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Abstract 

In this paper we discuss the design, implementation and effectiveness of massively parallel 
algorithms for the solution of large-scale assignment problems. In particular, we study the 
auction algorithm of Bertsekas, an algorithm based on the method of multipliers of Hestenes 
and Powell, and an algorithm based on the alternating direction method of multipliers of 
Eckstein. 

We discuss alternative approaches to the massively parallel implementation of the auc­
tion algorithm, including Jacobi, Gauss-Seidel and a hybrid scheme. The hybrid scheme, in 
particular, exploits two different levels of parallelism and an efficient way of communicating 
the data between them without the need to perform general router operations across the 
hypercube network. We then study the performance of massively parallel implementations of 
the two methods of multipliers. Implementations are carried out on the Connection Machine 
CM-2, and the algorithms are evaluated empirically with the solution of large scale prob­
lems. The hybrid scheme significantly outperforms all of the other methods and gives the 
best computational results to date for a massively parallel solution to this problem. 
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1 Introduction 

With the advent of parallel computing the possibility has arisen of solving very large problems 
from several areas of scientific computing much more quickly than ever before. One area which 
is receiving increasing attention in this regard is the area of network optimization: specifically, 
problems of routing and allocating resources in a large network represented by a graph. There 
are a variety of large network optimization problems that would be desirable to solve in real 
time. One can imagine attempting to route traffic in a large city in real time or coordinating 
a large fleet of service people to respond to requests. Network models for air-traffic control 
have been under investigation since the early days of linear programming; nevertheless, complete 
global models for this very important problem are still beyond the solution capabilities of current 
technology. Models for planning under uncertainty in the financial markets also give rise to 
very large network-flow problems. Such problems are receiving recently renewed interest, since 
academics and practitioner believe that with parallel optimization methods such problems can 
be solved. A survey of large scale applications of network optimization are given in Dembo et al. 
[13], whereas Zenios [35] provides a survey of the status of parallel optimization methods. 

In order to approach the ambitious tasks outlined above, we must understand our ability 
to produce efficient implementations of potential basic building blocks of such systems. The 
assignment problem is a key building block in several applications of network modeling. Given n 
persons, n objects, and a benefit a;; associated with the assignment of object i to person j, the 
assignment problem is to find an assignment of each person to exactly one object that maximizes 
the total benefit. In graph theoretic terms, we wish to find the minimum weight perfect matching 
in a bipartite graph. The problem is recognized as a fundamental and practical problem in 
combinatorial optimization, with applications even in fields such as chemical engineering, as well 
as an important building block in the solution of a variety of more complex optimization problems, 
such as quadratic assignment problems [28], three dimensional assignment problems, traveling 
salesman problems [18], [25], and crew scheduling and vehicle routing problems [9]. 

The parallel computational complexity of the assignment problem is one of the most interest­
ing open questions in the theory of parallel computation today. Mulmuley, Vazirani and Vazirani 
give a randomized algorithm with an O(log2 n) worst case time bound in the PRAM model using 
a polynomial number of processors [29] . The number of processors is large and is only polyno­
mial in the size of the input if the weights are input in unary. Therefore, at this point, this is 
a result primarily of theoretical importance. Nonrandomized sublinear time bounds have been 
achieved by several groups of researchers, including Goldberg, Plotkin, Shmoys and Tardos [21], 
and Goldberg, Plotkin and Vaidya [20]. These latter results lend credence to the possibility that 
massive parallelism may yield significant speedups for this problem. 

In addition to these theoretical studies we have seen recently a surge of activities in the 
parallel implementation, and testing, of algorithms for the assignment problem. In particular, 
researchers have returned to some of the faster serial algorithms and re-examined them for their 
parallel potential. At the same time new algorithms have been developed, with a primary design 
requirement their suitability for parallel computing. In the latter class we put specifically the 
auction algorithm, initially introduced by Bertsekas [3] and further developed and extended in 
[4] and [7]. This algorithm has demonstrated good ability to take advantage of small scale 
parallelism, and is a suitable candidate for a method that can exploit the power of massively 
parallel, fine grain SIMD architectures. 

A number of researchers have studied parallel solutions to large assignment problems on 
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smaller scale MIMD parallel machines. Kennington and Wang [27] developed a parallel version 
of the shortest augmenting path (SAP) code of Jonker and Volgenant [24], which they tested on 
the Symmetry S81, with up to ten Intel 80386 cpus. They report solutions to dense 1200 x 1200 
assignment problems with cost range [0 - 1000] in approximately 15 seconds and cost range 
[0 - 10000] in an average of under 20 seconds. They also report that the auction algorithm did 
not achieve results comparable to the shortest augmenting path in a serial implementation, and 
hence it was not parallelized. Zaki [34] continued this study on an Alliant FX/8, parallelizing and 
vectorizing both algorithms. He confirmed the observations of Kennington and Wang, for certain 
problem categories. However, his results show that the auction algorithm achieves much better 
speedups than the SAP code and also vectorizes very well. As a result, the auction algorithm 
outperforms SAP by a large margin when implemented on a vector/parallel architecture. He 
reports solutions of 2000 x 2000 problems with cost range [0-10000] in approximately 30 seconds 
with the auction algorithm, and 2 minutes with SAP. 

Kempka, Kennington and Zaki [26] tested the auction algorithm on the Alliant FX/8 without 
the £-scaling that typically makes the algorithm computationally effective and more stable. They 
report, nonetheless, solutions to a 1000 x 1000 dense problem with cost range [0, 100] in under 
one second and a 4000 x 4000 problem in just over a half minute. Since they do not use scaling, 
their results are unpredictable: a 1000 x 1000 problem takes 12 seconds for cost range [0, 1000], 
while a 2000 x 2000 problem with the same cost range takes over 255 seconds. For cost range 
10000 they achieve an average of 33 seconds for 2000 x 2000 problems. 

