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Abstract 

Emulators that translate algorithms from the shared-memory model to two different message

passing models are presented. Both are achieved by implementing a wait-free, atomic, single

writer multi-reader register in unreliable, asynchronous networks. The two message-passing 

models considered are a complete network with processor failures and an arbitrary network 

with dynamic link failures. 

These results make it possible to view the shared-memory model as a higher-level lan

guage for designing algorithms in asynchronous distributed systems. Any wait-free algorithm 

based on atomic, single-writer multi-reader registers can be automatically emulated in message

passing systems. The overhead introduced by these emulations is polynomial in the number of 

processors in the systems. 

Immediate new results are obtained by applying the emulators to known shared-memory 

algorithms. These include, among others, protocols to solve the following problems in the 

message-passing model in the presence of processor or link failures: multi-writer multi-reader 

registers, concurrent time-stamp systems, £-exclusion, atomic snapshots, randomized consen
sus, and implementation of a class of data structures. 

Keywords: Message passing, shared memory, dynamic networks, fault tolerance, wait-free 
algorithms, emulations, atomic registers. 



1 Introduction 

Two major interprocessor communication models in distributed systems have attracted much 

attention and study: the shared-memory model and the message-passing model. In the shared

memory model, n processors communicate by writing and reading to shared atomic registers. In 

the message-passing model, n processors are located at the nodes of a network and communicate 
by sending messages over communication links. 

In both models we consider asynchronous unreliable systems in which failures may occur. 

In the shared-memory model, processors may fail by stopping ( and a slow process cannot be 

distinguished from a failed processor). In the message-passing model failures may occur in 

either of two ways. In the complete network model, processors may fail by stopping (without 

being detected). In the arbitrary network model, links fail and recover dynamically, possibly 
disconnecting the network for some periods. 

The design of fault-tolerant (or wait-free) algorithms in either of these models is a delicate 

and error-prone task. However, this task is somewhat easier in shared-memory systems, where 

processors enjoy a more global view of the system. A shared register guarantees that once 

a processor reads a particular value, then, unless the value of this register is changed by a 

write, every future read of this register by any other processor will obtain the same value. 

Furthermore, the value of a shared register is always available, regardless of processor slow

down or failure. These properties permit us to ignore issues that must be addressed in message

passing systems. For example, there are discrepancies in the local views of different processors 

that are not necessarily determined by the relative order at which processors execute their 
operations. 

An interesting example is provided by the problem of achieving randomized consensus. 
Several solutions for this problem exist in the message-passing model, e.g., (16, 19, 25], and in 

the shared-memory model, e.g., (18, 1, 9, 12]. However, the algorithm of [9] is the first to have 

polynomial expected running time and still overcome an "omnipotent" adversary-one that has 

access to the outcomes of local coin-flips. The difficulty of overcoming messages' asynchrony 

in the message-passing model made it hard to come up with algorithms that tolerate such 
omnipotent adversary with polynomial expected running time.1 

This paper presents emulators of shared-memory systems in message-passing systems (net

works), in the presence of processor or link failures . Any wait-free algorithm in the shared

memory model that is based on atomic, single-writer mult i-reader registers can be emulated in 
1
The asynchronous message-passing algorithm of [26] is resilient to Byzantine faults, but requires private 

communication links and thus is not resilient to an omnipotent adversary. 
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both message-passing models. The overhead for the emulations is polynomial in the number 

of processors. The complexity measures considered are the number of messages and their size, 

the time and the local memory size for each read or write operation. 

Thus, shared-memory systems may serve as a "laboratory" for designing resilient algo

rithms. Once a problem is solved in the shared-memory model, it is automatically solved in 

the message-passing model, and only optimization issues remain to be addressed. 

Among the immediate new results obtained by applying the emulators to existing shared

memory algorithms, are network protocols that solve the following problems in the presence 

of processor or link failures: 

• Atomic, multi-writer multi-reader registers ([36, 34]). 

• Concurrent time-stamp systems ([31, 24]). 

• Variants of £-exclusion ([22, 17, 4]). 

• Atomic snapshot scan ([2, 7, 8]) . 

• Randomized consensus ([9, 12]).2 

• Implementation of a class of data structures ([10]) . 

First we introduce the basic communication primitive which is used in our algorithms. We 

then present an unbounded emulator for the complete network in the presence of processor 

failures. This implementation exposes some of the basic ideas underlying our constructions. 

