
LABORATORY FOR
COMPUTER SCIENCE

MIT/LCS{fM-473

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

THE INTEGRATION OF THE
ORGANIZATION ENGINE

AND LIBRARY 2000

Ron Weiss

August 1992

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

This b/a11k page was i11serted to preserve paginatio11.

The Integration of
The Organization Engine

and Library 2000

by

Ron Weiss
Submitted to the

Computer Science Department
in partial fulfillment

of the requirements for the degree of

Bachelor of Arts
at

Brandeis University
May, 1992

© Ron Weiss, 1992

Signature of Author ~-------------------

Certified by

Department of Computer Science
May 15, 1992

Jerome H. Saltzer

Professor of Computer Science, MIT
Thesis Supervisor

Accepted by _____________________ _

Jacques Cohen
Chairman, Department of Computer Science

Signature redacted

Abstract

In the contemporary research environment, users access and manipulate information

gathered from diverse data sources. The Organization Engine is a prototype being

developed at the Cambridge Research Lab of Digital Equipment Corporation for the

incorporation of data from disparate sources into a local homogeneous framework. It

relies on information management based on the notion of retrieval and manipulation

through the organization of the data in a non strict hierarchical structure.

In order to fully exploit the benefits of such an environment, the Organization Engine

must provide access to remotely located, search based, information retrieval systems.

"Library 2000" is an implementation of such a system aimed at tackling the issues of

the fully integrated and distributed electronic library of tomorrow.

This thesis incorporates the remotely located, search based, information retrieval

capabilities of "Library 2000" into the data management scheme of the Organization

Engine. It utilizes the concepts of unique record identifiers and query links. Two access

facilities based on these different notions are implemented from the Organization Engine

"client" application to the "Library 2000" "server" application.

Acknowledgments

I would like to thank a number of people who have helped and supported me throughout
the writing of this paper and completion of the thesis:

Professor Jerome H. Saltzer, my thesis supervisor, who agreed to take me on out of his
good will, and continuously guided my efforts in the right direction.

Dr. James S. Miller, my mentor, who I cannot thank enough for all the exciting opportuni­
ties he has given me in this field. He introduced me to the Organization Engine project, and
helped me choose my thesis topic.

Professor Jacques Cohen, who not only has educated me at Brandeis and helped me ma­
ture, but also agreed to act as the official supervisor for this thesis.

The Brandeis University Computer Science Department, that has educated me in all aspects
of computer science, and accommodated my special needs for this thesis.

The Cambridge Research Lab which has provided me the necessary equipment, as well as
generally helped me implement my thesis.

Dr. Zvika Weiss, my Aba, who introduced me to computer science at a very early age, and
continuously pushed me to excel in my academic endeavors.

lrit Weiss, my Ima, who has organized my life for twenty two years. I love you and Aba
very much.

My suite, for putting up with all the mess I have created, and the lack of effort I put into
household chores due to the time I put into this thesis.

My fraternity brothers of Phi Kappa Psi, for understanding my absence from most meetings
and parties for the above reason.

And most of all to Kim Winer, my girl-friend, who has spent countless hours with me
proof-reading and revising this thesis, as well as helping me come up with some of the content.
As a result, I have actually enjoyed some of the writing work. Without her, this thesis would
not have been what it is currently, or for that matter completed at all. I owe her much. (and I
love you too). I hope that our relationship will last..

Contents

1 Introduction

1.1 Goals of Thesis

1.2 Overview of Thesis

2 Related Research

2.1 Semantic File System .

2 .1.1 Virtual Directories

2.1.2

2.1.3

2.1.4

The Maintenance of Query Results

"Heterogeneous Storage (Indexing)", "Homogeneous Access"

Type of Information

2.2 Z39.50

2.2.1 A Session - Maintaining State

2.2.2 Result Sets versus Unique Record Identifiers

2.3 Wide Area Information Servers

2.4 World Wide Web

2.4.1 Hypertext Links and Search Capabilities

3 Background: Overview Of The Organization Engine And Search

Engine

1

5

6

7

9

9

10

10

11

11

12

12

13

13

15

16

17

3.1 The Organization Engine

3.1.1 Self-Describing Objects .

3.1.2 Organization of the Data .

3.1.3 System Layers .

3.2 The Search Engine ..

3.2.1 Client Protocol

3.2.2 Establishing a Connection

4 Record Identifiers

4.1 Why Unique Record Identifiers?

4.2

4.1.1 Search Capabilities Alone are not Sufficient

4.1.2 A Guaranteed Handle for Future Reference .

4.1.3

4.1.4

Storage Requirement

Propagation of Record Handles

4.1.5 Retrieval using Record IDs may be more efficient than Invoking

4.1.6

4.1.7

Search

Semantic Meaning of Handle on a Record

Up-to-date Information .

Overview of the Architecture . .

4.2.1 Putting Record References into the Organization Engine

4.2.2 The Remote Object Service

4.2.3 Storing Record Information

5 Query Links

5.1 What is a Query Link?

5.2 Why Query Links? ..

5.2.1 Concurrent Query Processes

2

17

18

19

20

23

24

25

29

29

30

31

32

32

33

33

34

35

35

37

38

41

41

42

42

5.2.2 Up-to-date Search Result .

5.3 Caching Revisited

5.4 Semantics of the Object Identifier

5.4.1 Creating a Query Link . .

5.4.2 Editing Query Links Identifiers

5.5 Architecture Overview

5.5.1 Query Link Creation and Management

5.5.2 Copying Record from Query Links

6 Other Options

6.1 Immediate Duplication

6.1.1 Why Immediate Duplication?

6.1.2 Modification of Records

6.1.3 Storage Considerations

6.1.4 Architecture Overview

43

44

44

44

45

45

45

47

48

48

49

50

50

51

6.2 Partial storage 52

6.2.1 Why Partial Storage? . 53

6.2.2 Implementation Ideas . 54

6.3 Browsing / Traversal through the Search Indices and Data Categories 54

6.3.1 Why Traversal of the Search Indices? . . . 55

6.3.2 Why Value Added Data Categorizations? . 55

6.3.3 Implementation Considerations 56

7 Conclusion

7 .1 Insights

7.2 Future Work.

3

57

57

59

t~@~,Ul"'2'•• ·~•c•--~~----c--- lllHIJU M4!)d.l.llL.t~ ..•. 1111411,ll!tllf , ... J,. Ill,, ilfik!UJii,IWI.Gl .. l,INIIZ4.JIJ!t#4)$!M¥+ . . ' . - ' ··. ·, ',· '. , .

List of Fipres

2.1 The W3 ~UN in outJiM • · 15

3.1 Orpnimioa lqir:e S,-,ai La,-. 20

4.1 R.,corci Idaatilen Senice ~ 3t

5.1 Qusy Link s,.tcm Architecture. 41

6.1 Immecti-.te Duplication S,._ Arc:h.itedun: 51

Chapter 1

Introduction

In the domain of information storage and retrieval, computers have proved to be an

extremely efficient tool. The majority of innovation in this field has been in the im­

provement of search based retrieval of pertinent data. There has been a focus on the

development of data models that facilitate fast searches on and manipulation of the

data objects.

Another approach to information management involves the organization of data in

a hierarchical framework. Retrieval of the pertinent information is accomplished by

utilizing the user's intimate knowledge of the data infrastructure. The organization of

pertinent data according to the users' needs introduces many benefits to the efficiency,

expediency, and "usefulness" of information retrieval. Unfortunately, research on an

organization-based approach to the management of information has been neglected.

Naturally, a database management system that allows the combination of both

methods of information storage and retrieval is desired. A software system that merges

organization-based capabilities with a search based engine is proven to be beneficial. It

will provide users with the ability to organize, categorize and manage data to their own

likings, while also allowing for meaningful searches on large, apparently unorganized,

5

sets of data.

The Organization Engine, the front end of the implementation of this software sys­

tem, is a prototype currently being developed at the Cambridge Research Lab of Digital

Equipment Corporation by Miller and Weiss. It is a data object management and pre­

sentation system that provides a common interface to remote and heterogeneous data

sources through translation drivers.

The remote data source utilized is a search based information retrieval system. This

system is the "Library 2000" project of Professor Saltzer, currently developed at the

Laboratory for Computer Science at MIT. This system investigates a multitude of issues

relevant to the implementation of library systems of the future. These issues include

scalability, presentation client-search engine protocol, value-added indexing, images,

reliability, and aspects of a distributed system.

This thesis describes the design and implementation of a prototype integration of

the two systems. Two innovative translation services are added to The Organization

Engine in order to fuse it with the search engine. Therefore, the Organization Engine

is enhanced to also function as a client of the search system. In order to provide the

necessary background, this thesis furnishes a brief overview of the two information

management systems.

1.1 Goals of Thesis

This thesis investigates several issues that are consequential in the design of a distributed

information retrieval system. One of the important challenges currently faced by de­

signers of these applications is a seamless integration of distributed systems, including

data repositories and presentation level applications.