Balas, Miller, Pekny and Toth [2] implemented a parallel shortest augmenting path algorithm 
on the Butterfly Plus computer, with 14 processors. They were able to solve dense 1000 x 1000 
problems with cost range [0 - 1000] in an average of 9.39 seconds, and cost range [0 - 10000] in 
11.70 seconds. They also solved dense 2000 x 2000 problems with cost range [0 - 10000] in 30 
seconds, 3000 x 3000 in a minute, and a dense 30000 x 30000 problem with 900 million variables 
in less than an hour. 

Bertsekas and Castanon [5] did an extensive study of several variants of the algorithm on 20% 
dense problems on the Encore Multimax. They tested both Jacobi and Gauss-Seidel versions 
and a block-Jacobi implementation. An interesting feature of this study is that they develop 
asynchronous, as well as synchronous, parallel implementations. The asynchronous algorithm 
has a substantial advantage over its synchronous counterpart. They were able to solve problems 
of size 1000 x 1000 in under 10 seconds. 

Castanon, Smith and Wilson [10] studied the effectiveness of different synchronous imple­
mentations of the Gauss-Seidel auction algorithm and the shortest augmenting paths code of 
Jonker and Volgenant [24] for solving both dense and sparse assignment problems on a variety 
of architectures. They demonstrated speedups of up to 60 for the Gauss-Seidel implementation 
of the auction algorithm for problems of size 1000 x 1000. 

The literature survey above indicates that the auction algorithm has proved competitive 
with other approaches to the assignment problem. It achieves moderate speedups on coarse­
grain MIMD parallel implementations, and this gives the algorithm an additional advantage over 
competing methods that may not parallelize as well. 

In this paper we describe the development of massively parallel implementations of algorithms 
for the assignment problem. We consider in particular: (1) the auction algorithm of Bertsekas, 
(2) an algorithm derived from the method of multipliers (MOM) due to Hestenes [22] and Powell 
[31] and (3) an algorithm developed as a specialization of the general algorithmic scheme of the 
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alternating direction method of multipliers (ADMOM) of Eckstein [14]. Eckstein has done an 
empirical study of this latter algorithm for general linear cost sparse networks on the Connection 
Machine CM-2. The computational results were encouraging for sparse assignment problems. 
Both methods of multipliers have tremendous potential for massive parallelism, and therefore are 
important to test on assignment problems. 

All of our algorithms are implemented on the Connection Machine CM-2. Two traditional 
approaches to the parallel implementation of the auction algorithm, Jacobi and Gauss-Seidel, 
exploit only part of the power of the CM-2. We therefore introduce a hybrid algorithm that is 
able to exploit the parallelism of the machine at two different levels. This algorithm proves to 
be significantly faster than the other approaches. We then study the two different methods of 
multipliers. 

The primary contributions of this paper are: the development of techniques for the massively 
parallel implementation of the auction algorithm on an SIMD architecture, the development of 
the parallel implementations of the two methods of multipliers for dense assignment problems, 
and the comparative study of the three algorithms. For the auction algorithm we develop three 
alternative methods for its parallelization, while the multipliers algorithms are implemented in 
what appears to be the most intuitive approach. The computational results indicate that the 
massively parallel implementation of the auction algorithm is very competitive with other, or the 
same, algorithms implemented on coarse-grain MIMD architectures. The comparisons with the 
methods of multipliers algorithms indicate that both are inferior to the auction algorithm for 
dense problems, despite their tremendous potential for massively parallel computing. 

In this study we concentrate on the dense assignment problem, for several reasons. Most 
of the reports cited above also concentrate on the dense problem, and thus we can use the 
results of this paper as benchmarks against the work reported by others. Furthermore, we expect 
that the insight gained from the dense implementation on the performance of the algorithm 
will carry over to sparse problems. Finally, the dense problem yields a very communication­
efficient representation on the Connection Machine. The data structures that would be necessary 
for the sparse implementation of assignment problems on the CM have been reported on in 
[36]. Experience with the dense and sparse implementation of nonlinear network optimization 
problems in Nielsen and Zenios (39) indicate that the sparse implementation can outperform 
significantly the dense implementation for problems that are fairly sparse, even if it does not use 
well structured communication patterns like the dense implementation. 

While this is the first - to the best of our knowledge - study of massively parallel algorithms 
for the assignment problem, there has been a variety of recent related work on massively par­
allel network optimization. Goldberg implemented a fast maximum flow algorithm [19] . Zenios 
and Lasken (38) solved nonlinear network problems; Zenios (37) developed algorithms for multi­
commodity transportation problems; Nielsen and Zenios [40) developed algorithms for stochastic 
network optimization models arising in financial applications. Wein (32) studied massively par­
allel algorithms for minimum-cost circulation. Eckstein [14], [15) has extensively studied the 
alternating step method for transportation problems. As stated above, his results for linear cost 
networks are not encouraging, but the results for sparse quadratic transportation problems are 
quite good and are competitive with the massively parallel row-action algorithm of Zenios and 
Censor [11). Furthermore, his method appears to be the able to solve problems with mixed linear 
and quadratic objective terms with little additional difficulty. 

The rest of this paper is organized as follows. In section 2 we discuss the algorithms for which 
we developed massively parallel implementations. In section 3 we discuss the implementations 
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of these algorithms on the Connection Machine CM-2. Section 4 contains computational results 
for these implementations, and section 5 contains our conclusions. 

2 Algorithms for the Assignment Problem 

We define the problem formally as follows: Find an assignment A of objects to people (A(i) = j 
means that object i is assigned to person j) so that I:A(i)=i a;; is maximized. In a globally 
optimal solution any given person may not be assigned to his most valuable object. However, 
for a globally optimal assignment it is possible to assign a price 1r; to each object i, so that if 
each person j views the profit associated with object i as a;; - 7r; then each person is assigned to 
his most profitable object. This fact can be understood as a consequence of linear programming 
duality. 