Moreover, part of the correctness proof for this emulator can be carried over to the other 

models. We then describe the modifications needed in order to obtain the bounded emulator 

for the complete network in the presence of processor failures. Finally, we modify this emulator 

to work in an arbitrary network in the presence of link failures. We present two ways to do so. 

The first modification is based on replacing each physical link of the complete network with a 

"virtual viable link" using an end-to-end protocol ([5, 14, 6]). The second modification results 

in a more efficient emulation. It is based on implementing our communication primitive as a 

diffusing computation using the resynchronization technique of [6]. 

We consider systems that are completely asynchronous since this enables us to isolate the 

study from any model-dependent synchronization assumptions . Although many "real" shared

memory systems are at least partially synchronous, asynchrony allows us to provide an abstract 

treatment of systems in which different processors have different priorities. 

2This result also follows from the transformation of [15]. 
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We believe that bounded solutions are important, although in reality, 20 bits counters 
will not wrap around and thus will suffice for all practical purposes. The reason is because 

bounded solutions are much more resilient- traditional protocols fail if an error occurs and 

cause counters to grow without limit. An algorithm designed to handle bounded counters will 

be able to recover from such a situation and resume normal operation. 

Wait-free protocols in shared-memory systems enable a processor to complete any operation 

regardless of the speed of other processors. In message-passing systems, it can be shown, 

following the proof in [11], that for many problems requiring global coordination, there is no 
solution that can prevail over a "strong" adversary- an adversary that can stop a majority 

of the processors or disconnect large portions of the network. Such an adversary can cause 

two groups of fewer than majority of the processors to operate separately by suspending all 

the messages from one group to the other. For many global coordination problems this leads 

to contradicting and inconsistent operations by the two groups . As mentioned in (11], similar 

arguments show that processors cannot halt after deciding. Thus, in our emulators a processor 

which is disconnected (permanently) from a majority of the processors is considered faulty and 

is blocked.3 Our solutions do not depend on connection with a specific majority at any time. 

Moreover, it might be that at no time there exists a full connection to any party. The only 

condition is that messages will eventually reach some majority which will acknowledge them. 

Although the difficult construction is the solution in the complete network with bounded 

size messages, the unbounded construction is not straightforward. In both cases, to avoid 

problems resulting from processors having old values we attach time-stamps to the values 

written by the writer. In the unbounded construction, the time-stamps are the integer numbers. 

In the bounded construction, we use a nontrivial method to let the writer keep track of old 

time-stamps that are still in the system. This allows us to employ a bounded sequential time
stamp system ((31]) . 

Some of the previous research on dynamic networks ( e.g., (28, 3]) assumed a "grace period" 

during which the network stabilizes for long enough time in order to guarantee correctness. 

Our results do not rely on the existence of such a period, and follow the approach taken in, 
e.g., [35, 5, 14, 6]. 

There are two related studies on the relationships between shared-memory and message

passing systems. Bar-Noy and Dolev ([15]) provide translations between protocols in the 

shared-memory and the message-passing models. These translations apply only to protocols 

that use a very restricted form of communication. Chor and Moscovici ([20]) present a hierarchy 

of resiliency for problems in shared-memory systems and complete networks, and show that 

3
Such a processor will not be able to terminate its operation but will never produce erroneous results. 
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for some problems, the wait-free shared-memory model is not equivalent to complete network, 

where up to half of the processors may fail. Their result, however, assumes that processors 
halt after deciding. 

The rest of this paper is organized as follows. In Section 2, we briefly describe the various 

models considered. In Section 3, we introduce the communication primitive. In Section 4, 

we present an unbounded implementation for complete network in the presence of processor 

failures. In Section 5, we present the modifications needed in order to obtain the bounded 

implementation for the complete network in the presence of link failures. In Section 6, we 

modify this emulator to work in an arbitrary network in the presence of link failures . We 

conclude, in Section 7, with a discussion of the results and some directions for future research. 

2 P relim inarie s 

In this section we discuss the models addressed in this paper. Our definitions follow [32] for 

shared-memory systems, [29] for complete networks with processor failures, and [14] for arbi

trary networks with link failures . In all models we consider, a system consists of n independent 

and asynchronous processors, which we number 1, .. . , n . 

