
LABORATORY FOR
COMPUTER SCIENCE

MIT/LCS/fM-447

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

RELIABLE COMMUNICATION
OVER UNRELIABLE CHANNELS

Yehuda Afek
Hagit Attiya
Alan Fekete

Michael Fischer
Nancy Lynch

Yishay Mansour
Da-Wei Wang
Lenore Zuck

October 1992

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Reliable Communication Over Unreliable Channels

Yehuda Afek* Hagit Attiyat

Yishay Mansouri!

Alan Feketei Michael Fischer§

Da-Wei Wang§

September 30, 1992

Abstract

Lenore Zuck§

Nancy Lynch 11

Layered communication protocols frequently implement a FIFO message facility on top of an
unreliable non-FIFO service such as that provided by a packet-switching network. This paper
investigates the possibility of implementing a reliable message layer on top of an underlying
layer that can lose packets and deliver them out of order, with the additional restriction that the
implementation uses only a fixed finite number of different packets. A new formalism is presented
to specify communication layers and their properties, the notion of their implementation by 1/0
automata, and the properties of such implementations. An 1/ 0 automaton that implements
a reliable layer over an unreliable layer is presented. In this implementation, the number of
packets needed to deliver each succeeding message increases permanently as additional packet­
loss and reordering faults occur. A proof is given that no protocol can avoid such performance
degradation.

Keywords: layered communication, FIFO-layers, layer implementation, packet-switching net­
work, packet alphabet.

1 Introduction

In order to overcome the great engineering complexity involved, designers typically organize a
communication network as a series of layers. Each layer is viewed as a "black box" that can

•computer Science Department, Tel-Aviv University, Tel-Aviv, Israel, and AT&T Bell Laboratories, 600 Mountain
Avenue, Murray Hill, NJ 07974, U.S.A.

tDepartment of Computer Science, Technion, Haifa 32000, Israel.
1Department of Computer Science F09, University of Sydney 2006, Australia.
§Department of Computer Science, Yale University, Box 2158 Yale Station, New Haven, CT 06520, U.S.A.
11Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge MA 02139, U.S.A.
11 !.B.M. T. J. Watson Research Center, P.O. Box 704 Yorktown Heights, NY 19598, U.S.A.

This research was supported in part by Research Foundation for Information Technology, University of Sydney;
Department of Computer Science, Tel-Aviv University; IBM Fellowship; ONR contracts N00014-85-K-0168, N00014-
91-J-1046, N00014-85-K-0445, and N00014-82- K- 0154; by NSF grants CCR-8611442, CCR- 8915206, IRI- 9015570,
DCR- 8405478, CCR-8910289; and by DARPA contracts N00014-89-J-1988, N00014-87-K-0825 and N00014-92-J-
4033.

1

1 INTRODUCTION 2

be used by the next higher layer. Typical higher layers provide communication services with
"nicer" properties than the lower layers upon which they are implemented. The OSI reference
architecture of the International Standards Organization is a well-known example of layered design .
(See [Tan89, BG77, Zim80] for more details.)

One of the most important functions of a higher-level interprocess communication layer is to
mask faults exhibited by a less reliable lower layer. A higher reliable layer, which we call a FIFO
layer, must deliver messages correctly, exactly once, and in the intended order, whereas the lower
layer upon which it is implemented might lack one or more of these desirable properties. Individual
messages might be lost, duplicated, or corrupted, and sequences of messages might be delivered
out of order.

This paper studies the general problem of implementing a higher reliable layer on a lower less­
reliable layer. We call this the reliable message transmission problem {RMTP). Layers of the sort
we consider arise, for example, at different places in the OSI architecture mentioned above. A
reliable transport layer is often implemented using a connectionless network that permits message
reordering and message loss. A reliable data link layer is usually implemented on top of a physical
transmission medium that permits message loss and message corruption faults. To avoid confusion
when discussing the implementation of one layer on another, we often use "packet" to denote
messages of the lower layer, reserving the term "message" for the upper layer. We also sometimes
refer to the lower layer as a "channel" .

Solutions to RMTP for certain kinds of channels date back to the early work on communication
protocols (cf. [BSW69, Ste 76, AUWY82]). Much of the early theoretical work was concerned with
optimizing the number of states or number of packets under various assumptions about the channel.
For example, Aho et al. [AUWY82] consider RMTP using synchronous channels in which the loss
of a packet can be detected by the recipient at the next time step.

Three kinds of faults are of interest when discussing RMTP in asynchronous systems: loss,
reordering, and duplication of packets. Stenning's protocol [Ste76] solves RMTP and tolerates all
three fault types. However, it requires packets of unbounded length, since each packet contains a
sequence number as well as a message. This is not desirable in practice. For channels that use
bounded length packets, whether or not solutions to RMTP exist depends on which combination of
faults are to be tolerated. There are easy solutions for any one of the three fault types in isolation.
There is also a solution, the Alternating Bit protocol, for the case of both loss and duplication
faults [BSW69]. By way of contrast, no solution is possible for the case of both reordering and
duplication faults [WZ89], and consequently also for the case of all three fault types.

The remaining case-channels that use only bounded-length packets and are subject to both
reordering and loss faults- is considered in this paper. These channels are rather difficult to deal
with. For example, if the transmitting station sends the sequence 1011210001 of one-digit packets,
the receiving station might get 0011 or 1100 or 0000111112 or even nothing at all. It is not clear
how the receiving station can derive any useful information from what it receives.

We use the term non-duplicating for a channel where reordering and loss faults can occur
arbitrarily. This is a natural abstraction of the service provided by a connectionless network layer.
If reordering can occur only to a limited extent (so a packet cannot be overtaken by another which
was sent more than a fixed time later) then a simple solution is provided by using a variant of
Stenning's protocol with sequence numbers kept as remainders to a fixed modulus. This is done in
existing communication networks , but it places undesirable interdependencies between constants

1 INTRODUCTION 3

used in the implementations of different layers, since the modulus used in the reliable layer depends
on the extent to which packets can be reordered by the unreliable layer. If the reordering is arbitrary,
as in a non-duplicating channel, then no modulus is large enough for this strategy to work. Indeed,
it has often been conjectured informally that RMTP cannot be solved by a non-duplicating channel.

In this paper, we both prove and disprove this conjecture. We avoid the apparent contradiction
in this statement by paying careful attention to the formal definitions. We present a solution in
a natural model in which only the correctness of the layer implementation is required. We then
show that there are no "efficient" solutions. Intuitively, a solution is efficient if it has the ability
to recover from channel faults and resume transferring messages at a fixed rate, regardless of past
channel behavior.

The above discussion makes apparent that a precise formal model is necessary to discuss RMTP
and its possible solutions. We use the term RMTP in the remainder of this paper to refer to the
problem of finding a protocol that implements a FIFO layer on a non-duplicating layer; hence,
we need formal definitions of protocols and communication layers, and the notion of a protocol
implementing one layer on another.

A "reactive system" (in the sense of [HP85, MP92]) is a system that interacts with its envi­
ronment. A reactive system generates a "behavior" consisting of the visible activity of the system.
Communication layers, protocols, and I/ O automata [LT87, LT89], are all examples of reactive
systems since they naturally generate behavior.

The behavior of a communication layer is the visible activity that takes place at the two sites
that form its interface with the environment. This activity takes the form of sends and receives of
messages, which we call "actions". Messages to be transported by the layer are inserted into the
layer at one site and removed from the layer at the other site.

A "program" is an activity in which all actions take place at a single site. We model programs
by I/0 automata. A "protocol" is a pair of programs that run at distinct sites. A system consisting
of a protocol on two sites connected by a (lower) communication layer generates a behavior that
is determined by the individual behaviors of the system's programs and communication layer and
is thus an instance of general parallel composition of reactive systems. The system is said to
"implement" a higher communication layer if its behavior satisfies the requirements for the higher
layer.

The definitions for reactive systems at a single site and their realizations as I/ O automata
are presented in Section 2. Communication layers are defined in Section 3. The notion of a
protocol implementing one layer on another is presented in Section 4; it gives the basis for a
modular decomposition of layer implementations. This modularity is expressed by two general
compositionality results. The first expresses how a stack of layer implementations, each using the
service provided by the layer below, can be composed to give an implementation of the highest
layer on the lowest one. The other allows two non-interacting layers, running in parallel, to be
viewed as a single layer. These definitions and results give a formal framework in which to discuss
communication protocols that extends beyond the particular problem treated here.

Using these definitions and formalism, we exhibit (in Section 5) a modular solution to RMTP
built from two parts. The first part uses the Alternating Bit protocol to implement a FIFO
layer on an "order-preserving" layer, one that can lose and duplicate packets but not reorder
them. The second part implements an order-preserving layer on a non-duplicating layer. These
relatively simple parts are combined using the two compositionality results of Section 4 to yield an

2 FORMAL DEFINITIONS 4

implementation of a FIFO layer on a non-duplicating layer. The modular structure allows for a
simple proof of correctness.

Our solution to RMTP, however, is not "efficient" in a sense made precise in Section 6. In
fact, we prove in Section 6 that no such efficient solution to RMTP exists. Thus, the originally
conjectured impossibility of solving RMTP with non-duplicating channels turns out to be true after
all when solutions are required to be efficient. The proof is quite short because it relies on general
properties of layers and their implementations that are given in Sections 3 and 4.

