
Closing the Window of Vulnerability
in Multiphase Memory Transactions�

John Kubiatowicz, David Chaiken, and Anant Agarwal
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Abstract

Multiprocessor architects have begun to explore several mecha-
nisms such as prefetching, context-switching and software-assisted
dynamic cache-coherence, which transform single-phase memory
transactions in conventionalmemory systems into multiphase oper-
ations. Multiphase operations introduce a window of vulnerability
in which data can be invalidated before it is used. Losing data
due to invalidations introduces damaging livelock situations. This
paper discusses the origins of the window of vulnerability and pro-
poses an architectural framework that closes it. The framework is
implemented in Alewife, a large-scale multiprocessor being built
at MIT.

1 Introduction

One of the major thrusts of multiprocessor research has been the
exploration of mechanisms that provide ease of programming, yet
are amenable to cost-effective implementation. To this end, a
substantial effort has been expended in providing efficient shared
memory for systems with large numbers of processors. Many of the
mechanisms that have been proposed for use with shared memory,
such as rapid-context switching, software prefetch, fast message-
handling, and software-assisted dynamic cache-coherenceenhance
different aspects of multiprocessor performance; thus, combining
them into a single architectural framework is a desirable goal.

This paper investigates such a unifying framework, and explores
one consequence, the window of vulnerability. Although we have
implemented the complete framework in the MIT Alewife ma-
chine [1], mechanisms can be mixed and matched; other mul-
tiprocessor designers may choose to implement a subset of this
framework that suits their own needs.

Many of the mechanisms associated with shared memory at-
tempt to address a central problem: access to global memory may
require a large number of cycles. To fetch data through the inter-
connection network, the processor transmits a request, then waits
for a response. The request may be satisfied by a single memory
node, or may require the interaction of several nodes in the system.

�Appeared in ASPLOS V, October 1992

In either case, many processor cycles may be lost waiting for a
response.

In a traditional shared-memory multiprocessor, remote memory
requests can be viewed as split-phase transactions, consisting of
a request and a response. The time between request and response
may be composedof a number of factors, including communication
delay, protocol delay, and queueing delay. Since a simple single-
threaded processor can typically make no forward progress until
its requested data word arrives, it spins while waiting. When the
data word arrives, the processor consumes the data immediately,
possibly placing it in a local cache.

Rather than spinning, a processor might choose to do other useful
work. To tolerate long access latencies, architects have proposed a
number of mechanisms such as prefetching, weak ordering, multi-
threading, and software-enforced coherence. All are variations on
a central theme: they allow processors to have multiple outstanding
requests to the memory system. A processor launches a number of
requests into the memory system and performs other work while
awaiting responses. This capability reduces processor idle time
and allows the system to increase its utilization of the network.

The ability to handle multiple outstanding requests may be im-
plemented with either polling or signaling mechanisms. Polling
involves retrying memory requests until they are satisfied. This
is the behavior of simple RISC pipelines which implement non-
binding prefetch or context-switching through synchronous mem-
ory faults. Signaling involves additional hardware mechanisms
that permit data to be consumed immediately upon its arrival. Such
signaling mechanisms would be similar to those used when imple-
menting binding prefetch or out-of-order completion of loads and
stores. This paper explores the problems involved in closing the
window of vulnerability in polled, context-switching processors.
While signaling leads to related approaches, a detailed discussion
of these is beyond the scope of this paper.

Figure 1 illustrates the timing involved in overlapping access
latency using a polling mechanism. The figure shows a time-
line of events for two memory transactions that occur on a single
processing node. Time flows from left to right in the diagram.
Events on the lower line are associated with the processor, and
events on the upper line are associated with the memory system.
In the figure, a processor initiates a memory transaction (Initiate
1), and instead of waiting for a response from the memory system,
it continues to perform useful work. During the course of this
work, it might initiate yet another memory transaction (Initiate 2).
At some later time, the memory system responds to the original
request (Response to Request 1). Finally, the processor completes

1

Processor Actions

Memory System Actions

Request 1 Request 2

Time

to Request 2
ResponseResponse

to Request 1

Access 1 Access 2Initiate 1 Initiate 2

Transaction 1

Transaction 2 Window of Vulnerability

Request Phase

WOV

Access Phase

Figure 1: Multiple outstanding requests.

the transaction (Access 1).

Since a processor continues working while it awaits responses
from the memory system, it might not use returning data imme-
diately. Such is the case in the scenario in Figure 1. When the
processor receives the response to its second request (Response
to Request 2), it is busy with some (possibly unrelated) computa-
tion. Eventually, the processor completes the memory transaction
(Access 2).

Thus, we can identify three distinct phases of a transaction:

1. Request Phase – The time between the transmission of a
request for data and the arrival of this data from memory.

2. Window of Vulnerability – The time between the arrival of
data from memory and the initiation of a successful access of
this data by the processor.

3. Access Phase – The period during which the processor atom-
ically accesses and commits the data.

The window of vulnerability results from the fact that the processor
does not consume data immediately upon its arrival. During this
period, the data must be placed somewhere, perhaps in the cache
or a temporary buffer. Note that a simple split-phase transaction
can be seen as a degenerate multiphase transaction with zero cycles
between response and access. The period between the response and
access phases of a transaction is crucial to forward progress. Should
the data be invalidated or lost due to cache conflicts during this
period, the transaction is terminated before the requesting thread
can make forward progress.

Closing the window of vulnerability involves ensuring forward
progress for multiphase memory transactions. The consequences
of lost data are more subtle and perilous than simple squandering of
memory resources. The window of vulnerability allows scenarios
in which processors repeatedly attempt to initiate transactions only
to have them canceled during the window of vulnerability. In
certain pathological cases, individual processors are prevented from
making forward progress by cyclic thrashing situations. While
such situations may be rare, they are as fatal as any other livelock
or deadlock situation.

The window of vulnerability is also opened by another class of
mechanisms. This class contains a number of mechanisms includ-
ing fast I/O, interprocessor messages, synchronization primitives,
and extensions of the memory system through software. When

To Interconnect From Interconnect

Request

Request

Request

Response

Message

Message

Message

Response

Processor
Waiting for response

to request for data
from shared memory

Figure 2: The need for high-availability interrupts.

implementing such mechanisms, the successful completion of a
spinning load or store to memory may depend on the execution
of network interrupts. These asynchronous events must be able to
fault an instruction which is in progress, thereby opening a window
of vulnerability. The term high-availability interrupt is applied to
such externally initiated pipeline interruptions.

