
Forward and Backward Simulations

Part II: Timing-Based Systems

Nancy Lynch

MIT

Laboratory for Computer Science

Cambridge, MA 02139, USA

lynch@theory.lcs.mit.edu

Frits Vaandrager

CWI

P.O. Box 94079, 1090 GB Amsterdam

The Netherlands

fritsv@cwi.nl

April 26, 1995

Abstract

A general automaton model for timing-based systems is presented and is used as the
context for developing a variety of simulation proof techniques for such systems. These
techniques include (1) re�nements, (2) forward and backward simulations, (3) hybrid
forward-backward and backward-forward simulations, and (4) history and prophecy
relations. Relationships between the di�erent types of simulations, as well as soundness
and completeness results, are stated and proved. These results are (with one exception)
analogous to the results for untimed systems in Part I of this paper. In fact, many of
the results for the timed case are obtained as consequences of the analogous results for
the untimed case.
1991 Mathematics Subject Classi�cation: 68Q60, 68Q68.
1991 CR Categories: C.3, D.2.4, F.1.1, F.3.1.
Keywords and Phrases: Timing-based systems, real-time, timed automata, tra-
jectories, safety properties, veri�cation, simulations, re�nement mappings, forward
simulations, backward simulations, forward-backward simulations, backward-forward
simulations, history relations, prophecy relations, invariants.
Notes: This work was supported by ONR contracts N00014-85-K-0168 and N00014-
91-J-1988, by AFOSR-ONR contract F49620-94-1-0199, by NSF grants CCR-8915206
and 9225124-CCR, and by ARPA contracts N00014-89-J-1988 and N00014-92-J-4033.
Part of this work took place while the second author was employed by the Ecole
des Mines, CMA, Sophia Antipolis, France. The second author also received partial
support from ESPRIT Basic Research Action 7166, CONCUR2. Earlier versions of
this paper appeared as [42] (Part I+II) and as [43].

1 Introduction

Most of the existing semantic models, languages and logics for describing and reason-
ing about timing-based systems implicitly view an execution as an alternating sequence
of instantaneous \discrete" actions and \continuous" phases during which time advances
[2, 5, 7, 8, 9, 11, 14, 17, 20, 25, 26, 27, 48, 50, 52, 54, 61, 62]. To each system described in
any of these formalisms one can associate a transition system or automaton consisting of (1)
a set of states, (2) a set of initial states, (3) a set of discrete actions, (4) a set of discrete
steps s0 a�! s asserting that \from state s0 the system can instantaneously move to state s via
the occurrence of the discrete action a", and, �nally, (5) a set of time-passage steps s0 d�! s

asserting that \from state s0 the system can move to state s during a positive amount of
time d in which no discrete action occurs".

These transition systems provide a very abstract view of the behavior of the original
system in which many aspects, such as the number of parallel components, the communi-
cation between these components, the way in which a system evolves during the continuous
phases, etc., are no longer represented. Also, they are in general highly in�nite and may
even have uncountable state spaces. Nevertheless, it is clear that these transition systems
play a central role in the theory of timing-based systems:

� Many important behavioral preorders and equivalences, for instance those based on
traces, failure pairs and bisimulations, can be de�ned in terms of states and transitions.
Thus transition systems contain enough information to de�ne what it means that one
system implements or is equivalent to another system. Also, the transition systems still
contain enough information to serve as models for many temporal and modal logics,
i.e., they can be used to de�ne what it means that a system satis�es a formula.

� Many simulation proof techniques for veri�cation of implementation and equivalence
relations between timing-based systems can be de�ned and studied at the level of
transition systems.

� Transition systems provide an excellent framework for comparing and interrelating a
wide variety of di�erent formalisms for timing-based systems. Moreover, since they also
play a central role in the \comparative semantics" of untimed discrete event systems
[18], they provide a basis for comparing timed and untimed formalisms.

In this paper, we de�ne a formal transition systemmodel for timing-based systems and use
it to develop a variety of simulation proof techniques. The key characteristic of the transition
systems discussed above is the presence of time-passage steps and the speci�c interpretation
of these steps. The transition systems always satisfy the following two properties. First, if
time can advance by a particular amount d in two steps (with no intervening discrete steps),
then it can also advance by d in a single step. And second, if time can advance by d in
one step from state s0 to state s, then there exists an assignment (a trajectory) that maps
all times in the interval [0; d] to automaton states in a \consistent" way to explain how the
system evolves from s0 to s. This motivates our formal de�nition of a timed automaton as
an automaton (in the sense of Part I) whose set of actions includes the set R+ of positive
reals, and which satis�es the above two properties for time-passage. We believe that timed

2

automata, de�ned in this way, provide an excellent basis for de�ning and studying behavioral
preorders and simulation proof techniques for timing based systems. Since timed automata
can be viewed as an underlying semantic domain for any of the models, languages and logics
of [2, 5, 7, 8, 9, 11, 14, 17, 20, 25, 26, 27, 48, 50, 52, 54, 61, 62], all the results that we obtain
for timed automata carry over directly to those settings.

For convenience, we use R+ as our domain of times in this paper. The need for dense-
time models has been well discussed in [4]. However, for the purpose of generality we could
have parameterized our timed automata by an arbitrary (possibly discrete) time domain in
the sense of [27, 53, 28]. We do not assume a general lower bound on the time between
events, or an upper bound on the number of instantaneous actions; this choice is also made
in e.g., [7, 2, 9, 25, 48, 53, 61], but still distinguishes our model from many others, e.g.,
[11, 17, 20, 50, 52, 55, 62]. The cost of this generality is that our timed automata may
produce some annoying \Zeno executions", i.e., in�nite executions in which the sum of the
time-passage actions is bounded.

In order to de�ne correctness for timed automata, we de�ne two notions of external
behavior. First, as the �nite behaviors of a timed automaton, we take the �nite timed traces,
each of which consists of a �nite sequence of timed visible actions together with a �nal time
of observation. Second, as the in�nite behaviors, we take the admissible timed traces, each of
which consists of a sequence of timed visible actions that occurs in some execution in which
the time grows unboundedly (i.e., a \non-Zeno" in�nite execution). In [16] it is argued that
inclusion of �nite and admissible timed traces is a good notion of implementation, provided
that the implementation automaton has a su�ciently rich collection of admissible executions.

Inclusion of �nite and admissible timed traces is implied by inclusion of �nite and in�nite
traces (if we consider the R+ actions as external/visible). Consequently all the simulation
proof techniques that we developed in Part I are still \sound" for proving inclusion of timed
traces, in the sense that if one has established a simulation between timed automata A and
B it follows that the timed traces of A are included in those of B. However, \completeness"
is lost in the sense that it may occur that the timed traces of a timed automaton A are
included in those of a timed automaton B, but that there exists no simulation from A to
B, not even if it is allowed to use auxiliary intermediate timed automata. One reason for
this is that several of the constructions that were used in the proofs of completeness results
in Part I, such as the canonical automaton and the unfolding, do not yield timed automata
in general. Also | and this is much more serious | inclusion of timed traces di�ers from
inclusion of traces in the case of systems with internal actions.

Example 1.1 Let A be the timed automaton that performs no discrete actions but just lets
time advance: the set of states of A is R�0, with 0 the initial state, and there is a step t

d�! t+d,
for each t 2 R�0 and d 2 R+. Let B be the timed automaton that behaves exactly as A, except
that it performs an internal � -step at time 1: the set of states of B is R�0�fT;Fg, with (0;T)
the initial state, and there are steps

� (t;T) d�! (t+ d;T), for each t 2 R�0 and d 2 R+ with t + d � 1;

� (1;T) ��! (1;F);

� (t;F) d�! (t + d;F), for each t 2 R�0 and d 2 R+.

Then A and B have di�erent sets of traces since A has a trace consisting of the single (time-
passage) action 2, which B does not have.

3

In our opinion, this example shows that traces are not the right notion of behavior for
timed automata: through the absence of certain traces with large time-passage steps the
presence of certain internal actions in the system is revealed, and thus internal actions are
not truly invisible. Internal actions have received proper attention in the context of process
algebras based on bisimulation or failures, and thus the two systems of Example 1.1 are
identi�ed in the approaches of (for instance) [30, 55, 14]. In models based on linear time
semantics, however, internal (or stuttering) actions have largely been ignored. Abadi and
Lamport [2] advocate the use of untimed trace inclusion (logical implication in TLA) as an
implementation relation for timed systems. Although this \old-fashioned recipe" works in
many practical cases, the two systems of Example 1.1, which can easily be translated to the
state-based setting of [2], indicate that it cannot be used in general, and that a serious e�ort
is required to fully adapt existing formalisms for untimed systems to the timed setting.

Simulation methods have long been used successfully for the veri�cation of untimed con-
current systems. In Part I of this paper [44], we gave a uni�ed, comprehensive presentation
of simulation techniques for untimed systems, including re�nements, forward simulations,
backward simulations, forward-backward and backward-forward simulations, history and
prophecy relations. We showed relationships among the di�erent types of simulations and
soundness and completeness theorems. Part I also contains pointers to examples of uses of
simulation methods for veri�cation.

Because simulations have been so successful for untimed systems, we believe that they
will also prove to be successful for timed systems. (Considerable evidence for this is described
below.) Thus, in writing Part II of this paper, our goal has been to de�ne timed versions of
all the simulations in Part I (timed re�nements, timed forward simulations, etc.) in terms
of timed automata, and to establish the timed versions of all the soundness, completeness
and other results of Part I.

The de�nitions of all of our timed simulations are analogous to the de�nitions of the
corresponding untimed simulations in Part I, but are based on our new notions of external
behavior. It turns out that the results for timed simulations are almost entirely analogous
to those for the untimed simulations (even though it requires considerable e�ort to prove
this). In fact, in many cases, we are able to derive the results for timed simulations as
consequences of the results for untimed simulations. In the remaining cases, new proofs
analogous to those in Part I are presented. Our presentation highlights the adaptability of
the various simulation techniques from the untimed to the timed setting. There is just one
minor result from Part I, Proposition 3.12, that does not carry over to the timed setting. We
remark that we found the de�nitions involving timed automata and their simulations quite
di�cult to get \right". These de�nitions involve many choices, most of which do either lead
to longer proofs or do not yield all the properties in this paper. The problem to develop
a theory of timed transition systems and timed simulations with analogues of all results of
Part I is still open.

This paper does not contain examples of veri�cations carried out using timed simulations.
However, our timed simulations have already been used extensively elsewhere [12, 23, 32,
34, 35, 36, 37, 38, 45, 58, 60]. The algorithms and systems veri�ed in these papers include

4

toy examples such as counters and process races, as well as substantial real examples such
as a clock-based at-most-once message delivery protocol, a clock synchronization algorithm,
two mutual exclusion algorithms, a leader election algorithm, and a communication protocol
used in a consumer electronics system. They also include a toy process control example
involving control of a railroad crossing gate. An interesting feature of these proofs is that
the simulations have been used not only to prove \ordinary" safety properties, as in the
untimed setting, but also to prove timing properties, e.g., upper and lower bounds on time.
In this way, the power of simulation techniques seems to be much greater in the timed
setting than in the untimed setting. Also, the systems veri�ed are typically parameterized
by arbitrary parameters representing process speeds, message delivery times, clock rates,
etc., so that the results are very general. In [35, 19], three of the proofs are automated using
the Larch Prover [22].

We consider the main contributions of this paper to be the following. (a) The de�nition
of a timed automaton and of its external behavior. (b) The extension of simulation notions
for untimed systems to the timed setting. (c) The uni�ed presentation of all the simula-
tion techniques together with their basic soundness and completeness properties. (d) The
presentation of many auxiliary de�nitions and results, for instance about sampling of com-
putations, timed forests, timed unfolding, a timed version of the historization construction
of [29], etc. (e) The fact that our presentation parallels, and is based closely on, a similar
development for untimed systems.

The rest of the paper is organized as follows. Section 2 contains the de�nitions for
timed automata and their executions and traces. Section 3 contains some de�nitions and
results for restricted types of timed automata. Section 4 discusses the structures that can
be obtained as the behaviors of timed automata. Section 5 contains the de�nitions of all the
timed simulations. Sections 6 and 7 contain the major results of the paper { the relationships
among the timed simulations and the soundness and completeness results. Section 6 contains
those results that are derived from corresponding results for the untimed case, while Section 7
contains those results that require new proofs, in particular, the construction of auxiliary
(intermediate) timed automata. Section 7 also contains the single example of a result from
Part I that does not carry over to the timed setting. Section 8 describes how invariants can
be included in the simulations. Finally, Section 9 contains some conclusions. Appendix A
contains a discussion of some alternative axioms for timed automata, and Appendix B gives
a glossary of notational conventions that we use. Because of the strong dependence of this
paper on Part I [44], we have not tried to write this paper in a self-contained manner. Thus,
we employ freely the notation and de�nitions of Part I, and refer in many places to the
results from Part I.

2 Timed Automata and Their Behaviors

In this section, we present the timed automaton model. We de�ne \timed executions", which
describe how timed automata operate, and \timed traces", which describe their externally-

5

visible behavior. A timed execution includes information about discrete changes to the
automaton's state, plus information about the evolution of the state as time passes contin-
uously.

Since timed automata are a special case of the (untimed) automata de�ned in Part I
of this paper [44], the notions of \execution" and \trace" for untimed automata also make
sense for timed automata. We relate the notions of execution and timed execution for a
timed automaton: an execution can be regarded as \sampling" the state information of a
timed execution at a countable number of points in time. Also, we relate the notion of trace
and timed trace.

2.1 Timed Automata

A timed automaton (or timed transition system) A is an automaton (as de�ned in Part I)
whose set of actions includes R+, the set of positive reals.1 Actions from R+ are referred to as
time-passage actions, while non-time-passage actions are referred to as discrete actions. We
let d; d0; : : : range over R+ and more generally, t; t0; : : : over the set R�0 [f1g of nonnegative
real numbers plus in�nity. The set of visible actions is de�ned by vis(A)

�

= ext (A)� R+. In
this part of the paper, A;B; : : : will range over timed automata. We assume that a timed
automaton satis�es two axioms.

S1 If s0 d�! s00 and s00 d0

�! s, then s0 d+d
0

�! s.

For the second axiom, we need an auxiliary de�nition of a trajectory, which describes the
state changes that can occur during time-passage. Namely, if I is any left-closed interval of
R�0 beginning with 0, then an I-trajectory is a function w : I ! states(A) such that

w(t) t0�t�!w(t0) for all t; t0 2 I with t < t0:

Thus, a trajectory assigns a state to each time in the interval I, in a \consistent" manner. We
de�ne w:ltime, the \last time" of w, to be the supremum of I. In particular, if I is an in�nite
interval then w:ltime is 1. We de�ne w:fstate to be w(0), and if I is right-closed, we also
de�ne w:lstate to be w(w:ltime). A trajectory with a domain that is the single-point interval
[0; 0] is also called a trivial trajectory. A trajectory for a step s0 d�! s is a [0; d]-trajectory
such that w:fstate = s0 and w:lstate = s. Now we can state the second axiom.

