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Abstract 

Commonsense sometimes predicts events to be likely or unlikely rather than 
merely possible. We extend methods of qualitative reasoning to predict the 
relative likelihoods of possible qualitative behaviors by viewing the dynamics 
of a system as a Markov chain over its transition graph. This involves adding 
qualitative or quantitative estimates of transition probabilities to each of the 
transitions and applying the standard theory of Markov chains to distinguish 
persistent states from transient states and to calculate recurrence times, set­
tling times, and probabilities for ending up in each state. Much of the anal­
ysis depends solely on qualitative estimates of transition probabilities, which 
follow directly from theoretical considerations and which lead to qualitative 
predictions about entire classes of systems. Quantitative estimates for specific 
systems are derived empirically and lead to qualitative and quantitative conclu­
sions, most of which are insensitive to perturbations in the estimated transition 
probabilities. The algorithms are straightforward and efficient. 

Keywords: Qualitative reasoning, commonsense reasoning, dynamical systems, 
qualitative dynamics, probabilistic estimation, Markov chains. 
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1 Introduction 

Qualitative dynamical reasoning seeks to predict the global behavior of a complex 
dynamic system by partitioning its state space into a manageable number of regions 
and characterizing its behavior by the sequences of regions that it can go through. 
Although considerable progress has been made toward automating such reasoning, 
some important prediction problems have not been addressed. In particular, this 
methodology is too weak to describe the limiting behavior of dynamic systems. For 
example, a damped pendulum eventually must approach equilibrium either directly 
below or directly above its pivot (Fig. 1 ). The first possibility is almost certain, 
whereas the second almost never occurs. Qualitative simulation discovers both equi­
libria, but neither can determine their relative likelihoods nor rule out the possibility 
that the pendulum will spin forever. Yet qualitative considerations suffice for both 
conclusions, independent of the numeric details of the system . 

ARM 
DOWN 

pivot . . ..I. ... 

ARM 
UP 

Figure 1: Equilibria of a damped pendulum. 

Such limiting behaviors are global characteristics of a system. To understand 
them, we must look beyond individual transitions to sequences of transitions. We 
must assign each sequence a probability ranging from impossible to definite. The 
probability of a particular limiting behavior equals the total probability of the subset 
of possible histories in which the corresponding sequence of transitions occurs. For 
example, the probability that the pendulum approaches its unstable equilibrium when 
released in arbitrary position is zero because the set of sequences that either start or 
terminate at the unstable equilibrium has measure zero. Calculating the probabilities 
is straightforward in systems whose exact limiting behavior is known for all initial 
conditions. The challenge is to estimate the probabilities when the limiting behavior 
is unknown. This can occur in qualitative reasoning where the underlying equations 
are incompletely specified or in quantitative reasoning about intractable systems. 

In this paper, we describe a method for predicting the relative likelihoods of the 
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limiting behaviors of such dynamic systems. The method provides a formal justifica­
tion for commonsense conclusions about relative likelihoods and an efficient algorithm 
for deriving them. It also provides numeric likelihood estimates for fully specified sys­
tems. The method rests upon the simplifying assumption that the system forms a 
Markov chain over its transition graph, i.e. that the next state of the system is a 
time-independent probabilistic function of its current state. This assumption agrees 
with the standard qualitative reasoning model in which the next qualitative state of 
a system depends only on its current state, not on its past. It extends that model 
by assigning probabilities to branching states instead of treating all branches uni­
formly. Markov theory is then employed to derive the probabilities of the transition 
sequences. 

The central step of the analysis, in which we assign transition probabilities and 
derive probability estimates for the possible asymptotic behaviors, applies to every 
extant form of qualitative dynamics, including ones generated by qualit.ative simula­
tion. For concreteness, we illustrate the method by using the classical mathematical 
theory of dynamic systems to derive a set of qualitative states and transition graph 
from the phase space of a system, following Sacks [14]. 

