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Abstract 

We consider the problem of approximating the average value of an arbitrary function 
defined over a large space (say of size 21) in a randomness-efficient manner (i.e. using few coin 
tosses). The sampling method generates poly(c 1 , log 0- 1 , /) sample points using 0(/ +log o- 1 

• 

log/) coin tosses, with the guarantee that with probability 2: 1-8, the average of the function 
values at the sample points differs from the average value of the function by at most €. 

As an application we show how to reduce the error probability of Arthur-Merlin games to 
an exponentially small amount in a randomness-efficient manner. 

Keywords: randomness, pseudo-randomness, sampling, universal hash functions , interactive 

proofs, Arthur-Merlin games. 
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1 Introduction 

The problem of approximating the average value E[f) ~ 2- 1 
Lxe {o,i}z J( x) of an arbitrary func

tion f : {0, 1}1 ----* [O, 1) arises in many applications. We will be interested in randomness-efficient 
constructions of a primitive (which we call (l,t,8)-sampling) for implementing such approxima
tions. We begin by discussing this primitive and related work. We then describe the application 
which motivated its construction: randomness-efficient error-reduction for Arthur-Merlin games. 

1.1 (l, c, 8)-Samplin g an d Our R esu lt 

An (1, €, 8)-sampler may be informally described as a randomized, polynomial t ime process which 
outputs a sequence of m sample points x 1 , •• • ,xm E {O, 1}1 such that: for any function f : 

{0,1}1- [0,1) it is the case that 

P [ \,!. 'I:~if(x;) - E[JJ\ < €] ~ 1- 8 . 

Notice that we place no restriction (as of polynomial time computability, for example) on the 
function f - the sampler must be able to approximate any function with high probability. More
over the sampler is independent of the function f it will approximate - in particular, it does not 
evaluate the function. Both these properties are important to our application. 

We will be interested in designing samplers which use few random bits. (A related concern is 
the number m of sample points which must remain at least polynomial). Previous randomness
efficient sampling techniques have suffered from one of two drawbacks: either (1) they serve to 
approximate only a restricted class of functions (such as boolean functions [AKS],[CoWi),[IZ)), 
or (2) they generate a number of sample points proportional to s-1 (rather than log s-1

) and 
thus cannot be used when the desired error probability is exponentially small. We present a 
construction which suffers from neither of these drawbacks: our main result is the construction of 
a (l, €, 8)-sampler which outputs poly( c1, log s-1 , l) sample points using O(l + log s-1 

- log l) coin 

tosses. 

1.2 Previous and R elated Wor k 

The straightforward procedure for sampling is of course to just select m = 0( c 2 log s-1
) inde

pendent and uniformly distributed sample points. This yields an (l, €, 8)-sampler at the cost of 
0( ml) coin tosses. 

Dramatic savings in the number of coin tosses is possible by selecting 0( c 2 s-1
) pairwise 

independent sample points (cf. [CG)). This yields a (l,t,8)-sampler at the cost of 21 coin tosses. 
However, the number of sample points here grows inversely proportional to the desired error 
probability 8, and thus this method cannot be applied when this desired error probability is 
exponentially small. 

An alternative sampling method for the special case of boolean valued functions (i.e. f takes 
on only the values O and 1) is based on selecting a random walk on a 21 node explicitly con
structed expander graph ( cf. [AKS),[CoWi),[IZ]). This method yields a (l, ½, 8)-oblivious sampler 
of boolean functions which outputs O(log s-1 ) sample points using l + O(log s-1

) coin tosses t . 
A sampling primitive of a slightly different flavor was recently constructed by Goldreich [G) . 