Results related to ours appear in several other papers. A collection of general definitions
and composition results about layered protocols in a model related to ours is given in [LS90).
A preliminary version of Theorem 5.7 appears in [AFWZ89). A preliminary version of Theorem 6.3
appears in [LMF88). Subsequent papers consider other versions of RMTP and other definitions of
efficiency. For example, [MS89) contains an impossibility result for efficient RMTP using a related
but incomparable notion of efficiency, and it extends the result to channels where message loss
is probabilistic rather than adversarial. A quantified version of Theorem 6.3 for a non-uniform
model in which the transmitter knows the entire input sequence when the protocol begins, as well
as a similar theorem for the case of channels that can reorder and duplicate packets, are shown in
[WZ89). The efficiency of RMTP is investigated in [TL90) relative to a new family of parameterized
complexity measures that measure the speed of recovery from errors and the efficiency of message
transmission in the absence of channel errors. Also, [FLMS91) contains an impossibility result for
RMTP in the presence of crashes that lose information. Finally, [FL90) investigates the feasibility
of solving RMTP with no headers at all.

2 Formal Definitions

2.1 Mathematical Preliminaries

Let a be an arbitrary finite or infinite sequence. We say that a is a sequence over a set A if each
element of a belongs to A, and we sometimes call A an alphabet. We write a' j a to denote that
a' is a finite prefix of a . Let B be a set of sequences. The restriction of a to B is the subsequence
obtained from a by deleting all elements not in B. It is denoted by alB. We extend restrictions to
sets of sequences in the usual way.

A multiset (or bag) is a collection of elements with multiplicities. Formally, a multiset Q is a pair
(dom[Q], copies[Q]), where dom[Q] is a set and copies[Q] is a function from dom[Q] to N - {O}.
For every element u E dom[Q], copies[Q](u) denotes the number of occurrences of u in Q. We
define the size of Q to be Luedom[QJ copies[Q](u). Where convenient, we extend copies[Q] to larger
domains U .2 dom[Q] by defining copies[Q](u) = 0 for u EU - dom[Q].

Familiar set operations can be extended to multisets. For two multisets Q and Q', we say that
Q is a submultiset of Q', written Q [;;; Q', if dom[Q] ~ dom[Q'] and copies[Q](u)::; copies[Q'](u)
for every u E dom[Q]. We also define Q C Q' to mean Q [;;; Q' and Q -=f, Q'. This implies that
copies[Q](u) -=/ copies[Q'](u) for some u E dom[Q']. If Q [;;; Q', then we can define the multiset
difference, R = Q' -Q, where dom[R] = dom[Q'] and copies[R](u) = copies[Q'](u)- copies[Q](u).1

We also have need in Section 6 for a more complicated partial ordering among multisets. Let k be
1
Strictly speaking, dom[R] should be reduced to include only those elements u for which copies[R](u) > 0.

2 FORMAL DEFINITIONS 5

a positive integer. For a multiset Q, let Qk be the k-bounded multiset defined by dom[Qk] = dom[Q],
and copies[Qk](u) = min(k, copies[Q](u)) for every u E dom[Q]. Thus, Qk has at most k copies
of any element. For multisets Q1 and Q2 , define Q1 <k Q2 if Qt C Q~. Note that <k is a strict
partial order, i.e., it is irreflexive, antisymmetric and transitive.

The ordering <k has an important finite chain property.

Lemma 2.1 Let C = Q1 <k Q2 <1: ... be a possibly infinite increasing chain of multisets, and let
U = LJ; dom[Q;]. If U is finite, then C has at most klUI + 1 elements.

Proof: Define a measure f(Q;) = Lueu min(k, copies[Q;](u)). It is easily shown that f(Q;+i) 2:
J(Q;) + 1 and J(Q;):::; klUI for each i. Since also f(Q 1) 2: 0, the result follows. ■

2.2 Reactive Systems and Behaviors

We use the term reactive system to describe computational entities which exhibit an ongoing ac­
tivity, interacting with their environment and possibly not terminating. (Cf. [HP85].) The com­
munication layers and protocols that we discuss in this paper are examples of reactive systems.
Intuitively, a reactive system is a black box which from time to time performs externally visible
atomic activities called "actions". An observer may record the history of a run by writing down
the sequence of visible actions as they occur. Obviously, after the system performs a finite number
of steps, the observed sequence is finite. We call it a "partial trace". A "trace" is the sequence
observed when the system is allowed to run forever. Traces can be finite or infinite; every finite
trace is a partial trace, but partial traces are not necessarily (finite) traces.

For many purposes, how the traces are developed is of no interest; all that matters is the set of
possible t races. We call the description of a system's possible traces the "behavior" of the system,
and we often identify a system with its behavior. Thus, our behaviors are based on trace semantics.
(Cf. [Kah74, Mil80, Hoa.85]).

Formally, a behavior S is a pair (acts(S), traces(S)), where acts(S) is a set of actions and
traces(S), the traces of S, is a set of finite and infinite sequences over acts(S). Each element of
traces(S) is called an S-trace. We call a a partial S-trace if a is a finite prefix of some S-trace. In
general, if the possible traces of a reactive system R are described by a behavior S, then we write
S = beh(R).

A reactive system R with behavior S is often a component of a larger system. A trace a of
the larger system will in general contain symbols over an alphabet that includes acts(S). Symbols
in acts(S) describe activity involving the R-component, and symbols not in acts(S) describe the
activity of other parts of the system. By restricting a to the symbols in acts(S), we obtain a
sequence describing the activity of R within the context of the larger system. We say that a
sequence a is S-consistent if aiacts(S) is an S-trace. Thus, if a is S-consistent, then the S-activity
it describes is allowable according to the definition of S. We say that a is partial S -consistent
if a is finite and aiacts(S) is a partial S-trace. Equivalently, a is partial S-consistent iff it is a
finite prefix of some S-consistent sequence. Note that the above definition of S-consistency extends
naturally to arbitrary sequences since the assumption that a describes a "larger system" plays no
formal role.

We often write Sas shorthand for acts(S); thus, alS denotes alacts(S) . Similarly, we say that
S and S' are disjoint if acts(S) n acts(S') = 0.

2 FORMAL DEFINITIONS 6

Let SA and SB be behaviors. We say that SB refines SA and write SB <I SA if acts(SB) 2
acts(SA), and every SB-trace is SA-consistent . Intuitively, SB is more refined than SA in the sense
that it requires all of SA 's actions and possibly more, and the restriction of any trace it permits to
SA 's actions must also be permitted by SA .

The following is immediate from the definitions.

Lemma 2.2 Refinement of systems is a transitive relation.

The parallel composition of behaviors S1 and S2 is the behavior S = S1 II S2 such that acts(S) =
acts(S1) U acts(S2) and traces(S) consists of all sequences over acts(S) that are both S1- and Sr
consistent. Intuitively, the behavior S describes the result of running S1 and S2 in parallel, where
S1 and S2 interact through coordinating on mutual actions.

The following lemma, which is immediate from the definitions , shows that parallel composition
can be extended naturally to sequences that include elements outside of the composed behavior.

Lemma 2.3 Let S1 and S2 be behaviors and a be a sequence over any alphabet. Then

a is (S1 II S2)-consistent iff a is both S1 - and Srconsistent.

An analog to Lemma 2.3 holds for partial behavior-consistent sequences providing the two
behaviors are disjoint.

Lemma 2.4 Let S1 and S2 be disjoint behaviors and a a finite sequence over any alphabet. Then

a is partial (S1 II S2)-consistent iff a is both partial S1 -consistent and partial Srconsistent.

Proof: In one direction; assume that a ~ 1 for some (S1 II S2)-consistent sequence 1 . By Lemma
2.3, 1 is Sr and Srconsistent and the implication follows.

In the other direction, assume that a ~ 11 and a ~ 12 , where 11 is Si-consistent and 12 is
Srconsistent. Let 11 = a/31, and 12 = a/32. Since S1 and S2 are disjoint, there exists a sequence /3'
such that /3'IS1 = /31IS1 and /3'IS2 = /32IS2. Let 1 = a/3' . Clearly, ,IS1 = , 1IS1 and , IS2 = ,2IS2;
hence, 1 is both Si- and Srconsistent. By Lemma 2.3, 1 is (S1 II S2)-consistent . The implication
now follows since a ~ 1 . ■

The following lemma is immediate from the definitions. It shows that parallel composition of
behaviors is associative and commutative.

The following lemma captures the interaction between composition and refinement.

Lemma 2.6 Let S, S1, and S2 be behaviors. If S1 <I S2 then (S II S1) <I (S II S2)-

Proof: Since S1 <I S2, we have acts(S 1) 2 acts(S2). Consequently, acts(S II S1) 2 acts(S II S2).
It remains to show that every (S II S1)-trace is (S II S2)-consistent. Let {3 be a (S II S1)-trace. Then
fJIS E traces(S) and fJIS1 E traces(S 1) . Since S1 <I S2, it follows that /3IS2 = (/3IS1)IS2 E traces(S2)­
It follows from Lemma 2.3 that {3 is (S II S2)-consistent.