S2 Each time-passage step s0 d�! s has a trajectory.

Axiom S1 allows repeated time-passage steps to be combined into one step. Axiom S2 is a
kind of converse to S1; it says that any time-passage step can be \�lled in" with states for
each intervening time, in a consistent way.

1The decision to use only positive reals as time-passage actions is a matter of taste. We could have
allowed for a 0-action with as additional axiom

S0 s0
0�! s if and only if s0 = s.

However, we would like to distinguish the discrete action � from the time-passage action 0, both for conceptual
and technical reasons: the de�nitions of several process algebraic operations on timed automata, as discussed
in [42], become much more involved if � 's are treated as time-passage actions.

6

In the modelling of hybrid systems, trajectories are often used to describe the evolution
of physical parameters such as position, velocity, acceleration, temperature, and pressure. In
such cases, each trajectory w is describable as a continuous function of time. Several models
for hybrid systems [47, 6] include the assumption that trajectories are continuous. However,
besides the model of this paper there are also models that do not include such an assumption
[51], and in fact we do not need continuity of trajectories for our results.

Axiom S2 is a strengthening of a similar axiom proposed by Wang [61] and used in
[42, 53], which, rephrased in our terminology, reads:

S20 If s0 d�! s and 0 < d0 < d, then there is an s00 such that s0 d0

�! s00 and s00 d�d
0

�! s.

The stronger condition seems natural to us | for example, it provides a direct way of
modelling changes in physical parameters in a hybrid system. Besides, we need it for some
of our results, for instance, Lemma 3.4. In Appendix A, we discuss the relationship between
axioms S2 and S20 in more detail and show that S20 does not in general imply S2.

It is possible to combine two \compatible" trajectories of a timed automaton A into one:
if w1 is an I1-trajectory, where I1 is right-closed, if w2 is an I2-trajectory, if w1:lstate =
w2:fstate, and if we let l1 = w1:ltime, then we can de�ne w1 � w2 to be the least function w

such that: w(t) = w1(t) for t 2 I1, and w(t+ l1) = w2(t) for t 2 I2.

Lemma 2.1 If w = w1 � w2 then w is an I-trajectory, where I = I1 [ft+ l1 j t 2 I2g.

Proof: Choose t; t0 2 I with t < t0. We show that w(t) t0�t�!w(t0). If t0 � l1, this follows from
the fact that w1 is an I1-trajectory, while if t � l1, this follows from the fact that w2 is an
I2-trajectory.

The remaining case is where t < l1 < t0. In this case, the fact that w1 is an I1-trajectory
implies that w1(t)

l1�t�!w1:lstate, which implies that w(t) l1�t�! w1:lstate . Also, the fact that w2

is an I2-trajectory implies that w2:fstate
t0�l1�!w2(t0�l1), which implies that w2:fstate

t0�l1�! w(t0).
Since w1:lstate = w2:fstate, axiom S1 implies that w(t) t0�t�!w(t0), as needed.

Likewise, we may combine a countable sequence of \compatible" trajectories into one: if
wi is an Ii-trajectory, for each positive integer i, where all Ii are right-closed, if wi:lstate =
wi+1:fstate and if we let li = wi:ltime , for all i, then the in�nite concatenation w1 �w2 �w3 : : :

is de�ned to be the least function w such that w(t+ �j<ilj) = wi(t) for all t 2 Ii.

Lemma 2.2 If w = w1�w2�w3 : : : then w is an I-trajectory, where I =
S
ift+�j<ilj j t 2 Iig.

2.2 Timed Executions

Since a timed automaton is a special case of an automaton (as de�ned in Part I), we already
have a notion of execution for timed automata; an execution is an alternating sequence of
states and actions (including time-passage actions as a special case), subject to the natural
consistency constraints. However, this type of execution only describes the system state at
a countable number of points in time. Since our trajectory axiom gives us the ability to
associate states with all the real times occurring during a time-passage step, we de�ne a
notion of timed execution, which includes such information. The usual kind of execution can
be regarded as \sampling" a timed execution at countably many points in time, as we show
in Section 2.4.2 below.

7

■

2.2.1 Basic De�nitions

A timed execution fragment of a timed automaton A is a �nite or in�nite alternating sequence
W = w0a1w1a2w2 � � �, where:

1. Each wi is a trajectory and each ai is a discrete action.

2. If W is a �nite sequence then it ends with a trajectory.

3. If wi is not the last trajectory in W then its domain is a right-closed interval and
wi:lstate

ai+1�! wi+1:fstate.

An execution fragment describes all the discrete changes that occur, plus the evolution of the
state during time-passage steps. The last property says that each pair (wi; wi+1) of successive
trajectories in the fragment \matches up" properly, in that the intervening discrete action
ai+1 spans properly between the last state of wi and the �rst state of wi+1.

Note that the de�nition of a timed execution fragment allows the modelling of consecutive
discrete actions, without intervening time-passage. In this case, the trajectory between the
two discrete actions is trivial.

If W is a timed execution fragment then we let W:ltime denote �iwi:ltime. Note that
we allow the case where the domain of the �nal trajectory is of the form [0;1); in this case,
W:ltime = 1. We de�ne the �rst state of W , W:fstate, to be w0:fstate. A timed execution
is a timed execution fragment W for which W:fstate is a start state.

Note that the super-dense computations of [47] correspond closely to our timed execu-
tions.

2.2.2 Finite, Admissible and Zeno Timed Executions

In this paper, we will be interested in certain subclasses of the set of timed executions: the
�nite, admissible and Zeno timed executions. The distinctions involve whether or not time
passes to in�nity, and whether an in�nite or �nite amount of activity occurs. Thus, we de�ne
a timed execution fragment W to be

1. �nite if W is a �nite sequence and the domain of its �nal trajectory is a right-closed
interval,

2. admissible if W:ltime =1, and

3. Zeno if W is neither �nite nor admissible.

If W is a �nite timed execution fragment with �nal trajectory wi, then W:ltime is �nite.
In this case, we de�ne W:lstate, the last state of �, to be wi:lstate. We de�ne a state s to
be t-reachable in timed automaton A provided that there is a �nite timed execution W such
that W:lstate = s. The following fact follows directly by axiom S2.

Lemma 2.3 A state s of a timed automaton A is t-reachable if and only if it is reachable,
i.e., there is an ordinary �nite execution of A that ends in s.

8

An important implication of Lemma 2.3 is that any technique that can prove that a property
holds for all �nal states of (ordinary) �nite executions is a sound technique for proving that
a property holds in all t-reachable states of a timed automaton. In particular, induction on
the steps of ordinary executions is sound in this sense.

IfW is a �nite timed execution fragment with �nal trajectory wi,W 0 is a timed execution
fragment with initial trajectory w00, and wi:lstate = w00:fstate then we de�neW �W 0 to be the
timed execution fragment obtained by concatenating the sequences W and W 0, except that
the consecutive pair of trajectories wi and w00 is replaced by wi �w00. Lemma 2.1 implies that
W �W 0 is in fact a timed execution fragment. If W and W 0 are timed execution fragments,
then de�ne W 0 to be a t-pre�x of W , denoted by W 0 � W , if either W 0 = W , or else W 0 is
�nite and there exists a timed execution fragment W 00 such that W 0 �W 00 =W . Relation �
is a partial ordering on timed execution fragments.

The admissible timed execution fragments are those in which time passes without bound.
Since (we believe) time does pass without bound in the real world, it is reasonable to restrict
attention to the admissible timed executions when arguing the correctness of a system rep-
resented as a timed automaton. In this paper, we focus on the admissible and �nite timed
executions, and mostly ignore Zeno timed executions. We denote by t-frag�(A), t-frag1(A)
and t-frag(A) the sets of �nite, admissible and all timed execution fragments of A. Similarly,
we denote by t-execs �(A), t-execs1(A) and t-execs (A) the sets of �nite, admissible and all
timed executions of A.

The notion of admissibility is the only notion of liveness that we include in our model.
Many untimed automaton models (e.g., [40, 46, 31]) include facilities for describing rich
classes of liveness properties, for example, various notions of fairness. In the timed setting,
it is often possible to replace liveness notions with corresponding timing restrictions. These
can be expressed by restrictions on time-passage steps, so they do not require any special
machinery. The notion of admissibility is in some sense more tractable mathematically than
some other liveness notions, e.g., the notion of a \fair execution" in the I/O automaton
model [40]. This is because the admissible timed executions of a timed automaton can be
expressed as the limits of in�nite sequences of �nite timed executions.

Proposition 2.4 The admissible timed executions are exactly the limits of the in�nite se-
quences of �nite timed executions, where each timed execution in the sequence is a t-pre�x
of the next and the :ltime values approach 1.

The characterization in Proposition 2.4 permits the reduction of questions about in�nite
behaviors to questions about their �nite pre�xes. A similar reduction is not possible in
untimed models that incorporate fairness.

One could extend the timed automaton model presented here by adding other liveness
properties. Such an extended model is de�ned, and its properties explored, in [32, 58, 16].
In [32; 58], the extended model is also applied to substantial communication examples.

Zeno timed executions are a technical anomaly; they represent an in�nite amount of
activity occurring in a �nite amount of time, which is (we believe) impossible in reality.
Nevertheless, our de�nition of timed automata does admit Zeno executions. There are two
types of Zeno timed executions in our model:

1. those containing in�nitely many discrete actions, but for which :ltime is �nite, and

9

2. those containing �nitely many discrete actions, but for which the domain of the �nal
trajectory is a right-open interval with a �nite supremum.

For this second type of Zeno timed execution, the \in�nite amount of activity occurring in
a �nite amount of time" corresponds to an in�nite number of time-passage steps needed to
span the �nal interval.

According to our de�nitions, there are timed automata in which from some (or even all)
states no admissible timed execution fragment is possible. This can be, for instance, because
from these states time can continue advancing, but not beyond a certain point (that is,
all timed execution fragments starting from these states are Zeno), or because time cannot
advance at all (that is, a time deadlock occurs). Our model does allow time deadlocks.
However, in several of our theorems we will require that the timed automata be \feasible":
a timed automaton is feasible provided that each �nite timed execution is a t-pre�x of some
admissible timed execution.2 A feasible timed automaton does not have time deadlocks,
but it will have Zeno timed executions, simply because each feasible timed execution has
t-pre�xes that are Zeno timed excutions.

2.3 Timed Traces

Since a timed automaton is an automaton (as de�ned in Part I), we already have a notion
of trace for timed automata. However, the traces of timed automata do not provide a
su�ciently abstract notion of external behavior for timed automata, because they do not
reect the invisible nature of time-passage actions (see Example 1.1 in the introduction).
In this subsection, we de�ne a new notion of external behavior for timed automata, which
we call timed traces. These do not include explicit time-passage events, but do include
information about the real time of visible events, as well as the �nal time up to which the
observation is made.

We �rst de�ne the auxiliary technical notion of a timed sequence pair, a general data
type that is used in the de�nition of a timed trace.

2.3.1 Timed Sequence Pairs

Let K be any set with K \ R+ = ;. Then a timed sequence over K is de�ned to be a (�nite
or in�nite) sequence � over K � R�0 in which the time components are nondecreasing, i.e.,
if (k; t) and (k0; t0) are consecutive elements in � then t � t0. We say that � is Zeno if it is
in�nite and the limit of the time components is �nite.

A timed sequence pair over K is a pair p = (�; t), where � is a timed sequence over K
and t 2 R�0 [f1g, such that t is greater than or equal to the limit of the time components
in �, and equal to this limit if � is an in�nite sequence. We write p:seq and p:ltime for the
two respective components of p, and denote by tsp(K) the set of timed sequence pairs over
K. We say that a timed sequence pair p is �nite if both p:seq and p:ltime are �nite, and
admissible if p:seq is not Zeno and p:ltime =1.

Let p and p0 be timed sequence pairs over K with p �nite. Then de�ne p � p0 to be the
timed sequence pair (p:seq �; p:ltime+p0:ltime), where � is the modi�cation of p0:seq obtained

2This property is called nonZenoness in [2].

10

by adding p:ltime to all the time components. If p and q are timed sequence pairs over K,
then p is a pre�x of q, denoted by p � q, if either p = q, or p is �nite and there exists a timed
sequence pair p0 such that p � p0 = q. Relation � is a partial ordering on the set of timed
sequence pairs over K.

We describe how to translate from a sequence over K [R+ to a timed sequence pair
over K and vice versa. First, if � is any sequence over K [R+, then we de�ne the time of
occurrence of any K-element in � to be the sum of all the reals that precede that element
in �. We also de�ne �:ltime to be the sum of all the reals in �. In case � is the empty
sequence, we de�ne �:ltime = 0. Finally, we de�ne t -trace(�) to be the timed sequence pair
(�; �:ltime), where � is the subsequence of � consisting of all the elements of K, each paired
with its time of occurrence.

Conversely, if p is a timed sequence pair over K, then we de�ne trace(p), a corresponding
sequence over K [R+. Namely, if p:ltime is �nite or p:seq is in�nite, then let trace(p) be the
unique sequence � over K [R+ such that p = t -trace(�) and such that � does not contain
two consecutive elements of R+. On the other hand, if p:ltime is in�nite and p:seq �nite,
then let trace(p) be the unique sequence � over K [R+ such that p = t -trace(�), such that
� does not contain two consecutive elements of R+ prior to the last K element, and such
that the portion of � after the last K element is the default sequence 1 1 1 � � �.

Thus by construction:

Lemma 2.5 For any timed sequence pair p over K, t -trace(trace(p)) = p.

Let � be a sequence over K [R+. Then we say that � is admissible if the sum of the
positive reals in � is in�nite.

Lemma 2.6 � is admissible if and only if t -trace(�) is admissible.

It is not the case that � is �nite if and only if t -trace(�) is �nite. A counterexample
is provided by the in�nite sequence 1

2
1
4
1
8
� � �, of which the associated timed sequence pair

(�; 1) is �nite. (Recall that � is the empty sequence.)

2.3.2 Timed Traces of Timed Automata

Suppose that W = w0a1w1a2w2 � � � is a timed execution fragment of a timed automaton A.
For each ai, de�ne the time of occurrence ti to be �j<iwj:ltime, i.e., the sum of the lengths
of all the trajectory intervals preceding ai in W . Let � = (a1; t1)(a2; t2) � � � be the sequence
consisting of the actions in W paired with their times of occurrence. Then t -trace(W), the
timed trace of W , is de�ned to be the pair3

t -trace(W)
�
= (�d(vis(A)� R�0);W:ltime):

Thus, t -trace(W) records the occurrences of visible actions together with their times of
occurrence, as well as the last time. Note that neither internal actions nor time-passage
actions appear explicitly in the timed trace of W .

