
LABORATORY FOR
COMPUTER SCIENCE

MIT/LCS/fM-476

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

HYBRID ATOMICITY
FOR

NESTED TRANSACTIONS

Alan Fekete
Nancy Lynch

William E. Weihl

October 1992

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

This b/a11k page was i11serted to preserve paginatio11.

Hybrid Atomicity for Nested Transactions

Alan Fekete* 1 and Nancy Lynch** 2 and William E. Weihl***2

1 Department of Computer Science,
University of Sydney, 2006, Australia

2 MIT Laboratory for Computer Science
545 Technology Square

Cambridge, MA 02139, U.S.A.

Abstract. This paper defines the notion of hybrid atomicity for nested trans­
action systems, and presents and verifies an algorithm providing this prop­
erty. Hybrid atomicity is a modular property; it allows the correctness of
a system to be deduced from the fact that each object is implemented to
have the property. It allows more concurrency than dynamic atomicity, by
assigning timestamps to transactions at commit. The Avalon system provides
exactly this facility.

Key words: hybrid atomicity, hybrid system, hybrid object, concurrency con­
trol, databases, locking, timestamps

1 Introduction

Two-phase locking [4] is probably the most widely used method of concurrency con­
trol in transaction systems today. In recent years much research has focused on ex­
tending concurrency control methods to take the semantics of the data into account,
thus permitting more concurrency by allowing transactions executing commuting
operations to run concurrently (e.g., see [9, 14, 17, 16, 15]). Such "logical locking"
can be important to avoid concurrency bottlenecks that arise at frequently updated
data items (or "hot spots"). For some applications, however, the requirement that

* Supported in part by the Defense Advanced Research Projects Agency (DARPA) under
Contract N00014-83-K-0125.

** Supported in part by the National Science Foundation under Grants CCR-86-11442 and
CCR-89-15206, in part by the Defense Advanced Research Projects Agency (DARPA)
under Contract N00014-89-J-1988, and in part by the Office of Naval Research under
Contracts N00014-85-0168 and N00014-91-J-1046.

*** Supported in part by the National Science Foundation under Grant CCR-8716884, and
in part by the Defense Advanced Research Projects Agency (DARPA) under Contract
N00014-89-J-1988. Also supported in part by an equipment grant from Digital Equipment
Corporation.

non-commuting operations must conflict can hurt performance by restricting con­
currency. Recently, Herlihy and Weihl proposed a new technique, based on assigning
timestamps to transactions as they commit and propagating the timestamp infor­
mation to objects, that allows some of the conflicts imposed by commutativity to be
eliminated (7, 8]. In this paper we extend their algorithm to accommodate nested
transactions, using the framework developed in (5]. Our results show the general­
ity of the framework used here, and also point out the subtleties involved both in
defining algorithms for nested transactions and in proving them correct.

Locking algorithms serialize transactions dynamically in the order in which they
commit. However, detailed information about the commit order is not usually avail­
able to the concurrency control algorithm, particularly in a distributed system; in­
stead, locking makes conservative assumptions about the commit order based on
when locks are acquired and released. Thus, commutativity-based algorithms require
an operation executed by a transaction to commute with all operations previously
executed by other transactions that are still active; this ensures that regardless of
the order in which they commit, their operations will be serializable in that order.
As Herlihy and Weihl discuss, however, commutativity-based algorithms allow very
little concurrency for some applications. For example, the enqueue and dequeue op­
erations on a FIFO queue do not commute, so commutativity-based locking reduces
to exclusive locking, preventing one transaction from accessing the queue until the
previous one has committed.

Herlihy and Weihl describe hybrid techniques that combine aspects oftimestamp­
based and locking algorithms. Their algorithm relies on timestamps generated as
transactions commit to capture the commit order. Objects learn the exact commit
order by being told the timestamps for committed transactions. As discussed in
more detail below, this information can be used to relax the constraints imposed by
commutativity-based locking by basing the conflict relations on serial dependency
relations, rather than on commutativity. For example, the enqueue operations on a
FIFO queue do not need to depend on each other, so transactions executing enqueue
operations can be allowed to run concurrently. The apparent serialization order of
the enqueues can be sorted out based on the timestamps generated when transac­
tions commit, so the order of items in the queue can be determined for subsequent
dequeues.

In this paper, we show how Herlihy and Weihl 's algorithm can be extended
to accommodate nested transactions. Nested transactions have been explored in a
number of projects (e.g., (13, 12, 10, 3, 1]) for building reliable distributed systems.
In a nested transaction system, a transaction can have subtransactions, each of which
appears to run atomically within the transaction. Thus, concurrent subtransactions
are serializable - they appear to run in some serial order - and recoverable - they
appear to execute either completely or not at all. In addition, if a subtransaction
aborts, its parent is informed of the abort and can choose to try some alternative
action (e.g., in a replicated system).

