
LABORATORY FOR &I,
COMPUTER SCIENCE ~ T.ffi.

MIT/LCS/fM-489

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

COLUMN-ASSOCIATIVE CACHES:
A TECHNIQUE FOR REDUCING

THE MISS RATE OF
DIRECT-MAPPED CACHES

Anant Agarwal
Steven D. Pudar

November 1993

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Column-Associative Caches:
A Technique for Reducing the Miss Rate of Direct-Mapped Caches

Anant Agarwal and Steven D. Pudar
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract

Direct-mapped caches are a popular design choice for high
performance processors; unfortunately, direct-mapped caches suf
fer systematic interference misses when more than one address
map into the same cache set. This paper describes the design of
column-associative caches, which minimize the conflicts that arise
in direct-mapped accesses by allowing conflicting addresses to dy
namically choose alternate hashing functions, so that most of the
conflicting data can reside in the cache. At the same time, however,
the critical hit access path is unchanged. The key to implementing
this scheme efficiently is the addition to each cache set of a rehash
bit, which indicates whether that set stores data that is referenced
by an alternate hashing function. When multiple addresses map
into the same location, these rehashed locations are preferentially
replaced. We demonstrate using trace-driven simulations and an
analytical model that a column-associative cache removes virtually
all interference misses for large caches, without altering the critical
hit access time.

1 Introduction

The cache is an important component of the memory system of
workstations and mainframe computers, and its performance is
often a critical factor in the overall performance of the system.
The advent of RISC processors and VLSI technology have driven
down processor cycle times and made frequent references to main
memory unacceptable.

Caches are characterized by several parameters, such as their
size, their replacement algorithm, their block size, and their degree
of associativity (1). For cache accesses, a typical address a is
divided into at least two fields, the tag field (typically the high
order bits) and the index field (the low-order bits), as shown in
Figure 1. The index field is used to reference one of the sets, and
the tag field is compared to the tags of the data blocks within that
set. If the tag field of the address matches one of tag fields of the
referenced set, then we have a hit, and the data can be obtained from

0

b

(
a,

I Tag I Index I
address Cache

Figure 1: Indexing into a direct-mapped cache using bit-selection
hashing.

the block that exhibited the hit. 1 In ad-way set-associative cache,
each set contains d distinct blocks of data accessed by addresses
with common index fields but different tags. When the degree of
associativity is reduced to one, each set can then hold no more than
one block of data. This configuration is called a direct-mapped
cache.

For a cache of given size, the choice of its degree of associa
tivity influences many performance parameters such as the silicon
area (or, alternatively, the number of chips) required to implement
the cache, the cache access time, and the miss rate. Because a
direct-mapped cache allows only one data block to reside in the
cache set that is directly specified by the address index field, its
miss rate (the ratio of misses to total references) tends to be worse
than that of a set-associative cache of the same total size. However,
the higher miss rate of direct-mapped caches is mitigated by their
smaller hit access time (2, 3). A set-associative cache of the same
total size always displays a higher hit access time because an asso
ciative search of a set is required during each reference, followed
by a multiplexing of the appropriate data word to the processor.
Furthermore, direct-mapped caches are simpler and easier to de
sign, and they require less area. Overall, direct-mapped caches are
often the most economical choice for use in workstations, where
cost-performance is the most important criterion.

1.1 The Problem

Unfortunately, the large number of interference misses that occur
in direct-mapped caches are still a major problem. An interference
miss (also known as a conflict miss) occurs when two addresses
map into the same cache set in a direct-mapped cache, as shown

1 ln most caches, more than one data word can reside in a data block. ln
this case, an offset is the third and lowest-order field in the address, and it
is used to select the appropriate data word.

in Figure 1. Consider referencing a cache with two addresses, a;
and ai, that differ only in some of the higher-order bits (which
often occurs in multiprogramming environments). In this case,
the addresses will have different tags but identical index fields;
therefore, they will reference the same set. If we denote the set that
is selected by choosing the low-order bits of an address a as b[a],

then we have b[ai] = b[ai] for conflicting addresses. The name
b comes from the bit-selection operation performed on the bits to
obtain the index.

Assume the following reference pattern: a; aj a; aj a; aj • • •.
A set-associative cache will not suffer a miss if the program issues
the above sequence of references because the data referenced by a;

and aj can co-reside in a set. In a direct-mapped cache, however,
the reference to aj will result in an interference miss because the
data from a ; occupies the selected cache block. The percentage
of misses that are due to conflicts varies widely among different
applications, but it is often a substantial portion of the overall miss
rate.

We believe these interference misses can be largely eliminated
by implementing control logic which makes better use of cache
area. The challenge, then, is determining a simple, area-efficient
cache control algorithm to reduce the numberof interference misses
and to boost the performance without increasing the degree of
associativity.

1.2 Contributions of This Paper

This paper presents the design of a column-associative cache that
resolves conflicts by allowing alternate hashing functions, which
results in significantly better use of cache area. Using trace-driven
simulation, we demonstrate that its miss rate is much better than
that of Jouppi's victim cache [4] and the hash-rehash cache of
Agarwal, Horowitz, and Hennessy [5], and virtually the same as
that of a two-way set-associative cache. Furthermore, its hit access
time is the same as that of a direct-mapped cache. To help explain
the behavior of the column-associative cache, we also develop and
validate an analytical model for this cache.

The rest of this paper is organized as follows. The next section
discusses other efforts with similar goals. Section 3 presents the
column-associative cache, and Section 4 develops an analytical
model for this cache. Section 5 presents the results of trace-driven
simulations comparing the performance of several cache designs,
and Section 6 concludes the paper.

2 Previous Work

Several schemes have been proposed for reducing the number of in
terference misses. A general approach to improving direct-mapped
cache access is Jouppi' s victim cache [4]. A victim cache is a small,
fully-associative cache that provides some extra cache lines for data
removed from the direct-mapped cache due to misses. Thus, for a
reference stream of conflicting addresses, such as a; aj a ; aj ... ,
the second reference, a i , will miss and force the data indexed by
a; out of the set. The data that is forced out is placed in the victim
cache. Consequently, the third reference, a;, will not require ac
cessing main memory because the data can be found in the victim
cache.

However, this scheme requires a sizable victim cache for ade
quate performance because it must store all conflicting data blocks.

Like the column-associative cache, it requires two or more access

times to fetch a conflicting datum. (One cycle is needed to check
the primary cache, the second to check the victim cache, and a pos
sible third to store the datum into the primary cache.) Because of
its fixed size relative to the primary direct-mapped cache, both our
results and those presented by Jouppi (see Figure 3-6 in [4]) show
that it is not very effective at resolving conflicts for large primary
caches. On the other hand, because the area available to resolve
conflicts in the column-associative cache increases with primary
cache size, it resolves virtually all conflicts in large caches.

The scheme in [6] is proposed for instruction caches and uses
two instruction buffers (of size equal to a cache line) between the
instruction cache and the instruction register, and an instruction
encoding that makes it easy to detect the presence of branch in
structions in the buffers.