He outputs a collection of mk = 0 ( c 2 log s-1 ) sample points x½, .. . , x~, • • • , xt, .. . , x~ grouped 

t One can obtain an (l, t, 8)-sampler of arbitrary functions by using the ideas of [IZ], but this will require 
n( C 2 log s- 1 ) sample points generated using l + 0( t -

2 log s- 1
) coin tosses. 
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into k = O(log <5-1 ) blocks of m = 0( c 2 ) points each wi_th the property that, with probability 
2:: 1 - 8, the average value of f on block j (i.e. I:?::1 J( xi)) differs from E[f] by at most E for a 
majority of the blocks j. His method uses only 0(l + log 8- 1

) coin tosses. 
Although potentially weaker than (l, E, 8)-sampling, Goldreich's primitve can be used to im

plement the application to the randomness-efficient error reduction of Arthur-Merlin games which 
we discuss next. 

1.3 Application: Randomness-Efficient Error-Reduction for Arthur-Merlin 
Games 

An Arthur-Merlin game [B],[BM] is a two-party protocol played by an all-powerful "prover", 
called Merlin, and a polynomial-time "verifier", called Arthur. The game is played on a common 
input (and its purpose is to convince Arthur that the input belongs to some predetermined 
language). Arthur's role in the process is restricted to tossing coins, sending their outcome and 
finally evaluating a polynomial-time predicate applied to the common input and the full transcript 
of the interaction. 

As such they are a special form of interactive proof systems [GMR], but their language recog
nition power has been shown to be equal to that of interactive proof systems [GS]. 

Usually we say the a language L possesses an Arthur-Merlin proof system if the error proba
bility on any input w (the probability that Arthur accepts if w 1 Lor rejects if w E L) is ~ ½
The error probability can be decreased to 2-k for any k = k( n) ~ n°(1

). We are interested in 
implementations of this error-reduction process which have the additional property of preserving 
the number of rounds. Our concern will be Arthur's cost in randomness (per round). 

In the standard implementation [B],[BM] one builds a new game in each round of which 
Arthur sends 0(lk) random bits (where l is the number of random bits Arthur uses per round in 
the original game). An alternative construction presented by [BG] reduces the error probability 
to 2- k at the cost of 0(l + gk) random bits per round (where g is the number of rounds); this 
saves random bits compared to the O ( lk) per round of the standard method as long as g is small 
compared to l. 

As an application of our (l, E, 8)-sampling techniques we show how to reduce the error proba
bility to 2-k at the cost of 0( l + k log l) random bits per round. This saves random bits compared 
to the standard method for all values of the parameters l, k, g, and is an improvement on the [BG] 
result as long as log l = o(g ). 

Goldreich [G] has recently improved this to only 0(l + k) random bits per round using his 
block sampling techniques mentioned above. 

2 Sampling Using t-wise Independence 

In this section we describe how to implement the sampling primitive using few random bits. We 
begin with a more precise specificat ion of the primitive. Next we introduce the two major tools 
we will use: t-universal hash functions and the t-wise independence tail inequality. 

We first construct, as an illustration of our methods, a simple sampler which nonetheless 
gives a non-trivial savings in coin tosses. We then present an iterated sampling technique which 
significantly reduces the number of random bits used. Finally we specify the sampler that results. 
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2.1 (l, c, 8)-Sampling 

D efinition 2.1 Let l : N-+ N and E,O : N -+ [0,1]. An (l,E,o)-sampler is a randomized, 
polynomial time algorithm which on input 1n outputs a sequence of points x1, ... ,xm E {0,1}

1
(n) 

such that: for any collection of m functions Ji, ... , fm: {O, 1}1(n)-+ [O, 1] it is the case that 

P ( I! ~~ifi(xi) - E[fi]I < E(n)] ~ 1 - o(n) 

(where E[fi] = 2- l(n) ~xE{O,i}Z(n) f;(x)). 

Notice that this definition is slightly more general than what we discussed in §1.1 since we are 
talking about approximating a collection of functions rather than a single function. This will be 
important for our application. 

The points x 1, ... , Xm are called the sample points, and we refer to the sequence of coin tosses 
used by the sampler as the seed. 

2.2 t-Universal Hash Functions 

D efinition 2 .2 A collection H of functions mapping n bits to m bits is t -universal if for all 
distinct x1, ... , Xt E {O, l}n and all y1 , . . . , Yt E {O, 1 }m, picking h at random from H implies that 
(h(x1), .. . ,h(xt)) =(YI,·· . ,Yt) with probability exactly 2- tm. 

