]
[FX=
[VREF *#{D 1] QFFSET)
[F¥- TID QFFSETII N
[IF (FX< TID B]
(LET* | {I-INTERVALS
(CASE (FX-REM TID 2]
(i0) (LIET 0 3T
61 [LEET 20 4]

{ELSE
{Fit+ K-LOOF-ETART 0)11
CR-BHAX {FORMAT T *Case ssxor™¥*1111
| (= INTERVALS
{CASE

| FIXBUM-HIN K-MAx

|FE+ H-LOOP-START (FU-REM ¥R/ TID 2] 2)
- o -

(i8] (rLIsT O 14 20))

i1
P {121 ILIST 20 28 401
{ELSE
(BEv-z-¥ID-i8
(PORMAT T *Cazs errorThtill
(JREF ¥
(K=INTERVALS
(Pe (PR E-mId 200
[CASE [P/ TID &)
ks LIST 1 14 20
(] 14
[P/ J-BMIN 141111) Ly 4§ 1R
(%5
(OTV-¥-T20-K14 ! -
|IHEF ¥ tLTer Ak
|ELsE
[FHe (FX/ T-BMEN 30)
[FORMAT T “Came sreer~a®)ii))
(Fx> 2
[ I-EMIM
IFES E=BHIH L41))1)) temre L
i [FEe |CAR I-INTERVALE] O}
[ I-EMAX
| (E-PEM-20 (FX-BEM E-meIs 20)
e BN 1 (FE- (CADE D-INTERVALE) 1)1}
o

(E-REM-14 (FX-REM K-BMIN 14)
{FXs E-REM-14 1]})
{iFX> K-REM-14
(FX=REM E-BEMAX 141}
| [LAXBDA (SET.23L0_56)

{(I-FEM-20 IFX-REM I-BMIN 20)
(Fi+ I-REM-20 1))
fiFee I=-REM-30 (FE-REM I-HA3 20003
[(NADO-THT [J-INT J-IMTERVALS)
JLEDT™ [ [J-EMIN
{PE= (CAR J=-TNTH QL)

1SET
[LREF BEIV-X-I20-J14

3 | J-BMAX
|Flis I-REM-20
|FE* 30 J-EEM-I4)1} {FE= (CRDR J=-TIHT) 1M}
EET. 2310_54) |OIV=X-T20-T18
§ |JREF X
SBT.2210_561
IFINR=-ADD 1FX+
(EXS I-EMIN 2
[LREF DIV-X=-I20-J14
(FE 2

(FX= I-REM-20
(¥%7 O-BMIN 14111000
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(e A.4 Matrix Transposition
{ {I-REH-14
|FX~REM J-BMIN 14]
[Fis J=-REM=-14 L)1) 1mx50

HELRS: 14 The 5000-element 1-D array is distributed nmong six processors in groups of 850

koo array cells; therefore, the data spread of the data partitioning is 25<34.
{R&DO-INT
{K-IHT E-INTERVALS Source Code
({LET* {(X-ENIN
(FX+ |CAR K-INT] 0)) ii¢ B = A transpose
| = BheAN ({define (mainl
|F¥X- (CADR E-INT) (define a (array (300 500 9))
1) (define & (azcay (50 100) 0))
[DIV-E-KI0-T14 (for=ar £ *Begirming the loop!“\*|
[JTREF T (doall [x T 45}
[FX» (doall [y & 3%)
(FX/ ¥-BMIN 20) ise: (acef b x yl (azef a y x')}}
(Fx* 2 [format & *Ending the loop!~\")
(FX/ J-BEMIN (return b}
BEARRR R
PR Object Code
(JREF ¥
(FR= (WAIT=-SPARN-COMPLETE
{FR T-EMIN 20) |EpER AT 1
(FX* 3 (LAMBDR (TXO ()
(PR BeEMIN (LET* {(I (FX-REM TID 2))
18839013 (F (FXf TID 23}
] (I~-MIN (FX* T 2%))
| (K-REM-20 (T=MIN [PX* J 24)})
(%4&D0

(FX-REM E-BMIN 20)
(FX+ R=-REM=-20 1))

[E-REM-14

(FX-REEM F-EMIN 14)

(FX+ E-REM=-14 1))} (L1 -]
((Fis> ¥-REM-14 (¥ 23 (FIXWM-MAX J-MIN 0)
(PEXNUN=-MIN (FX+ J=-MIN 341 100)

(X_20 (FIXER-MAX I-MIN 0)
[FINIM-MIN [FXe I-MIN 2%) 50)
13

(FE=REY E-BMAE 1411)