We give a precise, formal description of the extended algorithm. We use the
framework presented in (5] as a basis for this work. This framework provides a
rigorous foundation for nested transaction systems based on a formal operational
model. Nested transactions introduce a number of subtleties, concerning the precise
handling of concurrent subtransactions and of aborts, that require a careful rigorous

treatment.
Our presentation parallels our earlier work on locking algorithms. We describe a

system consisting of transactions plus objects, together with a controller that medi­
ates communication between the transactions and the objects. We use the general
definition of correctness from our previous work, and define a local property of ob­
jects, called hybrid atomicity, that is sufficient to guarantee global correctness.3 (I.e.,
if each object in a system is hybrid atomic, the system as a whole is correct.) Hybrid
atomicity captures the property of an individual object that says that it serializes
transactions in the commit order provided to the object by the timestamps gen­
erated at commit. Then we show how to extend Herlihy and Weihl's algorithm to
handle nested transactions; the resulting object is hybrid atomic.

Introducing a local property such as hybrid atomicity affords important modu­
larity. Each object can be implemented independently, and as long as each is hybrid
atomic, the entire system will be correct. Simple concurrency control techniques
(e.g., exclusive locking or read-write locking) can be used where the need for concur­
rency is small, and more complex techniques (e.g., the algorithm described in this
paper) can be used in the (usually few) cases where more concurrency is needed.
Hybrid atomicity captures the properties of the interactions among objects that are
essential for global correctness, in particular, how they agree on a serialization order
for transactions.

The Avalon system [3] (built on top of Camelot) has adopted hybrid atomicity
for nested transactions as the basis of its operation. The tid or transaction iden­
tifier generated by the system has a comparison operation that indicates which of
two transactions committed first. This information is just what is needed by our
algorithm, and thus our algorithm could be used in the Avalon system.

The remainder of this paper is organized as follows. First, in Section 2 we define
the model appropriate for a system assigning timestamps at commit time; we also
define hybrid atomicity. In Section 3 we present an algorithm that is hybrid atomic.
Finally, we conclude with a discussion and some suggestions for further work. In an
Appendix, we briefly summarize the earlier work of ours that provides the framework
for this paper. Because of length constraints, this paper omits all the proofs of our
results. The proofs will appear in [6].

2 Hybrid Atomicity

This section depends on our earlier work, presented as Sections 3 to 5 of [5], and
summarized in the Appendix. The development in this section closely parallels that
in Section 6 of [5] and also that in [2]. In our presentation we concentrate on those
aspects that are different from the previous papers.

We define the system decomposition appropriate for describing hybrid algo­
rithms. Such algorithms are formulated as instances of hybrid systems, which are
composed of transaction automata, hybrid object automata and a hybrid controller.

Throughout, we use a totally ordered set P of timestamps. In our development,
we will not actually need the set P to be totally ordered - it will be enough that the

3 Weihl defined several local properties for single-level transaction systems [17, 16]; the
local property defined here generalizes one of those to nested transaction systems.

timestamps assigned to sibling transactions be ordered with respect to each other.
However, for simplicity we assume the total ordering. A natural choice for P is the
set of positive integers, or more realistically, the integers less than some (extremely
large) maximum.

Hybrid Object Automata A hybrid object automaton Hx for an object name
X is an automaton with the following actions, which define its interface to its en­
vironment. The input actions are CREATE(T}, for T an access to X, INFORM­
_COMMIT_AT(X)OF(T, p), forT -:j:. T0 ,p E P, and INFORM_ABORT_AT(X)OF(T),
for T #- T0 . The output actions are REQUEST_COMMIT(T,v), for T an access
to X and v a value for T. In addition, Hx may have an arbitrary set of internal
actions.

The interface of a hybrid object automaton Hx is similar to that of a generic ob­
ject G x, as defined in [5] to model data managers that receive requests for data access
and information about the completion of transactions. It differs in that explicit times­
tamp information is included in all INFORM_COMMIT actions. It is also similar to
that of a pseudotime object (as defined in [2]) in that the object receives timestamp
information for some transactions. However, hybrid objects differ from pseudotime
objects in that the timestamp information is included in the INFORM_COMMIT
actions rather than in separate INFORM_TIME actions; thus, timestamp informa­
tion only arrives for transactions that have committed. Also, hybrid objects receive
timestamp information for arbitrary transactions, not just for accesses to X.

A hybrid object automaton Hx is required to preserve hybrid object we/1-formedness,
defined to include all the constraints corresponding to those in the definition of
generic object well-formedness in [5]. In addition, there are restrictions on the times­
tamps supplied, similar to those in the definition of pseudotime object well-formedness
in [2]: there is no transaction T for which there are two different timestamps, p
andp', such that INFORM_COMMIT_AT(X)OF(T,p} and INFORM_COMMIT­
_AT(X)OF(T, p') both occur in {3, and there is no timestamp p for which there are
two different transactions, T and T', such that T and T' are siblings and INFORM­
_COMMIT_AT(X}OF(T, p) and INFORM_COMMIT_AT(X)OF(T',p) both oc­
cur in {3. Notice that the same timestamp may be assigned to different transactions,
so long as they are not siblings.

Hybrid Controller The hybrid controller behaves much the same as the generic
controller defined in [5]. The main difference is that, when it commits a transaction,
it simultaneously assigns a timestamp to that transaction; subsequently, it passes
that timestamp to the hybrid objects in INFORM_COMMIT actions. The only
constraint on the assignment of timestamps is that they get assigned to siblings in
increasing order.

