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Abstract

The Alewife multiprocessor project focuses on the architecture and design of a large-scale
parallel machine. The machine uses a low-dimensional direct interconnection network to pro-
vide scalable communication bandwidth, while allowing the exploitation of locality. Despite its
distributed-memory architecture, Alewife allows efficient shared-memory programming through
a multilayered approach to locality management. A new scalable cache-coherence scheme called
LimitLESS directories allows the use of caches for reducing communication latency and net-
work bandwidth requirements. Alewife also employs run-time and compile-time methods for
partitioning and placement of data and processes to enhance communication locality. While
the above methods attempt to minimize communication latency, communication with distant
processors cannot be completely avoided. Alewife’s processor, Sparcle, is designed to tolerate
these latencies by rapidly switching between threads of computation. This paper describes the
Alewife architecture and concentrates on the novel hardware features of the machine including
LimitLESS directories and the rapid-context-switching processor.

1 Introduction

High-performance computer design is driven by the need to solve computationally intensive prob-
lems efficiently and at a reasonable cost. While single-processor performance is limited by physical
constraints, advances in technology make machines with thousands of processors feasible. Highly
parallel machines offer significant cost-performance benefits over single-processor machines.

Parallel machines are commonly organized as a set of nodes that communicate over an intercon-
nection network, each node containing a processor and some memory. From the perspective of a
node in a real machine, some nodes will be physically closer than others. Informally, a program
running on a parallel machine displayscommunication locality(or memory-reference locality) if
the probability of communication (or access) to various nodes decreases with physical distance.

�An early version of this paper appears in the proceedings of the Workshop on Scalable Shared-Memory Multipro-
cessors, Seattle, June 1990, published by Kluwer Academic Publishers.
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Communication locality in parallel programs depends on the application as well as on partitioning
and placement of data and processes.

Parallel machines arescalableif they can exploit communication locality in parallel programs.
That is, for programs that display communication locality, scalable machines offer proportionally
better performance with more processing nodes [28]. Scalable machines areeasily programmable
if they provide automatic enhancement of communication locality in parallel programs.

The Alewife project explores methods for automatic enhancement of locality in a scalable par-
allel machine. TheAlewife multiprocessoruses a distributed shared-memory architecture with a
low-dimensional direct network. Such networks are cost-effective, modular, and encourage the
exploitation of locality [32, 2]. Unfortunately, non-uniform communication latencies usually make
such machines hard to program because the onus of managing locality invariably falls on the pro-
grammer. The goal of the Alewife project is to discover and to evaluate techniques for automatic
locality management in scalable multiprocessors.

Alewife uses a multilayered approach to achieve this goal, consisting of techniques forlatency
minimizationand latency tolerance. The compiler, run-time system, and hardware cooperate to
enhance communication locality, thereby reducing average communication latency and required
network bandwidth. However, high-latency communication cannot always be avoided. Alewife’s
processor tolerates the high latencies by switching rapidly between threads of computation.

This paper focuses on the organization of the Alewife machine and describes its hardware mech-
anisms for exploiting locality and for automatic locality management. These mechanisms include:

� a low-dimensional direct network;

� shared-data caching, made possible by a new cache-coherence scheme called LimitLESS
directories, for improving communication locality during computations;

� rapid context switching, for tolerating unavoidable communication latencies, implemented in
a modified commercial RISC processor called Sparcle.

We present an overview of our approach to locality management in Section 2, and describe the
machine organization and the programming environment in Section 3. Section 4 discusses the
concept of locality, and analyzes how reduced traffic rates and reduced communication distances
resulting from communication locality translate to lower effective network latency. Section 5
discusses the LimitLESS directory scheme, and Section 6 outlines our approach to latency tolerance.
Other details of the machine are presented elsewhere [3, 8, 26]. Section 7 discusses related work,
and Section 8 offers some perspective and summarizes the paper.

2 System Overview

The Alewife compiler, run-time system, and hardware try to reduce communication latency where
possible, and attempt to tolerate unavoidably long latencies. We are developing compiler technology
to enhance the static communication locality of applications. Programs are first transformed into
an intermediate task-graph representation called WAIF [25], where the communication between
threads is exposed through program analysis. Succeeding stages of the compiler map the task
graph on to the machine and attempt to minimize overall execution time. When the compiler
lacks enough information to make good placement decisions, it relegates the responsibility to the
run-time layer.
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Run-time software participates in enhancing locality through lazy task creation, a novel dynamic
partitioning method [26], and intelligent scheduling. In a dynamic partitioning system the pro-
grammer or compiler can expose all the parallelism in an application, but new tasks are created at
run-time only when there are idle processors. To enhance the likelihood of placing related tasks
close to each other, a locality based scheduler determines the order in which idle processors search
for new tasks. In addition, the system provides annotation facilities that allow compiler-generated or
programmer-specified information to be passed to the run-time system. These annotations facilitate
more intelligent run-time partitioning, placement, and scheduling decisions.

Alewife’s hardware reduces memory access latency by caching shared data. With caches, the
software does not need to worry as much about careful initial data placement; the caches dy-
namically move data objects close to the processor, so accesses are satisfied completely within a
node. A new scalable coherence scheme calledLimitLESS directoriessolves the cache-coherence
problem. The LimitLESS directory uses a small set of pointers (say 4) distributed along with
each block of main memory to track copies of cached data, and maintains memory consistency by
transmitting invalidation messages over the network. The LimitLESS scheme allows a memory
module to interrupt its local processor for software emulation of a full-map directory when the
small set of pointers overflows. Section 5 describes and evaluates this scheme.

If the system cannot avoid a remote memory request, Alewife’s processor can rapidly switch
to another task using a fast-context-switching mechanism. Alewife also tolerates synchronization
latencies and provides fast traps through thesamecontext-switching mechanism. The proces-
sor achieves high single-thread performance because context switches are forced only on remote
memory requests and synchronization faults.

We believe that such a layered approach is necessary to build truly general-purpose parallel
machines. Real applications are composed of a number of algorithms, each of which may benefit
in different proportions from the various layers. For example, certain matrix computations can
benefit from static compiler analysis, while combinatorial search problems will benefit from the
run-time and cache layers. Finally, efficient execution of algorithms without inherent locality, such
as matrix transpose, is possible when the processors can mask the latency of remote requests.

3 Machine Organization and Programming

This section describes Alewife’s hardware organization, the programming languages currently sup-
ported by the system, and the simulation environment, ASIM.

3.1 Hardware Organization

Figure 1 depicts the Alewife machine as a set of processing nodes connected in a mesh topology.
Each Alewife node consists of a processor, a cache, a portion of globally-shared distributed memory,
a cache-memory-network controller, a floating-point coprocessor, and a network switch.

A single-chip controller on each node holds the cache tags and implements the cache-coherence
protocol by synthesizing messages to other nodes. The controller implements the LimitLESS
coherence protocol, described in detail in Section 5. As shown in the figure, up to five pointers
per block are maintained in the hardware directory memory; when more pointers are needed, the
controller allows the processor to extend the directory into local memory. The controller uses
a simple message-based interface with the network. Various forms of shared-memory coherence
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Figure 1: Structure of the Alewife machine.

models are maintained by the controller via messages to other nodes.

Each node has 64K bytes of direct-mapped cache and 4M bytes of globally-shared main memory.
Each node has an additional 4M bytes of local memory, a portion of which is used for the coherence
directory. The 32-bit address on SPARC therefore limits the maximum machine size to 512 nodes.
Alewife has a simple memory-mapping scheme. The top few bits of the address determine the
node number, and the rest of the address is the index within the specific node.