■

2 FORMAL DEFINITIONS 7

2.3 1/0 Automata

While the behavior of a system describes what the system should do, it does not describe how it
does it. We use a variant of the I/0 automaton model [LT87, LT89] as a state-machine model of
a reactive system.

An I/0 automaton is a state machine with state transitions labeled by actions, classified as input
actions, output actions, and internal actions. Intuitively, input and output actions are externally
visible, and internal actions are hidden. Input actions are assumed to originate in the environment
and always cause the automaton to take a step. Output and internal actions result from autonomous
steps of the automaton. The output actions are presented to the environment, where they have the
potential to affect other components.

Formally, an //0 automaton A , or simply an automaton, is described by:

1. Three mutually disjoint sets, in(A), out(A), and internal(A) which denote the sets of input,
output, and internal actions, respectively. Their union, acts(A), is the set of actions of A.
The subset ext (A) = in(A) U out(A) is the set of externally visible actions of A. The local
actions of A are the actions that are within A 's cont rol, namely, its internal and output
actions.

2. A set states(A) of A's states and a set start(A) ~ states(A) of A's start states.

3. A set steps(A) ~ states(A) x acts(A) x states(A) of allowed steps. We say that an action
a is enabled from a state s if for some s', (s, a, s') E steps(A). We require that A be input
enabled, i.e., every input action is enabled from every state.

4. A fairness partition, fair(A), on A's local actions which has countably many equivalence
classes. As explained below, A 's fair executions are those that are weakly fair with respect
to each class in fair(A). (Cf. [Fra86].) Fairness is an attempt to restrict a system's behavior
to be "realistic". Each class of fair(A) typically consists of the actions controlled by a single
component, so fairness means giving each component repeated opportunities to take a step.

An execution is a (possibly infinite) sequence a = s0 , a 1 , Si, a2 , • •• of alternating states and
actions such that each (s;,a;+1,s;+i) is an allowed step of A, s0 is a start state, and when a is
finite, the last element is a state.

A finite execution is fair if no local action is enabled from it s last state. An infinite execution is
fair if for every class FE fair(A), either actions from Fare taken infinitely many times or infinitely
many times no F action is enabled. In other words, an infinite execution s0 , a 1, s 1 , a 2, . . . is fair if
for every class FE fair(A), either a; E F for infinitely many i's, or no action of Fis enabled from
s; for infinitely many i's.

A sequence a over ext(A) is an A-trace if a = 11 lext(A) for some fair execution rJ of A . A
finite sequence over ext(A) is a partial A -trace if it is a finite prefix of some A-trace. Similarly,
any sequence whose restriction to ext(A) is an A-trace is called A -consistent, and any finite prefix
of an A-consistent sequence is partial A -consistent. We let traces(A) be the set of all A-traces.
Thus, traces(A) are exactly the externally visible actions in A's fair executions, and we define
beh(A) = (ext(A), traces(A)) to be the behavior of A.

The following theorem establishes that finite executions of an automaton A are partial A­
consistent. The proof of the theorem appears in [1S89, RWZ91], where a state-by-state construction

2 FORMAL DEFINITIONS 8

of a fair execution starting with a finite execution is described. The proof depends on the Axiom
of Choice.

Theorem 2.7 Let A be an automaton and let a be a finite execution of A. Then a is partial
A -consistent.

We sometimes write A as a shorthand for ext(A); thus, o:IA denotes t he restriction of a: to
A's externally visible actions. As with behaviors, we say that A and A' are disjoint if acts(A) n
acts(A') = 0.

2.4 Composition of Automata

Two I/0 automata running in parallel and interacting through coordinated mutual actions can
be described by another I/0 automaton, called the "composition". We restrict composition to
"compatible" automata in order to maintain the idea that each action of the composition is con­
trolled by at most one component. We show in Lemma 2.8 that composition is an associative and
commutative operation on mutually compatible automata, and we show in Lemma 2.9 that the
composition is an explicit representation of the behavior generated by the parallel execution of the
component automata.

We say that two automata A and B are compatible if every action common to both is either
an input of one and output of the other, or is an input of both. The composition of compatible
automata A and B is an automaton C = A o B such that:

1. in(C) = in(A) U in(B) - (out(A) U out(B)).

2. out(C) = out(A) U out(B).

3. internal(C) = internal(A) U internal(B).

4. states(C) = states(A) x states(B) and start(C) = start(A) x start(B).

5. ((s A, s B), a, (s~, s'a)) E steps(C) if one of the following holds:

• a E acts(A) - acts(B) , (sA , a, s~) E steps(A), and s8 = s'a;

• a E acts(B) - acts(A), (s8 , a , s'a) E steps(B), and sA = s~;

• a E acts(A) n acts(B), (sA,a,s~) E steps(A) , and (s8 ,a,s'a) E steps(B).

6. fair(C) = fair (A)Ufair(B). Note that, since A and B do not have any common local actions,
fair(C) is indeed a partition of C's local actions.

The following lemma is proved in [LT87]. It establishes that composition of automata is asso­
ciative and commutative, modulo renaming of states of the resulting automata.

Lemma 2.8 Let A1 , A2, and A 3 be pairwise compatible automata. Then A1 o (A2 o A 3) = (A1 o
A2) o A3 and A 1 o A 2 = A 2 o A 1 modulo renaming of states.

3 LAYERED COMMUNICATION SYSTEMS 9

The composition of automata induces a composition of behaviors. The following lemma is
proved in [LT87]; it shows that the behavior of the composition of two automata is just the parallel
composition of the behaviors of the two automata.

Lemma 2.9 Let A and B be compatible automata. Then beh(A o B) = beh(A) II beh(B).

We are often interested in the behavior of systems comprising both I/O automata and "black
box" reactive systems. This is accomplished by composing the behaviors of the components of the
system. Formally, for a behavior Sand an automaton A, we define S II A = A II S to be the behavior
S II beh(A). It follows immediately from Lemma 2.3 that every sequence a is (S II A)-consistent
if and only if it is both S - and beh(A)-consistent . Hence, if ext(A) 2 acts(S), then traces(S II A)
consists exactly of the S-consistent sequences in traces(A).

3 Layered Communication Systems

In this paper, we consider three specific kinds of communication layers: FIFO layers, non-duplicating
layers and order-preserving layers. In FIFO layers, successive messages from the same site are
received, exactly once, in the order sent. In order-preserving layers, messages can be lost or du­
plicated, but not reordered. In non-duplicating layers, each message sent is received at most once,
but messages can be received in any order. Since these three kinds of layers are similar in many
ways, it is economical to formalize them all as special cases of a general notion of communication
layer.

3.1 Communication Layers

Informally, a communication layer moves messages back and forth between two sites. A transmission
from a sending site to a receiving site takes place in three steps. First, the sending site takes an
action that inserts a message into the communication layer. Next, the message flows through
the communication layer, possibly being duplicated, delayed, or lost along the way. Finally, the
receiving site takes an action that removes a copy of the message from the communication layer.
Many different transmissions can be taking place concurrently in the communication layer, since
once the sending site has finished inserting a message into the communicat ion layer, it is free
to continue its computation, possibly inserting additional messages, before the first message is
received.

Our formal definition of communication layer is more abstract, ignoring what goes on inside the
layer and instead specifying only the behavior that is visible at the sending and receiving sites, i.e.,
the actions of inserting and removing messages from the communication layer. Thus, in place of
talking about a message "flowing" through the layer, we must talk about a pair of related actions
which in general take place at different times and locations: the "send" action that enters the
message into the communication layer and the "receive" action that removes the message from the
communication layer. Any additional properties we might want to impose, such as the fact that
the receive action is "caused" by a corresponding send action (which must have occurred earlier in
time) must be specified explicitly in the definition of the particular layer.

3 LAYERED COMMUNICATION SYSTEMS

Thus, we consider a communication layer to be a particular kind of behavior, as defined in
Section 2.2, whose actions consist of sends and receives of messages. The communication layer
specifies the allowable traces of any communication subsystem that correctly implements the layer.

3.1.1 Layer Definition

Formally, a communication layer L between a site t and a site r consists of:

1. A pair of disjoint sets, Mt and M2. The set Mt consists of the messages that can travel
from site t tor, and the set Mf1 consists of the messages that can travel from site r tot. We
denote their union by ML, and we refer to any m E ML as an L -message.

2. A behavior beh(L), where acts(beh(L)) = {send,recv} x ML.

We say that Lis non-degenerate if ML =/= 0.
We sometimes write L to refer to beh(L), so for example, acts(L) is the set of actions in

beh(L). We call (send,m) E acts(L) a send action and denote it by send(m). Similarly, we
call (recv,m) E acts(L) a receive action and denote it by recv(m). We extend send and recv
to sets M ~ ML of messages in the obvious way, i.e., send(M) = {send(m) : m E M} and
recv(M) = {recv(m) : m E M}. We sometimes write sendL(m) and recvL(m) with t he layer name
L as a subscript to emphasize that m is an L-message.