Kessler et al. [7] propose inexpensive implementations of set
associative caches by placing the multiple blocks in a set in sequen
tial locations of cache memory. Tag checks, done serially, avoid the
wide data path requirements of conventional set-associative caches.
The principle focus of this study was a reduction in implementation
cost. The performance (measured in terms of average access time)
of this scheme could often be worse than a direct-mapped cache for
long strings of consecutive addresses, which occur commonly. For
example, a long sequential reference stream of length equal to the
cache size would fit into a direct-mapped cache, and subsequent
references to any of these locations would result in a first-time hit.
However, in ad-way set-associative implementation of this scheme,
only 1 / d of the references would succeed in the first access.

A similar problem exists in the MRU scheme proposed by So et
al. [8]. The MRU scheme is a means for speeding up set-associative
cache accesses. It maintains a few bits with each cache set indicat
ing the most recently used block in the set. An access to a given set
immediately reads out its MRU block, betting on the likelihood that
it is the desired block. If it isn't, then an associative search accom
panies a second access. Clearly, a two-way set-associative cache
does not require an associate search, but does require a second
access. Unfortunately, only 1 / d of the references in a long se
quential address stream would result in first-time hits into ad-way
set-associative cache using this scheme.

A more desirable cache design would reduce the interference
miss rate to the same extent as a set-associative cache, but at the
same time, it would maintain the critical hit access path of the
direct-mapped cache. The hash-rehash cache [5] had similar goals,
but in Section 3.1 we demonstrate that it has one serious drawback.
The technique introduced in Section 3 removes this drawback and
largely eliminates interference misses by implementing slightly
more complex control logic to make better use of the cache area.
By maintaining direct-mapped cache access, these schemes do not
affect the critical hit access time. With proper design, the few
additional cycles required to execute the algorithms in case of a
miss are balanced by the decrease in the miss rate due to fewer
conflicts. This decrease in the interference miss rate is achieved
not by set associativity but by exploiting temporal locality to make
more efficient use of the given cache area-a notion called column
associativity.

3 Column-Associative Caches

The fundamental idea behind a column-associative cache is to re
solve conflicts by dynamically choosing different locations (ac

cessed by different hashing functions) in which conflicting data

set

0

1

2

3

4

a.
i

a;
7

Column-Associative

set

Two-Way Set-Associative

Figure 2 : Comparison of column-associative and two-way set
associative caches of equal size. The conflict b[ai] = b[ai] is
resolved by both schemes.

000

b
001

0 10 a.
011

100

f 101

110 a j

111 I rag I J~
address Cache

Figure 3: Indexing into a cache by bit selection and by bit flipping.
The conflict b[a;] = b[ai] is resolved by the bit-flipping rehash.

can reside. Figure 2 compares the column-associative cache with a
two-way set-associative cache of equal size. When presented with
conflicting addresses (b[ai] = b[aj]), the set-associative cache re
solves the conflict statically by referencing another location within
the same set. On the other hand, the column-associative cache is
direct-mapped, and when presented with conflicting addresses, a
different hashing function is dynamically applied in order to place
or locate the data in a different set. One simple choice for this other
hashing function is bit selection with the highest-order bit inverted,
which we term bit/Upping. If b[a] = 010, then f[a] = 110, as
illustrated in Figure 3. Therefore, conflicts are resolved not within
a set but within the entire cache, which can be thought of as a
column of sets- thus the name column associativity.

Column associativity can obviously improve upon direct
mapped caching by resolving a large number of the conflicts en
countered in an address stream. In addition, as long as the con
trol logic used to implement column associativity is simple and
fast, then the benefits of direct-mapped caches over set-associative
caches (as discussed in Section 1) are maintained, especially the
lower hit access time. Because hits are much more frequent
than misses, the extra cycles required to implement the column
associative algorithm on a miss can be easily balanced by the small
improvement in hit access time on every hit, resulting in a smaller
average memory access time when compared to a two-way set
associative cache. Of course, column associativity could be ex
tended to emulate degrees of associativity higher than two, but it
is likely that the complexity of implementing such an algorithm
would add little to the performance and might even degrade it.

Additionally, the column-associative implementation uses sets
within the cache itself to store conflicting data; only a simple re
hash of the address is required to access this data. By comparison,
a victim-cache implementation requires an entirely separate, fully
associative cache to store the conflicting data. Not only does the
victim cache consume extra area, but it can also be quite slow due

I 01 I 010

I 01 I 110 I

a I 010 I 010

a
X Oil 110

incorrect
hit

f

'- -
f correct

ffi!SS

tag: 01 or 011

Cache

000

001

010

011

100

101

110

111

Figure 4: Appending the high-order bit of the index to the tag.
This technique is necessary when bit flipping is implemented.

to the need for an associative search and for the logic to main
tain a least-recently-used replacement policy. Of course, storing
conflicting data within the cache-instead of in a separate victim
cache-very likely results in the loss of useful data, but this ef
fect (henceforth referred to as clobbering) can be minimized as
discussed in Section 3.2.

The remainder of our discussion proceeds in two steps. First, we
describe a basic system that uses multiple hashing functions and
discuss its drawbacks. Then, we add rehash bits to this design to
alleviate its problems.

3.1 Multiple Hashing Functions

Like the hash-rehash cache in [5], column-associative caches use
two (or possibly more) distinct hashing functions, h1 and h2 , to ac
cess the cache, where h 1 [a] denotes the index obtained by applying
hashing function h1 to the address a. If h1 [a;] indexes to valid data,
afirst-time hit occurs; if it misses, h2[ai] is then used to access the
cache. If a second-time hit occurs, the data is retrieved. The data
in the two cache lines are then swapped so that the next access will
likely result in a first-time hit. However, if the second access also
misses, then the data is retrieved from main memory, placed in the
cache line indexed by h2[a;], and swapped with the data in the first
location.

Using two or more hashing functions mimics set associativity,
because for conflicting addresses (that is, a, and a i for which
hi [a;] = hi [aj]), rehashing ai with h2 resolves the conflict with
a high probability (that is, h1[ai] =p h2[aj]). However, notice
that the hit access time of a first-time hit remains unchanged. For
simplicity and for speed, the first-time access is performed with bit
selection (that is, h1 = b), and bit flipping is often used for h2 (that
is, h2 = f).

The use of bit flipping as a second hashing function results in
a potential problem. Consider two addresses, a; and ax, which
differ only in the high-order bit of the index field (that is, f[a;] =
b[ax]). These two addresses are distinct; however, the tag fields are
identical, thus a rehash access with f [ai] results in a hit with a data
block that should only be accessed by b[a,,J This is unacceptable,
because a data block must have a one-to-one correspondence with
a unique address. For addresses whose indexes are the same and
which thus reference the same set, the tags are compared in order
to determine whether an address should access the data block. This
suggests a simple solution to the situation, appending the high
order bit of the index field to the tag, as illustrated in Figure 4. The
rehash with f[a;] will correctly fail because the data block is once
again referenced by a unique address, a,,,. This scheme is assumed

to be in place whenever bit flipping is used.

h . b[a]

1/ ~ ss

done h/ f[a]~ss

swap clobber2
I l long memory reference

done T
3

done: access complete

swap

I aqcess ti[71e
done (Cycles;
M+ 3 <___J

Figure 5: Decision tree for the hash-rehash algorithm.