Figure 2 illustrates this scenario with an architecture that sup-
ports fast message handling. In the figure, the processor is spinning
while waiting to access a remote memory block. Several messages
have entered the processor’s input queue before the desired mem-
ory response. Consequently, the processor will not make forward
progress unless a high-availability interrupt is invoked to process
these messages.

This paper describes a framework that eliminates livelock prob-
lems associated with the window of vulnerability for systems with
multiple outstanding requests and high-availability interrupts. The
system keeps track of pending memory transactions in such a way
that it can dynamically detect and eliminate pathological thrash-
ing behavior. The framework consists of three major components:
a small, associative set of transaction buffers that keep track of
outstanding memory requests, an algorithm called thrashwait that
detects and eliminates livelock scenarios that are caused by the
window of vulnerability, and a buffer locking scheme that prevents
livelock in the presence of high-availability interrupts.

Not all architects will need to implement the full gamut of mech-
anisms described in this paper. For this reason, we describe the dif-
ferent subsets of the framework and the mechanisms that each sub-
set will support. In order to motivate the architectural framework
that we propose, Section 2 presents examples of shared memory
mechanisms. Section 3 then shows how the window of vulnera-
bility can impede a system’s forward progress. Section 4 explores
several components of the framework, each of which provides part
of the solution for ensuring forward progress. Section 4 concludes
with a hybrid architecture that combines these components to im-
plement all of the mechanisms. Section 5 describes how the issues
discussed in earlier sections of this paper are reflected in the actual
implementation of Alewife. The paper concludes by examining the
implications of the window of vulnerability on the design of shared
memory systems.

2

□
■
■

-

2 Hardware Mechanisms for Shared Memory
Support

Three general classes of hardware support for efficient implemen-
tation of distributed shared memory are:

1. Coherentcaches to automatically replicate data close to where
it is needed, and a mechanism to allow multiple outstanding
requests to memory.

2. Atomic operations on critical system resources.

3. High-availability interrupts for response to high-priority asyn-
chronous events.

This section presents examples of some of the mechanisms that
belong to these classes and makes a case for incorporating them
into distributed shared memory machines.

The following section describes how each of these mechanisms
leads to the same window of vulnerability problem. A given system
might implement only a small subsetof these mechanisms, in which
case only a portion of our architectural framework would need to
be implemented.

Coherent Caches with Multiple Outstanding Requests Co-
herent caches are widely recognized as a promising approach to
reducing the bandwidth requirements of the shared-memory pro-
gramming model. Because they automatically replicate data close
to where it is being used, caches convert temporal locality of access
into physical locality. That is, after a first-time fetch of data from a
remote node, subsequent accesses of the data are satisfied entirely
within the node. The resulting cache coherence problem can be
solved using a variety of directory based schemes [2, 3, 4].

In a cache-based system, memory and processor resources are
wasted if no processing is done while waiting for memory transac-
tions to complete. Such transactions include first-time data fetches
and invalidations required to enforce coherence. Applying basic
pipelining ideas, resource utilization can be improved by allowing
a processor to transmit more than one memory request at a time.
Multiple outstanding transactions can be supported using software
prefetch [5, 6], rapid context switching [7, 8], or weak ordering [9].
Studies have shown that the utilization of the network, processor,
and memory systems can be improved almost in proportion to the
number of outstanding transactions allowed [10, 11].

Allowing multiple outstanding transactions in a cache-based
multiprocessor opens the window of vulnerability and leads to
situations involving livelock.

Atomicity and Context Switching In a system that supports mul-
tiple outstanding requests through context switching, the ability to
perform complex atomic actions efficiently requires the occasional
disabling of context switching. For example, we have observed that
disabling is essential for performance in the presence of critical sec-
tions in a non-preemptive task scheduler. Furthermore, if a thread
locks a critical system resource and then is forced to switch out,
then performance suffers because many other tasks must wait for the
context to release the lock. Thus, software on a context-switching
machine should be able to disable context-switching temporarily.
However, as explained in Section 4, this ability places a serious
constraint on mechanisms that can be used to prevent livelock.

High-Availability Interrupts The third class of mechanisms
provides the ability to handle asynchronous, time-critical events
under circumstances in which normal interrupts would be ignored.
Such high-availability interrupts violate instruction atomicity by
faulting loads or stores which are in progress. This class of inter-
rupts allows migration of hardware functionality into software.

In Alewife, for example, high-availability interrupts are used to
implement the LimitLESS coherence protocol [4], a fast user and
system-level messaging facility, and network deadlock recovery.
LimitLESS interrupts must be able to occur under most circum-
stances, because they can affect forward progress in the machine,
both by deadlocking the protocol and by blocking the network.
Since the message passing interface relies on software for queue-
ing, network queueing interrupts must be able to run under most
circumstances. The network overflow interrupt relieves potential
deadlock situations by redirecting input packets into local memory
and relaunching them when the situation has abated.

3 The Window of Vulnerability

To describe the window of vulnerability, we consider the memory
system as a black-box that satisfies memory requests. While for-
ward progress on the memory system side is important, it is beyond
the scope of this paper. The window of vulnerability affects for-
ward progress after the memory system has responded to a request.
Consequently, when we say that a processor (or hardware thread)
does or does not make forward progress, we are referring to prop-
erties of its local hardware and software, assuming that the remote
memory system always satisfies requests.

To be more precise, a processor thread makes forward progress
whenever it commits an instruction. Given a processorwith precise
interrupts, we can think of this as advancing the instruction pointer.
A load or store instruction can be said to make forward progress if
the instruction pointer is advanced beyond it.

3.1 Primary and Secondary Transactions

The distinction between primary and secondary transactions, intro-
ducednext, incorporates non-bindingprefetch into this definition of
forward progress. When prefetching, a processor initiates a trans-
action by sending a request for data, then continues by executing
its next instruction. Later, a load or store completes the transaction
by accessing data (or spins/context-switches if the data is not yet
available).

Thus, there are two distinct classes of transactions, primary and
secondary. Primary transactions are associated with the instruction
pointer of a processor thread and must complete before the thread
can make forward progress. Secondary transactions, on the other
hand, are associated with non-binding prefetch operations, and
are not essential for the forward progress of a thread. They are,
however, “upgraded” to primary status the moment a load or store
attempts to access their data.

Memory models differ in the degree to which they require pri-
mary transactions to complete before the associated loads or stores
commit. Sequentially consistent machines, for instance, require
write transactions (associated with store instructions) to advance
beyond the request phase before their associated threads make
forward progress. Weakly-ordered machines, on the other hand,
permit store instructions to commit before the end of the request

3

phase. In a sense, the cache system promises to ensure that store
accesses complete. Therefore, for weakly-ordered machines, write
transactions have no window of vulnerability. In contrast, most
memory models require a read transaction to receive a response
from memory before committing the associated load instruction.