[ (LAMBOA (SET.2367_56) i
(SET [ fLammns  (SET.3802_34)
(LREF (LET ({I.2803 X 20)
DIV-X-I28-J14 (T.2804 ¥_231)
(FH+ T-EM-20 [sET
(FX* 20 J-REM-14])) (AREF
SET.2347_5€) [JREF B
SET.2367_%8) iFgs (ML I.3803 25)
(FIXIRRM-ADD (e 2 (PX/ J3.2804 34))))
(LEEF DIV=X-IZ0-J14 (FX+ [FX-REM I.2803 35)
[F¥+ I-BEM-20 IFX* 25 (FX-REEM J.2804 34111)
{FX= 20 SET.I802_34))
J-REM-14} ) } G5BT, 3802_34)
(PIXNUIE-MULTIELY {LET |(I.280% ¥_23)
|AREF (J.2806 X_20))
DIV-¥=I20-¥14 [AREF
(Ex+ I-REM-20 (JREF A
(FE* 20 E-mEM-14))) (FXs [FX/ I.220% 50
Chia [FR* 2 (FRS 3.2806 173000
DIV-2-K206-J14 (FXs |FX-EEM I.280% 50
[PX+ K-REM-20 (PX* S0 (FX-REM J.2806 1700000000000
[FR* 20 J-REM-34) 1000000000000 0000010

After Rational Splitting
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| WAIT-SPANN-COMPLETE
[TREE-SPAWY 1
(LAMBDR (TID (1)
[LET* | (QFFSET (FX-EEM TID 2}}
[(TID
[ FX+
(VEEF WD 1] OFPSET)
[FX= TID OFPSET) )}
(LET* (X {FX-REM TID 20}
i (FXJ TID 2))
A5-MIN (FX= (FX* X 251 4))
¥=HIN (FX= [(PX* ¥ 34) O}
{X=HAX
IFIXIRE-MIN [FX= X=-HIN 25) 5071
1=MAX

(PIXMUM-MIN [FX= ¥-MIN 34] 10011)

(oo

[{X=TOOP=ETRET [FX* L (FX/ X-MIN 1])

1Fle M-LOOF-START 111
| {Fise X-LOGP-START X-MAX] |
(LET* [ [X-EMIN
(FIXNRE-MAX N-MIN
(FA+ X~-LOOP-START O )}
[X-BaERa
[FX~-
[FIORM-MIN X-MAX
(FX+ X=-LOOP=-START 1))
1111
oo
{{E-REM-17 {FX-REM X-BMIN 1T)
iFds X-REM-17 15}
(X-FEM-258 (FX-HEM X-8MIN 35)
(FX= X-REM-25 11}

L{FXe X-REM-25 (FK-REM M-BMAX 28)))

1)
{ {¥=LOOP=FTART
(PR* 2 {PX; ¥-MIH 21)
|FX+ Y-LOOP-START 211]
{iPise Y-LOGP-START Y-MAKI]
[LET* [ [¥-BMIN
[FIORM-HAX ¥-HIN
|F¥+ ¥-LOOP-ETART 0171
[¥-EMAK
[FE-
[FINMERE-MIN ¥-HAK
(FX+ Y-LOOP-START 2))
11
IDITY-A~¥50-X17
|JREF &
iFRe (PX/ V-BNIN 30)
(Fx= 2
[PX/ X-EMIN 17)311)
DIY-B-K25-¥34
{JREF B
IPX+ PR/ X-BHIN 25]
PR 2
[FX/ ¥=BMIN 3411111}
1]

[ (¥-BEN-50 [FX-REM Y-BMIN 50)
[FX+ Y-REM=50 1]}
(¥-REM-34 [(FX-REM ¥-BMIN 34]
[PX+ Y-REM-34 191
[iFX> ¥-REM-34
(PX-REM Y-EMAX 245))
[ [LAMBDS (SET.2898_34)
(sEr
(AREF DIV-B-XI5-¥34
(Fs X-REM-25
[FX* 25 ¥-REM-331)1
SET. 2E98_34)
SET.2895.34)
{AREP DTV-A-¥50-X17
(Fis ¥-REM-50

[Fr* 50 X-REM-1T10151110030011)