II mnemonic I action cycles

b[a] bit-selection access 1
f[a] bit-flipping access 1

swap swap data in sets accessed by b[a] and f[a] 2
clobber2 get data from memory, place in set f [a] M
clobber1 get data from memory, place in set b[a] M
Rbit=1? check if set b(a] is a rehashed location 0

Table I: Decision tree mnemonics and cycle times for each action.

To illustrate the operations more clearly, the hash-rehash algo
rithm has been expressed as the decision tree in Figure 5, simply
a translation of the verbal description of the hash-rehash algorithm
into a tree structure. Table 1 explains the mnemonics used in this
decision tree and in the others which are introduced in this paper.
The table also includes the number of cycles required to complete
an action, which is necessary for the calculation of average access
time.

In the decision tree, note that after a first-time miss and a second
time hit, which require two cycles to complete, a swap is performed.
According to Table 1, the swap requires an additional two cycles
to complete. The design requirements for accomplishing a swap
in two cycles is discussed in Section A of the appendix. However,
given an extra buffer for the cache, this swap need not involve the
processor, which may be able to do other useful work while waiting
for the cache to become available again. If this is the case half of
the time, then the time wasted by a swap is one cycle. Therefore,
for all decision trees in this paper, we assume that a swap adds only
one cycle to the execution time. (However, we provide access time
results for both one and two cycle swaps.) Thus, the three cycles
indicated in the swap branch of Figure 5 results from one cycle for
the initial cache access, one cycle for the rehash access, and one
cycle wasted during the swap.

Unfortunately, the hash-rehash cache has a serious drawback,
which often reduces its performance to that of a direct-mapped
cache, as can be seen in Section 5.3. The source of its problems
is that a rehash is attempted after every first-time miss, which can
replace potentially useful data in the rehashed location, even when
the primary location had an inactive block. Consider the following
reference pattern: a; ai a,, ai a,, ai a,, ••• ,where the addresses
a; and ai map into the same cache location with bit selection, and
a,, is an address which maps into the same location with bit flipping
(that is, where b[a;] = b[ai], and f[a;] = b[a,,]). This situation is
illustrated in Figure 6. After the first two references, both the hash
rehash and the column-associative algorithms will have the data

referenced by ai (which will be called j for brevity) and the data i

I Tag I Index I 000

l 001

-::::, <
,;: 010

lnd;ex I ~/
,

I Tag I
011

100

_ / ~ 101 r- ---=--- ...§,,- 110

r b _____,.. 111

I Tag I Index I f Cache

Figure 6: The potential for secondary thrashing in a reference
stream of the form a; aj a,, aj a,, aj a,, • • •. Different fonts
are used to indicate different index fields and tags. In this case,
b[ai] = b[aj] and f[a;] = b[a,,].

in the non-rehashed and rehashed locations, respectively. When the
next address, a,,, is encountered, both algorithms attempt to access
the set b[a,,], which contains the rehashed data i. But when this
first-time miss occurs, the hash-rehash algorithm next tries to access
f[a,,], which results in a second-time miss and the clobbering of
the data j. This pattern continues as long as ai and a,, alternate;
the data referenced by one of them is clobbered as the inactive data
block i is swapped back and forth but never replaced. We will refer
to this negative effect as secondary thrashing in the future.

The following section describes how the use of a rehash bit can
lessen the effects of these limitations.

3.2 Rehash Bits

The key to implementing column associativity effectively is in
hibiting a rehash access if the location reached by the first-time
access itself contains a rehashed data block. This idea can be im
plemented as follows. Every cache set contains an extra bit which
indicates whether the set is a rehashed location, that is, whether
the data in this set is indexed by f [a]. This algorithm, which is
illustrated as a decision tree in Figure 7, is similar to that of the
hash-rehash cache; however, the key difference lies in the fact that
when a cache set must be replaced, a rehashed location is always
chosen-immediately if possible. Thus, if the first-time access is a
miss, then the rehashed-location bit (or rehash bit for short) of that
set is checked (Rbit=1 ? , as listed in Table 1). If it has been set to
one, then no rehash access will be attempted, and the data retrieved
from memory is placed in that location. Then the rehash bit is reset
to zero to indicate that the data in this set is to be indexed by b[a]
in the future. On the other hand, if the rehash bit is already a zero,
then upon a first-time miss the rehash access will continue as de
scribed in Section 3.1. Note that if a second-time miss occurs, then
the set whose data will be replaced is again a rehashed location, as
desired.

Of course, at start-up (or after a cache flush), all of the empty
cache locations should have their rehash bits set to one. The reason
that this algorithm can correctly replace a location with a set rehash
bit immediately after a first-time miss is based on the fact that
bit flipping is used as the second hashing function. Given two
addresses a; and a,,, if f[a;] = b[a,,], then it must be true that
f[a ,,] = b[a;]. Therefore, if a; accesses a location using b[a;]
whose rehash bit is set to one, then there are only two possibilities.

.1. ~e accessed location is an empty location from start-up, or

2. there exists a non-rehashed location at J[ai] (or b[ax]) which
previously encountered a conflict and placed the data in its

hit

done

b[a] miss

------------yes Rbtt=1? no
7 ~

clobber1 hit f[a] miss

1/ ~
ciobber2

~
a~ache done

l M+l

b rehash bit
(Rbit)

f

swap
I

done
swap

I
done

M+3

Figure 7: Decision tree for a column-associative cache.

rehashed location, f[a,,].

In both cases, it makes sense to replace the location reached during
the first-time access that had its rehash bit set to one.

However, it must be proven that a third possibility does not exist,
namely, the location b[ai] has its rehash bit set to one, but the data
referenced by a; actually resides in f[a;] simultaneously. Consider
the actions taken by the algorithm when one of the conditions
precedes the other. First, if b[a;] is a rehashed location, then any
first-time miss results in the immediate clobbering of that location
and the resetting of the rehash bit to zero. Therefore, it is not
possible for the placement of the data into f [ai] to follow this
condition.

On the other hand, if the data referenced by a; already resides
in f[ai] due to a conflict, then the rehash bit of b[a;] must be a
zero, because it contains the most recently accessed data. The only
way to change this bit is if b[a;] were to be used as a rehashed
location in order to resolve a different conflict. However, because
bit flipping is the rehashing function, the only location for which
this situation can occur is f[a;] itself. A first-time access to this
location, though, would automatically clobber the rehashed data.
Therefore, it is clear that the two conditions for this third possibility
can never occur simultaneously. This important property could
not be utilized in the column-associative algorithm if bit flipping
was not the second hashing function or if more than two hashing
functions were included.

Like the hash-rehash cache, the column-associative algorithm
attempts to exploit temporal locality by swapping the most recently
accessed data into the non-rehashed location, if a rehash is indeed
attempted. The use of the rehash bit helps utilize cache area more
efficiently because it immediately indicates whether a location is
rehashed and should be replaced in preference over a non-rehashed
location.

In addition to limiting rehash accesses and clobbering, the rehash
bits in the column-associative cache eliminate secondary thrashing.
Referring to the reference stream, a; a1 a,, a1 a,, a1 a,, ---, in
Figure 6, the third reference accesses b[a,,], but it finds the rehash
bit set to one. Thus, the data i is replaced immediately by x, the
desired action. Of course, this column-associative cache suffers
thrashing if three or more conflicting addresses alternate, as in
a; a1 a,, a; a1 a,, a; - - - , but this case is much less probable than
two alternating addresses.