As an example, the Alewife multiprocessor uses synchronous
traps to cause context switches. Consequently, data instructions
are restarted by “returning from trap,” or refetching the faulted
instruction. If this instruction has been lost due to cache conflicts,
then the context may need to fetch it again before making forward
progress. Thus, each context can have both a primary instruction
transaction and a primary data transaction. In contrast, a processor
that saves its pipeline state when context-switching (thereby saving
its faulting instruction) would retry only the faulted data access.
Each context in such a processor would have at most one primary
transaction at a time.

Unless otherwise noted, this paper will assume that a hardware
context can have no more than one primary data transaction. This
assumption has two implications. First, any weakly ordered writes
that have not yet been seen by the memory system are committed
from the standpoint of the processor. Second, a single context can-
not have multiple uncommitted load instructions (as in a processor
with register reservation bits). Similarly, we allow no more than
one primary instruction transaction at a time. In actuality, these
restrictions are not necessary for one of our more important results,
the thrashwait algorithm of Section 4.3, but they are required for
the thrashlock mechanism of Section 4.5.

3.2 An Example of a Livelock Scenario

Four distinct types of thrashing can occur during the window of vul-
nerability. One of these, invalidation thrashing, arises from proto-
col invalidation for highly contendedmemory lines and is described
in detail in this section. The remaining three result from replace-
ment in a direct-mapped cache. In intercontext thrashing, different
contexts on the same processor can invalidate each other’s data.
High-availability interrupt thrashing occurs when interrupt han-
dlers replace a context’s data in the cache. The last, instruction-data
thrashing, appears for processors that context-switch by polling and
which must refetch load or store instructions before checking for
the arrival of data.

This section describes invalidation thrashing in order to demon-
strate a typical livelock scenario. Figure 3 illustrates the interaction
between the window of vulnerability and cache coherence that leads
to livelock. The figure gives the currently enabled context in the
bar shown under the time-line. The scenario may be interpreted
as follows: First, context A of the processor attempts to access
memory block X (Read X). Since the data word is not currently in
the processor’s cache, the memory system issues a request (Read
Req. X) and causes the processor to switch contexts. When the
response to the request (Read Data X) returns to the processing
node, context C is active. The shaded region indicates the window
of vulnerability between the memory system response and the in-
stant that context A is reenabled. During the window, the memory
system causesblock X to be invalidated from the processor’s cache.

Figure 4 shows the multi-node scenario that causes this invali-
dation. There are three processing nodes in the figure: node 1 is
the node associated with the time-line in Figure 3; node 2 is the
home node for block X; and node 3 is the node that causes the inter-

Read Req.
X

Read Data
X

Invalidate
X

Ack.
X

Read Req.
X

Read X Read X (Retry)Time

Window of Vulnerability

A AB BC D

Figure 3: Time-line illustration of invalidation thrashing. The
shaded area is the window of vulnerability.

Write Req.

Write Data

Invalidate

1 2 3

X

X

X

X

X:

X:
Write XAck.

1

43

2

Figure 4: Diagram of cache coherence invalidation.

ference. Some time after the home node has serviced the request,
node 3 issues a write request for block X to node 2. In response,
node 2 transmits an invalidation message to node 1, waits for an ac-
knowledgment message, and eventually transmits write permission
to node 3. As a result, node 1 must repeat its read request when it
reenables context A at the end of the time-line in Figure 3.

There is no reason to expect that node 3 will actually complete
the write to block X before node 1 repeats its read request! If
this is the case, it is possible for node 2 to invalidate block X in
node 3 before the write is finished. Given an unfortunate coin-
cidence in timing, this vicious cycle of invalidation or internode
thrashing can continue forever. Our simulations indicate that this
thrashing is an infrequent event, but it does happen at some point
during the execution of most programs. Without a solution to the
thrashing scenario, the system would livelock (effectively causing
the machine to crash).

3.3 Severity of the Window of Vulnerability

This section substantiates our claim that the window of vulnera-
bility poses a significant problem in shared memory architectures.
The Alewife simulator calculates the time between the instant that a
data block becomesvalid in a cache due to a response from memory
and the first subsequent access to the cached data. The simulator
measures this period of time only for the fraction of memory ac-
cesses that generate network traffic and are thus susceptible to the
window. Figure 5 shows typical measurements of the window of
vulnerability. The graph is a histogram of window of vulnerability
sizes, with the size on the horizontal axis and the number of occur-
rences on the vertical axis. The graph was produced by a simulation
of a 64 processor machine (with 4 contexts per processor) running
1,415,308 cycles of a numerical integration program.

For the most part, memory accesses are delayed for only a short
period of time between cache fill and cache access: 90% of mem-
ory accesses that generate network traffic have windows that are
less than 65 cycles long. However, a small number of accesses
encounter pathologically long windows of vulnerability. To make
the interesting features of the graph visible, it was necessary to

4

I I ♦ ♦
T T I I

1~ o[o 0 1'~ olo 0
JR O

|

0
|

20
|

40
|

60
|

80
|

100
|

120
|

140
|

160
|

180

|10

|
|

|
|

|
|

|
|

|100

|
|

|
|

|
|

|
|

|1000

|
|

|
|

|
|

|
|

|10000

|
|

|
|

|
|

|
|

|100000

| | | | | | | | | | |

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

Size of Window of Vulnerability in Cycles

N
u

m
b

er
 o

f
O

cc
u

re
n

ce
s

Range: 0 - 543219

Average: 161

Standard Deviation: 1047

Figure 5: Window of vulnerability: 64 processors, 4 contexts.

plot the data on a logarithmic scale and to eliminate events having
a frequency of less than 30 occurrences. Due to a few extremely
long context run-lengths, the tail of this particular graph actually
runs out to 543,219 cycles! The high standard deviation provides
another measure of the importance of the graph’s tail.

The sharp spike at zero cycles illustrates the role of context
switching and high availability interrupts in causing the window
of vulnerability. The spike is caused by certain critical sections of
the task scheduler that disable context switching, as described in
Section 2. When context switching is disabled, a processor will
spin-wait for memory accesses to complete, rather than attempting
to tolerate the access latency by doing other work. In this case,
the processor accesses the cache on the same cycle that the data
becomes available. Such an event corresponds to a zero-size win-
dow of vulnerability. The window becomes a problem only when
context switching is enabled or when high availability interrupts
interfere with memory accesses.