The following issues are diagnosed in this thesis:

6

• What are the possible methods of integration? This thesis identifies and examines

five alternatives:

1. Immediate Duplication

2. Unique Record Identifiers (in depth)

3. Query Links (in depth)

4. Partial Storage

5. Browsing / Traversal of the search indices

• Issues in distributed database management:

1. Remote system syntax transparency

2. The translation of data

3. Managing the physical distribution of information sources.

4. Establishing a coherent contract between the two systems

5. The time of search versus the moment of information retrieval

• Survey related research.

1.2 Overview of Thesis

This thesis describes the integration of the Organization Engine approach to data man­

agement with the search based information retrieval system.

In chapter 2, we present some related work in the field of information retrieval.

In chapter 3, we present an overview of the two systems being integrated.

7

In chapter 4, we present an overview of the rationale and design issues of the unique

record identifier service.

In chapter 5, we present an overview of the rationale and design issues of the query link

service.

In chapter 6, we present alternative approaches to the integration of the two systems

that have not yet been implemented.

Finally, in chapter 7, we present our conclusions regarding the design and implementa­

tion of the integration and suggest future research paths.

8

Chapter 2

Related Research

This chapter provides an overview of relevant contemporary research. The character­

istics of such research include the integration of search based and organization-based

information retrieval mechanisms, such as the Semantic File System discussed in the

following section. Relevant research may also include work related to distributed in­

formation retrieval. The prominent research that investigates such issues is the Z39.50

protocol definition for information retrieval services discussed in section 2.2, the Wide

Area Information Servers discussed in section 2.3, and finally the World Wide Web

implementation that is discussed in section 2.4.

2.1 Semantic File System

The Semantic File System (SFS) project of Gifford at MIT is a contemporary imple­

mentation that incorporates search facilities into an organization-based storage system

[SFS]. It overlays a UNIX NFS file system with a search and indexing server to provide

associative access to the system's contents. The system automatically extracts and

indexes attributes from files with type specific transducers. The Semantic File System

9

then enables the user to locate data entities, 1.e. files, by formulating queries that

describe the desired attributes of the entities.

2.1.1 Virtual Directories

The associative access into the tree structured file system is accomplished through vir­

tual directories. The Semantic File System interprets the names of virtual directories

as query specifications. Upon request, the system dynamically constructs virtual direc­

tories that contain the result of the query. This result corresponds to the set 0f files

and/or directories that satisfy the search criteria.

2.1.2 The Maintenance of Query Results

The Semantic File System allows the user to save a computed set of queries using file

save programs such as tar. Therefore, it is possible to utilize virtual directories in order

to preserve query results. These results reflect the behavior of the search system with

respect to a certain time in the past. This approach is similar to the query result

maintenance of unique record identifiers (Section 4.1.7).

However, unlike the maintenance of record identifiers, the semantic file system can­

not guarantee future access to the data entities. The storage of symbolic links does not

insure future access because files can be transferred to other locations in the directory

structure. A different approach in the Semantic File System allows the storage of file

copies. This archival of file copies stores the information as available in the system at a

certain time, rather than providing a true link to the dynamically changing data object.

This replication technique is similar to the immediate duplication method discussed in

section 6.1.

It is also possible to maintain the query specifications, rather than the query results.

"When a symbolic link names a virtual directory, the link describes a computed view of

10

a file system". [SFS, p.19] The notion of Query Links in this thesis bears a resemblance.

Chapter 5 elaborates on the maintenance of query links in the Organization Engine.

Significantly, it discusses novel issues that arise from the different, highly distributed

and heterogeneous environment.

2.1.3 "Heterogeneous Storage (Indexing)", "Homogeneous

Access"

The Semantic File System is concerned with the storage, management and retrieval of

files. During the storage update phase, the system indexes the data objects to allow

future retrieval based upon attribute matching. In this phase, the entities are treated

based upon their type (i.e., text document, mail message, object file). The system

utilizes file type specific transducers to extract the meaningful indexing information

from the files. This approach is therefore regarded as a "Heterogeneous Storage" scheme.

In contrast, during the retrieval phase, all data entities are treated equally since the

underlying framework is a file system. The access method is therefore homogeneous

in the sense that all files are retrieved with the same apparatus. This approach con­

trasts sharply with the objective of the Organization Engine, which is to access legacy

repositories, or heterogeneous data sources.

2.1.4 Type of Information

Finally, an obvious distinction between the Semantic File System and the system de­

scribed in this thesis is the nature of the administered information. While the focus

of the SFS is a tree structured file system, this thesis is concerned with the manage­

ment of heterogeneous information gathered from disparate data sources. Unlike the

Organization Engine, the SFS does not govern the transformation of data from legacy

11

repositories to a homogenous representation.

2.2 Z39.50

The Z39.50 is an American National Standard for Information Retrieval Service defi­

nition and protocol specification for library applications. The protocol allows an ap­

plication on one computer to query the database of another computer. It specifies

the procedures and structures utilized for intersystem communication. The protocol

targets "connection oriented, program-to-program communication utilizing telecommu­

nication... It is assumed that the [client] initiates requests on behalf of the a user

who wishes to to search a database located on a remote system." [Z39.50] The client

computer capabilities include the submission of search requests, petitions for database

record contents retrieval and responses to miscellaneous control requests by the data

server.

2.2.1 A Session - Maintaining State

The Z39.50 protocol defines three phases during the life of the applications' intercon­

nectivity: establishment, information transfer, and termination. Moreover, during an

established session, the server computer stores substantial state information regarding

the status of the client application. The client relies on the maintenance of this state

by the server for the retrieval of pertinent information and for the query refinement

process. The client may not duplicate or store this state information to utilize it in

the future retrieval of records. In contrast, this thesis postulates that an intersystem

communication protocol relying on the maintenance of state fails to achieve sufficient

robustness (see section 3.2.2).

12

2.2.2 Result Sets versus Unique Record Identifiers

The protocol utilizes the notion of a result set maintained by the server to enable the

client to specify records for retrieval. The client submits a search to the database server.

The server then establishes an ordered set composed of the records selected by the

search request. The logical structure of this result is a named, ordered list. To retrieve

a record's content, the client specifies a sequential position within the set. This method

of interaction lacks the notion of permanent and unique record identifiers. This thesis

argues that the server should present record identifiers to the client application. The

client may then utilize these identifiers in order to specify which records to retrieve.

Section 4 discusses the importance of unique record identifiers within the context of

intersystem information retrieval.

2.3 Wide Area Information Servers

The Wide Area Information Servers (WAIS) project headed by Brewster Kahle of

Thinking Machines, Inc., addresses the problem of finding, selecting and presenting

information from remotely distributed data sources. It establishes an application level

protocol for query and retrieval of information. The protocol employed is a variant on

the Z39.50-1988 protocol discussed previously. However, it supports only the initializa­

tion and search facilities of the standard. The WAIS protocol disregards the other five

facilities since they are no longer essential.

The WAIS project implements concepts similar to the ones realized in this thesis.

It utilizes the notion of unique record identifiers to access and retrieve remote records.

The WAIS implementation also does not require the server to maintain any state for

the client application. Finally, similar to query links, WAIS dynamic folders embody a

query specification and store a set of record references.

13

However, the WAIS project does not fully exploit the unique record identifiers and

query facilities. Providing such capabilities in an organization-based framework is more

beneficial than in the flat structure of the WAIS user interface. For instance, one cannot

store hypertext links (unique record identifiers) to pertinent data objects. Section 4.1

elaborates on the merits of being able to store links to remote and dynamically changing

records. It is also advantageous to be able to freely and flexibly copy and/or move ref­

erences to remote records within an organization framework. For instance, the user can

group such references into personally meaningful categories, or store them in desirable

and easy to locate destinations for future access. In addition, the WAIS documentation

does not fully discuss the significance of unique record identifiers. [KAHL90]

Finally, the WAIS metaphor currently allows the client to access only WAIS servers.

Therefore, the premise is that the data sources will conform to the WAIS client proto­

col specifications. This thesis takes a different approach to information retrieval from

disparate data sources. Because of the existence of numerous data sources, the client

conforms to the server requirements by providing a translation service for each data

source. The translation to a homogeneous representation is done locally, rather than

changing the data source format. This approach is much more flexible than the WAIS

process, as it allows database developers to freely modify and enhance the data sources.

When new innovative data sources appear, a new translation driver can be easily rewrit­

ten, enhanced, or modified. Thus, our implementation also deals with one homogenous

representation, but is capable of combining information from disparate data sources.

(In fact, a translation driver that interfaces to a WAIS system can be easily added to

the Organization Engine system).