After Interval Splitting

|WALT - SPANN-COMFLETE
I TREE-SPAMH 1
(LAEEDS [TID [5)
[L=T* ((OFFPEET (FX-REM TID 2j]
[TID
[F3=
[VREF "#iQ 1) OFFSET)
(FX- TID OFFSETI)))
(IF {FX< TID §)
(LET* | (X-INTERVALE
(CASE (FEZ=-REM TID 2}
[0y TLEST @ 17 251)
48]
(LIET 25 34 30))
ELSE
(FORMAT T *Case erroe™%%)]))
{¥=INTERVALE
(CASE (FXF 77D 3)
(i8] [LEST 4 34))
FiLl
{LIST 34 50 63))
(42) (LIST &8 1001)
{ELSE
I{POREAT T “Cass eeror™W*hi111
(WEDO-INT [X-INT X-INTERVALS)
LEET* [ (X-BMIN
|F2= (CAR X-INT] )]
[X=BHAY
(EX- (CADR X-INT] 111)
(1=~]
[ (M-FEM-1T
[FR-HEM X-BMIN 17]
[Fi= ¥-EEM-1T7 1))
(X=-REM=-25
[FR-HEM X-HMIN 25)
[FE» X=REM=25 1}]]
{{FX> X-REM-25
| FE-REM X-EMRX 2%}))
{4%0D0-INT
[¥-IHT T-INTERVALS)
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(LET* [ {¥-EMIN
[FX+ (CAR ¥-INT] Q})
{¥-BaAX
(FX- (CADE ¥-INT] L))
[DIV-A-¥50-X1T
JREF A
[Fi=
(F&/ ¥-BHIN 50)
[Fu= Z
IFES X-EHIN 17010011
(DIV-B-X25-134
(TREF B
[FX»
IFXr X-BMIN 25)
1Fx- 2
IFXS ¥-BHIN 34)1)1)])
PG
{{E-REM-50
{FE-REM Y-BMIK 58)
{PX+ ¥Y-REM-50 11}
| ¥-EEd-14
(FE=-REM Y-BMIN 34]
(FX+ ¥-REM-34 1))
(IFE> ¥-REM-34
[PX-REM ¥-BMAX 341))
| [LAMBODA [SET.Z487_34)
LEET
[AREF DIV-B-XI5-%¥34
|Fi+ X-REM-25
(Fx* 25
W=-REM-34111
SET. 2487 _34]
SET.2487_34)
(AREF DIV-A-¥S50-X17
(FX+ Y=-REM=-50
[Fie* 50 X-REM=1T)10000b0BRDDRDDN



Appendix B
Loop Splitting Code

This appendix contains the code implementing the two loop splitting methods discussed.
The code is written in T, a dialect of Lisp, in which the Alewife precompiler is implemented.
The first section holds the code for the normal array referencing expressions, The
second section is the code that implements the rational splitting method. While some of
the procedures replace those in the original code, most are new. The last section contains

the code implementing the interval splitting method. This section is much smaller than
the previous one because it contains only the procedures different from those in rational

splitting, either new or modified.
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B.1 Normal

ey

+:; /donald/spliccing/lowersloop.t

134

;57 Thia ia the original loop schema (mo loop splisting).

{hezald loop!)
ti: 0ld code generation stuff (Pre-Donald)

(define (generate-dcall doall body)
[xcase (%doall-rank doalll
(Y38}
(generate-1d-doall doall body))
2
(xcase (car (Vdoall-partition deall))
{ (rectangular)
(generate-2d-rectangular-doall dsall bodyl)i)
113
ixcase (car (W2sall-pazzisien deall))
{ {rectangular)
(generate-3d-rectangulas-deall deall bodylliil

|define (generste-id-dsall Soall bedy)
{format t *In generate-ld-doall: limies = “z°%~
(%dsall-ivar-limics doall)l
[lst ((init (car {(\doall-fvar-inits doalll))
(1imit (car (vdoall-ivar-limits doall)])
(stride (car (%doall-ivar-strides doall))l)
(destructure |{{#f (i-var i-spread i-n]) [adoall-partition
doallll)
(format t *i-spread = ~s”%" i-spread)
flumit-zpawmi-coeplete
(tree-spawn 1
(lasbdn (cid #E)
flet* (I {fx-rem £id ,i-n])
{I-min {(fx* I ,i-spread)]]
(%%do (,i-var
(Eixnum-max I-min ,init)
(fismm-min [fxe I-min (= L-gpread init)) ., (fxe limitc 1)}
,stride)
LAedy) 1111111

;i: We vary firac in the I direction and them im the J directiom

|define (generate-2d-rectangular-doall deall body)
(format t “limits = “s“4" (Wdoall-ivar-limits dsall))

(destructure ({i{i-init d-iniz) (vdoall-ivar-inits doalll)
{ii-limie j-limit) (%doall-ivar-limits doall))
((i-srzide j-atside) [(Vdcall-ivar-strides doall))
((#f {i-var i-spread i-n] (j-var j-spread j-n})
ivdoall-partition doallll)

* {wait-spawn-complete
(tres-spawn L

{lambda (tid 00

{let* ((T ,[if (= i-n 1)

"
‘ifx-vem tid . i-n)})
{3 ,fcond ((£x= §-m 1)
“0)
{{8ew 1-n 1)
*(fx-rem tid ,j-nl)
{elae
“(Exs zid . i-n))))
(T-