3Recall from Part I that the symbol d denotes the projection of a sequence on a subset of the domain of
its elements.

11

Lemma 2.7 If W is a timed execution fragment of A then t-trace(W) is a timed sequence
pair over vis(A).

Lemma 2.8 If W = W1 � W2 is a timed execution fragment of A then t-trace(W) =
t -trace(W1) � t -trace(W2).

A timed trace of A is the timed trace of any �nite or admissible timed execution of A.
Thus, we explicitly exclude the traces of Zeno executions. We write t-traces(A) for the set
of all timed traces of A, t-traces�(A) for the set of �nite timed traces, i.e., those that are
derived from �nite timed executions of A, and t-traces1(A) for the admissible timed traces,
i.e., those that are derived from admissible timed executions of A. The following lemma is
a direct consequence of the de�nitions.

Lemma 2.9 The sets t-traces�(A) and t-traces1(A) consist of �nite timed sequence pairs
and admissible timed sequence pairs over vis(A), respectively.

These notions induce three natural preorders on timed automata. Namely, we de�ne
A �t

T B to mean that t-traces(A) � t-traces(B), A �t
�T B to mean that t-traces�(A) �

t-traces�(B), and A �t
1T B to mean that t-traces1(A) � t-traces1(B). The kernels of these

preorders are denoted by �t
T, �

t
�T and �t

1T, respectively.

2.3.3 Moves

We include in this section one last de�nition, which is used in all the simulation de�nitions
in Section 5.

Suppose A is a timed automaton, s0 and s are states of A, and p is a timed sequence
pair over vis(A). Then we say that (s0; p; s) is a t-move of A, and write s0 p

;A s, or just
s0

p
; s when A is clear, if A has a �nite timed execution fragment W with W:fstate = s0,

t -trace(W) = p and W:lstate = s.

Lemma 2.10 Suppose p, p1 and p2 are timed sequence pairs over vis(A) and p = p1 � p2.

1. If s0 p1
;A s

00 and s00 p2
;A s then s0

p
;A s.

2. If s0 p
;A s then there exists s00 such that s0 p1

;A s
00 and s00 p2

;A s.

2.4 Relating Timed and Untimed Execution Fragments

In this subsection, we present some close connections between the timed execution frag-
ments and the (ordinary) execution fragments of a timed automaton. Roughly speaking, an
execution fragment can be regarded as \sampling" the state information in a timed execu-
tion fragment at a countable number of points in time. This close correspondence allows
techniques for reasoning about ordinary execution fragments to be used for timed execution
fragments (and vice versa).

12

2.4.1 Execution Fragments of Timed Automata

Suppose that � is an (ordinary) execution fragment of timed automaton A. We may de�ne
various timing notions for � simply, as follows.

t -trace(�)
�
= t -trace(trace(�))

�:ltime
�
= trace(�):ltime

As in Part I, � is de�ned to be �nite if it is a �nite sequence. We de�ne � to be admissible
if �:ltime =1, and Zeno if it is neither �nite nor admissible.

2.4.2 Sampling

To see the connections between the timing notions de�ned for (ordinary) executions and the
corresponding ones for timed executions, we de�ne a notion of \sampling".

Let � = s0a1s1 : : : be an execution fragment of A and W = w0b1w1 : : : be a timed
execution fragment of A. We de�ne two auxiliary functions: f gives for each index i of �
the number of discrete actions that precede si, and g gives for each index i of � the amount
of time between si and the last discrete action preceding si. Formally, for all i,

f(0) = 0; f(i+ 1) =

(
f(i) + 1 if ai+1 discrete,
f(i) otherwise.

g(0) = 0; g(i+ 1) =

(
0 if ai+1 discrete,
g(i) + ai+1 otherwise.

We say that � samples W provided that the following conditions are satis�ed.

1. f is a surjective mapping from indices of � to indices of W .

2. For all i, si = wf(i)(g(i)).

3. For all i > 0 with ai discrete, ai = bf(i) and g(i� 1) = wf(i�1):ltime.

4. �:ltime = W:ltime.

5. � is �nite if and only if W is �nite.

The function f maps each state si in � to the trajectory of W to which it belongs. The �rst
condition states that for each trajectory of W there should be at least one state of � that
belongs to it. The second condition speci�es how function g determines the position of si
within the associated trajectory. The third condition guarantees that the discrete actions
match up, and that the amount of idling in between discrete actions is the same for � and W .
The last two conditions ensure that things match up properly at the end of the executions.
The de�nition immediately implies that if � samples W then � is admissible if and only if
W is admissible, and � is Zeno if and only if W is Zeno.

The following two lemmas show the close relationship between timed execution fragments
and ordinary execution fragments. Note that these connections hold for �nite, admissible
and Zeno (timed) executions. The proofs are routine; the proof of Lemma 2.11 uses Lemmas
2.1 and 2.2.

13

Lemma 2.11 If � is an execution fragment of A then there is a timed execution fragment
W of A such that � samples W .

Lemma 2.12 If W is a timed execution fragment of A then there is an execution fragment
� of A such that � samples W .

Finally, we relate the de�nition of timed traces for execution fragments to the corre-
sponding de�nition for timed execution fragments.

Lemma 2.13 If � samples W then t-trace(�) = t -trace(W).

3 Restricted Kinds of Timed Automata

In this section, paralleling our development in Part I, we de�ne certain restricted kinds of
timed automata that are useful in our proofs. Recall that in Part I, we de�ned what it meant
for an untimed automaton to be deterministic, to have �nite invisible nondeterminism (�n)
and to be a forest. Now we de�ne analogous notions of t-deterministic, t-�n and t-forest.

First, we say that timed automaton A is t-deterministic if jstart(A)j = 1 and for any state
s0 and any �nite timed sequence pair p over vis(A), there is at most one state s such that
s0

p
;A s. It turns out that this notion is equivalent to the original notion of determinism:

Lemma 3.1 Timed automaton A is t-deterministic if and only if it is deterministic.

Proof: Recall that the de�nition of determinism says that jstart(A)j = 1 and that for any
state s0 and �nite sequence � of actions in ext(A), there is at most one state s such that
s0

�=) s.
): We suppose that A is t-deterministic and show that it is deterministic. The start

condition is immediate. Suppose for the sake of contradiction that A is not deterministic;
then there exist s0, �, s1 and s2 such that s0 �=) s1, s0

�=) s2 and s1 6= s2. This means that
there are two execution fragments, �1 and �2, each starting with s0 and having trace �,
one of which ends in s1 and the other in s2. Then Lemma 2.11 implies that there are two
timed execution fragments, W1 and W2, that are sampled by �1 and �2 respectively. By
Lemma 2.13, W1 and W2 have the same timed trace, say p. It follows that s0 p

; s1 and
s0

p
; s2, which violates t-determinism, yielding the needed contradiction.
(: We suppose that A is deterministic and show that it is t-deterministic. The start

condition is immediate. Suppose for the sake of contradiction that A is not t-deterministic;
then there exist s0, p, s1 and s2 such that s0 p

; s1, s0
p
; s2 and s1 6= s2. This means that

there are two timed execution fragments,W1 and W2, each starting with s0 and having timed
trace p, one of which ends in s1 and the other in s2. Then Lemma 2.12 implies that there are
two execution fragments, �1 and �2, that sample W1 and W2 respectively. By Lemma 2.13,
�1 and �2 have the same timed trace, say p. By applying axiom S2 to split time-passage
actions, we may assume without loss of generality that �1 and �2 have the same trace, say
�. It follows that s0 �=) s1 and s0

�=) s2, which violates determinism, yielding the needed
contradiction.

A simple characterization of t-determinism is then obtained from Lemma 3.1 and a
characterization of determinism in Part I:

14

•

Lemma 3.2 A timed automaton A is t-deterministic if and only if jstart(A)j = 1, every
� transition is of the form (s; �; s) for some s, and for any state s0 and any action (either
visible, internal or time-passage) a there is at most one state s such that s0 a�! s.

Second, we say that A has t-�nite invisible nondeterminism (t-�n) if start(A) is �nite,
and for any state s0 and any �nite timed sequence pair p over vis(A), there are only �nitely
many states s such that s0 p

;A s. It is not hard to see that the analogous result to Lemma 3.1
for t-�n fails:

Example 3.3 Let A be the timed automaton with no visible actions that can do � actions
at any time and remembers the times at which it has done these internal actions. The states
of A consist of components now 2 R�0, initially 0, and tau-times � R�0, initially empty. The
allowed steps are:

� s0
��! s, where s:now = s0:now and s:tau-times = s0:tau-times [fs0:nowg, plus

� s0
d�! s, where s:now = s0:now + d and s:tau-times = s0:tau-times.

Then A has �n but does not have t-�n.

Third and �nally, we say that A is a t-forest if every state s has a unique timed execution
W that leads to it, i.e., such that W:lstate = s. In the case of timed automata, the original
de�nition of a forest is trivial: no timed automaton that contains a time-passage step can
be a forest. This is because if a state s is reached by an execution that ends with a time-
passage step, then axiom S2 allows that time-passage step to be split in two, yielding a
di�erent execution leading to s. We can obtain a characterization of t-forests, analogous to
the characterization in Part I for forests:

Lemma 3.4 A timed automaton A is a t-forest if and only if all states of A are reachable,
start states have no incoming steps, and for every state s, if there are two distinct steps
leading to s, r a�! s and r0 a0

�! s, then a and a0 are distinct time-passage actions, and either
r a�a0

�! r0 or r0 a
0�a�! r (depending on whether a > a0 or a0 > a).

Proof:): All states in a t-forest are reachable by Lemma 2.3. It is also easy to see that start
states have no incoming steps. So suppose that r a�! s and r0 a0

�! s, with (r; a) 6= (r0; a0).
Let W and W 0 be the unique timed executions leading to r and r0, respectively.

We extend W to timed execution W1 by adding the information contained in the step
r a�! s. Speci�cally, if a is a discrete action, we append a and a trivial trajectory with the
single state s to W . On the other hand, if a 2 R+, we use axiom S2 to obtain a trajectory
w for the step r a�! s and combine w with the �nal trajectory of W ; Lemma 2.1 implies
that the combination of the two trajectories is itself a trajectory. Likewise, we extend W 0 to
timed execution W 0

1 by adding the information contained in the step r0 a0

�! s.
Since A is a t-forest and W1 and W 0

1 both lead to s, it must be that W1 =W 0
1. But since

(r; a) 6= (r0; a0), the only way this can happen is if a and a0 are both time-passage actions
and a 6= a0. In this case, the �nal trajectory w of W1 = W 0

1 ends with a trajectory of the step
r a�! s, and also ends with a trajectory of the step r0 a0

�! s. In particular, if w:ltime = t,
then w(t� a0) = r0 and w(t� a) = r.

15

If a < a0, then t� a0 < t� a, so the de�nition of a trajectory implies that r0
(t�a)�(t�a0)
�! r,

i.e., r0 a
0�a�! r. Symmetrically, if a0 < a, we have r a�a0

�! r0. Either situation su�ces.
(: Because all states of A are reachable, we know by Lemma 2.3 that for each state s

there is at least one timed execution that leads to it. We show uniqueness. For any timed
execution W , de�ne n(W) to be the sum of the number of nontrivial trajectories and the
number of actions occurring in W . It su�ces to prove the following claim for all k 2 N:

If W and W 0 are two timed executions with n(W) + n(W 0) � k, and if W and
W 0 lead to the same state s, then W = W 0.

We prove this claim by induction on k.
Basis: k = 0.

Then each of W and W 0 consists of a trivial trajectory with the single state s, so W = W 0.
Inductive step: k > 0.

If W consists of a single trivial trajectory, then s must be a start state. The fact that W 0

leads to s implies that the start state s has an incoming step, which is a contradiction. A
similar contradiction is reached if W 0 consists of a single trivial trajectory. Thus, neither W
nor W 0 consists of a single trivial trajectory.

If the last trajectory w of W is trivial, de�ne a to be the last discrete action in W , and r
the last state of the preceding trajectory. Thus, we have r a�! s. Since each state can have
at most one incoming discrete step, the last trajectory of W 0 must also be trivial, a must be
the last discrete action in W 0, and r the last state of the preceding trajectory of W 0. If W1

and W 0
1 are the timed executions obtained from W and W 0, respectively, by omitting the

aw fragment at the end, the induction hypothesis gives W1 = W 0
1. This implies W = W 0.

A similar proof can be given for case in which the last trajectory of W 0 is trivial. Thus
we may assume that neither W nor W 0 end with a trivial trajectory.

De�ne r = w(0) and a = w:ltime; the de�nition of a trajectory implies r a�! s. Likewise,
de�ne r0, a0 and w0 for W 0.

If a = a0, then it is easy to prove that w = w0. In this case, let W1 and W 0
1 be the results

of removing the last trajectory w from W and W 0, respectively, replacing it with the trivial
trajectory with state r. Application of the induction hypothesis gives W1 = W 0

1, and this
implies W = W 0.

Assume without loss of generality that a0 > a. Since r a�! s and r0 a0

�! s, we have by
assumption r0 a

0�a�! r. That is, both timed executions end with nontrivial trajectories, and W
ends with the shorter one.

We claim that w(a�t) = w0(a0�t) for all t 2 [0; a]. For if not, then there are two distinct
time-passage steps leading to s with the same amount of time-passage, namely, w(a�t) t�! s

and w0(a0 � t) t�! s. In particular, r = w(0) = w0(a0 � a).
Now let W1 be the result of removing the last trajectory w from W , replacing it with

the trivial trajectory with state r. Also, let W 0
1 be the result of reducing the last trajectory

w0 of W 0 by removing the portion with domain (a0 � a; a0]. Then W1 and W 0
1 are two timed

executions, each of which leads to r, and such that n(W1) + n(W 0
1) is strictly less than

n(W) + n(W 0). By induction hypothesis, W1 = W 0
1. Since the removed portions of W and

W 0 are identical, this implies that W = W 0.

16

■

We de�ne the relation t-after(A) to consist of those pairs (p; s) for which there is a �nite
timed execution of A with timed trace p and last state s.

t-after(A)
�
= f(p; s) j 9W 2 t-execs �(A) : t -trace(W) = p and W:lstate = sg:

The relation t-past(A)
�
= t-after(A)�1 relates a state s of A to the timed traces of timed

executions that lead to s.

Lemma 3.5

1. If A is t-deterministic then t-after(A) is a function from t-traces�(A) to states(A).

2. If A has t-�n then t-after(A) is image-�nite.

3. If A is a t-forest then t-past(A) is a function from states(A) to t-traces�(A).

Proof: Parts 1 and 2 are straightforward from the de�nitions.
For 3, suppose that A is a t-forest. Because all states of A are reachable we know that for

each state s of A, t-past(A)(s) contains at least one element. But this element is uniquely
determined by the unique timed execution that leads to s.