2.1 The Auction Algorithm 

The auction algorithm finds the optimum assignment by finding such prices for all the objects. 
It produces an assignment A and prices 7r; such that 

a;A(i) - 1r(i) 2::: . max ( a;A(i) - rr; ). 
J = l, ... ,n 

The algorithm starts with each object assigned an arbitrary price; prices are adjusted upwards 
as people bid for their most profitable object. Each iteration of the algorithm consists of one 
or several currently unassigned people choosing the object that is most profitable to them and 
submitting a "bid" on the object. Each object that has been bid upon is assigned to the highest 
bidder, adjusts its price to the bid, and deassigns the person to whom it was previously assigned 
(if anyone). 

Formally, each person bidding calculates the profits Pbe,t and Pnext associated with his two 
most profitable objects, and then bids 7r; + Pbe,t - Pnext on his best object i. A bid-upon object 
then is assigned to the highest bidder and sets its price to that bid. 

2.1.1 Epsilon Scaling 

Epsilon-scaling is used in the auction algorithm in order to improve upon the worst-case time 
bounds and computational behavior. We relax the condition that an object bids upon and is 
assigned to its favorite object: 

a·A(') - 7r· > max (a·A(') - 7r·). s s s _ j = l, ... ,n J s J 

Instead we merely require that 

a·A(') - 7r· > max (a·A(') - 1r · ) - €. s s s _ j=l, ... ,n J s J 

Such an assignment is called €-optimal. The algorithm runs in a series of phases, each phase 
taking an €-optimal assignment and returning a set of prices and an assignment that is f' = ( €/ c )­
optimal, for some user-specified constant c. Bertsekas proved that if an assignment is €-optimal 
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with £ < ¾, and the a;; are all integers, then the assignment is globally optimal [3]. Define 
Ma = max;; a;;. Since any assignment is Ma-optimal, we can start with£ = Ma and in log(Man) 
phases we will produce an assignment that is (n~l )-optimal and thus globally optimal. Each 
phase of the algorithm is a mini-auction as described in the previous section, except that instead 
of bidding Poe,t - Pnu:t, a person can bid Pbut - Pnezt + £. Each phase produces a £-optimal 
assignment, and by successively lowering£ in this fashion we obtain an optimal assignment. The 
worst-case sequential complexity of the algorithm is O(n X Ma X log(Man)). A summary of the 
algorithm is as follows. 

Step O (Initialization) £ - max;; a;;, 1r; - 0. 

Step 1 Auction: 

1.1 Some subset of the set of unassigned people determine and bid on their favorite object. 

1.2 Each bid-upon object determines its highest bidder, raises its price to that bid, and 
assigns itself to that person, deassigning the person to whom it was previously assigned 
(if anyone). 

1.3 If any person is unassigned goto 1.1. 

Step 2 If£< ¾ Stop; else £ - £/2. People whose assignments are no longer £-optimal deassign 
themselves. 

Step 3 Goto Step 1. 

2.1.2 Jacobi vs. Gauss-Seidel 

Note that in the most general form of the algorithm any subset of those people unassigned can 
bid simultaneously. The two traditional parallel variants of the auction algorithm are the Jacobi 
version and the Gauss-Seidel version. By the Jacobi version we refer to an algorithm in which 
all unassigned people bid simultaneously on their favorite objects before the prices are adjusted, 
whereas in Gauss-Seidel only one person bids at a time. Since in the Gauss-Seidel version each 
bid takes advantage of the updated price information of all the previous bids, it usually takes 
fewer total bids to produce an optimal assignment. The Jacobi method, however, has greater 
potential for a massively parallel implementation. 

In general the terms "Jacobi" and "Gauss-Seidel" are not used solely with regard to the 
auction algorithm. "Jacobi" is used to refer to a method where the prices ( dual variables) at 
time t + 1 are updated only with respect to the information at time t, whereas a "Gauss-Seidel" 
iteration updates a dual variable with respect to the most recent information. Thus a Jacobi 
method allows the updating of all prices in parallel, whereas a Gauss-Seidel method allows two 
prices to be updated in parallel only if the update of one does not depend on the relevant values 
of the other. This Jacobi/Gauss-Seidel distinction is one of the primary differences between the 
two methods of multipliers we discuss. 

2.2 The Method of Multipliers Algorithm 

The method of multipliers (MOM) is a general method for a variety of problems in convex pro­
gramming (22] , [31]; we summarize here a specialization of the method to assignment problems 
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suggested in [6] and we refer the reader there for a full development and explanation of the algo­
rithm. Since the methods of multipliers we describe here are specializations of multiplier methods 
for linear programs, we first formulate the assignment problem as a linear program, and without 
loss of generality as a minimization problem. We let E denote the set of edges of the network; in 
our dense case E contains an edge (i,j) between every person i and object j. 

mm1ID1ze L a;i f;i 
{(i,j)EE} 

subject to 

L f;i = 1 Vi = 1, • • • n, 
{il(i,j)EE} 

L f;i = lVj =l,· •• n, 
{il(i,j)EE} 

O~f;i~l V(i,j)EA. 

We assign dual prices r; and Pi to the equality constraints. The method of multipliers for 
this problem results in a Gauss-Seidel iteration to minimize the Augmented Lagrangian. It has 
the form: 

Step O f;i - 0, r; - 0,Pi - 0. 

Step 1 Update the values off as follows 

f;i = [f;i + 
2
c~t) [r;(t) + Pi(t) - a;i + c(t)(y;(t) + wi(t))]] +, Vedges(i,j) 

where y;(t) and wi(t) are given in terms of f;i(t) by 

Y;(t) = (1 - J,··(t)) Vi - 1 ···n ., ' - ' 
{il(i,j)EA} 

wi(t) = (1 - L f;i(t)) , Vj = 1, · · ·n, 
{il(i,j)EA} 

c(t) is a nondecreasing sequence of of positive constants and [x]+ indicates the projection 
of x onto [O, l]. 