As shown in Figure 1, each node contains a network switch chip, specifically the Frontier series
Mesh Routing Chip (FMRC) from Caltech. The mesh network uses wormhole routing. The network
has eight-bit channels, and operates asynchronously with a switching delay of 50 nanoseconds per
hop and a throughput of roughly 90M bytes per second in each direction. The controller chip on
each node is responsible for synchronizing incoming data with the rest of the node. Message buffers
within the switches are 19 flits deep. Messages are routed in the order of increasing dimension,
which avoids deadlock in finite-buffered networks without end-around connections [10]. Deadlock,
however, is still possible in a finite-buffered system, since the coherence protocol introduces cyclic
dependencies between controllers. In Alewife, when the controller’s network output queue is full
for some period of time, the controller interrupts its processor. The processor then empties the input
queue into local memory, thus simulating the effect of “infinite” buffers. Free ports on peripheral
nodes of the network are used for I/O, monitor, and host connections. The prototype Alewife
system will attach to a host SUN backplane by interfacing a network switch to the VME bus.

The processor uses amemory-reference-based interfacewith the controller, although the controller
uses amessage-based interfacefor internode communications. Using a control word associated
with each memory reference, various types of synchronization or communication types are com-
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municated by the processor to the controller. This interface allows a simple implementation of the
processor.

Sparcle, a first-round prototype based on modifications to LSI Logic’s SPARC processor imple-
mentation, will clock at around 33 MHz, and context switch in 14 cycles. Sparcle has been fully
implemented and was taped out for fabrication to LSI Logic in September 1991. Alewife’s cache
and floating-point units are SPARC compatible. Sparcle uses a block-multithreaded architecture [3],
details of which are presented in Section 6.

3.2 Support for Programming Languages

The Alewife system currently supports two programming languages: Mul-T [21 ], a parallel Lisp
language, and Semi-C. Semi-C [20] is a parallel C-like language with extensions for expressing
parallel execution. Semi-C supports most of the C language with the exception of pointer arithmetic
and addressing operations. Excluding pointer arithmetic makes analysis of the code for parallel
execution easier and allows the code to function in a garbage-collected environment. Both Mul-T
and Semi-C support control-level and data-level parallelism.

Control-level parallelism may be expressed by wrappingfuture around an expression or state-
mentX . The future keyword declares thatX and the continuation of the future expression may
be evaluated concurrently. The compiler or run-time system may choose to create a new task to
evaluateX . In that case, an object known as aplaceholderis also created and returned as the
value of the future expression. The placeholder is created in anundeterminedstate. Any task
that attempts to use the value ofX before the evaluation ofX has completed will encounter the
undetermined placeholder and suspend until the value ofX is available.

Data-level parallelism is expressed using parallel do-loops and fine-grain data-level synchroniza-
tion is expressed by using J-structure and L-structure arrays. A J-structure is a data structure for
producer-consumer style synchronization. It is like an array, but each element has additional state:
full or empty. The initial state of a J-structure is empty. A reader of a J-structure element waits
until the element’s state is full before returning the value. A writer of a J-structure element writes
a value, sets the state to full, and releases any waiting readers. An error is signalled if a write is
attempted on a full element. To enable efficient memory allocation and good cache performance,
J-structures are allowed to be reset to an empty state.

L-structures are similar to J-structures but support three operations: a locking read, a non-locking
read, and a synchronizing write. A locking read waits until an element is full before emptying
it (i.e., locking it) and returning the value. A non-locking read also waits until the element is
full, but then returns the value without emptying the element. A synchronizing write stores a
value to an empty element, and sets it to full, releasing any waiters. An L-structure therefore
allows mutually exclusive access to each of its elements. In addition, L-structures allow multiple
non-locking readers.

We use a slightly extended version of Mul-T as our intermediate compiler language, augmented
with primitives for explicitly specifying partitioning and placement of both data and processes. Our
compiler partitions a program taking communication costs into account, and produce an extended
Mul-T program consisting of a set of tasks with granularity and placement information. The Orbit
optimizing compiler [22] compiles these tasks to Sparcle machine code.

The language features described are supported efficiently by the hardware. Placeholders for
futures have a special tag (low bit set) that causes the Sparcle processor to trap when an arith-
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metic or pointer dereferencing instruction is attempted. This allows code to be generated as if
no placeholders were present. Per-word, full-empty bits in memory [33], with support in Sparcle,
allow efficient implementation of J-structures and L-structures as well as other types of fine-grain
synchronization. In addition, the modified SPARC implementation of Sparcle is competitive in raw
performance to contemporary sequential machines. More details are supplied in Section 6.

3.3 The Alewife Simulator

The implementation of Alewife is in progress and a detailed cycle-by-cycle simulator of the ma-
chine, ASIM [27], is operational. The software system, including compilers for Mul-T and Semi-C,
and a run-time system, which supports both static and dynamic partitioning and placement of tasks
and data, has been implemented and runs on ASIM. An alternate simulation platform for Alewife
is Proteus, a multiprocessor simulator developed by Brewer and others at MIT [5]. While Proteus
models Alewife less accurately than ASIM, it is roughly an order of magnitude faster, and can be
customized to model other architectures.

ASIM includes modules for Sparcle, the floating-point coprocessor, the controller, and the net-
work. In addition, ASIM implements several cache-coherence protocols and interconnection-
network architectures, and allows a user to vary parameters such as number of processors, cache
and memory sizes, network channel widths and buffer sizes, relative speeds of processors and
network switches. ASIM can also draw its input from parallel address traces, correctly modeling
synchronization behavior and feedback from the network using post-mortem scheduling. ASIM
has proved invaluable not only for performance evaluations, but also for developing applications
and systems software, and as a source for test vectors during the design verification of Sparcle and
the controller.

ASIM non-intrusively gathers a large set of execution-level statistics; although this list is too large
to include here, examples of statistics collected include parallelism profiles, communication-locality
profiles, execution times, and synchronization wait-time distributions. When ASIM is configured
with its full statistics-gathering capability, it runs at about 10,000 processor cycles per second on a
SPARCstation II. At this rate, a 64-processor machine simulation runs at approximately 160 cycles
per second. Most of the simulation results reported in this paper ran for a few million simulated
cycles (a fraction of a second on a real machine), each of which took from several hours to a
day to complete. This lack of simulation speed is one of the primary reasons for implementing
the Alewife machine in hardware — to enable a thorough evaluation of our ideas on much larger
applications.

4 Communication Locality and Interconnection Networks

Alewife’s distributed-memory architecture allows the exploitation of locality using a direct, mesh
interconnection network. For programs that display communication locality, such networks offer
good performance without the high cost of networks with higher dimensionality. Furthermore,
for machines with a hundred to a thousand processors, the performance of these low-cost mesh
networks is competitive with the performance of networks with higher dimensionality even when
communication locality does not exist [2]. This section discusses the notion of communication
locality and estimates the performance gains that result when networks exploit locality.
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4.1 What is Locality?

Communication locality is a property of both applications (or algorithms) and parallel executions
of programs.Execution-level communication localityexists if, during the execution of a parallel
program, the frequency of communication with physically close processing nodes is higher than
the frequency of communication with nodes further away. Thus, the average message distance is
a good metric of execution-level locality.

Although this model applies straightforwardly to a message-passing style of computing, it ap-
plies equally well to a shared-memory computing style: View a memory access as a split-phase
transaction, including a request message, some amount of work, and a response message. Some
process — whether it is implemented in hardware or software — must be invoked to do the work
necessary to handle the memory request. If a memory transaction can be satisfied by a cache or
local memory, then the process is resident on the same node, and the communication distance of the
request is zero. Other requests must travel some distance over the interconnection network to be
serviced by a remote process. Using this notion of process-data duality, the shared-memory style
is not materially different from a message-passing style from the viewpoint of communication.