A formal definition of an atomic register can be found in [32], the definition presented here 

is an equivalent one (see [32, Proposition 3]) which is simpler to use. An atomic, single-writer 

multi-reader register is an abstract data structure. Each register is accessed by two procedures, 

writew( v) which is executed only by some specific processor w, called the writer, and readr( v) 

which may be executed by any processor 1 ~ r ~ n, called a reader. It is assumed that the 

values of these procedures satisfy the following two properties: 

1. Every read operation returns either the last value written or a value that is written 
concurrently with this read. 

2. If a read operation R2 started after a read operation R 1 has finished, then the value R 2 
returns cannot be older than the value returned by R 1 . 

In message-passing systems, processors are located at the nodes of a network and commu

nicate by sending messages along communication links. Communication is completely asyn

chronous and messages may incur an unk11;own delay. At each atomic step, a processor may 

receive some set of messages that were sent to it, perform some local computation and send 
some messages . • 
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In the complete network model we assume that the network formed by the communication 

links is complete, and that processors might be faulty. A faulty processor simply stops operat

ing. A nonfaulty processor is one that takes an infinite number of steps, and all of its messages 

are delivered after a finite delay. We assume that at most L n 21 J processors are faulty in any 

execution of the system. 

In dynamic networks communication links might become non-viable. A link is non-viable, 

if, starting from some message and on, it will not deliver any further messages to the other 

end-point. For those messages the delay is considered to be infinite. Otherwise, the link is 

viable. This model is called the oo-delay model in [5]. Afek and Gafni ([5]) point out that the 

standard model of dynamic message-passing systems, where communication links alternate 

between periods of operation and non-operation, can be reduced to this model. A processor 

that is permanently disconnected from rn l processors or more is considered faulty. We assume 

there are rntl l processors that are eventually in the same connected component. Thus, at 

most L n 21 J processors are faulty. 

The complexity measures we consider are the following: 

1. The number of messages sent in an execution of a write or read operation, 

2. the size of the messages, 

3. the time it takes to execute a write or read operation, under the assumption that any 

message is either delivered within one time unit, or never at all ( cf. [13]), and 

4. the amount of the overhead local memory used by a processor. 

For all these measures, we are interested in the worst case complexity. 

3 Procedure communicate 

In this section we present the basic primitive used for communication in our algorithms, called 

communicate. This primitive operates in complete networks. It enables a processor to send a 

message and get acknowledgements (possibly carrying some information) from a majority of 
the processors. 

Because of possible processors' crash failures, a processor cannot wait for acknowledgements 

from all the other processors or from any particular processor. However, at least a majority 

of the processors will not crash and thus a processor can wait to get acknowledgements from 

them. Notice that processors want to communicate with any majority of the processors, not 
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necessarily the same majority each time. A processor utilizes the primitive to broadcast a 

message (M) to all the processors and then to collect a corresponding (ACK) message from a 

majority of them. In some cases, information will be added to the (ACK) messages. 

For simplicity, we assume that each edge ( i, j) is composed of two distinct "virtual" directed 

edges (i,j) and (j, i) . The communication on (i,j) is independent of the communication on 

(j' i). 

Procedure commu nicate uses a simple ping-pong mechanism. This mechanism ensures FIFO 

communication on each directed link in the network, and guarantees that at any time only one 

message is in transit on each link. Informally, this is achieved by the following rule: i sends 

the first message on (i,j) and then i and j alternate turns in sending further messages and 
acknowledgements on (i,j). 

More precisely, the ping-pong on the directed edge ( i, j) is managed by processor i. Pro

cessor i maintains a vector turn of length n, with an entry for each processor that can get 

the values my or his. If turn(j) = my then it is i's turn on (i,j) and only then i may send 

a message to j. If turn(j) = his then either i's message is in transit, j's acknowledgement 

is in transit, or j received i's message and has not replied yet (it might be that j crashed). 

Initially, turn(j) = my. Hereafter, we assume that the vector turn is updated automatically 

by the sen d and r eceive operations.4 For simplicity, a processor sends each message also to 

itself and responds with the appropriate acknowledgement. 

Procedure communicate gets as an input a message M and returns as an output a vector 
info, of length n. The jth entry in this vector contains information received with j's ac

knowledgement ( or 1- if no acknowledgement was received from j). To control the sending 

of messages the procedure maintains a local vector status. The jth entry of this vector may 

obtain one of the following values: notsent, meaning M was not sent to j (since turn(j) = his); 

notack, meaning M was sent but not yet acknowledged by j; ack, meaning M was acknowl

edged by j. Additional local variables in procedure commu nica te are the vector turn and the 

integer counter #acks which counts the number of acknowledgements received so far . 

