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Abstract 

This paper presents a hierarchical approach for compiling macro dataflow graphs for 
multiprocessors with local memory. Macro dataflow graphs comprise several nodes ( or macro 
operations) that must be executed subject to prespecified precedence constraints. Programs 
consisting of multiple nested loops, where the precedence constraints between the loops are 
known, can be viewed as macro dataflow graphs. The hierarchical compilation approach 
comprises a processor allocation phase followed by a partitioning phase. In the processor 
allocation phase, using estimated speedup functions for the macro nodes, computationally 
efficient techinques establish the sequencing and parallelism of macro operations for close­
to-optimal run times. The second phase partitions the computations in each macro node to 
maximize communication locality for the level of parallelism determined by the processor 
allocation phase. The same approach can also be used for programs consisting of multiple 
loop nests, when each of the nested loops can be characterized by a speedup function. 

These ideas have been implemented in a prototype structure-driven compiler, SDC, for 
expressions of matrix operations. The paper presents the performance of the compiler for 
several matrix expressions on a simulator of the Alewife multiprocessor. 

Keywords: Parallel compilation, cache-coherent multiprocessors, distributed-memory 
multiprocessors, communication locality, task scheduling, parallel processing, parallelizing 
compilers. 

1 
A short pa.per on the processor allocation phase of SDC has been submitted to ICPP'92. 
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1 Introduction 

Multiprocessors rely on careful allocation of their processing, communication, and memory re­
sources to computations for achieving high performance. While it is possible for programmers to 
carefully orchestrate their computations, producing correct and efficient programs is extremely 
difficult. The problem is even more severe on multiprocessors with complex memory hierar­
chies. For many classes of problems, which display a known structure, or which are amenable 
to static analysis, it is possible for a compiler to derive programs that exhibit close-to-optimal 
run times. 

A compiler must address several important inter-related issues. First, the workload of 
the program must be equitably distributed across all the available processors, keeping the 
communication between tasks to a minimum. This is called the partitioning problem. Next, 
the set of tasks for each processor must be sequenced to satisfy all precedence constraints, 
while minimizing processor idle time. This is the scheduling problem. Both partitioning and 
scheduling are difficult, NP-Hard problems. 

However, optimal compilation can be greatly simplified if the computation has a hierarchi­
cal structure, that is, if it can be represented as a macro dataftow graph. A macro dataflow 
graph is composed of macro nodes, where each macro node has internal structure. For ex­
ample, a matrix expression can be represented as a macro dataflow graph, where each node 
corresponds to basic matrix operators, such as matrix adds and multiplies. Programs consisting 
of multiple nested loops can often be represented as macro dataflow graphs, where each node 
in the dataflow graph corresponds to a nested loop, and where some form of synchronization 
( e.g., counting semaphores) among the processors executing the nested loop establishes the 
precedence constraints between different loop nests. 

We simplify the compilation of macro data-flow graphs by compiling separately the two levels 
of hierarchy. In the first phase, called processor allocation, the complete macro data-flow graph 
is compiled, treating each macro node as a unit. In this step, the sequencing of macro nodes, 
or scheduling, and the number of processors assigned to each macro node, or node parallelism, 
is determined. This step uses the speedup functions of each macro node. After the processor 
allocation phase, the computations within each macro node are partitioned among the processors 
assigned to that node for communication efficiency. This divide and conquer strategy not only 
reduces the combinatorial complexity of compiling, but affords further simplifications if we 
exploit our knowledge of the structure of computation within each macro node. 

Our work in processor allocat ion complements recent work (1, 2, 3) in partitioning nested 
loops. Since nested loops can be treated as macro nodes, our work is equivalent to determining 
the optimal schedule and loop parallelism for a program with multiple interdependent loop nests. 
Their work in partitioning loop nests treated each loop nest separately, and assumed a certain 
number of processors over which to partition the loop. The techniques discussed in this paper 
can be used to choose the number of processors to be assigned to each loop nest. Our work can 
also be used in conjunction with the techniques to compile possibly imperfectly nested loops 
developed by Polychronopoulos et al. [4] and Wang et al., (5). Their algorithms did not attempt 
to run disjoint, independent subloops at a given nesting level in parallel as does our scheme 
when the precedences between different portions of the loop nest are known. Our techniques 



2 

can be used to yield significant performance gains by exploiting this interloop parallelism. 

In this paper, we describe computationally efficient techniques for processor allocation in 
macro dataflow graphs. We develop algorithms for determining node parallelism and sequenc­
ing, and describe the design of a structure-driven compiler (SDC) using these algorithms for 
matrix expressions. We also discuss techniques for partitioning the macro nodes corresponding 
to matrix operations, since these techniques provide the speedup functions necessary for pro­
cessor allocation. Our partitioning methods use geometric bin packing techniques, which allow 
us to take into account boundary truncation effects and mismatched numbers of processors. 

Matrix expressions were chosen because many important examples have macro dataflow 
graphs which exhibit simple data-independent control, and have a wide variety of graph struc­
tures well suited to automatic compilation. The dataflow graphs of the macro nodes (matrix 
operators) are regular and well characterized, enabling speedup functions to be derived by sim­
ple analysis. Also, many algorithms in numeric computation implicitly require computation of 
matrix expressions ( e.g., computation of an entire array in a nested loop). 

Some examples of matrix expressions are shown below, where all operators are matrix op­
erators. In all that follows, the terms "macro node," "macro operator," and "matrix operator" 
mean the same. 

Y = A(B + CD) - Simple Matrix Expression 

Y = ao + a1A + a2A2 + a3A3 + • • • + aNAN - Matrix Polynomial 
y wx F . T ~ h . w j 211:kl - ouner rans1orm, w ere matrix : Wk/= e- rr 

We present experimental results for several matrix expressions compiled using SDC on a 
simulator of the Alewife multiprocessor. Alewife [6] is a distributed shared-memory multi­
processor being developed at MIT. Our experiments indicate that careful processor allocation 
yields speedups that far exceeds the speedups due to techniques that allocate all the processing 
resources to each nested loop in turn. 

1.1 Hierarchical Compilation 

In principle, general purpose approximation algorithms for partitioning and scheduling can 
be applied to a completely expanded dataflow graph, where the internals of each macro node 
are completely exposed. These resultant partitions and schedules are close to being globally 
optimal. However, when data sets have 0(N) computations, to be compiled on P processors, 
these general techniques remain computationally feasible only for very small N, for they exhibit 
average compilation times 0(N) to 0(N3) . 

When the computational graphs display hierarchical structure ( e.g., matrix operations man­
ifested in a program as nested loops), a hierarchical compilation strategy simplifies partitioning 
and scheduling of the complete computation by performing compilation in two steps. 

First, the processor allocation step determines both the optimal number of processors com­
puting every macro node (node parallelism), as well as the order in which macro nodes are 
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computed (sequencing). This step uses the speedup functions of the macro nodes derived by 
analyzing the internal dataflow graphs of the macro node. Given the macro dataflow graph 
representation of a set of interdependent nested loops and the speedup functions of each loop 
nest, the same procedure can determine the optimal number of processors assigned to each 
loop nest, and the sequencing of the loops. Processor allocation is a generalization of classical 
scheduling and is therefore sometimes referred to as generalized scheduling. 

Next, the dataflow graph of the individual macro nodes is independently partitioned and 
scheduled, for the parallelism determined above. The partitioning is done so that communica­
tion incurred in computing the macro node is minimized, while maintaining an even load on 
each processor. We exploit the regular structure of the dataflow graphs of these operators and 
use bin packing techniques to achieve close-to-optimal partitions. 

Our work in partitioning differs from the work of others [1, 2, 3] not only in the techniques 
used for partitioning, but in our emphasis on partitioning for an arbitrary number of processors, 
which addresses fragmentation at the boundaries of the dataflow graph when the number of 
processors is mismatched to the problem size. We note, however, that although our techniques 
yield close-to-optimal partitions for structured graphs, they are less general than previously 
reported methods. 

This paper has two major parts, corresponding to each step of the hierarchical compilation 
strategy. First, Section 3 presents processor-allocation techniques to determine the parallelism 
and sequencing of all the operators in a matrix expression. Next, Section 4 presents techniques 
for partitioning the dataflow graphs of the matrix operators, for the given parallelism. 

1.2 A Simple Example 

Consider the following matrix expression ( denoted g 1), 

( + (x Ao A1) 
(+ (x (+ A2 A3) 

A4) 
As)) 

whose macro dataflow graph appears in Figure l(a). The macro datafiow graph is a tree with 
two roughly equal sized branches, one with a single multiply, and the other with a multiply and 
two additions. This matrix expression is equivalent to the set of nested loops shown in Figure 2, 
where the usage pattern of the matrices establishes the precedence constraints. Assume we want 
to compile this on five processors. 