4 A Simple Analytical Model for Column
Associative Caches

We have developed a simple analytical model for the column
associative cache that predicts the percentage of interference misses
removed from a direct-mapped cache using only one measured
parameter-the size of the program's working set-from an ad
dress trace. Our model builds on the self-interference component
of the direct-mapped cache model of Agarwal, Horowitz, and Hen
nessy [9], and it estimates the percentage of interference misses
removed by computing the percentage of cache block conflicts re
moved by the rehash algorithm. Because the behavior is captured
in a simple, closed-form expression, our model yields valuable
insights into the behavior of the column-associative cache. Valida
tions against empirically derived cache miss rates suggest that the
model's predictions are fairly accurate as well.

Like the self-interference model in [9], the percentage reduction
in cache block conflicts in the column-associative cache is captured
by two parameters: S and u. The parameter S represents the
number of cache sets; in direct-mapped caches, the product of S
and the block size yields the cache size. The parameter u denotes
the working-set size of the program, and must be measured from
an address trace of a program. The working set of a program is the
set of distinct blocks a program accesses within some interval of
time.

The model makes the assumption that blocks have a uniform
probability of mapping to any cache set, and that the mappings
for different blocks are independent of each other. The same as
sumption is also made for the rehash accesses. This assumption
is commonly made in cache modeling studies [10, 11, 9]. Al
though this assumption makes the models generally overestimate
miss rates, its effect is less severe when we are interested in the
ratios of the number of conflicting blocks in direct-mapped caches
and column-associative caches.

A detailed derivation of the model appears in Section B in the
appendix, and this section summarizes the major results. Let Cd de
note the numberof conflicting blocks in a direct-mapped cache, and
Ccac the corresponding number of conflicting blocks in a column
associative cache. Blocks are said to conflict when multiple blocks
from the working set of a program map to a given cache set. In a
column-associative cache, conflicting blocks are blocks that con
flict even after a rehash is attempted. Section 5.1 provides further
discussion on the notion of conflicts.

Section B in the appendix derives expressions for the number of
conflicting blocks in direct-mapped and column-associative caches
in terms of P(d), which is the probability that d program blocks
(out of a total of u) map to a given cache set. Because blocks
are assumed to map with equal likelihood to any cache set, the
distribution of the number of blocks in a cache set is binomial,
which yields

P(d) = (~) (½) d (I - ½) u - d (I)

The following are expressions for the number of conflicting
blocks.

cd=u - SP(l)

Cc a c = u - SP(1) - SP(2)(1 + P (O) - P(I) - P(2))

We estimate the percentage of interference misses removed by
the percentage reduction in the number of conflicting blocks. Our
validation experiments indicate that this is a good approximation.
Thus, the percentage of interference misses removed,

Cd - Ccac SP(2) (1 + P(O) - P(l) - P(2))
=---~--------~

u - SP(l)
(2)

It is instructive to take the first-order approximations of the ex
pression in Equation 2 after substituting for P(d) from Equation I
and simplifying the resulting expression. The first-order approxi
mation is valid when S > > u and u > > 1, which allow us to use
(I - I/ S)"- 1 ~ (1 - u/ S) . Proceeding along these lines, we
obtain

Cd - Ccac ~ (l _ 2u)
Cd S

(3)

It is easy to see from the above equation that the percentage of
conflicts removed by rehashing will approach unity as the cache size
is increased. Similarly, roughly 50% of the conflicts are removed
when the cache is four times larger than the working set of the
program.

To demonstrate the accuracy of the model, we plot in Figure 13
the measured values of the average percentages of interference
misses removed and the values obtained using Equation 2 for our
traces. The predictions for each of the individual traces is also fairly
accurate, as displayed in Figures 8 and 9. Both the model and the
simulations use a block size of 16 bytes. The analytical model uses
only one parameter-the working-set size, u-measured from each
trace. Table 3 shows the working set sizes for each of our traces.

5 Results

This section presents the data obtained through simulation of the
various caches and an analysis of these results. First, the metrics
which have been used to evaluate the performance of the caches
must be described.

5.1 Cache Performance Metrics

We use three cache performance metrics in our results: the cache
miss rate, the percentage of interference misses removed, and the
average memory access time.

The miss rate is the ratio of the number of misses to the total
number of references.

The percentage of interference misses removed is the percentage
by which the number of interference misses in the cache under
consideration is reduced over those in a direct-mapped cache. An
interference miss is defined as a miss that results when a block
that was previously displaced from the cache is subsequently ref
erenced. In a single processor environment, the total number of
misses minus the misses due to first-time references is the number
of interference misses.2

2 A similar parameter was used by Jouppi (4] as a useful measure of the
performance of victim caches. We note that our interference metric mea
sures the sum of the intrinsic interference misses and the extrinsic interfer
ence misses in the classification of Agarwal, Horowitz, and Hennessy [9],
and the sum of the capacity, conflict, and context-switching misses in the
terminology of Hill and Smith [12].

This metric is particularly useful for determining the success of
a particular scheme because all cache implementations must share
the same compulsory or first-time miss rate for a given reference
stream, but they may have different interference miss rates. The
percentage of interference misses removed is calculated by the
equation

direct miss rate - miss rate
---- ------------ X 100%
direct miss rate - compulsory miss rate

where, for a given address trace and cache size, the miss rate is that
of the particular cache design, and the direct miss rate is that of a
direct-mapped cache of equal size. The compulsory miss rate is
the ratio of unique references to total references for that trace.

Finally, the average memory access time is defined as the average
number of cycles required to complete one reference in a particular
address stream. This metric is useful in assessing the performance
of a specific caching scheme because although a particular cache
design may demonstrate a lower miss rate than a direct-mapped
cache, it may do so at the expense of the hit access time. As
mentioned earlier, our graphs include access time results for both
one-cycle and two-cycle swaps.

Let the cache access time for a hit be one cycle, and Jet M
represent the number of cycles required to service a miss from the
main memory (in our simulations, M = 20). If R is the total
number of references in the trace, H I is the toral number of hits on
a first-time access, and H2 is the total number of hits on a second
time access, then the average memory access time for the various
schemes can be computed from the decision trees of Section 3 as
shown below.

For direct-mapped caches, the access time is one for hits, and
one plus M for misses. Thus,

1
tave = R_ [H, + (M + l)(R - H1)]

For hash-rehash caches, the access time is one for first-time hits, 3
for rehash hits (Every first-time miss is followed by a rehash.), and
(M + 3) otherwise.

I
tave = R [H, + 3H2 + (M + 3)(R- H , - H2)]

For column-associative caches, we need an additional parameter
R2, which is the total number of second time accesses. (Recall
that second-time accesses are attempted only when the rehash bit is
zero.) Thus the access time is one for first-time hits, and three for
the H2 hits during a rehash attempt. If a rehash is not attempted,
then (M + 1) cycles are spent. Rehash attempts that miss suffer a
penalty of (M + 3) cycles. Therefore,3

I
tav e = R [H, + 3H2 + (M + l)(R - H1 - R2) + (M + 3)(R2 - H2)]

The simulator described in the next section measures R, R2, H 1,

and H2 for each of the cache types, and it derives average memory
access times from the above equations.