The window of vulnerability histogram in Figure 5 is qualita-
tively similar to other measurementsmade for a variety of programs
and architectural parameters. The time between cache fill and cache
access is usually short, but a small fraction of memory transactions
always suffer from long windows of vulnerability. In general, both
the average window size and the standard deviation increase with
the number of contexts per processor. The window size and stan-
dard deviation also grow when the context switch time is increased.
We have observed that high-availability interrupts cause the same
type of behavior although their effects are not quite as dramatic as
the effect of multiple contexts.

For the purposes of our argument, it does not matter whether the
window of vulnerability is large or small, common or uncommon.
Even if a window of vulnerability is only tens or hundreds of cy-
cles long, it introduces the possibility of livelock that can prevent
an application from making forward progress. The architectural
framework described in the next section is necessary merely be-
cause the window exists.

Multi+
Multi+ Multi+ HAI+

Multi Disable HAI Disable
Assoc Locking Yes No Yes No
Thrashwait Yes Yes No No
Assoc Thrashlock Yes Yes Yes Yes

Table 1: Window of Vulnerability closure techniques. Multi rep-
resents coherent caches and multiple requests. Disable represents
disabling of context switching. HAI represents high-availability
interrupts.

4 Closing the Window of Vulnerability

This section discusses a range of solutions for eliminating the live-
lock associated with the window of vulnerability. Three self-
contained solutions are discussed, namely associative locking,
thrashwait, and associative thrashlock. Each is appropriate for
a different combination of the mechanisms of Section 2. This is
shown in Table 1. A system with coherent caches and multiple
outstanding requests (Multi) is assumed in all cases. To this is
added either the ability to disable context switching (Disable), the
presence of high-availability interrupts (HAI), or a combination of
both. A Yes in Table 1 indicates that a given solution is appropriate
for the specified combination of mechanisms. During the exposi-
tion, two partial solutions are also discussed, namely locking and
associative thrashwait.

Locking involves freezing external protocol actions during the
window of vulnerability by deferring invalidations. Thrashwait is
a heuristic that dynamically detects thrashing situations and selec-
tively disables context-switching in order to prevent livelock. Asso-
ciativity can be added to each of these techniques by supplementing
the cache with an associative buffer for transactions. This yields
associative locking and associative thrashwait. Table 2 summarizes
the deficiencies of each of these mechanisms with respect to sup-
porting the complete set of mechanisms. Associative thrashlock is
a hybrid technique, and is discussed in Section 4.5. Note that only
associative thrashlock permits the full set of mechanisms.

4.1 Locking (Partial Solution)

One approach to closing the window involves locking transactions
during their window of vulnerability. For the moment, we will
assume that returning data (responses) are placed in the cache;
later, we consider the addition of an extra set of buffers for memory
transactions.

Locking involves two state bits for each line in the cache. To
prevent intercontext and high-availability interrupt thrashing, the
system needs a lock bit to signal that a cache line is locked and
cannot be replaced. When the line is accessed, the lock bit asso-
ciated with the line is cleared. To prevent invalidation thrashing,
we need a deferred invalidate bit; invalidations to locked lines are
deferred by setting this bit. Deferred invalidation is performed (and
acknowledged) when the requesting context returns and clears the
lock bit.

As described, the above scheme does not quite eliminate all
intercontext thrashing, because one context can unlock the data
requested by another context. We call this premature lock release.

5

I I I I I I

Prevents Prevents Prevents Prevents Deadlock Free Free From
Technique Invalidation Intercontext HAI Inst-Data Context Switch Cache line

Thrashing Thrashing Thrashing Thrashing Disable Starvation
Locking Yes Yes Yes Deadlock No No
Assoc Locking Yes Yes Yes Yes No Yes
Thrashwait No Yes No Yes Yes Yes
Assoc TW No Yes Yes Yes Yes Yes

Assoc Thrashlock Yes Yes Yes Yes Yes Yes

Table 2: Properties of window of vulnerability closure techniques.

This scheme can, however, be supplemented with additional bits of
state to keep track of which context holds a given lock; then, only
the locking context is permitted to free this lock.

One of the consequences of locking cache lines during a trans-
action’s window of vulnerability is that we must also restrict trans-
actions during their request phase. Since each cache line can store
only one outstanding request at a time, multiple requests could
force the memory system to discard one locked line for another,
defeating the purpose of locking. Thus, we supplement the state of
a cache line with a transaction-in-progressstate to prevent multiple
outstanding requests to this line. The transaction-in-progress state
restricts creation of new transactions, but does not affect data cur-
rently in the cache in order to minimize the interference of memory
transactions in the cache. Also, the transaction-in-progress state
allows a processing node to consolidate accesses from different
contexts to the same memory block.

We refer to this scheme as touchwait, because data blocks are
held until the requesting context returns to “touch” it. Touchwait
eliminates the livelock scenarios of the previous section, because
the cache retains data blocks until the requesting context returns to
access them.

Problems Unfortunately, the locking mechanism can lead to four
distinct types of deadlock, illustrated in Figure 6. This figure
contains four different waits-for graphs [12], which represent de-
pendencies between transactions. In these graphs, the large italic
letters represent transactions: “D” for data transactions and “I”
for instruction transactions. The superscripts – either “P” or “S”
– represent primary or secondary transactions, respectively. The
subscripts form a pair consisting of processor number (as an arabic
number) and context number (as a letter). The address is given
in parentheses; in these examples, X and Y are congruent in the
cache (X � Y), while X and Z are not equal (X 6= Z).

The labeled arcs represent dependencies; a transaction at the
tail of an arc cannot complete before the transaction at the head
has completed (in other words, the tail transaction waits-for the
head transaction). Labels indicate the sources of dependencies:
A congruence arc arises from finite associativity in the cache; the
transaction at its head is locked, preventing the transaction at its
tail from being initiated. An execution arc arises from execution
order. Disable arcs arise from disabling context-switching; the
transactions at their heads belong to active contexts with context-
switching disabled; the tails are from other contexts. Finally, a
protocol arc results from the coherence protocol; the transaction
at its head is locked, deferring invalidations, while the transaction

at its tail awaits acknowledgment of the invalidation. An example
of such a dependence is a locked write transaction at the head of
the arc with a read transaction at the tail. Since completion of the
write transaction could result in modification of the data, the read
transaction cannot proceed until the write has finished. These arcs
represent three classes of dependencies: those that prevent launch-
ing of transactions (congruence), those that prevent completion of
a transaction’s request phase (protocol), and those that prevent final
completion (execution and disable).