14

dumb PC Mac X NeXT

•••••
Addressing scheme + Common Protocol + Format Negotiation

Gateways

l Networi< 7 News

Figure 2.1: The W3 architecture in outline

2.4 World Wide Web

The World-Wide Web (W3
) initiative aims to construct a global information universe

using available technology. [WWW] The project defines a scheme to integrate informa­

tion from varying data sources. (see Figure 2.1) Similar to the Organization Engine, the

model relies on the client-server model for information translation and transfer. Unlike

the Organization Engine method, it emphasizes the use of a common addressing scheme

and a common information retrieval protocol. Therefore, the integrated data servers

must be modified to comply with the established interface.

The W3 model lacks the flexibility inherent in the Organization Engine approach in

which the client application is responsible for the translation task. The approach em­

ployed in this thesis facilitates experimentation, and readily adapts to innovative server

applications through the use of specific translation drivers. While the W3 project pri-

15

marily targets text based information, the Organization Engine may be easily integrated

into wider range of information servers, including more structured types of data. For ex­

ample, in the current prototype development, translation drivers exist for a CODASYL­

compliant hospital information system, a MUMPS-based radiology information system,

and an SQL database. [OEVDI92].

2.4.1 Hypertext Links and Search Capabilities

The World-Wide Web project incorporates hypertext links and text search capabilities

into its wide area networking capabilities. The user can store links to the result of

performing a search. These searches are evaluated the next time the user follows the

link. In addition, one can store permanent pointers to remote documents using the

hypertext-like links. Thus, the user can assemble a personalized network of information

by installing links from the local client to remote servers.

The W3 metaphor of personalized data organization differs from the structured,

attribute-value based framework of the Organization Engine. The merits of an organiza­

tion-based data management scheme are elaborated in Section 3.1. These fielded, at­

tribute based organization capabilities are natural for the incorporation of data from

disparate sources and for the personalization of the data to fit the users' needs and

preferences. For instance, the hypertext scheme lacks the structure and name-value

association inherent in field based data objects.

16

Chapter 3

Background: Overview Of The

Organization Engine And Search

Engine

This chapter provides an overall view of the two component systems that are integrated

in this thesis. In particular, the architecture of the Organization Engine is described in

section 3.1. For the search engine, the client protocol is introduced in section 3.2.

3.1 The Organization Engine

The Organization Engine in its pure form is a software library intended for user inter­

faces and application programs to manage and manipulate data from disparate sources.

This system provides a framework to combine data from different sources through the

specification of a common data model. Data from diverse sources are transformed

through services into a single, homogeneous representation. The representation chosen

to deal with such heterogeneous data is the Self-Describing Objects (SDO) data model.

17

The goal {of the Organization Engine} is to provide a software base for use

in exploring the issues that arise from dealing with vast quantities of data,

primarily located in "legacy repositories" - pre-existing systems that merge

raw data with structuring information in individual, idiosyncratic ways.

[OEVDI92, p. 5]

3.1.1 Self-Describing Objects

The data model chosen for the homogeneous representation is the Self-Describing Ob­

jects data model. It is similar to the Object Oriented data model in the sense that the

database is composed of data entities, or objects. Thus, in order to access and manip­

ulate the data, an object handle or a reference is needed. "Given this object handle or

identifier, it is possible to ask the Organization Engine Tool Kit to provide information

about the object's structure. In addition, one can retrieve or modify the component

parts of this SDO." [OETR92, p. 4]

Each SDO is composed of an ordered list of fields. Each field has three parts:

Name

A simple string used to distinguish and access the field. Each name must be

unique within an object.

Value

This is an arbitrary value associated with a field name. With each value, there

is an associated encoding type. Therefore, the value consists of two components,

the type identifier and a vector of bits. The set of types is extensible, and depends

both on the underlying system and the application implementation.

User Type

This is a simple string that exists solely for the discretionary interpretation of the

18

application programs. In order to provide the application programs with more

flexibility over the management of field values, the user specified field type slot is

available. The application program may determine the value of the slot and alter

it at any point in time. Its purpose is to facilitate the semantic interpretation

associated with any field and its value.

The structure of any SDO is independently mutable from the rest of the system.

Unlike the object oriented approach where all data entities must be members of a certain

class, each SDO is not constrained to any predefined structure. Therefore, the set of

fields that denotes an object's structure may be altered at any instance.

3.1.2 Organization of the Data

One of the goals of this software system is to provide personal organization via struc­

turing. The user manipulates the infrastructure of the stored data to suit his or her

necessities. This structure is implicit in the relationships between the data entities. A

Self-Describing object may hold references to other objects (using a direct pointer or

a symbolic link). The method of access to the information is navigation. Thus, one

object can function as the root of the object hierarchy. However, there is no stipula­

tion on the number of root objects and whether more than one clique may exist. To

retrieve other objects in the repository, the user "navigates" through this framework

by following record references. In a sense, objects function as folders, or containers to

other objects, in addition to storing more primitive forms of data.

Currently, the user interface of the prototype Organization Engine system is designed

around this notion of navigation and browsing rather than search, to locate pertinent

information. This concept of organizing data resembles the approach of synthesizing a

file system structure. Finding the desired information in this framework is elementary,

because the user possesses intimate knowledge of the substructure. This framework is

19

distinct from a file system since it provides a virtual data configuration system on top

of the underlying information. Therefore, each user may have a unique, customized

view of the data. Yet this approach is not costly in terms of storage, since the user

manipulates only the references to the data, rather than the data itself.

However, this data management scheme lacks a more general appeal. It is advan­

tageous to also provide search capabilities over object collections. Thus, an important

focus of this thesis, the query links, fuses these complementary search and navigation

information retrieval mechanisms.

3.1.3 System Layers

User
Interface

User
Interface

Organization Engine Toolkit

Local
Repository

Record
Identifiers

Figure 3.1: Organization Engine System Layers

Repository
Services
Drivers

Figure 3.1 illustrates the three system layers that combine for the complete Organi­

zation Engine data management and presentation system. The Organization Engine

20

Tool Kit is at the heart of the system. It is responsible for the manipulation of the

data entities that appear to the User Interface as Self-Describing Objects. The user

interface interacts with the Tool Kit through an Application Program Interface (API)

The operations include creation and management of data objects using the format of

Self-Describing Objects. The Tool Kit communicates with data repositories through

the services interface that defines five common procedural entry points for each data

source.

User Interface

The Organization Engine Tool Kit is essentially a software library that provides entry

points for application programs wishing to manage data. An example of such an ap­

plication program is a user interface utilized to view and manipulate the underlying

data. An important goal in the design of the Tool Kit is to allow for the development

of several different user interfaces. This approach insures that the data model function

is not restricted to any one method of user interaction. The design allows the set of

user interfaces to be easily extended, as research discovers more intuitive approaches.

The User Interface and other application programs communicate with the Tool Kit

through an APL As previously implied, this interaction is achieved by using an object

reference. The main functions provided by this interface include:

• creation of a new object instance

• retrieval of the structure of an object, i.e. the names of the fields.

• retrieval of any single field in an object using the field name

• manipulation of any single field (changing the value or user type)

• restructuring the object, i.e. replacement of the fields through addition or deletion

21

Organization Engine Tool Kit

The main component of the system is the Organization Engine Tool Kit. It is in charge

of the mediation between the application programs and the repositories, as well as the

management of the Self-Describing data entities. As stated above, the User Interface

communicates with the Tool Kit through an API using functions concerned with objects'

fielded information. The Tool Kit's responsibility is to convert these operations into

a "smaller set which communicates back to the actual source of data" [OEVDI92].

The Tool Kit maintains an internal object identifier for each SDO. This identifier is

composed of two parts: an identification of its data source , and a unique identifier

to be used by the data source. The interaction between the Tool Kit and any data

source is achieved by a dispatching to the appropriate data source, and by specifying

the identifier for the records.

Data Repository Interface

The purpose of the Organization Engine is to integrate information from disparate

data sources into one homogeneous framework. For each information repository there

must be a translation driver, or a service. It is essential that the set of services with

which the Tool Kit may interface be easily extensible. Hence, there exists a standard

interaction protocol between the Tool Kit and any service type. This protocol, which

is synchronous in nature, has six entry points from the Tool Kit to the service:

Startup

Notify the data source that the Organization Engine wishes to initiate a session.

Default-Resolve

Given an object identifier, this returns the set of fields in that object. Each

field has a name, value and user-type. Since the resolution process may be time

22

of future electronic libraries. The issues under investigation are diverse and include

scalability, presentation client-search engine protocol, value-added indexing, images,

reliability, and aspects of a distributed system. This section presents an overview of

client interaction with the Library 2000 search engine and data server. The discussion is

partially based on the help facilities of the system and partially on the weekly meetings

held with Professor Saltzer. [REDRM]

3.2.1 Client Protocol

The client protocol of the search engine is concerned with the formulation of queries

over data collections and the retrieval of record contents. The protocol syntax is based

on s-expressions. These allow a high degree of flexibility in specifying long and complex

queries. There are four distinct functions in the protocol. Three perform searches on

data collections. They are FIND, AND, and BUTNOT. The fourth function, GET,

accomplishes record content retrieval.