For the rest of this section, Ht( n, m) will denote at-universal collection of hash functions mapping 
n bits tom bits in which the description of a function uses t • max(n,m) bits (cf. [CaWe)). 

2.3 The t-wise Independence Tail Inequality 

Definition 2 .3 A collection of random variables {Xi}f=1 is t -wise independent if for any a1, .. . , at 
and any t distinct indices i1 , . . , ,it it is the case that P [Xi1 = a1, , ,.,Xit = at]= TI}=1 P[Xij = 
aj] , 

The t -wise independence tail inequality is a Chernoff-type bound for the sum of a collection of 
t-wise independent random variables. 

Lemma 2.4 (The t-wise Independence Tail Inequality) Let t ~ 2 be an even integer. Suppose 
{Xi}f=1 is a collection oft-wise independent random variables in the range [O, l] . Let X = 
X1 + · · · + Xn andµ = E[X], and let A > 0. Then 

( 
nt )t/2 

P[IX - µj ~ A] ~ V4rl eA2 • 

Remark: If t ~ 4 then 

V4rl (e:2 y12 < (:; y/2 ' 
and it is this simpler bound that we will use. 

Berger and Rompel [BR] prove the same bound for the restricted case of random variables which 
are +1 or -1 with probability ½ each. 

For a proof of Lemma 2.4 see Appendix A. 
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2.4 A Simple Sampler 

Using t-wise independent hash functions we can construct a very simple ( l, €, b}sampler as follows . 
The sampler takes as input a randomly selected element h from Ht(d,l), where d 2: lgm, and 
outputs h(l), .. . ,h(m) (identifying {O, l}d with {1,2, ... ,2d}). We use the t-wise independence 

tail inequality to specify m and t. 
Let Y; = fi(h(i)) for 1 :::; i :::; m. It follows from the definition oft-wise independent hash 

functions that {Y;}f;,
1 

is a collection oft-wise independent random variables in the range [O, l] . 
Thus the t-wise independence tail inequality will hold to bound Y = I:~1 Y;. In particular, 
assume t is an even integer 2: 4. Then we have 

P[IY-E[Y]l 2:em]:::; ((e:)2r
12 

= ()mY
12 

· 

But the left hand side is just 

P [ II::':J;(xi) - I:;':1E[f;]\ 2: em] = P [ I~ I:~1 /;(xi) - E[fi]I 2: c ] 

Since we want this probability to be less than o, it suffices to have 

0 2: 

or equivalently, 
t 

m 2: £202/t 

Restating the above, we have the following lemma. 

Lemma 2.5 Let t, m, d be integers such that t 2: 4 is even, m 2: ! 2J27t, and d 2: lg m. Then 

for any collection of m functions Ji, ... , fm : {O, 1}1 -+ [O, 1], picking h at random from Ht(d, l) 
implies that 

Next, observe that this sampler uses t • max(d,l) bits. This leads us to think that we just make 
t as small as possible and mas large as necessary to minimize the number of bits. However, we 
have another constraint: m must be bounded by a polynomial in the input size. Requiring that 
m be polynomial inn and optimizing, we get t = log s-i and thus use O ( 111gs-i +logo-1

) log nO(lJ ogn 

random bits. 

2.5 Iterated Sampling 

In the previous section, we showed how to sample a collection of functions using t-wise independent 
hash functions. The number of bits we used to (l, £, 8)-sample, for fixed€ and 8, was proportional 
to the logarithm of the domain size of the functions and roughly inversely proportional to the 
logarithm of the size of the sample. Given a set of functions with a fixed domain size, this 
suggested that we simply make our sample as large as is tolerable (i.e. polynomial). 

In this section we will improve our bounds by iterating the sampling primitive of the previous 
section in a novel manner. Roughly, the idea is to take a large sample and then take a smaller 
sample of the first sample. Each of these samples will require many fewer bits than our original 
method: the first because the sample is larger; the second because we are sampling a smaller 
space. Our sampler becomes the composition-of two randomly chosen hash functions. Note that 
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our first sample can be superpolynomial in size-we only sample a polynomial number of its 
points. This idea can then be improved by taking a sequence of smaller and smaller samples 
instead of just two. 

