
LABORATORY FOR
COMPUTER SCIENCE

MIT /LCS/fM-469

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

COMPILE-TIME TECHNIQUES
FOR PROCESSOR ALLOCATION
IN MACRO DAT AFLOW GRAPHS

FOR MULTIPROCESSORS

G. N. Srinivasa Prasanna
Anant Agarwal

June 1992

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Compile-time techniques for Processor Allocation
in Macro Dataflow Graphs for Multiprocessors

G.N.Srinivasa Prasanna and Anant Agarwal
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

prasanna.@masala.lcs.mit.edu
agarwal@mit.edu

Abstract

When compiling a program consisting of multiple nested loops for execution on a multipro­
cessor, processor allocation is the problem of determining the ·number of processors over which
to partition each nested loop. This paper presents processor allocation techniques for compiling
such programs for multiprocessors with local memory. Programs consisting of multiple loops,
where the precedence constraints between the loops is known, can be viewed as macro dataflow
graphs. Macro dataflow graphs comprise several macro nodes (or macro operations) that must
be executed subject to prespecified precedence constraints. Optimal processor allocation speci­
fies the number of processors computing each macro node and their sequencing to optimize run
time. This paper presents computationally efficient techniques for determining the optimal pro­
cessor allocation using estimated speedup functions of the macro nodes. These ideas have been
implemented in a structure-driven compiler, SDC, for expressions of matrix operations. The
paper presents the performance of the compiler for several matrix expressions on a simulator of
the Alewife multiprocessor.

Keywords: Parallel compilation, cache-coherent multiprocessors, distributed-memory
multiprocessors, task scheduling, automatic partitioning.

1 Introduction

Multiprocessors rely on careful allocation of their processing, communication, and memory resources
to computations for achieving high performance. While it is possible for programmers to carefully
orchestrate their computations, producing correct and efficient programs is extremely difficult. The
problem is even more severe on multiprocessors with complex memory hierarchies. For many classes
of problems, which display a known structure, or which a.re amenable to static analysis, it is possible
for a compiler to derive programs that exhibit close-to-optimal run times.

Optimal compilation can be greatly simplified if the computation has a hierarchical structure,
that is, if the computation can be represented as a macro dataftow graph. A macro data.flow graph
is composed of macro nodes, where ea.ch macro node has internal structure - viz. is composed of
many simple nodes. For example, a matrix expression can be represented as a macro data flow
graph, where ea.ch macro node corresponds to a basic matrix operator, such as a matrix add or
multiply. Programs consisting of multiple nested loops can often be represented as macro data.flow

1

2

graphs, where each macro node in the dataflow graph corresponds to a nested loop, and where some
form of synchronization among the processors executing each nested loop establishes the precedence
constraints between different loop nests.

We simplify the compilation of macro dataflow graphs by compiling separately the two levels of
hierarchy. In the first phase (processor allocation), the complete macro dataflow graph is compiled,
treating each macro node as a unit. In this step, the sequencing of macro nodes, or scheduling, and
the number of processors assigned to each macro node, or node parallelism, is determined. This
step uses the speedup functions of each macro node. Next, the computations within each macro
node are partitioned for communication efficiency among the processors assigned to that node.
This divide and conquer strategy not only reduces the combinatorial complexity of compiling, but
affords further simplifications if we exploit our knowledge of the structure of computation within
each macro node.

Our work in processor allocation complements recent work [1, 2, 3] in partitioning nested loops.
Since nested loops can be treated as macro nodes, our work is equivalent to determining the optimal
schedule and loop parallelism for a program with multiple interdependent loop nests. Previous
work in partitioning loop nests treated each loop nest separately, and assumed a certain number of
processors over which to partition the loop. The techniques discussed in this paper can be used to
choose the number of processors to be assigned to each loop nest.

In this paper, we describe computationally efficient techniques for processor allocation in macro
dataflow graphs. We develop algorithms for node parallelism and sequencing, and describe the
design of a compiler using these algorithms for matrix expressions, the Structure Driven Compiler,
SDC. We also briefly mention techniques for partitioning the macro nodes, since these techniques
provide the speedup functions necessary for processor allocation.

Matrix expressions were chosen because their macro dataflow graphs exhibit simple data­
independent control, but have a wide variety of graph structures well suited to automatic compila­
tion. The dataflow graphs of the macro nodes (matrix operators) are regular and well characterised,
enabling speedup functions to be derived by simple analysis. Some examples of matrix expressions
are shown below, where all operators are matrix operators. In all that follows, the terms "macro
node" and "matrix operator" mean the same.

Y = A(B + CD) - Simple Matrix Expression

Y = ao + a1A + a2A2 + a3A3 + · · · + aNAN - Matrix Polynomial

y = wx F . T r h . W j21r1c1 - ouner ransiorm, w ere matrix : Wk/ = e- t1""

1. 1 Hierarchical Compilation

In principle, general purpose approximation algorithms for partitioning and scheduling can be
applied to a completely expanded dataflow graph, where the internals of each macro node (matrix
operator) is completely exposed. These resultant partitions and schedules are close to being globally
optimal. However, when data sets have 0(N) computations, to be compiled on P processors, these
general techniques remain computationally feasible only for very small N , for they exhibit average
compilation times 0(N) to 0(N3).

When the computational graphs display hierarchical structure (e.g., multiple matrix opera­
tions manifested in a program as nested loops), with M macro nodes, the hierarchical compilation

3

strategy speeds up partitioning and scheduling to 0(M) by performing compilation in two steps.

First , the processor allocation step determines both the optimal number of processors computing
every macro node (node parallelism), as well as the order in which macro nodes are computed
(sequencing). This step uses the speedup functions of the macro nodes derived by analyzing the
internal dataflow graphs of the macro node (matrix operator). Given the macro dataflow graph
representation of a set of interdependent nested loops and the speedup functions of each loop nest ,
the same procedure can determine the optimal number of processors assigned to each loop.