Application-level communication localityis a property of programs, which translates to apotential
for execution-level communication locality. Execution-level communication locality will exist only
if the network can exploit locality and if the system can successfully preserve the application-level
locality. Although a precise definition of application-level communication locality remains an open
research issue, intuitively, there are at least two properties of programs that provide the potential
for execution-level communication locality:

1. Physical locality:Programs whose communication graphs are sparse and have low bisection
widths tend to have better execution-level communication locality than programs with higher
bisections. The same applies to processes that communicate through shared variables if we
treat each shared variable (or a portion of a shared data structure) as a process represented
as a distinct node in a communication graph.

It is easier to locate frequently communicating processes close to each other when commu-
nications are clustered between small sets of processes than when communication between
all processes is equally likely. Placing data objects referenced solely by one process on the
node where that process is run represents the exploitation of physical locality (assuming, as
before, process-data duality from the viewpoint of communication).

2. Temporal Locality:When processes request the same data blocks frequently, execution-level
locality can result if the data block is replicated on the requester’s node. The resulting
accesses that are successfully satisfied by the replicated copy have a communication distance
of zero.

We stress that application-level locality does not automatically lead to execution-level locality.
For example, no amount of physical locality in the application can compensate for poor placement
of data or processes. Similarly, execution-level locality will lead to better performance only when
the architecture can exploit locality. For this reason, Alewife employs distributed memory and
direct networks, which allow full utilization of locality.
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4.2 Locality in Multigrid

Let us examine the amount of communication locality evident in a parallel, blocked, multigrid com-
putation [17] to illustrate concretely the various concepts presented above. The blocked multigrid
algorithm displays a significant amount of both physical and temporal forms of application-level
locality.

In blocked multigrid’s communication graph, at each relaxation level, processes communicate
solely with near neighbors. This property is evidence of physical locality. The resulting bisection
grows as�(

p
N) , whereN is the number of nodes in the communication graph. A one-to-

one mapping of the process communication graph to a mesh-connected multiprocessor results in
largely near-neighbor communication. Some non-near-neighbor communication is also expected
as the computation proceeds to higher relaxation levels.

Blocked multigrid also displays temporal locality. Because each relaxation step comprises mul-
tiple iterations, the data values internal to each block (excluding the perimeter values) are read
and written frequently. If a cache is employed, communication is only necessary for the first-time
accesses of these data values at a relaxation level.

We shall now examine the execution-level locality present in an execution of the multigrid
algorithm. Processes and data are carefully assigned to processors to fully translate application-level
physical locality to execution-level communication locality. The measurements of execution-level
locality are taken from ASIM.

Figure 2 shows histograms of communication distances for all memory references and Figure 3
shows corresponding histograms for references to shared-data resident in the heap. In Alewife,
references to local memory are satisfied entirely within the node, while references to memory
located on other nodes result in message requests over the network. In the graphs, communication
distances of zero correspond to references satisfied within the node.

First, let us inspect the memory references generated by the processors before they are filtered by
caches. The locality histograms for these references are denoted “No Caching” in the figures. It is
evident from the figures that the multigrid execution displays a significant amount of communication
locality – very few messages travel long distances, and a significant fraction of all references are
satisfied entirely within the node. Interestingly, we observe from the “No Caching” histograms that
shared heap accesses comprise most of the messages to other nodes.

Now, let us compare the communication locality profiles of messages generated for systems with
coherent caches and systems without caches. The bars denoted “With Caching, Misses” represent
the locality profile of communications generated by references that are not satisfied by the cache,
and the bars denoted “With Caching, Hits” represent the accesses that are satisfied by the cache
(note, like cache misses to local memory, cache hits correspond to a distance of zero network
hops). It is clear from the figures that the inclusion of caches improves the communication locality
significantly. Over 90% of the heap traffic spread over a wide range of distances when caches
were absent, gets lumped into the zero-distance column when caches are present. Put another way,
the message rate drops by an order of magnitude. As discussed earlier, by replicating data where
it is used, caches transform temporal locality in the application to communication locality in the
execution.

Shared-data caching, unfortunately, introduces the cache-coherence problem. Section 5 describes
Alewife’s solution to this problem. The rest of this section analyses the expected performance gains
from Alewife’s mesh network when execution-level locality exists. The next section describes
Alewife’s techniques for translating application-level locality to execution-level locality.
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Figure 2: Communication locality profile for parallel multigrid computation. Histogram of message
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relaxing1 2 8� 1 2 8 grids on 64 processors with one context per processor.
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4.3 Performance Benefits of Locality

Machine architectures can exploit communication locality in applications for improved performance
when they provide mechanisms such as direct interconnection networks and memory (or caches)
local to processors. In the rest of this section, using analytical models, we estimate the expected
performance gains due to locality in direct, mesh interconnection networks. The performance of
buffered,k -ary n -cube interconnection networks under traffic patterns that display communication
locality is accurately captured by the following equation [2]:

T =

"
1 +

�B

( 1 � � )

( kd � 1 )

k2
d

�
1 +

1

n

�#
n kd + B ( 1 )

whereT is the message latency,� is the network channel utilization,kd is the average distance
a message travels in each dimension of the network, andB is the message size. Assuming the
network has unidirectional channels and end-around connections,1 number of dimensionsn , number
of nodes in each dimensionk , and message probabilitym,

� = mBkd ( 2 )

When message destinations are randomly chosen over the whole machine, that is, when the
messages injected into the network display no locality, the average distance traveled in a dimension
is given bykd = ( k � 1 ) =2 .

From our earlier discussion, communication locality tends to impact both the message request
probability (m) and the distance (kd) messages travel in each dimension. When communication
distances can be reduced to zero,m is reduced, and when communicating processes can be placed
physically close to each other,kd decreases. Figure 4 plots network latency for various values of
kd andm. It is clear that reducing eitherm or kd has a dramatic impact on network latency.

Locality improves latency because it reduces both the number of hops per packet and average
contention delays. At light loads (m � 1 ), Equation 1 suggests that the contention component
(containing the� term) can be ignored and that latency is linearly related tokd. This linear
relationship is clearly visible in Figure 4 form = 0 :0 0 1 . The curve form = 0 : 0 1 5 in the figure
demonstrates that the impact of locality is much more significant when contention is high, because
the latency at high loads is proportional to1 = ( 1 �mBkd) .

5 LimitLESS Directories

Shared-data caching is an important component of Alewife’s multilayered system for automatic
locality management. As illustrated by Figures 2 and 3, caches reduce the volume of traffic imposed
on the network by providing demand-driven data replication. However, replicating blocks of data
in multiple caches introduces the cache-coherence problem [14]. A number of cache-coherence
protocols have been proposed to solve the coherence problem in network-based multiprocessors
(e.g., [6, 4, 19]). These message-based protocols allocate a section of the system’s memory, called
a directory, to store the locations and state of the cached copies of each data block. The protocols

1Alewife’s network is slightly different in that it has no end-around connections and has separate channels in each
direction. The assumptions simplify the analysis without qualitatively changing the results.
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Figure 4: Impact of communication locality on network latency, with 1K processors,n = 2 ,
k = 3 2 , andB = 4. By our definition, communication locality reduces both the network request
ratem and the effective communication distancekd. Solid lines correspond to model predictions
and points are taken from a simulator.

send messages with data requests or invalidation signals, and record the acknowledgment of each
of these messages to ensure global consistency of memory.

Although directory protocols have been around since the late 1970’s, the usefulness of the early
protocols (e.g., the full-map protocol in [6]) was in doubt for several reasons: First, the directory
itself was acentralizedmonolithic resource that serialized all requests. Second, directory accesses
were expected to consume a disproportionately large fraction of the available network bandwidth.
Third, the directory became prohibitively large as the number of processors increased. To store
pointers to blocks potentially cached by all the processors in the system, the size of the directory
memory in earlyfull-mapprotocols grows as�( N2) , whereN is the number of processors in the
system.