The pseudo-code for this procedure appears in Figure l. We note that whenever this 

procedure is employed we also specify its companion procedure, ack, which specifies the infor

mation sent with the acknowledgement for each message and the local computation triggered 
by receiving a particular message. 

The ping-pong mechanism guarantees the following two properties of the communicat e 

procedure. First, the acknowledgements stored in the output vector info were indeed sent as 

acknowledgements to the message M, i.e., at least rntl l processors received the message M. 

4The details of how this is done are omitted from the code. 
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Procedure communicate((M};info); (* for processor i *) 
#acks := O; 
for all 1 ::; j ::; n do 

status(j) := notsent ; 
info(j) := 1- ; 

for all 1::; j :Sn s.t. turn(j) = my do 
send (M) to j ; 
status(j) := notack ; 

repeat until #acks 2: rntl l 
upon receiving (m} from j: 

if status(j) = notsent then 
(* acknowledgement of an old message *) 

send (M) to j ; 
status(j) := notack; 

else if status(j) = notack then 

status(j) := ack ; 
info(j) := m ; 
#acks := #acks + l ; 

end procedure communicate; 

Figure 1: The procedure communicate. 
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Second, the number of messages sent during each execution of the procedure is at most 2n. 

Also, it is not hard to see that the procedure terminates under our assumptions. The next 

lemma summarizes the properties and the complexity of procedure communicate. 

Lemma 3.1 The following all hold for each execution of procedure communicate by processor 

i with the message { M): 

1. if i is connected to at least a majority of the processors then the execution terminates, 

2. at least rntl l processors receive {M) and return the corresponding acknowledgement, 

3. at most 2n messages are sent during this execution, 

4. the procedure terminates after at most two time units, and 

5. the size of i's local memory is 0( n) times the size of the acknowledgements to {M). 

4 The unbounded implementation - complete network 

Informally, in order to write a new value, the writer executes communicate to send its new 

value to a majority of the processors. It completes the write operation only after receiving 

acknowledgements from a majority of the processors. In order to read a value, the reader 

sends a request to all processors and gets in return the latest values known to a majority of the 

processors (using communicate). Then it adopts (returns) the maximal among them. Before 

finishing the read operation, the reader announces the value it intends to adopt to at least a 

majority of the processors (again by using communicate). 

The writer appends a label to every new value it writes. In the unbounded implementation 

this is an integer. For simplicity, we ignore the value itself and identify it with the label. 

Processor i stores in its local memory a variable vali, holding the most recent value of 
the register known to i. This value may be acquired either during i's read operations, from 

messages sent during other processors' read operations, or directly from the writer. In addition, 

i holds a vector of length n of the most recent values of the register sent to i by other processors. 

Let V denote the number of bits needed to represent any value from the domain of all possible 
values, we have 

Proposition 4.1 The size of the local memory at each processor is O(nV). 
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In the implementation, there are three procedures: read for the reader, write for the writer, 

and ack, used by all processors to respond to messages. These procedures utilize six types of 

messages, arranged in three pairs, each consisting of a message and a corresponding acknowl

edgement. 

l. The pair of write messages. 

( W, val}: sent by the writer in order to write val in its register. 

(ACK-W}: the corresponding acknowledgement. 

2. The first pair of read messages. 

(R1 }: sent by the reader to request the recent value of the writer. 

(val}: the corresponding acknowledgement, contains the sender's most updated value of 

the register. 

3. The second pair of read messages. 

( R2, val}: sent by the reader before terminating in order to announce that it is going to 

return val as the valu~ of the register. 

(ACK-R2 }: the corresponding acknowledgement. 

Clearly, we have 

Proposition 4.2 The maximum size of a message is O(V). 

The descriptions of procedures write, read and ack appear in Figure 2. Procedure ack 

instructs each processor what to do upon receiving a message according to the template in 

Figure 1 ( as explained in Section 3). We use void to say that the information sent with the 

acknowledgements to a particular message is ignored. Since communication is done only by 
communicate, Lemma 3.1 (part 1) implies 

Lemma 4.3 Each execution of a read operation or a write operation terminates. 