Next , the dataflow graph of the individual macro nodes (matrix operators) is independently
partitioned and scheduled, for the parallelism determined above. The partitioning is done so that
communication incurred in computing the macro node is minimized, while maintaining an even
load on each processor.

This paper focusses on the processor allocation phase of the compiler. See [4] for details of the
partitioning phase.

1.2 A Simple Example

Consider the following matrix expression (denoted gl), whose macro dataflow graph appears in
Figure l (a).

(+ (x Ao Ai)
(+ (x (+ A2 A3) ~) As))

Its macro dataflow graph is a tree with two roughly equal sized branches, one with a single multiply,
and the other with a multiply and two additions. Assume we want to compile this on five processors.

Figure l (b) illustrates a general purpose compilation algorithm, which expands the datafl.ow
graph of all the five macro nodes (partially or completely) to yield a large dataflow graph for the
expression. Then it partitions and schedules the resulting graph, ignoring pre-existing structure
within each macro node, yielding five threads of computation. Two processors cooperate to compute
the smaller branch of the tree (single multiply), while the remaining three compute the branch of
the tree consisting of the two adds and a multiply. Although the resulting partition and schedule
is globally optimal, this strategy is time consuming.

Figure l(c) and (d) illust rate the hierarchical compilation strategy. First, in the processor
allocation phase, the sequencing and parallelism of all the five macro nodes is determined using
the algorithms to be presented in Section 3. One of these (the Tree algorithm) makes the following
choices for the sequencing and parallelism. The two branches of the tree are started simultaneously,
and the processors a.re distributed among the two branches so that they also finish at the same
time. Two processors a.re assigned to the smaller branch, while three processors are assigned to
each macro node in the other branch. Finally, the last addition is run on all five processors. At this
point , the sequencing and parallelism of every macro node has been determined; the Gantt chart
in Figure 1(c) depicts the resulting schedule and processor allocation.

Next , the optimal partitioning algorithms (Section 4) are used to partition each macro node
for the number of processors determined above. As depicted in Figure 1(d), the computations in
the matrix multiply (node 1) is partitioned into two chunks, M10 and M11 , for execution on two
processors to balance their load and minimize communication.

0
(a) Matrix Expr DFG (b} Single- level Partitioning

5 processors

M30,M31
M32

A40,A41
A42

ASG,A51,A52
A53,A54

(cl) Partitions of all macro nodes after Step 2

2 3
4

3 Procs s

1
2Proca

(c) Schedule after Step 1

Figure 1: The hierarchical compilation paradigm.

4

Time

Multiprocessor code for the expression is now generated by spawning five threads , with each
t hread computing a set of the chunks comprising the partitioned data.flow graph. Synchronization
points are inserted to ensure completion of computation of a.n macro node before computation on
successors begin. The hierarchical partition a.nd schedule is similar to the globally optimal schedule.
Exploiting the hierarchy results in major simplifications in compilation, since the scheduler deals
with just five macro nodes in the above example.

T he rest of the paper sketches these ideas in detail. Section 2 describes the algorithmic a.nd
architect ural simplifications required to make the problem tractable. Section 3 describes how to
determine the processor allocation for each macro macro. Since these techniques depend on speedup
functions of macro nodes (matrix opera.tors), Section 4 briefly describes how speedups may be
estimated for matrix opera.tors, a.nd how the opera.tors ca.n be partitioned for the level of parallelism
determined during processor allocation. Section 5 provides details of our implementation, and
Section 6 presents experimental results. Section 7 summarizes related work a.nd Section 8 concludes
t he paper.

2 Simplifying Assumptions

We make several simplifying assumptions in the scheduling algorithms a.nd in the architectural
model to make the problem tra.cta.ble.

Local
Me

INTERCONNECT

Figure 2: Multiprocessor model.

2.1 Partitioning and Scheduling

5

The globally optimal partition and schedule requires handling the complete dataflow graph as a
unit. Communication between macro nodes as well as that within an macro nodes influences the
result. Furthermore, the optimal partition and schedule may have portions of an macro node being
computed, before all its predecessors have finished (non-strict execution).

SDC makes the following simplifying assumptions. In the first step, it determines the number
of processors assigned to an macro node using the speedup functions of the macro nodes, treating
each macro node independently as a unit. Therefore, the schedules are necessarily strict - all
predecessors of an macro node are fully computed before it can start execution. We assume that
the speedup functions can either be predicted or empirically determined. This assumption is t rue
for most operators found in matrix arithmetic (and also most nested loops).

In the second step, each macro node is partitioned independently for the number of processors
determined in the first step. We ignore communication between the macro nodes. This assumption
is accurate if communication within an macro node dominates the communication between macro
nodes.

2.2 Architectural Abstraction

The hierarchical compilation strategy exploits compile-time knowledge of the multiprocessor archi­
tecture to estimate various quantities, for example, speedup functions , and necessitates a simple
characterization of the multiprocessor architecture. Our architectural abstraction, depicted in
Figure 2, models a distributed-memory multiprocessor with P processors. Each processor has as­
sociated fast local memory (or a cache), and accesses global memory and other processors through
an interconnection network. During the computation of a macro node, we assume that shared data
required for the computations are fetched into the fast local memory from global memory, and that
the result of the computations are stored in global memory.

Table 1 lists important architectural parameters. The processor is parameterized by its oper­
ation times for additions, Ta, and operation times for multiplications, Tm . These operation times
include the times needed to access locally available data (in cache or fast local memory).

6

II Operation I Time II
Add Ta

Multiply Tm
Single Word Remote Access Tu
Single Word Fetch and Add Tia

Table 1: Multiprocessor parameters.

We assume that a single-word access from remote memory takes time Tu. We further assume
that P such accesses, one from each processor, and each to a different datum, can occur simulta­
neously. The fixed remote access cost assumes that all remote memories are equidistant from each
processor, and that remote data access times are independent of the location of the datum in the
multiprocessor system.

