
LABORATORY FOR
COMPUTER SCIENCE

MIT/LCS/TM-464

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

HIERARCHICAL COMPILATION
OF MACRO DATAFLOW

GRAPHS FOR MULTIPROCESSORS
WITH LOCAL MEMORY

G .N. Srinivasa Prasanna
Anant Agarwal

Bruce R. Musicus

February 1992

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Hierarchical Compilation of Macro Dataflow Graphs

for Multiprocessors with Local Memory 1

G. N. Srinivasa Prasanna, Anant Agarwal, and Bruce R. Musicus
Laboratory for Computer Science, Rm. 624B,

Massachusetts Institute of Technology,
Cambridge, MA 02139

and
Bolt, Beranek, and Newman, Inc.

prasanna@masala.lcs.mit.edu
agarwal@mit.edu
musicus@bbn.com

February 14, 1992

Abstract

This paper presents a hierarchical approach for compiling macro dataflow graphs for
multiprocessors with local memory. Macro dataflow graphs comprise several nodes (or macro
operations) that must be executed subject to prespecified precedence constraints. Programs
consisting of multiple nested loops, where the precedence constraints between the loops are
known, can be viewed as macro dataflow graphs. The hierarchical compilation approach
comprises a processor allocation phase followed by a partitioning phase. In the processor
allocation phase, using estimated speedup functions for the macro nodes, computationally
efficient techinques establish the sequencing and parallelism of macro operations for close­
to-optimal run times. The second phase partitions the computations in each macro node to
maximize communication locality for the level of parallelism determined by the processor
allocation phase. The same approach can also be used for programs consisting of multiple
loop nests, when each of the nested loops can be characterized by a speedup function.

These ideas have been implemented in a prototype structure-driven compiler, SDC, for
expressions of matrix operations. The paper presents the performance of the compiler for
several matrix expressions on a simulator of the Alewife multiprocessor.

Keywords: Parallel compilation, cache-coherent multiprocessors, distributed-memory
multiprocessors, communication locality, task scheduling, parallel processing, parallelizing
compilers.

1
A short pa.per on the processor allocation phase of SDC has been submitted to ICPP'92.

1

1 Introduction

Multiprocessors rely on careful allocation of their processing, communication, and memory re­
sources to computations for achieving high performance. While it is possible for programmers to
carefully orchestrate their computations, producing correct and efficient programs is extremely
difficult. The problem is even more severe on multiprocessors with complex memory hierar­
chies. For many classes of problems, which display a known structure, or which are amenable
to static analysis, it is possible for a compiler to derive programs that exhibit close-to-optimal
run times.

A compiler must address several important inter-related issues. First, the workload of
the program must be equitably distributed across all the available processors, keeping the
communication between tasks to a minimum. This is called the partitioning problem. Next,
the set of tasks for each processor must be sequenced to satisfy all precedence constraints,
while minimizing processor idle time. This is the scheduling problem. Both partitioning and
scheduling are difficult, NP-Hard problems.

However, optimal compilation can be greatly simplified if the computation has a hierarchi­
cal structure, that is, if it can be represented as a macro dataftow graph. A macro dataflow
graph is composed of macro nodes, where each macro node has internal structure. For ex­
ample, a matrix expression can be represented as a macro dataflow graph, where each node
corresponds to basic matrix operators, such as matrix adds and multiplies. Programs consisting
of multiple nested loops can often be represented as macro dataflow graphs, where each node
in the dataflow graph corresponds to a nested loop, and where some form of synchronization
(e.g., counting semaphores) among the processors executing the nested loop establishes the
precedence constraints between different loop nests.

We simplify the compilation of macro data-flow graphs by compiling separately the two levels
of hierarchy. In the first phase, called processor allocation, the complete macro data-flow graph
is compiled, treating each macro node as a unit. In this step, the sequencing of macro nodes,
or scheduling, and the number of processors assigned to each macro node, or node parallelism,
is determined. This step uses the speedup functions of each macro node. After the processor
allocation phase, the computations within each macro node are partitioned among the processors
assigned to that node for communication efficiency. This divide and conquer strategy not only
reduces the combinatorial complexity of compiling, but affords further simplifications if we
exploit our knowledge of the structure of computation within each macro node.

Our work in processor allocat ion complements recent work (1, 2, 3) in partitioning nested
loops. Since nested loops can be treated as macro nodes, our work is equivalent to determining
the optimal schedule and loop parallelism for a program with multiple interdependent loop nests.
Their work in partitioning loop nests treated each loop nest separately, and assumed a certain
number of processors over which to partition the loop. The techniques discussed in this paper
can be used to choose the number of processors to be assigned to each loop nest. Our work can
also be used in conjunction with the techniques to compile possibly imperfectly nested loops
developed by Polychronopoulos et al. [4] and Wang et al., (5). Their algorithms did not attempt
to run disjoint, independent subloops at a given nesting level in parallel as does our scheme
when the precedences between different portions of the loop nest are known. Our techniques

2

can be used to yield significant performance gains by exploiting this interloop parallelism.

In this paper, we describe computationally efficient techniques for processor allocation in
macro dataflow graphs. We develop algorithms for determining node parallelism and sequenc­
ing, and describe the design of a structure-driven compiler (SDC) using these algorithms for
matrix expressions. We also discuss techniques for partitioning the macro nodes corresponding
to matrix operations, since these techniques provide the speedup functions necessary for pro­
cessor allocation. Our partitioning methods use geometric bin packing techniques, which allow
us to take into account boundary truncation effects and mismatched numbers of processors.

Matrix expressions were chosen because many important examples have macro dataflow
graphs which exhibit simple data-independent control, and have a wide variety of graph struc­
tures well suited to automatic compilation. The dataflow graphs of the macro nodes (matrix
operators) are regular and well characterized, enabling speedup functions to be derived by sim­
ple analysis. Also, many algorithms in numeric computation implicitly require computation of
matrix expressions (e.g., computation of an entire array in a nested loop).

Some examples of matrix expressions are shown below, where all operators are matrix op­
erators. In all that follows, the terms "macro node," "macro operator," and "matrix operator"
mean the same.

Y = A(B + CD) - Simple Matrix Expression

Y = ao + a1A + a2A2 + a3A3 + • • • + aNAN - Matrix Polynomial
y wx F . T ~ h . w j 211:kl - ouner rans1orm, w ere matrix : Wk/= e- rr

We present experimental results for several matrix expressions compiled using SDC on a
simulator of the Alewife multiprocessor. Alewife [6] is a distributed shared-memory multi­
processor being developed at MIT. Our experiments indicate that careful processor allocation
yields speedups that far exceeds the speedups due to techniques that allocate all the processing
resources to each nested loop in turn.

1.1 Hierarchical Compilation

In principle, general purpose approximation algorithms for partitioning and scheduling can
be applied to a completely expanded dataflow graph, where the internals of each macro node
are completely exposed. These resultant partitions and schedules are close to being globally
optimal. However, when data sets have 0(N) computations, to be compiled on P processors,
these general techniques remain computationally feasible only for very small N, for they exhibit
average compilation times 0(N) to 0(N3) .

When the computational graphs display hierarchical structure (e.g., matrix operations man­
ifested in a program as nested loops), a hierarchical compilation strategy simplifies partitioning
and scheduling of the complete computation by performing compilation in two steps.

First, the processor allocation step determines both the optimal number of processors com­
puting every macro node (node parallelism), as well as the order in which macro nodes are

3

computed (sequencing). This step uses the speedup functions of the macro nodes derived by
analyzing the internal dataflow graphs of the macro node. Given the macro dataflow graph
representation of a set of interdependent nested loops and the speedup functions of each loop
nest, the same procedure can determine the optimal number of processors assigned to each
loop nest, and the sequencing of the loops. Processor allocation is a generalization of classical
scheduling and is therefore sometimes referred to as generalized scheduling.

Next, the dataflow graph of the individual macro nodes is independently partitioned and
scheduled, for the parallelism determined above. The partitioning is done so that communica­
tion incurred in computing the macro node is minimized, while maintaining an even load on
each processor. We exploit the regular structure of the dataflow graphs of these operators and
use bin packing techniques to achieve close-to-optimal partitions.

Our work in partitioning differs from the work of others [1, 2, 3] not only in the techniques
used for partitioning, but in our emphasis on partitioning for an arbitrary number of processors,
which addresses fragmentation at the boundaries of the dataflow graph when the number of
processors is mismatched to the problem size. We note, however, that although our techniques
yield close-to-optimal partitions for structured graphs, they are less general than previously
reported methods.

This paper has two major parts, corresponding to each step of the hierarchical compilation
strategy. First, Section 3 presents processor-allocation techniques to determine the parallelism
and sequencing of all the operators in a matrix expression. Next, Section 4 presents techniques
for partitioning the dataflow graphs of the matrix operators, for the given parallelism.

1.2 A Simple Example

Consider the following matrix expression (denoted g 1),

(+ (x Ao A1)
(+ (x (+ A2 A3)

A4)
As))

whose macro dataflow graph appears in Figure l(a). The macro datafiow graph is a tree with
two roughly equal sized branches, one with a single multiply, and the other with a multiply and
two additions. This matrix expression is equivalent to the set of nested loops shown in Figure 2,
where the usage pattern of the matrices establishes the precedence constraints. Assume we want
to compile this on five processors.