Our method can derive useful results at many levels of detail, ranging from the 
abstract level of the qualitative reasoning formalisms in the AI literature to fully spec­
ified ordinary differential equations. It can process qualitative probability estimates 
in the {O, (0, 1 ), 1} quantity space, symbolic estimates such asp or q + r, and numeric 
estimates. Markov theory blends the available information into a unifying framework 
that provides the best possible conclusions about asymptotic behavior given the ev­
idence. Qualitative information lead to qualitative predictions about entire classes 
of systems, such as all damped pendulums or all instances of a parameterized equa­
tion. Quantitative information lead to qualitative and quantitative predictions about 
individual systems. 

Markov theory provides some sorts of essentially qualitative information that qual­
itative simulation does not, including a partition into persistent and transient states 
(transient states are always improbable as asymptotic behaviors) and a partition of 
the persistent states into the probable and the improbable. Many of these facts fol­
low directly from qualitative estimates of transition probabilities, and may be derived 
through purely qualitative algorithms. Other qualitative conclusions, though derived 
from numeric estimates of transition probabilities, are insensitive to perturbations in 
these estimates. The theory also provides quantitative refinements of these qualitative 
conclusions, including the mean and variance of settling times. Unlike the qualitative 
conclusions, the quantitative results are in some cases sensitive to variations in the 
input probabilities. The algorithms are straightforward, principally consisting of a 

2 



topological sort of the transition graph and a few matrix operations on the transition 
probabilities, and require time at most cubic in the number of regions. The numeric 
analysis goes through for symbolic probability estimates, although at the price of 
exponential-time worst-case performance. 

The next section describes our approach to dynamics, which is based on the classi­
cal mathematical theory of dynamical systems, and shows how the sorts of dynamics 
employed in other AI approaches to qualitative reasoning may be translated into 
ours. The following section shows how to model dynamic systems as Markov chains. 
There we state and defend the requisite simplifying assumptions. Section 4 describes 
the algorithms for analyzing Markov chains. Section 5 demonstrates our methods on 
several examples, including the damped pendulum and the quadratic map. The final 
section draws conclusions and discusses some possible extensions and generalizations. 

2 Qualitative dynamics in phase space 

Our qualitative dynamics builds upon the phase space representation developed by 
Poincare. The phase space for a system of first-order differential equations 

(1) 

is the Cartesian product of the xi's domains. One can convert higher-order equations 
to first-order ones by introducing new variables as synonyms for higher derivatives. 
Points in phase space represent states of the system. Curves on which the equa­
tions (1) are satisfied, called trajectories, represent solutions. The topological and 
geometric properties of trajectories characterize the qualitative behavior of solutions. 
For instance, a point trajectory, called a fixed point, indicates an equilibrium solu­
tion, whereas a closed curve indicates a periodic solution. A fixed point is stable if 
every nearby trajectory approaches it asymptotically and unstable otherwise. More 
generally, the basin of a fixed point is the set of trajectories that approach it asymp­
totically. 

A phase diagram for a system depicts its phase space and trajectories graphically. 
For example, the standard model for a damped pendulum is 

811 + .!!:..e' + ff_ sine= o, 
m l 

with 8 the angle between the arm and the vertical, l the length of the ( weightless 
rigid) arm, m the mass of the bob, g the gravitational constant, and µ the damping 
coefficient (Fig. 2). The phase diagram of the pendulum appears in Figure 3. The 
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Figure 2: A damped pendulum. 

Figure 3: Phase diagram for the damped pendulum. 

4 



(-, +) (+,+) 

..... ............ (o~0)· ............ (71', o) .... • ► e 

(- ,- ) (+, - ) 

Figure 4: Phase space regions of the qualitative states of the damped pendulum. 

phase space is cylindrical, since angles that differ by 271' are physically indistinguish­
able. Two trajectories spiral toward the unstable fixed point at ( 71', 0 ); the rest spiral 
toward the stable fixed point at (0, 0). 

A complete qualitative description of a system consists of a partition of its phase 
space into sets of qualitatively equivalent trajectories. The equivalence criterion de­
pends on the problem task. Mathematicians generally focus on topological equiva­
lence, whereas coarser relations are more useful in engineering applications. We follow 
standard AI practice and equate all trajectories that go through a specific sequence 
of regions in phase space. Our qualitative dynamics consists of a partition of phase 
space into regions along with a graph of possible transitions between regions. Sacks 
[11,12,13] presents a system that automatically identifies such regions and the possible 
transitions between them for second-order systems of ordinary differential equations. 
Most of the ideas extend directly to larger systems. 