We partition the actions of L according to where they occur. For messages m E Mt, send (m)
actions take place at site t and recv(m) actions take place at site r. For messages m E Mf', the
opposite is true. Thus, the set of actions that take place at site t is

acts~ = send(Mi") U recv(Mf'),

and the set of actions that take place at site r is

acts£ = send(Mf') U recv(Mt) .

A layer is diagrammed in Figure 1. The two boxes represent the sites t and r. The arrows
represent actions. The wiggly line represents the network connection between the two sites.

send(Mt) recv(Mf') send(Mf') recv(Mt)

site t of L site r of L

Figure 1: A communication layer.

3.1.2 Operatio ns Involving Layers

We extend relations and operations defined for behaviors to layers in the obvious way. Let L 1 and
L2 be layers. Then L 1 and L2 are disjoint if beh(Li) and beh(L2) are disjoint behaviors, and Li
refines L2 (written Li <J L2) if beh(L 1) <J beh(L2). Similarly, the parallel composition of disjoint
layers Li and L2 is the layer L =Lio L2, where beh(L) = beh(L1) II beh(L2) and the message sets
of L are the unions of the corresponding message sets of Li and L2•

3 LAYERED COMMUNICATION SYSTEMS 11

3.1.3 One-Way Layers

A layer L is one-way from t to r if Mf' = 0. Hence, in a one-way layer from t to r, all send actions
take place at site t and all recv actions take place at site r. A one-way layer in the reverse direction,
from r to t , is similarly defined.

The layer L can be naturally decomposed into two one-way layers. Ltr , the restriction of
L to the t -to-r direction, is the one-way layer from t to r such that Mf;r = Mf, Mft = 0,
and traces(Vr) = traces(L)Jacts(Ltr). Lrt, the restriction of L to the r-to-t direction, is defined
similarly. The layers Ltr and Lrt are obviously disjoint. Moreover, traces(L) ~ traces(Ltr ◊ Lrt).
Equality holds when the two directions of L are "independent", that is, when every trace of one
direction can be interleaved with any trace of the other direction to yield a trace of L. We say
that L is complete if L = vr ◊ Lrt. Note that every one-way layer is complete. In this paper, we
consider only complete layers.

3.2 Axioms for Communication Layers

The layers we consider have a set of traces characterized by certain axioms relating the occurrences
of send and recv actions. Here we give six axioms which are used in the next subsection to define
the layers of interest.

Let L be a layer and let a be a sequence of actions in acts(L) . We term the pair 1r = (i, a)
an event (of a) if the ith element a; of a exists. We call a = a; the action of 1r and say that 1r is
an a-event. Thus, an a-event is a particular occurrence of action a in the sequence a. We call 1r
a send-event if 7r is a send(m)-event for some message m, and similarly for recv-events. We often
identify an event with its action.

The axioms below refer to a correspondence between recv-events and send-events in a. This
correspondence, formalized by a total function cause from recv-events to send-events of o:, indicates
the send-event that is considered to be "responsible" for each recv-event. We say that the pair
(a, cause) satisfies the axiom if the axiom holds for the pair.

LCl {No corruption) For each recv(m)-event 1r in a , cause(1r) is a send(m)-event.

LC2 {No prescience) For each recv-event 1r in a, the corresponding event cause(1r) occurs prior
to 1r in a.

LC3 [No duplication) The cause function is one-to-one.

LC4 {No losses) The cause function is onto.

LC5 {No reordering) If 1r and </> are recv-events and cause(1r) precedes cause(</>) in a, then 1r
precedes </> in a .

LC6 {Progress) For each m E ML, if a contains infinitely many send(m)-events, then a contains
infinitely many recv(m)-events.

Let L be a communication layer and let X be a subset of axioms (LCl), ... , (LC6) that includes
(LCl) and (LC2). A sequence a of actions over acts(L) is said to be an X-trace if there exists a

3 LAYERED COMMUNICATION SYSTEMS 12

total function cause from recv-events to send-events of a such that the pair (a, cause) satisfies each
of the axioms in X .

A layer L is an X -layer if traces(L) is exactly the set of all X-traces over acts(L). Note that
for fixed X, there are many X -layers, differing in message domains.

3.3 Three Layer Families

We now define FIFO, non-duplicating, and order-preserving layers.
Let Xn be the set consisting of axioms (LC1)-(LC6). A FIFO layer is any complete layer L

such that itr and Lrt are both Xn-layers. Thus, the traces that are considered appropriate for
each direction of a FIFO layer are those in which every message sent is eventually received, exactly
once. Messages in each direction are received in the same order as they are sent, and no message
is received before it is sent.

Let Xop be the set consisting of axioms (LCl), (LC2), (LC5), and (LC6) . An order-preserving
layer is any complete layer L such that itr and Lrt are both X0 p-layers. Thus, the traces that
are considered appropriate for each direction of an order-preserving layer are those in which, for
every message sent, zero or more copies are received. If zero copies are received, the message is
said to be lost. If two or more copies are received, the message is said to be duplicated. In any case,
for each message sent , any copy that is received arrives after the message was sent and before any
later message traveling in the same direction is received. In other words, messages can be lost or
duplicated but not reordered. In addition, if infinitely many copies of any message are sent, then
infinitely many copies of that message are also received.

Let XND be the set consisting of axioms (LCl), (LC2), (LC3), and (LC6). A non-duplicating
layer is any complete XND-layer. Thus, the traces that are considered appropriate for a non­
duplicating layer are those in which, for every message sent, at most one copy is received, and no
message is received before it is sent. A message that is sent but never received is said to be lost.
If infinitely many copies of any message are sent, then infinitely many copies of that message are
also received.

Note that, in contrast to non-duplicating layers, traces of FIFO layers and order-preserving
layers do not necessarily satisfy the defining axioms. In particular, they might not satisfy (LC5)
with respect to messages going in opposite directions. Yet, these layers are composed of two one-way
layers, each of whose traces do satisfy the defining axioms.

3.4 Properties of FIFO and Non-duplicating Layers

In a FIFO layer FI, the cause function is one-to-one and onto since it is one-to-one and onto in
each direction. Hence, the removal of an FI-consistent prefix from an FI-consistent sequence yields
an FI-consistent sequence.

Lemma 3.1 Let FI be a FIFO layer and let a and a/3 be Fl-consistent sequences. Then /3 is
FI -consistent.

The following lemma shows that in a non-duplicating layer ND, finite prefixes of ND-consistent
sequences are ND-consistent. Thus, any partial ND-consistent sequence is itself ND-consistent- no

3 LAYERED COMMUNICATION SYSTEMS 13

further actions need take place to achieve ND-consistency. This is in contrast, for example, to a
FIFO layer Fl, where Fl-consistency is not achieved until every message sent has been delivered.

Le mma 3.2 Let ND be a non-duplicating layer. Every partial ND -consistent sequence is also
ND-consistent.

Proof: This follows from the fact that cause is not required to be onto in non-duplicating layers.

■
Let ND be a non-duplicating layer and let a be a finite ND-consistent sequence. We write

rcvd(a, ND) to denote the multiset of ND-messages received in a. Formally, dom[rcvd(a, ND)] =
{m E MND: recvND(m) occurs in a} and copies[rcvd(a, ND)](m) is the number of times recvND(m)
occurs in a. Similarly, we write sent(a, ND) to denote the multiset of ND-messages sent in a.
Finally, we define pend(a, ND) = sent(a, ND) - rcvd(a, ND) to be the multiset of ND-messages
pending at a. These are the messages that are "in transit"-they have been sent but not yet
received. Note that from (LC2) and (LC3) it follows that pend(a, ND) is always defined. The next
lemma says that any submultiset of pending ND-messages after an ND-trace can be delivered at
any time.

Lemma 3.3 Let ND be a non-duplicating layer and let a be a finite ND -trace. Let /3 be a finite
sequence ofrecvND-events such that rcvd(/3,ND) ~ pend(a,ND). Then a/3 is an ND-trace.

Proof: The cause function for a is easily extended to a/3 by mapping recv(p)-events in /3 to
send(p)-events in a that are not already in the range of cause. The conditions on the multisets
ensure that this is possible. ■

The next lemma says that after any finite period of activity, a non-duplicating layer may act
just like a non-duplicating layer starting from the start state. This is because a non-duplicating
layer may lose messages, so the pending messages need never be delivered.

Lemma 3.4 Let ND be a non-duplicating layer, let /3 be a finite ND-consistent sequence, and
let /3' be any ND-consistent sequence. Then /3/3' is ND -consistent. Moreover, pend(/3, ND) ~
pend(/31 , ND) for every finite 1 ::s /3'.

Proof: The proof relies on the fact that a non-duplicating layer can lose finitely many messages.
Details are left to the reader. ■

The special properties of I/0 automata allow us to prove an analog to Lemma 2.4 for the
composition of an automaton with a non-disjoint layer.

Lemma 3 .5 Let A be an automaton and ND a non-duplicating layer. Let a be a finite sequence
over any set B 2 acts(A II ND). Then

a is partial (A II ND)-consistent iff a is partial beh(A)-consistent and a is ND-consistent.