Now we describe these deadlocks in more detail. Note that larger
cycles can be constructed by combining the basic deadlocks.

� intercontext: The context that has entered a critical section
(and disabled context-switching) may need to use a cache line
that is locked by another context.

� internode: This deadlock occurs between two nodes with
context-switching disabled. Here, context A on processor 1
is spinning while waiting for variable X, which is locked in
context D on processor 2. Context C on processor 2 is also
spinning, waiting for variable Z, which is locked by context
B on processor 1.

� primary-secondary: This is a variant of the internode dead-
lock problem that arises if secondary transactions (software
prefetches) can be locked. Data blocks from secondary trans-
actions are accessed after those from primary ones.

� instruction-data: Thrashing between a remote instruction
and its data yields a deadlock in the presence of locks. This
occurs after a load or store instruction has been successfully
fetched for the first time. Then, a request is sent for the data,
causing a context-switch. When the data block finally returns,
it replaces the instruction and becomes locked. However, the
data will not be accessed until after the processor refetches
the instruction.

Primary-secondary deadlock is easily removed by recognizing that
secondary transactions are merely hints; locking them is not nec-
essary to ensure forward progress. Unfortunately, the remaining
deadlocks have no obvious solution. Due to these deadlock prob-
lems, pure locking cannot be used to close the window of vulnera-
bility.

4.2 Associative Locking

A variant of the locking scheme that does not restrict the use of
the cache or launching of congruent transactions is locking with
associativity. This scheme supplements the cache with a fully as-
sociative set of transaction buffers. Each of these buffers contains

6

Primary−Secondary Instruction−Data

P

1,A
(X)I D

P
(Y)

1,A

Execution

Congruence

D
P

1,A
(X) D

P
(Y)

1,B

Disable

Congruence

Intercontext

D
P

1,A
(X)

Protocol

D (Z)
P

1,B
Protocol

D
is

ab
le

D
isable

D (X)
P

2,D

D
P

(Z)
2,C

D
P

1,A
(X)

Protocol

D 1,A

S
(Z)

Protocol

E
xe

cu
tio

n

E
xecution

D (X)
S

2,C

D
P

(Z)
2,C

Internode

Figure 6: Deadlocks that result from pure locking.
(X � Y , X 6= Z)

an address, state bits, and space for a memory line’s data. Locking
is performed in the transaction buffer, rather than the cache. As
discussed above, invalidations to locked buffers are deferred until
the data word is accessed. Buffer allocation can be as simple as
reserving a fixed set of buffers for each context. More general
schemes might keep track of the context that owns each buffer to
prevent premature lock release (see Section 4.1). The use of a
transaction buffer architecture has been presented in several mi-
lieux, such as lockup-free caching [13], victim caching [14], and
the remote-access cache of the DASH multiprocessor [3].

The need for an associative match on the address stems from
several factors. First, protocol traffic is tagged by address rather
than by context number. While requests and responses could be
tagged with a context identifier inexpensively, tagging invalidations
would increase the cost of the directory used to guarantee cache
coherence. Second, associativity removes the intercontext and
instruction-data deadlocks of Figure 6, because it eliminates all of
the congruence arcs of Figure 6.

Third, the associative match permits consolidation of requests
from different contexts to the same memory-line; before launching
a new request, the cache first checks for outstanding transactions
from any context to the desired memory line. Should a match be
detected, generation of a new request is suppressed.

Finally, the associative matching mechanism can permit contexts
to access buffers that are locked by other contexts. Such accesses
would have to be performed directly to and from the buffers in
question, since placing them into the cache would effectively unlock
them. This optimization is useful in a machine with medium-
grained threads, since different threads often execute similar code
and access the same synchronization variables.

The augmentation of basic locking with associativity appears
to be close to a solution for the window of vulnerability. All
four thrashing scenarios of Section 3.2 are eliminated. Further, the
cache is not bogged down by persistent holes. Access to the cache is
unrestricted for both user and system code. However, this approach
still suffers from internode deadlock when context-switching is

disabled. Consequently, as shown in Table 1, associative locking
is sufficient for systems which do not permit context-switching to
be disabled.

4.3 Thrashwait

Locking transactions prevents livelock by making data invulner-
able during a transaction’s window of vulnerability. In order to
attack the window from another angle, we note that the window
is eliminated when the processor is spinning while waiting for
data: when the data word arrives, it can be consumed immedi-
ately. This observation does not seem to be useful in a machine
with context-switching processors, since it requires spinning rather
than switching. However, if the processors could context-switch
“most of the time,” spinning only to prevent thrashing, the system
could guarantee forward progress. We call this strategy thrashwait
(as opposed to touchwait). The trick in implementing thrashwait
lies in dynamically detecting thrashing situations. The thrashwait
detection algorithm is based on an assumption that the frequency
of thrashing is low. Thus, the recovery from a thrashing scenario
need not be extremely efficient.

For the purpose of describing the thrashwait scheme,assume that
the system has some method for consolidating transactions from
different contexts. To implement this feature, either each cache
line or the transaction buffers needs a transaction-in-progress state.
If the transaction-in-progress state is in the cache, as in the pure
locking scheme, the system allows only one outstanding transaction
per cache line.

Consider, for simplicity, a processor with a maximum of one
outstanding primary transaction per context. Each context requires
a bit of state called a tried-once bit. The memory system sets the
bit when the context initiates primary transactions and clears the bit
when the context completes a global load or store. Note that global
accesses, which involve shared locations and the cache-coherence
protocol, are distinguished here from local accesses which are
unshared and do not involve the network or the protocol. When the
following criteria are true, the memory system detects a thrashing
situation:

1. The context requests a global load or store that misses in the
cache.

2. There is no associated transaction-in-progress state, because
the transaction has completed.

3. The context’s tried-once bit is set.

The fact that the tried-once bit is set indicates that this context has
recently launched a primary transaction but has not successfully
completed a global load or store in the interim. Thus, the context
has not made forward progress. In particular, the current load or
store request must be the same one that launched the original trans-
action. The fact that transaction-in-progress is clear indicates that
the transaction had completed its request phase (data was returned).
Consequently, the fact that the access missed in the cache means
that a data block has been lost. Once thrashing has been detected,
the thrashwait algorithm requests the data for a second time and
disables context-switching, causing the processor to wait for the
data to arrive.