The basic synchronization operation is a fetch-and-add on a shared datum [5]. The fetch-and­
operation allows an atomic update of a global datum. For matrix multiplies, for example, the fetch­
and-add allows synchronized accumulates to compute each element of the resulting product matrix.
The fetch-and-operation can also be used in a software combining tree to implement distributed
semaphores [6], which are required to enforce the precedence · constraints in the macro data fl.ow
graph. Let Tia denote the time required for a fetch-and-add on a remote datum, (excluding the
addition cost Ta, and assuming limited contention). As for remote accesses, we assume P fetch­
and-adds, each on a distinct datum, can take place simultaneously.

In the machine used for the experimental measurements, Alewife [7], the cost of a fetch-and­
add is roughly twice the cost of a remote memory access (Tia ~ 2Tu), because of contention and
because of the higher likelihood of requiring invalidations to other caches. Alewife implements the
fetch-and-add on remote data by fetching the data into the local cache and performing a local add.
More details about the architecture are in Section 5.

3 Determining Sequencing and Parallelism of Macro Nodes

Two tasks have to be performed in an optimal fashion for processor allocation in a macro datafl.ow
graph: The number of processors computing every macro node (node parallelism) has to be com­
puted, and the sequencing of the macro nodes has to be determined.

Finding optimal macro node parallelism and sequencing is a generalization of classical schedul­
ing and will be called generalised scheduling. We have developed techniques based on optimal
control theory for this purpose. The macro datafl.ow graph representation of loop nests allows these
techniques to be used for optimally compiling a set of interdependent nested loops.

We first present a simple intuitive characterization of the scheduling problem. Then we present
a formulation based on optimal control theory, and summarize the results that emerge. We then
describe an optimal scheduling technique for tree structured macro datafl.ow graphs. The section
concludes by discussing how the theoretical results are used to derive practical scheduling heuristics.

7

3.1 Intuition

The intuition underlying our algorithms is that as we increase the number of processors allocated to
an macro node, overhead of various kinds - scheduling, communication, synchronization - increases.
Thereby, the incremental speedup obtained keeps falling, which implies that the speedup functions
of the macro nodes a.re convex. Hence overall computation speed is maximized by running concur­
rently as many macro nodes as the available parallelism allows, using few processors for each macro
node. In contrast, running the macro nodes one by one, using all the processors for each macro
node, is much slower. Essentially, running many macro nodes in parallel maximizes the granularity
of the threads produced from each macro node, thus minimizing overhead. This intuition can be
given a rigorous foundation using optimal control theory.

3.2 Control Theoretic Formulation of Scheduling

The fundamental paradigm [8] is to view macro nodes as dynamic systems, whose state represents
the amount of computation completed at any point of time. The matrix expression is then viewed
as a composite macro node system - the individual macro nodes being its subsystems.

At each instant, state changes can be brought about by assigning (possibly time varying) pro­
cessing power to the macro nodes. Computing the composite system of macro nodes is equivalent to
traversing a trajectory of the macro node system from the initial (all zero) uncomputed state to the
final fully computed state, satisfying constraints on precedence and total processing power avail­
able. The processors have to be allocated to the macro nodes in such a way that the computation
is finished in the minimum time.

This is a classical optimal control problem. The macro node system has to be controlled to
traverse the trajectory from start to finish. The resources available to achieve this control are the
processors. A valid control strategy never uses more processors than available, and ensures that no
macro node is started before its predecessors a.re completed. A minimal t ime schedule is equivalent
to a time-optimal control strategy (optimal processor assignment), and this can be formalised as
given below.

3 .3 Formal Specification

Let n = {1, ... , N} be a set of N macro nodes to be executed on a system with P processors. Let
macro node i have length L,. That is, L, denotes the execution time of the macro node on a single
processor. A set of precedence constraints is specified, wherein macro node i cannot start until
after all its predecessors have finished.

It is convenient to define the state xi(t) of macro node i at time t to be the amount of work
done so fa.r on the macro node, 0 ~ x,(t) ~ Li, Let ti be the earliest time at which all predecessors
of i (if any) have finished, so that i can begin running. Thus x,(t) = 0 fort< ti, and Xj (ti) = Li
for all of i's predecessor macro nodes j . If macro node i has no predecessors, ti = 0.

Let Pi (t) be the processing power (number of processors) applied to macro node i at time t, and
let P be the total processing power available. The Pi(t) a.re all non-negative, and must sum to at
most P . Note that we have allowed the Pi(t) to be arbitrary time varying functions, thus allowing
arbitrary preemptive schedules.

Finally, assume that once an macro node's predecessors have finished, t he rate at which it

8

proceeds, dxi(t)/dt, depends in some nonlinear fashion on the amount of processor power applied,
Pi(t), but not on the state Xi(t) of the macro node, nor explicitly on the time t. We call this the
assumption of space-time invariant dynamics. Thus we can write:

dxi(t) { 0 fort < ti
---;r,:- = Si(Pi(t)) fort~ ti

(1)

where si(Pi(t)) will be called the speedup function. With no processing power applied, the macro
node state should not change, si(0) = 0. With processing power applied, the macro node should
proceed at some non-zero rate, Si(P) > 0 for p > 0. We further assume that Si(P) is non-decreasing,
so that adding more processors can only make the macro node run faster. In most of our theory,
si(P) is taken to be convex in p. This convexity reflects the increasing amount of communication,
synchronization, and scheduling overhead as the number of processors working on one macro node
increases.

Our assumptions about macro node speedup are a simple theoretical abstraction. In effect,
this form of the speedup function implies that macro nodes can be dynamically configured into
arbitrary numbers of parallel modules for execution on separate processors. Processors can be
added or removed at any time, and in such a manner that the processors assigned to the macro
node can all do useful work. The speedup depends only on the total number of processors allocated
to the macro node at a given time, and is independent of the state or the time variable. Our goal
is to finish all macro nodes in the minimum amount of time tF, by properly allocating processor
resources Pi(t).

3.4 Results from Control Theory

The results of time-optimal control theory [8] can be invoked to yield insights into generalised
scheduling. The results include:

• General theorems regarding optimal ma.cro node starting and finishing times. One theorem
states that a set of independent macro nodes should start and finish together, and be computed
simultaneously.