FIND, AND, BUTNOT

The FIND function is used to distinguish a particular set of records that satisfy a

certain search criteria. The arguments to the function are regular expressions. The

search engine takes each argument. It then calculates the set of records where the

argument, a regular expression, appears. Each of these sets is composed of a list of

record handles. Finally, it returns the intersection of the sets to the client. Therefore,

the FIND function returns a list of unique record identifiers that reference the complete

set of records where all the arguments to the FIND function are manifested.

The AND function takes a set of arguments, each conceived as a list of record

identifiers. It returns the list of record identifiers that constitute the intersection of

these sets. The typical argument to an AND operation is a FIND function specification.

24

consuming, there is an option to change this Default-Resolve procedure. When

changing this procedure, the service can store the object information obtained

from the data source. This option is particularly useful when the service wishes

to cache some of the information. This action is performed to avoid retrieving the

data again at a later point during the session.

Modify

Given an object reference and a list of fields, this replaces the contents of the

specified object with the new list of fields.

Create

Given a list of fields, this returns the handle for the newly created object or a

boolean false if this operation failed.

Modify-Field

Given a object handle, an existing field and a replacement field, this modifies the

field.

Shutdown

This entry point notifies the service that the Organization Engine Tool Kit is

about to terminate the session.

In this thesis, Modify, Create and Modify-Field were not implemented, because the

interface to the Library Search Engine does not currently allow any modification to the

underlying data storage from the established connection.

3.2 The Search Engine

"Library 2000" is a project currently undertaken at MIT under the supervision of Profes­

sor Saltzer. The goal of the project is to analyze the characteristics and requirements

23

A variation on the AND operation is the BUTNOT. This operation also takes a set

of arguments that are lists of record identifiers. It returns the list of record identifiers

that appear in the first argument but not in rest of the argument lists. The actual

syntax used for this function is:

(AND (FIND "sussman") (NOT (FIND "Mellon")) ...).

GET

The GET operation takes a unique record identifier as an argument. This handle is

typically an identifier returned from the issue of a FIND command. The search engine

responds with the contents of the identified record. The contents returned currently

appear as the full text card catalog record. This string can be parsed into the particular

sub-fields that constitute a record. The Organization Engine data translation modules

utilize this structured information to construct a Self-Describing object. The set of

fields includes a call number, a title, an author, an ISBN number, an LCCN, random

information notes, an abstract, key-words and record-keeping information.

3.2.2 Establishing a Connection

The connection utilized in the implementation of the integration is a specially tailored

Internet port intended for machine to machine interaction. The port connects an outside

application to the search engine. A similar connection, intended for human interaction,

can be reached via "telnet reading-room.lcs.mit.edu".

Choosing a Collection

The search based system presently allows query formulation and record retrieval over

three distinct record collections. The user may choose any of the three collections

25

through the user interface while selecting the remote database. To the user, the dif­

ferent components appear as distinct databases, although they utilize the same search

protocol. The current implementation employs an identical protocol to access the three

distinct collections. However, this approach does not appropriately reflect the current

methodology of remote database access.

Presently, a user must be familiar with the particular protocol specifications of a

remote database if he or she wishes to utilize its services. The syntax and semantics of

each collection's search protocol may differ. Therefore, in the current implementation,

the specific protocol used for any client-server communication is not transparent to

the user of the Organization Engine system. A possible topic for future work is the

addition of a translation mechanism from a single, general search language into the

specific language used by each data server.

At the server side, the selection of a collection is accomplished on a per-session

basis. The client specifies this choice during the communication initialization phase.

Once the selection has been declared, the established communications port is used

exclusively for query formulation over the particular collection. In order to choose

another collection, the client must activate another communications channel. Since the

server accepts multiple external connections, the client can simultaneously administer

a communications channel for each database selection.

Available Collections

The three collection currently available are:

MIT LCS/ AI Reading Room Catalog

This collection includes most proceedings, books and technical reports since 1986.

It contains approximately 15,000 items.

26

MIT BARTON Computer Science Snapshot

This collection contains the MIT BARTON catalog records in the area of computer

science as of May 1990. There are currently nearly 16,000 holdings.

MIT LCS & AI Technical Reports

This collection incorporates bibliographic information and abstracts of about 2000

MIT LCS and AI technical reports and memos.

A Stateless Connection

The design of the interaction is based on the notion of a stateless connection. Here,

the server does not have to retain any information about its clients or any completed

transactions. This form of interaction is preferred for a multitude of reasons, and has

been used in various data server applications such as Sun NFS. The rationale for this

approach found in the Sun NFS documentation especially applies in the information

retrieval environment:

The major advantage of a stateless server is robustness in the face of a

client, server or network failures. Should a client fail, it is not necessary

for a server (or human administrator) to take any action to continue nor­

mal operation. Should a server of the network fail, it is only necessary that

clients continue to attempt to complete NFS operations until the server or

network is fixed. This robustness is especially important in a complex net­

work of heterogeneous systems, many of which are not under the control of

a disciplined operations staff and may be running untested systems and/ or

may be rebooted without warning. [NFS, p. 15]

Finally, the decision to implement a stateless connection eases the implementation

task of the server and possibly the client. It also enables the server to administer a

27

p11tarj•111tu • di u• mtilti•t•f••· 1u,-~p;1;,,
I -,,i ' .. ; :;<:<7J,';: •,: •:• ,'_,'. ·•

-;

•

Chapter 4

Record Identifiers

This chapter discusses the design and implementation of one approach to the integration

between the two systems: the storage and management of unique record identifiers in

the Organization Engine. In this approach, the Organization Engine contains references

to specific records stored in the Search Engine. These locally stored remote record

references can be utilized by the Organization Engine to retrieve record contents from

the Search Engine. The Tool Kit is then able to present the record to the application

program as a Self-Describing object.

In this chapter, we first introduce the rationale for providing access to remotely

stored records through unique record identifiers. Included is the observation that search

capabilities are not sufficient to provide the desired function. Section 4.2 then presents

an overview of the implementation's architecture.

4.1 Why Unique Record Identifiers?

The maintenance of unique references to remote records allows the client application to

repetitively retrieve specific records. The following scenario illustrates this need. During

29

a search session on a database, a user discovers a set of pertinent records. Currently,

the user desires to obtain handles on these records to guarantee future access to the

information they contain. Unique record identifiers provide this function.

In the above scenario, the user is interested in the set of records that satisfy a

particular query at the time of the query formulation. In turn, the user wants to

maintain pointers to these records. The query utilized may now be discarded because

the set of records has already been obtained.

There are two alternatives to guarantee that the user will be able to access the

information from the chosen records in the future. One method involves simply copying

the complete record contents into the local store. Section 6.1 elaborates on this option.

The other option stores only the reference to the record contents in the local repository.

The complete contents can then be obtained upon demand through communication

with the remote database. This latter option is the focus of this chapter.

The record identifier access method allows certain important capabilities in infor­

mation management systems. These capabilities include a guaranteed handle for future

access, propagation of record references to other users and applications, reduction of

data in local storage and provision of up-to-date information. It also improves the

efficiency of information retrieval when the same records are retrieved more than once.

4.1.1 Search Capabilities Alone are not Sufficient

The Z39.50 protocol is an example of an information retrieval protocol that does not

allow record retrieval using unique record identifiers. As previously discussed in sec­

tion 2.2, the Z39.50 protocol requires the data server to maintain state for the client.

The state information includes a set of record references that are established through

a process of query formulation and refinement. At any point in the session, the client

may require the server to supply the full contents of any record currently in the active

30

set.

In this protocol, the only method to retrieve a desired record is to select a particular

record out of the active set. The selection is made using an element index. Specifying

the same index number at different instances during a session is not likely to result

in a reference to the same record. This behavior is a result of a modification in the

composition of the active set of records. In addition, there is no method of associating

unique record identifiers with data entities in the system (at least in the communication

protocol with the client). There is no guaranteed method to retrieve the same record

during different sessions.

4.1.2 A Guaranteed Handle for Future Reference

The most important reason a client application may wish to store a unique record

identifier is to have a guaranteed handle for future reference. Search capabilities alone

do not insure that the client will be able to retrieve a specific desired record at some

later date. This behavior is a result of two characteristics of the management of data

objects in an information storage and retrieval system: object mutability and addition

of matching records.

Object Mutability

The same search specification is not guaranteed to result in the same set of records at

two different times. The data objects in an information storage and retrieval system

may be mutable. Any part of the record can be changed. Therefore, if text matching

is utilized to locate the relevant records, then there is no guarantee that a given query

will retrieve the desired record. Unique record identifiers are essential when the client

application requires a handle on a particular data entity while allowing the actual

contents to change.