3The cycles per instruction (or CPD assuming single-cycle instruction
execution can be calculated easily from the average access time. For a
unified instruction and data cache with a single cycle access time, the CPI
with a 100% hit rate is (1 + I), where I is the fraction of instructions that
are loads or stores. In the presence of cache misses, however, the average
access time becomes ta.ve, and the CPI becomes (1 + l)ta.ve-

II name trace description

LISP0 LISP runs of BOYER (a theorem prover)
DECO.I Behavioral simulator of cache hardware, DECSIM
SPIC0 SPICE simulating a 2-input tristate NANO buffer
IVEX0 Interconnect verify, a DEC program checking

net lists in a VLSI chip
FORL0 FORTRAN compile of UNPACK

Table 2: Description of uniprocessor traces used during simula
tion.

no. of references compulsory
trace u unique total miss rate (%)

LISP0 392 1,789 262,760 0.6808
DECO.I 463 2,418 334,775 0.7223
SPIC0 740 2,834 358,168 0.7912
IVEX0 774 11,087 307,172 3.6097
FORL0 826 6,787 314,110 2.1607
MUL6.0 5,267 400,698 1.3145

Table 3 : Number of references (both instructions and data) and
compulsory miss rate for each of the address traces simulated. The
block size for measuring u and unique is set to 16 bytes (four
words).

5.2 Simulator and Trace Descriptions

We wrote trace-driven simulators for direct-mapped, set
associative, victim, hash-rehash, and column-associative caches.
Multiprogrammed simulations assume that a process identifier is
associated with each reference to distinguish between the data of
different processes. All caches are assumed to be combined in
struction and data caches.

The traces used in this study come from the ATUM experiment
of Sites and Agarwal [13]. The ATUM traces comprise realistic
workloads and include both operating system and multiprogram
ming activity. The five uniprocessor traces, derived from large
programs running under VMS, are described in Table 2. We also
use a multiprogramming trace called MUL6.0, which includes ac
tivity from six processes including a FORTRAN compile, a direc
tory search, and a microcode address allocator. Each trace length
is on the order of a half million references. We believe these
lengths are adequate for our purposes, since we explicitly subtract
the number of first-time misses and present the percentage of inter
ference misses removed, and because it is possible to differentiate
the performance of the various caching methods without resorting
to measurement methods that yield cache miss rates with a degree
of accuracy exceeding the first or second decimal place. The com
pulsory miss rates and other parameters for these traces are listed
in Table 3. In the table, u is the average number of unique blocks
in I 0,000 reference windows, while unique is the total number of
unique blocks in the entire trace.

5.3 Measurements and Analysis

In this section, the results of the trace-driven simulations are plotted
and interpreted. Before introducing the plots, a few of their features
must be explained. If the miss rate of a cache happens to be worse
than that of a direct-mapped cache for the particular cache size, as is
occasionally the case for a hash-rehash cache, then the percentage

of interference misses removed becomes a negative quantity. On
the graph, this is instead indicated by a point at zero percent.4

The victim cache size has been set to 16 entries. This is based on
simulation data which suggests that the removal of conflicts quickly
saturates beyond this size. In addition, remember that each victim
cache entry is a complete cache line, storing the tag, status bits, and
the data block, which contains four words in these simulations.

5.3.1 Miss Rates and Interference Misses Removed

LISP0 and DECO.I The results for the LIS PO and DECO. I traces
are very similar, so only LISP0 results are plotted in Figure 8. It is
evident that all of the cache designs exhibit much lower miss rates
than the direct-mapped cache. The lowest miss rates are achieved
by the two-way set-associative and the column-associative caches.
The victim and hash-rehash caches have higher miss rates.

A striking feature of the miss rate plots is the relationship be
tween the direct-mapped and hash-rehash caches. Whenever dou
bling the cache size results in a sharp decrease in the direct-mapped
miss rate, the same change in cache size yields a sharp and similarly
sized increase of the hash-rehash miss rate. This effect makes sense
intuitively-a hash-rehash cache is designed to resolve conflicts
through the use of alternate cache locations. It is successful as long
as the the number of conflicts decreases only slightly as the cache
size increases. However, if an increase in cache size itself sud
denly removes a large portion of the conflicts, then the hash-rehash
algorithm clobbers many locations and suffers a sharp drop in the
second-time hit rate because it is attempting to resolve conflicts
which no longer exist.5 Notice that the column-associative cache
does not suffer from this degradation because its access algorithm
is designed specifically to alleviate the problems of clobbering and
low second-time hit rates.

Referring to the percentages of interference misses removed
in Figure 8, notice that the dashed curve corresponding to the
predictions of the model is very close to the curve obtained from
simulations. The LISP0 trace has a small working set compared
to the other traces (see Table 3), and therefore the percentage of
interference misses removed quickly approaches 100% for all but
the victim cache, which is a phenomenon readily explained by the
approximate analytical expression for this metric: (1 - 2u/ S).

SPIC0, IVEX0, and FORL0 The results for these traces are
also similar enough to be grouped together. The data for the SPIC0
trace has been plotted in Figure 9. Nearly all of the results from the
previous section apply to the simulations with these three traces, but
there are several important differences. Because the working-set
sizes of these traces are larger than the LIS PO trace, the percentages
of interference misses removed by column associativity start at
much lower values and approach I 00% more slowly. Because
the victim cache is much more sensitive to working set size, it
does not attain the same percentages found for LISP0 and DECO. I;
for these traces, the victim cache lies around 25% or less for this
metric. Recall that the victim cache size remains constant, while
the column-associative and the set-associative caches can devote
larger areas to resolve conflicts as cache size increases.

4This is why the points for the hash-rehash cache are not connected in
the graphs showing percentage of interference misses removed.

5The addition of one, high-order bit to the index could separate two
groups of addresses which conflict often because they differ for the first
time in that bit.

~ 6.0 -+- Direct-Mapped 'll

-r Hash-Rehash ~
.2 5.0 -')('- 2•way Set•Assoc

0

~ -tr- V,ctim Cache (16) ~ ., 4.0 a::
~

:: Column Assoc .,
Cl) .,

3.0
~ *
Cl) ::I

" 2.0 ~
~
.2

40 * Hash-Rehash
.!;

* -')('- 2-way Set-Assoc

* -tr- Victim Cache (16)
-8- Column Assoc

1.0 ·El- Column Assoc (Model)
0.9 20

0.8

0.7

0.6 0
2 4 8 16 32 64 128 256 2 4 8 16 32 64 128 256

Cache Size (K Blocks) Cache Size (K Blocks)

Figure 8: Miss rates and percentages of interference misses removed versus cache size for LISPO. Block size is 16 bytes.

...... -+- Direct-Mapped 'll 100 ~ ~ ---~
½- Hash-Rehash

.2 -')('- 2-way Set·Assoc 0

"' ! a:: -tr- Victim Cache (16) ., :: Column Assoc
-!!? .,

Cl) 75 :::. .,
3.0 ,!!?