4 Timed Trace Properties

Continuing the analogy with Part I, we de�ne \timed trace properties", the structures that
we consider as external behaviors for timed automata. We also prove some basic properties of
timed trace properties and some lemmas relating timed trace properties to timed automata.

A set of timed sequence pairs is pre�x-closed if, whenever a timed sequence pair is in
the set all its pre�xes (as de�ned in Section 2.3.1) are also. A timed trace property P is
a pair (K;L) where K is a set and L is a nonempty, pre�x-closed set of �nite and admis-
sible timed sequence pairs over K. We will refer to the constituents of P as sort(P) and
t-traces(P), respectively. Also, we write t-traces�(P) for the set of �nite timed sequence pairs
in t-traces(P), and t-traces1(P) for the set of admissible timed sequence pairs in t-traces(P).
For P and Q timed trace properties, we de�ne P �t

�T Q
�

= t-traces�(P) � t-traces�(Q),
P �t

1T Q
�

= t-traces1(P) � t-traces1(Q), and P �t
T Q

�

= t-traces(P) � t-traces(Q). The
kernels of these preorders are denoted by �t

�T, �
t
1T and �t

T, respectively.
A timed trace property P is limit-closed if each in�nite chain p1 � p2 � p3 � � � � of

elements of t-traces�(P) in which time grows unboundedly has a limit in t-traces1(P), i.e.,
an admissible timed sequence pair p such that for all i, pi � p.

Lemma 4.1 Suppose P and Q are timed trace properties with Q limit-closed. Then P �t
�T Q

, P �t
T Q.

A timed trace property P is feasible if every element of t-traces�(P) is a pre�x of some
element of t-traces1(P).

Lemma 4.2 Suppose P and Q are timed trace properties such that P is feasible. Then
P �t

1T Q , P �t
T Q.

17

■

The timed behavior of a timed automaton A, t -beh(A), is de�ned by

t -beh(A)
�
= (vis(A); t-traces(A)):

Lemma 4.3

1. t-beh(A) is a timed trace property.

2. If A has t-�n then t-beh(A) is limit-closed.

3. If A is feasible then t-beh(A) is feasible.

4. A �t
T B , t -beh(A) �t

T t -beh(B),
A �t

�T B , t -beh(A) �t
�T t -beh(B), and

A �t
1T B , t -beh(A) �t

1T t -beh(B).

Proof: Part 1 follows directly from Lemma 2.9. Parts 3 and 4 are immediate from the
de�nitions.

We sketch the proof of 2; it is analogous to that of Lemma 2.5 of Part I. Suppose A has
t-�n and p1 � p2 � : : : is an in�nite chain of timed sequence pairs in t-traces�(A) such that
the limits of the time components of the pi's is 1. Assume without loss of generality that
pi < pi+1, for all i � 1. Let p be the limit of the pi's. We must show that p 2 t-traces1(A).

We use Lemma A.1 of Part I. This time, G is constructed as follows. The nodes are pairs
(pi; s), where pi is one of the timed sequence pairs in the sequence above, and s is a state of
A, such that (p; s) 2 t-after(A). There is an edge from node (pi; s0) to node (pi+1; s) exactly
if s0 q
;A s, where pi+1 = pi � q. Using Lemma 2.10, it is not di�cult to show that G satis�es

the hypotheses of Lemma A.1 of Part I. Then that lemma implies the existence of an in�nite
path in G starting at a root; given this path, it is easy to construct an admissible timed
execution of A having p as its timed trace.

Proposition 4.4

1. If B has t-�n then A �t
�T B , A �t

T B.

2. If A is feasible then A �t
1T B , A �t

T B.

Proof: Part 1 follows from Lemmas 4.1 and 4.3. Part 2 is a corollary of Lemmas 4.2 and
4.3.

Example 4.5 We present two timed automata, B1 and B2, which are in a sense the timed
analogues of the automata A1 and A2 of Example 2.1 of Part I. The example illustrates the
necessity of the t-�n condition in Proposition 4.4(1). Timed automaton B1 performs an a-
action at each integer time. Each state of B1 has components now 2 R�0 and count 2 N, both
initially 0. B1 has a single visible action a, and steps

� s0
d�! s, where s:now = s0:now + d � s0:count and s:count = s0:count ;

� s0
a�! s, where s:now = s0:now = s0:count and s:count = s0:count + 1.

18

■

■

Timed automaton B2 performs an a-action at each of �nitely many integer times. Each state
of B2 has components now 2 R�0, initially 0, count 2 N, initially 0, and total 2 N, initially
arbitrary. B1 has a single visible action a and steps

� s0
d�! s, where s:now = s0:now + d � s0:count , s:count = s0:count , and s:total = s0:total ;

� s0
a�! s, where s:now = s0:now = s0:count � s0:total , s:count = s0:count+1, and s:total =

s0:total .

Then it is easy to see that B1 has t-�n (in fact, it is t-deterministic). However, B2 does not
have t-�n: for instance, it has in�nitely many start states. Also, in each �nite timed trace of
B2, a occurs at every nonnegative integer time up to (and possibly including) the last time
total , while in the unique admissible timed trace of B1, a occurs at all nonnegative integer
times. Then B2 has the same �nite timed traces as B1 but no admissible timed traces. It
follows that B1 �t

�T B2 but B1 6�t
T B2.

Note that it is possible to modifyB2 so that it is feasible, yet still demonstrates the same point.
Simply allow time to pass in B2 after the last permitted a output.

Example 4.6 In order to see that the feasibility condition in Proposition 4.4(2) is needed,
we consider a timed automaton Z with states drawn from the interval [0; 1), start state 0, no
visible actions, and steps of the form t0

t�t0�! t whenever t0 < t. Since Z has no admissible timed
traces, it is trivially the case that Z �t

1T B1. However, because B1 does not allow initial
time-passage steps, Z 6�t

T B1.

Again paralleling Part I, we close this section with the construction of the canonical timed
automaton for a given timed trace property. For P a timed trace property, the associated
canonical timed automaton t-can(P) is the structure A given by:

� states(A) = t-traces�(P),

� start(A) = f(�; 0)g,

� acts(A) = sort(P) [f�g [R+, and

� for p0; p 2 states(A) and a 2 acts(A),

p0 a�!A p , a 6= � ^ p0 � t -trace(a) = p:

It is not hard to check that t -can(P) is in fact a timed automaton.

Lemma 4.7 Suppose P is a timed trace property. Then

1. t-can(P) is t-deterministic and is a t-forest.

2. t-beh(t -can(P)) �t
�T P .

3. P �t
T t -beh(t -can(P)).

4. If P is limit-closed then t-beh(t -can(P)) �t
T P .

5. If P is feasible then t-can(P) is feasible.

19

Proof: Part 1 follows easily using Lemmas 3.2 and 3.4. Part 2 follow from the de�nitions.
Since t -can(P) is t-deterministic it has t-�n, so it follows by Lemma 4.3 that t -beh(t -can(P))
is limit-closed. Now 3 and 4 follow by combination of 2 and Lemma 4.1. Part 5 is straight-
forward from the de�nitions.

Lemma 4.8

1. t-can(t -beh(A)) is t-deterministic and is a t-forest.

2. t-can(t -beh(A)) �t
�T A.

3. A �t
T t -can(t -beh(A)).

4. If A has t-�n then t-can(t -beh(A)) �t
T A.

5. If A is feasible then t-can(t -beh(A)) is feasible.

Proof: By combining Lemmas 4.3 and 4.7.

5 Simulations for Timed Automata

So far, we have presented the timed automaton model and its basic properties. In this
section, we de�ne simulation proof methods for timed automata. The properties of these
relations are shown in the following two sections. In the de�nitions below, we require that an
a step is simulated by a move t -trace(â). This means that a � step is simulated by the timed
sequence pair (�; 0), a visible action a is simulated by the timed sequence pair ((a; 0); 0),
and a time-passage step d is simulated by the timed sequence pair (�; d).

Suppose A and B are timed automata.
A timed re�nement from A to B is a function r : states(A)! states(B) that satis�es:

1. If s 2 start(A) then r(s) 2 start(B).

2. If s0 a�!A s then r(s0) p
;B r(s), where p = t -trace(â).

A timed forward simulation from A to B is a relation f over states(A) and states(B) that
satis�es:

1. If s 2 start(A) then f [s] \ start(B) 6= ;.

2. If s0 a�!A s and u0 2 f [s0], then there exists a state u 2 f [s] such that u0 p
;B u, where

p = t -trace(â).

A timed backward simulation from A to B is a total4 relation b over states(A) and
states(B) that satis�es:

1. If s 2 start(A) then b[s] � start(B).

4For the de�nitions of \total", N(), P(), ()�1, etc., we refer the reader to Appendix A of Part I.

20

■

■

2. If s0 a�!A s and u 2 b[s], then there exists a state u0 2 b[s0] such that u0 p
;B u, where

p = t -trace(â).

A timed forward-backward simulation from A to B is a relation g over states(A) and
N(states(B)) that satis�es:

1. If s 2 start(A) then there exists S 2 g[s] such that S � start(B).

2. If s0 a�!A s and S0 2 g[s0], then there exists a set S 2 g[s] such that for every u 2 S

there exists u0 2 S0 with u0 p
;B u, where p = t -trace(â).

A timed backward-forward simulation from A to B is a total relation g over states(A) and
P(states(B)) that satis�es:

1. If s 2 start(A) then for all S 2 g[s], S \ start(B) 6= ;.

2. If s0 a�!A s and S 2 g[s], then there exists a set S0 2 g[s0] such that for every u0 2 S0

there exists u 2 S with u0 p
;B u, where p = t -trace(â).

For each of the above simulations, we will refer to the �rst condition in the de�nition as
the start condition, and to the second condition as the transfer condition.

A relation h over states(A) and states(B) is a timed history relation from A to B if it
is a timed forward simulation from A to B and h�1 is a timed re�nement from B to A. A
relation p over states(A) and states(B) is a timed prophecy relation from A to B if it is a
timed backward simulation from A to B and p�1 is a timed re�nement from B to A.

Analogously to Part I, we write A �t
R B, A �t

F B, etc., to indicate that there is a timed
re�nement, timed forward simulation, etc., from A to B.

Without working out the details, we note here that, analogously to the untimed case,
there is a full correspondence between timed history/prophecy relations and the obvious
notions of timed history/prophecy variables.

We close this section with a technical lemma. The transfer condition of each simula-
tion de�nition is stated for individual steps of A. It is straightforward to deduce a similar
condition for moves rather than steps.

Lemma 5.1 Suppose that A and B are timed automata and s0 p
;A s.

1. If r is a timed re�nement from A to B then r(s0) p
;B r(s).

2. If f is a timed forward simulation from A to B and u0 2 f [s0], then there exists a state
u 2 f [s] such that u0 p

;B u.

3. If b is a timed backward simulation from A to B and u 2 b[s], then there exists a state
u0 2 b[s0] such that u0 p

;B u.

4. If g is a timed forward-backward simulation from A to B and S0 2 g[s0], then there
exists a set S 2 g[s] such that for every u 2 S there exists u0 2 S0 with u0 p

;B u.

21

5. If g is a timed backward-forward simulation from A to B and S 2 g[s], then there exists
a set S0 2 g[s0] such that for every u0 2 S0 there exists u 2 S with u0 p

;B u.

Proof: Let W be a timed execution fragment from A such that s0 =W:fstate, s =W:lstate,
and p = t -trace(W). All parts are proved by induction on k = n(W), where, as in the proof
of Lemma 3.4, n(W) is the sum of the number of nontrivial trajectories and the number of
discrete actions occurring in W . As an example, we prove the result for timed re�nements;
the other cases are similar.

Basis: k = 0.
Then s0 = s, W consists of the trivial trajectory containing the single state s, and p = (�; 0).
Since r(s)

(�;0)
; B r(s), we have r(s0)

p
;B r(s).

Basis: k = 1.
This case follows easily from the transfer condition in the de�nition of a timed re�nement.

Inductive step: k > 1.
Then W can be written as W1 �W2, where n(W1) = k � 1 and n(W2) = 1. Let s00 denote
W1:lstate (= W2:fstate). Let p1 = t -trace(W1) and p2 = t -trace(W2). Then s0

p1
;A s

00 and
s00

p2
;A s. By inductive hypothesis, r(s0) p1

;B r(s00) and r(s00) p2
;B r(s). By Lemma 2.8, p =

p1 � p2. Then Lemma 2.10(1) implies that r(s0) p
;B r(s).

6 Timed Results from Untimed Results

In this and the next section we give soundness and completeness results for the various
simulations de�ned in Section 5, as well as implication results among them. The distinction
between the results in this section and those in Section 7 is that the ones given here are all
derived from corresponding results for the untimed case. The statements of the results in
Section 7 are also analogous to results of Part I, but these timed results are not derived from
the untimed results, for instance because they require the construction of an intermediate
timed automaton.

Most of the results in this section are presented in the form of a diagram, Figure 1.
This is the same diagram that appears in Part I for the untimed setting, except for the t
superscripts.

The machinery needed to prove the results in this section is developed in Section 6.1. In
particular, we de�ne an untimed automaton called the closure automaton, cl (A), for every
timed automaton A. We then show close correspondences between A and cl (A), involving
both external behavior notions and simulation relations. These correspondences allow us to
derive the results in Section 6.2 from the corresponding results for untimed automata.

6.1 The Closure Automaton

In this section, we de�ne the closure of a timed automaton, the basic technical device that we
will used to derive results about timed automata from corresponding results about untimed
automata. Section 6.1.1 contains the de�nition, Section 6.1.2 gives the relationships between
timed traces of a timed automaton and traces of its closure, and Section 6.1.3 gives the

22

■

relationships between timed simulations between timed automata and simulations between
their closures.

6.1.1 De�nition

The closure of a timed automaton A, denoted by cl (A), is the automaton B given by

� states(B) = states(A),

� start(B) = start(A),

� acts(B) = acts(A), and

� steps(B) consists of steps(A) together with all steps s0 d�!B s, such that s0
(�;d)
; A s.

Thus, the closure construction augmentsA by adding new time-passage steps to short-circuit
the e�ects of any number of � and time-passage actions of A.

Proposition 6.1 cl (A) is a timed automaton.

6.1.2 Relating Timed and Untimed Traces

In this section, we describe some close connections between A and cl (A). We begin with a
preliminary lemma showing the relationship between moves of A and of cl (A).

Lemma 6.2 Suppose s0 and s are states of A.

1. If � is a �nite sequence of actions in ext (A) then

s0
�=)cl(A)s if and only if s0

t-trace(�)
; A s:

2. If p is a �nite timed sequence pair over vis(A) then

s0
trace(p)
=) cl(A)s if and only if s0 p

;A s:

Proof: Part 1 is straightforward. Part 2 follows from part 1 and Lemma 2.5.