First we need a variant of Lemma 2.5. The reason is that we actually think of sampling each 
function individually except for the final sample. 

Lemma 2.6 Let t, d be integers such that t ~ 4 is even and 2d ~ f 2 ; 271 • Then for any function 

f: {O, 1}1 - [O, 1], picking h at random from Ht(d, l) implies that 

P[IE[foh] - E[f]l<E] > 1 - 6. 

Proof: Let m = 2d. The probability of failure is 

P [ IE[f oh] - E[f]I ~ E] = P [ 1~~1 f(h(i)) - mE[f]I ~Em] 

By the t-wise independence tail inequality this is bounded by 

(
...!!3:!._)t/2 = (-t- )t/2 ~ (62/t)t/2 = 6. ■ 
(Em)2 E2m 

Now we can combine Lemmas 2.5 and 2.6 to obtain a new sampling lemma. Our sampler will be 
the composition of a sequence of length doubling hash functions. This represents a sequence of 
samples in which the size of each sample is the square root of the size of the preceding sample. 

Lemma 2. 7 Let r, m, d be integers and t1, ... , tr even integers ~ 4. Suppose d ~ lg m and 

2r- id tj ( . and tr 2 ~ €262/t; J = l,'.' 'r - l) m ~ €262/tr 

Then for any collection of m functions Ji, ... , fm : {O, 1}2rd 
- [O, 1], picking hj at random from 

Ht;(2r-id,2r-i+1 d) implies that 

P [ I¾ ~~1(fioh1 o, · · ohr )(i) - E[fi]I < rE] ~ 1 - r6. 

Proof: Let f = ¾ ~~1 k We first claim by induction that for O ~ j ~ r - 1 

p [ IE[(! O h1 O · · · 0 hj)] - E[fll < JE] ~ 1 - j6 . 

The base case (j = 0) is immediate, and the induction step is just Lemma 2.6 (using foh1 o-• -ohj-l 
as the function). The final step is to apply Lemma 2.5 (using {fioh1 o-• -ohr-d~1 as the collection 
of functions). ■ 

2.6 Our Sampler 

We now optimize the parameters to get a particular sampler. In this optimization, there is a 
trade-off between the number of sample points the sampler outputs and the number of random 
bits it uses to do this. As we have seen, for polynomially bounded error 6 we can use fewer random 
bits by allowing the number of sample points to grow proportional to 6-1 (rather than log 6- 1 ) . 

For maximum generality we will thus consider an error of the form 61 62 where we assume 61 is 
~ nO(l). 

Theorem 2.8 Suppose l: N - N is~ nO(l) with logn = o(l), and E,61 ,62 : N - [0,1] are 
> 0 with c1,611,log621 ~ n°<1l. Then we can construct an (l,E,6162 )-sampler which outputs 
m = 0( c 6 log6 l + 611 log l + log3 6'i1

) sample points using 0( l + log 621 
- log l) coin tosses. 
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Proof: We apply Lemma 2.7. Let m = max(c6 log6 l,811 logl,[12(1 + log82
1 )]3) and r 

log(l/logm). Let the€ of Lemma 2.7 bee/rand the 8 be 81 82/r, and let 

t
3
- = . 12 

(2r- j+1 1og m + log 82-
1

) (j = 1, .. . , r) • 
2r- J+l log m 

The conditions of Lemma 2. 7 can now be verified . ■ 

3 Randomness-Efficient Error-Reduction for Arthur-Merlin 
Games 

In this section, we apply the results of §2 to derive a randomness-efficient method of reducing 
the error probability of Arthur-Merlin proof systems. We begin with a review of Arthur-Merlin 
games and proof systems and the standard method of error-reduction. We then discuss the ideas 
of our protocol and the particular (l, €, 8)-sampler it requires, and conclude with a proof of our 
randomness-efficient error-reduction theorem. 