The assignment of timestamps is somewhat different from the assignment of
pseudotimes that occurs in the pseudotime controller of [2]. In a hybrid system,
individual timestamps are assigned to transactions, whereas in a distributed pseu­
dotime system, intervals of pseudotime are assigned. Also, in a hybrid system, the
timestamp for a transaction is chosen when the transaction commits, whereas in a

distributed pseudotime system, the pseudotime interval for a transaction is chosen
before the transaction starts executing.

The hybrid controller we model is highly nondeterministic, in particular because
each timestamp can be chosen arbitrarily, subject to the constraint that it is greater
than the timestamps of all previously committed siblings. Actual implementations
will restrict the nondeterminism by choosing timestamps in a controlled way. One
simple method in a centralized system is to assign to each transaction the value of
the clock at the instant the transaction commits. In this case, each transaction's
timestamp is greater than that of all previously committed transactions, instead of
merely the committed siblings as required. Another implementation can be obtained
by assigning the timestamp i to a transaction if it is the i-th child of its parent that
commits.

The hybrid controller has in its interface the actions of the transaction automata
and the hybrid object automata, as well as extra actions COMMIT and ABORT
for each transaction other than To. The code of the hybrid controller is identical to
that of the generic controller from [5], except that the COMMIT(T) action chooses
a timestamp p and records it in the state, and the INFORM_COMMIT action
includes the appropriate timestamp.

Hybrid Systems A hybrid system is the composition of the hybrid controller, all
the transaction automata (just as in the serial system), and a collection of hybrid
object automata. The behaviors of a hybrid system are called hybrid behaviors. We
have the following result: If j3 is a hybrid behavior, then for every object name X,
/31Hx is hybrid object well-formed for X.

Hybrid Atomicity Now hybrid atomicity is defined. The definition is almost the
same as the definition of dynamic atomicity in [5] but it is based on hybrid systems
instead of generic systems. It is also similar to static atomicity defined in [2], but
the order used is the completion order.

Let Hx be a hybrid object automaton for object name X. Say that Hx is hybrid
atomic if for all hybrid systems S in which H x is associated with X, the following is
true. Let /3 be a finite behavior of S, R = completion(/3) and Ta transaction name
that is not an orphan in /3.4 Then view(serial(/3), T, R, X) is a serial behavior of Sx.
The following theorem is an direct consequence of Theorem 3.

Theorem 1. (Hybrid Atomicity Theorem) Let S be a hybrid system in which all
hybrid objects are hybrid atomic. Let j3 be a finite behavior of S. Then /3 is serially
correct for every non-orphan transaction name.

Local Hybrid Atomicity We now give a local version of hybrid atomicity. The
development is analogous to that for local dynamic atomicity in Section 6 of [5]
(in that we define local analogues for many concepts) but includes some significant
technical changes, needed to allow us to prove that the algorithm of Section 3 is
correct.
4 Recall that a transaction T is an orphan in (J if ABORT(U) appears in (J for some

ancestor U of T.

We begin by defining local visibility and local-completion exactly as in (5]. That
is, if H x is a hybrid object automaton for object name X, and /3 is a sequence
of external actions of H x, then T is locally visible at X to T' in /3 if /3 con­
tains an INFORM_COMMIT..AT(X)OF(U, p) event for every U in ancestors(T) -
ancestors(T'), and local-completion(/3) is the binary relation on accesses to X where
(U, U') E local-completion(/3) if and only if U f U', /3 contains REQUEST_COMMIT
events for both U and U', and U is locally visible at X to U' in /3', where /31 is the
longest prefix of /3 not containing the given REQUEST_COMMIT event for U'.

In this paper we will use a different notion of local orphans from that in (5]
and (2]. The prior definition designated a transaction T as a local orphan exactly
if an INFORM..ABORT appears for an ancestor of T. The new definition includes
additional conditions that imply that a transaction is an orphan. For example, it can
be deduced that an access T' to object X is an orphan provided that T' is created
and that an INFORM_COMMIT event occurs for an ancestor of T' without any
preceding REQUEST_COMMIT for T'. Moreover, if such an access T' is locally
visible to any transaction T, then it can also be deduced that Tis an orphan.

More formally, if /3 is a sequence of external actions of H x, then we define an
access T' to object X to be excluded in /3 provided that /3 contains CREATE(T'), and
also contains an INFORM_COMMIT event for an ancestor of T' with no preceding
REQUEST _COMMIT event for T'. Then we define a transaction name T to be a
local orphan in /3 provided that either an INFORM..ABORT event occurs in /3 for
some ancestor of T, or there is some excluded access to X that is locally visible to
T.

We define another binary relation, local-timestamp(/3), on accesses to X. Namely,
(T, T') E local-timestamp(/3) if and only if T and T' are distinct accesses to X, U
and U' are sibling transactions that are ancestors of T and T', respectively, /3 con­
tains an INFORM_COMMIT..AT(X)OF(U,p) event, and /3 contains an INFORM­
_COMMIT_AT(X)OF(U',p') event, where p < p'. Notice the difference between this
order and the order local-pseudotime-order(/3) defined in (2], where the order was
based on the timestamps of the accesses, rather than on the timestamps of the sibling
ancestors of the accesses.