Figure l (b) illustrates a general purpose compilation algorithm, which expands the datafiow 
graph of all the five operators (partially or completely) to yield a large, flattened dataflow graph 
for the expression. Then it partitions and schedules the resulting graph, ignoring pre-existing 
structure within each operator, yielding five threads of computation. Two processors cooperate 
to compute the smaller branch of the tree (single multiply), while the remaining three compute 
the branch of the tree consisting of the two adds and a multiply. Although this resulting 
partition and schedule is globally optimal, this strategy is time consuming. 
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(a) Matrix Expr DFG (b) Single-level Partitioning 
5 processors 

MlO,Mll 

CD 
M30,M31 

M32 

A40,A41 
A42 

(d) Partitions of all macro nodes after Step 2 

2 
3 

4 
3 Procs s 

1 
2 Procs 

(c) Schedule after Step 1 

Figure 1: The hierarchical compilation paradigm. 
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Time 

Figure 1( c) and ( d) illustrate the hierarchical compilation strategy. First, the sequencing and 
parallelism of all the five matrix operators is determined using the algorithms to be presented 
in Section 3. One of these (the Tree algorithm) makes the following choices for the sequencing 
and parallelism. The two branches of the tree are started simultaneously, and the processors are 
distributed among the two branches so that they also finish at the same time. Two processors 
are assigned to the smaller branch, while three processors are assigned to each operator in the 
other branch. Finally, the last addition is run on all five processors. At this point, the sequencing 
and parallelism of every operator has been determined; the Gantt chart in Figure 1( c) depicts 
the resulting schedule and processor allocation. 

Next, the optimal partitioning algorithms (Section 4) are used to partition each operator 
for the number of processors determined above. As depicted in Figure l(d), the computations 
in the matrix multiply (operator 1) is partitioned into two chunks, M10 and M11 , for execution 
on two processors to balance their load and minimize communication. 

Multiprocessor code for the expression is now generated by spawning five threads, with each 
thread computing a set of the chunks comprising the partitioned dataflow graph, as shown in 
Figure 1.2. Synchronization points are inserted to ensure completion of computation of an 
operator before computation on successors begin. 

The hierarchical partition and schedule is similar to the globally optimal schedule. Exploit­
ing the hierarchy results in major simplifications in compilation, since the scheduler deals with 
just five macro nodes. If the matrix sizes are 0(N), a general purpose algorithm would have to 
handle 0(N) simple nodes, exhibiting runtimes 0(N) to 0(N3). 



/• Input: NxN Matrices AO, A1, A2, A3, A4, AS. 
• Output: Matrix T4 
•I 

/• Multiply 1 •I 
doall i = 1 to N 

doall k = 1 to N 
{ 

} 

TO[i,k] = O; 
do j = 1 to N 

TO[i,k] = TO[i,k] + AO[i,j] * A1[j ,k]; 

/• Addition 2 •I 
doall i = 1 to N 

doall j = 1 to N 
T1[i,j] = A2[i,j] + A3[i,j]; 

I• Multiply 3 •I 
doall i = 1 to N 

doall k = 1 to N 
{ 

} 

T2[i,k] • O; 
do j = 1 to N 

T2[i,k] = T2[i,k] + T1[i,j] * A4[j ,k]; 

/• Addition 4 •I 
doall i = 1 to N 

doall j = 1 to N 
T3[i,j] = T2[i,j] + A5[i,j]; 

/• Addition 5 •I 
doall i = 1 to N 

doall j = 1 to N 
T4[i,j] = TO[i,j] + T3[i,j]; 

Figure 2: A set of loop nests equivalent to expression gl. 
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The rest of the paper sketches these ideas in detail. Section 2 describes the algorithmic 
and architectural simplifications required to make the problem tractable. Section 3 sketches 
processor-allocation techniques used to determine the sequencing and parallelism of all macro 
nodes (matrix operators). Section 4 describes the techniques used to partition and schedule 
individual matrix operators, given the node (operator) parallelism. Section 5 provides details of 
our implementation, and Section 6 presents a detailed illustration of the compiler's operation. 
Section 7 presents experimental results. Section 8 summarizes related work and Section 9 
concludes the paper. 



Spawn threads TO, Tl, T2, T3, T4. 
Thread TO: 

Compute M1O; Wait for M11, A4O, A41, A42 to complete; Compute ASO; 
Thread Tl: 

Compute M11; Wait for M1O, A4O, A41, A42 to complete; Compute A51; 
Thread T2: 

Compute A2O; Wait for A21, A22; Compute M3O; 
Compute A4O; Wait for MOO, MOl, A41, A42; 

Thread T3: 
Compute A21; Wait for A2O, A22; Compute M31; 

Compute A41; Wait for MOO, MO1, A4O, A42; 
Thread T4: 

Compute A22; Wait for A2O, A21; Compute M32; 
Compute A42; Wait for MOO, MO1, A4O, A41; 

Wait for M31, M32; 
Compute A52; 

Wait for M3O, M32; 
Compute A53; 

Wait for M3O, M31; 
Compute A54; 

Figure 3: Psuedo code produced by hierarchical compilation. 

2 Simplifying Assumptions 
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We make several simplifying assumptions in the architectural model and in the scheduling 
algorithms to make the problem tractable. 

2.1 Partitioning and Scheduling 

The globally optimal partition and schedule requires handling the complete dataflow graph as 
a unit. Communication between macro nodes as well as that within a macro nodes influences 
the result. Furthermore, the optimal partition and schedule may have portions of a macro node 
being computed, before predecessors of other portions of the same macro node have finished 
(non-strict execution). 

SDC makes the following simplifying assumptions. In the first step, it determines the number 
of processors assigned to a macro node using the speedup functions of the macro nodes, treating 
each macro node independently as a unit. Therefore, the schedules are necessarily strict - all 
predecessors of a macro node are fully computed before it can start execution. We assume that 
the speedup functions can either be predicted or empirically determined. This assumption is 
true for most operators found in matrix arithmetic (and also many nested loops) . 

In the second step, each macro node is partitioned independently for the number of proces­
sors determined in the first step. We ignore communication between the macro nodes. This 
assumption is reasonable if communication within a macro node dominates the communication 
between macro nodes. 

2.2 Architectural Abstraction 

The hierarchical compilation strategy exploits compile-time knowledge of the multiprocessor 
architecture to estimate various quantities, for example, speedup functions, and necessitates 
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Figure 4: Multiprocessor model. 

Operation I Time II 
Add Ta 

Multiply Tm 
Single Word Remote Access Tu 
Single Word Fetch and Add T1a 

Table 1: Multiprocessor parameters. 
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a simple characterization of the multiprocessor architecture. Our architectural abstraction, 
depicted in Figure 4, models a distributed-memory multiprocessor with P processors. Each 
processor has associated fast local memory (or a cache), and accesses global memory and other 
processors through an interconnection network. Global memory is distributed among several 
remote memory modules, as depicted in the figure. During the computation of a macro node, we 
assume that shared data required for the computations are fetched into the fast local memory 
from global memory, and that the result of the computations are stored in global memory. 

Table 1 lists important architectural parameters. The processor is parameterized by its 
operation times for additions, Ta, and operation times for multiplications, Tm. These operation 
times include the times needed to access locally available data (in cache or fast local memory). 

We assume that a single-word access from remote memory takes time Tu. We further 
assume that P such accesses, one from each processor, and each to a different datum, can occur 
simultaneously. The fixed remote access cost assumes that all remote memories are equidistant 
from each processor, and that remote data access times are independent of the location of the 
datum in the multiprocessor system. 

The basic synchronization operation is a fetch-and-add on a shared datum [7]. The fetch­
and-add operation allows an atomic update of a global datum. For matrix multiplies, for 
example, the fetch-and-add operation allows synchronized accumulates to compute each element 
of the resulting product matrix. The fetch-and-add operation can also be used in a software 
combining tree to implement distributed semaphores [8], which are required to enforce the 
precedence constraints in the macro dataflow graph. Let Tja denote the time required for 
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a fetch-and-add on a remote datum, ( excluding the addition cost Ta, and assuming limited 
contention). As for remote accesses, we assume P fetch-and-adds, each on a distinct datum, 
can take place simultaneously. 

In the machine used for the experimental measurements, Alewife, the cost of a fetch-and-add 
is roughly twice the cost of a remote memory access (TJa ~ 2Tu), because of contention and 
because of the higher likelihood of requiring invalidations to other caches. Alewife implements 
the fetch-and-add on remote data by fetching the data into the local cache and performing a 
local add. More details about the architecture are in Section 5.1. 

3 Determining Sequencing and Parallelism of Macro Nodes 

The processor allocation problem comprises two tasks: the number of processors computing 
every macro node (node parallelism) has to be computed, and the sequencing of the macro 
nodes has to be determined. Since processor allocation determines macro node parallelism in 
addition to sequencing, it is a generalization of classical scheduling, and will also be referred to 
as generalized scheduling [9]. We have developed techniques based on optimal control theory for 
this purpose. The macro dataflow graph representation of loop nests allows these techniques 
to be used for optimally compiling a set of interdependent nested loops. 