Step 2 At the end of the minimization yielding f;i(t + 1), y;(t + 1) and wi(t + 1) update the 
prices r; and Pi according to 

r;(t + 1) = r;(t) + cy;(t + 1), Vi = 1, • • •, n, 

Pi(t + 1) = Pi(t) + cwi(t + 1), Vj = 1, • · •, n 

Step 3 Check for convergence; if iteration has not converged goto Step 1. 
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2.3 The Alternating Direction Method of Multipliers 

The alternating direction method of multipliers(ADMOM), due to Eckstein [14], ta.kes a Jacobi 
approach to updating the augmented Lagrangian This method as well has a variety of appli­
cations to convex programming, [6], [14], [15], [16], [17]. The application of this method to 
the assignment problem results in a Jacobi-type algorithm which is more suitable for massively 
parallel computation than the method of multipliers. The iteration proceeds as follows. 

Step O /;i +- 0, r; +- 0,Pi +- 0. 

Step 1 Update the /;; as follows 

f;i(t + 1) = [f;i(t) + ;c [r;(t) + P;(t) - a;;+ c(y;(t) + w;(t))]r 'v'edges(i,j), 

r;(t + 1) = r;(t) + cy;(t + 1), 'v'i = 1, • • •, n, 

P;(t+ 1) = p;(t)+cw;(t+ 1),'v'j = l,···,n 

where y;(t) and w;(t) are given in terms of /;;(t) by 

y;(t) = ..!:_(l - L f;;(t)),'v'i = l,·••n, 
n {il(i ,i)EE} 

1 . 
w;(t) = - (1- L /;;(t)), 'v'j = 1, • · ·n, 

n {il(i,i)EE} 

and c is a constant. 

Step 2 Check for convergence; if iteration has not converged goto Step 1. 

Note that in ADMOM all the/;; can be updated simultaneously while MOM relies on y and 
w being up to date, and therefore only one value /;; can be updated in each row and column 
at a time. Therefore we can only do n updates at a time for MOM while we can do n 2 for 
ADMOM; however, due to the Gauss-Seidel nature of the minimizing iteration in MOM, we 
would expect that the algorithm would converge much more quickly. Furthermore the price 
updates for ADMOM are divided by the number of arcs incident to that node, which for dense 
problems is n. Therefore for large dense problems the prices will only change a small amount in 
each iteration and therefore the number of iterations has the potential to be large. 

3 Designs for Massively Parallel Implementation 

In this section we discuss the issues involved in implementing efficiently the algorithms of the 
previous section on a Connection Machine CM- 2. 
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3.1 The Connection Machine CM- 2 

The Connection Machine CM- 2 is a massively parallel computer with up to 65,536 processors. 
Each processor has a single-bit processing unit and 64K or 256K bits oflocal RAM. The processors 
run in SIMD mode and are connected in an n-cube topology. The system software provides global 
maximum operations as well as scan and spread operations that are parallel prefix operations 
[8]. The CM-2 uses a front end such as a SUN-4, VAX or Symbolics Lisp Machine. Parallel 
extensions to the programming languages LISP, C and FORTRAN, via the front-end, allow the 
user to program the Connection Machine and the front-end system. For further information see 
[12] and [23]. 

A Connection Machine can emulate a large number of processors by having each physical 
processor simulate a number of virtual processors. The ratio of the number of virtual processors 
to the number of physical processors is referred to as the virtual processor ratio, or vp-ratio. 
Using standard Gray coding the processors of the CM can be configured as a k-dimensional grid; 
to represent a n x n assignment problem we configure the CM as a N x N grid, where N is 
n rounded up to the nearest power of two. Row i is associated with object i and column j is 
associated with object j. In particular, processor ( i, j) stores the value a;i of object i to person j, 
local variables applicable to person j such as the most profitable object to that person, and local 
variables applicable to object i, such as its price. A specified number of virtual processors, along 
with a configuration of the machine, is called a vp-set, and it is possible to use several different 
vp-sets in the same computation and to switch between them when desired. 

A mapping of virtual processors in a grid to the physical processors of the CM is known 
as a geometry. The user has the freedom to dictate a variety of the features of this mapping. 
In particular we exploit the ability to specify which axes or directions of the grid should have 
more physical processors representing them, and which should have more virtual processors. 
In other words, we can specify that virtual processors that are adjacent along one axis are on 
different physical processors, and that processors that are adjacent on another axis are on the 
same physical processor. The mapping of the N x N grid onto the physical CM will differ among 
our implementations, and we will use alternate representations as well, but this is the basic 
representation common to all the codes. 

3.2 Massively Parallel Implementations of the Auction Algorithm 

In this section we discuss the implementation of the Jacobi and Gauss-Seidel variants of the 
auction algorithm, together with a new version that we refer to as a "hybrid" algorithm. 

3.2.1 The Jacobi Algorithm 

In the implementation of the Jacobi1 algorithm we have one N x N vp-set which is used both to 
store the data and for computation. It is mapped onto the physical CM processors in the default 
fashion, which balances the two axes so that they have a comparable physical processor/virtual 
processor makeup. A detailed summary of the Jacobi implementation is as follows. 