:::.
Cl)

* Hash-Rehash

" t::: -')('- 2-way $el-Assoc
2.0 ~ 50 -tr- Victim Cach• (16)

~ -8- Column Assoc

.2 ·El· Colurm A.ssoc (Model}

.!;

* :..
1.0
0.9
0.8 ":

0.7 * *
2 4 8 16 32 64 128 256 2 4 8 16 32 64 128 256

Cache Size (K Blocks) Cache Size (K Blocks)

Figure 9: Miss rates and percentages of interference misses removed versus cache size for SPICO. Block size is 16 bytes.

The plots for SPIC0 in Figure 9 reveal another interesting
fact: the column-associative cache outperforms the two-way set
associative cache for some of the cache sizes. A hypothesis that
explains this behavior is based on the fact that when comparing
the two caches at an equal cache size, the set-associative cache has
only half that number of cache sets. As seen before, doubling the
cache size and thus adding a high-order bit to the index may elim
inate a large number of conflicts that have been occurring because
many addresses differ for the first time in that bit. For example,
consider the addresses 0001111, 0 JO 1111, and JO 11111. All three
result in multiple conflicts (thrashing) if only the four, low-order
bits are used as the index. This is a cache size of 24 or 16 for
the column-associative cache, but the total cache size is 32 for the
two-way set-associative cache, and it still exhibits thrashing. Note
that both caches have 16 sets. A 32-set column-associative cache,
however, uses five bits for the index. In this case, the conflicts be
tween 0101111and1011111 are automatically eliminated because
of the different fifth bits.

MUL6.0 The miss rates and percentages of interference misses
removed for the multiprogramming trace are plotted in Figure 10.
Once again, many of the observations made for the other trace
results apply to MUL6.0. Perhaps the most telling result is the
relatively poor performance of the victim cache. Its miss rate is
virtually the same as that of the direct-mapped cache (for cache
sizes greater than 2K blocks). The large working sets of multi
programming workloads make the fixed size of the victim cache a
serious liability. The larger available area for storing conflicts in
the column-associative cache is clearly a big win in this situation.

5.3.2 Average Memory Access Times

Two key factors must be considered when interpreting the access
time data. First, although the average memory access times of
set-associative caches are in reality increased due to their higher
hit access times, the graphs in this paper assume their hit access
times are the same as that of direct-mapped caches. If realistic
access times of two-way set-associative caches are considered, their
average memory access times might well become greater that those
of column associative caches. (This is why the corresponding
curves are labeled "Ideal").

Second, the average memory access time is very sensitive to the
time required to service a miss (M). The results assume M = 20
cycles. For larger (and still reasonable) miss penalties, the designs
such as column-associative caches which reduce the number of
accesses to main memory (R - H1 - H2) will look even more
impressive than indicated by our results.

The results for the LIS PO and SPIC0 traces are presented together
in Figure 11. As before, DECO. I is similar to LISP0, while IVEX0
and FORL0 are similar to SPIC0. All the average memory access
time plots are largely similar in shape to the miss rate plots, which
is expected, because l ave is a linear function of the miss rate.

The graph for LISP0 shows that column associativity achieves
much lower average memory access times than a direct-mapped
cache. The improvement is about 0.3 cycles for most cache sizes.
For SPIC0, the column-associative cache exceeds 0.2 cycle im
provements only for small caches. This fact is confirmed when
the miss rate plot is considered- the direct-mapped interference
miss rate is not much higher than the compulsory miss rate, unlike
the case for LISPO. The results for MUL6.0 are largely similar:
the column-associative cache saves about 0.2 cycles over direct-

mapped caches, and the two-way set associative cache saves a
further 0.1 cycle, when the caches are Jess than 4K blocks. (With
a 16-byte block, the cache size is 64K bytes.) The savings are
smaller for larger caches.

Perhaps most important, however, is the fact that the column
associative cache achieves an average access time close to the two
way set-associative cache, even though the hit access time of the
set-associative cache was (unrealistically) kept the same as that of
a direct-mapped cache.

5.4 Summary

This section presents data for each of the metrics averaged over all
of the traces. The resulting plots serve as excellent examples for
reviewing the major points made in this section.

When the miss rates of all six traces are averaged for each cache
size, the plot in Figure 12 is the result. The direct-mapped miss
rate is the baseline for comparison and falls quickly from 6.0% to
2.0%, before settling toward the average compulsory miss rate of
about 1.5%.

The other cache designs can be split into two groups, based not
only on their similar miss rate curves but also on the relationships
among their access algorithms. The first group contains the hash
rehash cache and the victim cache, which have similar control
algorithms. The hash-rehash cache is usually an improvement upon
direct-mapped caching; the miss rate drops more quickly from 6.0%
to about 1.7%. However, at the transition point, the hash-rehash
miss rate increases about as much as the direct-mapped miss rate
decreases. This is due to the fact that once the cache size exceeds
the working-set size, the interference miss rate drops markedly. The
many rehash accesses performed by the hash-rehash algorithm now
are more likely to clobber live data than to resolve conflicts. The
victim cache does not suffer from this effect, because it is designed
to alleviate the main problems with the hash-rehash algorithm:
clobbering and low second-time hit rates.

The second group consists of the two-way set-associative and
the column-associative caches. The miss rates of these caches are
almost 2.0% lower than direct-mapped miss rates for small caches,
just under 1.0% near the transition, and right at the compulsory
miss rate for large caches. As predicted in Section 3, the column
associative cache achieves two-way set-associative miss rates.

The plot in Figure 13 shows the average percentages of interfer
ence misses removed. (This average does not include the MUL6.0
numbers, so that we could compare the simulation averages with
the model.) The curves for set-associative and column-associative
caches are almost identical, starting at about 40% and climbing to
I 00% when the cache size reaches 256 K blocks. As predicted
in Section 2, the performance of the victim cache relative to the
column-associative cache degrades with cache size. Finally, the
dashed curve for the model is seen to be surprisingly close to sim
ulation results when the individual trace anomalies are averaged
out.

The average memory access time (lave) data for the six traces
have been averaged and plotted in Figure 14. Based on this average
plot and on most of the other data, the column-associative cache
appears to be good choice under most operating conditions. In this
example, lave is reduced by over 0.2 cycles for small to moderate
caches, and by about 0.1 cycles for moderate to large caches.

~
~
"' ct .,
-!!1 ::.

--+- Direct-Mapped
...;+,- Hash-Rehash
....... 2-way Set-Assoc
-t,- VICtim Cache (16)

-& Column Assoc

2.0

1·0 w-"""!2---4-"""!9-""""16 3~2 6~4 1"'29~~2 ... s6

Cache Size (K Blocks)

"t:I
~
0

I
gi .,

-!!1 ::.
(I)
(.)
t:
~
~
l!!
.!:
~

* 100
"'tr
::;

80

60

2

Has~ Aehash
2-way Set-Assoc
Vtctim Cache (16)
Column Assoc *

*

*

16 32 64 128 256

Cache Size (K Blocks)

Figure 10: Miss rates and percentages of interference misses removed versus cache size for MUL6.0. Block size is 16 bytes.