We first present a simple intuitive characterization of the processor allocation problem. 
Then we present a formulation based on optimal control theory and summarize the result s 
that emerge. We then describe an optimal processor allocation technique for tree structured 
macro dataflow graphs, and a greedy processor allocation heuristic for other graphs . The 
section concludes by discussing how the theoretical results are used to derive practical processor 
allocation heuristics. 

3.1 Intuition 

The intuition underlying our algorithms is that as we increase the number of processors allocated 
to an macro node, overhead of various kinds - scheduling, communication, synchronization -
increases. Thereby, the incremental speedup obtained keeps falling, which implies that the 
speedup functions of the macro nodes are convex. Hence overall computation speed is maximized 
by running concurrently as many macro nodes as the available parallelism allows, using few 
processors for each macro node. In contrast, running the macro nodes one by one, using all 
the processors for each macro node, is much slower. Essentially, running many macro nodes 
in parallel maximizes the granularity of the threads produced from each macro node, thus 
minimising overhead. This intuition can be given a rigorous foundation using optimal control 
theory. 

3.2 Control Theoretic Formulation of Generalized Scheduling 

The fundamental paradigm is to view macro nodes as dynamic systems, whose state represents 
the amount of computation completed at any point of time. The macro dataflow graph is then 
viewed a.s a composite macro node system - the individual macro nodes being its subsystems. 
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At each instant, state changes can be brought about by assigning (possibly time varying) 
processing power to the macro nodes. Computing the composite system of macro nodes is 
equivalent to traversing a trajectory of the macro node system from the initial ( all zero) un­
computed state to the final fully computed state, satisfying constraints on precedence and total 
processing power available. The processors have to be allocated to the macro nodes in such a 
way that the computation is finished in the minimum time. 

This is a classical optimal control problem. The macro node system has to be controlled to 
traverse the trajectory from start to finish. The resources available to achieve this control are 
the processors . A valid control strategy never uses more processors than available, and ensures 
that no macro node is started before its predecessors are completed. A minimal time generalized 
schedule is equivalent to a time-optimal control strategy ( optimal processor-allocation), and this 
can be formalized as given below. 

3.3 Formal Specification 

Let n = {1, ... , N} be a set of N macro nodes to be executed on a system with P processors. 
Let macro node i have length L;. That is, L; denotes the execution time of the macro node on 
a single processor. A set of precedence constraints is specified, wherein macro node i cannot 
start until after all its predecessors have finished. 

It is convenient to define the state x;(t) of macro node i at time t to be the amount of 
work done so far on the macro node, 0 :s; x;(t) :s; L;. Let t; be the earliest time at which all 
predecessors of i (if any) have finished, so that i can begin running. Thus x;(t) = 0 fort < t; , 
and Xj(t;) = Lj for all of i's predecessor macro nodes j. If macro node i has no predecessors , 
ti = 0. 

Let p;(t) be the processing power (number of processors or processor assignment) applied 
to macro node i at time t, and let P be the total processing power available. The Pi(t) are all 
non-negative, and must sum to at most P. Note that we have allowed the p;(t) to be arbitrary 
time varying functions, thus allowing arbitrary preemptive (generalized) schedules. 

Finally, assume that once an macro node's predecessors have finished, the rate at which 
it proceeds, dx;(t)/dt, depends in some nonlinear fashion on the amount of processor power 
applied, p;(t), but not on the state x;(t) of the macro node, nor explicitly on the time t. We 
call this the assumption of space-time invariant dynamics. Thus we can write: 

(1) 

where s;(p;(t)) will be called the speedup function. With no processing power applied, the 
macro node state should not change, s;(O) = 0. With processing power applied, the macro 
node should proceed at some non-zero rate, s;(p) > 0 for p > 0. We further assume that 
si(P) is non-decreasing, so that adding more processors can only make the macro node run 
faster. In most of our theory, s;(p) is taken to be convex in p. This convexity reflects the 
increasing amount of communication, synchronization, and scheduling overhead as the number 
of processors working on one macro node increases. 
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Our assumptions about macro node speedup are a simple theoretical abstraction. In effect, 
this form of the speedup function implies that macro nodes can be dynamically configured 
into arbitrary numbers of parallel modules for execution on separate processors. Processors 
can be added or removed at any time, and in such a manner that the processors assigned to 
the macro node can all do useful work. The speedup depends only on the total number of 
processors allocated to the macro node at a given time, and is independent of the state or the 
time variable. Our goal is to finish all macro nodes in the minimum amount of time tF, by 
properly allocating processor resources Pi(t). 

3.4 Results from Control Theory 

The results of time-optimal control theory [9] can be invoked to yield insights into generalized 
scheduling. The results include: 

• General theorems regarding optimal macro node starting and finishing times. One the­
orem states that a set of independent macro nodes should start and finish together, and 
be computed simultaneously. 

• General rules for simplifying the scheduling problem in special cases. Equivalence of the 
generalized scheduling problem to constrained shortest path and network flow problems 
in such cases. 

• General purpose heuristics for scheduling, based on the speedup functions of the macro 
nodes. These techniques are provably optimal in special cases. In particular, a very simple 
divide and conquer heuristic for tree-structured macro dataflow graphs emerges, which 
can be shown to be optimal for certain types of macro node speedups ( e.g., for speedups 
of the form pa [9]). The Tree Heuristic is discussed further below. 

3.5 Tree H euristic 

The scheduling is especially simple when all speedup functions are of the form s(p) = pa, for 
the same a. In this case the optimal processor assignment Pi(t) for any macro node i does 
not vary during its computation, but is constant. This processor assignment will be denoted 
by Pi itself for simplicity. Moreover, the following graph reduction techniques are available to 
simplify the scheduling. 

A set of macro nodes, 1, 2, ••.I(, in series can be replaced by an equivalent single macro 
node ( denoted 1 : K) of length, Li:K, equal to the sum of the individual macro node lengths, 
Li. That is , 

i=l 

An optimal generalized schedule (processor allocation), SR, for the reduced graph maps directly 
into an optimal generalized schedule for the original graph, So, as follows. The processor 
assignments of each macro node in So is equal to that of the composite macro node 1 : J( in 
SR, that is 

Pi[in So] = Pl:K[in SR] i = l··•K 
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Therefore, all macro nodes in a series set have the same processor assignment. A macro node 
starts as soon as its (sole) predecessor in the series set finishes . SR, for the reduced graph 
maps directly into an optimal generalized schedule for the original graph, So, as follows. The 
processor assignments of each macro node in So is equal to that of the composite macro node 
1 : J( in SR, that is 

i = l···K 

Therefore, all macro nodes in a series set have the same processor assignment. A macro node 
starts as soon as its (sole) predecessor in the series set finishes. 

A set of parallel macro nodes 1, 2, • ••I(, can be reduced to an A set of parallel macro nodes 
1, 2, .. -K, can be reduced to an equivalent single macro node 1 : K of length, L1:K, equal to 
the l 1;a norm of the individual macro node lengths, Li. In other words, 

L1:K = l1;a(L1, ... ,LK) = (tLva)a 
•=l 

An optimal generalized schedule, SR for the reduced graph maps directly into an optimal 
generalized schedule for the original, So as follows. All macro nodes in the parallel set are 
started and finished at the same time. This can easily be shown to imply that the processor 
assignments among the parallel macro nodes is in proportion to the 1/ a power of their individual 
lengths, that is, 

Since trees are recursive series-parallel graphs, these two reductions yield a simple, optimal 
scheduling technique for trees. Specifically, the tree scheduling algorithm has two steps: 

1. We first recursively reduce the entire graph to a single task with pa speedup, using series­
parallel reductions as described above, determining the length (workload) of the tree and 
all subtrees. Now, the run time of the tree is easily computed. 

2. Next, undoing the recursion, we allocate the processing power to each of the series and 
parallel components according to their lengths, and determine their start and stop times. 
Continuing recursively, we eventually derive the optimal processor allocation( or general­
ized schedule) for every task in the original graph. 

Pseudo code for the Tree Heuristic is shown in Figure 5. Each node in the data structure 
contains the length of the corresponding macro node (op-len), the total length of the macro 
node plus the equivalent length of all its subtrees (tree-len), the processor assignment (proc) 
to this node, and the start and stop times for the macro node. First, find_length is recursively 
called to determine the lengths of all subtrees. Then tree_scheduler uses the above determined 
lengths to compute the processor assignments and the start and finish times for all nodes. 
Notice that it attempts to equalize finish times of all predecessors (subtrees) at each node, by 
properly splitting the processor resource among them. 