Multiple Primary Transactions Systems requiring two primary
transactions can be accommodated by providing two tried-once bits,

7

I l

one for instructions and the other for data. To see why a single bit is
not sufficient, consider an instruction-data thrashing situation with
a single tried-once bit. Assuming that a processor has successfully
fetched the load or store instruction, it proceeds to send a request for
the data, sets the tried-once bit, and switches contexts. When the
data block finally arrives, it displaces the instruction; consequently,
when the context returns to retry the instruction, it concludes that
it is thrashing on the instruction fetch. Context-switching will be
disabled until the instruction returns, at which point the tried-once
bit is cleared. Thus, the algorithm fails to detect thrashing on the
data line.

The presence of two separate tried-once bits solves this problem.
Instruction and data accessesare handled independently, according
to the above algorithm. In fact, this two-bit solution can be general-
ized to a system with an arbitrary number of primary transactions.
The only requirement for multiple transactions is that each primary
transaction must have a unique tried-once bit that can be associated
with it each time the context returns to begin reexecution. (This
can become somewhat complex in the face of deep pipelining or
multiple-issue architectures.)

Elimination of Thrashing The thrashwait algorithm identifies
primary transactions that are likely to be terminated prematurely;
that is, before the requesting thread makes forward progress. As-
suming that there are no high-availability interrupts, thrashwait
removes livelock by breaking the thrashing cycle. Thrashwait per-
mits each primary transaction to be aborted only once before it
disables the context-switching mechanism and closes the window
of vulnerability.

In a system with multiple primary transactions, livelock removal
occurs because primary transactions are ordered by the processor
pipeline. A context begins execution by requesting data from the
cache system in a deterministic order. Consequently, under worst-
case conditions – when all transactions are thrashing, the processor
will work its way through the implicit order, invoking thrashwait
on each primary transaction in turn. Although a context-switch
may flush its pipeline state, the tried-once bits remain, forcing a
pipeline freeze (rather than a switch) when thrashing occurs.

Freedom From Deadlock In this section, we prove that the
thrashwait algorithm does not suffer from any of the deadlocks
illustrated in Figure 6. We assume (for now) that a processor
launches only one primary transaction at a time. Multiple primary
transactions, which must complete to make forward progress, are
allowed; multiple simultaneous transactions, which are caused by
a system that presents several addresses to the memory system at
once, are not allowed. At the end of the proof, we discuss a mod-
ification to the thrashwait algorithm that is necessary for handling
multiple functional units and address buses.

The proof of the deadlock-free property proceeds by contra-
diction. We assume that the thrashwait algorithm can result in a
deadlock. Such a deadlock must be caused by a cycle of primary
transactions, linked by the dependencies defined in Section 4.1: dis-
able, execution, congruence, and protocol arcs. Since the memory
transactions involved in the deadlock loop are frozen, it is correct
to view the state of transactions simultaneously, even if they reside
on different processors. By examining the types of arcs and the
associated transactions, we show that such a cycle cannot exist,
thereby contradicting the assumption that thrashwait can result in

a deadlock.

Disable and execution arcs cannot participate in a deadlockcycle
becausethese dependenciesoccuronly in systems that use a locking
scheme. Since thrashwait avoids locking, it immediately eliminates
two forms of dependency arcs. This is the key property that gives
thrashwait its deadlock-free property. To complete the proof, we
only need to show that congruence and protocol arcs cannot couple
to form a deadlock.

A deadlock cycle consisting of congruence and protocol arcs
can take only one of three possible forms: a loop consisting only
of congruence arcs, a loop consisting of both congruence arcs and
protocol arcs, or a loop consisting of only protocol arcs. The next
three paragraphs show that none of these types of loops are possible.
Congruenceand protocol arcs cannotbe linked together, due to type
conflicts between the head and tail of congruenceand protocol arcs.

First, we show that cycles consisting only of congruence arcs
cannot occur. Recall that a congruence arc arises when an existing
transaction blocks the initiation of a new transaction due to limited
cache associativity. A congruence arc requires an existing trans-
action at its head and a new transaction at its tail. It is therefore
impossible for the tail of a congruence arc (a new transaction) to
also be the head of a different congruence arc (an existing trans-
action). Thus, it is impossible to have a loop consisting only of
congruence arcs, because the types of a congruence arc’s head and
tail do not match.

Second, a cycle consisting only of protocol arcs cannot exist. By
definition, the head of a protocol arc is a transaction in its window
of vulnerability, which is locked so that invalidations are deferred.
The tail of a protocolarc is a transaction in its requestphase,waiting
for the invalidation to complete. Since a transaction in its request
phase cannot be at the head of a protocol arc, protocol arcs cannot
be linked together, thereby preventing a loop of protocol arcs.

Finally, the tail of a congruence arc cannot be linked to the
head of a protocol arc due to another type conflict: the tail of
a congruence arc must be a new transaction, while the head of a
protocol arc is an existing transaction in its window of vulnerability.
Thus, deadlock loops cannot be constructed from combinations of
protocol and congruence loops. The fact that congruence arcs and
protocol arcs cannot combine to produce a loop contradicts the
assumption that thrashwait can result in a deadlock, completing the
proof.

The above proof of the deadlock-free property allows only one
primary transaction to be transmitted simultaneously. In order to
permit multiple functional units to issue several memory transac-
tions at a time, the memory system must provide sufficient asso-
ciativity to permit all such transactions to be launched. Also, if the
memory system stalls the processor pipeline while multiple trans-
actions are requested, then the processor must access a data word
as soon as it arrives. These modifications prevent dependencies
between simultaneous transactions and make sure that the window
of vulnerability remains closed.

Thrashwait and High-Availability Interrupts Despite its suc-
cess in detecting thrashing in systems without high-availability
interrupts, thrashwait fails to guarantee forward progress in the
presence of such interrupts. This is a result of the method by which
thrashwait closes the window of vulnerability: by causing the pro-
cessor to spin. This corresponds to asserting the memory-hold line

8

and freezing the pipeline. High-availability interrupts defeat this
interlock by faulting the load or store in progress so that interrupt
code can be executed. Viewing the execution of high-availability
interrupt handlers as occurring in an independent “context” re-
veals that the presence of such interrupts reintroduces three of the
four types of thrashing mentioned in Section 3.2. Instruction-data
and high-availability interrupt thrashing arise from interactions be-
tween the thrashwaiting context and interrupt code. Invalidation
thrashing arises because high-availability interrupts open the win-
dow of vulnerability, even for transactions that are targeted for
thrashwaiting. Only intercontext thrashing is avoided, since soft-
ware conventions can require high-availability interrupt handlers
to return to the interrupted context. Consequently, a system with
high-availability interrupts must implement more than the simple
thrashwait scheme.