Figure l (b) illustrates a general purpose compilation algorithm, which expands the datafiow
graph of all the five operators (partially or completely) to yield a large, flattened dataflow graph
for the expression. Then it partitions and schedules the resulting graph, ignoring pre-existing
structure within each operator, yielding five threads of computation. Two processors cooperate
to compute the smaller branch of the tree (single multiply), while the remaining three compute
the branch of the tree consisting of the two adds and a multiply. Although this resulting
partition and schedule is globally optimal, this strategy is time consuming.

.,,
u ;_

(a) Matrix Expr DFG (b) Single-level Partitioning
5 processors

MlO,Mll

CD
M30,M31

M32

A40,A41
A42

(d) Partitions of all macro nodes after Step 2

2
3

4
3 Procs s

1
2 Procs

(c) Schedule after Step 1

Figure 1: The hierarchical compilation paradigm.

4

Time

Figure 1(c) and (d) illustrate the hierarchical compilation strategy. First, the sequencing and
parallelism of all the five matrix operators is determined using the algorithms to be presented
in Section 3. One of these (the Tree algorithm) makes the following choices for the sequencing
and parallelism. The two branches of the tree are started simultaneously, and the processors are
distributed among the two branches so that they also finish at the same time. Two processors
are assigned to the smaller branch, while three processors are assigned to each operator in the
other branch. Finally, the last addition is run on all five processors. At this point, the sequencing
and parallelism of every operator has been determined; the Gantt chart in Figure 1(c) depicts
the resulting schedule and processor allocation.

Next, the optimal partitioning algorithms (Section 4) are used to partition each operator
for the number of processors determined above. As depicted in Figure l(d), the computations
in the matrix multiply (operator 1) is partitioned into two chunks, M10 and M11 , for execution
on two processors to balance their load and minimize communication.

Multiprocessor code for the expression is now generated by spawning five threads, with each
thread computing a set of the chunks comprising the partitioned dataflow graph, as shown in
Figure 1.2. Synchronization points are inserted to ensure completion of computation of an
operator before computation on successors begin.

The hierarchical partition and schedule is similar to the globally optimal schedule. Exploit­
ing the hierarchy results in major simplifications in compilation, since the scheduler deals with
just five macro nodes. If the matrix sizes are 0(N), a general purpose algorithm would have to
handle 0(N) simple nodes, exhibiting runtimes 0(N) to 0(N3).

/• Input: NxN Matrices AO, A1, A2, A3, A4, AS.
• Output: Matrix T4
•I

/• Multiply 1 •I
doall i = 1 to N

doall k = 1 to N
{

}

TO[i,k] = O;
do j = 1 to N

TO[i,k] = TO[i,k] + AO[i,j] * A1[j ,k];

/• Addition 2 •I
doall i = 1 to N

doall j = 1 to N
T1[i,j] = A2[i,j] + A3[i,j];

I• Multiply 3 •I
doall i = 1 to N

doall k = 1 to N
{

}

T2[i,k] • O;
do j = 1 to N

T2[i,k] = T2[i,k] + T1[i,j] * A4[j ,k];

/• Addition 4 •I
doall i = 1 to N

doall j = 1 to N
T3[i,j] = T2[i,j] + A5[i,j];

/• Addition 5 •I
doall i = 1 to N

doall j = 1 to N
T4[i,j] = TO[i,j] + T3[i,j];

Figure 2: A set of loop nests equivalent to expression gl.

5

The rest of the paper sketches these ideas in detail. Section 2 describes the algorithmic
and architectural simplifications required to make the problem tractable. Section 3 sketches
processor-allocation techniques used to determine the sequencing and parallelism of all macro
nodes (matrix operators). Section 4 describes the techniques used to partition and schedule
individual matrix operators, given the node (operator) parallelism. Section 5 provides details of
our implementation, and Section 6 presents a detailed illustration of the compiler's operation.
Section 7 presents experimental results. Section 8 summarizes related work and Section 9
concludes the paper.

Spawn threads TO, Tl, T2, T3, T4.
Thread TO:

Compute M1O; Wait for M11, A4O, A41, A42 to complete; Compute ASO;
Thread Tl:

Compute M11; Wait for M1O, A4O, A41, A42 to complete; Compute A51;
Thread T2:

Compute A2O; Wait for A21, A22; Compute M3O;
Compute A4O; Wait for MOO, MOl, A41, A42;

Thread T3:
Compute A21; Wait for A2O, A22; Compute M31;

Compute A41; Wait for MOO, MO1, A4O, A42;
Thread T4:

Compute A22; Wait for A2O, A21; Compute M32;
Compute A42; Wait for MOO, MO1, A4O, A41;

Wait for M31, M32;
Compute A52;

Wait for M3O, M32;
Compute A53;

Wait for M3O, M31;
Compute A54;

Figure 3: Psuedo code produced by hierarchical compilation.

2 Simplifying Assumptions

6

We make several simplifying assumptions in the architectural model and in the scheduling
algorithms to make the problem tractable.

2.1 Partitioning and Scheduling

The globally optimal partition and schedule requires handling the complete dataflow graph as
a unit. Communication between macro nodes as well as that within a macro nodes influences
the result. Furthermore, the optimal partition and schedule may have portions of a macro node
being computed, before predecessors of other portions of the same macro node have finished
(non-strict execution).

SDC makes the following simplifying assumptions. In the first step, it determines the number
of processors assigned to a macro node using the speedup functions of the macro nodes, treating
each macro node independently as a unit. Therefore, the schedules are necessarily strict - all
predecessors of a macro node are fully computed before it can start execution. We assume that
the speedup functions can either be predicted or empirically determined. This assumption is
true for most operators found in matrix arithmetic (and also many nested loops) .

In the second step, each macro node is partitioned independently for the number of proces­
sors determined in the first step. We ignore communication between the macro nodes. This
assumption is reasonable if communication within a macro node dominates the communication
between macro nodes.

2.2 Architectural Abstraction

The hierarchical compilation strategy exploits compile-time knowledge of the multiprocessor
architecture to estimate various quantities, for example, speedup functions, and necessitates

II

Remote
Memo

INTERCONNECT

~
0
roc ~~ LJ L.._J .. ~

Figure 4: Multiprocessor model.

Operation I Time II
Add Ta

Multiply Tm
Single Word Remote Access Tu
Single Word Fetch and Add T1a

Table 1: Multiprocessor parameters.

7

a simple characterization of the multiprocessor architecture. Our architectural abstraction,
depicted in Figure 4, models a distributed-memory multiprocessor with P processors. Each
processor has associated fast local memory (or a cache), and accesses global memory and other
processors through an interconnection network. Global memory is distributed among several
remote memory modules, as depicted in the figure. During the computation of a macro node, we
assume that shared data required for the computations are fetched into the fast local memory
from global memory, and that the result of the computations are stored in global memory.

Table 1 lists important architectural parameters. The processor is parameterized by its
operation times for additions, Ta, and operation times for multiplications, Tm. These operation
times include the times needed to access locally available data (in cache or fast local memory).

We assume that a single-word access from remote memory takes time Tu. We further
assume that P such accesses, one from each processor, and each to a different datum, can occur
simultaneously. The fixed remote access cost assumes that all remote memories are equidistant
from each processor, and that remote data access times are independent of the location of the
datum in the multiprocessor system.

The basic synchronization operation is a fetch-and-add on a shared datum [7]. The fetch­
and-add operation allows an atomic update of a global datum. For matrix multiplies, for
example, the fetch-and-add operation allows synchronized accumulates to compute each element
of the resulting product matrix. The fetch-and-add operation can also be used in a software
combining tree to implement distributed semaphores [8], which are required to enforce the
precedence constraints in the macro dataflow graph. Let Tja denote the time required for

8

a fetch-and-add on a remote datum, (excluding the addition cost Ta, and assuming limited
contention). As for remote accesses, we assume P fetch-and-adds, each on a distinct datum,
can take place simultaneously.

In the machine used for the experimental measurements, Alewife, the cost of a fetch-and-add
is roughly twice the cost of a remote memory access (TJa ~ 2Tu), because of contention and
because of the higher likelihood of requiring invalidations to other caches. Alewife implements
the fetch-and-add on remote data by fetching the data into the local cache and performing a
local add. More details about the architecture are in Section 5.1.

3 Determining Sequencing and Parallelism of Macro Nodes

The processor allocation problem comprises two tasks: the number of processors computing
every macro node (node parallelism) has to be computed, and the sequencing of the macro
nodes has to be determined. Since processor allocation determines macro node parallelism in
addition to sequencing, it is a generalization of classical scheduling, and will also be referred to
as generalized scheduling [9]. We have developed techniques based on optimal control theory for
this purpose. The macro dataflow graph representation of loop nests allows these techniques
to be used for optimally compiling a set of interdependent nested loops.

We first present a simple intuitive characterization of the processor allocation problem.
Then we present a formulation based on optimal control theory and summarize the result s
that emerge. We then describe an optimal processor allocation technique for tree structured
macro dataflow graphs, and a greedy processor allocation heuristic for other graphs . The
section concludes by discussing how the theoretical results are used to derive practical processor
allocation heuristics.

3.1 Intuition

The intuition underlying our algorithms is that as we increase the number of processors allocated
to an macro node, overhead of various kinds - scheduling, communication, synchronization -
increases. Thereby, the incremental speedup obtained keeps falling, which implies that the
speedup functions of the macro nodes are convex. Hence overall computation speed is maximized
by running concurrently as many macro nodes as the available parallelism allows, using few
processors for each macro node. In contrast, running the macro nodes one by one, using all
the processors for each macro node, is much slower. Essentially, running many macro nodes
in parallel maximizes the granularity of the threads produced from each macro node, thus
minimising overhead. This intuition can be given a rigorous foundation using optimal control
theory.