3.1 Arthur-Merlin Games 

An Arthur-Merlin game is a two-party protocol played by an all-powerful "prover", called Merlin, 
and a polynomial-time "verifier", called Arthur. The ga.me is played on a common input (and its 
purpose is to convince Arthur that the input belongs to some predetermined language). Arthur's 
role in the process is restricted to tossing coins, sending their outcome and finally evaluating a 
polynomial-time predicate applied to the common input and the full transcript of the interaction. 

Let w denote the common input to the (Arthur-Merlin) game, n = lwl its length, l(n) the 
length of Arthur's messages, q( n) the length of Merlin's messages, and g( n) the number of rounds. 
We denote by p( w, C) E {O, 1} Arthur's decision on input wand conversation C. The conversation 
C can be parsed uniquely into Arthur's and Merlin's messages: C = r1 y1 

.• . r9y9, where rt is 
Arthur's t -th message and yt is Merlin's response (we assume that Arthur plays first and Merlin 
second in each round). A strategy for Arthur, A = (p,g, l, q), consists of the decision predicate p, 
as well as (polynomially bounded) functions specifying the number of rounds and the length of 
messages sent in each round by each party. For sake of simplicity we assume that the length of 
the messages sent in each round is independent of the round. 

Let M be a strategy for Merlin (i.e. M determines the next message of Merlin based on the 
common input and the messages received so far from Arthur) . We denote by P[(A, M) accepts w] 
the probability that p( w, C) = 1 when C is chosen at random (the probability space is that of 
all possible choices of r1 , . • • , r9 (1wl) taken with uniform distribution, and the yt being set to 
M(x, r1r2 . • • rt)). 

Definition 3.1 We say that the Arthur strategy A defines an Arthur-Merlin proof system for L 
if the following conditions hold: 

(1) 

(2) 

Completeness: There exists a Merlin strategy M such that P[ ( A, M) accepts w ] ~ 
every w EL. 

Soundness: P[ ( A, M) accepts w] ~ ½ for every Merlin strategy .M and every w (/. L . 

1 for 
3 

The strategy .M in the soundness conditions is sometimes called a cheating Merlin, while the 
strategy M in the completeness condition is called the honest Merlin. In fact, it suffices to 
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subgame 1 subgame 2 subgame m 

Arthur's message: r½ rl 
2 

rl 
m 

Merlin's response: y} yJ y~ 

grounds 

Arthur's message: rg 
1 

rg 
2 r9 

m 

Merlin's response: yf ~ yfn 

Figure 1: Framework of the Standard Error-Reduction Protocol 

consider (in both conditions) an "optimal Merlin", MoptA, that chooses all its messages in a way 
maximizing Arthur's accepting probability. Note that MoptA depends on A. 

We define A's accepting probability function on partial conversations as follows ( cf. [B],[BM]): 

• ace( w , r 1y1 ... r9y9) = p( w, r 1y1 . .. r9y9) 
• acc(w,r1 y1 •• • rtytrt+1 ) = maxy acc(w,r1 y1 ... rtytrt+1 .y) fort= g(n) - 1, . . . ,0 
• ace( w, r 1 y1 ... rtyt) = Er ace( w, r 1 y1 .. . rtyt .r) for t = g( n) - 1, ... , 0. 

The following 

Proposition 3.2 For any fixed history r1 y1 
... rtyt one has 

ace( w, r1y1 ... rt-lyt-1 .rtyt) ::; ace( w, r1y1 ... rt- 1yt-1.rt) 

with equality holding if yi = M opt A ( r 1 . .. ri) for each j = 1, ... , t. 

(which we will use later) is just a restatement of the definition. 

A's accepting probability on input w is ace( w) ~face( w, .X). The error probability of A on input 
w (with respect to a language L) is defined as 

{ 
1 - acc(w) if w E L 

errL(w) = 
ace( w) otherwise. 

The error probability of A (with respect to L) is eL : N -+ (0, 1] defined by eL( n) = suplwl=n errL( w ) . 