2

~ Direct-Mapped
...;+,- Hash-Rehash
......- 2-way Set-Assoc (Ideal)
-& Column Assoc (1 Wasted Cycle)
-ii- Column Assoc (2 Wasted Cycles)

16 32 64 128 256

Cache Size (K Blocks)

L/SPO tave

~ Direct-Mapped
...;+,- Hash-Rehash
4-E- 2-way Set-Assoc (Ideal)
-& Column Assoc (1 Wasted Cycle)

Column Assoc (2 Wasted Cycles)

1· 1 w-"""2-"""4--9-"""15-•3•2-•6•4-•1•28-•256"""

Cache Size (K Blocks)

SP/CO lave

Figure 11: Average memory access times (in cycles) versus cache size for LISPO and SPICO. Block size is 16 bytes. The hit access time
of two-way set-associative caches is assumed to be the same as that of a direct-mapped cache.

-+- Direct-Mapped
-+ Hash-Rehash

- 2-way Set-Assoc
-tr Victim Cache (16)

::::::; Column Assoc

3.0

2.0

2 4 8 16 32 64 128 256

Cache Size (K Blocks)

Figure 12: Miss rates versus cache size, averaged over all six
traces. Block size is 16 bytes.

't,
§!
0

~
r:c .,
"' .,
-~ ::.
"' u
C:
~
~
.l!l
.!:
~

100

*
80

* Hash-Rehash - 2-way Set-Assoc

-tr Vic1im Cache {16)
-Er Column Assoc 60
·El- Column Assoc (Model)

* * * *
20 *

*
o11,,i,--2--4---8--1·6--32--6-4_1_2_8_2 __ 56

Cache Size (K Blocks)

Figure 13: Percentages of interference misses removed versus
cache size, averaged over the single process traces. Block size is
16 bytes.

Direct•Mapped
Hash-Hehash
2-way Set-Assoc (Ideal)
Column Assoc (1 Wasted Cycle)
Column Assoc (2 Wasted Cycles)

1·2 .,_ __ 2~--4--8~-16'!""""-3~2-"""6""4 _1_..2_8 -256~

Cache Size (K Blocks)

Figure 14: Average memory access times versus cache size, av
eraged over all six traces. Block size is 16 bytes. The hit access
time of two-way set-associative caches is assumed to be the same
as that of a direct-mapped cache.

6 Conclusions

The goal of this research has been to develop area-efficient cache
control algorithms for improved cache performance. The main
metrics used to evaluate cache performance have been the miss
rate and average memory access time; unfortunately, minimizing
one of them usually affects the other adversely. The optimal cache
design would remove interference misses as well as a two-way set
associative cache but would maintain the fast hit access times of a
direct-mapped cache.

Two previous solutions which attempted to achieve this are the
hash-rehash cache and the victim cache. Although some perfor
mance gain is achieved by both these schemes, the success of the
hash-rehash cache is very erratic and is hampered by clobbering
and low second-time hit rates. The drawbacks of the victim cache
include the need for a large, fully-associative buffer and its lack
of robust performance (in terms of its miss rate) as the size of the
primary cache increases.

This paper proposed the design of a column-associative cache
that has the good hit access time of a direct-mapped cache and
the high hit rate of a set-associative cache. The fundamental idea
behind column associativity is to resolve conflicts by dynamically
choosing different locations in which the conflicting data can reside.
The key aspect which distinguishes the column-associative cache is
the use of a rehash bit to indicate whether a cache set is a rehashed
location.

Trace-driven simulations confirm that the column-associative
cache removes almost as many interference misses as does the
two-way set-associative cache. In addition, the average memory
access times for this cache are close to that of an ideal two-way
set-associative cache, even when access time of the two-way set
associative cache is assumed to be the same as that of a direct
mapped cache. Finally, the hardware costs of implementing this
scheme are minor, and almost negligible if the state represented by
the rehash bit could be encoded into the existing status bits of many
practical cache designs.

7 Acknowledgments

The research reported in this paper is funded by NSF grant
MIP-9012773 and DARPA contract# N00014-87-K-0825.

References

[l] Alan Jay Smith. Cache Memories. Computing Surveys,
14(4):473-530, September 1982.

[2] Steven Przybylski, Mark Horowitz, and John Hennessy. Per
formance Tradeoffs in Cache Design. In Proceedings of the
15th Annual Symposium on Computer Architecture, pages
290-298. IEEE Computer Society Press, June 1988.

[3] Mark D. Hill. A Case for Direct-Mapped Caches. IEEE
Computer, 21 (1 2):25-40, December 1988.

[4] Norman P. Jouppi. Improving Direct-Mapped Cache Perfor
mance by the Addition of a Small Fully-Associative Cache
and Prefetch Buffers. In Proceedings of the 17th Annual
Symposium on Computer Architecture, pages 364-373. IEEE
Computer Society Press, August 1990.

[5] Anant Agarwal, John Hennessy, and Mark Horowitz. Cache
Performance of Operating Systems and Multiprogramming.
ACM Transactions on Computer Systems, 6(4):393-431,
November 1988.

[6] Matthew K. Farrens and Andrew R. Pleszkun. Improving
Performance of Small On-Chip Instruction Caches. In Pro
ceedings of the 16th Annual Symposium on Computer Archi
tecture, pages 234-241. IEEE Computer Society Press, May
1989.

[7] R.E. Kessler, Richard Jooss, Alvin Lebeck, and Mark D.
Hill. Inexpensive Implementations of Set-Associativity. In
Proceedings of the 16th Annual Symposium on Computer
Architecture, pages 131-139. IEEE Computer Society Press,
May 1989.

(8] Kimming So and Rudolph N. Rechtschaffen. Cache Oper
ations by MRU Change. Technical Report RC 11613, IBM
T.J. Watson Research Center, November 1985.

(9) Anant Agarwal, Mark Horowitz, and John Hennessy. An
Analytical Cache Model. ACM Transactions on Computer
Systems, 7(2):184-215, May 1989.

[10] Alan Jay Smith. A Comparative Study of Set Associative
Memory Mapping Algorithms And Their Use for Cache and
Main Memory. IEEE Transactions on Software Engineering,
SE-4(2): 121-130, March 1978.

(11) Dominique Thiebaut and Harold S. Stone. Footprints in the
Cache. ACM Transactions on Computer Systems, 5(4):305-
329, November 1987.

(12) M. D. Hill and A. J. Smith. Evaluating Associativity in CPU
Caches. IEEE Transactions on Computers, 38(12):1612-
1630, December 1989.

[I 3] Richard L. Sites and Anant Agarwal. Multiprocessor Cache
Analysis using ATUM. In Proceedings of the 15th Interna
tional Symposium on Computer Architecture, pages 186-195,
New York, June 1988. IEEE.

Addrr:~~)!r Bus LM

MSEL

f (xl

Control
Logic

OP, MACK ,>
STALL, MEM

HIT

RD/ WT

LS

RAM Array

rehash bit

Swap Buffer

Figure 15: Column-associative cache implementation. Every
cache set must have a rehash bit appended to it.

A Cache Implementation Example

The datapaths required for a column-associative cache are displayed
in Figure 15. Since the rehashing function used is bit flipping, the
functional block f (x) is simply an inverter. In order to accomplish
the swap of conflicting data, a data buffer is required. All buffers
are assumed to be edge triggered. An n -bit multiplexor can be
used to switch the current contents of the memory address register
(MAR) between the two conflicting addresses. A MUX is also
needed at the input of the data buffer, so that it may read data from
either the swap buffer or the data bus. Finally, a rehash bit is added
to each cache set; when this bit is read out into the data buffer, it
then serves as a control signal. In some implementations the rehash
state can be encoded using the existing state bits associated with
each cache line, thus eliminating the need for an extra bit.