3.2 Control Theoretic Formulation of Generalized Scheduling

The fundamental paradigm is to view macro nodes as dynamic systems, whose state represents
the amount of computation completed at any point of time. The macro dataflow graph is then
viewed a.s a composite macro node system - the individual macro nodes being its subsystems.

9

At each instant, state changes can be brought about by assigning (possibly time varying)
processing power to the macro nodes. Computing the composite system of macro nodes is
equivalent to traversing a trajectory of the macro node system from the initial (all zero) un­
computed state to the final fully computed state, satisfying constraints on precedence and total
processing power available. The processors have to be allocated to the macro nodes in such a
way that the computation is finished in the minimum time.

This is a classical optimal control problem. The macro node system has to be controlled to
traverse the trajectory from start to finish. The resources available to achieve this control are
the processors . A valid control strategy never uses more processors than available, and ensures
that no macro node is started before its predecessors are completed. A minimal time generalized
schedule is equivalent to a time-optimal control strategy (optimal processor-allocation), and this
can be formalized as given below.

3.3 Formal Specification

Let n = {1, ... , N} be a set of N macro nodes to be executed on a system with P processors.
Let macro node i have length L;. That is, L; denotes the execution time of the macro node on
a single processor. A set of precedence constraints is specified, wherein macro node i cannot
start until after all its predecessors have finished.

It is convenient to define the state x;(t) of macro node i at time t to be the amount of
work done so far on the macro node, 0 :s; x;(t) :s; L;. Let t; be the earliest time at which all
predecessors of i (if any) have finished, so that i can begin running. Thus x;(t) = 0 fort < t; ,
and Xj(t;) = Lj for all of i's predecessor macro nodes j. If macro node i has no predecessors ,
ti = 0.

Let p;(t) be the processing power (number of processors or processor assignment) applied
to macro node i at time t, and let P be the total processing power available. The Pi(t) are all
non-negative, and must sum to at most P. Note that we have allowed the p;(t) to be arbitrary
time varying functions, thus allowing arbitrary preemptive (generalized) schedules.

Finally, assume that once an macro node's predecessors have finished, the rate at which
it proceeds, dx;(t)/dt, depends in some nonlinear fashion on the amount of processor power
applied, p;(t), but not on the state x;(t) of the macro node, nor explicitly on the time t. We
call this the assumption of space-time invariant dynamics. Thus we can write:

(1)

where s;(p;(t)) will be called the speedup function. With no processing power applied, the
macro node state should not change, s;(O) = 0. With processing power applied, the macro
node should proceed at some non-zero rate, s;(p) > 0 for p > 0. We further assume that
si(P) is non-decreasing, so that adding more processors can only make the macro node run
faster. In most of our theory, s;(p) is taken to be convex in p. This convexity reflects the
increasing amount of communication, synchronization, and scheduling overhead as the number
of processors working on one macro node increases.

10

Our assumptions about macro node speedup are a simple theoretical abstraction. In effect,
this form of the speedup function implies that macro nodes can be dynamically configured
into arbitrary numbers of parallel modules for execution on separate processors. Processors
can be added or removed at any time, and in such a manner that the processors assigned to
the macro node can all do useful work. The speedup depends only on the total number of
processors allocated to the macro node at a given time, and is independent of the state or the
time variable. Our goal is to finish all macro nodes in the minimum amount of time tF, by
properly allocating processor resources Pi(t).

3.4 Results from Control Theory

The results of time-optimal control theory [9] can be invoked to yield insights into generalized
scheduling. The results include:

• General theorems regarding optimal macro node starting and finishing times. One the­
orem states that a set of independent macro nodes should start and finish together, and
be computed simultaneously.

• General rules for simplifying the scheduling problem in special cases. Equivalence of the
generalized scheduling problem to constrained shortest path and network flow problems
in such cases.

• General purpose heuristics for scheduling, based on the speedup functions of the macro
nodes. These techniques are provably optimal in special cases. In particular, a very simple
divide and conquer heuristic for tree-structured macro dataflow graphs emerges, which
can be shown to be optimal for certain types of macro node speedups (e.g., for speedups
of the form pa [9]). The Tree Heuristic is discussed further below.

3.5 Tree H euristic

The scheduling is especially simple when all speedup functions are of the form s(p) = pa, for
the same a. In this case the optimal processor assignment Pi(t) for any macro node i does
not vary during its computation, but is constant. This processor assignment will be denoted
by Pi itself for simplicity. Moreover, the following graph reduction techniques are available to
simplify the scheduling.

A set of macro nodes, 1, 2, ••.I(, in series can be replaced by an equivalent single macro
node (denoted 1 : K) of length, Li:K, equal to the sum of the individual macro node lengths,
Li. That is ,

i=l

An optimal generalized schedule (processor allocation), SR, for the reduced graph maps directly
into an optimal generalized schedule for the original graph, So, as follows. The processor
assignments of each macro node in So is equal to that of the composite macro node 1 : J(in
SR, that is

Pi[in So] = Pl:K[in SR] i = l··•K

11

Therefore, all macro nodes in a series set have the same processor assignment. A macro node
starts as soon as its (sole) predecessor in the series set finishes . SR, for the reduced graph
maps directly into an optimal generalized schedule for the original graph, So, as follows. The
processor assignments of each macro node in So is equal to that of the composite macro node
1 : J(in SR, that is

i = l···K

Therefore, all macro nodes in a series set have the same processor assignment. A macro node
starts as soon as its (sole) predecessor in the series set finishes.

A set of parallel macro nodes 1, 2, • ••I(, can be reduced to an A set of parallel macro nodes
1, 2, .. -K, can be reduced to an equivalent single macro node 1 : K of length, L1:K, equal to
the l 1;a norm of the individual macro node lengths, Li. In other words,

L1:K = l1;a(L1, ... ,LK) = (tLva)a
•=l

An optimal generalized schedule, SR for the reduced graph maps directly into an optimal
generalized schedule for the original, So as follows. All macro nodes in the parallel set are
started and finished at the same time. This can easily be shown to imply that the processor
assignments among the parallel macro nodes is in proportion to the 1/ a power of their individual
lengths, that is,

Since trees are recursive series-parallel graphs, these two reductions yield a simple, optimal
scheduling technique for trees. Specifically, the tree scheduling algorithm has two steps:

1. We first recursively reduce the entire graph to a single task with pa speedup, using series­
parallel reductions as described above, determining the length (workload) of the tree and
all subtrees. Now, the run time of the tree is easily computed.

2. Next, undoing the recursion, we allocate the processing power to each of the series and
parallel components according to their lengths, and determine their start and stop times.
Continuing recursively, we eventually derive the optimal processor allocation(or general­
ized schedule) for every task in the original graph.

Pseudo code for the Tree Heuristic is shown in Figure 5. Each node in the data structure
contains the length of the corresponding macro node (op-len), the total length of the macro
node plus the equivalent length of all its subtrees (tree-len), the processor assignment (proc)
to this node, and the start and stop times for the macro node. First, find_length is recursively
called to determine the lengths of all subtrees. Then tree_scheduler uses the above determined
lengths to compute the processor assignments and the start and finish times for all nodes.
Notice that it attempts to equalize finish times of all predecessors (subtrees) at each node, by
properly splitting the processor resource among them.

This Tree scheduling technique is optimal only when all speedup functions are of the form
p°', for the same a. Although the matrix product speedup in Equation 4 (Section 4.3), is not of

{

{

}

struct tree

}

op_len;
tree_len;

proc;

op_start;
op_stop;
left_child,
right_child;

I• The length of the corresponding macro-node •I
/• The length of the corresponding macro-node,

* plus lengths of all its subtrees•/
I• Processor assignment for this macro-node and

* all its subtrees •I
I* Start time for this macro-node *I
I• Stop time for this macro-node•/

/• pointer to children, NIL if a child is absent•/

parallel_length(a, b)

return(1/alpha norm of a,b);

find_length(tree)
{

}

left_len = right_len = O;
if (tree.left_child) left_len = find_length(tree.left_child);
if (tree.right_child) right_len = find_length(tree.right_child);
tree.tree_len = parallel_length(left_len,right_len) + tree.op_len;
return(tree.tree_len);

;Assumes that find_length has been called already
tree_scheduler(tree, nproc)
{

}

left_len = right_len =O ;
op_start = O;
if (tree . left_child) left_len = tree.left_child.tree_len;
if (tree.right_child) right_len = tree.right_child.tree_len;
if (tree . left_child)
{

}

left_proc = nproc * left_len / (left_len + right_len);
tree_scheduler(tree.left_child,left_proc);
op_start = tree.left_child.op_stop;

if (tree.right_child)
{

}

right_proc = nproc * right_len / (left_len + right_len);
tree_scheduler(tree.right_child,right_proc);
op_start = tree.right_child.op_stop;

tree.proc = nproc;
tree.op_start =op_start ;
tree.op_stop = op_start + tree.op_len / nproc~alpha;

Figure 5: Pseudo code for Tree Heuristic.

12

13

CII
(.)

e· a.
Macro DFG ---·~

p
1 2 3 4 5

Tim e

CII

8
rr. ·~

CII

8
(a) Naive Heuristic

It

·~
p 1 1

p •: 2 3 4
3 4 5 5

p ·, 2 Time
p 1 1 Time

(b) Greedy Heuristic (c) Tree Heuristic

Figure 6: Processor allocation (or generalized scheduling) heuristics.

this form, we can employ this technique as a heuristic, since the speedup for matrix multiply can
be approximated as po,, and an appropriate a can be empirically determined (see Section 7.1).
We show that the technique is robust for the value of a used.