31

Addition of Matching Records

Since the result of the search may vary, the same query may yield more than the

desired record reference at a later date. For instance, the initial query may result in

a set containing one record reference. The client stores the search specification as a

handle. Then, the server adds another record to its database that satisfies the search.

The next time the same search query is invoked by the client, the result set consists

of two, rather than one, elements. This outcome will result in ambiguity on the client

side when the client wishes to retrieve the contents of the previously selected record.

The client is unable to distinguish which of the two records is desired. Again, the only

method to solve this problem involves maintaining unique identifiers, in addition to the

search capabilities.

4.1.3 Storage Requirement

An important aspect of each software system is its storage requirements. To avoid

data duplication and reduce local storage, the client application may wish to store

only a reference to the record contents. Storing the handle rather than the entire copy

of the record greatly reduces the storage requirement. It is unreasonable to expect

client applications to store information that can be easily retrieved from the server. In

addition, there may not be adequate storage space in the local repository. Finally, the

record content duplication results in wasteful data storage.

4.1.4 Propagation of Record Handles

Record identifiers also enable users and application programs to provide others with

guaranteed references to remotely located records. With the existence of record identi­

fiers that are understood by others, the flow of information is significantly facilitated.

32

For example, a document may contain references to other documents or library records.

Upon demand, the application program can easily retrieve the full contents of any item

referenced, whether it is stored locally or found in a remote database.

The ability to guarantee a reference to a record coupled with repository identifica­

tion information is essential in a distributed and heterogeneous information retrieval

environment. There are currently several efforts, such as the one by WAIS and the

World Wide Web to establish a global and unique identifier name space to most of the

accessible information on the Internet.

4.1.5 Retrieval using Record IDs may be more efficient than

Invoking Search

A more subtle point relates to the efficiency of record retrieval using direct pointers to

objects, rather than issuing an elaborate search command. In most implementations of

search engines, invoking a search is costly in terms of space and time in comparison to

a retrieval of one record using a unique record identifier. When repetitive retrieval of

records occurs frequently, this effect may actually have a measurable impact on system

performance.

4.1.6 Semantic Meaning of Handle on a Record

A handle on a remotely stored data object contains pertinent information regarding the

retrieval process. The information may represent the "road map" used in the execution

of query formulation and refinement. In this case, the relevant information describes

the process by which a single data object was distinguished from the others. The

identity of the specific record found in the process is less important. Here, the client is

better served by storing the elaborate procedure employed. Such an approach, which is

33

described later, is implemented in this thesis using the notion of query links (chapter 5).

When the client application is concerned with the actual record found rather than

the process used to distinguish it, unique record identifiers are suitable. The client may

want to reference and/or retrieve this particular record in the future. The meaning of

the handle established between the client and the server is a distinguishing marker, a

permanent pointer to some particular data object, i.e. a unique record identifier.

4.1. 7 Up-to-date Information

One of the goals of providing retrieval access through record identifiers is to enable the

client to easily access the current contents of specific records. This ability is especially

significant in domains where the nature of the data is dynamic. In this case, the

client maintains a pointer to a specific data entity. The contents of this entity may be

continuously changing (such as the current value of a stock). Access through record

identifiers is therefore a viable solution to this problem.

A distinction is established here between the time of search and the moment of data

retrieval. In the process of finding the pertinent records, the user formulates a query.

This action results in a set of references to records that satisfy this search criterion. As

previously discussed, at this point, there are two alternatives to guarantee farther access

to the information. The user may simply copy the data over to the local repository. In

this case, the time of search and the moment of the data retrieval are equivalent and

permanent.

The other option, which is the focus of this chapter, makes a distinction between

the search and the retrieval phases. The time of search is still permanent (i.e. the set of

records represent the set that satisfied some query at a particular point in time). How­

ever, the data retrieval occurs upon demand and represents the current contents of the

specific records. This process allows the local data management system to continuously

34

reflect the up-to-date information at the remote database.

When the nature of the data is more static, such as in current library systems, having

the most up-to-date information is not as important. However, in the case where library

records are updated, the identifier becomes an invaluable tool. In the libraries of the

future, where patrons may be able to add miscellaneous notes to documents, or where

the information in general will be more dynamic, this approach will be highly appealing.

4.2 Overview of the Architecture

In order for the Organization Engine data management system to provide access to

remote records using the notion of record identifiers, a new service was added to the

data repository interface. This section describes the design and implementation of this

service, as well as the addition of several necessary user interface components.

4.2.1 Putting Record References into the Organization Engine

An important aspect of the design of the interface implementation is the introduction

of record references into the Organization Engine. The system uses an approach based

on query formulation. Through the User Interface, the user selects a remote database

and specifies a query to perform in that database. In addition, the user selects the

storage location of the record references that are returned as the result of the remote

query. One possible location is in a folder inside the local repository.

Identifier Insertion Process

Refer to figure 4.1 for the following step by step description of the identifier insertion

process:

1. The user specifies the search and the remote database.

35

Organization Engine

~ (7)
...

SERVICES

Local
Store

N
E
T
w
0
R
K

..._ Object l
',, Remote (7)

__ (_
5
)__ (S_V Service

Remote /
Query
Retriever

3

"" ...

(4) Record Id List

...

Search Engine

Data

Data Server

Figure 4.1: Record Identifiers Service Architecture

2. The User Interface passes the query and remote database marker to the Remote

Query Retriever (RQR) module, which is essentially a part of the service interface.

3. This module establishes a connection with the specific remote database if a com­

munication channel has not already been instituted. Because of the stateless

nature of the communication protocol, a broken connection is inconsequential.

When required, the channel is simply re-established. The Remote Query Re­

triever Module sends the user specified query to the appropriate database engine.

4. In response, the data server and indexer (Library 2000) returns a list of unique

record identifiers satisfying the query specification. These identifiers have the

necessary properties describes earlier in the chapter.

5. The RQR module parses this list of identifiers and constructs a new record ref­

erence for each element of the result set. Using the Organization Engine Tool

36

Kit, the RQR module then places the new record references in the user specified

location.

6. The Organization Engine Tool Kit invokes the Remote Object Service in all sub­

sequent requests for the record information.

4.2.2 The Remote Object Service

The Remote Object Service is a component of the Data Repository Interface layer. It

couples an opaque object identifier, supplied by the Library search engine, with the

database service marker to create the object handle. To the Organization Engine Tool

Kit layer, this object appears equivalent to all other Self-Describing objects.

The most important task of the Remote Object Service is to convert a reference

to a remotely located record into the format of a Self-Describing object understood

by the Tool Kit. As discussed in section 3.1.3, the interface between the Tool Kit

and the service contains six entry points. The resolution entry point accomplishes the

translation task from an object identifier to a Self-Describing object.

The arguments passed into the resolution procedure are the remote object identifier,

a possibly null change procedure, and a possibly null new object contents. The object

identifier is a unique record identifier (in this case, a record number). This identifier

is the argument to a GET record request to the search engine (for GET syntax see

Section 3.2.1). The search engine returns a character string to represent the record

contents. The Tool Kit parses this result string into a list of fields. It then utilizes the

list of fields to construct a Self-Describing object. The second argument to the resolution

procedure implements the caching scheme, a topic discussed in the next section. The

last argument is not used in this implementation. It allows the Tool Kit to modify the

contents of a record to a new list of fields. Currently, however, client applications to

37

the Library engine are not allowed to manipulate the stored data.

4.2.3 Storing Record Information

An advantage of using references to records, rather than copying and storing the data,

is the drastic reduction in local storage requirement . However, when the information is

initially requested by the application or the user, the Remote Object Service must fetch

the data. It will then temporarily store the data. Significantly, the user may request

access to this particular record more than once during a session.

Repetitive retrieval from a remote data source may be costly in terms of response

time, total network usage, and possibly money (in the case where the data source charges

the client for each retrieval request). Therefore, a (possibly incoherent) cache is used to

store the information. The current implementation of the cache is transparent to the

Tool Kit and the application program. It conserves the information on a per-session

basis. Thus, the first time the user accesses a record in a session, the cache is updated

with the current data from the remote repository. The cache is consulted for the record

information on subsequent record inquiries. The implementation utilizes a form of lazy

evaluation, where the information is not acquired until a need for it is established.

An implementation of a production level information retrieval system must consider

the issues of copyrighting. The current implementation ignores the surrounding issues

by assuming that once a client obtains a copy of a record, the client application may

utilize it in any fashion it desires. However, a different contract between the server and

the client may introduce copyrights and specify a cost for each use of the document. In

this scenario, the above mentioned caching scheme could not be utilized without some

modifications that incorporate cost accounting.

Another consideration is that the cache may possibly represent out-of-date infor­

mation to the Tool Kit. Since the Tool Kit stores the record contents for the duration

38

of the session, the cache is not updated to reflect the contents of the remote record.

Therefore, the implementation does not currently guarantee that the information stored

locally will precisely represent the information at the remote data source. This caching

scheme variance may therefore be termed per-session caching.