Proof: In one direction the claim is trivial. In the other direction, it suffices to show the existence
of an execution 1] of A which is both fair and ND-consistent , such that alA II ND ::S 11 IA II ND . Such
an execution 1] is constructed along the same lines as the proof of Theorem 2.7. ND-consistency
of 1/ is guaranteed by occasionally adding recv(m) actions to the execution when such an action
does not violate ND-consistency. Being input actions of A, they can always be added. This will
guarantee that axiom (LC6) is satisfied. ■

4 IMPLEMENTATION OF LAYERS 14

4 Implementation of Layers

The idea of a layered architecture (cf. [Tan89, BG77, Zim80]) is to implement a given layer L1 on top
of another given layer L 2• An implementation consists of a protocol A having the proper interface
to L1 and L2 • When the protocol is expressed as an I/O automaton, a proper interface to L1 means
that A has the sets of actions required by L1. For example, A's output actions should include
recv(ML,). A proper interface to L 2 means that the automaton interacts with L 2 in the correct
manner. For example, A's output actions should include send(ML2). Such an implementation only
makes sense when L1 and L2 are disjoint.

Formally, let L 1 and L2 be layers. We say that an automaton A is compatible with L 1 on L2 if
L1 and L2 are disjoint layers, and the following conditions are satisfied:

1. in(A) 2 send(ML,) U recv(ML2).

2. out(A) 2 recv(ML,) U send(ML.).

We say that A implements L1 on L2 if A is compatible with L1 on L2 and A II L2 <l beh(L1).
Thus, if f3 E traces(A) is Lrconsistent, then it is also L1 -consistent. The following theorem shows
that this condition on sequences exactly characterizes the notion of implementability.

Theorem 4.1 Let automaton A be compatible with L 1 on L2. Then A implements L 1 on L2 iff
every A-trace that is L2-consistent is also L1 -consistent.

Proof: In one direction the claim is trivial. In the other direction, assume that every A-trace
that is Lrconsistent is also L 1-consistent. We must show that A implements L1 on L 2 , i.e., that
A II L2 <l beh(L1).

Let S = A 11 L2. By definition, acts(S) = acts(A) U acts(L2) 2 acts(A). The compatibility
requirements imply that acts(A) 2 acts(Li). Hence, acts(S) 2 acts(Li). It remains to show
that every sequence in traces(S) is Li-consistent. Let f3 E traces(S). Then f3 1A E traces(A)
and f3IL2 E traces(L2). Since acts(A) 2 acts(L2), we have (f31A)IL2 E traces(L2); hence f31A
is an A-trace that is Lrconsistent. By assumption, f31A is Li-consistent. But this means that
(/31A)ILi E traces(Li). Since acts(A) 2 acts(Li), then (f31A)ILi = f31Li; thus /31Li E traces(Li);
that is, f3 is L1 -consistent.

We have shown that A II L2 <l beh(L1). That is, A implements L 1 on L2. ■

4.1 Properties of Layer Implementations

This subsection presents two general composition results on layer implementations that are useful
in modularizing communication protocols. The first expresses a transitivity property that allows
one layer to be implemented on another by means of intermediate layers. The second allows the
parallel composition of disjoint implementations of disjoint layers.

Theorem 4.2 Let Li, L2, and L3 be mutually disjoint layers. Suppose2 that A implements L1 on
L2, and B implements L2 on L3 • Assume further that acts(A) n acts(B) = acts(L2). Then Ao B
implements Li on L3 •

2 Here and in the remainder of the paper, we assume without explicit mention that the internal action set of any
automaton is disjoint from all other sets of actions under consideration.

4 IMPLEMENTATION OF LAYERS 15

Proof: From the assumptions of the theorem, it follows that A and B are compatible automata
and that AoB is compatible with L1 on £3 • It remains to show that beh(AoB)II beh(L3)) <l beh(L1).

From the given implementations, we have

and
beh(B) II beh(L3) <l beh(L2).

Lemma 2.6 applied to (2) yields

beh(A) II (beh(B) II beh(L3)) <l beh(A) II beh(L2).

By Lemma 2.2, (1) and (3) yield

beh(A) II (beh(B) II beh(L3)) <l beh(L1)-

By Lemmas 2.5 and 2.9,

beh(A o B) II beh(L3) = beh(A) II (beh(B) 11 beh(L3)).

Consequently, (4) and (5) yield

beh(A o B) II beh(L3) <l beh(L1)­

Hence, (Ao B) implements L1 on £ 3 •

The following theorem describes a parallel composition of layer implementations.

(1)

(2)

(3)

(4)

(5)

(6)

■

Theorem 4.3 Let L 1 , L 2, K 1 , and 1(2 be pairwise disjoint layers. Suppose A 1 and A 2 are disjoint
automata such that A 1 implements L1 on 1(1 and A2 implements L 2 on K 2. Then A 10A2 implements
L1 oL2 on K1 oK2 •

Proof: The proof is trivial because of the disjointness assumptions. Details are left to the reader.

■
Our main interest in Theorem 4.3 is to allow a complete layer L, one for which L = vr 11

Lrt, to be implemented by first decomposing L into its two one-way components Vr and Lrt ,
implementing each separately on disjoint layers 1(1 and K 2 , respectively, and then combining the
two implementations to yield an implementation of Lon 1(1 ◊ K 2 • The following corollary justifies
this method.

Corollary 4.4 Let L, 1(1 , and 1(2 be pairwise disjoint layers, and assume L is complete. Suppose
A1 and A2 are disjoint automata such that A 1 implements Ltr on 1(1 and A2 implements Lrt on
K 2. Then A 1 o A 2 implements L on 1(1 ◊ K 2 •

Proof: Obvious from Theorem 4.3 and the fact that L is complete. ■

4 IMPLEMENTATION OF LAYERS 16

4.2 The Reliable Message Transmission Problem

The intuition behind RMTP is that a solution not only should implement L 1 on L2, but it should
consist of two "independent" processes A' and Ar which run at sites t and r, respectively. The only
way they should interact is indirectly, by sending messages back and forth through layer L2. Our
formal model is general enough to describe implementations which have "hidden channels" between
the sites. This subsection provides the definitions needed to rule out such unwanted "solutions".

Let A1 and Ar be automata and let L be a layer. We call the pair (A1
, Ar) a distributed protocol

with respect to L if At and Ar are disjoint automata, acts(A1
) 2 actst(L), and acts(Ar) 2 actsr(L).

Thus, all of At>s actions can be associated with site t and all of Ar's actions can be associated with
site r. We call A1 o Ar the automaton of (At,Ar).

We say that an automaton A is distributable with respect to L if there exists a distributed
protocol (At, Ar) with respect to L whose automaton is A , and we call (At, Ar) a distributed
decomposition of A. A distributable implementation of layer L 1 on layer L2 is illustrated in Figure 2.

send (MYA) recv(Mf~) send(Mf~) recv(MYA)

r --------

send(MY
8

) recv(Mf~) send (Mf~) recv(MY
8

)

site t of LB site r of LB

site t of LA site r of LA

Figure 2: Implementation of layer LA on layer LB.

The following is obvious from the definition and shows that distributed protocols can be com­
posed in the natural way.

Lemma 4.5 Let L be a layer, and let (A1
, Ar) and (B1

, Br) be distributed protocols with respect to
L such that A= A1 o Ar and B = B 1 o Br are compatible. Then A1 and Bt are compatible, Ar and
Br are compatible, and Ao B is distributable with distributed decomposition (A1 o B 1

, Aro Br).

Let A be an automaton, FI a FIFO layer, and ND a non-duplicating layer. The pair (A, ND)
solves the reliable message transmission problem (RMTP) for FI if A is distributable with respect
to ND, and A implements FI on ND.

The following lemma expresses an important property of RMTP solutions (A, ND) for FI.
Namely, at any time t when A is running with an ND-channel, it is possible for the execution to
continue forever so as to correctly process infinitely many FI-messages, even if all ND-messages

5 A SOLUTION TO RMTP 17

that were pending at time tare lost . Moreover, the new execution can be chosen to have infinitely
many FI-consistent prefixes. The proof is similar to that of Lemma 3.5 and is omitted.

Lemma 4.6 Let FI be a FIFO layer, let ND be a non-duplicating layer, and let A implement FI
on ND. Let a be a partial (A II ND)-trace. Then there exists an ND-consistent sequence I such
that a, is a (A II ND)-trace, and a, has infinitely many FI -consistent prefixes.

5 A Solution to RMTP

We construct a solution to RMTP for an arbitrary FIFO layer FI with a finite message alphabet.
Following [AG88], we obtain the solution from two basic constructions. The first implements an
arbitrary one-way FIFO layer with a finite message alphabet on a suitable two-way order-preserving
layer and is given in Section 5.1. The second implements an arbitrary one-way order-preserving
layer with a finite message alphabet on a suitable two-way non-duplicating layer and is given in
Section 5.2. These constructions are combined in Section 5.3.

5.1 Implementation of a FIFO Layer on an Order-preserving Layer

Let FI be a one-way FIFO layer from a "transmitter" t to a "receiver" r and let OP be a disjoint
order-preserving layer with Mtp = Mn x {O, l} and Mcfp = {O, l}. We construct an automaton A
which is distributable with respect to OP, with distributed decomposition (At, Ar), that implements
FI on OP. The automaton A is the I/O automaton version of the Alternating Bit Protocol
[BSW69].