• General rules for simplifying the scheduling problem in special cases. Equivalence of the
generalised scheduling problem to constrained shortest path and network flow problems in
such cases.

• General purpose heuristics for scheduling, based on the speedup functions of the ma.cro nodes.
These techniques are provably optimal in special cases. In particular, a very simple divide
and conquer heuristic for tree-structured ma.cro dataflow graphs emerges, which can be shown
to be optimal for certain types of macro node speedups (e.g., for speedups of the form po.
[8]). The Tree Heuristic is discussed further below.

3.5 Tree Heuristic

The scheduling is especially simple when all speedup functions a.re of the form S(P) = P 0
, for the

same a. In this case the optimal processor allocations are no longer functions of time, but constants.
Moreover, the following graph reduction techniques are available to simplify the scheduling.

9

A set of macro nodes, 1, 2, · · · K, in series can be replaced by an equivalent single macro node
1: K, of length, L1:K, equal to the sum of the individual macro node lengths, Li. That is,

K

L1:K = ELi
i = l

An optimal schedule, SR, for the reduced graph maps directly into an optimal schedule for the
original, So as follows. The processor allocations of each macro node in So is equal to that of the
composite macro node 1 : Kin SR, that is

Therefore, all macro nodes in a series set have the same processor allocation. An macro node starts
as soon as its (sole) predecessor in the series set finishes.

A set of parallel macro nodes 1, 2, .. · K, can be reduced to an equivalent single macro node
1 : K of length, L1:K, equal to the l 1;a norm of the individual macro node lengths, Li, In other
words,

An optimal schedule, SR for the reduced graph maps directly into an optimal schedule for the
original, So as follows. All macro nodes in the parallel set are started and finished at the same
time. This implies that the processor allocations among the parallel macro nodes is in proportion
to the 1/ o. power of their individual lengths, that is,

L~/a
Pi(So) = K' 1/aP1:K(SR)

Lj= l Li

Since trees are recursive series-parallel graphs, these two reductions yield a simple, optimal
scheduling technique for trees. Specifically, the tree scheduling algorithm has two steps:

1. We first recursively reduce the entire graph to a single task with P" speedup, using series­
parallel reductions as described above, determining the length (workload) of the tree and all
subtrees. Now, the run time of the tree is easily computed.

2. Next, undoing the recursion, we allocate the processing power to each of the series and parallel
components according to their lengths, and determine their start and stop times. Continuing
recursively, we eventually derive the optimal processing schedule for every task in the original
graph.

Pseudo code for the Tree Heuristic is shown in Figure 3. Each node in the data structure
contains the length of the corresponding macro node (op-len), the total length of the macro node
plus the equivalent length of all subtrees (tree-len), the processor allocation (proc) to this macro
node, and the start and stop times of the macro node. First, find.length is recursively called to
determine the lengths of all subtrees. Then tree..scheduler uses the above determined lengths to
compute the processor allocations and the start and finish times for all macro nodes. Notice that
it attempts to equalize finish times of all predecessors (subtrees) a.t ea.ch macro node, by properly
splitting the processor resource amongst them.

struct tree {
op_len;
tree_len;

/• The length of the corresponding ■aero node•/
/• The length of the corresponding ■aero node,
• plua all subtree lengths•/

}

proc;

op_atart ;
op_stop;
left_child,

/• Proceaaor allocation for this aacro node and
• all subtrees•/

/• Start tiae for thia aacro node•/
I• Stop tiae for this ■aero node •I

right_child; /• pointer to children, IIL if a child is absent•/

parallel_length(a, b)
return(1/alpha nora of a,b);

find_length(tree)
{

}

left_len • right_len • O;
if (tree.left_child) left_len • find_length(tree . left_child);
if (tree.right_child) right_len • find_length(tree.right_child) ;
tree.tree_len • parallel_length(left_len,right_len) + tree.op_len;
return(tree.tree_len);

; Assuaes that find_length has been called already
tree_scheduler(tree, nproc)

{

left_len • right_len •0;
op_start • O;
if (tree.left_child) left_len • tree.left_child.tree_len;
if (tree.right_child) right_len • tree.right_child.tree_len;
if (tree.left_child)

{

}

left_proc • nproc • left_len / (left_len + right_len);
tree_scheduler(tree.left_child,left_proc);
op_start • tree.left_child.op_stop;

if (tree.right_child)
{

}

right_proc • nproc • right_len / (left_len + right_len);
tree_acheduler(tree.right_child,right_proc);
op_atart • tree.right_child.op_stop ;

tree.proc • nproc;
tree.op_atart •op_atart ;
tree.op_stop • op_start + tree.op_len / nproc"alpha;

}

Figure 3: Pseudo code for Tree Heuristic.

10

11

Macro DFG

p
1 2 3 4 5

Tl me
-

(a) Naive Heuristic

4:

P1 1 ~
2 3 4

3 4 5 5

P: 2 Time P1 1 Time

(b) Greedy Heuristic (c) Tree Heuristic

Figure 4: Generalised scheduling heuristics.

The Tree scheduling technique is optimal only when all speedup functions are of the form pa,
for the same a. Although the matrix product speedup in Equation 3 (Section 4), is not of this
form, we can employ this technique as a heuristic, since the speedup for matrix multiply can be
approximated as pa, and an appropriate a can be empirically determined (see Section 6.1). We
show that the technique is robust for the value of a used.

3.6 Generalised Scheduling Heuristics

For purposes of comparison, we have incorporated three heuristics - Naive, Greedy, and Tree, into
our structure-driven compiler. Figure 4 illustrates the operation of the three heuristics on the tree
structured dataflow graph used in Section 1.2. Let the length of macro node i be Li. As denoted
by the size of the circles representing each macro node, macro nodes 1 and 3 (matrix products)
take much longer to compute than the others (adds), and are the same length.

The Naive heuristic (Figure 4(a)) runs each macro node on all the available processors. Thus,
macro nodes 1, 2, 3, 4, and 5 a.re run in sequence. Although the execution times with this heuristic
are clearly sub-optimal, this heuristic is used for its simplicity.