Sacks [14] shows how to translate traditional qualitative reasoning into our qual­
itative dynamics without loss of information or increase in complexity. Qualitative 
states correspond to rectangular regions in phase space, and qualitative simulation 
amounts to finding the possible transitions between regions. A transition occurs from 
region A to region B if the derivative of the system on the boundary between the 
regions points into B. A transition occurs from a region to a neighboring fixed point 
unless all the eigenvalues of the fixed point have positive real part, as explained in 
the next section. For example, automatic analysis of the damped pendulum equation 
results in six qualitative states corresponding to four rectangles ( (±, ± )) and two 
fixed points ( (0, 0),(71', 0) ), as shown in Figure 4. (The complete dynamics includes 
the degenerate rectangles (0, ±) and (±, 0), which we ignore for simplicity. Includ­
ing them complicates the results without affecting the analysis or the conclusions.) 
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Figure 5: Qualitative state transition graph of the damped pendulum. 

Figure 5 shows the transition graph over these qualitative states. 

3 Transforming flows into Markov chains 

A Markov chain is a process whose state at time t + 1 is a time-independent proba­
bilistic function of its state at time t. We model dynamic systems as Markov chains 
whose states are regions and fixed points in phase space, or equivalently qualitative 
states. The transition probabilities express the likelihood of the system's state mov­
ing from one region or fixed point to another in unit time. We employ Markov theory 
to infer properties of the trajectories from properties of the transition probabilities. 
Each inference applies to all systems with the necessary properties. Inferences that 
require only qualitative properties apply to an entire class of systems, whereas infer­
ences that rest on numeric probability estimates apply only to "nearby" systems, as 
explained in the next section. 

Transition probabilities have one meaning for transitions between regions and 
another meaning for transitions involving fixed points. The transition probability 
from region A to region B expresses the fraction of points in A whose corresponding 
trajectories are in B after one time unit. For nondegenerate A of finite measure, this 
is just 

(2) 

whereµ is Lebesgue measure and </> is the flow over unit time. Regions which have 
infinite or zero measure, such as(+,+) and (0, - ), call for different treatment. One 
approach to regions of infinite measure, which suffices for any physically realizable 
system, is to replace each infinite region in equation (2) with a large, but finite, sub­
region. This amounts to defining the transition probability as a limit of equation (2) 
over a monotone increasing sequence of finite subsets. One could similarly replace de-
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generate regions with small nondegenerate regions surrounding them, which amounts 
to defining the transition probabilities over monotone decreasing supersets. 

Our treatment of degenerate regions extends directly to fixed points. Intuitively, 
the transition probability from region A to fixed point p expresses the fraction of 
points in A whose trajectories "reach" p in unit time. To justify this approach, we 
must resolve the conflict between the theory of ordinary differential equations, which 
implies that smooth systems cannot reach a fixed point from another state in finite 
time, and everyday experience, which indicates the contrary. One can side with the 
theory and claim that systems merely appear to reach a fixed point because of our 
perceptual limitations, or one can side with commonsense and claim that ordinary dif­
ferential equations are an imperfect model of reality. Theorists can interpret the word 
"reach" as entering some €-neighborhood; others can take it literally. Indeed, since 
stable fixed points attract all points in a some neighborhood, estimates of asymptotic 
probability are not misguided by identifying transition probabilities to a neighboring 
region with transition probabilities to the stable fixed point. 

The measure-theoretic construction interprets qualitative states as lumped states, 
so that the transition probabilities represent the imprecision in the qualitative model 
of the dynamic system. If we were able to choose as regions the actual attractors and 
basins of the system, there would be no imprecision and the transition rules would be 
perfectly deterministic. The great difficulty of determining the optimal set of regions 
for analysis helps motivate the stochastic approach to analyzing behaviors. Addi­
tional factors that transition probabilities can model include (1) uncertainty about 
initial conditions which induces a distribution of possible trajectories, (2) uncertainty 
about the parameters of the model equations, and (3) uncertainties ( or noise sources) 
explicitly occurring in the system's equations, as in stochastic differential equations. 