As observed in [4], the first two concerns are easily dispelled: The directory can bedistributed
along with main memory among the processing nodes to match the aggregate bandwidth of dis-
tributed main memory. Furthermore, required directory bandwidth is not much more than the
memory bandwidth, because accesses destined to the directory alone comprise a small fraction of
all network requests. Thus, the challenge lies in alleviating the severe memory requirements of the
distributed full-map directory schemes.

Scalable coherence protocols differ in the size and the structure of the directory memory.Limited-
directory protocols [4], for example, avoid the severe memory overhead of full-map directories
by allowing only a limited number of simultaneously cached copies of any individual block of
data. Unlike a full-map directory, the size of a limited directory grows as�( N l o gN ) with the
number of processors. Once all the pointers in a directory entry are filled, the protocol must evict
previously cached copies to satisfy new requests to read the data associated with the entry. In such
systems, widely shared data locations degrade system performance by causing constant eviction
and reassignment, orthrashing, of directory pointers. However, previous studies have shown that
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a small set of pointers is sufficient to capture theworker-setof processors that concurrently read
many types of data [7, 34, 29]. The worker-set of a memory block is defined as the set of processors
that concurrently read a memory location, and corresponds to the active pointers the block would
have in a full-map directory scheme.

5.1 Overview of the LimitLESS Protocol

Alewife implements the LimitLESS cache-coherence protocol, which realizes nearly the perfor-
mance of the full-map directory protocol with the memory overhead of a limited directory, but
without excessive sensitivity to widely shared data. The LimitLESS scheme implements a small
set of pointers in the memory modules, as do limited-directory protocols. But, when necessary,
the scheme allows a memory module to interrupt its local processor for software emulation of
a full-map directory. Its name reflects the above properties:Limited directoryLocally Extended
throughSoftwareSupport.

Figure 1 depicts a set of directory pointers that correspond to the shared data blockX, read-only
copies of which exist in several caches. In the figure, the software has extended the directory
pointer array (which is shaded) into local memory.

The structure of the Alewife machine provides for an efficient implementation of this memory
system extension. Since each processing node in Alewife contains both a memory controller and
a processor, it is straightforward to couple the responsibilities of these two functional units using
Sparcle’s fast trap mechanism.

The LimitLESS scheme should not be confused with schemes usually termed software-based,
which require static identification of non-cacheable locations. Although the LimitLESS scheme
is partially implemented in software, it detects dynamically when coherence actions are required.
Consequently, the software emulation should be considered a logical extension of the hardware
functionality. To clarify the difference between protocols, schemes may be classified by function
asstatic (compiler-dependent) ordynamic(using run-time information), and by implementation as
software-basedor hardware-based.

5.2 Protocol Specification

We now describe the LimitLESS directory protocol and the architectural interfaces needed to
implement it.

The LimitLESS protocol has the same state transition diagram as the full-map protocol. The
memory side of the LimitLESS protocol is illustrated in Figure 5, which contains the memory
states listed in Table 1. These states are mirrored by the state of the block in the caches, also listed
in Table 1. The state transition diagram specifies the states, the composition of the pointer set (P),
and the transitions between the states. It is the responsibility of the protocol to keep the states
of the memory and the cache blocks coherent. The protocol enforces coherence by transmitting
messages between the cache/memory controllers. Every message contains the address of a memory
block, to indicate which directory entry should be used when processing the message.

For example, Transition 2 from the Read-Only state to the Read-Write state is taken when cache
i requests write permission (Write Request) and the pointer set is empty or contains just cachei.
In this case, the pointer set is modified to containi (if necessary) and the memory controller issues
a message containing the data of the block to be written (Write Data).
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Figure 5: Directory state transition diagram.

Component Name Meaning
Memory Read-Only Some caches have read-only copies of the data.

Read-Write Exactly one cache has a read-write copy.
Read-Transaction Holding read request, update is in progress.
Write-Transaction Holding write request, invalidation is in progress.

Cache Invalid Cache block may not be read or written.
Read-Only Cache block may be read, but not written.
Read-Write Cache block may be read or written.

Table 1: Directory states.

Following the notation in [4], both full-map and LimitLESS are members of theDi rNNB class
of cache-coherence protocols. From the point of view of the protocol specification, the LimitLESS
scheme does not differ substantially from the full-map protocol. In fact, the LimitLESS protocol
is also specified in Figure 5. The extra notation on the Read-Only ellipse (S : n > p) indicates
that the state is handled in software when the size of the pointer set (n ) is greater than the size
of the limited directory (p ). (See [8] for details). In this situation, the transitions with the square
labels (1, 2, and 3) are executed by the interrupt handler on the processor that is local to the
overflowing directory, through the invocation ofoverflow traps. When the protocol changes from
a software-handled state to a hardware-handled state, the processor must modify the directory state
so that the memory controller can resume responsibility for the protocol transitions.

5.3 Interfaces for LimitLESS

This section outlines the architectural features and hardware interfaces needed to support the Lim-
itLESS directory scheme. To support the LimitLESS protocol efficiently, a multiprocessor needs
several properties. First, it must be capable of rapid trap handling. Sparcle permits the execution
of trap code within five to ten cycles from the time a trap is initiated.

Second, the processor needs complete access to coherence-related controller state such as pointers
and state bits in the hardware directories. Similarly, the directory controller must be able to invoke
processor trap handlers when necessary. The hardware interface between the Alewife processor
and controller, depicted in Figure 6, is designed to meet these requirements. The address and data
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Figure 6: Signals between processor and controller.

buses permit processor manipulation of controller state and initiation of actions via load and store
instructions to memory-mapped I/O space. In Alewife, the directories are placed in this special
region of memory distinguished from normal memory space by a distinct Alternate Space Indicator
(ASI). The controller returns two condition bits and several trap lines to the processor.

Finally, a machine implementing the LimitLESS scheme needs an interface to the network that
allows the processor to launch and to intercept coherence-protocol packets. While most shared-
memory multiprocessors export little or no network functionality to the processor, Alewife provides
the processor with direct network access through the Interprocessor-Interrupt (IPI) mechanism.

The IPI mechanism provides a complete interface to the interconnection network. This interface
provides the processor with a superset of the network functionality needed by the cache-coherence
hardware. Not only can it be used to send and receive cache-protocol packets, but it can also
be used to send preemptive messages to remote processors (as in message-passing machines),
hence the name. The IPI interface is a single generic mechanism for network access –not a
conglomeration of different mechanisms. The power of such a mechanism lies in its generality.

The current implementation of the LimitLESS trap handler is as follows: when a directory
overflow trap occurs for the first time on a given memory line, the trap code allocates a full-map
bit-vector in local memory. This vector is entered into a hash table. All hardware pointers are
emptied and the corresponding bits are set in this vector. The directory state for that block is tagged
Trap-On-Write. Emptying the hardware pointers allows the controller to continue handling read
requests until the next pointer array overflow and maximizes the number of transactions serviced
in hardware. When additional overflow traps occur, the trap code locates the full-map vector in
the hash table, empties the hardware pointers, and sets the appropriate bits in the vector. When a
write request occurs, the memory controller must interrupt the processor.

Software handling of a memory line terminates when the controller traps the processor on an
incoming write request or local write fault. The trap handler finds the full-map bit vector and
empties the hardware pointers as for a read request. Next, it records the identity of the write
requester in the directory, and notes in an acknowledgment counter the number of bits in the vector
that are set (which corresponds to the the number of caches with copies of the memory location).
It then places the directory in the normal Write Transaction state. Finally, it sends invalidations to
all caches with bits set in the vector. The vector may now be freed. At this point, the memory
line has returned to hardware control. When all invalidations are acknowledged, the hardware will
send the data with write permission to the requester.

5.4 Performance Measurements

This section presents some results from the Alewife system simulator, ASIM, comparing the per-
formance of limited, LimitLESS, and full-map directories. The protocols are evaluated in terms of
the total number of cycles needed to execute an application on a 64-processor Alewife machine.
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Application Dir4NB LimitLESS4 Full-Map
Multigrid 0.729 0.704 0.665
SIMPLE 3.579 2.902 2.553
Matexpr 1.296 0.317 0.171
Weather 1.356 0.654 0.621

Table 2: Application run times for three coherence schemes, in millions of cycles.