The value contained in the first write message and the second read message is called the 

value communicated by the communicate procedure execution. The maximum value among 

the values contained in the acknowledgements of the first read message is called the value 

acknowledged by the communicated procedure execution. The following lemma deals with the 

ordering of these values, and is the crux of the correctness proof. 
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Procedure read;( val;); (* executed by processor i and returns va4 *) 
communicate((R1}, info); 
val; := max1:5; ::,n { info(j) I info(j) /.L}; 
communicate((R2, val;}, void); 

end procedure read; ; 

Procedure writew; (* for the writer w *) 
valw := valw + 1; (* the new value of the register *) 
communicate( ( W , valw}, void) ; 

end procedure writew; 

Procedure ack;; (* executed by processor j *) 
case received from w 

( W ,valw} : val; :=max{valw,val; }; 
send (A CK- W) t o w ; 

case received from i 

(R1 }: send (val;} to i; 
(R2, val;}: val· ·- max{val· val·} · J . - . , J ' 

send (ACK-R2} to i; 
end procedure ack;; 

Figure 2: The read, write and ack procedures of the unbounded emulator. 
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Lemma 4.4 Assume a communicate procedure execution C1 communicated x, and a commu

nicate procedure execution C2 acknowledged y. Assume that C1 has completed before C2 has 

started. Then x ~ y. 

Proof: By Lemma 3.1 (part 2) and the code for ack, when C1 is completed at least majority 

of the processors store x', such that x' 2: x. Similarly, by Lemma 3.1 (part 2), in C2 acknowl

edgements were received from at least a majority of the processors. Thus, there must be at 

least one processor that stored a value x' 2: x and acknowledged in C2. Since y is maximal 

among the values contained in the acknowledgements of C2, it follows that y 2: x' 2: x. ■ 

Since a write operation completes only after its communicate procedure completes, Lemma 4.4 

implies 

Lemma 4.5 Assume a read operation, R , returns the value y. Then y is either the value of 

the last write operation that was completed before R started or it is the value of a concurrent 

write operation. 

In a similar manner, since a read operation completes only after its second execution of 

communicate is completed, Lemma 4.4 implies 

Lemma 4.6 Assume some read operation, R 1 , returns the value x, and that another read 

operation, R2, that started after R 1 completed, returns y. Then x ~ y. 

Since processors communicate only by using the communicate procedure, Lemma 3.1 (parts 

3 and 4) implies the following complexity propositions. 

Proposition 4. 7 At most 4n messages are sent during each execution of a read operation. At 

most 2n messages are sent during each execution of a write operation. 

Proposition 4.8 Each execution of a read operation takes at most 4 time units. Each execu
tion of a write operation takes at most 2 time units. 

The next theorem summarizes the above discussion. 

Theorem 4.9 There exists an unbounded emulator of an atomic, single-writer multi-reader 

register in a complete network, in the presence of at most l n21 J processor failures . Each 

execution of a read operation or a write operation requires O(n) messages and 0(1) time. 
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5 The bounded implementation - complete network 

5.1 Informal Description 

The only source of unboundedness in the above emulation is the integer labels utilized by the 

writer. In order to eliminate this, we use an idea which was employed previously in [31, 14] . 

The integer labels are replaced by bounded sequential time-stamp system ([31]), which is a 

finite domain £, of label values together with a total order relation -<. Whenever the writer 

needs a new label it produces a new one, larger ( with respect to the -< order) than all the 

labels that exist in the system. Thus, instead of just adding one to the label, as in the 

unbounded emulation, here the writer invokes a special procedure called LABEL. The input 

for this procedure is a set of labels and the output is a new label which is greater than all the 

labels in this set. This can be achieved by the constructions presented in [31, 23] for bounded 

sequential time-stamp systems. 

The main difficulty in carrying this idea over to the message-passing model is in maintaining 

the set of labels existing in the system, a task which need not be addressed in the shared

memory model (cf. [31, 33]). Notice that in order to assure correctness, it suffices to guarantee 

that the set of labels that exist in the system is contained in the input set of labels of procedure 

LABEL. The key idea is as follows. 

Whenever a processor adopts a label ( as the maximum value of the writer it knows about), 

it records this fact in the system. This is done by broadcasting an appropriate message and 

waiting for acknowledgements from a majority of the processors (using communicate). Upon 

receiving a recording message, a processor stores the information it contains in its local memory, 

but ignores the values it carries. This process guarantees that labels do not get lost as a 
majority of the processors have recorded them. 

To avoid inconsistencies that might occur, a processor blocks all computation that is re

lated to new labels during the recording process . It does not adopt new labels and does not 

send nonrecording messages containing new labels. An independent ping-pong mechanism is 

employed for each type of messages, e.g., i may send a recording message to j although j did 

not acknowledge a read message of i. Since recording messages do not cause a processor to 
adopt a label, deadlock is avoided. 