Qualitative probability estimates follow directly from the transition graph and 
fixed point types of a system. The transition probability is zero from a. region to an 
unreachable region by definition of the graph. By the stable manifold theorem [5, 
p. 13], the dimension of the basin of a fixed point equals the number of eigenvalues of 
its Jacobian matrix that have negative real parts.1 Unstable fixed points have positive 
eigenvalues, so their basins form lower-dimensional, hence measure zero, subspaces. 
This implies that the transition probability into an unstable fixed point from any 
other region is always zero by equation (2). Stable fixed points have basins of positive 
measure because they attract all points in a some neighborhood. Hence, there is a 
positive transition probability from a neighboring region to a stable fixed point. 

Numeric estimates of transition probabilities are derivable by numeric simulations 

1This theorem applies to hyperbolic fixed points. The number of positive real parts at an arbitrary 
fixed point suffices for our analysis. 
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or physical experiments that sample representative points in each region and count 
how many go to each region. One can also obtain subjective estimates from domain 
experts. Both sampling and subjective estimates may contain errors, but as we show 
below, the qualitative analysis is insensitive to errors in these probabilities. 

In the pendulum example, the fixed point (0, 0) is stable and ( 1r, 0) is unstable. 
The basin of ( 1r, 0) is a one-dimensional curve in the two-dimensional phase space 
(Fig. 3) whereas the basin of (0,0) has positive measure. The transitions to (1r,O) 
have probability zero and those to (0, 0) have positive probability. These qualitative 
estimates suffice to prove that the pendulum comes to rest at (0, 0) with probability 
one. The exact arrival time depends on the specific transition probabilities, which 
vary from system to system. We show how to derive both the qualitative and the 
quantitative information in the next section. 

The qualitative analysis of the pendulum applies to any system with the same 
transition graph and types of fixed points. It is independent of whether the pendulum 
is underdamped or overdamped, that is whether the eigenvalues of ( 0, 0) are real 
or complex. In the real case, trajectories eventually approach (0, 0) directly from 
within (- , +} or ( +,-},while in the complex case, they spiral inward, forever cycling 
between the outer regions. This distinction is immaterial according to both the 
theoretical and the commonsense views described above. Commonsense asserts that 
real trajectories always come to rest at (0, 0) after a finite number of cycles. Theory 
claims that they enter and remain in a small neighborhood of (0, O); for the conclusions 
reached by the transition model, it is irrelevant whether trajectories continue to spiral 
within that neighborhood. 

We assume that the transition probabilities remain constant over time and that 
they depend only on the qualitative state of origin, independent of past history. The 
first assumption holds for autonomous equations that are free of their independent 
variable. One can reduce any general system to an autonomous one by treating the 
independent variable, t, as a state variable governed by the equation t' = 1. The 
second assumption holds to the extent that the future trajectory of the system is 
insensitive to its distant past. The most questionable case is that of conservative 
systems in which the volume of each region in phase space is preserved for all time 
by the flow, causing small differences between trajectories to retain their significance 
forever. Conservative systems pose problems for qualitative reasoning generally, not 
just for our stochastic analysis, as the regions of interest must be chosen carefully. 
Fortunately, most realistic systems are dissipative, hence volume shrinking, causing 
differences between trajectories to shrink exponentially. Figure 6 illustrates the two 
cases. 

Time-dependent transition probabilities imply that the current partition of phase 
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(a) (b) 

Figure 6: (a) volume preserving flow (b) dissipative flow. 

space is too coarse: differences within a prior region express themselves in the current 
region because the distances between points in the prior region are too great to 
damp out in one time step. One approach to dealing with such time-dependence 
involves iterative improvement of the model, following Sacks [11,13] (though unlike 
that work, we have not automated this refinement process). IT one observes time­
dependent behavior in constructing the transition probabilities, one subdivides or 
otherwise refines the set of regions and starts over. In principle, the process ends 
when the chain assumption appears correct for all regions, but in practice the choice 
of when to accept a model as satisfactory involves a tradeoff of model complexity 
against model accuracy. The aptness of the chain assumption can also be tested 
against empirical observations or long term numeric simulations. 