The Greedy heuristic (Figure 4(b)) is an as-soon-as-possible greedy schedule. An macro node
is run at the earliest time at which it is ready. All macro nodes that a.re ready at a certain time
are started together and finished together. Computation proceeds as a wavefront picking up macro
node sets which get ready in succession. For this expression, Greedy runs macro nodes 1 and 2
in parallel, distributing the processor resources among them such that they finish together. The
resulting processor allocations (rounded to nearest integers) re

L 1/a
Pi = 1 p

L 1/a + L 1/a
1 2

Lt/a
and P2 = t/

2
t/ P L a+L a 1 2

Subsequently, macro nodes 3, 4 and 5 are computed, each using all available processors (P3 = P4 =

12

P5 = P). Notice that since L1 > > L2, almost all processors a.re allocated to macro node 1 in the
first step. The resulting schedule is little better than the Naive schedule. Indeed, if P2 gets rounded
to 0, all processing power is allocated to macro node 1 in the first step, and macro node 2 will be
computed in a succeeding step. The Greedy schedule will then be identical to the Naive schedule.

The Tree heuristic (Figure 4(c)) does a much better job of partitioning the processor resources
by recognizing that macro nodes 2, 3, and 4 form a subtree, which can be run in parallel with
macro node 1, and splitting the available processors. The processing resource is allocated among
the subtrees so that their finishing times are equalized. Finally, macro node 5 is run on all the
available processors . The processor allocations a.re

Ll/a
Pi = 1 p

Li/a+ (L2 + L3 + L4)l/a

P2 = P3 = P4 = (L2 + L3 + L4)l fa p
Li/a+ (L2 + L3 + L4)l fa

and P5 = P

Since L1 ::::: L3 >> L2, L3, L4 , both subtrees get roughly the same number of processors, and
are computed in a "balanced" manner. Notice that the partitioning is greatly improved using the
global information available about t ask sizes.

4 Optimal Matrix-Operator Compilation

Section 3 presented methods for determining the number of processors, Pi , assigned to each macro
node i , and their sequencing. In our context, the macro nodes a.re matrix operators. This section
overviews our technique to optimally partition and schedule the data.flow graphs of each operator
among t he Pi processors. The analysis yields the speedup functions needed for processor allocation.
Other met hods (e.g., [l]) for general loop nests can also be used for partitioning.

The key idea is to exploit the regular structure in the operator data.flow graph: we represent
the dat a.flow graph as a lattice, with ea.ch data.flow graph node corresponding to some lattice point.
For example, t he standard algorithm for multiplying an N1 x N2 matrix A, by an N2 x N3 mat rix
B , yielding an N1 x N3 matrix C = AB,

Cik = L Gi jbjk
j

has N1N2N3 multiplications, and N1N3(N2 - 1) additions. The corresponding data.fl.ow graph can
be represented by an N1 x N2 x N3 lattice of multiply-add nodes, as shown in Figure 5(a). Each
node (i , j , k) represents the computation

Locality in t he data.flow graph is reflected in the geometric locality of the lattice points. Nodes
corresponding to adjacent lattice points generally have common inputs, contribute to common
outputs, or communicate values between themselves. For example, all nodes arranged in a line
parallel to the k axis share the same element of A , namely aii· Nodes arranged in a line parallel to
the i axis share b;k• Nodes arranged in a line parallel to the j axis accumulate partial sums to the
value of Cik • An optimal partit ion on P processors divides t he operator data.flow graph lattice into

I· N2

I!
~ lattloe of nodee

Blk

k ~ .. ~
Cljk

Mullpllclllon Node

Figure 5: Dataflow graphs for matrix product

13

P equal sized chunks, while choosing the shape of the chunks in a compact manner to minimise
the cost of data accesses (communication) of any chunk.

This lattice representation of the dataflow graph facilitates the partitioning as follows. First , the
size of each chunk is its volume V (number of dataflow nodes enclosed). The total computation cost
is then simply (T,. + Tm)V, since each dataflow graph node is a multiply-add. The communication
of any chunk is computed as follows. The number of accesses of elements of A is the projection PA
of the chunk on the A (ij) face of the dataflow graph. Similarly, the projections PB and PC on
the Band C faces measure the number of accesses of elements of Band accumulates to the output
matrix C respectively. Since accesses of A and Bare memory fetches (each costing Tu), while those
of C are synchronized accumulates (each costing Tia), the total communication cost for this chunk
lS

which is the weighted projected area of the cluster. Since the projected surface area of each chunk
has to be minimised keeping their volumes equal, the ideal chunks are cubical boxes (blocks), whose
aspect ratio depends on the architectural parameters Tu and Tfa• These P ideal chunks have to be
packed into the dataflow graph lattice, ideally without distortion. Three-dimensional bin packing
techniques can be employed to achieve close to optimal partitions (4].

The processor allocation techniques in Section 3 need the speedup functions S(P) of the optimal
operator partitions. These functions are a byproduct of the above analysis. The speedup is the
ratio of the execution time on 1 processor to the execution time on P processors. Since the three­
dimension bin packing techniques a.re close to optimal, we can use lower bounds. The lower bound
Te on the execution time, derived by assuming all chunks are equal in size and ideal in shape, and
assuming that computation and communication times are additive, can be shown to be:

(2)

The lower bound on the total time has a linearly decreasing and a. less than linearly decreasing

component. Denoting k1 = (Ta+ Tm) and k2 = 3(TJT1a)½, the maximum attainable speedup then
becomes,

(3)

Alewife machine

Alewife node

Oislributad
51-ared
Memo,y

Figure 6: Structure of the Alewife machine.

5 Implementation Details

14

This section furnishes details of the experimental environment used to evaluate the performance of
the matrix expression compiler, SDC, as well as some implementation details.

The input to SDC is a matrix expression in a LISP-like prefix language, with data independent
control. The compiler produces a parallel program in Mul-T [9], which is compiled and run on the
Alewife machine simulator, ASIM. Mul-T is a parallel lisp language.