This Tree scheduling technique is optimal only when all speedup functions are of the form 
p°', for the same a. Although the matrix product speedup in Equation 4 (Section 4.3), is not of 



{ 

{ 

} 

struct tree 

} 

op_len; 
tree_len; 

proc; 

op_start; 
op_stop; 
left_child, 
right_child; 

I• The length of the corresponding macro-node •I 
/• The length of the corresponding macro-node, 

* plus lengths of all its subtrees•/ 
I• Processor assignment for this macro-node and 

* all its subtrees •I 
I* Start time for this macro-node *I 
I• Stop time for this macro-node•/ 

/• pointer to children, NIL if a child is absent•/ 

parallel_length(a, b) 

return(1/alpha norm of a,b); 

find_length(tree) 
{ 

} 

left_len = right_len = O; 
if (tree.left_child) left_len = find_length(tree.left_child); 
if (tree.right_child) right_len = find_length(tree.right_child); 
tree.tree_len = parallel_length(left_len,right_len) + tree.op_len; 
return(tree.tree_len); 

;Assumes that find_length has been called already 
tree_scheduler(tree, nproc) 
{ 

} 

left_len = right_len =O ; 
op_start = O; 
if (tree . left_child) left_len = tree.left_child.tree_len; 
if (tree.right_child) right_len = tree.right_child.tree_len; 
if (tree . left_child) 
{ 

} 

left_proc = nproc * left_len / (left_len + right_len); 
tree_scheduler(tree.left_child,left_proc); 
op_start = tree.left_child.op_stop; 

if (tree.right_child) 
{ 

} 

right_proc = nproc * right_len / (left_len + right_len); 
tree_scheduler(tree.right_child,right_proc); 
op_start = tree.right_child.op_stop; 

tree.proc = nproc; 
tree.op_start =op_start ; 
tree.op_stop = op_start + tree.op_len / nproc~alpha; 

Figure 5: Pseudo code for Tree Heuristic. 

12 
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Figure 6: Processor allocation ( or generalized scheduling) heuristics. 

this form, we can employ this technique as a heuristic, since the speedup for matrix multiply can 
be approximated as po,, and an appropriate a can be empirically determined (see Section 7.1). 
We show that the technique is robust for the value of a used. 

3.6 Other Processor Allocation Heuristics 

For purposes of comparison, we have incorporated three heuristics for processor allocation -
Naive, Greedy, and Tree, into our structure-driven compiler. Figure 6 illustrates the operation 
of the three heuristics on the tree structured dataflow graph used in Section 1.2. As before, let 
the length of macro node i be Li. As denoted by the size of the circles representing each macro 
node, macro nodes 1 and 3 (matrix products) take much longer to compute than the others 
(adds), and are the same length. 

The Naive heuristic (Figure 6(a)) runs each macro node on all the available processors. 
Thus, macro nodes 1, 2, 3, 4, and 5 are run in sequence. In a program with multiple loop nests, 
Naive will allocate all the processors to each loop in turn. Although the execution times with 
this heuristic are clearly sub-optimal, this heuristic is used for its simplicity. 

The Greedy heuristic (Figure 6(b)) is an as-soon-as-possible greedy (generalized) schedule. 
An macro node is run at the earliest time at which it is ready. All macro nodes that are 
ready at a certain time are started together and finished together. Computation proceeds as a 
wavefront picking up macro node sets that get ready in succession. For this expression, Greedy 
runs macro nodes 1 and 2 in parallel, distributing the processor resources among them such 
that they finish together. The resulting processor assignments are 
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(rounded to nearest integers). Subsequently, macro nodes 3, 4 and 5 are computed, each using 
all available processors (p3 = p4 = p5 = P). Notice that since L1 >> L2, almost all processors 
are assigned to macro node 1 in the first step. The resulting schedule is little better than the 
Naive schedule. Indeed, if p2 gets rounded to 0, all processing power is assigned to macro node 1 
in the first step, and macro node 2 will be computed in a succeeding step. The Greedy schedule 
will then be identical to the Naive schedule. 

The Tree heuristic (Figure 6( c)) does a much better job of partitioning the processor re­
sources by recognizing that macro nodes 2, 3, and 4 form a subtree, which can be run in 
parallel with macro node 1, and splitting the available processors. The processing resource is 
split among the subtrees so that their finishing times are equalized. Finally, macro node 5 is 
run on all the available processors. The processor assignments are 

P2 = p3 = p4 = (L2 + L3 + L4)1/a p 
L!10 + (L2 + L3 + L4)l/a 

and Ps = P 

Since L1 ~ L3 > > L 2 , L3, L4 , both subtrees get roughly the same number of processors, and 
are computed in a "balanced" manner. Notice that the partitioning is greatly improved using 
the global information available about task sizes. 

4 Optimal Matrix- Operator Compilation 

Section 3 presented methods for determining the number of processors, Pi, assigned to each 
macro node i, and their sequencing. In our context, the macro nodes are matrix operators. 
This section presents our technique to optimally partition and schedule the dataflow graphs 
of each operator among the Pi processors. The analysis yields the speedup functions needed 
for processor allocation. Other methods ( e.g., [1]) for general loop nests can also be used for 
partitioning. 

Optimal matrix-operator routines are derived by exploiting the regular structure in the 
operator dataflow graph. Section 4.1 discusses how these matrix operator dataflow graphs can 
be represented as regular polyhedra. The basic idea is to represent the dataflow graph as a 
lattice, with each dataflow graph node corresponding to some lattice point. Locality in the 
dataflow graph is reflected in the geometric locality of the lattice points. Nodes corresponding 
to adjacent lattice points generally have common inputs, contribute to common outputs, or 
communicate values between themselves. 

When the dataflow graph of each operator displays such regular structure, partitioning 
and scheduling can be based on geometric bin packing techniques, thereby resulting in better 
compilation times than general purpose approximate solutions to the NP-hard dataflow graph 
partitioning and scheduling problem. We illustrate in Section 4.3 the bin-packing method using 
matrix multiplication as an example. 
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4.1 Polyhedral Lattice Representation of Matrix-Operator Dataflow Graphs 

The standard algorithm for multiplying an N1 X N2 matrix A, by an N2 X N3 matrix B, yielding 
an N1 x N3 matrix C = AB, 

Cik = ~ a;jbjk 
j 

has N 1N 2N 3 multiplications, and N 1N3(N2 - 1) additions. The corresponding dataflow graph 
can be represented by an N 1 x N 2 x N 3 lattice of multiply-add nodes, as shown in Figure 7(a). 
Each node (i,j,k) represents the computation 

An element of A, namely a;j, is broadcast to the N 3 multiply-add nodes having the same value 
of ij. These nodes are arranged in a line parallel to the k axis. Thus the computation on 
all nodes in this line exhibits locality with respect to the element a;j. This broadcast of a ;i 

is represented by a solid line in Figure 7(b). Similarly, nodes having the same value of jk 
share bjk• This broadcast of bjk is also represented by the solid vertical line in Figure 7(b ). 
Nodes having the same value of ik sum together to yield the same output element of C, namely 
Cik• This accumulation is denoted by the dotted horizontal line in Figure 7(b ) . Every possible 
ordering of the computation, exploiting associativity and commutativity, can be represented by 
the geometric lattice. 

Because of the existence of associativity and commutativity, the partial products can be 
summed in any order, and the accumulates into the output matrix C do not impose any 
precedence constraints, but must be atomic. Therefore, scheduling each chunk of nodes after 
partitioning is a non-issue. 

Now, consider the cluster of nodes (for processor i) shown in Figure 7( c). The total number 
of input elements of matrix A accessed from global memory by this cluster, can be measured 
by the projected area of the cluster (PA;) on the A face of the dataflow graph. Note that this 
presupposes the existence offast local memory (cache) to reuse an already accessed datum. The 
same applied to matrix B. Thus PA; and PB; measure the total number of inputs accessed by 
this cluster. Similarly, the total number of output elements of matrix C to which the cluster 
contributes is measured by the projection on the C face of the dataflow graph (PC;) . Partial 
sums for each element in PC; are formed inside this cluster, in local memory, and accumulated. 
Thus PC; measures the number of synchronized accumulates (fetch-and-adds), due to this 
cluster. Hence the communication of this cluster with the outside world can be minimized ( or 
the locality maximized) by minimizing the projected surface area on the three faces, which can 
be handled by geometric techniques. A cluster that exhibits geometric locality (in terms of 
minimal projected surface area) exhibits dataflow graph locality. 