The automata At and Ar are given in Figure 3, in a form that is standard for I/ O automata.
(See, for example, [LS92] .) The fairness partition for At has one class containing all of the send 0 p

actions. The fairness partition for Ar has two classes: one for all of the send OP actions, and one
for all of the recv FI actions.

In the Alternating Bit Protocol, the transmitter conveys to the receiver a sequence of values.
The values correspond to the FI-messages sent to the transmitter. Since I/O automata are input­
enabled, incoming FI-messages may arrive at the transmitter faster than it can process them. At
uses a variable queue to buffer those messages. Likewise, the receiver uses a variable queue to
buffer FI-messages until they can be output to the environment. This is also necessary because of
input-enabledness.

To convey a value to the receiver, the transmitter sends it repeatedly, tagged with a bit corre­
sponding to the parity of the index of that value in the sequence. At uses a Boolean variable flag
for the tag and sends OP-messages of the form (m, b), where m is the value to be conveyed, and
bis the current value of flag. The transmitter stops sending the current value and starts sending
the next value in the sequence when it receives an acknowledgement for the current value. The
acknowledgement is a Boolean value equal to the current tag. When At receives an OP-message b
where b = flag , it removes the first element from the queue and complements it s flag.

The receiver learns a new value when it receives a message with a new tag. Ar uses a Boolean
variable flag which, at any given time, is equal to the parity of the index of the last value which
it has learned. When it receives an OP-message of the form (m , b) where b =fi flag , it adds m to
its queue and complements flag . After the receiver has learned the new value, it acknowledges it

5 A SOLUTION TO RMTP

Transmitter At

Variables:
queue, a finite queue over Mn,

initially empty
flag, a Boolean, initially true

sendn(m), m E Mn:
effect:

add m to queue

sendop(m, b) m E Mn, b a Boolean:
precondition:

m is first on queue
b = flag

recvop(b), b a Boolean:
effect:

if b = flag then
remove first element from queue
flag := ,flag

Receiver Ar

Variables:
queue, a finite queue over Mn,

initially empty
flag, a Boolean, initially false

recvn(m), m E Mn:
precondition:

m is first on queue
effect:

remove first element from queue

send 0 p(b), b a Boolean:
precondition:

b = flag

recv0 p(m,b), m E Mn, b a Boolean:
effect:

if b :j, flag then
add m to queue
flag:= ,flag

Figure 3: A distributed implementation of FI on OP.

18

by repeatedly sending the parity of the index of the value just received. Ar accomplishes that by
repeatedly sending flag.

Standard arguments about the Alternating Bit Protocol (see, for example, [HZ87]) can be used
to show the following correctness theorem.

Lemma 5.1 The automaton At o Ar implements FI on OP.

Obviously, if OP above is replaced by a different order-preserving layer OP', which has the same
size message alphabet in each direction, and which is disjoint from FI, then (At, Ar) above can be
easily modified as to implement FI on OP'. This argument and Lemma 5.1 imply the following
theorem.

Theorem 5.2 Let FI be a one-way FIFO layer from t tor. Let OP be an order-preserving layer,
disjoint from FI, such that IM3°PI = 2 · IMnl and IMotPI = 2. Then it is possible to construct
a protocol that is distributable with respect to OP and implements FI on OP. Moreover, the
automaton of the protocol has no internal actions.

The following theorem establishes that any FIFO layer can be implemented on an order­
preserving layer with an appropriate message alphabet.

5 A SOLUTION TO RMTP 19

Theorem 5.3 Let FI be a FIFO layer. Let OP be an order-preserving layer, disjoint from FI,
such that IM2)p l = 2• IM;!i,I +2 and IMcfpl = 2• IMF~I +2. Then it is possible to construct a protocol
that is distributable with respect to OP and implements FI on OP. Moreover, the automaton of
the protocol has no internal actions.

Proof: Let OP1 and OP2 be a decomposition of OP to disjoint layers such that IM2)p
1
I = 2·IM¥1 1,

IMcfp,I = 2, IM01P2I = 2 · IMF~I, and IM2)p21 = 2. From Theorem 5.3, it follows that there exist
two disjoint distributable automata, Atr and Art, such that Atr implements Fltr on OP1 , Art
implements FYt on OP2 , and neither Atr nor Art has internal actions. From Corollary 4.4 it follows
that A = Atr o Art implements FI on OP. It follows from Lemma 4.5 that A is distributable. It
also follows from Theorem 5.3 and the definition of automata composition that A has no internal
actions. ■

5.2 Implementation of an Order-preserving Layer on a Non-duplicating Layer

Let OP be a one-way order-preserving layer from a "transmitter" t to a "receiver" r with finite
message alphabet Mop, and let ND be a disjoint non-duplicating layer with M;JD = Mop x {O} and
M'iJD = {query}. For every m E Mop , we abbreviate the pair (m, 0) E MJJ0 by m. We construct an
automaton B which is distributable with respect to ND , with distributed decomposition (Bt, Br),
that implements OP on ND. The automaton B implements the idea of a "probe" as introduced in
[AG88].

The automata Bt and Br are given in Figure 4. The fairness partition for Bt has one class
containing all of the sendND actions. The fairness partition for Br has two classes: one for all of
the send ND actions, and one for all of the recv OP actions.

The transmitter conveys to the receiver a sequence of values with the property that, if blocks
of the same value are collapsed to a single value, the resulting sequence is a subsequence of the
OP-messages given to the transmitter. The receiver then outputs a subsequence of the conveyed
values. It follows from the definition of an order-preserving layer that the resulting sequence of
sendop and recvop actions is an OP-trace. Thus, unlike the automaton A of Section 5.1, queues
are not needed since both transmitter and receiver are "allowed" to drop values from the sequence.

The transmitter sends a value to the receiver only in response to a query from the receiver. The
value it sends is always the most recent OP-message m that was given to it, saved in latest. To
ensure that it answers each query exactly once, the transmitter keeps a variable unanswered which
is incremented whenever a new query is received, and decremented whenever a value is sent.

The receiver continuously sends querys to the transmitter, keeping track, in pending, of the
number of unanswered querys. The receiver counts, in count[m], the number of copies of each value
m received since the last time it output a value (or from the beginning of the run if no value has
yet been output). At the beginning, and whenever a new value is output, the receiver sets old to
pending. When count[m] > old, the receiver knows that m was the value of latest at some time
after the receiver performed its last recv 0p-event. It can therefore safely output m by performing
a recv op(m)-action. The finiteness of MOP and the fact that the transmitter will always respond
to query messages imply that the receiver will output infinitely many values (unless there is no
sendop-event in the run).

The arguments above now allow us to claim the following correctness result for this implemen­
tation.

5 A SOLUTION TO RMTP

Transmitter Bt

Variables:
latest, an element of Mop U { nil},

initially nil
unanswered, a nonnegative integer,

initially 0

send op(m), m E Mop:
effect:

latest := m

recv ND (query):
effect:

unanswered := unanswered + 1

send ND(m), m E Mop :
precondition:

unanswered > 0
m = latest =p nil

effect:
unanswered := unanswered - 1

Receiver Br

Variables:
pending, a nonnegative integer,

initially 0
old, a nonnegative integer, initially 0
for each m E Mop, count[m],

a nonnegative integer, initially 0

recvop(m), m E Mop:
precondition:

count[m] > old
effect:

count[w] := 0 for all w E Mop
old := pending

send ND(query):
effect:

pending:= pending+ 1

reCVND(m), m E Mop :
effect:

pending := pending - 1
count[m] := count[m] + 1

Figure 4: A distributed implementation of OP on ND.

Lemma 5.4 The automaton Bt o Br implements OP on ND .

As before, renaming arguments, together with Lemma 5.4, establish the following theorem.

20

Theorem 5.5 Let OP be a one-way order-preserving layer from t to r with a finite message al­
phabet. Let ND be a non-duplicating layer, disjoint from OP, such that IM;fol = IMoPI and
IMi:JDI = 1. Then it is possible to construct a protocol that is distributable with respect to ND and
implements OP on ND . Moreover, the automaton of the protocol has no internal actions.

The following theorem establishes that any order-preserving layer can be implemented on a
non-duplicating layer with an appropriate message alphabet. Its proof is similar to the proof of
Theorem 5.3 and is omitted.

Theorem 5.6 Let OP be an order-preserving layer with a finite message alphabet. Let ND be a
non-duplicating layer, disjoint from OP, such that IM;FDI = IMtpl + 1 and IMi:JDI = IM;Jpl + 1.
Then it is possible to construct a protocol that is distributable with respect to ND and implements
OP on ND. Moreover, the automaton of the protocol has no internal actions.

6 BOUNDED PROTOCOLS 21

5.3 A Solution to RMTP

We now construct a solution to RMTP using the constructions of Sections 5.1 and 5.2 and the
general composition results of Section 4.1.

Theorem 5. 7 Let FI be a FIFO layer with a finite message alphabet. Let ND be a non-duplicating
layer, disjoint from FI, such that IMJ.r0 1 = 2-IM¥rl+3 and IMg0 1 = 2-IMHl+3. Then is possible
to construct a protocol that is distributable with respect to ND and implements FI on ND.