3.6 Other Processor Allocation Heuristics

For purposes of comparison, we have incorporated three heuristics for processor allocation -
Naive, Greedy, and Tree, into our structure-driven compiler. Figure 6 illustrates the operation
of the three heuristics on the tree structured dataflow graph used in Section 1.2. As before, let
the length of macro node i be Li. As denoted by the size of the circles representing each macro
node, macro nodes 1 and 3 (matrix products) take much longer to compute than the others
(adds), and are the same length.

The Naive heuristic (Figure 6(a)) runs each macro node on all the available processors.
Thus, macro nodes 1, 2, 3, 4, and 5 are run in sequence. In a program with multiple loop nests,
Naive will allocate all the processors to each loop in turn. Although the execution times with
this heuristic are clearly sub-optimal, this heuristic is used for its simplicity.

The Greedy heuristic (Figure 6(b)) is an as-soon-as-possible greedy (generalized) schedule.
An macro node is run at the earliest time at which it is ready. All macro nodes that are
ready at a certain time are started together and finished together. Computation proceeds as a
wavefront picking up macro node sets that get ready in succession. For this expression, Greedy
runs macro nodes 1 and 2 in parallel, distributing the processor resources among them such
that they finish together. The resulting processor assignments are

14

(rounded to nearest integers). Subsequently, macro nodes 3, 4 and 5 are computed, each using
all available processors (p3 = p4 = p5 = P). Notice that since L1 >> L2, almost all processors
are assigned to macro node 1 in the first step. The resulting schedule is little better than the
Naive schedule. Indeed, if p2 gets rounded to 0, all processing power is assigned to macro node 1
in the first step, and macro node 2 will be computed in a succeeding step. The Greedy schedule
will then be identical to the Naive schedule.

The Tree heuristic (Figure 6(c)) does a much better job of partitioning the processor re­
sources by recognizing that macro nodes 2, 3, and 4 form a subtree, which can be run in
parallel with macro node 1, and splitting the available processors. The processing resource is
split among the subtrees so that their finishing times are equalized. Finally, macro node 5 is
run on all the available processors. The processor assignments are

P2 = p3 = p4 = (L2 + L3 + L4)1/a p
L!10 + (L2 + L3 + L4)l/a

and Ps = P

Since L1 ~ L3 > > L 2 , L3, L4 , both subtrees get roughly the same number of processors, and
are computed in a "balanced" manner. Notice that the partitioning is greatly improved using
the global information available about task sizes.

4 Optimal Matrix- Operator Compilation

Section 3 presented methods for determining the number of processors, Pi, assigned to each
macro node i, and their sequencing. In our context, the macro nodes are matrix operators.
This section presents our technique to optimally partition and schedule the dataflow graphs
of each operator among the Pi processors. The analysis yields the speedup functions needed
for processor allocation. Other methods (e.g., [1]) for general loop nests can also be used for
partitioning.

Optimal matrix-operator routines are derived by exploiting the regular structure in the
operator dataflow graph. Section 4.1 discusses how these matrix operator dataflow graphs can
be represented as regular polyhedra. The basic idea is to represent the dataflow graph as a
lattice, with each dataflow graph node corresponding to some lattice point. Locality in the
dataflow graph is reflected in the geometric locality of the lattice points. Nodes corresponding
to adjacent lattice points generally have common inputs, contribute to common outputs, or
communicate values between themselves.

When the dataflow graph of each operator displays such regular structure, partitioning
and scheduling can be based on geometric bin packing techniques, thereby resulting in better
compilation times than general purpose approximate solutions to the NP-hard dataflow graph
partitioning and scheduling problem. We illustrate in Section 4.3 the bin-packing method using
matrix multiplication as an example.

15

4.1 Polyhedral Lattice Representation of Matrix-Operator Dataflow Graphs

The standard algorithm for multiplying an N1 X N2 matrix A, by an N2 X N3 matrix B, yielding
an N1 x N3 matrix C = AB,

Cik = ~ a;jbjk
j

has N 1N 2N 3 multiplications, and N 1N3(N2 - 1) additions. The corresponding dataflow graph
can be represented by an N 1 x N 2 x N 3 lattice of multiply-add nodes, as shown in Figure 7(a).
Each node (i,j,k) represents the computation

An element of A, namely a;j, is broadcast to the N 3 multiply-add nodes having the same value
of ij. These nodes are arranged in a line parallel to the k axis. Thus the computation on
all nodes in this line exhibits locality with respect to the element a;j. This broadcast of a ;i

is represented by a solid line in Figure 7(b). Similarly, nodes having the same value of jk
share bjk• This broadcast of bjk is also represented by the solid vertical line in Figure 7(b).
Nodes having the same value of ik sum together to yield the same output element of C, namely
Cik• This accumulation is denoted by the dotted horizontal line in Figure 7(b) . Every possible
ordering of the computation, exploiting associativity and commutativity, can be represented by
the geometric lattice.

Because of the existence of associativity and commutativity, the partial products can be
summed in any order, and the accumulates into the output matrix C do not impose any
precedence constraints, but must be atomic. Therefore, scheduling each chunk of nodes after
partitioning is a non-issue.

Now, consider the cluster of nodes (for processor i) shown in Figure 7(c). The total number
of input elements of matrix A accessed from global memory by this cluster, can be measured
by the projected area of the cluster (PA;) on the A face of the dataflow graph. Note that this
presupposes the existence offast local memory (cache) to reuse an already accessed datum. The
same applied to matrix B. Thus PA; and PB; measure the total number of inputs accessed by
this cluster. Similarly, the total number of output elements of matrix C to which the cluster
contributes is measured by the projection on the C face of the dataflow graph (PC;) . Partial
sums for each element in PC; are formed inside this cluster, in local memory, and accumulated.
Thus PC; measures the number of synchronized accumulates (fetch-and-adds), due to this
cluster. Hence the communication of this cluster with the outside world can be minimized (or
the locality maximized) by minimizing the projected surface area on the three faces, which can
be handled by geometric techniques. A cluster that exhibits geometric locality (in terms of
minimal projected surface area) exhibits dataflow graph locality.

To summarize, the data:flow graph of a matrix multiply can be represented by a 3-dimensional
polyhedral lattice, each lattice point representing a computation in the data:flow graph. Adja­
cent lattice points share some common broadcast inputs or are accumulated to common outputs.
Data:flow-graph locality is equivalent to geometric locality. Similar representations can be de­
rived for matrix sums, inverses, FFT's, LU decompositions, etc, from the general shapes of
their computational lattices.

16

Bjk

N3 ~
k AIJ X

Cik

+
3=0 lattice of Nodes

Multiply- Add Node

(a) Oataflowgraph lattice for matrix product

(b) Polyhedral representation of Detaflowgraph

PBl--
i I
: i Node

• Cluster
i -!

N1 ... ~ •·•
p I.

N2
(c) Communication of Cluster = Sum of Projections

Figure 7: Dataflow graphs for matrix product

4.2 Performance Metric

The polyhedral lattice representation facilitates partitioning to minimize communication us­
ing geometric methods. These methods require a cost metric to evaluate potential choices.
Although the cost of any partition and associated schedule is ideally the execution time, its
accurate estimation at compile time in a real system is a difficult problem. We therefore approx­
imate the execution time Te of a partition i by the sum of the maximum number of operations of
each kind, namely, adds, multiplies, remote fetches, and synchronized accumulates, weighted by
their associated costs (from Table 1), in that partition. (Recall, local access costs are included
in the add and multiply times.) In other words, if Na is the maximum number of additions
performed by any processor, Nm the maximum number of multiplications performed by any
processor, N,,, the maximum number of unsynchronized remote data fetches (in words), and
NJa the maximum number of synchronized accumulates (in words), we have,

(2)

17

Our cost metric is accurate if the processors expend negligible time waiting for work. This
assumption is valid for matrix arithmetic (except at very fine task granularity), because of
the extensive parallelism available. For example, for matrix sums and products, all nodes are
independent. The chunks corresponding to different processors can all be scheduled in parallel,
without embedded synchronization (except for that implicit in the accumulates).

4.3 Optimal Matrix Products

The geometric dataflow graph representation simplifies the partitioning, by enabling us to derive
a lower bound on the execution time, and bin-packing heuristics to closely approach that bound.
In this section we derive the lower bound. The next section presents the bin-packing heuristics.

An optimal partition (of the ith operator) on Pi processors divides the operator dataflow
graph into Pi roughly equal sized chunks, while choosing the shape of the chunks in a compact
manner to minimize communication. For convenience, we will drop the subscript i, keeping
in mind that p is the number of processors allocated to macro node (operator) i. Keeping
the chunks equal in size balances the workload, minimising Na and Nm. Compact chunks
minimize the number of data transfers, Nu and N1a, and hence the communication. The ideal
cluster shape can be shown to be a cubical box, whose aspect ratio depends on the architectural
parameters Tu (unsynchronized memory access time) and TJa (synchronized accumulates).

Assuming that load balancing is perfect, and all clusters are ideal in shape and can be
scheduled concurrently, a lower bound on the total execution time, Te , for the matrix product
IS

(3)

The first term represents the arithmetic operation cost for each cluster, assuming the N1N2N3
adds and multiplies are evenly distributed over the P processors. That is, the volume of the
cluster is fixed at Ni ~ 2 N3 for an even load. The second term results from choosing the aspect
ratio of the cluster so as to minimize the data access time, and can be derived as follows.