Before giving our definition of local hybrid atomicity, one additional technical
notion is needed. Namely, define a sequence l of operations of X to be transaction­
respecting provided that for every transaction name T, all the operations for descen­
dants of T appear consecutively in e_ Notice that if /3 is a hybrid behavior, T is a
transaction name that is not an orphan in /3, R = completion(/3), and Xis an object
name, then view(/3, T, R, X) is perform(l) where l is transaction-respecting. Thus
by only considering transaction-respecting orderings in the definition of local-views
below, rather than all orderings consistent with local information, as we did in [5],
we ensure that the concept of local hybrid atomicity is a closer approximation to the
concept of hybrid atomicity. Thus, a wider class of correct algorithms can be verified
using the definitions of this section than would have been the case if the definition
of local-views did not include the restriction to transaction-respecting orderings. In
particular, the algorithm that we present in Section 3 can be proved to be local
hybrid atomic using the definition as given in this section.

Suppose that /3 is a finite hybrid object well-formed sequence of external actions
of Hx and Tis a transaction name. Let local-views(/3, T) be the set of sequences

defined as follows. Let Z be the set of operations occurring in {3 whose transactions
are locally visible at X to T in {3. Then the elements of local-views({3, T) are the
sequences of the form perform({), where { is a transaction-respecting total ordering
of Z in an order consistent with both the partial orders local-completion({3) and
local-timestamp({3) on the transaction components.

We say that hybrid object automaton Hx for object name X is locally hybrid
atomic if whenever {3 is a finite hybrid object well-formed behavior of H x, and T is
a transaction name that is not a local orphan at X in {3, then every sequence that
is an element of the set local-views({3, T) is a finite behavior of Sx. The definitions
have been chosen so that local hybrid atomicity is a sufficient condition for hybrid
atomicity. The proof of this fact is analogous to that of Theorem 54 of [5] and
Theorem 8 of [2]. The main new point to note is the following. In order to show
that view(serial({3), T, R, X) = perform({) is an element of local-views(f3,IH x, T),
it must be shown not only that { is consistent with the local-completion order as
before, but also that it is consistent with the local-timestamp order and that it is
transaction-respecting.

3 Dependency-Based Hybrid Locking

This section presents an algorithm, that is a natural generalization to nested trans­
action systems of that given in [8]. It is based on a serial dependency relation. The
intuition underlying this is that two operations of a particular serial object should be
related whenever the possibility of the second occurring is influenced by the presence
or absence of the first. However, there are many subleties, and the precise definition
that we give (taken from [2]) is chosen to be what is needed in the algorithm (both in
that earlier paper and this one). We need a preliminary definition: Let R be a binary
relation on operations of serial object Sx, and { a sequence of operations of Sx and
'f/ is a subsequence of{, then say that 'f/ is R-closed in { provided that whenever 'f/
contains an operation (T, V), it also contains all preceding operations (T', v') of e
such that ((T', v'), (T, v)) E R. Now, we say that R is a serial dependency relation
for Sx provided that the following holds. Whenever { is a finite sequence of opera­
tions of Sx (no two of which involve the same access) such that for each (T, v) in {
there is an R-closed subsequence 'f/ of { where 'f/ contains (T, v) and perform(rJ) is a
behavior of Sx, then perform({) is a behavior of Sx.

The algorithm is described as a hybrid object automaton in a hybrid system. For
each object name X and binary relation C between operations of X, we describe a
hybrid object automaton Dx(C) (a dependency object). In fact, a sufficient condition
for D x (C) to be locally hybrid atomic is that C be a symmetric serial dependency
relation.

The algorithm is closely related to the commutativity-based locking algorithm
L x of Section 8 of [5]. The main difference is that the intentions of concurrent trans­
actions are not applied to the base state in the order in which INFORM.COMMIT
events arrive, but rather in the order given by timestamps. Thus when the object
learns of the commit of a subtransaction, the intentions will be transferred to the
parent, but rather than being appended at the end of the parent's previous inten­
tions, they may be inserted into the sequence in an earlier place. To reflect this

behavior in the automaton, we no longer keep the intentions list explicitly; instead,
we keep a set of descendant accesses (in the state component intset), and keep track
of the timestamps provided by the system (in the component time). The intentions
sequence is then obtained as a derived variable whose value is computed from these
components. As in commutativity-based locking, the response to an access is con­
strained so that the resulting operation can be performed by the serial object from
a state resulting from executing the intentions sequences of the access's ancestors.

The other change from Lx is in the condition under which an access is enabled.
The condition here is that there is no other access that is not locally visible to it and
is related to it by C, whereas in Lx the enabling condition is that no other access
that is not locally visible to it doesn't commute forward with it. The reason that we
need C to be a symmetric serial dependency relation is that if an access T completes
when another access T' has occurred but is not locally visible to T, then the object
does not yet have sufficient information to know whether T or T' will be ordered
first by the completion order. Since the return value of T is computed using only
the intentions list of ancestors of T, this return value is computed without using T';
therefore, the object must be sure that even if T' commits and is serialized before
T, the return value is not inappropriate. That is, the operation of T should not be
affected by T'. Also, it is possible that T will be serialized before T', so the object
must ensure that T does not make the previously-given response to T' inappropriate.
That is, T' should not be affected by T. The definition of serial dependency relation
expresses exactly this connection.