Proof: Let OP be an order-preserving layer, disjoint from FI and ND , such that IM3°PI
2 · IM¥rl + 2 and IMcJpl = 2 · IMHI + 2. From Theorem 5.3, it is possible to construct a protocol
which is distributable with respect to OP that implements FI on OP. Moreover, A, the automaton
of the protocol, has no internal actions. Since IMJ.rol = 2 · IM¥rl + 3 = IMtpl + 1, and similarly
IMg0 1 = IMcJp l + 1, it follows from Theorem 5.6 that it is possible to construct a protocol which
is distributable with respect to ND that implements OP on ND. Moreover, B , the automaton of
the protocol, has no internal actions. From Theorem 4.2, it follows that A o B implements FI on
ND. It follows from Lemma 4.5 that Ao Bis distributable with respect to ND. ■

The Alternating Bit protocol attaches an extra bit to each message in order to distinguish the
current and previous messages. A more efficient encoding can accomplish the same end with only
a single additional message in each direction. This allows the number of OP-messages in each
direction to be reduced to 3 plus the number of FI-messages in that direction. Consequently,
RMTP can be solved with an ND-layer for which IMJ.r0 1 = IM¥rl + 4 and IM~ol = IMF~I + 4.

6 Bounded Protocols

The solution of RMTP presented in Section 5 is inefficient since as more ND-messages are lost,
more are needed to transmit subsequent messages. Consequently, the protocol runs more and more
slowly as more and more ND-messages are lost.

One can measure, after each partial trace of the system, the number of ND-messages that the
transmitter must send in order for the receiver to learn a new message, assuming a "best-case
behavior" of the ND-layer. A solution to RMTP is bounded when this measure is bounded by a
constant for a large class of partial traces. We show that there are no bounded solutions to RMTP.

6.1 Boundedness

Let FI be a FIFO layer and let ND be a non-duplicating layer. Boundedness measures the efficiency
of an RMTP solution in recovering from faultiness permitted by the ND layer. Intuit ively, consider
a partial trace a. An FI-message can be delivered with effort k after a if there is an ND-consistent
sequence /3 in which some FI-message, and at most k copies of ND-messages, are received, and
a/3 is a partial trace. We call /3 a "k-good" extension of a, and a partial trace that has a k-good
extension is called "k-recoverable" . (The term "recoverable" is borrowed from (TL90].) Since a
k-good extension is required to be ND-consistent, the k-recoverability of a does not depend on
the ability to deliver messages that are pending at a. We call a protocol "k-bounded" if the set
of k-recoverable partial traces is sufficiently large. In particular, it should include infinitely many
FI-consistent prefixes of every trace that has infinitely many such prefixes. We remark that there

6 BOUNDED PROTOCOLS 22

is no agreement among authors on how the intuitive notion of k-boundedness should be formalized,
and the technical definitions contained in the various papers on the subject differ along many
dimensions. The definition we present here is a compromise between simplicity and generality.

Formally, assume (A, ND) solves RMTP for FI, and let k be some integer. A sequence over
acts(A II ND) is k-good if it is ND-consistent and it contains some recvn -event and at most k
recvNv-events. For every partial (A II ND)-trace a:, we say that a: is k -recoverable if there exists a
k-good sequence /3 such that 0:/3 is a partial (A II ND)-trace. Here a: represents an observation of a
finite portion of an execution, and the k-recoverability of a: implies that the execution can continue
so that the observable portion of the continuation is k-good. The requirement that /3 be ND­
consistent prevents it from being considered k-good if it depends on the delivery of ND-messages
that are pending at the end of a:. The pair (A, ND) is k-bounded if, for every (A II ND)-trace a:,
if a: has infinitely many FI-consistent prefixes, then a: has infinitely many prefixes that are both
FI-consistent and k-recoverable.

6.2 Nonexistence of a Bounded Solution to RMTP

Fix FI to be a non-degenerate one-way layer from t tor. We establish two properties of general
and bounded solutions to RMTP for FI that allow us to prove that for no k is there a k-bounded
solution to RMTP for FI.

The first lemma states that if (A, ND) solves RMTP for Fl, then after any FI-consistent partial
(A II ND)-trace a:, in order for the receiver to learn a new FI-message, it must receive a sequence of
ND-messages whose multiset was not pending at a:. Intuitively, if the lemma were not true, then
the pending messages would be sufficient to fool the receiver into thinking a new FI-message had
been sent, and the resulting partial (A II ND)-trace would not be partial FI-consistent, contrary to
the assumption that (A, ND) solves RMTP for FI.

Lemma 6 .1 Let (A, ND) solve RMTP for FI. Let a: be an FI-consistent partial (A II ND)-trace.
Let /3 be a sequence such that o:{3 is a partial (A II ND)-trace and {3 contains a recvn -event. Then
for some p E M;Jv,

copies[rcvd(/3, ND)](p) > copies[pend(o:, ND)](p) .

Proof: Let (At, Ar) be a distributed decomposition of A. Let a: and /3 be sequences satisfying the
conditions of the lemma. Assume, by way of contradiction, that rcvd(/3, NDtr) !;;; pend(a:, NDtr).

Our proof proceeds as follows. We first show the existence of a partial (A II ND)-trace o:/31
such that /31 describes the situation where all activity at the transmitter At stops after a: and the
receiver continues behaving as it did in {3. Such a /31 exists because the ND-messages sent by At in
/3 are not needed to satisfy ND-consistency-the pending messages at a: can be used instead. We
then show that o:/31 is not partial Fl-consistent, contradicting the assumption that (A, ND) solves
RMTP for FI.

Define /31 = /31Ar. We first show that o:{31 is a partial (A II ND)-trace. By the disjointness of
At and Ar, (o:/31)IAt = o:IA\ hence (o:/31)1At is a partial beh(At)-trace. Since (o:/31)1Ar = (o:/3)1Ar,
(o:/31)IAr is a partial beh(Ar)-trace. The sequence o:/31 is both partial beh(Ar)-consistent and partial
beh(At)-consistent, so it follows from Lemmas 2.4 and 2.9 that it is a partial beh(A)-trace. Since
rcvd(/31 , ND'r) = rcvd(/3, ND'r) !;;; pend(o:, NDtr) , it follows from Lemma 3.3 that o:/31 is NDtr -
consistent . The sequence (31 is finite and contains no recv ND rt _events, therefore it is ND rt -consistent.

6 BOUNDED PROTOCOLS 23

It follows now from Lemma 3.3 that a(J1 is NDrt -consistent. Since ND = ND1r ◊ NDrt, Lemma 2.3
gives that a(J1 is ND-consistent. Since a{J1 is an ND-consistent partial beh(A)-trace, it follows from
Lemma 3.5 that a(J1 is a partial (A II ND)-trace.

Since (A, ND) solves RMTP for FI, Theorem 4.1 shows that every sequence in traces(AII ND) is
FI-consistent. Thus, a(J1 is partial FI-consistent. Since a is FI-consistent, Lemma 3.1 implies that
{31 is partial FI-consistent. However, this contradicts the fact that {31 is not partial Fl-consistent
since (31 has no sendn-actions and at least one recvn -action. · ■

The second lemma states that if (A, ND) solves RMTP for FI, then for every partial (A II ND)­
trace a, there exists another partial (A II ND)-trace at which the multiset of pending ND1r-messages
is greater, in the ordering >k, than the multiset of ND1r-messages pending at o.

Lemma 6.2 Let (A, ND) beak-bounded solution to RMTP for FI. Leto be a partial (A II ND)­
trace. Then there exists a partial (A II ND) -trace a' such that pend(o, ND1r) <k pend(o', ND1r).

Proof: From Lemma 4.6, it follows that there exists an ND-consistent sequence , such that o, is
an (A II ND)-trace and o, has infinitely many FI-consistent prefixes. Since (A, ND) is k-bounded,
infinitely many of the Fl-consistent prefixes of o, are k-recoverable. Thus, there exists an FI­
consistent k-recoverable o 1 = o,' such that o :s o 1 ~ o,. The k-recoverability of a 1 implies that
there exists a k-good sequence (J such that o 1(J is a partial (A II ND)-trace. From Lemma 6.1 it
follows that, for some p E MJID,

copies[pend(a 1 , ND)](p) < copies[rcvd((J, ND)](p). (7)

We fix p to be such a message for the remainder of this proof. From (7), f3 contains a recvND(P)­
action. Since f3 is ND-consistent, it follows that f3 also contains a send ND(P)-action; hence it has a
prefix of the form (J1sendND(p). Leto' = o 1{31sendND(p). Obviously, o' is a partial (A II ND)-trace.
It remains to show that pend(o, ND1r) <k pend(a', ND1r).

Since f3 is k-good, it contains at most k recv ND-actions, so from (7) we have

copies[pend(o1 , ND)](p) < k. (8)

From Lemma 3.2, every prefix of {3, in particular {31 and {31sendND(P), are ND-consistent. It
therefore follows from Lemma 3.4 that

copies[pend(ai, ND)](p) ~ copies[pend(a1(Ji, ND)](p) < copies[pend(o', ND)](p). (9)

Since ,' is a prefix of 1 , Lemma 3.2 gives that ,' is ND-consistent. By Lemma 3.5, o is ND­
consistent. By Lemma 3.4, o 1 = a,' and o' = a 1(J1sendND(P), are ND-consistent, and

pend(a, ND)~ pend(oi, ND)~ pend(o', ND).