From this we can prove:

Lemma 6.3

1. If � is a �nite sequence of actions in ext (A) then

� 2 traces�(cl (A)) if and only if t -trace(�) 2 t-traces�(A):

2. If p is a �nite timed sequence pair over vis(A) then

trace(p) 2 traces�(cl (A)) if and only if p 2 t-traces�(A):

23

■

Proof: We show Part 1. Suppose that � is a �nite sequence of actions in ext (A), and let
p = t -trace(�).

): Suppose that � 2 traces�(cl (A)). Then there exist s0 2 start(cl (A)) and s 2
states(cl (A)) such that s0 �=)cl(A)s. Then Lemma 6.2 implies that s0 p

;A s. This implies
that p 2 t-traces�(A).

(: Suppose that p 2 t-traces�(A). Then there exist s0 2 start(A) and s 2 states(A) such
that s0 p

;A s. Then Lemma 6.2 implies that s0 �=)cl(A)s. This implies that � 2 traces�(cl (A)).
Part 2 follows from part 1 and Lemma 2.5.

A similar result holds for admissible sequences:

Lemma 6.4

1. If � is an admissible sequence of actions in ext (A) then

� 2 traces!(cl (A)) if and only if t -trace(�) 2 t-traces1(A):

2. If p is an admissible timed sequence pair over vis(A) then

trace(p) 2 traces!(cl (A)) if and only if p 2 t-traces1(A):

We now show that t-determinism of A corresponds to determinism of cl (A), and likewise
for t-�n and �n.

Lemma 6.5

1. A is t-deterministic if and only if cl (A) is deterministic.

2. A has t-�n if and only if cl (A) has �n.

Proof: We �rst prove part 1:
): Suppose A is t-deterministic. Then, by Lemma 3.2, all � steps of A are of the form

s ��! s. But this means that cl (A) and A are identical. And thus both A and cl (A) are
deterministic by Lemma 3.1.

(: Suppose cl (A) is deterministic. Then all � steps of cl (A) are of the form s ��! s. But
since cl (A) is obtained from A by adding time-passage steps only, also all � steps of A are of
the form s ��! s. This again implies that cl (A) and A are identical. And thus both A and
cl (A) are t-deterministic by Lemma 3.1.

Next we prove part 2:
): Suppose A has t-�n. Then start(A) is �nite and hence start(cl (A)) is �nite. Suppose

s0 is a state of cl (A) and � is a �nite sequence over ext (cl (A)). We show that the set
S = fs j s0 �=)cl(A)sg is �nite. Suppose s 2 S. Then Lemma 6.2 implies that s 2 U , where
U = fu j s0

t-trace(�)
; A ug. Thus S � U . Since A has t-�n, U is �nite. Thus S is �nite, as

required.
(: Suppose that cl (A) has �n. Then start(cl (A)) is �nite and hence start(A) is �nite.

Suppose s0 is a state of A and p is a �nite timed sequence pair over vis(A). We show that
the set S = fs j s0 p

;A sg is �nite. Suppose s 2 S. Then Lemma 6.2 implies that s 2 U ,

24

■

where U = fu j s0
trace(p)
=) cl(A)ug. Since cl (A) has �n, U is �nite. Thus S is �nite, as required.

Now we relate �nite timed trace inclusion for timed automata to ordinary �nite trace
inclusion for their closure automata.

Lemma 6.6 A �t
�T B , cl (A) ��T cl (B).

Proof:

): Suppose that � 2 traces�(cl (A)). Then Lemma 6.3 implies that p 2 t-traces�(A),
where p = t -trace(�). The hypothesis then implies that also p 2 t-traces�(B). Again by
Lemma 6.3, we have � 2 traces�(cl (B)).

(: Suppose that p 2 t-traces�(A). Then Lemma 6.3 implies that � 2 traces�(cl (A)),
where � = trace(p). The hypothesis then implies that also � 2 traces�(cl (B)). Again by
Lemma 6.3, we have p 2 t-traces�(B).

We can also obtain a one-way relationship between general timed trace inclusion for timed
automaton and general trace inclusion for their closure automata.

Lemma 6.7 If cl (A) �T cl (B) then A �t
T B.

Proof: Suppose cl (A) �T cl (B). Then certainly cl (A) ��T cl (B), so by Lemma 6.6,
A �t

�T B. It remains to show that A �t
1T B. For this, suppose that p 2 t-traces1(A).

Then Lemma 6.4 implies that � 2 traces!(cl (A)), where � = trace(p). The hypothesis then
implies that � 2 traces!(cl (B)). Again by Lemma 6.4, we have p 2 t-traces1(B).

Example 6.8 The converse of Lemma 6.7 does not hold in general. For a counterexample, let
B be a timed automaton that nondeterministically chooses a positive natural number n, then
performs action a at times 1� 2�1, 1 � 2�2,..., 1 � 2�n, and then idles forever, allowing time
to pass. Since each �nite timed execution can be extended to an admissible one, B is feasible;
since it has in�nitely many start states B has in�nite invisible nondeterminism. Let A be the
same as B, except that it may also choose ! at the beginning, in which case it subsequently
performs action a at times 1� 2�1, 1� 2�2,..., 1� 2�n,... Timed automaton A is not feasible
because by choosing ! it reaches a state from which only a Zeno execution, and no admissible
execution, is possible. Timed automata A and B have the same timed traces, but cl(A) also
has an in�nite trace (a; 1� 2�1), (a; 1� 2�2),..., (a; 1� 2�n),... which cl(B) does not have.

It turns out that the converse of Lemma 6.7 does hold if B has t-�n.

Lemma 6.9 Suppose B has t-�n. Then cl (A) �T cl (B) , A �t
T B.

Proof: cl(A) �T cl(B) , (by Lemma 6.5, and Proposition 2.6 of Part I)
cl(A) ��T cl(B) , (by Lemma 6.6)
A �t

�T B , (by Proposition 4.4)
A �t

T B

Finally, we obtain a corollary that relates timed trace inclusions for timed automata to
simulations for their closures.

25

■

■

■

■

Corollary 6.10 The following statements are equivalent.

1. A �t
�T B.

2. cl (A) �FB cl (B).

3. cl (A) �BF cl (B).

If B has t-�n then also the following statements are equivalent to each other and to the three
statements above.

1. A �t
T B.

2. cl (A) �iFB cl (B).

Proof: A �t
�T B , (by Lemma 6.6)

cl(A) ��T cl(B) , (by Theorems 4.5 and 4.6 of Part I)
cl(A) �FB cl(B) , (by Proposition 4.10 of Part I)
cl(A) �BF cl(B)

If B has t-�n then

A �t
�T B) (by Lemma 6.6)

cl(A) ��T cl(B)) (by Lemma 6.5, and Theorem 4.6 of Part I)
cl(A) �iFB cl(B)) (by Theorem 4.5 of Part I)
cl(A) �T cl(B)) (by Lemma 6.7)
A �t

T B) A �t
�T B

Corollary 6.10 already provides one method for proving that the �nite timed traces of
a timed automaton A are included among those of another timed automaton B: produce
an ordinary forward-backward or a backward-forward simulation from cl (A) to cl (B). Of
course, any simpler type of simulation from Part I, such as a forward or backward simulation,
will do as well. Similarly, Corollary 6.10 provides a method for proving that all the timed
traces of A are included among those of B, in case B has t-�n.

This approach is analogous to that followed for Milner's CCS [49] where the problem of
establishing a weak bisimulation is reduced to the problem of �nding a strong bisimulation.
Another example of this approach appears in [38], where the problem of showing inclusion of
timed behaviors of certain kinds of timed automata is reduced to that of proving inclusion
between sets of admissible behaviors of certain derived I/O automata.

However, this is not the approach we emphasize in this paper. Instead, we will use
the closure automata as a technical device to help us prove soundness, completeness and
implication results for the new timed simulations de�ned in Section 5. For this, we proceed
in the next subsection to relate timed simulations to corresponding untimed simulations for
closure automata.

26

■

6.1.3 Relating Timed and Untimed Simulations

In Section 6.1.2, we showed that (under certain �niteness conditions) inclusion of timed
traces for timed automata is equivalent to inclusion of ordinary traces for the closures of these
automata. Now we demonstrate strong relationships between between timed simulations for
timed automata, and ordinary simulations for the closures of these automata.

Lemma 6.11 A relation from states(A) to states(B) is a timed re�nement from A to B if
and only if it is a re�nement from cl (A) to cl (B). Moreover, the same correspondence
also holds for forward simulations, backward simulations, forward-backward simulations,
backward-forward simulations, history relations and prophecy relations.

Proof: We prove the prove the result for re�nements.
): Suppose that r is a timed re�nement fromA to B. We show that r is a re�nement from

cl (A) to cl (B). The start condition carries over immediately; we consider the step condition.
Suppose that s0 a�!cl(A) s. Then s0 â=)cl(A)s and so Lemma 6.2 implies that s0 p

;A s, where
p = t -trace(â). Since r is a timed re�nement, Lemma 5.1 implies that r(s0) p

;B r(s). Then
Lemma 6.2 implies that r(s0)

trace(p)
=) cl(B)r(s). But case analysis based on whether a is a

visible, internal or time-passage action shows that trace(p) = â, so this is as needed.
(: Suppose that r is a re�nement from cl (A) to cl (B). We show that r is a timed

re�nement from A to B. The start condition carries over immediately; we consider the step
condition. Suppose that s0 a�!A s. Then s0 a�!cl(A) s, by de�nition of cl (A). Since r is
a re�nement, we have that r(s0) â=)cl(B)r(s). Then Lemma 6.2 implies that r(s0) p

;B r(s),
where p = t -trace(â), as needed.

The proofs for forward, backward, forward-backward and backward-forward simulations
are entirely analogous, using the appropriate parts of Lemma 5.1. The results for history
and prophecy relations follow from those for forward simulations, backward simulations and
re�nements.

Therefore, we have:

Corollary 6.12 Suppose X represents any of fR;F;B; iB; FB; iFB;BF; iBF;H;P; iPg.
Then A �t

X B if and only if cl (A) �X cl (B).

Proposition 6.13 The relations �t
R, �

t
F, �

t
B, �

t
iB, �

t
FB, �

t
iFB, �

t
BF, �

t
H, �

t
P and �t

iP are
all preorders. (However, �t

iBF is not a preorder.)

Proof: This follows from Corollary 6.12, since the corresponding untimed simulations are
preorders. The same counterexample that we used to show that �iBF is not a preorder (the
automata A11 and A12 of Example 4.11 in Part I), can be used to show that �t

iBF is not a
preorder. One can turn the automata from this counterexample into feasible timed automata
via the patient construction of [41]. This construction introduces arbitrary time delays at
each state by simply attaching, for each d, steps s d�! s to each state s.

27

■

■

6.2 Soundness and Implication Results for Timed Automaton Sim-

ulation Relations

In this section, we give those results about timed automata that follow from corresponding
results about untimed automata, using the results in the previous two sections. We present
most of these results in a single theorem, which is entirely analogous to a classi�cation given
in Section 7 of Part I.

Theorem 6.14 Suppose M;N 2 fT; �T;R;F; (i)B; (i)FB; (i)BF;H; (i)Pg, where the (i)
indicates that i is optional.

1. If there is a path from �t
M to �t

N in Figure 1 consisting of thin arrows only, and if
A �t

M B, then A �t
N B.

2. If there is a path from �t
M to �t

N consisting of thin and/or thick arrows, if A �t
M B

and if B has t-�n, then A �t
N B.

�t
iP �t

P

�t
R �t

iB �t
B

�t
H �t

F �t
iBF �t

BF

�t
iFB �t

FB

�t
T �t

�T

-

- -

- - -

-

-

?

?

?

?

?

?

?

?

?

6

66

�

Figure 1: Classi�cation of basic relations between timed automata

Proof: Note that Figure 1 is identical to Figure 6 of Part I, which gives an overview of the
relationships in the untimed case, except for the superscripts t. It is enough to prove:

1. If there is a thin arrow from �t
M to �t

N and if A �t
M B, then A �t

N B.

2. If there is a thick arrow from �t
M to �t

N, if A �t
M B and if B has t-�n, then A �t

N B.

28

I I

I I I
- - -

I 1 1

11 1 1

For part 1, suppose that there is a thin arrow from �t
M to �t

N and that A �t
M B. If fM;Ng\

fT; �Tg = ;, then Corollary 6.12 implies that cl (A) �M cl (B). Then the corresponding
result for the untimed case implies that cl (A) �N cl (B), which implies by Corollary 6.12
that A �t

N B, as needed. There are four remaining thin arrows to consider.

1. M = iFB and N = T. Corollary 6.12 implies that cl (A) �iFB cl (B). The untimed result
implies that cl (A) �T cl (B), which implies by Lemma 6.7 that A �t

T B.

2. M = T and N = �T. This is immediate from the de�nitions.

3. M = �T and N = FB. Corollary 6.10 implies that cl (A) �FB cl (B), which implies by
Corollary 6.12 that A �t

FB B.

4. M = FB and N = �T. Corollary 6.12 implies that cl (A) �FB cl (B), which implies by
Corollary 6.10 that A �t

�T B.

For part 2, suppose that there is a thick arrow from �t
M to �t

N, that A �t
M B and that B

has t-�n. There are only two thick arrows to consider:

1. M = �T and N = T. This follows from Proposition 4.4.

2. M = T and N = iFB. Corollary 6.10 implies that cl (A) �iFB cl (B), which implies by
Corollary 6.12 that A �t

iFB B.

In order to show that all the inclusions are strict, one can use essentially the same coun-
terexamples as in the untimed setting. Again one can turn these untimed counterexamples
into feasible timed automata via the patient construction of [41], i.e., by introducing arbitrary
time delays at each state by attaching, for each d, steps s d�! s to each state s.

We close this section with three more results that are derived from the analogous results
for the untimed case using the correspondences.

Theorem 6.15 (Partial completeness of timed forward simulations)
Suppose B is t-deterministic and A �t

�T B. Then A �t
F B.

Proof: By Lemma 6.5(1), cl (B) is deterministic, and by Lemma 6.6, cl (A) ��T cl (B).
Thus by the partial completeness result for forward simulations (Theorem 3.11, Part I),
cl (A) �F cl (B). Then Corollary 6.12 allows us to conclude that A �t

F B, as required.

Proposition 6.16 Suppose all states of A are reachable, B is t-deterministic and A �t
B B.

Then A �R B.

Proof: Lemma 6.2 implies that all states of cl (A) are reachable, Lemma 6.5 implies that
cl (B) is deterministic, and Corollary 6.12 implies that cl (A) �B cl (B). By Proposition 3.19
of Part I, the untimed version of the fact we are proving, cl (A) �R cl (B). Then Corollary 6.12
allows us to conclude that A �t

R B, as required.

Proposition 6.17 Suppose all states of A are reachable, B has t-�n and A �t
B B. Then

A �t
iB B.

Proof: Similar to the proof of Proposition 6.16.