To summarize, the data:flow graph of a matrix multiply can be represented by a 3-dimensional 
polyhedral lattice, each lattice point representing a computation in the data:flow graph. Adja­
cent lattice points share some common broadcast inputs or are accumulated to common outputs. 
Data:flow-graph locality is equivalent to geometric locality. Similar representations can be de­
rived for matrix sums, inverses, FFT's, LU decompositions, etc, from the general shapes of 
their computational lattices. 
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4.2 Performance Metric 

The polyhedral lattice representation facilitates partitioning to minimize communication us­
ing geometric methods. These methods require a cost metric to evaluate potential choices. 
Although the cost of any partition and associated schedule is ideally the execution time, its 
accurate estimation at compile time in a real system is a difficult problem. We therefore approx­
imate the execution time Te of a partition i by the sum of the maximum number of operations of 
each kind, namely, adds, multiplies, remote fetches, and synchronized accumulates, weighted by 
their associated costs (from Table 1 ), in that partition. (Recall, local access costs are included 
in the add and multiply times.) In other words, if Na is the maximum number of additions 
performed by any processor, Nm the maximum number of multiplications performed by any 
processor, N,,, the maximum number of unsynchronized remote data fetches (in words), and 
NJa the maximum number of synchronized accumulates (in words), we have, 

(2) 
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Our cost metric is accurate if the processors expend negligible time waiting for work. This 
assumption is valid for matrix arithmetic ( except at very fine task granularity), because of 
the extensive parallelism available. For example, for matrix sums and products, all nodes are 
independent. The chunks corresponding to different processors can all be scheduled in parallel, 
without embedded synchronization ( except for that implicit in the accumulates). 

4.3 Optimal Matrix Products 

The geometric dataflow graph representation simplifies the partitioning, by enabling us to derive 
a lower bound on the execution time, and bin-packing heuristics to closely approach that bound. 
In this section we derive the lower bound. The next section presents the bin-packing heuristics. 

An optimal partition ( of the ith operator) on Pi processors divides the operator dataflow 
graph into Pi roughly equal sized chunks, while choosing the shape of the chunks in a compact 
manner to minimize communication. For convenience, we will drop the subscript i, keeping 
in mind that p is the number of processors allocated to macro node (operator) i. Keeping 
the chunks equal in size balances the workload, minimising Na and Nm. Compact chunks 
minimize the number of data transfers, Nu and N1a, and hence the communication. The ideal 
cluster shape can be shown to be a cubical box, whose aspect ratio depends on the architectural 
parameters Tu (unsynchronized memory access time) and TJa (synchronized accumulates). 

Assuming that load balancing is perfect, and all clusters are ideal in shape and can be 
scheduled concurrently, a lower bound on the total execution time, Te , for the matrix product 
IS 

(3) 

The first term represents the arithmetic operation cost for each cluster, assuming the N1N2N3 
adds and multiplies are evenly distributed over the P processors. That is, the volume of the 
cluster is fixed at Ni ~ 2 N3 for an even load. The second term results from choosing the aspect 
ratio of the cluster so as to minimize the data access time, and can be derived as follows. 

Recalling, each partition issues Nu unsynchronized remote memory accesses to each of the 
input matrices A and B, and issues NJa fetch-and-adds for the accumulates into C. Hence the 
total time for the data accesses is 

TuNu + TjaNJa 

The data access time thus depends on relative magnitude of NJa and N u, or the aspect ratio 
of the cluster. 

Let the ideal cluster dimensions be I, J, and K (I = K because accesses of matrices A 
and B incur the same cost). Then Nu = 2IJ = 2JK and N1a = IK. Thus, the problem 
of obtaining N u and NJa to minimize the time for data accesses is reduced to the problem of 
determining I, J, and K, such that 

21 JTu + I K TJa 

is minimized, subject to the constraint 
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The above constrained minimization problem can be solved using Lagrange multipliers to yield 
optimal values of I, J, and K, from which the minimal communication cost can be derived, 
yielding the result in Equation 3. 

When N1 = N2 = N3 = N and TJa = 2Tu, we get 

T (T. T ) 
N 3 3.8Tv.N2 

e2'.: a+ m + 2 
p pa 

The lower bound on the total time has a linearly decreasing ( strictly inversely linear) and a less 
than linearly decreasing component, with respect to the number of processors p. The maximum 
attainable speedup S(p), which is the ratio of the execution time on 1 processor to the execution 
time on p processors, then becomes 

(4) 

As we increase the number of processors, the maximum attainable incremental speedup keeps 
decreasing. The speedup function provides a simple characterization of the optimal matrix 
operator routines for use in the processor allocation phase (Section 3). 

4.4 Bin Packing Algorithms 

In general the lower bound determined in Equation 3 cannot be met exactly, asp ideally shaped 
clusters cannot be packed into the cuboidal data:fl.ow graph. In such situations, the clusters 
must be distorted so they exactly fill the dataflow graph. Fortunately, because the projection 
sum (surface area) does not vary much with cluster shape for clusters near the optimum, good 
partitions can be achieved even if some or all the clusters are slightly distorted. This observation 
is the basis for close to optimal bin packing algorithms used in the compiler. 

Our techniques are best illustrated using the the 2-D problem of partitioning an N1 x N 2 

rectangle into P equal sized chunks to minimize the sum of projections. For this 2-D problem 
in the continuous domain, simple algorithms have been shown to be [10, 11, 12, 13]. Mount, 
Kong, and Roscoe [13] have applied these results as approximations to discrete 2-D lattices as 
well. We have extended these algorithms to three dimensions [14]. We shall now describe the 
continuous algorithms, as they are much simpler. The discrete algorithms usually start in the 
same manner as the continuous algorithms, but are followed by a discretization step. 

For simplicity, assume that Tu = TJa, so that all projections are weighted equally and the 
exact projection sum is being minimized. Since all p chunks are equal in size, the area of each 
chunk is fixed. To minimize the projection sum, the projection sum of each chunk should ideally 
be minimized, keeping its area fixed. This implies that each chunk should ideally be a square. 
In general, however, p equal area squares cannot be exactly fitted into an N1 x N 2 rectangle. 
The 2-D partitioning algorithms fix this by distorting the ideal square chunks so as to fit inside 
the N1 x N2 rectangle. 

These algorithms start by arranging p squares to roughly fill the N1 x N 2 rectangle. The 
resulting polygon will approximate a rectangle, possibly with one side incomplete, and heavily 



N 

F 
N 

._J3 
0 1 

2 

(a) Ideal chunks 

2N/3 

N/3 

N/2 N/2 

rn 
(b) Chunks after distortion to fit 

Figure 8: Optimal square partitioning. 

19 

overlap the original Nix N2 rectangle. Next all P chunks are distorted roughly equally, in such 
a manner that the Ni x N2 rectangle is exactly filled. In practice, the initial arrangement of 
the squares is critical to success, while the distortion technique used does not matter as much, 
since the projected surface area does not increase greatly with distortion. 

For example, consider partitioning an Ni x Ni square into three pieces. Figure 8(a) shows 
the ideal three square pieces ( assume Tu = T1a), arranged such that they approximately fill the 
square. Figure 8(b) shows the optimal partition obtained after distorting the pieces to exactly 
fill the square. Since small changes in aspect ratio of any piece does not change its projection 
sum very much, the projection sum in Figure 8(b) is close to that in Figure 8(a) . If Tu=/:- T1a, 
then the weighted projection sum is minimized, the aspect ratio of the ideal chunks is not 
1 : 1, and the ideal chunks are rectangles. These ideal rectangular chunks are distorted in the 
same way, to fit inside the Ni x N2 rectangle. Small distortions do not cause large increases in 
communication. 

The bin packing techniques used in SDC are generalizations of these techniques to 3-D 
Ni x N2 x N3 lattices. It should be noted that 3-D bin packing is extremely tedious if the 
number of chunks (processors), is not well matched to the problem size. For example, chunking 
up an 32 x 32 x 32 matrix product dataflow graph into 25 chunks results in a variety of chunks 
with different aspect ratios and locations, which are very difficult to compute by hand. The 
automated procedure in SDC is essential to perform this task. 

4.5 Other Operators 

Various other matrix expression operators have been implemented, following the same basic 
idea of minimising communication by choosing good block shapes. These operators include 
matrix sums, dot products, outer products, matrix scaling, transposes, etc. 

5 Implementation Details 

This section furnishes details of the experimental environment used to evaluate the performance 
of the matrix expression compiler, SDC, as well as some implementation details. 
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Distributed Shared Memory 

Alewife machine 

Figure 9: The Alewife machine. 

5.1 Experimental Environment 

The input to SDC is a matrix expression in a LISP-like prefix language, with data-independent 
control. The compiler produces a parallel program in Mul-T [15], which is compiled and run 
on the Alewife machine simulator, ASIM. Mul-T is a parallel lisp language. 

The Alewife Machine The Alewife machine [6] is a mesh-connected, distributed shared­
memory multiprocessor, with coherent caches, as shown in Figure 9. The processor, called 
Sparcle has a modified SPARC architecture. Global shared-memory is distributed among the 
processing nodes, access to which is provided by the mesh interconnection network. Processors 
have associated caches for fast access to frequently used data. Because caches can store shared 
data, a cache coherence scheme maintains memory consistency. A detailed, cycle-by-cycle 
simulator, ASIM, and associated program analysis tools, are currently available for Alewife. 