Recalling, each partition issues Nu unsynchronized remote memory accesses to each of the
input matrices A and B, and issues NJa fetch-and-adds for the accumulates into C. Hence the
total time for the data accesses is

TuNu + TjaNJa

The data access time thus depends on relative magnitude of NJa and N u, or the aspect ratio
of the cluster.

Let the ideal cluster dimensions be I, J, and K (I = K because accesses of matrices A
and B incur the same cost). Then Nu = 2IJ = 2JK and N1a = IK. Thus, the problem
of obtaining N u and NJa to minimize the time for data accesses is reduced to the problem of
determining I, J, and K, such that

21 JTu + I K TJa

is minimized, subject to the constraint

18

The above constrained minimization problem can be solved using Lagrange multipliers to yield
optimal values of I, J, and K, from which the minimal communication cost can be derived,
yielding the result in Equation 3.

When N1 = N2 = N3 = N and TJa = 2Tu, we get

T (T. T)
N 3 3.8Tv.N2

e2'.: a+ m + 2
p pa

The lower bound on the total time has a linearly decreasing (strictly inversely linear) and a less
than linearly decreasing component, with respect to the number of processors p. The maximum
attainable speedup S(p), which is the ratio of the execution time on 1 processor to the execution
time on p processors, then becomes

(4)

As we increase the number of processors, the maximum attainable incremental speedup keeps
decreasing. The speedup function provides a simple characterization of the optimal matrix
operator routines for use in the processor allocation phase (Section 3).

4.4 Bin Packing Algorithms

In general the lower bound determined in Equation 3 cannot be met exactly, asp ideally shaped
clusters cannot be packed into the cuboidal data:fl.ow graph. In such situations, the clusters
must be distorted so they exactly fill the dataflow graph. Fortunately, because the projection
sum (surface area) does not vary much with cluster shape for clusters near the optimum, good
partitions can be achieved even if some or all the clusters are slightly distorted. This observation
is the basis for close to optimal bin packing algorithms used in the compiler.

Our techniques are best illustrated using the the 2-D problem of partitioning an N1 x N 2

rectangle into P equal sized chunks to minimize the sum of projections. For this 2-D problem
in the continuous domain, simple algorithms have been shown to be [10, 11, 12, 13]. Mount,
Kong, and Roscoe [13] have applied these results as approximations to discrete 2-D lattices as
well. We have extended these algorithms to three dimensions [14]. We shall now describe the
continuous algorithms, as they are much simpler. The discrete algorithms usually start in the
same manner as the continuous algorithms, but are followed by a discretization step.

For simplicity, assume that Tu = TJa, so that all projections are weighted equally and the
exact projection sum is being minimized. Since all p chunks are equal in size, the area of each
chunk is fixed. To minimize the projection sum, the projection sum of each chunk should ideally
be minimized, keeping its area fixed. This implies that each chunk should ideally be a square.
In general, however, p equal area squares cannot be exactly fitted into an N1 x N 2 rectangle.
The 2-D partitioning algorithms fix this by distorting the ideal square chunks so as to fit inside
the N1 x N2 rectangle.

These algorithms start by arranging p squares to roughly fill the N1 x N 2 rectangle. The
resulting polygon will approximate a rectangle, possibly with one side incomplete, and heavily

N

F
N

._J3
0 1

2

(a) Ideal chunks

2N/3

N/3

N/2 N/2

rn
(b) Chunks after distortion to fit

Figure 8: Optimal square partitioning.

19

overlap the original Nix N2 rectangle. Next all P chunks are distorted roughly equally, in such
a manner that the Ni x N2 rectangle is exactly filled. In practice, the initial arrangement of
the squares is critical to success, while the distortion technique used does not matter as much,
since the projected surface area does not increase greatly with distortion.

For example, consider partitioning an Ni x Ni square into three pieces. Figure 8(a) shows
the ideal three square pieces (assume Tu = T1a), arranged such that they approximately fill the
square. Figure 8(b) shows the optimal partition obtained after distorting the pieces to exactly
fill the square. Since small changes in aspect ratio of any piece does not change its projection
sum very much, the projection sum in Figure 8(b) is close to that in Figure 8(a) . If Tu=/:- T1a,
then the weighted projection sum is minimized, the aspect ratio of the ideal chunks is not
1 : 1, and the ideal chunks are rectangles. These ideal rectangular chunks are distorted in the
same way, to fit inside the Ni x N2 rectangle. Small distortions do not cause large increases in
communication.

The bin packing techniques used in SDC are generalizations of these techniques to 3-D
Ni x N2 x N3 lattices. It should be noted that 3-D bin packing is extremely tedious if the
number of chunks (processors), is not well matched to the problem size. For example, chunking
up an 32 x 32 x 32 matrix product dataflow graph into 25 chunks results in a variety of chunks
with different aspect ratios and locations, which are very difficult to compute by hand. The
automated procedure in SDC is essential to perform this task.

4.5 Other Operators

Various other matrix expression operators have been implemented, following the same basic
idea of minimising communication by choosing good block shapes. These operators include
matrix sums, dot products, outer products, matrix scaling, transposes, etc.

5 Implementation Details

This section furnishes details of the experimental environment used to evaluate the performance
of the matrix expression compiler, SDC, as well as some implementation details.

20

Distributed Shared Memory

Alewife machine

Figure 9: The Alewife machine.

5.1 Experimental Environment

The input to SDC is a matrix expression in a LISP-like prefix language, with data-independent
control. The compiler produces a parallel program in Mul-T [15], which is compiled and run
on the Alewife machine simulator, ASIM. Mul-T is a parallel lisp language.

The Alewife Machine The Alewife machine [6] is a mesh-connected, distributed shared­
memory multiprocessor, with coherent caches, as shown in Figure 9. The processor, called
Sparcle has a modified SPARC architecture. Global shared-memory is distributed among the
processing nodes, access to which is provided by the mesh interconnection network. Processors
have associated caches for fast access to frequently used data. Because caches can store shared
data, a cache coherence scheme maintains memory consistency. A detailed, cycle-by-cycle
simulator, ASIM, and associated program analysis tools, are currently available for Alewife.

The abstractions made in Section 2.2 model Alewife fairly accurately. First, the Sparcle

21

processor uses a load-store architecture, so arithmetic operations are accurately characterized
by the execution times (Ta, Tm) , ignoring pipeline latency. The local cache in each Alewife node
allows single-cycle word accesses. As mentioned earlier, cache access costs are included in the
basic arithmetic operation costs.

Accesses to globally shared memory, however, are not accurately represented, since Alewife's
distributed-memory architecture places some memory modules closer to each node than others -
the access time, Tu, to the global memory module on the same node as the requesting processor
is satisfied in 10 cycles, while an access to a memory module situated in a remote node could
take on the order of 50 cycles (in a 64-processor system). Access times also vary due to network
loading conditions, hotspots, etc. However, because each of these access times is over an order
of magnitude greater than the cache access time, the compiler can reasonably model Alewife
as a two-level memory hierarchy, with a fast single-cycle first-level store, and a much slower
second-level remote memory.

A coherence scheme in Alewife ensures data consistency, but we do not explicitly model
its effects. The presence of a cache coherence scheme manifests itself in our approximation of
accumulation cost TJa = 2Tu. Because it requires a write to a shared data location potentially
present in another cache, an accumulation incurs roughly twice the cost of a memory read due
to the extra invalidate to purge the other cached copy. For the results in this paper we configure
ASIM to use the full-map coherence protocol, which keeps track of all cached copies of a shared
datum.

Alewife's Software Environment The SDC algorithms determine an optimal allocation
of work (thread) for each processor over time, for computing the matrix expression. Code
generation for the work allocation requires the ability to spawn threads for each processor,
synchronize them, and communicate data (input and output matrices and temporaries). The
Alewife software environment allows thread creation using the future call. A thread t can be
assigned to a specific processor p using the (future-on pt) call. Threads can be synchronized
using various constructs , including distributed semaphores, provided by the Alewife parallel
software library. Input and output matrices and temporaries are automatically shared among
multiple threads through shared memory.

5.2 Compiler Implementation

The compiler performs a two level partitioning and scheduling. In the first step (processor­
allocation), the sequencing and parallelism of all the matrix operators is determined using their
speedup functions, as described in Section 3.4. While the dataflow graph analysis of Section 4
can be used to estimate these speedup functions, SDC approximates all speedup functions to be
of the form pa to simplify the scheduling (Section 3.5). Although experimentally determined
a's have been used for the measurements, we show that the results do not differ materially with
small variations in the value of a.

Next, given the parallelism, each operator dataflow graph is partitioned using bin pack­
ing algorit hms, as described in Section 4. This partitioning phase depends on architectural
parameters - the computation times Ta and Tm , and data communication times Tu and TJa•

22

These partitions are grouped into P threads, one for each processor. Finally, code consisting
of a sequence of calls to the routines handling the operator partitions (the partition library)
is generated. Sets of processors cooperating on a macro node are synchronized by embedding
distributed semaphores at appropriate places in each thread.

A distributed-memory multiprocessor, such as Alewife, requires that shared data structures
like matrices and vectors be distributed across multiple processors, and necessitates a mecha­
nism for keeping track of the constituent chunks. Since the data sizes can be arbitrary, and
ill-matched to the sizes of the multiprocessor, the sizes of the chunks are usually irregular. We
provide access through pointers to the chunks. The pointers are duplicated in some of the
processor nodes to avoid hot spots. Because these features complicate bookkeeping, making
use of the automatic procedures in SDC is highly desirable.