Using execution cycles as a metric emphasizes the bottom line of multiprocessor design: end
performance.

To evaluate the benefits of the LimitLESS coherence scheme for a wide range of parameters,
we implemented an approximation of the new protocol in ASIM. During the simulations, ASIM
simulates an ordinary full-map protocol, but when the simulator encounters a pointer array overflow,
it stalls both the memory controller and the processor that would handle the LimitLESS interrupt
for Ts cycles. The current implementation of the LimitLESS software trap handlers in Alewife
suggestsTs � 5 0 . (While the LimitLESS trap code runs in about 200 cycles, these cycles are
amortized over four read overflows as described above.)

Table 2 shows the simulated performance of three protocols: a four-pointer limited-directory
protocol (Di r4NB ), a full-map protocol, and a four-pointer LimitLESS protocol (LimitLESS4)
with Ts = 5 0 . All the runs simulate a 64-node Alewife machine with 64K-byte caches and a
two-dimensional mesh network.

We use four applications in our simulations. Multigrid (which was discussed in Section 4.2)
is a statically scheduled relaxation program, Weather forecasts the state of the atmosphere given
an initial state, SIMPLE simulates the hydrodynamic and thermal behavior of fluids, and Matexpr
performs several multiplications and additions of various-sized matrices. The computations in
Matexpr are partitioned and scheduled by a compiler. Weather and SIMPLE are measured using
dynamic post-mortem scheduling of traces, while Multigrid and Matexpr are run on complete-
machine simulations.

Since the LimitLESS scheme implements a full-fledged limited directory in hardware, applica-
tions that perform well using a limited scheme also perform well using LimitLESS. Multigrid is
such an application. All the protocols require approximately the same time to complete. This
confirms the assumption that for applications with small worker-sets, such as multigrid, the limited
(and therefore the LimitLESS) directory protocols perform almost as well as the full-map protocol.
See [7] for more evidence of the general success of limited-directory protocols.

To measure the performance of LimitLESS under extreme conditions, we simulated a version
of SIMPLE with barrier synchronization implemented using a single lock (rather than a software
combining tree). Although the worker-sets in SIMPLE are small for the most part, the globally
shared barrier structure causes the performance of the limited-directory protocol to suffer. In
contrast, the LimitLESS scheme is less sensitive to wide-spread sharing.

The Matexpr application uses several variables that have worker-sets of up to 16 processors. Due
to these large worker-sets, the LimitLESS scheme takes twice as long as the full-map protocol.
The limited protocol, however, exhibits a much higher sensitivity to the large worker-sets.

Although software combining trees distribute barrier-synchronization variables in Weather, one
variable is initialized by one processor and then read by all the other processors. Consequently the
limited-directory scheme suffers from hot-spot access to this location. As is evident from Table 2,
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Figure 7: Performance of interrupt-driven all-software cache coherence for Weather.

the LimitLESS protocol avoids the sensitivity displayed by limited directories.

5.5 Towards Interrupt-Driven Cache Coherence

One of the most appealing feature of the LimitLESS protocol is its coupling of multiprocessor hard-
ware and software, which attempts to make a tradeoff between performance and hardware cost.
Software-handling of coherence transactions also allows run-time tuning of coherence policies.
Furthermore, by understanding such hardware-software interfaces we believe it is possible to mi-
grate increasing amounts of functionality into the software system without sacrificing performance
as machines scale in size and processors get faster relative to communication speeds.

For example, would an interrupt-driven all-software cache-coherence scheme perform reasonably
for Alewife using current technology? To investigate this question, we used ASIM to set the number
of hardware pointers to zero, and simulated a processor trap on each coherence request. The
resulting run times for Weather are shown in Figure 7. Remarkably, the all-software performance
is only a factor of two worse than an all-hardware scheme. Since the Alewife cache controller
is designed to allow experimenting with various numbers of hardware pointers, to a maximum of
five, we will be able to conduct further experiments once we build the hardware.

The following simple model provides some intuition on why the performance gap between
LimitLESS and full-map is small and why it will diminish as machines scale in size, allowing
increased software participation in the coherence process. IfTh is the average remote-memory-
access latency for a full-map directory protocol,Ts is the average delay for the full-map directory
emulation interrupt (the software latency), andms is the fraction of memory accesses that overflow
the small set of pointers implemented in hardware, then the average remote-memory-access latency
for the LimitLESS protocol is approximated by

Th + msTs

AlthoughTh andTs are comparable in a 64-processor Alewife machine, (for Weather,Th � 35
cycles,ms �3 %, andTs �5 0 cycles), in much larger systems the internode communication latency
will be much larger than the processors’ interrupt handling latency (Th � Ts). Furthermore,
improving processor technology will makeTs even less significant compared toTh, because a
substantial fraction ofTh will arise due to wire delays. This approximation indicates that as
processor speeds and multiprocessor sizes increase, servicing coherence transactions completely
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in software (ms = 1) will become possible. In our experiment with Weather, the factor of 2.5
difference betweenTh + 1 � Ts andTh explains the relative performance difference between all-
software and hardware coherence. Thus, the reasoning behind the LimitLESS protocol indicates a
trend towards interrupt-driven cache coherence.

6 Using Multithreading to Tolerate Latency

While dynamic data relocation using caches reduces the number of non-local memory references,
some high-latency memory accesses will still occur. When transactions cause the cache-coherence
protocol to issue invalidation messages, the remote-memory-access latency is especially high. If the
resulting remote-memory-access latency is much longer than the time between memory accesses,
processors can spend most of their time waiting for memory transactions to be serviced.

A similar problem arises when the processor must wait due to synchronizations. Synchronization
latencies can be very high in large-scale multiprocessors resulting in large periods of processor idle
time.

One solution that addressesboth the problems of memory latencies and synchronization delays
allows the processor to have multiple outstanding remote-memory accesses or synchronization
requests. Alewife implements this solution by using a processor that can switch rapidly between
multiple threads of computation and a cache controller that supports multiple outstanding requests.

When a thread issues a remote transaction or suffers an unsuccessful synchronization attempt,
the Alewife controller traps the processor. If the trap resulted from a cache miss to a remote node,
the trap handler forces a context switch. Otherwise, if the trap resulted from a synchronization
fault, the trap handling routine chooses from one of four waiting mechanisms:2

1. spinning– immediately return from the trap and retry the trapping instruction.

2. switch spinning– context switch without unloading the trapped thread from the processor.

3. blocking– suspend the thread and unload it.

4. switch blocking– suspend the thread without unloading it, and switch to a different context.

Processors that switch rapidly between multiple threads of computation are calledmultithreaded
architectures. Shared-resource multiprocessing was an earlier term used in this context by Flynn and
Podvin [12]. The prototypical multithreaded machine is the HEP [33]. In the HEP, the processor
switches every cycle between eight processor-resident threads. Cycle-by-cycle interleaving of
threads is also used in other designs [12, 30, 18]. Such architectures are termedfinely multithreaded.
Although fine multithreading offers the potential of high processor utilization, it results in relatively
poor single-thread performance and low processor utilization when there is not enough parallelism
to fill all the hardware contexts.

In contrast, Alewife employsblock multithreadingor coarse multithreading. That is, context
switches occur only when a thread executes a memory request that must be serviced by a remote
node in the multiprocessor, or on a failed synchronization request. Thus, the thread continues
to execute as long as a thread’s memory requests hit in the cache or can be serviced by a local
memory module, and as long as synchronization attempts are successful. Block multithreading
allows a single thread to benefit from the maximum performance of the processor.