(Thus an Arthur strategy A defines a proof system for L if eL ::; ½), 

3.2 Error-Reduction and its Standar d Implementation 

Error-reduction is the process of reducing the error probability of an Arthur-Merlin proof system 
from½ to 2-k for a given k = k(n)::; n°<1) . We review the standard method of error-reduction 
(B],(BM]. 

Given A = (p, g, l, q) defining an error ::; ½ Arthur-Merlin proof system for L we want to design 
A* defining an error ::; 2- k Arthur-Merlin proof system for L. The solution is to play in parallel 
m = 0 ( k) independent copies of the old game ( the one defined by strategy A). The independence 
of Arthur's moves in the various "subgames" is used to prove that the error probability decreases 
exponentially with the number of subgames. 

More concretely, A* will, in round t, send ml random bits to Merlin. These bits are regarded 
as a sequence ri .. . r:n of m different round t messages of A. Merlin then responds wit h strings 
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subgame 1 subgame 2 subgame m 

Arthur's message s1 specifies: rl r½ rl 
1 m 

Merlin's response: Yi Y½ y;,. 
grounds 

Arthur's message sg specifies: rg 
1 ~ r9 

m 

Merlin's response: Yi ~ yfn 

Figure 2: Framework of Our Error-Reduction Protocol 

Yi ... y~, and yf is regarded as the response of Merlin to r; in the i-th subgame ( i = 1, ... , m) . 
This continues for grounds (see Figure 1). 

Finally, A* will accept in the new game iff a majority of the subgames were accepting for the 
original A. That is, A* accepts iff I{ i : p( w, r}y} ... rf(n)yf(n)) = 1 }I 2: m~n) . 

The bound on the error probability of the new game follows from the fact that the coin tosses 
used by Arthur in the different subgames are independent. However, the cost of this argument 
is in the large number of coin tosses used by A*; namely O(lk) coin tosses per round (to be 
contrasted with the l coin tosses used in each round of the original game). 

3.3 Overview of Our Protocol 

We will run m subgames in parallel (with m appropriately chosen). In each round t Arthur 
sends a random seed st of a sampler G ( whose parameters we will specify later). This specifies a 
sequence rl ... r~ of messages that will play the role of A's t-th round messages. Although the 
same pseudo-random process is used at each round t, it will be with a completely new random 
seed st. At the end, A* will accept iff a majority of the su bgames were accepting ( see Figure 2 ). 

We emphasize that Arthur sends a seed st and both parties then compute the sequence of 
messages by running the sampler with st as coin tosses. 

The difficulty now is that a cheating Merlin might be able to capitalize on the dependency 
between the subgames. That is, although an honest Merlin would compute Y! based only on 
rtyf .. . r;- 1 y:-1 (like the honest Merlin for the original protocol) a cheating Merlin could compute 
the string Yi ... y~ based on the entire submatrix above this string. Clearly we cannot prevent 
Merlin from following such a strategy. Using the properties of the sampler however, we can show 
that no such strategy would help. 

We will guarantee that at each round the average accepting probability of them sub games on 
the sequence specified by the seed approximates the average accepting probability of a sequence of 
independently chosen messages. That is, assuming s1 , ••• , st-I specifying Ti ... r;,. , ... , rt1 

... r;,-;-1 

have been chosen, we guarantee that with high probability we have 
1 "°'m ( 1 1 t-1 t - 1 t) ~ 1 "°'m E ( 1 1 t-1 t -1 ) m L.,i=laccw,riYi·· • ri Yi .ri ~ mL.,i=l raccw,riYi··•ri Yi .r 

for the random choice of st (where r1 .. . r;. is the sequence specified by st). If all seeds selected 
provide good approximations in this sense then the rate of accepting subgames (in the new 
game) will approximate the accepting probability (in the original game). Hence, it all amounts 
to selecting a sampler which guarantees that all g approximations are "good" with very high 
probability. 
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3.4 The Sampler for Error-Reduction 

The sampler which we will use to generate the messages at each round is specified by the following 

Theorem 3.3 Let g,l,k : N - N be :S nO(l) with logn = o(l). Then we can construct a 

(z, /
9

, 
2;k ) -sampler which uses O (l + k log l) coin tosses. 