The state components of Dx(C) ares.created, s.commit-requested, s.intset, and
s.time. Here, s.created ands.commit-requested are sets of transactions, all initially
empty. Also s. intset is a total function from transactions to sets of operations, ini­
tially mapping every transaction to the empty set 0, ands.time is a partial function
from transactions to timestamps, initially everywhere undefined.

We would like to define5 the derived variable total(T), which serves the same
purpose here as in Lx, that is, it is a sequence of operations of Sx that when per­
formed gives the effective state produced by a transaction T. We defines.intentions,
a mapping from transaction names to sequences of operations, so that the operations
in s.intentions(T) are exactly those in s.intset(T), and the order in which these op­
erations occur is such that (T', v') precedes (T", v") if s.time(U') and s.time(U") are
both defined and s.time(U') < s.time(U"), where U' and U" are the sibling trans­
actions that are ancestors of T' and T", respectively. Now, we let s.total(T) be the
sequence of operations defined recursively as follows: s. total(To) = s. intentions(T0),

and s. total(T) = s. total(parent(T))s. intentions (T) for T =/:- T0 •

The transition relation of Dx(C) is as follows.

5 the following definition is meaningful in any state that is reachable by hybrid object
well-formed executions of Dx(C). However, it is not meaningful in an arbitrary state.

CREATE(T)
Effect:

s.created = s'.createdU {T}

INFORM_COMMIT ...AT(X)OF(T, p)
Effect:

s.intset(T) = 0
s. intset(parent(T))

= s'. intset(parent(T)) U s'. intset(T)
s. intset(U)

= s'. intset(U) for U =I- T, parent(T)
s.time(T) = p

INFORM...ABORT_AT(X)OF(T)
Effect:

s.intset(U) = 0,
U E descendants(T)

s. intset(U) = s'. intset(U),
U (/. descendants(T)

REQUEST _COMMIT(T,v)
Precondition:

TE s'.created- s'.commit-requested
,ti U, T', v' such that

((T, v), (T', v')) E C,
(T', v') E s'.intset(U),
U (/. ancestors(T)

perform(s'.total(T)(T, v))
is a behavior of Sx

Effect:
s. commit-requested=

s'. commit-requested U {T}
s.intset(T) = {(T, v)}
s.intset(U) = s'.intset(U) for U =I- T

The following result is proved just like Proposition 67 of [5].

Proposition 2. If C is a symmetric serial dependency relation then Dx (C) is lo­
cally hybrid atomic.

From this the correctness of the algorithm follows. An immediate consequence
is that if Sis a hybrid system in which each hybrid object is of the form Dx(C),
where C is a symmetric serial dependency relation, then every finite behavior of S
is serially correct for all non-orphan transaction names.

Example: Dependency-Based Locking For a FIFO Queue Object Consider
a system in which an object Sx represents a FIFO queue. Sx has an associated do­
main of values, D, from which the entries are taken. Sx also has an associated
function kind : accesses (X) --+ {"insert", "delete"}, and an associated function
data : {TE accesses(X) : kind(T) = "insert"} --+ D. The set of possible return
values for each access T where kind(T) = "delete" is D, while an access T where
kind(T) = "insert" has return value "OK". The state of Sx consists of four com­
ponents: active (either "nil", or the name of an access to X), queue (an array of
elements ofD indexed by the positive integers), front (a positive integer) and back
(another positive integer). The start state s0 has s0 .active = "nil", so.back= 1, and
so.front= 1 (so.queue may be arbitrary). The transition relation is as follows:

CREATE{T)
Effect:

s.active = T

REQUEST _COMMIT(T,v),
for kind(T) = "insert"

Precondition:
s'.active = T
V = "OK"

Effect:
s.active = "nil"
s.queue[s'.back] = data(T)
s.back = s'.back + 1

REQUEST_COMMIT(T,v),
for kind(T) = "delete"

Precondition:
s'.active = T
s'.back > s'./ront
s'.queue[s'./ront] = v

Effect:
s.active = "nil"
s.front = s'.front + 1

Notice how the delete activity is blocked if the queue is empty (indicated by the
condition s'.front = s'.back).

When we use the set of positive integers as timestamps, we can construct the hy­
brid object automaton Dx (C) where C contains all pairs of operations ((T, v), (T', v'))
where T f. T' and either kind(T) = "delete" or kind(T') = "delete" (or both). C is
in fact a symmetric, serial dependency relation, so (by the following results) Dx(C)
is hybrid atomic.

Suppose T1, T2, T3 and T4 are accesses to X, with kind(T1) = kind(T2) =
insert, kind(T3) = kind(T4) = delete, data(T1) = 6 and data(T2) = 3. The following
sequence /3 is a schedule of Dx(C).

CREATE(T1)
CREATE(T2)

CREATE{T3)
CREATE(T4)

REQUEST _CQMMIT{T2," OK")
REQUEST_COMMIT(T1,"0K")
INFORM_COMMIT _AT(X)OF(T1, 2)

Notice that this schedule involves concurrent insertions into the queue, since the
response to T1 occurs before the fate of T2 is known. Since insert operations do not
commute, /3 is not a schedule of the object Lx formed when the commutativity­
based locking algorithm of [5] is used. This shows that the algorithm presented here
allows concurrency not available to Lx.