29

■

■

■

■

7 Remaining Results for Timed Automata

In Section 6, we showed how some simple correspondences enable most of the results for
untimed automata to be extended to timed automata. In this section, we consider what
happens to all the other results of Part I. We begin with the results about untimed au-
tomata that do not extend in this way but are nonetheless true. In Section 7.1 we present
partial completeness results that involve t-forests. These do not carry over using the corre-
spondences because the closure of a t-forest need not be a forest: in a t-forest (and hence
also in its closure) a state may have multiple incoming time-passage steps, something which
is not allowed in a forest. In Sections 7.2 and 7.3, we present results that assert the exis-
tence of timed automata with particular properties, including the completeness results for
the combination of timed forward and timed backward simulations and the Abadi-Lamport
completeness result. We prove all of these results directly for timed automata. In most
cases, the proof is analogous to the corresponding proof in Part I. Finally, in Section 7.4,
we demonstrate that the one remaining result of Part I, Proposition 3.12, is not true in the
timed setting.

7.1 Partial Completeness Results for t-Forests

Theorem 7.1 (Partial completeness of timed re�nements) Suppose A is a t-forest, B is
t-deterministic and A �t

�T B. Then A �t
R B.

Proof: Analogous to the proof of Theorem 3.5 in Part I. De�ne r
�
= t-after(B) � t-past(A).

Lemma 3.5 and the fact that t-traces�(A) � t-traces�(B) together imply that r is a function
from states(A) to states(B). We claim that r is a timed re�nement from A to B.

The start condition is straightforward.
For the transfer condition, suppose that s0 a�!A s. Let p = t -trace(â); then s0 p

;A s. We
must show that r(s0) p

;B r(s). Since A is a forest, there exist timed traces q0 and q leading
to s0 and s respectively. Lemma 2.10 implies that q0 � p leads from a start state of A to s.
Since A is a forest and q and q0 � p both lead to s, it must be that q0 � p = q.

By de�nition of r, we have we have u0
q
;B r(s) for some start state u0 of B. Then

Lemma 2.10 implies that there is a state u of B such that u0
q0

;B u and u
p
;B r(s). Since

q0 leads from a start state of A to s0, the de�nition of r then implies that u = r(s0). Thus,
r(s0) p

;B r(s), as needed.

Theorem 7.2 (Partial completeness of timed backward simulations) Suppose A is a t-forest
and A �t

�T B. Then

1. A �t
B B, and

2. if B has t-�n then A �t
iB B.

Proof: Analogous to the proof of Theorem 3.18 in Part I. We de�ne a relation b over
states(A) and states(B). For a given state s of A, Lemma 3.5 implies that there is a unique

30

■

timed trace leading to s, say p. De�ne

b[s] = fu j 9W 2 t-execs �(B) : t -trace(W) = p; W:lstate = u; and

8W 0 2 t-execs �(B) : [W 0 �W ! t -trace(W 0) 6= p]g:

Lemma 3.5 and the fact that t-traces�(A) � t-traces�(B) implies that relation b is total. The
start condition follows as in the proof of Theorem 3.18 in Part I.

For the transfer condition, suppose that s0 a�!A s, u 2 b[s], and p = t -trace(â); then
s0

p
;A s. We de�ne u0 2 b[s0] such that u0 p

;B u. As in the proof of Proposition 7.1, we
obtain timed traces q0 and q leading to s0 and s respectively, and conclude that q0 � p = q.
Since u 2 b[s], we have u0

q
;B u for some start state u0 of B. Then Lemma 2.10 implies that

there is a state u0 of B such that u0
q0

;B u
0 and u0 p

;B u. Moreover, it is possible to select u0

in a `minimal' way so that there is an execution from u0 to u0 with timed trace q0 that does
not end with a � step. Since q0 leads from a start state of A to s0, the de�nition of b implies
that u0 2 b[s0]. This su�ces.

Lemma 3.5 implies that if B has t-�n then relation b is image-�nite.

7.2 Combined Timed Forward and Backward Simulations

In this subsection, we give the completeness results for the combination of timed forward
and timed backward simulations. In order to prove these results, we use variants of the
classic subset construction from automata theory, and a variant of the dual historization
construction of Klarlund and Schneider [29].

The backward power of a timed automaton A, notation b-power(A), is the automaton B
de�ned by

� states(B) = N(states(A)),

� start(B) = N(start(A)),

� acts(B) = acts(A), and

� for S0; S 2 states(B) and a 2 acts(B),

S0 a�!B S , 8s 2 S 9s0 2 S0 : s0
t-trace(â)
; A s:

The �nitary backward power of A, notation �n-b-power(A), is de�ned in exactly the same
way, except that instead of all non-empty subsets of states(A) and start(A) only the �nite
non-empty subsets are used. The forward power or historization of A, notation f-power(A),
is the automaton F de�ned by

� states(F) = P(states(A)),

� start(F) = fS � states(A) j S \ start(A) 6= ;g,

� acts(F) = acts(A), and

31

•

� for S0; S 2 states(F) and a 2 acts(F),

S0 a�!F S , 8s0 2 S0 9s 2 S : s0
t-trace(â)
; A s:

Lemma 7.3 Suppose B = b-power(A), I = �n-b-power(A) and F = f-power(A). Then B,
I and F are timed automata and

1. A �t
R B and B �t

B A,

2. A �t
R I and I �t

iB A,

3. A �t
R F and F �t

F A.

Proof: First we show that B satis�es axioms S1 and S2. For S1, suppose that S0 d�!B S00

and S00 d0

�!B S. Then

8s00 2 S 00 9s0 2 S0 : s0
(�;d)
; A s

00; and

8s 2 S 9s00 2 S00 : s00
(�;d0)
; A s:

It follows, using Lemma 2.10, that

8s 2 S 9s0 2 S0 : s0
(�;d+d0)
; A s;

i.e., that S0 d+d0

�!B S, as needed for S1.
For S2, suppose that S0 d�!B S. De�ne w : [0; d]! states(B) as follows: let w(0) = S0,

w(d) = S, and for any t, 0 < t < d, let w(t) = fu 2 states(A) j 9s0 2 S0 : s0
(�;t)
; A ug.

Suppose 0 � t1 < t2 � d; we must show that w(t1)
t2�t1�!B w(t2). There are three nontrivial

cases:

1. 0 = t1 < t2 < d.
We must show that S0 t2�!B w(t2), that is, that

8u 2 w(t2) 9s
0 2 S 0 : s0

(�;t2)
; A u:

But this is immediate from the de�nition of w(t2).

2. 0 < t1 < t2 = d.
We must show that w(t1)

d�t1�!B S, that is, that

8s 2 S 9u 2 w(t1) : u
(�;d�t1)
; A s:

So suppose that s 2 S. Since S0 d�!B S, there exists a state s0 2 S0 such that s0
(�;d)
; A s.

Then Lemma 2.10 implies that there exists u such that s0
(�;t1)
; A u and u

(�;d�t1)
; A s. This

u satis�es all our requirements.

3. 0 < t1 < t2 < d.
The argument to similar to that for case 2.

32

The mapping that relates to each state s of A the state fsg of B is a timed re�nement from
A to B; hence A �t

R B. The mapping that relates each state S of B to all its elements is a
timed backward simulation from B to A; hence B �t

B A.
The proofs for I and F are similar to those for B, except for the proof that I satis�es

axiom S2. Suppose that S0 d�!I S. Then there exists, for each s 2 S, a �nite timed
execution fragment Ws of A with Ws:fstate 2 S0, t -trace(Ws) = (�; d) and Ws:lstate = s.
De�ne w : [0; d] ! states(I) as follows: let w(0) = S0, w(d) = S, and for any t, 0 < t < d,
let w(t) be the �nite set which, for each s 2 S, contains the last state of the shortest pre�x
of Ws with limit time t. Then it is routine to prove that w is a trajectory for S0 d�!I S.

Theorem 7.4

1. A �t
FB B , (9C : A �t

F C �t
B B).

2. A �t
iFB B , (9C : A �t

F C �t
iB B).

3. A �t
BF B , (9C : A �t

B C �t
F B).

4. A �t
iBF B , (9C : A �t

iB C �t
F B).

Proof: The proof of the implications \(" is easy. We sketch the proof of \)" in 3 and 4.
The proofs of \)" in 1 and 2 are similar.

Let g be a timed backward-forward simulation from A to B, which is image �nite if
A �t

iBF B. Let C = f-power(B). Then it is straightforward to check that g is also a timed
backward simulation from A to C (and is image-�nite if A �t

iBF B). Moreover, Lemma 7.3
gives C �t

F B.

It is interesting to note the di�erence between the above proof of Theorem 7.4 and the
corresponding proofs of Theorems 4.1 and 4.8 in Part I. In those proofs the intermediate
automata are \smaller" than the power constructions that we use here, since as states they
only contain those sets of states of B that are in the range of g. It is not possible to use
the constructions from Part I here because in general the resulting automata do not satisfy
the trajectory axiom S2. However, we could have used the power constructions in Part I as
well. In fact, one can even argue that in some sense this would have been less ad-hoc.

Theorem 7.5 (Completeness of timed forward and timed backward simulations) Suppose
A �t

�T B. Then

1. 9C : A �t
F C �t

B B,

2. if B has t-�n then 9C : A �t
F C �t

iB B, and

3. 9C : A �t
B C �t

F B.

Proof: Immediate from Theorems 6.14 and 7.4.
Parts 1 and 2 can alternatively be shown using a proof analogous to that of Theorem 3.22

of Part I. Let C = t -can(t -beh(A)). By Lemma 4.8, C is a t-deterministic t-forest and A �t
�T

C. Since C is t-deterministic, A �t
F C by partial completeness of timed forward simulations

33

■

■

(Theorem 6.15), and because C is a t-forest, C �t
B B follows by partial completeness of

timed backward simulations (Theorem 7.2(1)). Similarly, if B has t-�n then C �t
iB B follows

by Theorem 7.2(2).

7.3 Timed History and Prophecy Relations

In this subsection, we present additional results about the timed auxiliary variable construc-
tions.

7.3.1 Timed History Relations

We begin with a timed analogue to the unfolding construction of Part I.
The timed unfolding of A, notation t-unfold(A), is the timed automaton B de�ned by

� states(B) = t-execs �(A),

� start(B) = [0; 0]! start(A),

� acts(B) = acts(A), and

� for W 0;W 2 states(B), d 2 R+ and a 2 acts(B)� R+,

W 0 d�!B W , 9w : W 0 � w = W ^ w:ltime = d

W 0 a�!B W , W 0 aw0 = W;

where w0 is the trivial trajectory that maps 0 to W:lstate.

We leave it to the reader to verify that t-unfold(A) is a timed automaton.

Proposition 7.6 t-unfold(A) is a t-forest and A �t
H t-unfold(A).

Proof: Using Lemma 3.4 it follows easily that t-unfold(A) is a t-forest. The function
:lstate, which maps each �nite timed execution of A to its last state, is a timed re�nement
from t-unfold(A) to A, and the relation :lstate�1 is a timed forward simulation from A to
t-unfold(A). Thus, :lstate�1 is a timed history relation from A to t-unfold(A).

We are now in a position to prove a timed version of Sistla's [57] completeness result.

Theorem 7.7 (Completeness of timed history relations and timed backward simulations)
Suppose A �t

�T B. Then

1. 9C : A �t
H C �t

B B, and

2. if B has t-�n then 9C : A �t
H C �t

iB B.

Proof: Analogous to the proof of Theorem 5.6 in Part I; choose C = t-unfold(A).

We next de�ne a notion of timed superposition, analogous to the notion of superposition in
Part I. Suppose R is a relation over states(A) and states(B) with R\(start(A)�start(B)) 6=
;. The timed superposition t-sup(A;B ;R) of B onto A via R is the timed automaton C given
by

34

■

■

■

� states(C) = R,

� start(C) = R \ (start(A)� start(B)),

� acts(C) = acts(A) \ acts(B), and

� for (s0; u0); (s; u) 2 states(C) and a 2 acts(C),

(s0; u0) a�!C (s; u) , s0
p
;A s ^ u

0 p
;B u; where p = t -trace(â):

Again we leave it to the reader to check that t-sup(A;B ;R) is a timed automaton.

Theorem 7.8 A �t
F B , (9C : A �t

H C �t
R B).

Proof: Suppose A �t
F B. Let f be a timed forward simulation from A to B, let C =

t-sup(A;B ; f) and let �1 and �2 be the projection functions that map states of C to their
�rst and second components, respectively. Then it is easy to check that ��11 is a timed
history relation from A to C and �2 is a timed re�nement from C to B.

The reverse implication also follows via a standard argument.

7.3.2 Timed Prophecy Relations

Finally, we describe the additional results about timed prophecy relations. We give a timed
analogue to the guess construction of Part I. This can be regarded as a dual to the timed
unfolding construction of the previous subsection.

The timed guess of A, notation t-guess(A), is the timed automaton B de�ned by

� states(B) = t-frag�(A),

� start(B) = t-execs�(A),

� acts(B) = acts(A), and

� for W 0;W 2 states(B), d 2 R+ and a 2 acts(B)� R+,

W 0 d�!B W , 9w : W 0 = w �W ^ w:ltime = d

W 0 a�!B W , W 0 = w0aW;

where w0 is the trivial trajectory that maps 0 to W 0:fstate.

As before, we leave it to the reader to verify that t-guess(A) is a timed automaton.

Proposition 7.9 A �t
P t-guess(A).

Proof: Similar to the proof of Proposition 7.6.

Theorem 7.10

1. A �t
B B , (9C : A �t

P C �t
R B).

35

■

■

2. A �t
iB B , (9C : A �t

iP C �t
R B).

Proof: Similar to the proof of Theorem 7.8, using timed backward simulations instead of
timed forward simulations.

We �nish this subsection with a dual version of Sistla's completeness result [57] and
variants of the completeness results of Abadi and Lamport [1].

Theorem 7.11 (Completeness of timed prophecy relations and timed forward simulations)
A �t

�T B) 9C : A �t
P C �t

F B.

Proof: Analogous to the proof of Theorem 5.17 in Part I.

Theorem 7.12 (Completeness of timed history/prophecy relations and re�nements) Sup-
pose A �t

�T B. Then

1. 9C;D : A �t
H C �t

P D �t
R B.

2. If B has t-�n then 9C;D : A �t
H C �t

iP D �t
R B.

3. 9C;D : A �t
P C �t

H D �t
R B.

Proof: Analogous to the proofs of Theorems 5.18 and 5.19 in Part I.

7.4 A Result That Does Not Carry Over

Proposition 3.12 of Part I does not carry over to our timed setting, i.e., there exist timed
automata A and B such that A is a t-forest and A �t

F B but not A �t
R B.

Example 7.13 Timed automaton A may perform a single visible action a at any rational
time, and then stops. Timed automaton B may only perform a single action a at integer
times. However, whereas A measures time with a `perfect clock', B measures time with a clock
that may run either too slow or too fast, in an arbitrary fashion. The set of states of A is
R�0 � fT;Fg, with (0;T) the initial state, and there are steps

� (t;T) d�! (t+ d;T), for each t 2 R�0 and d 2 R+;

� (t;T) a�! (t;F), for each t 2 Q�0.