Proof: Apply Theorem 2.8 with E = /
9

, 81 = ½, and 82 = 2- k. ■ 

3.5 Randomness-Efficient Error-Reduction Theorem 

Theorem 3.4 Suppose A = (p, g, l, q) is an Arthur strategy that has error probability :S ½ with 
respect to L. Then we can construct an Arthur strategy A*= (p*,g,O(l + klogl),q*) which has 
error probability :S 2-k with respect to L . 

We distinguish two cases. The first is when l = O(logn) for which we may prove the statement of 
Theorem 3.4 using just the simple sampler of §2.4. We omit that proof and proceed to the more 
interesting case of log n = o(l). 

Let G be the (1, 6~, 2;k) -sampler specified by Theorem 3.3. Let m be the number of sample 

points that it outputs and s = 0( l + k log l) the number of random bits it uses. The new Arthur 

strategy is A*= (p*,g,s,mq) where p*(w,s1 y} ... y":n(n) ... ... s9 (n)yf_(n) . .. ~(2)) 

= { 1 if I{ i: p(w,Gi(s1 )y; ... Gi(Sg(n))yf(n)) = 1 }I~ m~n) 

0 otherwise 

(n = lwl and Gi(st) denotes the i-th coordinate of the output of Grun with coin tosses st E 
{O, 1}5(n)). 

For the analysis, let Yi .. . y;. be Merlin's response in round t. 

Proposition 3.5 For each fixed history s1 ·Yi ... Y°:n • • • st-l ·Yi-l . .. y;;;-1 we have 

p [ 11 ""m ( 1 1 t - 1 t - 1 t) ( 1 1 t-1 t-1)1 1 ] > 1 _ 2-k mL....i=Iaccw,riYi··•ri Yi .ri -accw,riYi··•ri Yi <6g - g 

where r{ . .. rfn is the sequence specified by si and the probability is over the random choice of st. 

Proof: The sampler guarantees that 

P [ I! ~~1 acc(w,r;y; ... r;-1y;-1 .rD - E racc(w,r;y[ ... r;-1y;-1.r)I < f
9

] > 1- 2
/. 

But by definition of the accepting probability function (see §3.1) we know that 

E ( 1 1 t-1 t - 1 ) ( 1 1 t - 1 t-1 ) r ace w,riYi ... ri Yi .r = ace w,riYi ... ri Yi , 

and the Proposition follows. ■ 

The proof is completed by considering separately the cases of w E L and w <f. L. 

Claim 3.6 Suppose w E L. Then there exists a Merlin strategy for which A* accepts with proba
bility ;::: 1 - 2-k. 
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Proof: We choose the particular strategy of setting yf = MoptA ( rf ... rD where as usual r{ ... rt, 
is the sequence specified by si. By Proposition 3.2 we know that 

( 
1 1 t - 1 t - 1 t) ( 1 1 t - 1 t - 1 t t) ace w, ri Yi ... ri Yi .ri = ace w, ri Yi ... ri Yi .riYi . 

By t applications of Proposition 3.5 it follows that at the end oft rounds we have 

P [ ! I:~1 acc(w,r}y{ ... rfyD > acc(w) - ig] 2 1 - t2;k . 
Thus at the conclusion of the game (t = g) we are guaranteed that 

P [ ¼ I:~ 1 acc(w,rty{ . . . rfyf) > acc(w) - ¼] 2 1 - 2- k . 

But ¼ I:~1 ace( w, rhl ... rf yf) is just the fraction of accepting subgames. Since ace( w) 2 ~ we 
conclude that with probability 2 1 - E a majority of the subgames accept. ■ 

Claim 3 .7 Suppose w (/ L. Then A* accepts with probability~ 2- k. 

Proof: By Proposition 3.2 we know that 

( 1 1 t-1 t-1 t t) < ( 1 1 t - 1 t - 1 t) accw,riYi··•ri Yi .riYi _ accw,riYi ·· ·ri Yi .r;. 