The schedule /3 can leave Dx(C) in states wheres.created= {T1,T2,T3,T4},
s.commit-requested = {T2 , Ti}, s.intset(To) = {(T1 , "OK")}, s.intset(T2) = {(T2, "OK")},
and s.time(T1) = 2. The derived variable s.total(T3) is just the sequence of a single
operation (T1 , "0 K").

In the states there is no value v for which either action REQUEST_COMMIT{T3,v)
or REQUEST_COMMIT(T4,v) is enabled, because of the operation (T2, "OK") in
s.intset(T2). In essence, a delete access can't proceed at this point because the value
to be returned ought to be 6 if T2 has a timestamp after that for T1 or if T2 aborts,
but if T2 commits before T1 , then the delete should return the value 3.

4 Conclusion

We have defined an appropriate structure for nested transaction systems based on
hybrid atomicity, in which each transaction is given a timestamp that indicates
the order (relative to its siblings) of committing. We have defined hybrid atomicity
and shown that it was a local atomicity property, so that if each object is separately
verified to be hybrid atomic, the whole system's correctness follows. We have defined
local hybrid atomicity and shown that it is a sufficient condition for hybrid atomicity,
and finally we presented and verified an algorithm that generalizes one of Herlihy
and Weihl in the unnested case.

There are several directions in which this work can be extended. One is to find
and verify further algorithms that provide hybrid atomicity for particular datatypes.
These might keep information in more compact forms, rather than as sets of oper­
ations as used in Dx (C). Another is to consider the possibility that timestamps
do not give exactly the order of completion, but rather another order consistent
with Lamport causality between siblings. Both the modular atomic property and
the algorithm should carry over to this situation.

Acknowledgements
We thank Michael Merritt for many useful comments on this material.

References

1. J. Allchin. An Architecture for Reliable Decentralized Systems. PhD thesis, Georgia
Institute of Technology, September 1983. Available as Technical Report GIT-ICS-
83/23.

2. J. Aspnes, A. Fekete, N. Lynch, M. Merritt, and W. Weihl. A theory of timestamp­
based concurrency control for nested transactions. In Proceedings of 14th International
Conference on Very Large Data Bases, pages 431-444, August 1988.

3. J. Eppinger, L. Mummert, and A. Spector. Camelot and Avalon: A Distributed Trans­
action Facility. Morgan Kaufmann, 1991.

4. K.P. Eswaran, J.N. Gray, R.A. Lorie, and LL. Traiger. The notions of consistency and
predicate locks in a database system. Communications of the ACM, 19(11):624-633,
November 1976. Also published as IBM RJ1487, December 1974.

5. A. Fekete, N. Lynch, M. Merritt, and W. Weihl. Commutativity-based locking for
nested transactions. Journal of Computer and System Sciences, 41(1):65-156, 1990.

6. A. Fekete, N. Lynch, M. Merritt, and W. Weihl. Atomic Transactions. Morgan­
Kaufmann, 1992.

7. M. P. Herlihy and W. E. Weihl. Hybrid concurrency control for abstract data types. In
Proc. 7th ACM Symposium on Principles of Database Systems, pages 201-210, March
1988.

8. M. P. Herlihy and W. E. Weihl. Hybrid concurrency control for abstract data types.
Journal of Computer and System Sciences, 43(1):25-61, August 1991.

9. H. Korth. Locking primitives in a database system. JACM, 30(1), January 1983.
10. B. Liskov. Distributed computing in Argus. Communications of ACM, 31(3):300-312,

March 1988.
11. N. Lynch and M. Tuttle. An introduction to input/output automata. CWI-Quarterly,

2(3):219-246, 1989. Also in Technical Memo MIT/LCS/TM-373, Laboratory for Com­
puter Science Massachusettes Institute of Technology, November 1988.

12. J. E. B. Moss. Nested Transactions: An Approach to Reliable Distributed Com­
puting. PhD thesis, Massachusetts Institute Technology, 1981. Technical Report
MIT /LCS/TR-260, Laboratory for Computer Science, Massachusetts Institute Tech­
nology, April 1981. Also, published by MIT Press, March 1985.

13. D.P. Reed. Naming and Synchronization in a Decentralized Computer System. PhD
thesis, Massachusetts Institute Technology, 1978. Technical Report MIT /LCS/TR-
205, Laboratory for Computer Science, Massachusetts Institute Technology, September
1978.

14. P. Schwarz and A. Z. Spector. Synchronizing shared abstract types. ACM Transac­
tions on Computer Systems, 2(3), August 1984.

15. W. E. Weihl. Commutativity-based concurrency control for abstract data types. IEEE
Transactions on Computers, 37(12):1488-1505, December 1988.

16. W. E. Weihl. Local atomicity properties: modular concurrency control for abstract
data types. ACM Transactions on Programming Languages and Systems, 11(2):249-
282, April 1989.