Efficiency and Accuracy of the Per-Session Caching Scheme

The caching scheme implemented has proved to be efficient in the development envi­

ronment because of the following presumed characteristics of system usage:

• With respect to storage requirements, during any one particular session the user

accesses only a small fraction of the records. Therefore, locally maintaining a

copy of the data does not overburden the local store.

• With respect to system performance, it is likely that a record accessed once during

a session will be subsequently accessed during that session. With caching present,

successive record accesses are significantly faster and reduce overall network usage.

• With respect to the currency of the information, a session is assumed to persist no

longer than several hours. The user may require the information in the client to

accurately represent the up-to-date information in the remote database. The per­

session caching approach does not unequivocally guarantee that the information in

the local system precisely reflects the data in the server. However, because of the

static nature of the data in library information retrieval systems, the performance

is satisfactory. The cumulative detrimental effect of inaccuracies in this system

is predictably negligible when compared to the benefits achieved with per-session

caching. This small detrimental effect is a result of the minuscule probability

of an error. Incoherence in the cache may exist only in the situation where the

search engine mutates the record contents while a copy of the record is stored

39

in the cache. Since the Tool Kit presumably maintains the cache for a period of

no longer than several hours, and record contents updates are infrequent in the

search engine, incoherence will occur only sporadically. Therefore, the per-session

caching scheme will rarely falter. Because of the efficiency gains in access time to

record contents, such errors can presumably be tolerated in the current user access

metaphor. For connections with other types of systems, this caching scheme may

not be appropriate since the data may be more dynamic than information stored

in current library systems.

Extending the Notion of the Cache

Idealistically, the user should be able to control some of the cache's characteristics.

The desired form of the cache in this system is therefore not genuinely equivalent

to the prevalent notion of caching. The caching process should not be completely

transparent to the user or the application program. Two attributes that the user may

desire to control are how often and under what conditions the cache is updated. For

instance, the user may require the information present in the system to be considerably

current. Therefore, on every access to any remote record, the Remote Object Service will

have to fetch the information from the remote database. Other options include cache

information update after a pre-specified time interval, or an update that is dependent

upon the length of time the record has been in the cache. This thesis does not investigate

any of the above extensions, although further research may yield beneficial results.

40

Chapter 5

Query Links

The integration between the Organization Engine and "Library 2000" can be imple­

mented by the use of query links. This chapter discusses the storage and management

of query links in the Organization Engine. In this approach, the Organization Engine

manipulates data objects that store search specifications. The query link service utilizes

the search specification embodied in the data object to construct references to remote

records. Thus, a query link object contains references to remote records handled by the

unique record identifier service as discussed in chapter 4.

In this chapter, we first clarify the definition of a query link. Section 5.2 reveals the

significance of maintaining query links. We continue by discussing the semantics of the

object identifier and conclude by providing the overview of the system architecture.

5.1 What is a Query Link?

The query link handle contains a search specification. The query link service utilizes

this specification to retrieve the set of record references that match the search. Funda­

mentally, the query link is a folder that contains these records. Each of the pinpointed

41

records is governed by the unique record identifier service.

Significantly, objects contained in a query link are ephemeral. Because the record

references may unexpectedly disappear, a user may request a guarantee for future ref­

erence to a pertinent record. Therefore, record references in a query link can be copied

or moved to a different location in the local store. This process insures that the record

references become a permanent constituent of the user's repository.

5.2 Why Query Links?

The maintenance of query links enables the client to perform repetitive searches. This

approach allows the user to preserve and repetitively employ a particular search. The

search specification provides a "road map", or a procedural description, of the method

to locate references to pertinent records. In this technique, the process of filtering

information is of importance. To preserve the filtering process, query links can be

permanently stored in the local repository.

5.2.1 Concurrent Query Processes

The storage of query links in an organization-based repository presents an extension

to the system. In addition, it alleviates problems that exist in systems based solely

on search capabilities. For instance, a user of a search engine interface will most likely

require that the application will preserve the user's previous transactions. The sat­

isfaction of this requirement may involve the maintenance of an active set of record

references, or the preservation of a search request that the user continuously modifies

and refines. Query links, as well as most implementations of search engine clients,

provide these functions.

However, user interaction with a search engine should not be limited to the above

42

mentioned constrained function. A researcher currently locating background literature

may desire to investigate several issues in parallel. Therefore, the client application

should support several simultaneous query endeavors. In addition, it would be advan­

tageous if the queries were stored in between sessions, to allow an effortless continuation

of the research process. The inclusion of query links in the Organization Engine provides

exactly these functions.

5.2.2 Up-to-date Search Result

Query links provide a different alternative to "the time of search and moment of re­

trieval" quandary than unique record identifiers or immediate duplication implemen­

tations. For query links, the time of search is the present. Hence, the set of record

references contained in the query link reflects the up-to-date search result embodied in

the link. Once the set of references has been established, the user may retrieve any

element in the set. Although the search precedes the data retrieval phase, the time of

search and the moment of retrieval are essentially equivalent.

In an environment where the data is dynamic and search results change frequently,

query links are undoubtedly useful. However, even in an environment where the data

is fairly static, such as in a library application, query links are beneficial. The storage

of query links in an organization-based environment allows the researcher to perform

the same search in the present and the future without the re-specification of the query.

The organized repository allows the researcher to conveniently store and subsequently

locate and retrieve the pertinent queries. This process is accomplished effortlessly using

the query link service.

43

5.3 Caching Revisited

The caching scheme utilized for the implementation of query links is similar to the

method used for record identifiers discussed in section 4.2.3. The search result, a set of

record references, is stored in the query link service on a per-session basis. Again, lazy

evaluation is used. The service communicates with the remote database only when the

application program requests the contents of the query link. The result is then cached

in the local store for the duration of the session.

5.4 Semantics of the Object Identifier

The object identifier used for administering the query links is composed of two elements.

The first component distinguishes the remote database. The second element is the

query specification. In the interaction with Library 2000, a string in the format of a

FIND request is incorporated (see Section 3.2.1). Upon demand from the Tool Kit,

the query link service communicates this string to the search engine interface. The

service consults the response, which is a set of record identifiers, to construct the record

references within the query link.

5.4.1 Creating a Query Link

Communication with the data server is not necessary in order to construct a new query

link object. The Tool Kit simply constructs an object identifier that specifies the query

and identifies the remote database. The Organization Engine retrieves the list of record

identifiers that match the search only upon user demand. This process contrasts with

the record identifier method. There, the Tool Kit invokes a remote search to obtain the

list of record identifiers immediately after the user specifies the complete query.

44

The origin of the object identifier dramatically differs from the origin of all other

identifiers in the Organization Engine system. For other objects, the lower layer is

always responsible for assigning the unique record identifier. [OETR92] In the query

method, the user who creates the query link assigns the object identity through the

selection of the remote database and the search string.

5.4.2 Editing Query Links Identifiers

The process of query modification and refinement is facilitated by the query link identi­

fier editing capability. Once a query link has been created, the user may alter its search

specification or the remote database selection. The content of the query link are then

adjusted to reflect the new result of the search specification. This interaction can be

used analogously to the search refinement process in other information retrieval client

applications. Again, the distinction is that the query links are permanently stored in

the local repository.

5.5 Architecture Overview

A new service is incorporated to the Organization Engine data repository interface in

order to provide query links. The service relies on the Remote Object Service discussed

in section 4.2.2 for the management of the unique record identifier references.

5.5.1 Query Link Creation and Management

Figure 5.1 provides an overview of the system architecture and module interaction:

1. The user specifies the search and the remote database. The user interface trans­

mi ts the information to the Organization Engine Tool Kit.

45

Organization Engine

/
SERVICES

Local
Store

(1) .. --- PJ -• Remote
Query Data

Engine
...... (7) . . -- .

Link
Service (4) ---

N
E
T
w
0
R
K

.
'. · .. ·.. Cache (5) _ -

\ ' , .. · .. of Links • -

' ' ' ' ' ' ' ' , ,
' Remote'

,

', Object .'
Service ,.

,

Search Engine

Data

Data Server

and Indexer /

++

Figure 5.1: Query Link System Architecture

2. The Tool Kit creates an instance of a query link object that embodies the user's

search specification. A reference to this object can be placed in the local repository

to enable future access to the query link. It is significant to note that the creation

of a query link object does not necessitate interaction with the remote search

engme.

3. When the contents of the query link is requested, the Tool Kit consults the Remote

Query Link Service (RQLS) module.

4. The RQLS module maintains a local cache of query results. If the content of the

object is not in the cache, the RQLS module invokes the remote query on the

specified database. The query result must be a set of record references. In the

case of Library 2000, the query should have the format "(FIND ...)", or a variant

discussed in section 3.2.

46

5. Library 2000 returns the set of unique record identifiers that reference the records

satisfying the search requirement. The result is identical to the one received by

the Remote Query Retriever Module (the module used for the record identifier

service).