Like the choice of regions, the choice of the time unit over which transition prob­
abilities are measured influences the accuracy of the model. Too long a time scale, 
and all transitions may appear possible; too short, and all regions may appear to be 
fixed points. More to the point, the choice of a useful time unit depends on the choice 
of regions. Indeed, for some sets of regions, there may be no time unit useful for all 
regions of phase space. The problem here is analogous to the problem of choosing 
good grid points for numeric integration or for spline approximation to functions. We 
offer no new methods for choosing sampling intervals. 

4 Analysis of Markov chains 

In this section we first summarize the elements of the theory of Markov chains and 
then describe how to organize the analytic algorithms to yield qualitative and quan­
titative conclusions. Readers familiar with Markov theory may skip to section 4.5. 
Readers unfamiliar with Markov theory may find more details in Feller [4], Kemeny 
and Snell [7], or Roberts [10]. For simplicity, we will treat only finite Markov chains, 
and so restrict attention to systems whose qualitative dynamics involves only finitely 
many regions of interest. 

Let S = { s1, ... , sn} be the set of states of the qualitative dynamics, that is, the 
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set of nodes of the dynamic digraph. Each of these will also be a state of the Markov 
chain. We describe the entire chain by specifying, for each nonexclusive choice of 
states Si and Sj, the transition probability Pii that if the system is in state Si at one 
instant, it will be in state Sj after one time unit has passed. We write P to mean the 
n x n transition matriz 

P= 
( 

P~1 : : · 
. . 

Pnl 

of all transition probabilities. Pis also called a stochastic matriz, which means that 
all entries are nonnegative and that each row sums to 1. Each row of P is called a 
probability vector. The transition digraph of a stochastic matrix is the graph over the 
states with a directed arc from Si to Sj iff Pii -:/= 0. 

The probability that the chain is in state Sj at time t given that it starts in 

state Si at time O is written p};> and called a higher-order transition probability. This 
probability is the i,j entry of Pt, the t'th power of P. If we start the Markov chain 
at random, where the probabilities of starting in each state are given by an initial 
probability vector p(0

) = (pl0), ••• ,p~0>), then the probabilities of being in particular 
states at time t, pCt) = (plt), ... , p~>), are given by the equation p(t) = pC0) pt. 

A set C of states is closed if Pii = 0 for all Si E C and Sj (/. C, that is, if once in C 
the chain can never leave C. A closed set C is ergodic if no proper subset is closed. 
A state is ergodic if it is in some ergodic set, and is transient otherwise. A state that 
forms an ergodic set by itself is called an absorbing state. Chains whose states form 
a single ergodic set are called ergodic chains, and chains in which each ergodic set is 
a singleton are called absorbing chains. 

The mathematical analysis of the asymptotic behavior of a Markov chain is divided 
into two parts: the behavior before entering an ergodic set, and the behavior after 
entering one. One then combines these sub-analyses to get the overall asymptotic 
behavior. In the first step, one creates an absorbing chain by lumping all states in 
each ergodic set into a single compound state. The transition probability from a 
transient state s to a compound state c is the sum of the transition probabilities 
from s to the members of c. The transition probability from c to other states is 0 
by definition. The main result of the analysis is the long-term probability of entering 
each ergodic set when starting in each of the transient states. In the second step, 
one analyzes each ergodic set as a separate ergodic chain, unaffected by the other 
states. The result of the analysis is the long-term probability of being in each of 
the states of the set. Combining these results yields the long-term probability of 
being in each of the states of the chain. This is just the product of the probability 
of entering an ergodic set containing that state ( this is zero if the state is transient) 
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times the probability of appearing in that state once in the ergodic set. Stability 
analysis shows that these asymptotic probabilities are insensitive to variations in the 
input probabilities. 

The separation of a Markov chain into ergodic sets and transient states is accom­
plished by topologically sorting the strongly connected components in the transition 
graph. Strongly connected components with no outgoing arcs, the minimal compo­
nents in the sorted graph, comprise ergodic sets. All other strongly connected com­
ponents consist of transient states. For example, the transition graph for the damped 
pendulum (Fig. 2) has three strongly connected components: { (0, 0) }, { (1r, 0) }, and 
the remaining nodes. The first two are ergodic; the third is transient. 