1 Preliminary experiences with this algorithm have already been reported on in [30]; it is included here for 
completeness and in order to present additional computational results. The description of the algorithm is adapted 
from that paper. 
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Number of Bidders Fraction of Iterations 

1 38.60% 
1-10 82.35% 

1-100 95.95% 
1-500 98.78% 

Table 1: Statistics on Number of Bidders active 

Step O We keep a copy of E in each processor. Using a global maximum operation and a broad­
cast, set E - (n + l)Ma. In each processor set 7f' - 0. We keep two boolean variables in 
each processor: assigned-here, which is True in processor (i,j) if object i is assigned to 
person j, and person-assigned, which is True in all processors of column j if person j is 
assigned to an object. In all processors set person-assigned+- False and assigned-here 
+- False. Also scale all values of a by n + 1. 

Step 1 Determine if everyone is assigned (a global or operation of person-assigned). If a person 
is unassigned proceed to Step 2. If every person is assigned to an object and E < 1 the 
algorithm terminates. If E > 1 reduce its value, deassign everyone whose current assignment 
is no longer €-optimal for the new E, and proceed to Step 2. 

Step 2 Select all the processors associated with unassigned people. Set profit +- a - 1r. Within 
each column j find the row index i; of the most profitable object by forming the concatena­
tion of the profit and column number j in each processor and doing a grid spread-with-max. 
Set best - i;. Turning off processor (best,j) do another grid spread-with-max to find the 
profit p of the next-best object and set next-best +- p. Person j bids on object best by 
setting the variable bid in processor (best, j). The value of the bid is computed as follows: 
Let %est,; be the maximum profit from all objects except best. The bid from j to best 

is abest,; - Wbest,j + €. 

Step 3 Using a grid spread-with-max along the rows, determine the maximum bid on each 
object and update the prices 7f' within the columns. For all objects bid upon, assign the 
object to the highest bidder by setting assigned-here. Update person-assigned using 
or-grid-scans within the columns. Go to Step 1. 

The CM has the ability to potentially perform thousands of bids at once; therefore, this 
seems to be a very attractive method for this architecture. However, this approach leads to 
a large sequential tail. Most people are assigned to objects very quickly, and the bulk of the 
computational time is spent in establishing the last few assignments, hence greatly reducing the 
amount of parallelism. Table 1 gives a typical breakdown of processor utilization encountered in 
a 1000 x 1000 problem with cost range [0 - 1000]. 

Two optimizations were implemented to minimize this tail effect. The first was to optimize 
the case when only one bidder was active: the preferred object for that sole bidder was found by 
a global maximum over all the processors as opposed to the more powerful but slower max-scan 
operation. The latter was unnecessary for the case of one bidder. 

The second optimization was the truncation of the tail: instead of running each phase until a 
complete t-optimal assignment was achieved, the auction was terminated when k% of the people 
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Problem Size Maximum Cost Speedup(its.) Speedup(Time) 

128 100 5.62 4.61 
128 1000 4.30 3.70 

256 100 3.23 3.28 
256 1000 7.37 6.35 

Table 2: Improvements in iterations and time gained by truncation of the tail. Each entry is an 
average over five randomly generated examples. 

have been matched. k increases as epsilon decreases, so that k = 100 in the last phase. This 
optimization resulted in substantial speedups. An implementation that initially matches only 
80%, and matches progressively more in successive phases does an average of 5.1 times fewer 
iterations than an implementation that completes each phase, on randomly generated problems 
of size 128-256. (See Table 2.) 

3 .2.2 The Gauss-Seidel Algorithm 

In this version, where we do one bid at a time, we must continue to store the n X n problem 
on the CM, which will necessarily be configured at a high vp-ratio. We would like, however, to 
perform the computations at a lower vp-ratio, and therefore more quickly, on a grid of reduced 
dimension. We introduce a mapping of the N x N grid to the physical machine that will enable 
us to extract the information necessary for one bid, and compute the bid in a vp-set with vp-ratio 
1. We do this in a fashion that requires no communication between the two vp-sets. 

We define the geometry of the N x N vp-set, which we will call data-vp-set, so that the y axis 
is physical. Processors ( i, j) and ( i, k) are on different physical processors for all j -:/= k. All of the 
virtual bits are along the x axis; processors (0,j),(1,j), ... ,(vp-ratio - 1,j) will all be mapped 
to the same physical processor, as will all processors (q,j), where q E [vp-ratio * k, vp-ratio * 
(k + 1) - l]. We define a second vp-set, compute-vp-set , of vp-ratio 1 that has N rows and 
(Number of Physical CM processors)/N columns. For example, if N = 1024 and we are working 
on a Connection Machine with 16,384 processors, compute-vp-set will be a 1024 X 16 vp-set (1024 
rows, 16 columns). A processor in compute-vp-set shares the same physical processor with 64 
processors in the data-vp-set. Note that an entire column in data-vp-set shares the same physical 
processors with one of the columns of compute-vp-set. We will transfer the information we need 
for one bid from data-vp-set to compute-vp-set by having a processor in compute-vp-set just point 
to the relevant data in data-vp-set. See figure 1. 

To execute the bid for the ith person we select his column cdata in data-vp-set, and identify 
the column in compute-vp-set with which it is coincident: Ccompute = L ca.,.t_ J . Each parallel vp-ra so 

variable has a pointer to the physical location where its data resides; we simply change the pointer 
of the parallel variable in compute-vp-set to point at the data in the data-vp-set. For example, in 
our 1024 x 1024 problem on a 16, 384 processor machine, suppose person 303 is bidding. All the 
relevant informat ion resides on the same physical processors as does column 4 of the compute 
vp-set. Pointers are changed so that column 4 points to the data of column 303 in data-vp-set, 
and the bid is carried out. Note that the price information need only be stored in compute-vp-set. 
The Gauss-Seidel algorithm is thus as follows: 
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Figure 1: The two vp-sets for the Gauss-Seidel algorithm, compute-vp-set and data-vp-set for 
a 1024 x 1024 problem on a 16K CM. Each vertical block of data-vp-set represents 64 virtual 
columns that all reside on the same physical column. Only 8 blocks are portrayed here. 
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Step 1 Pick an unassigned person and calculate with which physical column he is associated; 
set the appropriate pvars in compute-vp-set to point to his values. (Need to change only 
one pointer per pvar.) 