The set of states of B is also R�0 � fT;Fg, with (0;T) the initial state. The steps of B are

� (t;T) d�! (t0;T), for all t; t0 2 R�0 with t < t0 and all d 2 R+;

� (t;T) a�! (t;F), for each t 2 N.

Using Lemma 3.4 it is easy to see that A is a t-forest. Also, it is easy to check that the relation
f given by

f
�

= f((t; b); (t0; b0)) j t 2 R�0; t0 2 N and b = b0g

is a timed forward simulation from A to B. However, there does not exist a timed re�nement
from A to B. The proof is by contradiction. Suppose that r is a timed re�nement. Then, by

36

■

■

■

the start condition of a timed re�nement, r maps the start state (0;T) of A to the start state
(0;T) of B. The state (1;T) of A has an outgoing a step, so it must be mapped to a state
of B which has also an outgoing a step, i.e., a state (n;T) for some n 2 N. Since A has a
step (0;T) 1�! (1;T), but B does not have a step (0;T) 1�! (0;T), it follows using the transfer
condition of a timed re�nement that n > 0. Let, for 0 � i � 2n, si be the image under r

of state (i
2n ;T) of A. By de�nition of A and by the transfer condition of a timed re�nement,

si
1=2n
�! si+1, for all i < 2n. Further all si must be of the form (mi;T), for some mi 2 N. By

de�nition of B, this means that 0 = m0 < m1 < m2 < � � � < m2n�1 < m2n = n. This is a
contradiction, as there are only n� 1 naturals strictly in between 0 and n, and not 2n� 1.

An interesting question (wide open to us) is to come up with some plausible additional
axioms for timed automata, such that in the resulting setting all the results on simulations
that we proved in Part I of this paper do carry over.

8 Including Invariants

We show how to introduce invariants into the timed simulations, just as we introduced them
into the untimed simulations in Section 6 of Part I. An invariant of a timed automaton A

is de�ned to be superset of the set of reachable states of A, i.e., a property that is true of
all the reachable states of A. Let A and B be timed automata with invariants IA and IB,
respectively.

A weak timed re�nement from A to B, with respect to IA and IB, is a function r :
states(A)! states(B) that satis�es:

1. If s 2 start(A) then r(s) 2 start(B).

2. If s0 a�!A s, s0; s 2 IA, and r(s0) 2 IB, then r(s0) p
;B r(s), where p = t -trace(â).

A weak timed forward simulation from A to B, with respect to IA and IB, is a relation f
over states(A) and states(B) that satis�es:

1. If s 2 start(A) then f [s] \ start(B) 6= ;.

2. If s0 a�!A s, s0; s 2 IA, and u0 2 f [s0] \ IB, then there exists a state u 2 f [s] such that
u0

p
;B u, where p = t -trace(â).

A weak timed backward simulation from A to B, with respect to IA and IB, is a relation
b over states(A) and states(B) that satis�es:

1. If s 2 start(A) then b[s] \ IB � start(B).

2. If s0 a�!A s, s0; s 2 IA, and u 2 b[s] \ IB, then there exists a state u0 2 b[s0] \ IB such
that u0 p

;B u, where p = t -trace(â).

3. If s 2 IA then b[s] \ IB 6= ;.

A weak timed forward-backward simulation from A to B, with respect to IA and IB, is a
relation g over states(A) and P(states(B)) that satis�es:

37

-

1. If s 2 start(A) then there exists S 2 g[s] such that S \ IB � start(B).

2. If s0 a�!A s, s0; s 2 IA and S0 2 g[s0], then there exists a set S 2 g[s] such that for every
u 2 S \ IB there exists u0 2 S0 \ IB such that u0 p

;B u, where p = t -trace(â).

3. If s 2 IA and S 2 g[s] then S \ IB 6= ;.

A weak timed backward-forward simulation from A to B, with respect to IA and IB, is a
relation g over states(A) and P(states(B)) that satis�es:

1. If s 2 start(A) then, for all S 2 g[s], S \ start(B) 6= ;.

2. If s0 a�!A s, s0; s 2 IA and S 2 g[s], then there exists a set S0 2 g[s0] such that for every
u0 2 S0 \ IB there exists a u 2 S \ IB such that u0 p

;B u, where p = t -trace(â).

3. If s 2 IA then g[s] 6= ;.

A relation h over states(A) and states(B) is a weak timed history relation from A to B,
with respect to IA and IB, provided that h is a weak timed forward simulation from A to B,
with respect to IA and IB, and h�1 is a weak timed re�nement from B to A, with respect to
IB and IA.

A relation p over states(A) and states(B) is a weak timed prophecy relation from A to B,
with respect to IA and IB, provided that p is a weak timed backward simulation from A to
B, with respect to IA and IB, and p�1 is a weak timed re�nement from B to A, with respect
to IB and IA.

We write A �t
wR B, A �t

wF B, A �t
wB B, A �t

wiB B, A �t
wFB B, A �t

wiFB B, A �t
wBF B,

A �t
wiBF B, A �t

wH B, A �t
wP B and A �t

wiP B to denote the existence of a weak re�nement,
weak forward simulation, weak backward simulation, weak image-�nite backward simulation,
etc., from A to B, with respect to some invariants IA and IB.

Proposition 8.1 The relations �t
wR, �

t
wF, �

t
wB, �

t
wiB, �

t
wFB, �

t
wiFB, �

t
wBF, �

t
wH, �

t
wP and

�t
wiP are all preorders. (However, �t

wiBF is not a preorder.)

Theorem 8.2 (Soundness of weak simulations)

1. If A �t
wR B, A �t

wF B, A �t
wiB B, A �t

wiFB B, A �t
wiBF B, A �t

wH B, or A �t
wiP B,

then A �t
T B.

2. If A �t
wB B, A �t

wFB B, A �t
wBF B, or A �t

wP B, then A �t
�T B.

9 Discussion

In this paper, we have presented an automata-theoretic model for timing-based systems, and
have used it to develop a variety of simulation proof techniques for such systems. These in-
clude timed re�nements, timed forward and backward simulations and combinations thereof,
and timed history and prophecy relations. These techniques are analogous to those described
in Part I, [44], for untimed systems. As in that paper, we present basic results for all of the

38

simulations, including soundness and completeness results. The development is organized so
that the proofs are based on the results of Part I. In fact, we have shown that all the results
of Part I carry over to Part II, except for Proposition 3.12.

The de�nitions of timed automata and their simulations involve many choices, such as
the choice of the basic axioms for time-passage steps, whether non-time-passage steps have
nonzero duration or are instantaneous, whether instantaneous time-passage steps are allowed,
whether or not automata are required to have �nitely many (or countably many) states,
whether time-passage should be represented absolutely or incrementally, what the notion of
external behavior should be, whether the simulations should require state reachability, etc.
Most choices either lead to longer proofs (see for instance an earlier version of this paper
[43] in which time-passage was represented absolutely) or do not yield all the properties in
this paper.

Our notion of timed automaton is related to the models of Merritt, Modugno and Tuttle
[48] and of Lynch and Attiya [38]. However, these models have more structure than ours,
since they assume that the system being modelled is describable in terms of a collection of
separate tasks, each with associated upper and lower bounds on its speed. Also, the model
of [48] includes treatment of liveness, whereas our model does not. The absence of liveness
considerations makes our model simpler; moreover, we do not lose much power because many
properties of practical interest for timing-based systems can be expressed as safety properties,
given the admissibility assumption that time increases without bound (cf. [24]). Lynch and
Attiya [38] also extend simulation techniques to timing-based systems. That work, however,
only considers forward simulations. The extra task structure of the model of Lynch and
Attiya supports the development of a useful progress measure proof method, which we do
not develop here. On the other hand, the basic theorems about forward simulations that
appear in [38] are stated in a setting that has more structure than is really necessary for
those theorems.

Lynch and Vaandrager [41] show how a whole class of process algebraic operators can be
de�ned on timed automata using the general notion of action transducers. Bosscher, Polak
and Vaandrager [12] de�ne a language of linear hybrid systems, inspired by the work of
[5, 8], and provide it with a semantics in terms of timed automata. Our timed automata can
also be used to de�ne the semantics of the timed safety automata of Alur and Dill [7, 26].
In the latter model a �nite state restriction is used in order to enable the use of e�ective
model-checking methods, something which is of course not possible in our much more general
model.

By using our timed automata model as a common semantic basis for several other mod-
els for timing-based systems, we get into a situation where we can easily use a variety of
formal proof methods, including assertional methods, algebraic methods, and �nite-state
state exploration (\model-checking") methods. These methods are usable individually or in
combination. It remains to further develop the various proof methods for timed automata.
In particular, we are interested in extending the methods of process algebra to our timed
automaton model. Our paper [41] contains the beginning of such work, including de�ni-
tions of interesting operators on timed automata, and proofs of substitutivity results for the

39

timed trace semantics, but it remains to provide useful algebraic laws for reasoning about
the operators.

Our timed simulations have already been used extensively elsewhere [12, 23, 32, 34,
35, 36, 37, 38, 45, 58, 60] for veri�cation of timed algorithms and systems. More work
is needed in applying timed simulations to additional practical veri�cation examples. In
particular, nearly all of the examples that have been carried out so far involve re�nements,
forward simulations and history variables. Only [58, 32] involve backward simulations and
combinations of forward and backward simulations.

Finally, although the timed automaton model presented here is very general, it has be-
come clear that there are at least three ways in which it can be extended: to include treatment
of liveness properties, to include probabilistic transitions, and to include treatment of hybrid
systems, including continuously-communicating components. Some work on integrating live-
ness into the present model appears in [16], and work on integrating probabilistic transitions
appears in [39, 3, 56]. Both liveness and probabilities introduce their own sets of additional
proof methods, e.g., temporal logic and Markov analysis. In [12], it has been shown how
linear hybrid systems can be de�ned in terms of our timed automata. It remains to develop
the treatment of general hybrid systems, and to integrate all three extensions, with their
proof tools, into a sensibly coordinated whole.

Acknowledgements

We thank the referees, Alan Je�rey, David Gri�oen, Albert Meyer, Je� Sanders, Roberto
Segala, Steve Schneider, J�rgen S�gaard-Andersen, Eugene Stark and George Varghese for
their valuable criticism and useful comments on this paper and on [44]. We also thank the
organizers of the 1991 REX Workshop for providing the environment for an active research
interchange that led to many improvements in our work.

A Other Axioms for Timed Automata

We consider the relationship between axioms S2 and S20, as de�ned in Section 2.1. The rela-
tionship between the two axioms is also investigated in [28]. De�ne a semi-timed automaton
to be a timed automaton, except that it does not have to satisfy S2, but only the weaker
(and simpler) axiom S20. It is immediate from the de�nition of a trajectory that each timed
automaton is semi-timed. In this appendix, we consider the reverse implication.

A.1 Time Determinism

In the original paper [61] of Wang in which the axiom S20 is proposed, also the axiom of
time determinacy is introduced. In our setting this axiom can be formulated as follows:

TD If s d�! s0 and s d�! s00, then s0 = s00.

Axiom TD says that time is deterministic in the sense that, after a certain amount of time
has elapsed since the system arrived in some state, the new state is uniquely determined

40

provided no internal or visible action has taken place. We say that a semi-timed automaton
is time deterministic if it satis�es axiom TD. The following theorem is easy to prove.

Theorem A.1 Each time deterministic semi-timed automaton is a timed automaton.

Thus, Wang's axiom S20 is equivalent to the trajectory axiom S2 in a context where the
time determinacy axiom TD is assumed. In our timed automaton model we do not require
the axiom TD: we �nd it unnatural to allow for nondeterminism for discrete actions but
not for time-passage actions. As pointed out in [12], time nondeterministic timed automata
arise naturally in the semantics of linear hybrid systems, for instance in the modelling of
drifting clocks. Also, several of the constructions in this paper, like the f-power, b-power and
superposition construction, introduce time nondeterminism.

A.2 Countable Time Domains

One way to obtain equivalence between timed and semi-timed automata is to change the
underlying time domain. In this paper, we have chosen elements of the set R�0 of nonnegative
real numbers as time-passage actions for timed automata. Instead, we could have proved
all our results for automata parametrized with an arbitrary time domain as in [27, 53, 28].
A time domain D = (T;+; 0) consists of a set T of points in time, equipped with a binary
operator + and constant 0 such that, for all t; u; v 2 T ,

T1 t+ 0 = 0 + t = t

T2 t+ (u+ v) = (t+ u) + v

T3 t+ u = t+ v) u = v

T4 t+ u = 0) t = u = 0

T5 u � t ^ v � t) u � v _ v � u

where � is the precedence relation � on T de�ned by t � u , 9v : t+ v = u. Axioms T1
and T2 say that D is a monoid. Axiom T3 states that D is left-cancellative, axiom T4 that
D is anti-symmetric, and axiom T5 that D is locally linear. It follows from axioms T1-T4
that � is a partial ordering with a unique minimal element 0. Axiom T3 allows us to de�ne
the substraction operator that is required for the trajectory axiom: if u � t then t � u is
de�ned to be the unique v with u+v = t. AxiomT5 implies that � is total on each interval.
This last axiom does not occur in [27, 53, 28], but we fail to have a clear intuition about
trajectories without it. Examples of time domains are the nonnegative reals, rationals and
integers with addition and 0, but also the sets of �nite sequences with concatenation and
the empty sequence.

Theorem A.2 Suppose A is a semi-timed automaton over a countable time domain. Then
A is a timed automaton.

41

Proof: Suppose that s0 d�!A s. We construct a trajectory w from s0 to s. As required,
w(0) = s0 and w(d) = s. Let t1; t2; : : : be some arbitrary enumeration of all the times in
the interval (0; d). We de�ne w on elements of this sequence, in order. Let In be the set
f0; d; t1; : : : ; tng. We will inductively construct w so that after w has been de�ned on In,
we will have that w(t0) t�t0�! w(t) for all t0; t 2 In, t0 < t. This is enough to show that w is a
trajectory from s0 to s.

So suppose that, for some n � 0, w has been de�ned on In, and that w(t0) t�t0�!w(t) for
all t0; t 2 In, t0 < t. Let u0 be the largest time in In that is smaller than tn+1, and let u be
the smallest time in In that is larger than tn+1. By the hypothesis about In, we have that
w(u0) u

0�u�!w(u). Since u0 < tn+1 < u, axiom S20 implies that there exists a state s such that
w(u0)

tn+1�u
0

�! s and s
u�tn+1
�! w(u). De�ne w(tn+1) = s.

We claim that with this de�nition of w(tn+1), we have w(t0)
t�t0�! w(t) for all t0; t 2 In+1,

t0 < t. Since we already know this for t0; t 2 In, it is enough to consider the case where one
of t0; t is equal to tn+1. We give the argument for t = tn+1; the argument for t0 = tn+1 is
analogous.