The abstractions made in Section 2.2 model Alewife fairly accurately. First, the Sparcle 
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processor uses a load-store architecture, so arithmetic operations are accurately characterized 
by the execution times (Ta, Tm) , ignoring pipeline latency. The local cache in each Alewife node 
allows single-cycle word accesses. As mentioned earlier, cache access costs are included in the 
basic arithmetic operation costs. 

Accesses to globally shared memory, however, are not accurately represented, since Alewife's 
distributed-memory architecture places some memory modules closer to each node than others -
the access time, Tu, to the global memory module on the same node as the requesting processor 
is satisfied in 10 cycles, while an access to a memory module situated in a remote node could 
take on the order of 50 cycles (in a 64-processor system). Access times also vary due to network 
loading conditions, hotspots, etc. However, because each of these access times is over an order 
of magnitude greater than the cache access time, the compiler can reasonably model Alewife 
as a two-level memory hierarchy, with a fast single-cycle first-level store, and a much slower 
second-level remote memory. 

A coherence scheme in Alewife ensures data consistency, but we do not explicitly model 
its effects. The presence of a cache coherence scheme manifests itself in our approximation of 
accumulation cost TJa = 2Tu. Because it requires a write to a shared data location potentially 
present in another cache, an accumulation incurs roughly twice the cost of a memory read due 
to the extra invalidate to purge the other cached copy. For the results in this paper we configure 
ASIM to use the full-map coherence protocol, which keeps track of all cached copies of a shared 
datum. 

Alewife's Software Environment The SDC algorithms determine an optimal allocation 
of work (thread) for each processor over time, for computing the matrix expression. Code 
generation for the work allocation requires the ability to spawn threads for each processor, 
synchronize them, and communicate data (input and output matrices and temporaries). The 
Alewife software environment allows thread creation using the future call. A thread t can be 
assigned to a specific processor p using the (future-on pt) call. Threads can be synchronized 
using various constructs , including distributed semaphores, provided by the Alewife parallel 
software library. Input and output matrices and temporaries are automatically shared among 
multiple threads through shared memory. 

5.2 Compiler Implementation 

The compiler performs a two level partitioning and scheduling. In the first step (processor­
allocation ), the sequencing and parallelism of all the matrix operators is determined using their 
speedup functions, as described in Section 3.4. While the dataflow graph analysis of Section 4 
can be used to estimate these speedup functions, SDC approximates all speedup functions to be 
of the form pa to simplify the scheduling (Section 3.5). Although experimentally determined 
a's have been used for the measurements, we show that the results do not differ materially with 
small variations in the value of a. 

Next, given the parallelism, each operator dataflow graph is partitioned using bin pack­
ing algorit hms, as described in Section 4. This partitioning phase depends on architectural 
parameters - the computation times Ta and Tm , and data communication times Tu and TJa• 
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These partitions are grouped into P threads, one for each processor. Finally, code consisting 
of a sequence of calls to the routines handling the operator partitions ( the partition library) 
is generated. Sets of processors cooperating on a macro node are synchronized by embedding 
distributed semaphores at appropriate places in each thread. 

A distributed-memory multiprocessor, such as Alewife, requires that shared data structures 
like matrices and vectors be distributed across multiple processors, and necessitates a mecha­
nism for keeping track of the constituent chunks. Since the data sizes can be arbitrary, and 
ill-matched to the sizes of the multiprocessor, the sizes of the chunks are usually irregular. We 
provide access through pointers to the chunks. The pointers are duplicated in some of the 
processor nodes to avoid hot spots. Because these features complicate bookkeeping, making 
use of the automatic procedures in SDC is highly desirable. 

5.3 Design of the Partition Library 

The optimal matrix operator partitioning algorithms (Section 4.3) result in box-like partitions, 
whose aspect ratios are a function of the communication costs. We have developed a library of 
routines for various matrix operators that accept as arguments the input and output matrices 
and the index limits over which the computation is desired. For efficiency, separate routines are 
required for distinct shapes. We discuss the design of this library and associated data structures 
below. 

Consider the routine for cuboid (box like) partitions of a matrix multiply, mul_block_loop, as 
depicted using pseudo code in Figure 10. When a matrix product is computed on P processors, 
the thread assigned to each processor calls mul_block_loop with arguments specifying the three 
matrices, maLa mat_b, and maLc, and the parameters, starti, endi, startj, endj, startk, and 
endk specifying its partition size. The routine computes partial sums, and then accumulates 
the partial sums to the output matrix. The partition computed by a processor is specified by 

[i,j, k] 2'. [starti, startj, startk] and [i,j,k] < [endi,endj, endk] 

The accumulate necessitates synchronization among all processors computing an element of 
the output matrix. In Alewife, the availability of data structures with built-in synchronization, 
such as L-structures [16], greatly facilitates this task. Because an L-structure allows efficient 
exclusive access to each of its elements, an atomic fetch-and-add operation can be efficiently per­
formed on each of its elements, without locking the whole structure. SDC, therefore, represents 
matrices as L-structures. 



mul_block_loop (mat_a mat_b mat_c starti endi startj endj s tartk endk) 
do i from starti to endi 

{ 

do k from startk to endk 
{ 

} 

} 

sum=O; 
do j from startj to endj 

sum = sum+ a[i,j] b[j,k]; 
fetch- and- add (c[i,k] sum); 

Figure 10: Routine to compute block of matrix product. 

6 A Detailed Example 
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Figure ll(a)) illustrates the operation of SDC using the expression gl first introduced in Sec­
tion 1.2, using the Tree heuristic. All matrices in the expression (see below) are of size 32 x 32 

(+ (x Ao Ai) 
(+ (x (+ A2 A3) 

A4) 
As)) 

First, the Tree heuristic is used to determine the sequencing and parallelism of each macro 
operator, using a = 0.7. The selection of a is based on speedup measurements presented in 
Section 7. Figure ll(b) shows a Gantt chart for t he resultant schedule. The 64 processors 
available are allocated to the two branches of the tree such that they are started and finished 
together. The values of P1 . . . p5 are computed as indicated in Section 3.6. 

Since L1 = L3 > > L2, L4, the processor allocations to the branches are almost equal, with 
31 processors handling the product Ao x A1 and 33 processors computing each operator in the 
other branch. Finally, all 64 processors cooperate to compute the final addition (Addition 5). 

Next, each of the operator datafl.ow graphs is optimally partitioned for the parallelism 
determined above. Multiply 1 is partitioned into 31 blocks, while Additions 2, Multiply 3, and 
Addition 4 are partitioned into 33 blocks each. The final addition 5 is partitioned into 64 blocks. 
Finally, the blocks are grouped into 64 distinct sets, each set yielding a thread of computation 
for a processor. The thread is formed by repeated calls to the routines computing the dataflow 
graph blocks (Section 5.3). Synchronization in the form of distributed semaphores is embedded 
in t he threads automatically. The details of two threads, viz. those produced for processors 0 
and 60, are described below. 

The thread for processor 0 works on Multiply 1 and Addition 5. It computes the following 
dataflow graph blocks, in order ((i,j,k) refer to data:flow graph indices - Section 4). 

Multiply 1: [i,j,k] ~ [0,0,0] and [i,j,k] < [8,17,8] 
Addition 5: [i, j] ~ [0, 0] and [ i, j] < [4, 4] 
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Since Tfa. = 2T,,_ the matrix product blocks are close to cubical to minimize communication, 
with the N

2
(j) dimension slightly larger than the other. A synchronization point (semaphore) is 

inserted before Addition 5, to ensure that both branches of the tree are finished before Addition 

5 is begun. 

Similarly, the thread for processor 60 works on the larger branch of the tree, and computes 

the following blocks, in order. 

Addition 2: [i,j] ~ [27, 22] 
Multiply 3: [i,j, k] ~ [24, 16, O] 
Addition 4: [i,j] ~ [27, 22] 
Addition 5: [i,j] ~ [28, 16] 

and 
and 
and 
and 

[i,j] < [30,32] 
[i,j,k] < [32,32,8] 
[i,j] < [30,32] 
[ i, j] < [32, 20] 

The code produced by SDC is compiled and run on Alewife. Performance results are pre­

sented in Section 7. 

7 Experimental results 

This section presents experimental results obtained with our compiler on the Alewife machine 
simulator. A large number of matrix expressions have been compiled and simulated. The simu­
lator is configured for a three-dimensional mesh interconnect, with sizes 1 X 1 x 1 (uniprocessor), 
2 x 2 x 2, and 4 x 4 x 4. If the number of processors used to compute the matrix expression is 
P, then processors Pi such that O ::; i < P are used and the others are idle. Unless otherwise 
specified, the compiler assumes that the time for an interprocessor accumulate, Tfa., is twice 
the memory access time, T,,_. 

We present results for the the matrix product first ( other operators are analogous), and show 
how speedup functions are derived. Then, using these speedups, we present results for complete 
expressions. We emphasize that all the speedups shown are close to the "true" speedups for 
the expression. That is, the uniprocessor program is optimized for a single processor, that for 
8 processors is optimized for 8 processors, and so on. 
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289823 I 292376 

TJa = 4Tu. I Long Blocks I One Row Per Proc] 
292316 I 310358 I 895758 11 

Table 2: Time (cycles) for 64 x 64 matrix product, using 64 processors. 