17. W.E. Weihl. Specification and Implementation of Atomic Data Types. PhD thesis,
Massachusetts Institute Technology, 1984. Technical Report MIT /LCS/TR-314, Lab­
oratory for Computer Science, Massachusetts Institute Technology, Cambridge, MA,
March 1984.

A Review of Background

In this appendix, we summarize the main concepts from our earlier work that are
used in this paper. Complete details can be found in [5] and [6].

All components in our systems, transactions, objects and schedulers, will be
modelled by I/O automata [11]. An 1/0 automaton A has a set of states, some
of which are designated as initial states. Usually a state is given as an assignment
of values to a collection of named typed variables. The automaton has actions,
divided into input actions, output actions and internal actions. We refer to both
input and output actions as external actions. The input actions model actions that
are triggered by the environment of the automaton, while the output actions model
the actions that are triggered by the automaton itself and are potentially observable
by the environment, and internal actions model changes of state that are not directly
detected by the environment. An automaton has a transition relation, which is a set
of triples of the form (s', 1r, s), wheres' ands are states, and 1r is an action. Such a
triple means that in state s', the automaton can atomically do action 1r and change
to state s. A behavior of an automaton is a sequence of external actions, generated
as the automaton starts from an initial state and moves from one state to another by
allowed transitions (note that any tranition involving an internal action may occur
without being seen in the behavior).

We describe systems as consisting of interacting components, each of which is
an 1/0 automaton. It is convenient and natural to view systems as 1/0 automata,
also. Thus, we define a composition operation for 1/0 automata, to yield a new 1/0
automaton. If /3 is a sequence of actions of a system with component A, then we
denote by /3IA the subsequence of /3 containing all the actions of A. The definitions
are chosen so that if /3 is a behavior of the system then /3IA is a behavior of A.

Serial systems, which consist of transaction automata and serial object automata
communicating with a serial scheduler automaton, are used to characterize the cor-

rectness of a transaction-processing system. Transaction automata represent code
written by application programmers in a suitable programming language. Serial ob­
ject automata serve as specifications for permissible behavior of data objects in the
absence of concurrency. They describe the responses the objects should make to ar­
bitrary sequences of operation invocations, assuming that later invocations wait for
responses to previous invocations. The serial scheduler handles the communication
among the transactions and serial objects, and thereby controls the order in which
the transactions can take steps. It ensures that no two sibling transactions are ac­
tive concurrently-that is, it runs each set of sibling transactions serially. The serial
scheduler is also responsible for deciding if a transaction commits or aborts. The
serial scheduler can permit a transaction to abort only if its parent has requested
its creation, but it has not actually been created. Thus, in a serial system, all sets of
sibling transactions are run serially, and in such a way that no aborted transaction
ever performs any steps. We are not proposing serial systems as interesting imple­
mentations; rather, we use them exclusively as specifications for correct behavior of
other, more interesting systems.

We represent the pattern of transaction nesting by a set T of transaction names,
organized into a tree by the mapping parent, with To as the root. The leaves of
this tree are called accesses. The accesses are partitioned so that each element of the
partition contains the accesses to a particular object. If Tis a transaction name that
is an access to the object name X and vis a value, we say that the pair (T, v) is an
operation of X. The tree structure can be thought of as a predefined naming scheme
for all possible transactions that might ever be invoked. In any particular execution,
however, only some of these transactions will actually take steps. We imagine that
the tree structure is known in advance by all components of a system. The tree will,
in general, be infinite and have infinite branching.

The classical transactions of concurrency control theory (without nesting) appear
in our model as the children of T0 , which models the environment in which the rest
of the transaction system runs. It has actions that describe the invocation and return
of the classical transactions. The only transactions that actually access data are the
leaves of the transaction tree. The internal nodes of the tree model transactions
whose function is to create and manage subtransactions, but not to access data
directly.

A serial system is the composition of a set of 1/0 automata. This set contains
a transaction automaton for each non-access node of the transaction tree, a serial
object automaton for each object name, and a serial scheduler. The interface to each
of these automata is described next.

A non-access transaction T is modelled as a transaction automaton AT, an
1/0 automaton. The CREATE input action "wakes up" the transaction. Each
REQUEST_CREATE output action is a request by T to create a particular child
transaction. Each REPORT _COMMIT input action reports to T the successful
completion of one of its children, and returns a value recording the results of that
child's execution. Each REPORT.ABORT input action reports to T the unsuccess­
ful completion of one of its children, without returning any other information. The
REQUEST_COMMIT action is an announcement by T that it has finished its work,
and includes a value recording the results of that work. We leave the executions of
particular transaction automata largely unconstrained; the choice of which children

to create and what value to return will depend on the particular implementation.
We model the serial specification of an object X (describing its activity in the

absence of concurrency and failures) by a serial object automaton Sx. Recall that
transaction automata are associated with non-access transactions only, and that
access transactions model abstract operations on shared data objects. We associate
a single 1/0 automaton with each object name. The external actions for each object
are just the CREATE and REQUEST_COMMIT actions for all the corresponding
access transactions. Although we give these actions the same kinds of names as
the actions of non-access transactions, it is helpful to think of the actions of access
transactions in other terms also: a CREATE corresponds to an invocation of an
operation on the object, while a REQUEST _COMMIT corresponds to a response
by the object to an invocation. A useful notation for operation (T, v) of an object
X is that perform(T, v) denotes CREATE(T) REQUEST_COMMIT(T,v). This
definition is extended to sequences of operations.