So suppose t = tn+1. If t0 = u0 then we already have the needed claim,w(u0)
tn+1�u

0

�! w(tn+1).
The other possibility is that t0 < u0. But then the claim for In implies that w(t0)u

0�t0�! w(u0).
Since also w(u0)

tn+1�u
0

�! w(tn+1), axiom S1 implies that w(t0)
tn+1�t

0

�! w(tn+1), as needed.

The above proof relies heavily on the assumption that the time domain is countable:
since the interval [t0; t] is countable we can construct a trajectory from s0 to s in an inductive
fashion, state by state. Such a construction is no longer possible if the time domain is
uncountable, as in the case of R�0.

A.3 A Counterexample

At the time we �rst de�ned axiom S2, we constructed a complex counterexample to show
that it was stronger than S20. The simpler counterexample described below was subsequently
discovered by Steve Schneider.

Theorem A.3 Let automaton D be de�ned by

� states(D) = R�0 �Q�0,

� start(D) = f(0; 0)g,

� acts(D) = f�g [R+, and

� steps(D) is speci�ed by (t0; q0) d�!D (t; q) , d 2 R+ ^ t0 + d = t ^ q0 < q.

Then D is semi-timed, but not timed.

Proof: One can easily check that D is semi-timed. However, it is not timed: D does not
satisfy the trajectory axiom S2 because that would imply, for instance, that the interval
[0; 1] of reals can be injectively mapped into the rationals.

In the context of the present paper, there is no compelling technical reason why one should
use S2 instead of S20. In fact, in an earlier version of this paper ([42]) we have developed a

42

■

■

theory of simulations for semi-timed automata. However, we �nd the theory for semi-timed
automata less natural. For instance, the semi-timed automaton D of Theorem A.3 is a t-
forest according to the de�nitions of [42], which is strange since an execution that ends in
(1; 1) may pass through state (12 ;

1
3
) or through state (1

2
; 2
3
), but not through both. Also,

the appealing local characterisation of t-forests of Lemma 3.4 does not hold for t-forests as
de�ned in [42]. Trajectories play a vital role in the theory of hybrid systems [21]. Since we
would like to view our timed automata as an underlying semantic domain for both timed
and hybrid systems, this provides additional motivation for our choice for the axiom S2.

43

B Glossary of Conventions

a Actions
b Backward simulations
c Choice functions
d Positive real numbers
f Forward simulations
g Forward-backward and backward-forward simulations
h History relations
i Indices
k Symbols
n Natural numbers
p Timed sequence pairs and prophecy relations
r Re�nements
s States
t Real numbers plus in�nity
u States
w Trajectories
A;B Timed automata
G Digraphs
I Internals (and also invariants)
K Sets of symbols
L Sets of sequences
M;N Types of timed simulation mappings
P;Q Timed trace properties
R Relations
S;U Sets of states
W Timed execution fragments
X;Y;Z Sets
� Execution fragments
� Sequences of external actions (traces)
 Sequences of actions
� Timed sequence
� The empty sequence
� Projections
�; � Sequences
� The internal action

References

[1] M. Abadi and L. Lamport. The existence of re�nement mappings. Theoretical Computer
Science, 82(2):253{284, 1991.

44

[2] M. Abadi and L. Lamport. An old-fashioned recipe for real time. ACM Transactions
on Programming Languages and Systems, 16(5):1543{1571, September 1994.

[3] S. Aggarwal. Time optimal self-stabilizing spanning tree algorithms. Master's thesis,
MIT Electrical Engineering and Computer Science, May 1994.

[4] R. Alur. Techniques for Automatic Veri�cation of Real-time Systems. PhD thesis, Dept.
of Computer Science, Stanford University, 1991.

[5] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin, A. Oliv-
ero, J.Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical
Computer Science, 138:3{34, 1995.

[6] R. Alur, C. Courcoubetis, T.A. Henzinger, and P.-H. Ho. Hybrid automata: an algo-
rithmic approach to the speci�cation and veri�cation of hybrid systems. In Grossman
et al. [21], pages 209{229.

[7] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183{235, 1994.

[8] R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolic veri�cation of embedded
systems. In Proceedings of the 14th Annual IEEE Real-time Systems Symposium, 1993.

[9] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Journal of Formal Aspects
of Computing Science, 3(2):142{188, 1991.

[10] J.C.M. Baeten and J.W. Klop, editors. Proceedings CONCUR 90, Amsterdam, volume
458 of Lecture Notes in Computer Science. Springer-Verlag, 1990.

[11] G. Berry and L. Cosserat. The Esterel synchronous programming language and its
mathematical semantics. In S.D. Brookes, A.W. Roscoe, and G. Winskel, editors, Sem-
inar on Concurrency, volume 197 of Lecture Notes in Computer Science, pages 389{448.
Springer-Verlag, 1984.

[12] D.J.B. Bosscher, I. Polak, and F.W. Vaandrager. Veri�cation of an audio control proto-
col. In Langmaack et al. [33], pages 170{192. Full version available as Report CS-R9445,
CWI, Amsterdam, July 1994.

[13] W.R. Cleaveland, editor. Proceedings CONCUR 92, Stony Brook, NY, USA, volume
630 of Lecture Notes in Computer Science. Springer-Verlag, 1992.

[14] J. Davies and S. Schneider. A brief history of Timed CSP. Theoretical Computer
Science, 138:243{271, 1995.

[15] J.W. de Bakker, C. Huizing, W.P. de Roever, and G. Rozenberg, editors. Proceedings
REX Workshop on Real-Time: Theory in Practice, Mook, The Netherlands, June 1991,
volume 600 of Lecture Notes in Computer Science. Springer-Verlag, 1992.

45

[16] R. Gawlick, R. Segala, J.F. S�gaard-Andersen, and N. Lynch. Liveness in timed and
untimed systems. In S. Abiteboul and E. Shamir, editors, Proceedings 21th ICALP,
Jerusalem, volume 820 of Lecture Notes in Computer Science. Springer-Verlag, 1994. A
full version appears as MIT Technical Report number MIT/LCS/TR-587.

[17] R. Gerber and I. Lee. The formal treatment of priorities in real-time computation. In
Proceedings 6th IEEE Workshop on Real-Time Software and Operating Systems, 1989.

[18] R.J. van Glabbeek. Comparative Concurrency Semantics and Re�nement of Actions.
PhD thesis, Free University, Amsterdam, 1990.

[19] W.O.D. Gri�oen. Proof-checking an audio control protocol with LP. Report CS-
R95XX, CWI, Amsterdam, 1995. To appear.

[20] J.F. Groote. Speci�cation and veri�cation of real time systems in ACP. Report CS-
R9015, CWI, Amsterdam, 1990. An extended abstract appeared in L. Logrippo, R.L.
Probert and H. Ural, editors, Protocol Speci�cation, Testing and Veri�cation, X, Ot-
tawa, Canada pages 261{274, 1990.

[21] R.L. Grossman, A. Nerode, A.P. Ravn, and H. Rischel, editors. Hybrid Systems, volume
736 of Lecture Notes in Computer Science. Springer-Verlag, 1993.

[22] J.V. Guttag and J.J. Horning. Larch: Languages and Tools for Formal Speci�cation.
Springer-Verlag, 1993.

[23] C. Heitmeyer and N.A. Lynch. The generalized railroad crossing | a case study in
formal veri�cation of real-time systems. In Proceedings 15th IEEE Real-Time Systems
Symposium, San Juan, Puerto Rico, pages 120{131, December 1994.

[24] T.A. Henzinger. Sooner is safer than later. Information Processing Letters, 43:135{141,
1992.

[25] T.A. Henzinger, Z. Manna, and A. Pnueli. Timed transition systems. In de Bakker
et al. [15], pages 226{251.

[26] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for
real-time systems. Information and Computation, 111:193{244, 1994.

[27] A. Je�rey. A linear time process algebra. In K.G. Larsen and A. Skou, editors, Pro-
ceedings of the 3rd International Workshop on Computer Aided Veri�cation, Aalborg,
Denmark, volume 575 of Lecture Notes in Computer Science, pages 432{442. Springer-
Verlag, 1992.

[28] A.S.A. Je�rey, S.A. Schneider, and F.W. Vaandrager. A comparison of additivity axioms
in timed transition systems. Report CS-R9366, CWI, Amsterdam, November 1993.

[29] N. Klarlund and F.B. Schneider. Proving nondeterministically speci�ed safety properties
using progress measures. Information and Computation, 107(1):151{170, November
1993.

46

[30] A.S. Klusener. The silent step in time. In Cleaveland [13], pages 421{435.

[31] L. Lamport. The temporal logic of actions. ACM Transactions on Programming Lan-
guages and Systems, 16(3):872{923, March 1994.

[32] B.W. Lampson, N.A. Lynch, and J.F. S�gaard-Andersen. Correctness of at-most-once
message delivery protocols. In FORTE'93 - Sixth International Conference on Formal
Description Techniques, Boston, MA, October 1993, pages 387{402, 1993.

[33] H. Langmaack, W.-P. de Roever, and J. Vytopil, editors. Proceedings of the Third
International School and Symposium on Formal Techniques in Real Time and Fault
Tolerant Systems, L�ubeck, Germany, September 1994, volume 863 of Lecture Notes in
Computer Science. Springer-Verlag, 1994.

[34] V. Luchangco. Using simulation techiniques to prove timing properties. Master's thesis,
MIT Electrical Engineering and Computer Science, 1994.

[35] V. Luchangco, E. S�oylemez, S. Garland, and N.A. Lynch. Verifying timing properties
of concurrent algorithms. In Proceedings of the Seventh International Conference on
Formal Description Techniques for Distributed Systems and Communications Protocols,
pages 239{259, Berne, Switzerland, October 1994. IFIP WG6.1, Elsevier Science Pub-
lishers B. V. (North Holland). Preliminary version. Final version to be published by
Chapman and Hall.

[36] N.A. Lynch. Simulation techniques for proving properties of real-time systems. In
J.W. de Bakker, W.P. de Roever, and G. Rozenberg, editors, Proceedings REX
School/Symposium: A Decade of Concurrency, Noordwijkerhout, The Netherlands,
June 1993, volume 803 of Lecture Notes in Computer Science, pages 375{424. Springer-
Verlag, 1994.

[37] N.A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., 1995. To
appear.

[38] N.A. Lynch and H. Attiya. Using mappings to prove timing properties. Distributed
Computing, 6(2):121{139, 1992.

[39] N.A. Lynch, I. Saias, and R. Segala. Proving time bounds for randomized distributed
algorithms. In Proceedings of the 13th Annual ACM Symposium on the Principles of
Distributed Computing, pages 314{323, Los Angeles, CA, August 1994.

[40] N.A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for distributed algorithms.
In Proceedings of the 6th Annual ACM Symposium on Principles of Distributed Com-
puting, pages 137{151, August 1987. A full version is available as MIT Technical Report
MIT/LCS/TR-387.

[41] N.A. Lynch and F.W. Vaandrager. Action transducers and timed automata. In Cleave-
land [13], pages 436{455. Full version available as CWI Report CS-R9460, Amsterdam,
November 1994, and as Technical Memo MIT/LCS/TM-480.b, MIT LCS, Cambridge,
MA, October 1994.

47

[42] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations for timing-based
systems. In de Bakker et al. [15], pages 397{446.

[43] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations { part II: Timing-
based systems. Report CS-R9314, CWI, Amsterdam,March 1993. Also, MIT/LCS/TM-
487.b, Laboratory for Computer Science, Massachusetts Institute of Technology, Cam-
bridge, MA.

[44] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations { part I: Untimed
systems. Technical Memo MIT/LCS/TM-486.b (new version of TM-486), Laboratory
for Computer Science, Massachusetts Institute of Technolog, Cambridge, MA, August
1994. To appear in Information and Computation.

[45] N.A. Lynch and H.B. Weinberg. Proving correctness of a vehicle maneuver: Decelera-
tion, June 1995. In Proceedings Second European Workshop on Real-Time and Hybrid
Systems, Grenoble, France. To appear.

[46] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Speci�cation. Springer-Verlag, 1992.

[47] Z. Manna and A. Pnueli. Verifying hybrid systems. In Grossman et al. [21], pages 4{35.

[48] M. Merritt, F. Modugno, and M. Tuttle. Time constrained automata. In J.C.M. Baeten
and J.F. Groote, editors, Proceedings CONCUR 91, Amsterdam, volume 527 of Lecture
Notes in Computer Science, pages 408{423. Springer-Verlag, 1991.

[49] R. Milner. Communication and Concurrency. Prentice-Hall International, Englewood
Cli�s, 1989.

[50] F. Moller and C. Tofts. A temporal calculus of communicating systems. In Baeten and
Klop [10], pages 401{415.

[51] X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. An approach to the description and
analysis of hybrid systems. In Grossman et al. [21], pages 149{178.

[52] X. Nicollin, J.-L. Richier, J. Sifakis, and J. Voiron. ATP: An algebra for timed processes.
In M. Broy and C.B. Jones, editors, Proceedings IFIP TC2 Working Conference on
Programming Concepts and Methods, Sea of Gallilea, Israel, pages 402{429, 1990.

[53] X. Nicollin, J. Sifakis, and S. Yovine. From ATP to timed graphs and hybrid systems.
Acta Informatica, 30(2):181{202, 1993.

[54] A. Pnueli. Development of hybrid systems. In Langmaack et al. [33], pages 77{85.

[55] G.M. Reed and A.W. Roscoe. A timed model for communicating sequential processes.
Theoretical Computer Science, 58:249{261, 1988.

[56] R. Segala. Modeling and Veri�cation of Randomized Distributed Real-Time Systems.
PhD thesis, Department of Electrical Engineering and Computer Science, Massachu-
setts Institute of Technology, 1995. In progress.

48

[57] A.P. Sistla. Proving correctness with respect to nondeterministic safety speci�cations.
Information Processing Letters, 39(1):45{49, July 1991.

[58] J. S�gaard-Andersen. Correctness of Protocols in Distributed Systems. PhD thesis,
Technical University of Denmark, Lyngby, Denmark, December 1993. ID-TR: 1993-
131. Also, [59].

[59] J.F. S�gaard-Andersen, B.W. Lampson, and N.A. Lynch. Correctness of communication
protocols { a case study. Technical Report MIT/LCS/TR-589, Laboratory for Computer
Science, MIT, Cambridge, MA, November 1993.

[60] E. S�oylemez. Automatic veri�cation of the timing properties of MMT automata. Mas-
ter's thesis, Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, February 1994.

[61] Wang Yi. Real-time behaviour of asynchronous agents. In Baeten and Klop [10], pages
502{520.

[62] A. Zwarico. Timed Acceptance: An Algebra of Time Dependent Computing. PhD thesis,
Department of Computer and Information Science, University of Pennsylvania, 1988.

49