7 .1 Matrix Product 

Code for a matrix product is generated by the compiler for each number of processors, following 
the bin-packing techniques of Section 4. We report on four sets of experiments with matrix 
products: 

1. Since our techniques depend on the access times Tu. and TJa, this section first investigates 
the sensitivity of the partitioning to these parameters. 

2. We then evaluate the partitioning scheme when the number of processors is mismatched 
to the dimensions of the operator dataflow graph. 

3. Because our ( compile time) scheduling methods rely on estimated speedup functions, we 
assess the accuracy of our matrix product speedup function. 

4. We show that the matrix product speedup curve can be reasonably approximated by a 
speedup function of the form s(P) = P°', which justifies the use of simple, close-to-optimal 
processor allocation algorithms. 

Table 2 shows the time taken to compute a 64 x 64 matrix product on 64 processors, with 
varying choices for the architectural parameters, Tu. and TJa• Each choice of the parameters 
results in a different shape of the dataflow-graph blocks computed by each processor. Also shown 
is the execution time when TJa is so large that the compiler places each output matrix element 
to be computed on a single processor (Long Blocks). In this case the output matrix is split into 
P square blocks, each computed on one processor. The resultant communication is 0( ../P), 
instead of 0(P113 ) (Equation 3). Also, shown is the execution time when the matrix-product 
dataflow graph is sliced into P slices along the i dimension only (that is, by rows). Then, we 
have an entire row of the output matrix computed on a single processor. The communication 
is then 0 (P) versus 0(P113 ) for the optimal blocking, which is much worse. 

The results show that the execution time is not very sensitive to the architectural param­
eters, as long as they are reasonably accurate. This is because the communication does not 
increase very much if the shapes of the blocks are not very far from optimal. Small changes in 
the architectural parameters have a correspondingly small effect on the block shape chosen by 
the bin packing algorithms. Notice however, the Long Blocks partition is definitely worse than 
the first three. The performance with one row computed per processor, is a factor of 3 worse 
than the first three. 

Next, let us assess the performance of the partitioner when the number of processors is 
inismatched to the matrix sizes. Such mismatched numbers are often encountered after the 
processor allocation phase (Section 3). Figure 12 shows the speedup curves for the product 
of two matrices with varying sizes , on 1, 8, 16, 25, 32, 38, and 64 processors. Note that two 
numbers (25 and 38), are mismatched to the matrix sizes. 
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Figure 12: Speedup curves for matrix product. 

We observe that our algorithms work well for ill matched processor allocations. For example, 
the speedup for 25 processors is about midway between the speedups for 16 and 32 processors. 
In general, however, the mismatch causes a slight drop in speedup due to imperfect bin packing. 
The mismatch is particularly noticeable for 38 processors. However, this effect decreases as the 
matrix size increases, as is shown by the curve for 64 processors in the figure. 

To achieve the speedup for 25 processors for the 32 x 32 x 32 product, SDC's bin packing 
algorithms produce partitions with a variety of sizes: 12 partitions of size 8 x 16 x 11, 6 partitions 
of size 8 x 16 x 10, 4 partitions of size 8 X 18 x 8, 2 partitions of size 8 X 14 x 11, and a single 
partition of size 8 x 14 x 10. Clearly, it would be extremely difficult for a programmer to 
determine all these partitions by hand. 

We now attempt to assess the accuracy of our estimated speedup function. Consider the 
formula for the execution time in Section 4.3 (Equation 3), repeated here for convenience. 

2 

Te= (Ta+ Tm) N1;2N3 + 3(TJT1a)½ (N1iN3) 3 

We shall assess its accuracy by examining a slightly different representation of the formula. 
Notice that a plot of the product of the execution time and the number of processors (P x Te) 
versus P113 should ideally be a straight line, as is evident by rewriting the above equation as 

(5) 

l 

for k1 = (Ta+ Tm) and k2 = 3(TJT1a? • Figure 13 shows the P X Te versus pi/3 plots for 
matrix products of various sizes. The plots are well approximated by straight lines, with the 
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Figure 13: P x T versus P1l3 curves for matrix product. 

fit improving as the matrix size increases from 20 x 20 to 64 X 64. 

The processor allocation ( or (generalized scheduling) techniques of Section 3 require the 
operator speedup functions to be of the form pa, for some a. Below, we investigate whether 
the speedup function for matrix multiply can be reasonably characterized by a function of the 
form pa for various matrix sizes. The speedup function for matrix products can be derived 
from Equation 6 as, 

(6) 

While is is not immediately apparent that this speedup function is of the form pa, it can 
be approximated as such, as is evident from Figure 14. This figure shows a log-log plot of the 
speedup curves for various matrix sizes. Functions of the form pa will appear as straight lines 
on a log-log plot, whose slope is the desired parameter a. Since all the curves are roughly 
straight lines, they are well approximated by pa. 

The slopes ( a's ), however, depend on the size of the matrices, and range from from 0.6 (for 
20 x 20 matrices) to 0.8 (for 64 x 64 matrices). Fortunately, as we demonstrate below, the 
partitioning is not very sensitive to the exact value of a used, as long as the task sizes are not 
widely different. An average value of a= 0.7 can be used for the matrix sizes above. This is in 
rough agreement with Equation 6, which implies that a should lie between 2/3 and 1. 

The value of a can also be estimated from a knowledge of the multiprocessor constants Ta, 
Tm, and TJa• However, the presence of stochastic synchronization behavior in TJa precludes its 
accurate apriori estimation. Alternatively, measurements of execution times for two or three 
values of P allows us to estimate k1 and k2 in Equation 6, thus enabling the matrix product 
speedup function to be determined. Although it is not necessary, linear regression can be used 
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Figure 14: Speedup curves for matrix product (drawn using log-log scales). 

for higher accuracy. 

7.2 Almost Balanced Tree - gl 
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We now evaluate the performance of the compiler on several matrix expressions for various 
matrix sizes. We first present results for the almost-balanced tree expression gl first introduced 
in Section 1.2, 

(+ (x Ao A1) 
(+ (x (+ A2 A3) 

A4) 
As)) 

with matrix sizes 32 x 32, and use a= 0.7 in the scheduling heuristics. 

The speedup curves plotted in Figure 15 show the performance of the Naive, Greedy, and 
Tree heuristics as the number of processors is increased from 1 to 64. We also plot the expected 
speedup for the Tree heuristic assuming a = 0. 7, and assuming no costs are associated with the 
synchronization needed for enforcing the precedence constraints. The expected speedup (for P 
large enough to ignore processor discretization effects) is computed as follows 

S(P) = T(l) 
T (P) 

where T(l) is the expected uniprocessor execution time, and T(P) is the expected time for the 
Tree heuristic. From Section 3.5 it follows that 

T(P) = Equivalent Tree Length 
po.1 
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Figure 15: Speedup curves for expression gl, with 32 X 32 matrices. 

a 0.5 0.7 1.0 
Tree 19.1 18.6 18.6 

Greedy 14.5 14.5 7.6 

Table 3: Speedup for 64 processors, using various values of a. 
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where the equivalent tree length is computed using the series parallel reductions of Section 3.5, 
and is always less than the uniprocessor execution time. 

The Tree heuristic is clearly the best, and gets progressively better relative to Naive and 
Greedy as more processors are used. The Naive and Greedy heuristics are identical in perfor­
mance for gl; their speedup flattens out at about 14 after 32 processors. Thus, compilers for 
programs with multiple loop nests which assign all processors to each loop nest are potentially 
far from optimal. The performance of the Tree heuristic is much better; the absolute speedup 
for the Tree heuristic at 64 processors is about 18, a gain of 30 percent over the Greedy and 
Naive heuristics. This is close to 80 % of the expected speedup of 23. This gap between the ex­
pected and measured speedup is largely due to synchronization costs associated with enforcing 
the precedence constraints. 

How robust is the partitioning strategy to the value of a used? Answering this question is 
important because, in practice, it is hard to estimate a accurately. Table 3 shows the speedups 
obtained for gl as a is changed from 0.5 to 1.0. It can be seen that the Tree heuristic is quite 
robust, with the speedup changing by less than 10 percent. Greedy, however, shows a larger 
sensitivity to a . This can be explained as follows. 