Since ND consists of two disjoint layers, ND1r and NDrt , it follows from (10) that pend(a, ND1r) ~
pend(o', ND1r). Similarly, since p E M]ID, it follows that (8) and (9) still hold when restricted to
the one-way layer ND1

r. Consequently,

7 CONCLUSIONS 24

■
The following theorem establishes that any k-bounded solution of RMTP for a one-way FIFO

layer requires the underlying non-duplicating layer to have an infinite message alphabet in the same
direction.

Theorem 6.3 Let FI be a non-degenerate one-way FIFO layer from t tor, and let (A, ND) be a
k-bounded solution to RMTP for FI. Then ~J.fo is infinite.

Proof: Let a,0 be the empty sequence (which is trivially ND-consistent). A simple induction
using Lemma 6.2 establishes that there exists an infinite sequence a-0 , a-1 , ••. of finite ND-consistent
partial (A II ND)-traces such that for every i ~ 0, pend(a;, NDtr) <1: pend(a;+1 , NDtr). Lemma 2.1
therefore implies that M]ID is infinite. ■

A trivial corollary of Theorem 6.3 is:

Corollary 6.4 Let FI be a non-degenerate FIFO layer, and let (A, ND) be a k -bounded solution
to RMTP for FI. Then MND is infinite.

It follows that there is no k-bounded solution to RMTP for FI that uses a finite ND-message
alphabet.

7 Conclusions

In this paper we have considered the problem of reliable communication over unreliable channels.
We have presented both an algorithm and an impossibility result. On the one hand we have
demonstrated that, seemingly contrary to popular belief, there exists a correct protocol that uses
only finite packet alphabets. On the other hand, we have demonstrated that any such protocol
must exhibit serious degradation of performance, as more and more messages are lost and delayed.
This raises the question of whether practical finite-alphabet protocols can exist for channels that
can lose and reorder packets. The answer to this questions probably lies in the interpretation of
the term "practical".

If "practical" means maintaining a bandwidth similar to the underlying channels, then the
performance of our protocol is horrendous. Moreover, this is not simply a shortcoming of our
protocol, but, as our impossibility result shows, it is an inherent limitation. The impossibility
result says that any finite-alphabet protocol must require a large number of packets to send each
message; this imposes a large penalty on the bandwidth of the channel. Later theoretical work has
strengthened the claim that communicating with bounded headers over a channel that can reorder
packets must incur a severe bandwidth penalty. The interested reader is referred to (MS89, TL90,
WZ89] where a variety of impossibility results related to ours are shown.

On the other hand, the development of newer, extremely high bandwidth, communication chan­
nels raises the serious possibility that a communication protocol could be considered reasonably
efficient even though it reduces the bandwidth of the underlying channel. Even then, our impossi­
bility result shows that no fixed reduction in bandwidth can be maintained; rather, the reduction
must worsen over time.

As usual, it is necessary to be cautious in making practical inferences from the theoretical
results, for the theoretical results are based on a set of assumptions that might be weakened in

REFERENCES 25

practice. For example, we have assumed that the protocols must be asynchronous; however, simple
and efficient protocols can be constructed that use information about real time, in the form of
local processor clocks and bounds on the lifetime of packets (e.g., [SD78]). Also, we have assumed
that the protocols must always work correctly; however, efficient randomized protocols can be
constructed that allow a small fixed probability of error (e.g., [HGM89]). A challenging problem is
to find models that are realistic, yet are simple enough to admit theoretical analysis.

Acknowledgments

We would like to thank Baruch Awerbuch and Ewan Tempero for useful discussions on this work.
We also would like to thank Jennifer Welch for her helpful comments on early drafts of our paper.
Special thanks are also due to the designers of the (usually) reliable Internet, over which many of
our conversations about this research were held.

References

[AFWZ89] H. Attiya, M. Fischer, D. Wang, and L. Zuck. Reliable communication using unreliable
channels. Manuscript, 1989.

[AG88] Y. Afek and E. Gafni. End-to-end communication in unreliable networks. In Proc. 7th
ACM Symp. on Principles of Distributed Computing, pages 117-130, 1988.

[AUWY82] A. Aho, J. Ullman, A. Wyner, and M. Yannakakis. Bounds on the size and transmission

[BG77]

[BSW69]

[FL90]

[FLMS91]

[Fra86]

[HGM89]

rate of communication protocols. Comp. & Maths. with Appls., 8(3):205- 214, 1982.

G. Bachmann and J. Gecsei. A unified method for the specification and verification
of protocols. In B. Gilchrist, editor, Information Processing 77, pages 229-234. North­
Holland Publishing Co., 1977.

K. Bartlett, R. Scantlebury, and P. Wilkinson. A note on reliable full-duplex transmis­
sion over half-duplex links. Communications of the ACM, 12(5):260- 261, May 1969.

A. Fekete and N. Lynch. The need for headers: An impossibility result for communica­
tion over unreliable channels. In CONCUR 90: Theories of Concurrency, LNCS 458,
pages 199-215, 1990.

A. Fekete, N. Lynch, Y. Mansour, and J . Spinelli. The impossibility of implementing
reliable communication in the face of crashes. Technical Memo TM- 355c, Laboratory
for Computer Science, Massachusetts Institute of Technology, September 1991. To
appear in JACM.

Nissim Francez. Fairness. Spring-Verlag, New York, 1986.

A. Herzberg, 0. Goldreich, and Y. Mansour. Source to destination communication in
the presence of faults. In Proc. 8th ACM Symp. on Principles of Distributed Computing,
pages 85- 102, 1989.

REFERENCES 26

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs,
NJ, 1985.

[HP85] David Harel and Amir Pnueli . On the development of reactive systems. In K. R. Apt,
editor, Logics and Models of Concurrent Systems, Lecture Notes in Computer Science,
pages 477-498. Springer-Verlag, 1985.

[HZ87] J. Halpern and L. Zuck. A little knowledge goes a long way: Simple knowledge-based
derivations and correctness proofs for a family of protocols. In Proc. 6th A CM Symp. on
Principles of Distributed Computing, pages 269- 280, 1987. Journal version to appear
in J. ACM.

[Kah74] Gilles Kahn. The semantics of a simple language for parallel programming. In Infor­
mation Processing, 74, pages 471-475, Amsterdam, 1974. North Holland.

[LMF88] N. Lynch, Y. Mansour, and A. Fekete. Data link layer: Two impossibility results. In
Proc. 7th ACM Symp. on Principles of Distributed Computing, pages 149-170, August
1988.

[LS89] N. Lynch and E. Stark. A proof of the Kahn principle for Input/ Output automata.
Information and Computation, 82(1):81- 92, July 1989.

[LS90] S. Lam and A. Shankar. Specifying modules to satisfy interfaces. Technical Report
CS-TR-2082.3, Department of Computer Science, University of Maryland at College
Park, June 1990.

[LS92] N. Lynch and I. Saias. Distributed algorithms: Lecture notes for 6.852. Research
Seminar Series RSS 16, Laboratory for Computer Science, Massachusetts Institute of
Technology, February 1992.

[LT87] N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algorithms. In
Proc. 6th ACM Symp. on Principles of Distributed Computing, pages 137-151, August
1987. Expanded version available as Technical Report MIT /LCS /TR-387, Laboratory
for Computer Science, Massachusetts Institute of Technology.

[LT89] N. Lynch and M. Tuttle. An introduction to input/output automata. CWI Quarterly,
2(3):219- 246, September 1989.

[Mil80] Robin Milner. A calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer-Verlag, New York, 1980.

[MP92] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent Sys­
tems. Springer-Verlag, New York, 1992.

[MS89] Y. Mansour and B. Schieber. The intractability of bounded protocols for non-FIFO
channels. In Proc. 8th ACM Symp. on Principles of Distributed Computing, pages
59- 72, August 1989.

REFERENCES 27

[RWZ91] N. Reingold, D.-W. Wang, and L. D. Zuck. Games i/o automata play. Technical Report
YALE/ DCS/TR 857, Yale University, November 1991. To appear in CONCUR '92.

[SD78] C. Sunshine and Y. Dalal. Connection management in transport protocols. Computer
Networks, 2:454-473, 1978.

[Ste76] M. Stenning. A data transfer protocol. Computer Networks, 1:99- 110, 1976.

[Tan89] A. Tannenbaum. Computer Networks. Prentice Hall, 1989.

[TL90] E. Tempero and R. Ladner. Tight bounds for weakly bounded protocols. In Proc. 9th
ACM Symp. on Principles of Distributed Computing, pages 205- 218, August 1990.

[WZ89] D. Wang and L. Zuck. Tight bounds for the sequence transmission problem. In Proc.
8th ACM Symp. on Principles of Distributed Computing, pages 73-83, August 1989.

[Zim80] H. Zimmermann. OSI reference model- the ISO model of architecture for open systems
interconnection. IEEE Transactions on Communication, COM-28:425-432, April 1980.