Step 2 In compute-vp-set, calculate his bid. (This requires two global maximum computations: 
one to calculate the best object and one for the next best.) 

Step 3 Update the price information, which only need be kept in compute-vp-set. 

Step 4 Goto step 1. 

In contra.st to the Jacobi implementation, where all information is kept on the CM, it is 
more efficient here to keep track of who is assigned, and to what object, in front-end lists and 
arrays. This avoids significant amounts of communication. In fact we utilize a copy of the a;i 
that is kept on the front end as well to calculate the bid and in this way avoid CM to front-end 
communication time. 

Note that from the end of one phase to the start of the next, when epsilon is decreased to c, 
often many of the €-optimal assignments from the previous phase are €!-optimal as well, and need 
not be recomputed in the next phase. In the Jacobi code these assignments are identified and 
preserved for the next phase; this is easy with a Jacobi representation since each assignment can be 
checked in parallel. In the Gauss-Seidel case, when this information is stored on the front end, it is 
a sequential computation to determine who is €!-optimal and thus we do not check. Not preserving 
these assignments does increase the total number of Gauss-Seidel bids, since we are throwing 
away information, but the gain in computation time outweighed the increase in iterations; thus 
we chose not to preserve them. We tested our Gauss-Seidel implementation against a sequential 
Gauss-Seidel implementation that we obtained from D.P. Bertsekas on problems of size 64 - 256 
and found that the number of bids they performed was comparable. 

3 .2.3 The Hybrid Jacobi/Gauss-Seidel Algorithm 

The Jacobi code is very efficient when a large number of people are unassigned and are bidding 
and the Gauss-Seidel code makes effective use of the machine when there are few active bidders. 
It can do one bid at a time very quickly and also decreases the total number of bids needed. These 
characterizations suggest that a better use of the CM is a hybrid combination of these approaches. 
Execute the Jacobi algorithm early in the phase when large numbers of people are unassigned. 
When most are assigned, switch to Gauss-Seidel. Note that several theoretical results have taken 
similar approaches in devising algorithms for the assignment problem with improved worst case 
running times [1], [20]. 

Making the transition from Jacobi to Gauss-Seidel will require a certain amount of communi­
cation of the data during a phase, since the way that the grids are mapped onto the Connection 
Machine is different for Jacobi and Gauss-Seidel. This cost is far outweighed by the gains in 
computation time. 

The hybrid algorithm uses two thresholds, threshl and thresh2. threshl determines in 
which phases we employ both methods; thresh2 determines when in the phase we switch to 
Gauss-Seidel. If a phase is aiming to assign k%, k% > threshl then we switch to Gauss-Seidel 
when thresh2 x k% of the people are assigned. Computational testing showed that for problems 
of size 1000 x 1000 and 2000 x 2000 the best setting of these parameters, although different for 
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Size cost Jacobi Bids Jacobi Iterations Average Parallelism GS Bids 
128 100 3837 147 26.49 1567 
128 1000 4114 215 20.77 2099 
256 100 10210 813 14.56 5102 
256 1000 9054 264 40.56 6244 

Table 3: Jacobi vs. Gauss-Seidel Statistics 

different cost ranges, was thresh! = thresh2 = 97 or 98. Interestingly, for both problems this is 
close to the y'n turning point used theoretically in [l). 

3.3 Massively Parallel Implementations of the Methods of Multipliers 

In contra.st to the auction algorithm, which only has the potential to do n bids at a time, MOM 
always does n updates at a time and AD MOM does n2 • Therefore these methods are very 
attractive for parallel computation. The description of the Connection Machine implementations 
of these algorithms is relatively straightforward given our previous discussion. We configure the 
Connection Machine as an N x N geometry, with equal preference given to the physical makeup 
of each axis, (as we did with the pure Jacobi auction algorithm). Each processor (i,j) stores the 
current value of fii, Pi, ri, Yi, and wi. For the ADMOM algorithm, we need merely to do one 
spread-with-add operation along each axis in order to calculate E{il(i,j)EE} fi;(t), Vi = 1, ... , n, 
and E {il(i,i)EE} fii(t), Vj = 1, ... , n; then all that is required is several arithmetic operations 
that all happen within each processor with no further communication required. For the MOM 
algorithm we must select groups of n processors such that only one processor is selected in each 
row and column. The strategy that we use is to select processors (i,j) such that i+ j = k(mod n), 
and loop over k = 0, ... , n - 1. 

4 Computational Results and Discussion 

In this section we discuss the performance of the two algorithms on dense problems. All the 
problem data was generated by the Connection Machine random number generator. 

4.1 The Performance of the Auction Algorithm 

The auction algorithms were initially implemented in a combination of *Lisp and Lisp/Paris and 
were run with a SUN4 front end. A comparison of the number of bids done by the Jacobi and 
Gauss-Seidel codes on problems of moderate size is given in table 3. We see that the Gauss-Seidel 
code can do significantly fewer bids than Jacobi, by as much as a factor of two or greater. We 
also see that, as expected, the average number of people bidding in the Jacobi code, is much less 
than n. 

Table 4 gives data on the running times of the algorithms on fully dense problems of size 
n = 1024, on a 16,384 processor CM2. Each running time is given in seconds and is the average 
of five problems. The Hybrid algorithm is faster than both the Jacobi and Gauss-Seidel codes 
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Size cost Jacobi Time Gauss-Seidel Time Hybrid Time 

1024 100 197.5/106.2 585.5/124.8 105.1/25.5 
1024 1000 414.2/219.5 242.7 /46.5 58.6/22.1 
1024 10000 276.7 /146.0 222.2/44.3 92.3/20.8 

Table 4: Running times of the algorithms, in seconds, averaged over five random examples. Both 
total and CM time are given. 

in all cost ranges; this was true as well for a number of smaller problem sizes. Further, this 
also held true for a variety of settings of the parameters of the code, such as factor by which we 
divide epsilon in each iteration, the initial percentage matched, etc. This led us to believe that 
the superiority of the hybrid approach was fairly robust with respect to modest modifications to 
the algorithms. 