The relative insensitivity of the Tree heuristic to a is because the two branches of the tree 
are almost equal in size, and are assigned about the same number of processors , irrespective of 
a. 
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Greedy, however, tries to run a large multiply, (x Ao A1), in parallel with a small addition, 
( + A2 A3), in the first step. For small a, because the speedup curves are highly convex, the 
smaller task ( addition) gets a tiny fractional processor assignment. After discretization, all the 
processors get assigned to the larger task, and the smaller task is computed in a succeeding step. 
Hence, when a is small, the two operations are computed one after another, in sequence. As a 
increases, there is a point at which the small addition gets a non-zero processor assignment in 
the first step. The small assignment for the addition causes it to finish late. Consequently, the 
sensitivity of the processor assignment to a is especially significant when the sizes of the tasks 
being run in parallel are widely different. Greedy can be made more robust by not running very 
small and very large operators concurrently. The robustness gained more than compensates for 
the small loss in efficiency. 

7 .3 Large Almost Balanced Tree - g2 

The next example demonstrates that the relative gain in performance from the Tree heuristic 
increases with an increase in the parallelism in the macro dataflow graph. Expression g2 shown 
below is essentially two copies of gl executed in parallel. 

(+ (x Ao Ao) 
(+ (x (+ A1 A1) 

A1) 
(+ (x (+ (+ A2 A2) 

A2) 
A2) 

( x ( + ( + ( + A3 A3) 
A3) 

A3) 
A3)))) 

It has 4 matrix products which can be computed in parallel, as opposed to only 2 products 
for gl. This gives the Tree heuristic more opportunity to run tasks in parallel, with resultant 
higher gains. 

The speedups are plotted in Figure 16. The Tree heuristic performs much better than Naive 
or Greedy, with gains increasing as we increase the number of processors. The speedup of 24.5 
with 64 processors is 85 percent of the expected speedup of 28. This is a 60 % gain over the 
performance of 15.8 attained by Naive or Greedy. 

7.4 Large Unbalanced Product Tree - g3 

The expression g3, 

(x (x (x A1 A2) 
(x (x A3 A4) As)) 

(x (x A6 A1) 
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Figure 16: Speedup curves for expression g2, with 32 x 32 matrices. 

(x (x A8 Ag) 
(x (x A10 An) 

(x (x A12 A13) A14))))) 
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is an unbalanced tree, with one branch twice as large as the other. All matrices are of size 
32 x 32. Since all the basic operators in this expression are matrix products, both Tree and 
Greedy have the opportunity to run large operators in parallel, resulting in significant gains in 
efficiency. This is unlike gl or g2, where the presence of a tiny matrix sum in front of a matrix 
product prevented the Greedy heuristic from running the products in parallel. 

Figure 17 shows the speedup curves for the Naive, the Greedy, and the Tree heuristics. The 
expected speedup for the Tree heuristic, for a= 0.7, has also been plotted. The Tree heuristic 
performs slightly better than the Greedy. The Greedy and Tree heuristics are also substantially 
better than the Naive, by a factor of 1.5 for 64 processors. The curves are around 85 percent 
of the expected speedup for Tree. 

This example demonstrates that the Greedy heuristic may approach the performance of 
Tree in specific cases. However, Greedy is not as robust as Tree, and does as poorly as Naive 
in many cases. 

7.5 Non-Tree Expressions - Matrix Polynomials g4, g5 

The results presented so far have demonstrated the superiority of the Tree heuristic for tree 
structured macro dataflow graphs. When the macro dataflow graphs are not trees, the simple 
Greedy heuristic is a reasonable approach, and is far superior to Naive in many cases. 
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We consider two matrix polynomials: g4 with degree 8, and g5 with degree 16. 

8 

g4: LciAi 
i=O 

16 

g5: L Ci A i 
i = O 
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These matrix polynomials are prototypical non-trees, since the powers of the matrices are 
generated in a recursive-doubling fashion. g5 has about twice the parallelism of g4 at the 
macro-node level. 

Figures 18 and 19 show the speedup curves comparing Naive and Greedy for g4 and g5. It is 
clear from the figures that Greedy performs much better than Naive, with the gains increasing 
as we increase the number of processors. Furthermore, comparing the speedup for g4 and g5, it 
is evident that the gains increase as the parallelism in the macro datafiow graph increases. For 
g4, Greedy is a factor of 2 better than Naive, for 64 processors. This gain increases to between 
3 and 4 for g5. 

The Greedy heuristic can hence be employed as a general (but sometimes suboptimal) 
processor allocation strategy for sets of interdependent nested loops, when the precedences 
between loop nests are not tree structured. 

7.6 Compilation Time 

SDC's compilat ion time is 0(M), where M is the number of macro nodes. By comparision, 
a compiler using general partitioning and scheduling techniques as in [17] takes time 0 ( N) 
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to 0(N3), where N, the number of expanded (simple) nodes, is frequently several orders of 
magnitude greater than M. Clearly the hierarchical scheme is much faster, when the structure 
of the computations can be exploited. For our example expression g3 consisting of 13 operators, 
SDC takes less than a minute to produce Alewife machine code on a SPARCstation-I. In fact, 
for the examples we have run, SDC's run time is dominated by the time taken to compile SDC's 
output Mul-T code to Alewife machine code. 

8 Related Work 

Previous techniques developed for compiling dataflow graphs onto a given, possibly parame­
terized, architecture, do not generally exploit apriori knowledge about the regular, hierarchical 
structure of the computation [17, 1, 2, 3, 18]. 

Sarkar's [17] general approach to the multiprocessor compilation problem for programs writ­
ten in a single assignment language, SISAL, can handle a large class of parameterized architec­
tures, with varying processor and interconnect characteristics. In Sarkar's approach, a dataflow 
graph is created for the program, with each node representing a collection of operations in the 
program. Execution profile information is used to estimate node execution times and commu­
nication overhead. Then, an explicit graph partitioning of the dataflow graph of the problem 
determines the tasks for different processors. Finally, either a run-time scheduling system is 
invoked to automatically schedule the tasks, or a static scheduling of these tasks is determined 
at compile time. Sarkar used the hierarchical structure of the dataflow graph to simplify some 
frequently used graph operations, viz, in determining the transitive closure and critical path 
analysis. However, because partitioning and scheduling is still done on the expanded graph, it 
is time consuming. Multilevel scheduling and partitioning schemes discussed in our paper are 
significantly more efficient when the structure of the operators can be characterized by a simple 
speedup function. 

Several recent efforts [1, 2, 3, 18] have focussed on compiling efficiently nested iterative 
parallel loops, taking the behaviour of the memory hierarchy into account. Nested iterative 
loops, for example, form the inner code of matrix operators: the matrix product being a triply 
nested loop. The basic paradigm in these techniques is to minimize communication by choosing 
compact partitions of the dataflow graph of the loop. The communication is estimated from 
loop dependencies. In the context of matrix operators, these techniques result in blocking 
algorithms similar to those presented in Section 4. However, these techniques do not take 
boundary effects into account. Our work on compiling for an ill-matched number of processors 
complements their work. 

Another important distinction is that the above efforts did not address composition of loops. 
Each loop in an interdependent loop nest will be partitioned and scheduled on all available P 
processors, which is the Naive heuristic. We believe that the optimal processor allocation 
techniques ( e.g., Tree and Greedy) of Section 3 form a natural extension of their work. 

Polychronopoulos et al. and Wang et al. [4, 5] have developed techniques to compile a 
possibly imperfectly nested loop by distributing processors among the loops at different nesting 
levels. However, their algorithms do not attempt to run disjoint, independent subloops in 
parallel, since they do not analyze the precedences between different portions of the loop nest. 
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Consequently, all loops at the same nesting level will be run in sequence. The optimal processor 
allocation techniques ( e.g., Tree and Greedy) of Section 3 can be used to yield significant 
performance gains over running loops in sequence by exploiting interloop parallelism. We are 
currently exploring a combination of the above methods for optimal processor allocation in 
general loop nests, that is, using the techniques of Polychronopoulos and others to allocate 
processors among outer loop nests and our methods for processor allocation between parallel 
loops at the same nesting level. 

9 Conclusion 

We have demonstrated the efficacy of a hierarchical compilation strategy for macro dataflow 
graphs, using matrix expressions as an example. Our hierarchical compilation strategy consists 
of a processor allocation phase followed by a partitioning phase. In the first phase, the optimal 
parallelism and sequencing of all macro nodes is determined, using their speedup functions. 
Then each macro node is optimally partitioned for the specified parallelism, exploiting the 
regular structure of the computation. The compiler algorithms are computationally efficient. 

We implemented several techniques for processor allocation and partitioning in a prototype 
structure driven compiler, SDC for matrix expressions. Measured speedups on a simulator of 
the Alewife machine indicated that the Tree technique for processor allocation is best-suited 
for determining optimal node parallelism and sequencing for tree structured macro dataflow 
graphs. Even when the graphs are not tree structured, algorithms like Greedy which try to 
maximize the number of concurrently runnable macro nodes, are far superior to strategies like 
Naive which run macro nodes one at a time, in sequence. Algorithms based on bin packing 
were shown to be close to optimal for compiling matrix operators on an arbitrary number of 
processors. Our techniques can also be applied to the problem of optimally compiling a set of 
interdependent loop nests, provided speedup functions can be derived for each nest. 
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