5.2 Data Structures and Messages 

To implement the recording process, each processor i maintains an n x n matrix Li of labels. 

The ith row vector Li( i) is updated dynamically by i according to messages i sends. The jth 
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row vector Li(j) is updated by the messages i receives from j during a recording process initi

ated by j . Each entry, Li( i, k ), is composed of two fields: sent and ack. The field Li( i, k ).sent 

contains the last label i sent to k and the field Li( i, k ).ack is the last label i sent to k as an 

acknowledgement to a read request of k. In particular, L;( i, i) is the current maximum label of 

the writer known to i. The writer starts each write operation by obtaining from a majority of 

the processors their most updated values for t he matrix L (using communicate). The union of 

the labels that appear in its own matrix and these matrices is the input to procedure LABEL. 

Procedures read and write use five pairs of messages and corresponding acknowledgements. 

l. The first pair of write messages. 

( W1 ) : sent by the writer at the beginning of its operation in order to collect information 

about existing labels. 

(L): the corresponding acknowledgement, L is the sender's updated value of the labels' 

matrix. 

2 . The second pair of write messages, ( W2 , val) and (ACK-W2 ), the first pair of read mes

sages, (R1) and (val), and the second pair of read messages, (R2 , val) and (ACK-R2), 

are the same as the corresponding messages in the unbounded algorithm. 

3. The pair of recording messages. 

(REC, L(i)): before adopting any new value for the register, processor i sends Li(i) to 

other processors. The vector L;( i) contains this new value and all the recent values 

that i sent on its links to other processors. 

(ACK-REC;: the corresponding acknowledgement . 

The longest message is (L), denote V = log I-Cl · we have, 

Proposition 5.1 The maximum size of a message is O(n2 • V) . 

Recall that during the recording process, processors do not reply to nonrecording messages. 

Therefore, messages are accumulated in the local memory of the processor and are ordered in 

a queue. As soon as the recording process ends, the processor first handles the messages on the 

queue.5 Due to the ping-pong mechanism the length of this queue is at most O(n). As each 

message on the queue contains ( at most) a vector of n labels and the matrix L; is O ( n 2 • V), 
we have, 

5 The details of how this queue is handled are omitted. 
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Proposition 5.2 The size of the local memory of a reader is O(n2 
• V). The size of the local 

memory of a writer is O ( n3 · V). 

5.3 The Algorithm 

The pseudo-code for the algorithm appears in Figure 3. Procedure update and the first part 

of procedure recording update dynamically the vector Li( i). Therefore, in procedure read, it 

is enough to take vali as Li( i, i). The flag blocked is set to true during the recording process 

and prevents the processor from receiving or sending some messages as described in procedure 

ack. As mentioned before, in order to prevent deadlocks a separate ping-pong mechanism is 

employed for each type of message. In order to distinguish between the different mechanisms, 

calls to communicate are subscripted wit h the message type. 

5.4 Correctness and Complexity 

Atomicity of the bounded emulator follow from the same reasoning as in the unbounded case 

(Lemma 4.5 and Lemma 4.6). The following lemma is the core of the correctness proof for the 

bounded emulator-it assures that the writer always obtain a superset of the labels that might 

be adopted as the register's value by some processor. We call a label x viable, if in some system 

state, at some possible extension from this state, for some processor i, vali = x. Intuitively, 

a viable label is held by some processor as the current register's value or it will become the 

current register's value for some processor. 

Lemma 5.3 Each viable label is stored either in the writer matrix or in the m atrices of at 

least a majority of the processors. 

Proof: We say that processor i is responsible for label x , if xis stored in Li(i), i.e., if either 

Li(i,i) = x , Li(i,j).sent = x or Li(i,j) .ack = x. We first claim that for any viable label there 

exists a processor that is responsible for it. Assume that x is a label that is held by i as the 

current register's value, then by the code of the algorithm Li( i, i) = x and by definition i is 

responsible for x . Assume x will become the current register's value for processor j in the 

future, then it must be that some processor i has sent it to j ( either by R2 (W2 ) messages of 

i or in response to an R 1 request message by j) thus x E Li(i , j). 