The third kind of component in a serial system is the serial scheduler. The trans­
actions and serial objects are allowed to be any I/0 automata whose actions and
behavior satisfy simple restrictions. The serial scheduler, however, is a fully specified
automaton. It runs transactions according to a depth-first traversal of the transaction
tree. The serial scheduler can choose nondeterministically to abort any transaction
whose parent has requested its creation, as long as the transaction has not actually
been created. Each child of T whose creation is requested must be either aborted
or run to commitment with no siblings overlapping its execution, before T can com­
mit. The result of a transaction can be reported to its parent at any time after
the commit or abort has occurred. The REQUEST_CREATE and REQUEST­
_COMMIT inputs are intended to be identified with the corresponding outputs
of transaction and serial object automata, and correspondingly for the CREATE,
REPORT_COMMIT and REPORT_ABORT output actions. The COMMIT(T)
and ABORT(T) output actions are called completion actions for T; they mark the
point in time where the decision on the fate of T is irrevocable.

The discussion in this paper assumes an arbitrary but fixed serial system, with
Ar as the non-access transaction automata, and Sx as the serial object automata.
We use the term serial behaviors for the system's behaviors. We give the name serial
actions to the external actions of the serial system.

If /3 is a sequence6 of actions, Ta transaction name and X an object name, we de­
fine /JIT to be the subsequence of /3 consisting of the following actions: CREATE(T),
REQUEST_CREATE(T'), REPORT_COMMIT(T',v'), REPORT_ABORT(T'),
or REQUEST_CQMMIT(T,v), where T' is a child of T; and we define /JIX to
be the subsequence of /3 consisting of the actions CREATE(T) or REQUEST­
_COMMIT(T,v) where Tis an access to X. We define serial(/3) to be the subse­
quence of /3 consisting of serial actions.

If /3 is a sequence of actions and T is a transaction name, we say T is an orphan
in /3 if there is an ABORT(U) action in /3 for some ancestor U of T. We say that
T is live in /3 if /3 contains a CREATE(T) event but does not contain a completion
event for T.

6 We make these definitions for arbitrary sequences of actions, because we will also use
them for behaviors of systems other than the serial system.

We use the serial system to specify the correctness condition that we expect
other, more efficient systems to satisfy. We say that a sequence /3 of actions is
serially correct for transaction name T provided that there is some serial behavior

1 such that /3IT = ,IT.
We believe that serial correctness is a natural notion of correctness that corre­

sponds precisely to the intuition of how nested transaction systems ought to behave.
Serial correctness for To of all behaviors of a system guarantees that the external
world will encounter only situations that can arise in serial executions.

We outline a method for proving that a concurrency control algorithm guarantees
serial correctness. These ideas give formal structure to the simple intuition that a
behavior of the system will be serially correct so long as there is a way to order the
transactions so that when the operations of each object are arranged in that order,
the result is legal for the serial specification of that object's type. In this paper
we use a particular choice of serialization order, in which a transaction is serialized
ahead of those of its siblings that complete after it does. If /3 is a sequence of actions,
then define completion(/3) to be the binary relation on transaction names containing
(T, T') if and only if T and T' are siblings and either there are completion events for
both T and T' in /3 and a completion event for T precedes a completion event for
T', or else there is a completion event for T in /3, but there is no completion event
for T' in /3.

We must introduce some technical definitions. First, we define when one transac­
tion is "visible" to another. This captures a conservative approximation to the con­
ditions under which the activity of the first can influence the second. Let /3 be any
sequence of actions. If T and T' are transaction names, we say that T' is visible to Tin
/3 if there is a COMMIT(U) action in /3 for every U in ancestors (T') - ancestors (T).

We say that an operation (T, v) occurs in a sequence /3 of actions if a REQUEST­
_COMMIT(T,v) action occurs in /3.

Finally we can define the sequence of actions considered in the hypothesis of The­
orem 3. Suppose /3 is a sequence of actions, Ta transaction name, R = completion(/3)
and X an object name. Let e be the sequence consisting of those operations occurring
in /3 whose transaction components are accesses to X and that are visible to Tin /3,
ordered so that (T', v') precedes (T", v") if (U', U") E R, where U' is an ancestor of
T', U" is an ancestor of T", and U' is a sibling of U". Define view(/3, T, R, X) to be
perform(e).

The following result expresses the fundamental proof technique we use. It is
proved as Proposition 46 of [5]. The term "simple behavior" is formally defined in (5];
informally, it refers to any sequence of actions that does not violate obvious causality
principles (for example, by creating a transaction that was never requested). The
concept is sufficiently general that this result can be applied to all behaviors of the
hybrid system considered in this paper.

Theorem 3. Let /3 be a finite simple behavior, T a transaction name such that T is
not an orphan in /3, and let R = completion(/3). Suppose that for each object name
X, view(/3, T, R, X) is a finite behavior of Sx. Then /3 is serially correct for T.

This article was processed using the 1\TEX macro package with LLNCS style