5.3 Design of the Partition Library

The optimal matrix operator partitioning algorithms (Section 4.3) result in box-like partitions,
whose aspect ratios are a function of the communication costs. We have developed a library of
routines for various matrix operators that accept as arguments the input and output matrices
and the index limits over which the computation is desired. For efficiency, separate routines are
required for distinct shapes. We discuss the design of this library and associated data structures
below.

Consider the routine for cuboid (box like) partitions of a matrix multiply, mul_block_loop, as
depicted using pseudo code in Figure 10. When a matrix product is computed on P processors,
the thread assigned to each processor calls mul_block_loop with arguments specifying the three
matrices, maLa mat_b, and maLc, and the parameters, starti, endi, startj, endj, startk, and
endk specifying its partition size. The routine computes partial sums, and then accumulates
the partial sums to the output matrix. The partition computed by a processor is specified by

[i,j, k] 2'. [starti, startj, startk] and [i,j,k] < [endi,endj, endk]

The accumulate necessitates synchronization among all processors computing an element of
the output matrix. In Alewife, the availability of data structures with built-in synchronization,
such as L-structures [16], greatly facilitates this task. Because an L-structure allows efficient
exclusive access to each of its elements, an atomic fetch-and-add operation can be efficiently per­
formed on each of its elements, without locking the whole structure. SDC, therefore, represents
matrices as L-structures.

mul_block_loop (mat_a mat_b mat_c starti endi startj endj s tartk endk)
do i from starti to endi

{

do k from startk to endk
{

}

}

sum=O;
do j from startj to endj

sum = sum+ a[i,j] b[j,k];
fetch- and- add (c[i,k] sum);

Figure 10: Routine to compute block of matrix product.

6 A Detailed Example

23

Figure ll(a)) illustrates the operation of SDC using the expression gl first introduced in Sec­
tion 1.2, using the Tree heuristic. All matrices in the expression (see below) are of size 32 x 32

(+ (x Ao Ai)
(+ (x (+ A2 A3)

A4)
As))

First, the Tree heuristic is used to determine the sequencing and parallelism of each macro
operator, using a = 0.7. The selection of a is based on speedup measurements presented in
Section 7. Figure ll(b) shows a Gantt chart for t he resultant schedule. The 64 processors
available are allocated to the two branches of the tree such that they are started and finished
together. The values of P1 . . . p5 are computed as indicated in Section 3.6.

Since L1 = L3 > > L2, L4, the processor allocations to the branches are almost equal, with
31 processors handling the product Ao x A1 and 33 processors computing each operator in the
other branch. Finally, all 64 processors cooperate to compute the final addition (Addition 5).

Next, each of the operator datafl.ow graphs is optimally partitioned for the parallelism
determined above. Multiply 1 is partitioned into 31 blocks, while Additions 2, Multiply 3, and
Addition 4 are partitioned into 33 blocks each. The final addition 5 is partitioned into 64 blocks.
Finally, the blocks are grouped into 64 distinct sets, each set yielding a thread of computation
for a processor. The thread is formed by repeated calls to the routines computing the dataflow
graph blocks (Section 5.3). Synchronization in the form of distributed semaphores is embedded
in t he threads automatically. The details of two threads, viz. those produced for processors 0
and 60, are described below.

The thread for processor 0 works on Multiply 1 and Addition 5. It computes the following
dataflow graph blocks, in order ((i,j,k) refer to data:flow graph indices - Section 4).

Multiply 1: [i,j,k] ~ [0,0,0] and [i,j,k] < [8,17,8]
Addition 5: [i, j] ~ [0, 0] and [i, j] < [4, 4]

(a) Expression g1

33
Pro C

31
Pro C

ei
0.

'

2 3 4

5

1

(b) Tree Heuristic, 64 Procs.

Figure 11: Tree schedule for gl.

24

64
Proc

Tim e

Since Tfa. = 2T,,_ the matrix product blocks are close to cubical to minimize communication,
with the N

2
(j) dimension slightly larger than the other. A synchronization point (semaphore) is

inserted before Addition 5, to ensure that both branches of the tree are finished before Addition

5 is begun.

Similarly, the thread for processor 60 works on the larger branch of the tree, and computes

the following blocks, in order.

Addition 2: [i,j] ~ [27, 22]
Multiply 3: [i,j, k] ~ [24, 16, O]
Addition 4: [i,j] ~ [27, 22]
Addition 5: [i,j] ~ [28, 16]

and
and
and
and

[i,j] < [30,32]
[i,j,k] < [32,32,8]
[i,j] < [30,32]
[i, j] < [32, 20]

The code produced by SDC is compiled and run on Alewife. Performance results are pre­

sented in Section 7.

7 Experimental results

This section presents experimental results obtained with our compiler on the Alewife machine
simulator. A large number of matrix expressions have been compiled and simulated. The simu­
lator is configured for a three-dimensional mesh interconnect, with sizes 1 X 1 x 1 (uniprocessor),
2 x 2 x 2, and 4 x 4 x 4. If the number of processors used to compute the matrix expression is
P, then processors Pi such that O ::; i < P are used and the others are idle. Unless otherwise
specified, the compiler assumes that the time for an interprocessor accumulate, Tfa., is twice
the memory access time, T,,_.

We present results for the the matrix product first (other operators are analogous), and show
how speedup functions are derived. Then, using these speedups, we present results for complete
expressions. We emphasize that all the speedups shown are close to the "true" speedups for
the expression. That is, the uniprocessor program is optimized for a single processor, that for
8 processors is optimized for 8 processors, and so on.

25

289823 I 292376

TJa = 4Tu. I Long Blocks I One Row Per Proc]
292316 I 310358 I 895758 11

Table 2: Time (cycles) for 64 x 64 matrix product, using 64 processors.

7 .1 Matrix Product

Code for a matrix product is generated by the compiler for each number of processors, following
the bin-packing techniques of Section 4. We report on four sets of experiments with matrix
products:

1. Since our techniques depend on the access times Tu. and TJa, this section first investigates
the sensitivity of the partitioning to these parameters.

2. We then evaluate the partitioning scheme when the number of processors is mismatched
to the dimensions of the operator dataflow graph.

3. Because our (compile time) scheduling methods rely on estimated speedup functions, we
assess the accuracy of our matrix product speedup function.

4. We show that the matrix product speedup curve can be reasonably approximated by a
speedup function of the form s(P) = P°', which justifies the use of simple, close-to-optimal
processor allocation algorithms.

Table 2 shows the time taken to compute a 64 x 64 matrix product on 64 processors, with
varying choices for the architectural parameters, Tu. and TJa• Each choice of the parameters
results in a different shape of the dataflow-graph blocks computed by each processor. Also shown
is the execution time when TJa is so large that the compiler places each output matrix element
to be computed on a single processor (Long Blocks). In this case the output matrix is split into
P square blocks, each computed on one processor. The resultant communication is 0(../P),
instead of 0(P113) (Equation 3). Also, shown is the execution time when the matrix-product
dataflow graph is sliced into P slices along the i dimension only (that is, by rows). Then, we
have an entire row of the output matrix computed on a single processor. The communication
is then 0 (P) versus 0(P113) for the optimal blocking, which is much worse.

The results show that the execution time is not very sensitive to the architectural param­
eters, as long as they are reasonably accurate. This is because the communication does not
increase very much if the shapes of the blocks are not very far from optimal. Small changes in
the architectural parameters have a correspondingly small effect on the block shape chosen by
the bin packing algorithms. Notice however, the Long Blocks partition is definitely worse than
the first three. The performance with one row computed per processor, is a factor of 3 worse
than the first three.

Next, let us assess the performance of the partitioner when the number of processors is
inismatched to the matrix sizes. Such mismatched numbers are often encountered after the
processor allocation phase (Section 3). Figure 12 shows the speedup curves for the product
of two matrices with varying sizes , on 1, 8, 16, 25, 32, 38, and 64 processors. Note that two
numbers (25 and 38), are mismatched to the matrix sizes.

26

11me on• -(cydMJ ,,, __ _
- llr.lB7S 321U5

24

20

8 16 24 32 40 48 56
Proceuon

Figure 12: Speedup curves for matrix product.

We observe that our algorithms work well for ill matched processor allocations. For example,
the speedup for 25 processors is about midway between the speedups for 16 and 32 processors.
In general, however, the mismatch causes a slight drop in speedup due to imperfect bin packing.
The mismatch is particularly noticeable for 38 processors. However, this effect decreases as the
matrix size increases, as is shown by the curve for 64 processors in the figure.

To achieve the speedup for 25 processors for the 32 x 32 x 32 product, SDC's bin packing
algorithms produce partitions with a variety of sizes: 12 partitions of size 8 x 16 x 11, 6 partitions
of size 8 x 16 x 10, 4 partitions of size 8 X 18 x 8, 2 partitions of size 8 X 14 x 11, and a single
partition of size 8 x 14 x 10. Clearly, it would be extremely difficult for a programmer to
determine all these partitions by hand.

We now attempt to assess the accuracy of our estimated speedup function. Consider the
formula for the execution time in Section 4.3 (Equation 3), repeated here for convenience.

2

Te= (Ta+ Tm) N1;2N3 + 3(TJT1a)½ (N1iN3) 3

We shall assess its accuracy by examining a slightly different representation of the formula.
Notice that a plot of the product of the execution time and the number of processors (P x Te)
versus P113 should ideally be a straight line, as is evident by rewriting the above equation as

(5)

l

for k1 = (Ta+ Tm) and k2 = 3(TJT1a? • Figure 13 shows the P X Te versus pi/3 plots for
matrix products of various sizes. The plots are well approximated by straight lines, with the

27

i 20

~ Time on 1 ProctMeor(cyclN}
0

.... 18 .. 64x64 32x32 20"20 IL
16

64x64

8524689 1172878 321645 O o
14

12

10

8

6
32x32

4
0

20"20

2

0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

p11:1

Figure 13: P x T versus P1l3 curves for matrix product.

fit improving as the matrix size increases from 20 x 20 to 64 X 64.