Note that the total times are significantly larger than the CM times. This partially reflects 
the strategy of letting the front end execute as much of the inherently sequential part of the 
problem as possible, and partially reflects the slowness of the Lisp front end code. 

Based on this testing we chose the hybrid algorithm as the most successful and recoded it 
in C/Paris. The C front end code runs much faster, and this led to significant improvements in 
the overall running times; the discrepancy between front end times and CM time became very 
small. In tables 5 and 6 we give results on the performance of the algorithms on both 16K and 
32K machines, for problems of size 1000-2000, over various cost ranges. Both the total number 
of iterations and the number of Jacobi iterations are reported. Each number is the average of ten 
randomly generated examples; we used different sets of examples for the 16K and 32K machine 
in order to give some idea of the variation possible in algorithm performance over two similar 
sets of problems of the same size and cost range. 

The number of Jacobi iterations is surprisingly small, but during these iterations hundreds 
of bids are carried out at once. Another interesting fact is that for a specific problem size and 
cost range the number of Jacobi iterations is always about the same; for almost all size and cost 
ranges it was never more than five away from the average. 

We note that the cost range 100 for size 1000 problems is particularly difficult for our im­
plementation; this is reflected both in the increased number of iterations and in the fact that on 
approximately 25% of the random instances we generated the code ran for more than 100,000 
iterations, although it always terminated. After initial testing we ran each code only up to 100000 
iterations and thus those examples of size 1000 and cost 100 that ran longer are not included in 
the averages. 

We also note that given our vp-ratio 1 implementation of a Gauss Seidel bid, the time for one 
bid is not dependent on problem size or machine size as long as n is smaller than the size of the 
machine. Our code averages 1000 Gauss-Seidel bids per second on both a 16K and 32K CM- 2. 
This of course is not the case for the Jacobi phase, e.g. one Jacobi parallel bid for a 1000 x 1000 
problem on a 16K CM- 2 takes .07 seconds, whereas on a 32K machine one parallel bid takes .04 
seconds. 
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Size cost Time Total Iterations Jacobi Iterations 

1000 100 34.6 16252 128 

1000 1000 22.2 13637 119 
1000 10000 15.4 5031 141 
1000 100000 15.3 4923 144 

Size cost Time Total Iterations Jacobi Iterations 

1000 100 28.7 21850 126 
1000 1000 17.5 10141 120 
1000 10000 8.1 2000 141 
1000 100000 9.8 3578 144 

Table 5: Running times of the C/Paris hybrid auction algorithm on 1000 x 1000 problems. The 
top table is for a 16K machine, the bottom table for a 32K machine: Time is in seconds, averaged 
over ten random examples. 15 of the 20 examples with cost range [1 - 100] tested ran for more 
than 100000 iterations, and their running times are not included. 

Size cost Time Total Iterations Jacobi Iterations 
2000 100 60.2 2817 242 
2000 1000 96.3 60936 148 
2000 10000 60.4 23657 152 
2000 100000 57.9 18004 156 

Size cost Time Total Iterations Jacobi Iterations 
2000 100 33.5 2368 241 
2000 1000 50.3 22955 150 
2000 10000 45.3 26739 151 
2000 100000 36.3 15263 157 

Table 6: Running times of the C/Paris hybrid auction algorithm on 2000 x 2000 problems. The 
top table is for a 16K machine, the bottom table for a 32K machine. Time is in seconds, averaged 
over ten random examples. 
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Cost c= l c= 5 c= l0 c= 25 c= l00 c= 500 

100 (1000,2) ( 400,2) ( 400,2) (550,2) (1400,2) (5150,2) 

1000 (8130,3) (2880,10) (1540,10) (690,10) (620,10) (3450,8) 

10000 * * (9800,1) (6040,10) (1740,10) (730,10) 

100000 X X X X (7750,10) (2720,10) 

Table 7: Performance of ADMOM on dense problems of size 64. each combination of cost and 
c was tested on 10 randomly generated problems. The entry (x, y) = average of x iterations on 
the y/10 problems that converged within 10000 iterations. A * indicates that none of the tested 
examples in that category converged within the limit, and an X indicates that that category was 
not tested fully since preliminary testing indicated it was sure not to converge. 

4 .2 The Performance of the Multiplier M ethods 

We began by testing the methods of multipliers on small problems in order to understand their 
behavior. The performance of MOM and ADMOM on randomly generated problems of size 
64 x 64 and 256 x 256 is recorded in tables 7, 8, and 9. In table 8 the entry ( x, y) means that 
ADMOM ran for an average of x iterations before converging, and that it converged within 
10000 iterations for y /10 examples. We imposed an arbitrary cutoff here of 10,000 iterations. 
An asterisk indicates that the methods never converged with that parameter setting on that cost 
range; an X means that we did not test that combination fully since initial testing indicated it 
would not converge. Based on our experience with ADMOM and some preliminary testing of 
MOM we chose a reduced set of con which to carefully test MOM. Table 8 gives the results; here 
we imposed an larger arbitrary cutoff of 20000 iterations, since due to the Gauss-Seidel nature 
of the algorithm the number of iterations is expected to be larger. Ten random examples were 
considered for each cost range; again, * should be interpreted as meaning none of the random 
examples converged. 