The Alewife Machine The Alewife Machine [7] is a mesh-connected, distributed shared-memory
multiprocessor with coherent caches, as shown in Figure 6. The processor, Sparcle, uses a modified
SPARC architecture. Global shared-memory is distributed among the processing nodes, access to
which is provided by the mesh interconnection network. Processors have associated caches for fast
access to frequently used data. Because caches can store shared data, a cache coherence scheme
maintains memory consistency. A detailed, cycle-by-cycle simulator, ASIM, and associated program
analysis tools, are currently available for Alewife.

The abstractions made in Section 2.2 model Alewife fairly accurately. The Spa.rcle processor
uses a load-store architecture, so arithmetic operations a.re accurately characterised by the execution
times (Ta, Tm), ignoring pipeline latency. The local cache in each Alewife node allows fa.st, single­
cycle word accesses. As mentioned earlier, cache access costs are included in the basic arithmetic
operation costs.

Accesses to globally shared memory, however, are not accurately represented, since Alewife's

15

distributed-memory architecture places some memory modules closer to each node than others -
the access time, Tu, to the global memory module on the same node as the requesting processor is
satisfied in 10 cycles, while an access to a memory module situated in a remote node could take on
the order of 50 cycles (in a 64-processor system). Access times also vary due to network loading
conditions. However, because each of these access times is over an order of magnitude greater than
the cache access time, the compiler can reasonably model Alewife as a two-level memory hierarchy,
with a fast first-level store, and a slower second-level remote memory.

A coherence scheme in Alewife ensures data consistency, but we do not explicitly model its
effects. The presence of a cache coherence scheme manifests itself in our approximation of accumu­
lation cost Tia = 2Tu. Because it requires a write to a shared datum potentially present in another
cache, an accumulation incurs roughly twice the cost of a memory read due to the extra invalidate
to purge the other cached copy. For the results in this paper we configure ASIM to use the full-map
coherence protocol, which tracks cached copies of a shared datum.

Alewife's Software Environment The SDC algorithms determine an optimal allocation of
work (thread) for each processor over time. Code generation for the work allocation requires the
ability to spawn threads for each processor, synchronize them, and communicate data (input and
output matrices and temporaries). The Alewife software environment allows thread creation using
the future call. A thread t can be assigned to a specific processor p using the (future-on pt) call.
Threads can be synchronized using constructs, such as distributed semaphores, provided by the
Alewife parallel software library. Input and output matrices, and temporaries, are automatically
shared among multiple threads through shared memory.

Compiler Implementation The compiler performs a two level partitioning and scheduling as­
suming that the speedups are of the form pa. The partitions are grouped into P threads, one for
each processor. Code consisting of a sequence of calls to the routines handling the operator parti­
tions is generated. Sets of processors cooperating on a macro node are synchronized by embedding
distributed semaphores at appropriate places in each thread.

A distributed-memory multiprocessor, such as Alewife, requires that shared data structures be
distributed across multiple processors and necessitates a mechanism for keeping track of the con­
stituent chunks. Since data sizes can be arbitrary, and ill-matched to the size of the multiprocessor,
the chunks are usually irregular. We provide access to the chunks through pointers duplicated in
several processor nodes to avoid hot spots.

6 Experimental results

This section presents experimental results obtained with the compiler on the Alewife machine
simulator. A large number of matrix expressions have been compiled and simulated. The simulator
is configured for a three-dimensional mesh interconnect, with sizes 1 x 1 x 1 (uniprocessor), 2 x 2 x 2,
and 4x4x4. If the number of processors used to compute the matrix expression is P, then processors
P; such that 0 ~ i < Pare used and the others are idle. Unless otherwise specified, the compiler
assumes that the time for an interprocessor accumulate, Tia, is twice the memory access time, Tu.

We first present results for the the matrix product to show how speedup functions are derived.
Then using these speedups, we present results for complete expressions. We emphasize that all

16

i '° ,0

•

10 • ' 7

' !S

4 - -- -·- ,,,.,. -J,
z

2 3 , s s , aino 20 30 40 50 8070

A-aann •

Figure 7: Speedup curves for matrix product.

the speedups shown are close to the "true" speedups for the expression. That is, the uniprocessor
program is optimised for a single processor, that for 8 processors is optimised for 8 processors, and
so on.

6.1 Matrix Product

Code for a matrix product is generated by the compiler for each number of processors , following the
techniques of Section 4. While is is not immediately apparent that the speedup function for matrix:
multiply shown in Equation 3 is of the form pa, it can be approximated as such, as is evident from
Figure 7. This figure shows a. log-log plot of the speedup curves for various matrix sizes. Functions
of the form pa will appear as straight lines on a. log-log plot, whose slope is the desired parameter
a. Since all t he curves a.re roughly straight lines, they are well approximated by pa.

The slopes (o 's), however, depend on the size of the matrices, and range from from 0.6 (for 20 x20
matrices) to 0.8 (for 64 x 64 ma.trices). Fortunately, as we demonstrate below, the partitioning is
not very sensitive to the exact value of a used, as long as the task sizes are not widely different.
An average value of a = 0.7 can be used for the matrix sizes above. This is in rough agreement
with Equation 3, which implies that a should lie between 2/ 3 and 1. We can also estimate a from
a knowledge of the multiprocessor constants Ta , Tm , and Tf a•

6.2 Almost Balanced Tree - gl

We now evaluate the performance of the compiler on several mat rix expressions for various ma­
trix sizes. We first present results for the almost-balanced tree expression gl first introduced in
Section 1.2, with matrix sizes 32 x 32.

The speedup curves plotted in Figure 8 show the performance of the Naive, Greedy, and Tree
heuristics as the number of processors is increased from 1 to 64. We also plot the expected speedup

i ~
20

11

12

,

o- o Naiw
□-□ Greedy
o - o Tree
• - • Tree Predicted (a• 0.7)

nn.on f 1'too111, -~.-

a---------------0 I 11 ~ ~ - 4 • U
A-1101110 W

Figure 8: Speedup curves for expression gl, with 32 x 32 matrices.