Now assume that i is responsible for x. Look at a simple path on which the label x has 

arrived at i , i.e., a sequence io, i1, . .. , im, where i0 is the writer and im = i . In this sequence, 

for any .e, 1 ~ .e. ~ m, processor ie adopted x as a result of a message from ie_1 . 
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Procedure read;( val;) ; (* executed by processor i and returns va4 *) 
communicateR((R1), info); 
val; :=L;(i,i); 

communicateR((R2, val;), void); 
end procedure read; ; 

Procedure writew; (* for t he writer w *) 
communicatew (( W1 ), L) ; 
Lw(w, w) := LABEL(LJ L) ; (* all the non-empty entries in L *) 
communicatew ((W2,Lw(w,w)), void); 

end procedure writew; 

Procedure recording; ; (* executed by processor i *) 
upon receiving new label x > L;(i, i) : 

blocked := true ; 
L;(i, i) := x; 

communicateREc((REC, L;(i)), void) ; 
blocked := false ; 

end procedure recording; ; 

Procedure update; ; (* executed by processor i *) 

upon sending label x to j in i's read operation: 
L;(i,j).sent := x ; 
upon sending label x to j in j's read operation: 

L;(i,j).ack := x ; 
end procedure update; ; 

Procedure ack;; (* executed by processor j *) 
case received from w 

(W1): send (Lj) tow; 

( W2, valw): if valw > Lj (j, j) then wait until blocked = false ; 
send (ACK-W2} tow; 

case received from i 

(R1): wait until blocked= false; 

send (Lj(j,j)) to i; 
(R2, val;) : if val; > Lj (j, j) then wait until blocked = false ; 

send (ACK-R2} to i; 
(REC, L;(i)): Lj(i) := L;(i) ; 

send (ACK-REC) to i; 
end procedure ackj ; 

Figure 3: The read, write, recording, update and ack procedures of the bounded emulator. 
15 



The claim is proved by induction on m, t he length of this pat h . T he base case, m = O, 

occurs when i is the writer. Then the codes of procedures update and write imply that x 

is stored in i 's matrix. For the induction st ep , assume that m > 0, and that the induction 

hypothesis holds for any .e, 0 ~ .e < m . We have two cases. 

l. T he first case is when i has not finished the recording process for x . It follows from the 

code of procedure recording that Li( i , i) = x . We show that k = im- l is responsible for 

x, and the lemma follows from the induction hypothesis. 

If i received x from k through an R2 (W2) message, then since i is blocked during the 

recording process it would not reply until the recording process of x is done. Conse

quently, Lk(k,i).sent = x. 

If i received x from k through an ACK-R1 message, then since i would not terminate a 

read operation until it finishes the recording process of x , it would not start a new read 

operation. Consequently, Lk(k , i).ack = x. 

2. The second case is when i has finished t he recording process for x . If Li( i, i) = x, i.e., xis 

still the current value that i holds, then the code for procedure record , and the properties 

of procedure communicate (Lemma 3 .1, part 2) imply that x is stored in the matrices of 

at least a majority of the processors. 

If Li( i , i )-:/ x, then since i is responsible for x there must exist a j such that x E Li( i, j ). 
Furthermore, since i has a more recent value for the register it must be that Li( i, i) = 
y >- x. By the code for procedure recording and the properties of procedure communicate 

(Lemma 3.1), at the end of the recording process for x, x is stored as L(i, i) in the 

matrices of at least a. majority of the processors. Let k be some processor that recorded 

x for i, i .e., such that Lk( i , i ) = x at the end of the recording process for x . 

If currently, Lk( i , i) = z -:/ x then it must be that x -< z . Since forwarding a new value 

is blocked during the recording process, it must be that x was sent by i to j before the 

recording process for z st arted. Thus x E Li(i , j) during the recording process for z, 

and consequently x E Lk( i, j ). Therefore, x appears in the ma.trices of a majority of the 
processors. 

■ 

Lemma 5.3 and the constructions of bounded sequential time-stamp systems of [31, 23) 
imply 

Corollar y 5.4 T he new label generated by procedure LABEL is greater than any viable label in 

the system. 
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Recording messages are acknowledged immediately and are never blocked. Thus, a pro

cessor never deadlocks during a recording process and will eventually acknowledge all the 

messages it receives. The next lemma follows since during a read or a write operation, at most 

2n recording processes could occur. 

Lemma 5.5 Each execution of a read operation or a write operation terminates. 

Each acknowledgement the reader receives might cause it to initiate a recording process. 

By Lemma 3.1, part 3, at most 2n messages are sent during each of these recording processes. 

In addition, each message of type W2 or R2 might cause other processors to initiate a recording 

process. Thus, at most 0( n 2 ) messages are sent during each execution of an operation, and it 

takes at most 0(1) time units. Thus we have 

Proposition 5.6 At most 0(n2
) messages are sent during each execution of a read or a write 

operation. 