The tests on the size 64 problems indicate that indeed the number of minimizations of the 
augmented lagrangian is much smaller for MOM than for ADMOM, but the tests on size 256 
problems, given in table 9, indicate that total number of iterations of MOM gets unmanageable 
for size 256 problems, since one minimization requires 256 iterations of the inner loop. A further 
feature of MOM is that fairly frequently it returns non-integral but very close to optimal solutions; 
this behavior was not observed with ADMOM. The number (out of 10) of solutions that were 
integral is recorded in the table 8 as well. 

Both methods were highly sensitive to choice of c, and different values of c were preferable 
for different cost ranges. 

Given this preliminary data we deemed it unnecessary to test MOM on 1000 x 1000 problems, 
due to its disappointing behavior on smaller ones. We did test ADMOM on dense problems of 
size 1000 x 1000, for c equal to each of 25, 100,500, 1000. We tested all 4 cost ranges with each c, 
on five randomly generated examples. None of the examples converged within 10000 iterations, 
which was approximately 2 minutes of time on a 32K CM-2. We thus conclude that for problems 
of this size MOM and ADMOM are inferior to a hybrid auction approach and in general not 
practical ways of solving large dense problems. 
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Cost c= 25 # Integral c= lO0 # Integral c= 500 # Integral 

100 (9850,10) 0 (18430,1) 0 (13300,9) 0 

1000 (5766,10) 7 (11460,9) 5 (16410,10) 1 

10000 (7360,10) 10 (3827,10) 9 (5887,10) 4 

100000 * 0 (12460,9) 9 (4530,10) 8 

Table 8: Performance of MOM on dense problems of size 64 of various cost ranges. 

Cost c= 25 c=25 c= lO0 c= lO0 c= 500 c= 500 

1000 (26.5,2) * (58.5, 2) * (196,1) * 
10000 (86,7) {181.7,2) (39.9,7) * (67.8,8) * 
100000 * * * * (57.7,10) * 

Table 9: Data on 256 x 256 problems. We imposed an arbitrary cutoff of 20000 iterations. First 
column for each value is ADMOM, second is MOM. 

4.3 Comparisons With Other Codes 

In table 10 we compare our computational results with those reported by [2], [26] and [27]. Our 
algorithm seems to be comparable or superior at cost ranges where the maximum cost is at least 
10 times the problem size, and compares particularly poorly in small cost ranges. To the best of 
our knowledge most of the computational studies on the auction algorithm started from a well­
developed and tested code authored by Dimitri Bertsekas and Paul Tseng, and thus incorporates 
their experience in testing this algorithm. Due to the different architecture on which we were 
working it was not possible to directly adapt this code, and we were interested largely in the 
issues involved in creating an efficient massively parallel implementation of this algorithm. We 
believe that some of the heuristics developed by Bertsekas and Tseng could be incorporated into 
our code in modified form and potentially significantly improve the number of iterations required. 

5 Conclusions 

We have seen that for large dense problems the two methods of multipliers take good advantage 
of the massive parallelism of the Connection Machine, but are not computationally effective 
methods for dense problems due to the large number of iterations required for convergence. The 
auction algorithm is more difficult to implement efficiently on the Connection Machine, but we 
have presented several methods to achieve an implementation that is competitive with the best 
MIMD algorithms on large problems. 

Our results raise the question of whether other currently known algorithms might perform 
even better in a massively parallel environment. One class of algorithms we have not implemented 
is that of shortest augmenting paths. The success of such an approach would depend heavily on 
the quality of the shortest path code utilized, however, and developing a sufficiently fast shortest 
paths algorithm seems difficult. A parallelized Bellman-Ford approach is subject to the same 
tail problems that we experience with network algorithms: most of the paths are found quickly, 
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Cost Hybrid Balas et. al Kempka Kennington Zaki Zaki Kennington Wang 
100 28.7 2.01 .758 .56 5.22 
1000 17.5 9.39 12.083 12.49 8.27 
10000 8.1 11.70 11.48 11.98 11.34 
100000 9.8 - - - 13.61 

Cost Hybrid Balas et. al Kempka Kennington Zaki Zaki Kennington Wang 
100 33.5 5.52 3.813 1.55 -
1000 50.3 23.20 255.56 257.2 -
10000 45.3 30.09 32.96 32.8 -
100000 36.3 - - - -

Table 10: Comparison of the hybrid auction code on a 32K machine with other parallel codes. 
Times are given in seconds; the top table is n = 1000 and the bottom is n = 2000. We compare 
with the Jacobi auction code results of Kempka, Kennington and Zaki, the Gauss-Seidel auction 
code results of Zaki, and two SAP codes. These codes are discussed in the introduction. An 
entry with a - - indicates those researchers do not report results for that range. 

and most of the machine sits idle while the last paths are completed. Further, the methods we 
used to do each Gauss-Seidel bid at vp-ratio 1 do not transfer to the shortest paths problem. 
However, if a fast shortest paths code could be developed, a hybrid algorithm that uses the 
auction algorithm to assign all but a small number of people and then completes the assignments 
via shortest augmenting paths might be competitive or superior to our hybrid algorithm. The 
shortest augmenting paths codes that we discussed in the introduction are a similar hybrid 
approach. 

Massive Parallelism is best exploited in problems where there is little complex communication 
and a huge amount of data that must be processed at every moment. Our experiences with the 
auction algorithm as a method to solve the assignment problem indicate that it does not fall into 
this paradigm. This is not an isolated phenomenon, but appears in a number of combinatorial 
approaches to optimization problems (32]. We have, however, established several methods that 
can bring combinatorial techniques closer to fast implementations on massively parallel archi­
tectures. It would seem that currently the best approach is to utilize massive parallelism while 
the problem continues to be massively parallel, and then to switch to another technique that is 
better suited to the tail of the problem. We have yet, however, to produce CM techniques for 
this problem that are significantly better than smaller scale MIMD machines. It is a challenging 
open problem to more fully exploit massive parallelism in this field. 
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