17

for the Tree heuristic assuming a = 0.7, and assuming no costs are associated with the synchroniza­
tion needed for enforcing the precedence constraints. The expected speedup (for P large enough
to ignore processor discretization effects) is computed as follows

S(P) = T(l)/T(P)

where T (l) is the expected uniprocessor execution time, and T(P) is the expected time for the Tree
heuristic. From Section 3.5 it follows that

T (P) = Equivalent Tree Length/ p)·7

where the equivalent tree length is computed using the series parallel reductions of Section 3.5, and
is always less than the uniprocessor execution time.

The Tree heuristic is clearly the best, and gets progressively better relative to Naive and Greedy
as more processors are used. The Na.ive and Greedy heuristics are identical in performance for gl;
their speedup flattens out at a.bout 14 after 32 processors. Thus, compilers for programs with
multiple loop nests which assign all processors to ea.ch loop nest are potentially far from optimal.
The performance of the Tree heuristic is much better; the absolute speedup for the Tree heuristic at
64 processors is about 18, a gain of 30 percent over the Greedy and Naive heuristics. This is close
to 80 % of the expected performance of 23. This gap between the expected and measured speedup
is largely due to synchronization costs associated with enforcing the precedence constraints.

How robust is the partitioning strategy to the value of a used? Answering this question is
important because, in practice, it is hard to estimate a accurately. Table 2 shows the speedups
obtained for gl as a is changed from 0.5 to LO. It can be seen that the Tree heuristic is quite robust,
with the speedup changing by less than 10 percent. Greedy, however, shows a larger sensitivity to
a.

The relative insensitivity of the Tree heuristic to a is because the branches of the tree are almost
equal in size, and are assigned about the same number of processors, irrespective of a. Greedy,

18

a 0.5 0.7 1.0
Tree 19.1 18.6 18.6

Greedy 14.5 14.5 7.6

Table 2: Speedup for 64 processors, using various values of a.

however, tries to run a large multiply, (x Ao A1), in parallel with a small addition, (+ A2 A3),
in the first step. For small a, because the speedup curves are highly convex, the smaller task
(addition) gets a tiny fractional processor allocation. After discretization, all the processors get
allocated to the larger task, and the smaller task is computed in a succeeding step. Hence, when a
is small, the two operations are computed one after another, in sequence. As a increases, there is a
point at which the small addition gets a non-zero processor allocation in t he first step. The small
allocation for the addition causes it to finish late. Consequently, the sensitivity of the processor
allocation to a is especially significant when the sizes of the tasks being run in parallel are widely
different. Greedy can be made more robust by not running very small and very large operators
concurrently. The robustness gained more than compensates for the small loss in efficiency.

6.3 Large Almost Balanced Tree - g2

The next example demonstrates that the relative gain in performance from the Tree heuristic
increases with increase in the parallelism in the macro dataflow graph. Expression g2 shown below
is essentially two copies of gl executed in parallel and allows Tree more opportunity to run tasks
concurrent ly.

(+ (xAo Ao)
(+ (x (+ A1 Ai) A1)

(+ (x (+ (+ A2 A2) A2) A2)
(x (+ (+ (+ A3 A3) A3) A3) A3)))

The speedups are plotted in Figure 9. The Tree heuristic performs much better than Naive or
Greedy, with gains increasing as we increase the number of processors. The speedup of 24.5 with
64 processors is 85 percent of the expected speedup of 28. This is a 60 % gain over the performance
of 15.8 attained by Naive or Greedy.

6 .4 Large Unbalanced Product Tree - g3

The expression g3, is an unbalanced tree, with one branch twice as large as the other.

(x (x (x A1 A2)
(x (x A 3 A4) As))

(x (x As A1)
(x (x As A9)

(x (x A10 A11) (x (x A12 A13) Au)))))

All mat rices are of size 32 x 32. Since all the basic operators in this expression are matrix products,
both Tree and Greedy ha.ve the opportunity to run large operators in parallel, resulting in significant

2D

12

,

o- o Naiw
□-□ Greedy
o- o Tree
• - • Tree Predicted (a• 0.7)

Ttlw on 1 A-OOUH . 1103713 eye,_

8 11 24 32 40 48 5' H
Prc:c:1110 a

Figure 9: Speedup curves for expression g2, with 32 x 32 ma.trices.

19

ga.ins in efficiency. This is unlike gl or g2, where the presence of a. tiny ma.trix sum in front of a
matrix product prevented the Greedy heuristic from running the products in parallel.

Figure 10 shows the speedup curves for the Na.ive, the Greedy, and the Tree heuristics. The
expected speedup for the Tree heuristic ha.s also been plotted. The Tree heuristic performs slightly
better than Greedy; both are substantially better than the Na.ive by a. factor of 1.5 for 64 processors.
The curves a.re a.round 85 percent of the expected speedup for Tree.

This example demonstra.tes tha.t the Greedy heuristic ma.y approach the performa.nce of Tree
in specific ca.ses. However, Greedy is not a.s robust a.s Tree, and does a.s poorly a.s Na.ive in many
ca.ses.

6.5 Compilation Time

The compilation time is 0(M), where M is the number of matrix opera.tors (macro nodes). By
compa.rision, a compiler using general pa.rtitioning and scheduling techniques a.s in (10] ta.kes time
0(N) to 0(N3

), where N, the number of simple nodes, is frequently a.bout 100- 1000 times the
number of processors P, and N >> M. Clea.rly the hierarchical scheme is much fa.ster, when the
structure of the computations can be exploited. For our example expression 93, consisting of 13
operators, SOC takes less than a minute to produce Alewife machine code on a Sparcstation-I. In
fact, for the examples we have run, SDC's run time is dominated by the time taken to compile
SDC's output Mul-T code to Alewife machine code.

7 Related Work

Previous techniques developed for compiling da.taflow gra.phs onto a. given, possibly parameterised,
architecture, do not generally exploit apriori knowledge about the regular, hierarchical structure of
the computation (1, 2, 10, 3, 11].