First-time hits proceed as in direct-mapped caches; however, if
there is a first-time miss and the rehash bit of this location is a one,
then the column-associative algorithm requires that this location
be replaced by the data from memory, which is accomplished in
the XWAIT state. When the memory acknowledges completion
(MACK), the data is taken off the data bus (LD) and written back
into the cache (WT). On the other hand, if the first location is not
rehashed (!H B), then a rehash is to be performed. The processor
is stalled (STALL), MSEL and LM are asserted to load the MAR
with f[a], the second-time access is begun (RD), LS is asserted to
move the first datum into the swap buffer, and the state changes to
fl [a].

If there is a second-time hit, then the correct datum resides in
the data buffer. In order to perform the swap, state fl [a] loads the
MAR with the original address, f (f (a)), and issues a write (WT).
State fl [a] also moves the datum accessed the first time from the
swap buffer to the data buffer (by asserting DSEL and LD), where
it can be written back into the rehashed location in the next state,
f2[a]. A second time miss is handled similarly by states WAIT!
and WAIT2, except that the correct datum to be swapped into the
non-rehashed location comes from the memory.

B Modeling Column-Associative Caches

The model for column-associative caches uses two parameters: S
and u. The parameter S represents the number of cache sets; in

direct-mapped caches, the product of S and the block size yields
the cache size. The parameter u denotes the working-set size in

II state input output next state II
IDLE OP LM,RD b[a]
b[a] HIT IDLE

!HIT, !HE STALL,MSEL,LM,RD,LS fl[a]
!HIT,HB MEM,STALL XWAIT

fl [a] HIT MSEL,LM, WT f2[a]
DSEL,LD

!HIT MEM WAITl
f2[a] MSEL,LM,WT IDLE

WAITJ MACK MSEL,LM,WT WAIT2
DSEL,LD

WAIT2 MSEL,LM, WT IDLE
XWAIT MACK LD,WT IDLE

Table 4: State flow table for the control logic of a column
associative cache. In constructing the state flow table all cache
accesses are assumed to be reads.

blocks of the program, and must be measured from an address trace
of a program. The working set of a program is the set of distinct
blocks a program accesses within some interval of time. The notion
of the working set of a process used in this paper is the same as that
used by Agarwal et al. [9]. For the purpose of computing the cache
miss rate, Agarwal et al. suggest measuring the size of the working
set over some time interval (typically represented by about I 0,000
references in an address trace) which is long enough that the rate of
acquiring new blocks drops significantly below the initial start-up
rate. Accordingly, we measure the working sets for our traces using
10,000 as the time interval.

The model builds on the self-interference component of the
direct-mapped cache model of Agarwal et al. [9] and estimates
the percentage of interference misses removed by computing the
percentage of cache block interferences removed by the rehash al
gorithm. As mentioned earlier, the model makes the assumption
that blocks have a uniform probability of mapping to any cache set,
and that the mappings for different blocks are independent of each
other.

Let us first compute the number of conflicting blocks (cd) in a
direct-mapped cache, and then obtain the corresponding number
of blocks (ccac) in a column-associative cache. Blocks in a direct
mapped cache are said to conflict when multiple blocks from the
working set of the program map to a given cache set.

Let P(d) denote the probability that d program blocks (out of a
total of u) map to a given cache set. Because blocks are assumed to
map with equal likelihood to any cache set, the distribution of the
number of blocks in a cache set is binomial; accordingly we have,

In the above equation, the probability that a given block maps
into a specific cache set if 1/ S, and the probability that d specific
blocks map into a cache set is (I / S)d. The corresponding prob
ability that none of remaining u - d blocks from the program's
working set map into that set is (1 - 1 / sr--d. Finally, we can

choose d blocks from the working set of size u in (;) ways.

We can now compute the number of conflicting blocks in a

direct-mapped cache by subtracting from u the number of cache

s + z

Figure 16: Mapping of cache blocks to cache sets.

sets with exactly one block. Since the cache has S sets, the number
of cache sets with exactly one block is SP (1). The number of
conflicting blocks in a direct-mapped cache is, therefore,

Cd=u - SP(l)

We now compute the number of blocks (ccac) that suffer conflicts
after a rehash phase in a column-associative cache. The rehash
algorithm works by attempting to place a conflicting block into
some other cache set. The number of conflicting blocks can now
be computed by estimating the probability a block suffers a conflict
on a rehash.

Figure 16 shows a mapping of program blocks (represented by
shaded rectangles) to cache sets in a direct-mapped cache of size S
sets. The mapping in the figure indicates that x cache sets contain
exactly one block, y cache sets contain exactly two blocks, and z

cache sets contain three or more blocks. Because the blocks are
binomially distributed, we know that

x = SP(l) (5)

y = SP(2) (6)

z = r,d=3SP(d) = S - SP(0) - SP(l) - SP(2) (7)

To compute the number of conflicts eliminated, we need to focus
on the cache sets with exactly two blocks, because, as discussed
earlier, the rehash algorithm with bit flipping does not eliminate any
conflicts in cache set with three or more blocks. When exactly two
blocks are mapped to a given cache set, our rehash algorithm with
bit flipping allows one of these blocks to be mapped elsewhere.
Therefore, to compute the number of conflicts that are eliminated,
let us detach y blocks as depicted in Figure 17, and then randomly
reassign them to cache sets.

When the detached blocks are reassigned to cache sets, they may
introduce additional conflicts. The number of conflicting blocks
introduced depends on the number of blocks in the cache sets to
which the detached blocks are assigned.

1. If a detached block falls into an empty cache set, then no
additional conflicts are introduced. Note that because the bit
flipping rehash algorithm produces a one-to-one mapping, it
does not place multiple detached blocks into the same cache
set.

2. If a detached block falls into a cache set with more than two
blocks already mapped to it, then one additional conflict is
introduced. With random placement, the fraction of detached

blocks that are placed in such sets is z / S . Thus, the number
of resulting conflicts is yz / S .

s

Figure 17: Mapping of cache blocks to cache sets with y blocks
detached.

3. Finally, if the detached block falls into a cache set with one
block, then two additional conflicts are introduced: one cor
responding to the previously mapped block, and the other
corresponding to the detached block. The probability of this
placement is (x +y) / S , and the number ofadditional conflicts
is 2y(x + y)/S.

Adding the conflicts introduced by the reassignment of y blocks
(y} + 2y ~) to the initial number of conflicts before the intro
duction of the detached blocks (u - x - 2y), we obtain the total
number of conflicting blocks in the column-associative cache.

Z X +y
Ccac = u-x - 2y+ YS +2y-S-

Substituting for x, y, and z, from Equations 5, 6, 7, and simpli
fying, we get

ccac = u - SP(!) - SP(2)(1 + P(O) - P (I) - P (2))

We estimate the percentage of interference misses removed by
the percentage reduction in the number of conflicting blocks. Our
validation experiments indicate that this is a good approximation.
Thus, the percentage of interference misses removed is

Cd - Ccac SP(2) (1 + P(O) - P(l) - P (2))
u-SP(I)

(8)