4.4 Associative Thrashwait (Partial Solution)

In an attempt to solve the problems introduced by high-availability
interrupts, we supplement the thrashwait scheme with associative
transaction buffers. As described in Section 4.2, transaction buffers
eliminate restrictions on transaction launches. Further, instruction-
data and high-availability interrupt thrashing are eliminated. This
effect is produced entirely by increased associativity: since trans-
actions are not placed in the cache during their window of vulner-
ability, they cannot be lost through conflict. Thus, the associative
thrashwait scheme with high-availability interrupts is only vulner-
able to invalidation thrashing. The framework proposed in the next
section solves this last remaining problem.

4.5 Associative Thrashlock

Now that we have analyzed the benefitsand deficienciesof the com-
ponents of our architectural framework, we are ready to present a
hybrid approach, called associative thrashlock. This framework
solves the problems inherent in each of the independent compo-
nents.

Assume, for the moment, that we have a single primary trans-
action per context. As discussed above, thrashwait with associa-
tivity has a flaw. Once the processor has begun thrashwaiting
on a particular transaction, it is unable to protect this transaction
from invalidation during high-availability interrupts. To prevent
high-availability interrupts from breaking the thrashwait scheme,
associative thrashlock augments associative thrashwait with a sin-
gle buffer lock. This lock is invoked when the processor begins
thrashwaiting, and is released when the processor completes any
global access. Should the processor respond to a high-availability
interrupt in the interim, the data will be protected from invalidation.

It is important to stress that this solution provides one lock per
processor. The scheme avoids deadlock by requiring that all high-
availability interrupt handlers:

1. make no references to global memory locations, and

2. return to the interrupted context.

These two software conventions guarantee that the processor will
always return to access this buffer, and that no additional de-
pendencies are introduced. Thus, associative thrashlock has the
same transaction dependency graph as thrashwait without high-
availability interrupts (as in Section 4.3). Processor access to the

locked buffer is delayed – but not impeded – by the execution of
high-availability interrupts.

Application of the above solution in the face of multiple primary
transactions (such as instruction and data) is not as straightforward
as it might seem. We provide a lock for both instructions and data
(in addition to the two tried-once bits specified in Section 4.3).
When thrashing is detected, the appropriate lock is invoked. This
locking scheme reintroduces a deadlock loop similar to the primary-
secondary problem shown above. Fortunately, in this case the
loop is rather unnatural: it corresponds to two processors, each
trying to fetch as an instruction a word that is locked as data in
the other node. To prevent this particular kind of deadlock, a
software convention disallows the execution of instructions that are
simultaneously being written. Prohibiting modifications to code
segments is a common restriction in RISC architectures.

The complexity of the argument for associative thrashlock might
seem to indicate that the architectural framework is hard to imple-
ment. It is important to emphasize that even though the issues
involved in closing the window of vulnerability are complicated,
the end product is rather simple. The next section discusses our
experiences building a system based on associative thrashlock.

5 Implementation of the Framework

The Alewife machine employs the associative thrashlock frame-
work to close the window of vulnerability. This section overviews
some of the key parameters of this implementation. For additional
details, see [15].

Alewife is a large-scale multiprocessor with distributed shared
memory. An Alewife processing node consists of a 33 MHz Spar-
cle processor, 64K bytes of direct-mapped cache, a 4Mbyte portion
of globally-shared main memory, and a floating-point coprocessor.
The Sparcle processor is a modified SPARC processor [16], utiliz-
ing register-windows for rapid context-switching [8]. Our current
implementation provides four distinct hardware contexts. Both the
cache and floating-point units are SPARC compatible. The nodes
communicate via messages through a cost-effective direct network
with a mesh topology. A single-chip communication and memory
management unit (CMMU) on each node holds the cache tags and
transaction buffers (described below), implements a variant of the
cache coherence protocol described in [4], and provides a direct
message-passing interface to the underlying network.

The CMMU’s transaction store is the heart of Alewife’s im-
plementation of associative thrashlock. The transaction store is a
fully associative set of 16 transaction buffers. Since the Alewife
machine context-switches via synchronous traps, each of the four
hardware contexts can have up to two primary transactions (see
Section 3.1). As required by the thrashlock scheme, the cache-
controller provides eight tried-once bits (two per context) and two
lock bits.

The transaction store is used as a small, fully-associative cache.
All contexts access the transaction store by address, and any context
may access a transaction buffer with a matching address. Figure 7
illustrates the processor-side connections to the transaction store.
Each of the 16 transaction buffers contains an address, state bits,
and space for a complete memory-line. The transaction buffers
record the state of all outstanding memory transactions.

The transaction store is completely integrated with the cache-

9

P
rocessor M

em
or

y

To Interconnect From Interconnect

Response

ResponseUpdate

Update

Update

Transaction

Store

Request

Figure 7: The transaction store.

coherence protocol; indeed, it is much like a multiprocessor victim
cache[14]. Data may be transferred between transaction buffers and
the cache or the processor may access transaction buffers directly.
In addition, special instructions permit the processor to initiate
non-binding prefetches. The transaction store has independentdata
paths to the processor, to memory, and to the network. A single
module of associative match circuitry is shared by the processor,
network and memory.

In addition to implementing the associative thrashlock frame-
work, the transaction store has two additional benefits. First, since
the transaction store explicitly records the state of outstanding trans-
actions, it allows the Alewife cache-coherence protocol to be inde-
pendent of network ordering. Relaxing the constraint of in-order
delivery is desirable because it permits systems to be built with
networks that employ adaptive routing to avoid hot-spots or bad
connections.

Second, since context switching on Sparcle is a polling mech-
anism, contexts may retry memory accesses multiple times before
the requested data word becomes available. The transaction store
prevents redundant requests that could result from multiple retries
by recording the state of all outstanding memory transactions. The
same mechanism allows the requests from different contexts to the
same cache line to be consolidated.

Both a register-transfer level implementation and a high-level
simulation of Alewife’s associative thrashlock framework are oper-
ational. Final transistor-level verification of the CMMU is currently
in progress. This chip will be fabricated with a 1� standard-cell
process by LSI Logic, Inc. All of the other components of the
Alewife system, including the Sparcle processor, the I/O board,
and the node board have been fabricated. Sparcle and the I/O
board are fully functional, while the node board awaits a finished
controller for final testing.

6 Conclusion

This paper has discussed the livelock and deadlock problems as-
sociated with the window of vulnerability and specified an archi-
tectural framework that solves those problems. A combination of
multiphase memory transactions and the mechanisms associated
with shared memory may be implemented using the associative
thrashlock approach. If a system only needs to support a subset of
the mechanisms described in this paper, then Table 1 may be used
to decide which of the other two solutions are sufficient.