2Specific algorithms for choosing among these mechanisms are described in [24 ].
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A multithreaded architecture is not free: Such an architecture requires multiple register sets or
some other mechanism to allow fast context switches, additional network bandwidth, support logic
in the cache controller, and extra complexity in the thread scheduling mechanism. Other methods,
such as weak ordering [11, 1, 23], incur similar implementation complexities in the cache controller
to allow multiple outstanding requests.

The appeal of block multithreading, however, lies in its generality: it is a single mechanism that
allows tolerating read, write, and synchronization latencies. In Alewife, because the same context-
switching mechanism is used for fast traps as well as for masking synchronization latencies, we
feel the extra complexity is justified.

6.1 Implementing a Block-Multithreaded Processor

Sparcle is designed to meet several objectives: it must context switch rapidly, it must support fast
trap dispatching, and it must provide efficient fine-grain synchronization. The extensive dependence
on the trap mechanism to handle infrequent run-time situations, such as synchronization faults,
cache misses to remote nodes, and network overflow, reflects an important aspect of Alewife’s
design discipline: provide hardware support to handle common cases efficiently, and rely on traps
to detect rare cases and handle them in software.

Sparcle uses multiple register sets to implement fast context switching. The same rapid-switching
mechanism minimizes the delay between the trap signal and the execution of the trap code.

To provide efficient fine-grained synchronization, the processor supports word-level full-empty
bits. On a synchronization fault, the trap handling routine responds by selecting one of spinning,
switch-spinning, blocking, or switch-blocking.

Sparcle is based on the following modifications to the SPARC architecture and its run-time
software.

� Register windows in the SPARC processor permit a simple implementation of block multi-
threading. A window is allocated to each thread. The current register window is altered via
SPARC instructions (SAVEandRESTORE). To effect a context switch, the trap routine saves
the Program Counter (PC) and Processor Status Register (PSR), flushes the pipeline, and sets
the Current Window Pointer (CWP) to a new register window. [3] shows that even with a
low-cost implementation, a context switch can be done in about 14 cycles. By maintaining a
separate PC and PSR for each context, a custom processor could switch contexts even faster.
Even with 14 cycles of overhead and four processor-resident contexts, multithreading signif-
icantly improves the system performance. See [35] for additional evidence of the success of
multithreaded processors.

� The emulation of multiple hardware contexts in the SPARC floating-point unit is achieved
by modifying floating-point instructions in a context-dependent fashion as they are loaded
into the FPU and by maintaining four different sets of condition bits. A modification of the
SPARC processor makes the frame pointer available externally to allow insertion into the
FPU instruction.

� Sparcle detects unresolved futures through SPARCword-alignmentand tagged-arithmetic
traps, with the non-fixnum trap modified to look at only the low bit. The word-alignment
and modified tagged-arithmetic traps automatically vector to a trap handler determined by
the register number of the invalid operand.
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� The SPARC architecture definition includes analternate space indicator(ASI) feature that
permits a simple implementation of a general interface with the controller. The ASI is
available externally as an eight-bit field and is set by special SPARC load and store instruc-
tions (LDA andSTA). By examining the processor’s ASI bits during memory accesses, the
controller can select between different load/store and synchronization behavior.

� Through use of thememory exception(MEXC) line on SPARC, the controller can invoke
synchronous traps and rapid context switching. Sparcle adds multiple synchronous trap
lines with distinct trap vectors for rapid trap dispatch to common routines. Inter-processor
interrupts are implemented via asynchronous traps.

� Thewindow invalid maskis used to implement switch blocking. The context-specific bits in
the mask indicate whether the context is active or suspended. These bits can be written by
the software, and new Sparcle instructions allow switching to the next active context.

� Spreading of trap vectors from four to 16 words: Since Alewife depends on fast trap pro-
cessing, spreading the trap vectors permits time-critical trap code to reside entirely within
the interrupt dispatch table.

6.2 Simulation Results and Analysis

In order to understand the benefits of block multithreading, compare the performance of two
different applications on the Alewife architecture and on a single-thread configuration. For each
application, we analyze how synchronization, local-memory-access latency, and remote-memory-
access latency contribute to the run time of each application.

Observing the benefits of multithreading in small-scale simulations is difficult because the locality
enhancement afforded by our caches and the run-time system diminishes the effect of non-local
communications. Indeed, multithreading is expected to be the last line of defense when locality
enhancement has failed. However, it is still possible to observe a performance improvement due
to multithreading in phases of applications with poor communication locality.

Our simulation results are derived from both post-mortem scheduled and full-system simulation
in ASIM. The post-mortem scheduled runs use traces of SIMPLE and Weather as described in
Section 5.4 and the full-system simulations represent a transpose phase for a256� 2 5 6 matrix. In
addition to run times for each application, we present the breakdown of various communication
costs and the utilization of different system resources. We will use these statistics to explain the
performance of our multithreaded architecture. The simulations reported in the following sections
use 64 processors and assume Alewife parameters (see Section 3).

6.3 Effect of Multithreading

Table 3 shows the run times for the various applications using one and two hardware contexts.
SIMPLE and Weather realize about a 20% performance increase from multithreading. Since neither
of the application problem sets are large enough to sustain more than 128 contexts, no performance
gain results from increasing the number of contexts from two to three per processor. For the matrix
transpose phase, we realize a performance gain of about 20% with two threads and 25% with four
threads.
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Application Contexts Run Time
SIMPLE 1 2.440

2 2.035
Weather 1 1.406

2 1.150
Transpose 1 0.172

2 0.142
4 0.129

Table 3: Effect of Multithreading. Run times are in millions of cycles.

6.4 Cost Analysis

An analysis of the costs of memory transactions confirms the intuition that a multithreaded archi-
tecture yields better performance by reducing the effect of interprocessor communication latency.
We refine statistics gathered by the simulator to obtain the costs of four basic types of transactions.

1. Application transactionsare the memory requests issued by the program running on the
system. These transactions are the memory operations in the original unscheduled trace.

2. Synchronization transactionsare memory requests that implement the barrier executed at the
end of a parallel segment of the application.

3. Local cache miss transactionsoccur when an application or synchronization transaction
misses in the cache, but can be serviced in the local memory module.

4. Remote transactionsoccur when an application or synchronization transaction misses in the
cache or requires a coherence action, resulting in a network transmission to a remote memory
module.

Multithreading reduces the effect of synchronization and remote transactions.

The contribution of each type of transaction to the time needed to run an application is equal to
the number of transactions multiplied by the average latency of the transaction. We assume that
the latency of application and synchronization transactions is equal to 1 cycle, while the simulator
collects statistics that determine the average latency of the cache miss transactions. Table 4 shows
the cost of each transaction type, normalized to the number of application transactions, for SIMPLE
and Weather. For example, in the simulation of SIMPLE with one context per processor, the
memory system spends an average of 3.98 cycles servicing remote transactions for every cycle it
spends servicing an application data access.

Table 4 approximates the remote transaction cost as follows. A multithreaded architecture can
overlap some of the cycles spent servicing remote transactions with useful work performed by
switching to an active thread. The number of overlapped cycles is subtracted from the latency
of remote transactions in order to adjust the cost of remote transactions. For all the simulations
summarized in the table, the total cost multiplied by the number of application cycles is within 5%
of the actual number of cycles needed to execute the application.

The analysis shows that remote transactions contribute a large percentage of the cost of running
an application. This conclusion agrees with the premise that communication between processors
significantly affects the speed of a multiprocessor. The multithreaded architecture realizes higher
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SIMPLE Weather
Transaction Type 1 Thread 2 Threads 1 Thread 2 Threads
Application 1.00 1.00 1.00 1.00
Synchronization 1.17 1.08 0.76 0.45
Local Cache Miss 0.41 0.36 0.34 0.36
Remote 3.98 2.83 1.25 0.94
Total 6.56 5.27 3.35 2.75

Table 4: Memory access costs, normalized to application transactions.

speed-up than the standard configuration because it reduces the cost of remote transactions. Because
communication latency grows with the number of processors in a system, the relative cost of
remote transactions increases. This trend indicates that the effect of multithreading becomes more
significant as system size increases.