Proposition 5. 7 Each execution of a read or write operation takes at most 6 time units. 

The constructions of bounded sequential time-stamp system ((31, 23]) imply that a label 

can be represented using 0(n) bits. The next theorem summarizes the above discussion. 

Theorem 5.8 There exists a bounded emulator of an atomic, single-writer multi-reader regis

ter in a complete network, in the presence of at most L n 21 J processor failures. Each execution 

of a read operation or a write operation requires 0(n2 ) messages each of size 0(n), 0(1) time, 
and 0(n4

) local memory. 

6 The bounded implementation - arbitrary network 

In an arbitrary network a processor is considered faulty if it cannot communicate with a 

majority of the processors, and a correctly functioning processor is guaranteed to be eventually 

in the same connected component with a majority of the processors. The first construction 

in this section is achieved by replacing every send operation from i to j by an execution of 

an end-to-end protocol between i and j. Implementations of such a protocol are known ( see 

[5, 14, 6]). An end-to-end protocol establishes traffic between i and j if there is eventually 

a path between them. In our case, eventually there will be a path between any nonfaulty 
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processor and a majority of the processors, thus the system behaves as in the case of complete 

network with processor failures . 

Note that there are labels in the system that will not appear in the input of procedure 

LABEL. However, these are not viable labels because the end-to-end protocol will prevent 

processors from adopting them as the writer 's label and hence correctness is preserved. 

The complexity claims in the next theorem are implied by the end-to-end protocol of [6].6 

Theorem 6.1 There exists a bounded emulator of an atomic, single-writer multi-reader regis

ter in an arbitrary network in the presence of link failures the do not disconnect a majority of 

the processors. Each execution of a read operation or a write operation requires 0( n5 ) messages, 

each of size 0( n ), and 0( n 2 ) time. 

Instead of implementing each virtual link separately we can achieve improved performance 

by implementing communicate directly. We make use of the fact that Afek and Gafni ([6]) 

show how to resynchronize any diffusing computation ([21]), not only an end-to-end protocol. 

Although the task achieved by communicate is not exactly a diffusing computation, we can 

modify the algorithm of [6], by "piggybacking" acknowledgement information. The resulting 

implementation requires 0( n3 ) messages per invocation of communicate. Thus we have 

Theorem 6.2 There exists a bounded emulator of an atomic, single-writer multi-reader regis

ter in an arbitrary network in the presence of link failures the do not disconnect a majority of 

the processors. Each execution of a read operation or a write operation requires 0( n4 ) messages, 

each of size 0(n), and 0(n2 ) time. 

7 Discussion and furt her research 

We have presented emulators of atomic, single-writer multi-reader registers in message-passing 

systems (networks), in the presence of processor or link failures . In the complete network, in 

the presence of processor failures, each operation to the register requires 0( n2 ) messages, each 

of size 0( n ), and constant time. In an arbitrary network, in the presence of link failures, each 

operation to the register requires 0 (n4 ) messages, each of size 0(n), and 0(n3 ) time. 

It is interesting to improve the complexity of the emulations, in either of the message

passing systems. Alternatively, it might be possible to prove lower bounds on the cost of such 
emulations. 

6 
Any improvement in the complexity of the end- to-end protocol will immediately result in an improvement 

to the complexity of our implementation. 

18 



An interesting direction is to emulate stronger shared memory primitives in message-passing 

systems in the presence of failures. Any primitive that can be implemented from wait-free, 

atomic, single-writer multi-reader registers, can be also implemented in message-passing sys

tems, using the emulators we have presented. This includes wait-free, atomic, multi-writer 

multi-reader registers, atomic snapshots, and many others. However, there are shared memory 
data-structures that cannot be implemented from wait-free, atomic, single-writer multi-reader 

registers ([30]) . Some of these primitives, such as Read-Modify-Write, can be used to solve 

consensus ([30]), and thus any emulation of them in the presence of failures will imply a solu

tion to consensus in the presence offailures. It is known ([29]) that consensus cannot be solved 

in asynchronous systems even in the presence of one failure . Thus, we need to strengthen the 

message-passing model in order to emulate primitive such as Read-Modify-Write. Additional 

power can be added to the message-passing model considered in this paper by, e.g., failure 

detection mechanisms or automatic acknowledgement mechanisms ( cf. [27]). We leave all of 

this as a subject for future work. 
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