6. The query link cache is updated with the current list of record references. The

RQLS module communicates the required information to the Remote Object Ser­

vice in order to construct new remote record references that can be manipulated

by the Tool Kit, .

7. When the Tool kit requires the content of a remote record reference found in a

query link object, it consults both the RQLS module and the Remote Obj_ect

Service module. The Remote Object Service module retrieves the up-to-date

record information in a method similar to the one used to retrieve other remote

record contents.

5.5.2 Copying Record from Query Links

One of the goals of query links is to locate references to pertinent records. After locating

such records, the user may desire to maintain permanent handles on these pertinent

records. Since the record references in the query links are ephemeral, the references

in the query links may disappear in the future. This phenomenon can result from a

modification of the query embodied in the link, or because of a mutation in the remote

object. Therefore, to ensure permanence, the query links service allows the user to

copy or move record references from the query link object to other locations in the local

repository.

47

Chapter 6

Other Options

There exists other alternatives for the integration of the two data management systems.

These options include immediate duplication, partial storage and browsing of the search

indices. This chapter outlines the fundamental issues of each of these possibilities that

have not yet been implemented.

6.1 Immediate Duplication

This section describes a relatively elementary approach to the integration of the two

systems: immediate duplication. In this method, the user specifies a query that is

then communicated to the search engine. The contents of all records that satisfy the

search criterion are subsequently copied to the local repository. A new Self-Describing

object is then constructed to correspond with each element in the result set. Thus, the

information replicated from the remote database becomes an integral part of the local

repository.

48

6.1.1 Why Immediate Duplication?

In addition to the relative simplicity of immediate duplication, other rationale exists for

implementing this approach. For example, the user may desire to take a snapshot of the

information at the remote database. Here, the user requires a copy of the information as

was discovered in the search engine during the initial search and retrieval phase. There

is no requirement that the data precisely reflect the current information available at

the data server. The information, as found at the moment of search, is adequate.

Furthermore, the replication of data to the local repository guarantees that the user

will possess an access path to the pertinent information in the future.

Guaranteed Future Access

Maintaining a handle on a remote record does not guarantee future access to the per­

tinent information. A user may be particularly interested in the information stored in

some remote record. Under three circumstances, a unique handle will not certify subse­

quent access to the pertinent information contained in the record. First, the record may

be omitted from the remote data server by the curator of the database for various, and

possibly unknown reasons. This dilemma does not constitute a difficulty if the remote

source never deletes records from its repository, or always assures future access to the

information in some other fashion. For example, if the record is deleted, the data server

may provide directions for the retrieval of the record from another location.

Second, even in an environment where access to the records is certified with the use

of a permanent unique identifier, the pertinent information may be lost. If a record

is modified, information pertinent to the user may be deleted or profoundly altered.

Therefore, in an environment where remote records are mutable, the exclusive method

to guarantee future access to the pertinent information is the replication of data in the

local store.

49

Finally, the location of a remote record depreciates the reliably of information re­

trieval as compared to local storage of the data. Distributed systems are clearly prone

to faults, because of network or remote data source malfunction. The storage of infor­

mation locally provides an alternative attempt to increase the reliability of information

access.

6.1.2 Modification of Records

In contrast to the above scenario, the user may desire to alter the information in a

record. It is therefore advantageous to store a copy of the record in the local repository.

The user is now able to modify the information in the record. For instance, the user

may add miscellaneous notes or delete fields that are malapropos. However, the general

copy available to other clients is unaffected. Therefore, the local copy of the record is

transformed to suit the user's provisions, while other clients of the search engine are

not afflicted.

In addition, the current implementation of the search engine does not allow modifi­

cation to the database from the client interface. It is clear that only privileged clients

should be awarded this capability. Therefore, for clients without modification author­

ity, the immediate duplication method compensates by enabling the client to refashion

their own local replica rather than the global representation.

6.1.3 Storage Considerations

A prominent disadvantage of the current approach is data duplication. Storage re­

quirements are increased because of the acquisition of complete records in the local

repository. The number of records stored locally may be manageable, because the user

stores only records that are pertinent. It is plausible that the fraction of records in the

data server pertinent to any particular user is rather insignificant. However, the precise

50

Organization Engine

SERVICES

(4)

~- Data Local
Engine Store

(5) ~----~

l (4)

Remote
Query 2

Retriever

(3) textual info

N
E
T
w
0
R
K

Search Engine

Data

Data Server •
and Indexer/

-· \

Figure 6.1: Immediate Duplication System Architecture

burden depends on the characteristics of the information stored locally. For example,

the accumulation of even a small number of full manuscript Post Script images can prove

overwhelming to the local store.

6.1.4 Architecture Overview

In order to provide immediate duplication capabilities in the Organization Engine, it

is not necessary to incorporate another service in the set of data repository drivers.

The only additional module required is an enhanced version of the Remote Query

Retriever (RQR) module utilized in implementing the unique record identifier service

(see section 4.2). The RQR module simply parses the record contents transmitted from

the search engine. It constructs new records that embody the information in the remote

record, and places them in the local repository.

Refer to figure 6.1 for the following step by step description of a possible implemen-

51

tation architecture for the search and duplication process:

1. User specifies a search and a remote database. This information is communicated

to the Remote Query Retriever (RQR) module.

2. The RQR module dispatches a query to the remote database. This query is of

the form "(GET ...)", where the argument can be either a search specification or

an actual record identifier.

3. The search engine responds with the record contents of all records satisfying the

search criterion.

4. The RQR module parses each record contents (returned by the search engine)

into a list of fields. It then constructs new Self-Describing objects in the local

store using these lists of fields.

5. This new information becomes an integral part of the local store. There is no

more communication with the remote database concerning the records presently

in the local store.

6.2 Partial storage

It may be advantageous to implement a system where only some components of the

remote records are stored locally. Here, the user specifies which parts of the record

should be updated from the remote database, and which parts remain under the man­

agement of the local repository. This preference constitutes the primary rationale for an

integration based on the partial storage method. Contrary to immediate duplication,

changes to certain components of remote records are propagated to the local store.

52

6.2.1 Why Partial Storage?

Partial storage of record contents has several practical applications. First, by locally

storing a subset of the information under client supervision, the user is able to modify

and manipulate certain components of the record contents. In addition, the user can

also attach miscellaneous fields to the record. However, the other components of the

record reflect the current information in the remote database.

An implementation of partial storage may lead to the following interesting scenario.

Suppose several clients cooperate in the management of a particular record. Each client

governs a specific component of the record. Therefore, the copy in the data server is,

in effect, a conglomerate of all the local copies. Issues such as access control to the

records, retrieval and update conflict resolution, and record contents coherency can be

the topic of further research in this area.

Storage Considerations

A straightforward practical application of the partial storage approach is an attempt

to reduce local storage and data duplication. The client may elect to locally store only

those components that are not sizable. Thus, while the name of an image and other

relevant information is stored locally, the actual image may be stored in the remote

database. The tradeoff then becomes one of access time versus space requirements.

Local storage furnishes short access time, but is expensive in terms of client space

requirements. The characteristics are reversed for the maintenance of links to record

component.

An important design issue is user control versus the application authority regarding

which constituents of the record should be managed locally. Is it more advantageous

to allow the user complete jurisdiction, or is it more appropriate to authorize the ap­

plication to determine this behavior? For instance, the client application may decide

53

to store information locally, based solely on the size of the component, while the user

would be more concerned with access time.

6.2.2 Implementation Ideas

In the implementation of partial storage, the client must be able to sift through the

record contents retrieved from the remote database, and update the local replica only

in specific fields. An extension to the search engine protocol could aid in this context.

The enhancement will allow the client application to specify a set of fields within a

record that it wants to retrieve. This enhancement will both aid the client (or a human

user of the search engine) to filter the relevant record contents, and also reduce network

traffic.

6.3 Browsing / Traversal through the Search In­

dices and Data Categories

An important element of information retrieval in an organization-based repository is

search by association or other groupings. These groupings cannot necessarily be clearly

defined by the user. An example of the search activity is browsing through the search

indices or other data categorizations. This activity cannot be easily accomplished using

search specifications.

The capability to traverse the access indices of a search engine utilizing the Organi­

zation Engine interface is advantageous. In addition, the browsing through value added

data categorization is beneficial. The following subsections discuss why these methods

facilitate information discovery.

54

6.3.1 Why Traversal of the Search Indices?

The search indices of the data server hold valuable information beyond their direct

utilization by the search engine. In actuality, the search engine merely functions as an

intermediary between the user and the search indices. Therefore, allowing the user to

browse through the indices while also performing set operations such as AND, OR, and

BUTNOT may improve the utility of a search engine. For instance, if the user is not

certain of the spelling of an author's name, he or she may benefit from this capacity.

Here, traversing through an alphabetical author name list may be preferable to the

derivation an appropriate query.