7 Related Work

A hardware approach to the automatic reduction of non-local references that has achieved wide
success in small-scale shared-memory systems is the use of high-speed caches to hold local copies
of data needed by the processor. The memory-consistency problem can be solved effectively
on bus-based machines [14] by exploiting their broadcast capabilities, but buses are bandwidth
limited. Hence most shared-memory machines that deal with more than eight or 16 processors do
not support caching of shared data [16, 13, 31].

Some recent efforts propose to circumvent the bandwidth limitation through various arrangements
of buses and networks [36, 15, 9]. However, buses cannot keep pace with improving processor
technologies, because they suffer from clocking-speed limitations in multidrop transmission en-
vironments. The Stanford DASH [23] architecture does not require the bus-broadcast capability;
rather, it uses a full-map directory scheme to maintain cache consistency. The full-map’s directory-
memory size grows as�(N 2), whereN is the number of processing nodes. In contrast, Alewife
is exploring the use of the LimitLESS directory for cache coherence, where the directory-memory
requirements grow as�( N logN) with machine size. Additionally, the DASH implements a re-
laxed memory consistency model to tolerate memory latencies; Alewife achieves a similar result
by implementing block multithreading.

Unlike full-map schemes, chained-directory protocols [19] are scalable in terms of their memory
requirements, but they lack the LimitLESS protocol’s ability to couple closely with a multiproces-
sor’s software. They also suffer from high invalidation latencies, because invalidations must be
transmitted serially down the links. It is possible to mask the latency by using a block-multithreaded
processor such as Sparcle, or by implementing some form of combining. Accordingly, we have
observed that chaining scheme enjoys a larger relative benefit from multithreading than the Limit-
LESS scheme.

Previous cache-coherent architectures relied largely on caches to relieve the communication-
bandwidth bottleneck. Although caches are successful in automatic locality management in many
environments, they are not a panacea. Caches rely on a very simple heuristic to improve com-
munication locality. On a memory request, caches retain a local copy of the datum in the hope
that the processor will reuse it before some other processor attempts to write to the same loca-
tion. Thus repeat requests are satisfied entirely within the node, and communication locality is
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enhanced because remote requests are avoided. Caching and the associated coherence algorithms
can be viewed as a mechanism for replicating and migrating data objects close to where they are
used. Unfortunately, this heuristic is ill-suited to programs with poor data reuse; attempts by the
programmer or compiler to maximize the potential reuse of data will not benefit all applications.
In such environments,the ability to enhance the communication locality of references that miss in
the cache and the ability to tolerate latencies of non-local accesses are prerequisites for achieving
scalability.

The Alewife effort is unique in its multilayered approach to locality management: the compiler,
run-time system and caches share the responsibility of intelligent partitioning and placement of data
and processes to maximize communication locality. The block-multithreaded processors mitigate
the effects of unavoidable remote communication with their ability to tolerate latency.

8 Perspective and Summary

The class of MIMD machines is composed mainly of shared-memory multiprocessors and message-
passing multicomputers. In the past, machine realizations of shared-memory multiprocessors cor-
responded closely with the shared-memory programming model. Although the network took many
forms, such as buses and multistage networks, shared memory was uniformly accessible by all the
processors, closely reflecting the programmer’s viewpoint. It was relatively easy to write parallel
programs for such machines because the uniform implementation of shared memory did not require
careful placement of data and processes. However, such architectures do not scale to more than
few hundreds of processors, because an efficient implementation of uniform memory access is
infeasible due to physical constraints.

Message-passing machines, on the other hand, were built to closely match physical constraints,
and message passing was the computational model of choice on such machines. In this model,
no attempt was made to provide uniform access to all of memory; rather, access was limited to
local memory. Communication between tasks required the explicit use of messages. Because
such architectures allowed the exploitation of locality, their performance scaled with the size
of the machine for applications that displayed communication locality. Unfortunately, the onus
of managing locality was relegated to the user. The programmer not only had to worry about
partitioning and placing data and processes to minimize expensive message transmissions, but also
had to overcome the limitations of the small amount of memory within a node.

Recent designs reflect an increased awareness of the importance of simultaneously exploiting lo-
cality and reducing programming difficulty. Accordingly, we see a confluence in MIMD machine
architectures with the emergence of distributed shared-memory architectures that allow the ex-
ploitation of communication locality and message-passing architectures with global addressability.
A major challenge in such designs is the management of locality.

Alewife is a distributed shared-memory architecture that allows the exploitation of locality
through the use of direct networks. Alewife’s network interface is message oriented, while the
processor interface with the rest of the system is memory-reference oriented. Alewife’s approach
to locality management is multilayered, encompassing the compiler, the run-time system, and the
hardware.

While a more general compiler system is being developed, we have been experimenting with
applications with special structure. Prasanna has developed a compiler for expressions of matrix
operations and FFTs. The system exploits the known structure of such computations to derive

22



near-optimal process partitions and schedules. The Matexpr code used in Section 5 was produced
by this system. The performance with this system outstrips the performance of programs written
using traditional heuristics.

A run-time system for Alewife is operational. The system implements dynamic process partition-
ing and near-neighbor task scheduling. The tree scheduler currently uses the simple heuristic that
threads closely related through their control flow are highly likely to communicate with each other.
For many applications written in a functional style with the use offutures for synchronization,
the assumption is largely true.

Caches are useful in enhancing locality for applications that exhibit a significant amount of
data reuse (assuming locality is related to the frequency and distance of remote communications).
The LimitLESS directory scheme solves the cache-coherence problem in Alewife. This scheme is
scalable in terms of its directory-memory use, and its performance is close to that of a full-map
directory scheme.

The performance gap between LimitLESS and full-map is expected to become even smaller as the
machine scales in size. In a 64-node machine, the amortized software-handling cost of LimitLESS
traps is of the same order as the remote-transaction-latency of hardware-handled requests. The
internode communication latency in much larger systems will be much more significant than the
processors’ interrupt-handling latency. Furthermore, improving processor technology will make
the software-handling cost even less significant. If both processor speeds and multiprocessor sizes
increase, handling cache coherence completely in software will become a viable option. Indeed, the
LimitLESS protocol is the first step on the migration path towards interrupt-driven cache coherence.

Latency tolerance through the use of block multithreaded processors is Alewife’s last line of
defense when the other layers of the system are unable to avoid or minimize the latency of remote
memory requests. Block multithreading allows us to mask both memory and synchronization
delays. The hardware support needed for block multithreading also makes trap handling efficient.

The design of Alewife is in progress and a detailed simulator is operational. The Sparcle processor
has been designed; its implementation through modifications to an existing LSI Logic SPARC was
completed by LSI and SUN in March 1991, and MIT completed verification and testing of the
design in September 1991. It is currently being fabricated by LSI Logic. A significant portion of
the software system, including the dynamic-partitioning scheme and the tree scheduler are fully
operational. The Alewife compiler currently accepts hand partitioning and placement of data and
threads; ongoing work focuses on automating the partitioning and placement. Several applications
have been written, compiled, and executed on our simulation system.

9 Acknowledgments

We are grateful to Ravi Soundararajan, Marc Schaub, Terri Iuzzolino, Benson Wen, Craig Fields,
Prasanna, Mathews Cherian, and Arthur Altman, for their contributions to the Alewife project.
This research also benefited from discussions with Bill Dally, Mike Noakes, Tom Knight, and
Steve Ward. J and L-structures were influenced by I-structures, developed by Arvind and others
at MIT.