What is the appropriate amount of hardware required to close
the window of vulnerability? It is possible to imagine architectures
that take completely different approaches to solving the problems
associated with multiphase memory transactions. For example,
the Alewife architecture forces contexts to poll until they complete
their outstanding transactions. Alternatively, a system could elim-
inate the window of vulnerability inherent in a polling model by
signaling or reenabling a context immediately when its memory
access completes. Such is the case in dataflow or message-passing
architectures. Polling has a smaller hardware cost and optimizes
for the common case when average remote access latency is shorter
than polling frequency. This is true precisely when the window
of vulnerability is long (Section 3.3). Signaling is less sensitive to
remote access latency, but introduces additional hardware complex-
ity. System parameters or philosophy determine whether polling,
signaling, or a hybrid approach is most appropriate.

A multiprocessor could also avoid the window of vulnerability
by eschewing the use of caches. In a system without caches, all
memory requests could be serviced by distributed modules. By
serializing transactions, memory modules would ensure both co-
herence and forward progress. However, such a system would have
to provide extremely high bandwidth between processing nodes and
memory modules in order to achieve high performance.

The associative thrashlock framework provides a solution to the
window of vulnerability problem in a polled system. The frame-
work allows the use of caches to reduce the bandwidth required
from the interconnect, and permits processors to store just enough
information to recreate the pipeline state of a context when neces-
sary. Instead of closing the window of vulnerability by brute force,
the Alewife architecture dynamically detects the situations that can
lead to deadlock and livelock. Only when these relatively rare
situations arise does the system close the window. The fundamen-
tal architectural trade-off pits hardware expense and complexity
against exceptional events that are uncommon, but potentially fa-
tal.

7 Acknowledgments

We would like to acknowledge Pizzeria Uno for being open until
12:30am most evenings. This permitted one of us (John Kubiatow-
icz) to spend long hours designing the actual hardware described
within. The members of the Alewife team made possible the sim-
ulation system used to study the window of vulnerability. This
research is funded by NSF grant # MIP-9012773 and DARPA con-
tract # N00014-87-K-0825.

10

- -- -

t

References

[1] Anant Agarwal, David Chaiken, Godfrey D’Souza, Kirk
Johnson, David Kranz, John Kubiatowicz, Kiyoshi Kurihara,
Beng-Hong Lim, Gino Maa, Dan Nussbaum, Mike Parkin,
and Donald Yeung. The MIT Alewife Machine: A Large-
Scale Distributed-Memory Multiprocessor. In Proceedings
of Workshop on Scalable Shared Memory Multiprocessors.
Kluwer Academic Publishers, 1991. An extended version of
this paper has been submitted for publication, and appears as
MIT/LCS Memo TM-454, 1991.

[2] David V. James, Anthony T. Laundrie, Stein Gjessing, and
Gurindar S. Sohi. Distributed-Directory Scheme: Scalable
Coherent Interface. IEEE Computer, pages74–77, June 1990.

[3] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and
J. Hennessy. The Directory-Based Cache Coherence Protocol
for the DASH Multiprocessor. In Proceedings 17th Annual
International Symposium on Computer Architecture, pages
148–159, New York, June 1990.

[4] David Chaiken, John Kubiatowicz, and Anant Agarwal. Lim-
itLESS Directories: A Scalable Cache Coherence Scheme.
In Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASP-
LOS IV), pages 224–234. ACM, April 1991.

[5] David Callahan, Ken Kennedy, and Allan Porterfield. Soft-
ware Prefetching. In Fourth International Conference on Ar-
chitectural Support for Programming Languages and Oper-
ating Systems (ASPLOS IV), pages 40–52. ACM, April 1991.

[6] Todd Mowry and Anoop Gupta. Tolerating Latency Through
Software-Controlled Prefetching in Shared-Memory Multi-
processors. Journal of Parallel and Distributed Computing,
12(2):87–106, June 1991.

[7] Wolf-Dietrich Weber and Anoop Gupta. Exploring the Ben-
efits of Multiple Hardware Contexts in a Multiprocessor Ar-
chitecture: Preliminary Results. In Proceedings 16th Annual
International Symposium on Computer Architecture, pages
273–280, New York, June 1989.

[8] Anant Agarwal, Beng-Hong Lim, David A. Kranz, and John
Kubiatowicz. APRIL: A Processor Architecture for Multi-
processing. In Proceedings 17th Annual International Sym-
posium on Computer Architecture, pages 104–114, Seattle,
WA, June 1990.

[9] Sarita V. Adve and Mark D. Hill. Weak Ordering - A New
Definition. In Proceedings 17th Annual International Sympo-
sium on Computer Architecture, pages 2–14, New York, June
1990.

[10] Kiyoshi Kurihara, David Chaiken, and Anant Agarwal. La-
tency Tolerance through Multithreading in Large-Scale Mul-
tiprocessors. In Proceedings International Symposium on
Shared Memory Multiprocessing, Japan, April 1991. IPS
Press.

[11] Kirk Johnson. The impact of communication locality on
large-scale multiprocessor performance.In 19th International
Symposium on Computer Architecture, pages 392–402, May
1992.

[12] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concur-
rency Control and Recovery in Database Systems. Addison-
Wesley Publishing Company, Reading, MA, 1987.

[13] David Kroft. Lockup-Free Instruction Fetch/Prefetch Cache
Organization. In Proceedings of the 8th Annual Symposium
on Computer Architecture, pages 81–87, June 1981.

[14] N.P. Jouppi. Improving Direct-Mapped Cache Performance
by the Addition of a Small Fully-Associative Cache and
Prefetch Buffers. In Proceedings, International Symposium
on Computer Architecture ’90, pages 364–373, June 1990.

[15] John Kubiatowicz. User’s Manual for the A-1000 Commu-
nications and Memory Management Unit. ALEWIFE Memo
No. 19, Laboratory for Computer Science, Massachusetts In-
stitute of Technology, January 1991.

[16] Anant Agarwal, Johnathan Babb, David Chaiken, Godfrey
D’Souza, Kirk Johnson, David Kranz, John Kubiatowicz,
Beng-Hong Lim, Gino Maa, Ken MacKenzie, Dan Nuss-
baum, Mike Parkin, and Donald Yeung. Sparcle: Today’s
Micro for Tomorrow’s Multiprocessor. In HOTCHIPS, Au-
gust 1992.

11