By t applications of Proposition 3.5 it follows that at the end oft rounds we have 

P [ ¼ I:~1 acc(w,r;y; . .. r!y!) < acc(w) + i9] 2 1 - t2;k . 
Thus at the conclusion of the game (t = g) we are guaranteed that 

P [ ¼ I:~1 ace( w, r;y{ ... rf yf) < ace( w) + ½ ] > 1 - rk 
and the conclusion follows from the fact that ace( w) ~ ½. ■ 

4 Concluding Remarks and Open P roblems 

Our main result is the construction of an ( l, E, 8)-sampler using (l + log s-1 - log l) coin tosses. Can 
this be improved to O(l + log8-1 ) coin tosses? 

We point out that although our randomness-efficient error-reduction result has been improved 
to use only 0( l + k) random bits per round, it is still open whether the underlying ( l, E, 8)-sampling 
primitive can be implemented with O(l + log s-1 ) coin tosses. 

Other tasks are to decrease the number of sample points while keeping the number of coin 
tosses the same, and to find more applications of the (l, E, 8)-sampling primitive. 
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A Appendix: Proof of the t-wise Independence Tail Inequality 

The line of reasoning used by [BR] extends to this more general case. First, it suffices to appro
priately bound the t-th central moment: one shows that 

E[ ( x _ µ ll s; ..f4;rt ( :t r12 

and then obtains Lemma 2.4 by an application of Markov's inequality. Second, observe that by 
linearity of expectation, the t-th central moment of the sum of a collection oft-wise independent 
random variables is the same as the t-th central moment of this sum under the assumption that 
the random variables are fully independent. So our work reduces to showing 

Lemma A.1 Suppose X1 , ... ,Xn are independent random variables in the range [O, 1], X 
X1 + · · · + Xn, µ = E[X], and t ~ 2 is an even integer. Then 

E[(X - µ)t] ~ ..f4;rt (:tr/2 
The proof Lemma A.1 is facilitated by the use of integrals to express the expectation and make 
the estimates. It also uses standard Chernoff bounds. Let us begin by recalling the relevant facts. 

A.1 Facts 

The following Chernoff-type bound is well known: 

Lemma A.2 Suppose Xi, . .. ,Xn are independent random variables in the range [0, 1], X 
X1 + · · · + Xn, µ = E[X], and a > 0. Then 

P [IX - µl>a] < 2e-a
2

/
2n. 

A simple well known expression for the expectation is 

Lemma A.3 Let Z be a non-negative real valued random variable. Then E[Z] = f0
00 P[Z > x]dx. 

Finally we need 

Lemma A.4 Let a > 0 and t ~ 2 an even integer. Then 

roo e-Olx2ft dx s; ,,/it (-t-) t/2 
Jo 2ea 

Proof: With the change of variable y = ax2 ft the integral becomes 

(;) t/2 ½ fooo y½-le-Ydy. (1) 

We claim that 

foB yce-Y dy = c! ( 1 - e-BI:~=O 1i) (2) 

for B ~ 0 and integer c ~ 0, and thus the integral of equation (1) is bounded above by 

(¾Y
12 

½ (½ - 1} = (¾Y
12 

(½)' ~ ,,/it (2:aY12 
· 
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To establish equation (2) let f(c) = Jl3 yce- Ydy and integrate by parts. We get 

f(c) = [yce- Y]~ + loB cyc- le- Ydy = [yce- Y]~ + cf(c - 1). 

Unraveling the recursion yields the desired expression. We omit the details. ■ 

A.2 Proof of Lemma A.I 

By LemmaA.3 

E[(X - µ/] = 100 

P [ (X - µ? > x] dx = 100 

P [ IX - µI > x 1ft] dx . 

By Lemma A.2 this is bounded above by 
roo ,.2/t 

2 lo e-~ dx, 

and by Lemma A.4 ( set a = 2~) this is bounded by 

(nt)t/2 (nt)t/2 2\hrt - = ~ -
e e 
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