The research reported in this paper is funded in part by NSF grant # MIP-9012773, in part by
DARPA contract # N00014-87-K-0825, in part by a NSF Presidential Young Investigator Award,
and and in part by grants from the Sloan Foundation and IBM. IBM also made trace data available
to us. Sparcle was implemented by Godfrey D’Souza (LSI Logic) and Mike Parkin (SUN Mi-

23



crosystems) by modifying LSI Logic’s SPARC design. Sparcle’s fabrication is being supported by
LSI Logic. Chuck Seitz made the Mesh Routing Chips available to us. Pat Teller from NYU pro-
vided the SIMPLE and Weather programs. Generous equipment grants from SUN Microsystems,
Digital Equipment Corporation, and Encore are also gratefully acknowledged.

References

[1] Sarita V. Adve and Mark D. Hill. Weak Ordering - A New Definition. InProceedings 17th Annual
International Symposium on Computer Architecture, New York, June 1990. IEEE.

[2] Anant Agarwal. Limits on Interconnection Network Performance.IEEE Transactions on Parallel and
Distributed Systems, 2(4):398–412, October 1991.

[3] Anant Agarwal, Beng-Hong Lim, David A. Kranz, and John Kubiatowicz. APRIL: A Processor Ar-
chitecture for Multiprocessing. InProceedings 17th Annual International Symposium on Computer
Architecture, pages 104–114, New York, June 1990. IEEE.

[4] Anant Agarwal, Richard Simoni, John Hennessy, and Mark Horowitz. An Evaluation of Directory
Schemes for Cache Coherence. InProceedings of the 15th International Symposium on Computer
Architecture, New York, June 1988. IEEE.

[5] E. A. Brewer, C. N. Dellarocas, A. Colbrook, and W. E. Weihl. PROTEUS: A high-performance parallel-
architecture simulator. Technical Report MIT/LCS/TR-516, Massachusetts Institute of Technology,
September 1991.

[6] Lucien M. Censier and Paul Feautrier. A New Solution to Coherence Problems in Multicache Systems.
IEEE Transactions on Computers, C-27(12):1112–1118, December 1978.

[7] David Chaiken, Craig Fields, Kiyoshi Kurihara, and Anant Agarwal. Directory-Based Cache-Coherence
in Large-Scale Multiprocessors.IEEE Computer, 23(6):41–58, June 1990.

[8] David Chaiken, John Kubiatowicz, and Anant Agarwal. LimitLESS Directories: A Scalable Cache
Coherence Scheme. InFourth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS IV), pages 224–234. ACM, April 1991.

[9] D. R. Cheriton, H. A. Goosen, and P. D. Boyle. ParaDIGM: A Highly Scalable Shared-Memory
Multi-computer Architecture.IEEE Computer, 1991. To appear.

[10] William J. Dally and Charles L. Seitz. Deadlock-free message routing in multiprocessor interconnection
networks. ieeetc, c-36(5):547–553, May 1987.

[11] Michel Dubois, Christoph Scheurich, and Faye A. Briggs. Synchronization, coherence, and event
ordering in multiprocessors.IEEE Computer, pages 9–21, February 1988.

[12] Michael J. Flynn and Albert Podvin. Shared resource multiprocessing.IEEE Computer, pages 20–28,
March 1972.

[13] Daniel Gajski, David Kuck, Duncan Lawrie, and Ahmed Saleh. Cedar – A Large Scale Multiprocessor.
In International Conference on Parallel Processing, pages 524–529, August 1983.

[14] James R. Goodman. Using Cache Memory to Reduce Processor-Memory Traffic. InProceedings of
the 10th Annual Symposium on Computer Architecture, pages 124–131, New York, June 1983. IEEE.

[15] James R. Goodman and Philip J. Woest. The Wisconsin Multicube: A New Large Scale Cache-Coherent
Multiprocessor. InProceedings of the 15th Annual International Symposium on Computer Architecture,
pages 422–431, Hawaii, June 1988.

[16] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, and M. Snir. The NYU Ultra-
computer – Designing a MIMD Shared-Memory Parallel Machine.IEEE Transactions on Computers,
C-32(2):175–189, February 1983.

24



[17] W. Hackbusch, editor.Multigrid Methods and Applications. Springer-Verlag, Berlin, 1985.

[18] R.H. Halstead and T. Fujita. MASA: A Multithreaded Processor Architecture for Parallel Symbolic
Computing. InProceedings of the 15th Annual International Symposium on Computer Architecture,
pages 443–451, New York, June 1988. IEEE.

[19] David V. James, Anthony T. Laundrie, Stein Gjessing, and Gurindar S. Sohi. Distributed-Directory
Scheme: Scalable Coherent Interface.IEEE Computer, pages 74–77, June 1990.

[20] Kirk Johnson. Semi-C Reference Manual. ALEWIFE Memo No. 20, Laboratory for Computer Science,
Massachusetts Institute of Technology, August 1991.

[21] David A. Kranz, R. Halstead, and E. Mohr. Mul-T: A High-Performance Parallel Lisp. InProceedings
of SIGPLAN ’89, Symposium on Programming Languages Design and Implementation, June 1989.

[22] David A. Kranz et al. ORBIT: An Optimizing Compiler for Scheme. InProceedings of SIGPLAN ’86,
Symposium on Compiler Construction, June 1986.

[23] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The Directory-Based Cache
Coherence Protocol for the DASH Multiprocessor. InProceedings 17th Annual International Symposium
on Computer Architecture, pages 49–58, New York, June 1990. IEEE.

[24] Beng-Hong Lim and Anant Agarwal. Waiting Algorithms for Synchronization in Large-Scale Multi-
processors. Technical report, MIT VLSI Memo 91-632, February 1991.

[25] Gino Maa. The WAIF Intermediate Graphical Form. ALEWIFE Memo No. 23, Laboratory for Computer
Science, Massachusetts Institute of Technology, July 1991.

[26] E. Mohr, D. Kranz, and R. Halstead. Lazy Task Creation: A Technique for Increasing the Granularity
of Parallel Programs.IEEE Transactions on Parallel and Distributed Systems, 2(3):264–280, July 1991.

[27] Dan Nussbaum. ASIM Reference Manual. ALEWIFE Memo No. 13, Laboratory for Computer Science,
Massachusetts Institute of Technology, January 1991.

[28] Dan Nussbaum and Anant Agarwal. Scalability of Parallel Machines.Communications of the ACM,
March 1991.

[29] Brian W. O’Krafka and A. Richard Newton. An Empirical Evaluation of Two Memory-Efficient
Directory Methods. InProceedings 17th Annual International Symposium on Computer Architecture,
New York, June 1990. IEEE.

[30] G. M. Papadopoulos and D.E. Culler. Monsoon: An Explicit Token-Store Architecture. InProceedings
17th Annual International Symposium on Computer Architecture, New York, June 1990. IEEE.

[31] G. F. Pfister et al. The IBM Research Parallel Processor Prototype (RP3): Introduction and Architecture.
In Proceedings ICPP, pages 764–771, August 1985.

[32] Charles L. Seitz. Concurrent VLSI Architectures.IEEE Transactions on Computers, C-33(12):1247–
1265, December 1984.

[33] B.J. Smith. Architecture and Applications of the HEP Multiprocessor Computer System.SPIE, 298:241–
248, 1981.

[34] Wolf-Dietrich Weber and Anoop Gupta. Analysis of Cache Invalidation Patterns in Multiprocessors. In
Third International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS III), April 1989.

[35] Wolf-Dietrich Weber and Anoop Gupta. Exploring the Benefits of Multiple Hardware Contexts in a
Multiprocessor Architecture: Preliminary Results. InProceedings 16th Annual International Symposium
on Computer Architecture, pages 273–280, New York, June 1989. IEEE.

[36] Andrew Wilson. Hierarchical Cache/Bus Architecture for Shared Memory Multiprocessors. InPro-
ceedings of the 14th Annual International Symposium on Computer Architecture, pages 244–252, June
1987.

25