In this framework, the user traverses the search indices and collects the pertinent

record references. Simultaneously, the user can perform set operations to construct

a working group of the desired record references. When needed, the user can also

incorporate search results that cannot be easily achieved with traversal of the indices

(such as certain wild-card queries). In the context of a search engine where the full text

of the records is indexed, and no structural information exist, such a feature could be

a very useful.

6.3.2 Why Value Added Data Categorizations?

The categorization of data contains substantial value within itself. A service that pro­

vides access to data groupings can greatly facilitate the search phase of information

retrieval. An example of such a facility is the Library of Congress publications cate­

gorizations. The typical library system user frequently utilizes these categorizations to

find references to pertinent records. The record location method illustrates the benefits

provided by a value-added indexing service. The navigation based user interface of the

Organization Engine is an obvious candidate to function as the interface between this

55

service and the local system.

6.3.3 Implementation Considerations

The user interface of the Organization Engine and the above approaches are both based

on navigation to locate information. Therefore, the implementation of these approaches

as additional data repository services is relatively straightforward because of the inher­

ent structure in the indices.

However, there are several important considerations in the design of a search engine

system that provides these capabilities. First, the search engine must supply indexed

information based on a fielded structure of the records. However, whether to supply

this function on all the fields or only on a selected group is an application specific

consideration. In addition, in the full text implementation of such a service, should

an index exist for each field, or should there be additional fielded information in the

current indexing scheme? Moreover, in the interaction with the client, the search engine

can reveal the search indices through a special service. Alternatively, one of the records

can function as an index. An index record can be administered and updated regularly

by the search engine to reflect the current repository status. The Organization Engine

may utilize the unique record identifier service to maintain a handle on this special data

entity.

56

Chapter 7

Conclusion

This thesis presented a prototype integration of the Organization Engine and "Li­

brary 2000". The implementation successfully incorporates search capabilities into an

organization-based framework. Specifically, two access facilities utilizing the notions of

query links and unique record identifiers were added to the set of translation drivers for

the Organization Engine Tool Kit. In addition, the user interface of the Organization

Engine system was enhanced to accommodate these added functions. First, this chapter

examines the merits of the two access facilities implemented for this thesis. Then, the

discussion suggests some relevant future work.

7.1 Insights

Unlike other information retrieval methods, the unique record identifier method suc­

cessfully satisfies significant requirements of information retrieval systems. In order for

the Organization Engine to incorporate data from disparate sources, it must be able

to access search based data servers in a coherent fashion. The unique record identifier

method allows the user to store permanent references to pertinent records. Thus, the

57

user is able to repetitively retrieve the possibly changing contents of specific records.

As a result, record handles may be propagated to other users of similar information

systems. In addition, the record identifier method presents up-to-date record contents

to the user. An important issue here, which merits future investigation, is the design

of an appropriate information caching scheme to fit the implementation's environment.

It is observed that the per-session caching scheme currently employed satisfactorily

addresses the issues of storage requirement, access time requirement, and currency

requirement. However, it does so only within the context of servers that manage static

data.

This thesis discussed the importance of maintaining unique record identifiers in the

hope that all future implementations of information retrieval systems provide this data

access ability. The record identifiers' effect is significant in any situation where the user

accesses the same database more than once with regards to the same topic.

The storage of record references within an organization-based repository appears

natural and advantageous. The organized store allows the user to freely and efficiently

construct groupings of pertinent records. These groupings facilitate any future infor­

mation location and retrieval. The scenario works in the same manner that storing files

in a tree structure organizes and formats a user's information categorization. Locating

information is trivial when the user has the personalized, intimate knowledge of the sub­

structure. Therefore, the storage of remote record references within the Organization

Engine is essential in contemporary global information environment.

The implementation of query links was largely facilitated by the existence of the

code for handling record identifiers. It is observed that query links are beneficial in

the information filtering process. The query link concept enables the users to engage

in concurrent and persistent query processes, as well as to maintain up-to-date search

results for queries utilized more than once. The user interface capabilities to create and

58

edit query link identifiers permit the above functions.

Other systems, such as the Semantic File System, Wide Area Information Servers,

and World Wide Web, have used a similar concept of storing a search specification

for repetitive use. However, it is only the implementation of such a concept in an

organization-based environment that fully exploits this capability. Because the user

may copy record references stored in query links, he or she may guarantee future access

to records that are pertinent.

The other alternatives discussed in chapter 6 for the integration between the two

systems may also be beneficial for future information retrieval implementations. The

immediate duplication method guarantees quick access to information, at the cost of

greater local storage, duplication of data, and information becoming out-of-date. The

partial storage concept solves these problems by storing selected components of the

information locally, while maintaining pointers to the other constituents. Finally, the

browsing method allows another useful form of associative access to data. It is appar­

ent that these wide-area network capabilities are essential in the contemporary global

information environment.

7.2 Future Work

This thesis reveals a path for the exploration of modern information management and

retrieval systems. The research path focuses on the incorporation of data from dis­

parate sources, and the ability to access distributed and remotely available information

systems. The insights gained from this thesis point to some possible future work in the

area:

• Users of the Organization Engine will benefit from the development of more trans­

lation drivers. Services to incorporate WAIS and W3 will further exploit the

59

potential to combine legacy data, an attribute inherent in organization-based sys­

tems. The implementation of these drivers requires a relatively small amount of

work while adding access to a large number of data sources.

• The other concepts to incorporate search based and organization-based systems

discussed in chapter 6 can be implemented.

• In order to incorporate other types of data sources, a more thorough analysis

of the caching requirements and strategies for query link and record identifier is

required.

• To simplify the user task of accessing diverse data repositories, a translation

mechanism should be added from one single search syntax to each particular

server protocol. If the remote data sources have the same search capabilities,

but a different syntax, user transparency to the syntax is preferred. However, for

fundamentally different data sources, such as an object-oriented data base versus

a full-text information retrieval system, user level transparency to the search

protocol is not advantageous.

• A more intuitive user interface to the Organization Engine (for instance Maya

2000 Points Of Light [JSM92]) should be implemented. This enhancement should

include a different metaphor for the incorporation of search abilities. [KSW92]

• In order to exploit the benefits of the client application to the overall system,

the implementation needs to provide the ability for data updates initiated by the

client. The data manipulation should transpire within the context of the organized

repository.

• The client should be able to incorporate results from multiple data sources that

include the conciliation of numerous result sets and multiple references to identical

60

records. The same bibliographic record may be stored in different data collections,

yet represent the same physical entity. In addition, different bibliographic records

may reference the same book, yet in a different language, or from a different

publisher (i.e. one in the U.S. and one in England).

• Further investigation of the contract between the two systems would be advanta­

geous. For instance, what are the implications if records are guaranteed only for

a prespecified time? Here, the record identifier may need to include expiration

information.

• In order to enhance the Organization Engine, personalized views should be made

accessible to other users upon demand. This requirement may include the transfer

of record identifiers and query links to others. Ultimately, the Organization Engine

could function as a value added index server.

This thesis has continued to research the distributed information retrieval and man­

agement environment. While the proposed access facilities provide useful capabilities

within this framework, they merely introduce the relevant issues. However, I believe

that this thesis can serve as another stepping stone of research in making global infor­

mation more readily accessible to computer users.

61

Bibliography

[Z39.50]

[WWW]

"American National Standard for Information Retrieval Service Definition

and Protocol Specification for Library Applications", ANSI/NISO Z39.50-

1988, ISSN:1041-5653, Transaction Publishers, New Brunswick, USA

Berners-Lee, T., et al. (1992), "World-Wide Web: The Information Uni­

verse", Electronic Networking: Research1 Applications1 and Policy, Vol 1,

No 2, Meckler, Westport CT, Spring 1992

[SFS] Gifford, D.K., Jouvelot, P., Sheldon, M.A., O'Toole, J.W. Jr, "Semantic

File Systems", ACM 0-89791-447-3-91/0009/0016, 1991

[KAHL89] Kahle, B., "Wide Area Information Server Concepts", Version 4, Draft,

Thinking Machines Coprporation, October, 1989,

[KAHL90] Kahle, B., et al "WAIS Interface Prototype Functional Specification",

Thinking Machines Corporation, April 1990

[OEVDI92] Miller, J.S., Neidner, C., London, J., "The Organization Engine: Virtual

Data Integration", Technical Report CRL 92/3, Digital Equipment Cor­

poration, Cambridge Research Lab, 1992

[OETR92] Miller, J.S., "The Organization Engine", in draft

62

[JSM92) Miller, J.S., penonal commuaic:Miou

[NFS] "Networking on the Sun Worutata•, S.• M'ic:ro&,-emt, Part #800-
1324-03, l.evisioa B of,17, Fee. 1111

[REDRM} Reading Room help facility, -..... nr::f-, ••Jca.mit.edu"

[KSW92) Winer, K.S., penoaal ~