The processor allocation (or (generalized scheduling) techniques of Section 3 require the
operator speedup functions to be of the form pa, for some a. Below, we investigate whether
the speedup function for matrix multiply can be reasonably characterized by a function of the
form pa for various matrix sizes. The speedup function for matrix products can be derived
from Equation 6 as,

(6)

While is is not immediately apparent that this speedup function is of the form pa, it can
be approximated as such, as is evident from Figure 14. This figure shows a log-log plot of the
speedup curves for various matrix sizes. Functions of the form pa will appear as straight lines
on a log-log plot, whose slope is the desired parameter a. Since all the curves are roughly
straight lines, they are well approximated by pa.

The slopes (a's), however, depend on the size of the matrices, and range from from 0.6 (for
20 x 20 matrices) to 0.8 (for 64 x 64 matrices). Fortunately, as we demonstrate below, the
partitioning is not very sensitive to the exact value of a used, as long as the task sizes are not
widely different. An average value of a= 0.7 can be used for the matrix sizes above. This is in
rough agreement with Equation 6, which implies that a should lie between 2/3 and 1.

The value of a can also be estimated from a knowledge of the multiprocessor constants Ta,
Tm, and TJa• However, the presence of stochastic synchronization behavior in TJa precludes its
accurate apriori estimation. Alternatively, measurements of execution times for two or three
values of P allows us to estimate k1 and k2 in Equation 6, thus enabling the matrix product
speedup function to be determined. Although it is not necessary, linear regression can be used

t
i

40

3()

20

1D
11
B
7
6
5

4 """ 321132 20X20

-- 117'1178 3216'5
3 , .. o.s a•0.7 «•46

2

1 ", ~ zi3.....i4....,s """'6"""'1"""'s•91,1.0 __ 20..,_""30.....i40....i.50 ... 6D•10

PrOCfftlOfS

Figure 14: Speedup curves for matrix product (drawn using log-log scales).

for higher accuracy.

7.2 Almost Balanced Tree - gl

28

We now evaluate the performance of the compiler on several matrix expressions for various
matrix sizes. We first present results for the almost-balanced tree expression gl first introduced
in Section 1.2,

(+ (x Ao A1)
(+ (x (+ A2 A3)

A4)
As))

with matrix sizes 32 x 32, and use a= 0.7 in the scheduling heuristics.

The speedup curves plotted in Figure 15 show the performance of the Naive, Greedy, and
Tree heuristics as the number of processors is increased from 1 to 64. We also plot the expected
speedup for the Tree heuristic assuming a = 0. 7, and assuming no costs are associated with the
synchronization needed for enforcing the precedence constraints. The expected speedup (for P
large enough to ignore processor discretization effects) is computed as follows

S(P) = T(l)
T (P)

where T(l) is the expected uniprocessor execution time, and T(P) is the expected time for the
Tree heuristic. From Section 3.5 it follows that

T(P) = Equivalent Tree Length
po.1

i 24

20

16

12

8

• - • Tree Predicted (a= 0.7)
o - o Tree
o- o Greedy
o - o Naive

Tim• on 1 Proceeeor: 2638326 cyclN

8 16 24 32 40 48 56 64
Procet,.,,,.

Figure 15: Speedup curves for expression gl, with 32 X 32 matrices.

a 0.5 0.7 1.0
Tree 19.1 18.6 18.6

Greedy 14.5 14.5 7.6

Table 3: Speedup for 64 processors, using various values of a.

29

where the equivalent tree length is computed using the series parallel reductions of Section 3.5,
and is always less than the uniprocessor execution time.

The Tree heuristic is clearly the best, and gets progressively better relative to Naive and
Greedy as more processors are used. The Naive and Greedy heuristics are identical in perfor­
mance for gl; their speedup flattens out at about 14 after 32 processors. Thus, compilers for
programs with multiple loop nests which assign all processors to each loop nest are potentially
far from optimal. The performance of the Tree heuristic is much better; the absolute speedup
for the Tree heuristic at 64 processors is about 18, a gain of 30 percent over the Greedy and
Naive heuristics. This is close to 80 % of the expected speedup of 23. This gap between the ex­
pected and measured speedup is largely due to synchronization costs associated with enforcing
the precedence constraints.

How robust is the partitioning strategy to the value of a used? Answering this question is
important because, in practice, it is hard to estimate a accurately. Table 3 shows the speedups
obtained for gl as a is changed from 0.5 to 1.0. It can be seen that the Tree heuristic is quite
robust, with the speedup changing by less than 10 percent. Greedy, however, shows a larger
sensitivity to a . This can be explained as follows.

The relative insensitivity of the Tree heuristic to a is because the two branches of the tree
are almost equal in size, and are assigned about the same number of processors , irrespective of
a.

30

Greedy, however, tries to run a large multiply, (x Ao A1), in parallel with a small addition,
(+ A2 A3), in the first step. For small a, because the speedup curves are highly convex, the
smaller task (addition) gets a tiny fractional processor assignment. After discretization, all the
processors get assigned to the larger task, and the smaller task is computed in a succeeding step.
Hence, when a is small, the two operations are computed one after another, in sequence. As a
increases, there is a point at which the small addition gets a non-zero processor assignment in
the first step. The small assignment for the addition causes it to finish late. Consequently, the
sensitivity of the processor assignment to a is especially significant when the sizes of the tasks
being run in parallel are widely different. Greedy can be made more robust by not running very
small and very large operators concurrently. The robustness gained more than compensates for
the small loss in efficiency.

7 .3 Large Almost Balanced Tree - g2

The next example demonstrates that the relative gain in performance from the Tree heuristic
increases with an increase in the parallelism in the macro dataflow graph. Expression g2 shown
below is essentially two copies of gl executed in parallel.

(+ (x Ao Ao)
(+ (x (+ A1 A1)

A1)
(+ (x (+ (+ A2 A2)

A2)
A2)

(x (+ (+ (+ A3 A3)
A3)

A3)
A3))))

It has 4 matrix products which can be computed in parallel, as opposed to only 2 products
for gl. This gives the Tree heuristic more opportunity to run tasks in parallel, with resultant
higher gains.

The speedups are plotted in Figure 16. The Tree heuristic performs much better than Naive
or Greedy, with gains increasing as we increase the number of processors. The speedup of 24.5
with 64 processors is 85 percent of the expected speedup of 28. This is a 60 % gain over the
performance of 15.8 attained by Naive or Greedy.

7.4 Large Unbalanced Product Tree - g3

The expression g3,

(x (x (x A1 A2)
(x (x A3 A4) As))

(x (x A6 A1)

32

i 28

24

20

16

12

8

4

• - • Tree Predicted (a= 0.7)
o - oTree
□-□ Greedy
o - o Naive

Tim,, on 1 Proceeeor: 6103713 cyclH

8 16 24 32 40 48 S6 64

Proce•"""'

Figure 16: Speedup curves for expression g2, with 32 x 32 matrices.

(x (x A8 Ag)
(x (x A10 An)

(x (x A12 A13) A14)))))

31

is an unbalanced tree, with one branch twice as large as the other. All matrices are of size
32 x 32. Since all the basic operators in this expression are matrix products, both Tree and
Greedy have the opportunity to run large operators in parallel, resulting in significant gains in
efficiency. This is unlike gl or g2, where the presence of a tiny matrix sum in front of a matrix
product prevented the Greedy heuristic from running the products in parallel.

Figure 17 shows the speedup curves for the Naive, the Greedy, and the Tree heuristics. The
expected speedup for the Tree heuristic, for a= 0.7, has also been plotted. The Tree heuristic
performs slightly better than the Greedy. The Greedy and Tree heuristics are also substantially
better than the Naive, by a factor of 1.5 for 64 processors. The curves are around 85 percent
of the expected speedup for Tree.

This example demonstrates that the Greedy heuristic may approach the performance of
Tree in specific cases. However, Greedy is not as robust as Tree, and does as poorly as Naive
in many cases.

7.5 Non-Tree Expressions - Matrix Polynomials g4, g5

The results presented so far have demonstrated the superiority of the Tree heuristic for tree
structured macro dataflow graphs. When the macro dataflow graphs are not trees, the simple
Greedy heuristic is a reasonable approach, and is far superior to Naive in many cases.

24

20

16

12

8

• - • Tree Predicted (a= 0.7)
o-oTree
□-□ Greedy
o- o Naive

a-------------------0 s u ~ n @ ~ n ~

ProceellOnl

Figure 17: Speedup curves for g3, with 32 x 32 matrices.

We consider two matrix polynomials: g4 with degree 8, and g5 with degree 16.

8

g4: LciAi
i=O

16

g5: L Ci A i
i = O

32

These matrix polynomials are prototypical non-trees, since the powers of the matrices are
generated in a recursive-doubling fashion. g5 has about twice the parallelism of g4 at the
macro-node level.

Figures 18 and 19 show the speedup curves comparing Naive and Greedy for g4 and g5. It is
clear from the figures that Greedy performs much better than Naive, with the gains increasing
as we increase the number of processors. Furthermore, comparing the speedup for g4 and g5, it
is evident that the gains increase as the parallelism in the macro datafiow graph increases. For
g4, Greedy is a factor of 2 better than Naive, for 64 processors. This gain increases to between
3 and 4 for g5.