20

i
,a o-o Naiw

□-□ Gr-iy

• o-oTrN

J
•-• Tree Predicted (a. 0.7)

2'

20

11

12

• r: 1ns:z:n, eye,,_

4

0
0 • ,, 2" 32 40 ... ,. N

Figure 10: Speedup curves for g3, with 32 x 32 matrices.

Sarkar's (10] general approach to the multiprocessor compilation problem for programs written
in a single assignment language, SISAL, can handle a large class of parameterised architectures,
with varying processor and interconnect characteristics. In Sarkar's approach, an expanded dataflow
graph is created for the program, with each node representing a collection of operations in the pro­
gram. Execution profile information is used to estimate node execution times and communication
overhead. Then, an explicit graph partitioning of the dataflow graph of the problem determines
the tasks for different processors. Finally, either a run-time scheduling system is invoked to auto­
matically schedule the tasks, or a. static scheduling of these tasks is determined at compile time.
Sarkar used the hierarchical structure of the dataflow graph to simplify some frequently used graph
operations, viz, in determining the transitive closure and critical pa.th analysis. However, because
partitioning and scheduling is still done on the expanded graph, it is time consuming. Multilevel
scheduling and partitioning schemes discussed in our paper are significantly more efficient when
the structure of the operators can be characterized by a simple speed-up function.

Several recent efforts [1, 2, 3, 11] have developed techniques to compile efficiently nested iter­
ative parallel loops, ta.king the behaviour of the memory hierarchy into account. Nested iterative
loops, for example, form the inner code of matrix operators: the matrix product being a triply
nested loop. The basic paradigm in these techniques is to minimise communication by choosing
compact partitions of the dataflow graph of the loop. The communication is estimated from loop
dependencies. In the context of matrix operators , these techniques result in blocking algorithms
similar to those presented in Section 4.

However, the above efforts did not address composition of loops. Each loop in an interdepen­
dent loop nest will be partitioned and scheduled on all available P processors, which is the Naive
heuristic. We believe that the optimal processor allocation techniques (e.g., Tree) of Section 3 form
a natural extension of this work.

21

8 Conclusion

We have presented computationally efficient techniques for processor allocation in macro datafiow
graphs for multiprocessors. Processor allocation is the problem of determining the number of
processors allocated to each macro node (or node parallelism) and their sequencing. In our method,
the compiler relies on estimated speedup functions for the macro nodes to determine the processor
allocation. The opera.tor parallelism is used by subsequent stages of the compiler for partitioning
each macro node. Thus, processor allocation followed by techniques to partition each macro node
optimally for the specified parallelism forms a two stage hierarchical compilation strategy.

We implemented several techniques for processor allocation and partitioning in a prototype
structure drive compiler, SDC, for matrix expressions. Measured speedups on a simulator of the
Alewife Machine indicate that the Tree generalised scheduling technique is best-suited for determin­
ing operator parallelism and sequencing for tree-structured macro dataflow graphs. Our techniques
can also be applied to the problem of optimally compiling a set of interdependent loop nests,
provided speedup functions can be derived for each nest.

9 Acknowledgments

The research reported in this paper is funded by DARPA contract# N00014-87-K-0825, NSF grant
MIP-9012773, and by grants from the Sloan foundation and IBM. Substantial technical input
from Bruce Muskus is also gratefully acknowledged.

References

[1] S.G. Abraham and D. E. Hudak. Compile-Time Partitioning of Iterative Parallel Loops to Reduce
Cache Coherency Traffic. IEEE Transactions on Parallel and Distributed Systems, 2(3):318-328, July
1991.

[2] J. Ramanujam and P. Sadayappan. Compile-Time Techniques for Data Distribution in Distributed
Memory Machines. IEEE Transactions on Parallel and Distributed Systems, 2(4):472-482, October
1991.

[3] M. E. Wolf and M.S. Lam. A Loop Transformation Theory and an Algorithm to Maximize Parallelism.
IEEE Tranaaction.t on Parallel and Diatributed System.t, 2(4):452-471 , October 1991.

[4] G .N.Srinivasa Prasanna. Structure Driven Multiprocessor Compilation of Numeric Problems. Technical
Report MIT/LCS/TR-502, Laboratory for Computer Science, MIT., April 1991.

[5] Allan Gottlieb, B.D. Lubachevsky, and Larry Rudolph. Basic techniques for the efficient coordination of
very large numbers of cooperating sequential processors. A CM Transactions on Programming Languages
and System.a, 5(2):164-189, April 1983.

[6] Pen-Chung Yew, Nian-Feng Tzeng, and Duncan H. Lawrie. Distributing hot-spot addressing in large­
scale multiprocessors. IEEE Transactions on Computers, C-36(4):388-395, April 1987.

[7] A. Agarwal, D. Chaiken, G. D'Souza, K. Johnson, D. Kranz, J. Kubiatowicz, K. Kurihara, B. Lim, G.
Maa, D. Nussbaum, M. Parkin, and D. Yeung. The MIT Alewife Machine: A Large-Scale Dist ributed­
Memory Multiprocessor. In Workshop on Scalable Shared Memory Multiprocessors, Kluwer Academic
Publishers, 1991. Also appears as MIT/ LCS Memo TM-454, 1991.

[8] G.N.Srinivasa Prasanna and Bruce R. Muskus. Generalised Multiprocessor Scheduling Using Optimal
Control. In Third Annual ACM Symposium on Parallel Algorithms and Architectures, 1991.

22

(9] D. Kranz, R. Halstead, and E. Mohr. Mul-T: A High-Performance Parallel Lisp. In Proceedings of
SIGPLAN '89, Symposium on Programming Languages Design and Implementation, June 1989.

(10] V. Sarkar. Partitioning and Scheduling Programs for Multiprocessors. Technical Report CSL-TR-87-328,
Computer Systems Laboratory, Stanford University, April 1987.

[11] M. Wolfe. Iteration Space Tiling for Memory Hierarchies. 1987.