The Greedy heuristic can hence be employed as a general (but sometimes suboptimal)
processor allocation strategy for sets of interdependent nested loops, when the precedences
between loop nests are not tree structured.

7.6 Compilation Time

SDC's compilat ion time is 0(M), where M is the number of macro nodes. By comparision,
a compiler using general partitioning and scheduling techniques as in [17] takes time 0 (N)

i
15

12

9

o - o Greedy
o - o Naive

Tm. on 1 Proceeaor: 2304870 cyclH

o---------------------0 8 U U ~ ~ " ~ "
Procenors

Figure 18: Speedup Curves for expression g4.

i
15 □-□ Greedy

o-o Naive

Tim. on 1 Proceeeor: "8"20 cyclH

0'"0--s...,._1_6 _ _.24---32--4•0--"---5•6--"--­
Proces..,,..

Figure 19: Speedup Curves for expression g5.

33

34

to 0(N3), where N, the number of expanded (simple) nodes, is frequently several orders of
magnitude greater than M. Clearly the hierarchical scheme is much faster, when the structure
of the computations can be exploited. For our example expression g3 consisting of 13 operators,
SDC takes less than a minute to produce Alewife machine code on a SPARCstation-I. In fact,
for the examples we have run, SDC's run time is dominated by the time taken to compile SDC's
output Mul-T code to Alewife machine code.

8 Related Work

Previous techniques developed for compiling dataflow graphs onto a given, possibly parame­
terized, architecture, do not generally exploit apriori knowledge about the regular, hierarchical
structure of the computation [17, 1, 2, 3, 18].

Sarkar's [17] general approach to the multiprocessor compilation problem for programs writ­
ten in a single assignment language, SISAL, can handle a large class of parameterized architec­
tures, with varying processor and interconnect characteristics. In Sarkar's approach, a dataflow
graph is created for the program, with each node representing a collection of operations in the
program. Execution profile information is used to estimate node execution times and commu­
nication overhead. Then, an explicit graph partitioning of the dataflow graph of the problem
determines the tasks for different processors. Finally, either a run-time scheduling system is
invoked to automatically schedule the tasks, or a static scheduling of these tasks is determined
at compile time. Sarkar used the hierarchical structure of the dataflow graph to simplify some
frequently used graph operations, viz, in determining the transitive closure and critical path
analysis. However, because partitioning and scheduling is still done on the expanded graph, it
is time consuming. Multilevel scheduling and partitioning schemes discussed in our paper are
significantly more efficient when the structure of the operators can be characterized by a simple
speedup function.

Several recent efforts [1, 2, 3, 18] have focussed on compiling efficiently nested iterative
parallel loops, taking the behaviour of the memory hierarchy into account. Nested iterative
loops, for example, form the inner code of matrix operators: the matrix product being a triply
nested loop. The basic paradigm in these techniques is to minimize communication by choosing
compact partitions of the dataflow graph of the loop. The communication is estimated from
loop dependencies. In the context of matrix operators, these techniques result in blocking
algorithms similar to those presented in Section 4. However, these techniques do not take
boundary effects into account. Our work on compiling for an ill-matched number of processors
complements their work.

Another important distinction is that the above efforts did not address composition of loops.
Each loop in an interdependent loop nest will be partitioned and scheduled on all available P
processors, which is the Naive heuristic. We believe that the optimal processor allocation
techniques (e.g., Tree and Greedy) of Section 3 form a natural extension of their work.

Polychronopoulos et al. and Wang et al. [4, 5] have developed techniques to compile a
possibly imperfectly nested loop by distributing processors among the loops at different nesting
levels. However, their algorithms do not attempt to run disjoint, independent subloops in
parallel, since they do not analyze the precedences between different portions of the loop nest.

35

Consequently, all loops at the same nesting level will be run in sequence. The optimal processor
allocation techniques (e.g., Tree and Greedy) of Section 3 can be used to yield significant
performance gains over running loops in sequence by exploiting interloop parallelism. We are
currently exploring a combination of the above methods for optimal processor allocation in
general loop nests, that is, using the techniques of Polychronopoulos and others to allocate
processors among outer loop nests and our methods for processor allocation between parallel
loops at the same nesting level.

9 Conclusion

We have demonstrated the efficacy of a hierarchical compilation strategy for macro dataflow
graphs, using matrix expressions as an example. Our hierarchical compilation strategy consists
of a processor allocation phase followed by a partitioning phase. In the first phase, the optimal
parallelism and sequencing of all macro nodes is determined, using their speedup functions.
Then each macro node is optimally partitioned for the specified parallelism, exploiting the
regular structure of the computation. The compiler algorithms are computationally efficient.

We implemented several techniques for processor allocation and partitioning in a prototype
structure driven compiler, SDC for matrix expressions. Measured speedups on a simulator of
the Alewife machine indicated that the Tree technique for processor allocation is best-suited
for determining optimal node parallelism and sequencing for tree structured macro dataflow
graphs. Even when the graphs are not tree structured, algorithms like Greedy which try to
maximize the number of concurrently runnable macro nodes, are far superior to strategies like
Naive which run macro nodes one at a time, in sequence. Algorithms based on bin packing
were shown to be close to optimal for compiling matrix operators on an arbitrary number of
processors. Our techniques can also be applied to the problem of optimally compiling a set of
interdependent loop nests, provided speedup functions can be derived for each nest.

10 Acknowledgments

The research reported in this paper is partly funded by DARPA contract# N00014-87-K-0825,
NSF grant # MIP-9012773, and by grants from the Sloan foundation and IBM.

References

[1] S.G. Abraham and D. E. Hudak. Compile-Time Partitioning oflterative Parallel Loops to
Reduce Cache Coherency Traffic. IEEE Transactions on Parallel and Distributed Systems,
2(3):318-328, July 1991.

[2] J. Ramanujam and P. Sadayappan. Compile-Time Techniques for Data Distribution in
Distributed Memory Machines. IEEE Transactions on Parallel and Distributed Systems,
2(4):472-482, October 1991.

36

[3] M. E. Wolf and M. S. Lam. A Loop Transformation Theory and an Algorithm to Maxi­
mize Parallelism. IEEE Transactions on Parallel and Distributed Systems, 2(4):452-471,
October 1991.

[4] et. al Polychronopoulos, C. D. Utilizing Multidimensional Loop Parallelism on Large­
Scale Parallel Processor Systems. IEEE Transactions on Computers, 38(9):1285- 1296,
September 1987.

[5] C. M. Wang and S. D. Wang. Efficient Processor Assignment Algorithms and Loop Trans­
formations for Executing Nested Parallel Loops on Multiprocessors. IEEE Transactions
on Parallel and Distributed Systems, 3(1):71-82, January 1992.

[6] A. Agarwal, D. Chaiken, G. D'Souza, K. Johnson, D. Kranz, J. Kubiatowicz, K. Kurihara,
B. Lim, G. Maa, D. Nussbaum, M. Parkin, and D. Yeung. The MIT Alewife Machine: A
Large-Scale Distributed-Memory Multiprocessor. In Workshop on Scalable Shared Memory
Multiprocessors, Kluwer Academic Publishers, 1991. Also appears as MIT /LCS Memo TM-
454, 1991.

[7] Allan Gottlieb, B.D. Lubachevsky, and Larry Rudolph. Basic techniques for the efficient
coordination of very large numbers of cooperating sequential processors. A CM Transactions
on Programming Languages and Systems, 5(2):164- 189, April 1983.

[8] Pen-Chung Yew, Nian-Feng Tzeng, and Duncan H. Lawrie. Distributing hot-spot address­
ing in large-scale multiprocessors. IEEE Transactions on Computers, C-36(4):388-395,
April 1987.

[9] G.N .Srinivasa Prasanna and Bruce R. Muskus. Generalised Multiprocessor Scheduling
Using Optimal Control. In Third Annual ACM Symposium on Parallel Algorithms and
Architectures, 1991.

[10] N. Alon and D .J. Kleitman. Covering a Square by Small Perimeter Rectangles. Discrete
and Computational Geometry, 1:1-7, 1986.

[11] N. Alon and D.J. Kleitman. Partitioning a Rectangle into Small Perimeter Rectangles.

[12] T .Y. Mount D.M. Kong and M. Werman. The decomposition of a square into rectangles
of minimal perimeter. Discrete Applied Mathematics, 16:239-243, 1987.

[13] T.Y. Mount D.M. Kong and A.W. Roscoe. The decomposition of a rectangle into rectangles
of minimal perimeter. SIAM Journal of Computing, 1215-1231, 1989.

[14] G .N.Srinivasa Prasanna. Structure Driven Multiprocessor Compilation of Numeric Prob­
lems. Technical Report MIT / LCS/TR-502, Laboratory for Computer Science, MIT., April
1991.

[15] D. Kranz, R. Halstead, and E. Mohr. Mul-T: A High-Performance Parallel Lisp. In
Proceedings of SIGPLAN '89, Symposium on Programming Languages Design and Imple­
mentation, June 1989.

37

[16] Kirk Johnson. Semi-C Reference Manual. August 1991. ALEWIFE Memo No. 20, Labo­
ratory for Computer Science, Massachusetts Institute of Technology.

[17) V. Sarkar. Partitioning and Scheduling Programs for Multiprocessors. Technical Re­
port CSL-TR-87-328, Computer Systems Laboratory, Stanford University, April 1987.

[18] M. Wolfe. More Iteration Space Tiling. In Proceedings of Supercomputing '89, pages 655-
664, November 1989.