4.1 Analysis of absorbing chains 

The first step in analyzing an absorbing chain is to reorder its states so that the 
absorbing states appear first, thus converting the transition matrix to the canonical 
form 

P=(~ ~) (3) 

with I an identity matrix, R the matrix of transition probabilities from transient 
states to absorbing states, and Q the matrix of transition probabilities from transient 
states to transient states. The matrix I - Q has an inverse,2 denoted by N. The 
quantities of interest may all be computed from N and R. The probability that the 
system eventually enters an absorbing state is 1. The expected number of steps Ti 

from the ith transient state until absorption equals the sum of the entries in the ith 
row of N. The variance <Ti of this mean is given by the ith entry in (2N - I)T - T(2), 

where Tp) = ( Ti )2. The probability of reaching the jth absorbing state from the ith 
transient state is bij, where B = {bij} is given by B = NR. 

4.2 Analysis of ergodic chains 

The analysis in this section applies to regular ergodic chains, that is, chains that 
contain at least one nonzero diagonal element in their transition matrix. Absorbing 
states are the trivial case of regular chains. All the examples in this paper are regular. 
One can expect qualitative analysis of continuous dynamics to yield regular chains. 
The analysis must construct at least one region of positive measure. One can always 
make the chain regular by choosing a time scale short enough that most points in 

2 This I is an identity matrix of the same dimensions as Q. It may differ in dimension from the 
identity matrix in equation (3). 
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this region cannot escape in one step, thus giving the region a positive probability of 
transition to itself. This usually happens in practice. Even when the natural time 
scale for modeling yields non-regular chain, the analysis involves only a few additional 
calculations, not any new ideas or additional computational complexity. See Roberts 
[10] for details. 

The powers pt of the transition matrix of an ergodic chain approach a stochastic 
matrix W as t approaches infinity. The rows of W are identical, each consisting of 
the unique probability vector w = ( w1 , ••• , wn) satisfying the n equations 

{ 
I:~1 WiPii = Wjj j = 1, ... , n - 1 
Li=l Wi = 1. 

This implies that as t approaches infinity the probability of being in state i at step 
t approaches Wi independently of the initial state. Correspondingly, the expected 
period of recurrence of state i is just 1/wi. 

4.3 Stability of the analysis 

By combining the two preceding analyses, we see that when each of the ergodic chains 
in P is regular, the powers pt approach a limiting stochastic matrix P 00 as t _. oo, 

with pfj representing the asymptotic probability of the system being in state j when 
starting in state i. If state j is transient, then pfj = O. Otherwise j is in some ergodic 
set J, and pfj is the asymptotic probability of entering J (which we might write as 
biJ) times the asymptotic probability of being in j within J (which we might write 
as w;(J)). 

The classification of states into transient and ergodic states is stable under any 
variation in probabilities that does not change a positive probability into a zero prob­
ability or vice versa. Since the system ends up in ergodic states with probability 1, 
this means that the basic classification of asymptotic behaviors is very stable. In 
addition, the asymptotic probabilities P 00 are stable with respect to smaller pertur­
bations in the transition probabilities P. To see this, notice that the matrix P 00 is a 
continuous function of P. Since the set of all n x n stochastic matrices is a compact, 
convex subspace of Euclidean space, the function P 00 is absolutely continuous over 
this subspace, with a Lifschitz constant of nC, where C is the maximum absolute 
value of any of the partial derivatives of P 00 with respect to entries in P. Hence for 
any € > 0, varying the entries in P by less than t:/nC will not cause changes larger 
than € in the entries in P 00

• 

Unlike the probabilities of asymptotic behaviors, the settling times r and the 
relative likelihoods biJ /biK of absorption by different ergodic sets J and K can be 
sensitive to perturbations in P, especially when the direct probabilities of absorption 
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are low (that is, when the norm of R is close to 0). The pendulum example of section 
5.1 illustrates these sensitivities in parametric form. 

4.4 Initial conditions 

Most treatments of qualitative prediction presuppose ignorance about the exact ini­
tial state of the system. Such ignorance is naturally viewed as assuming a uniform 
distribution over initial states, in which each state is equally likely to be the starting 
state. In this case, we get asymptotic probabilities for ending in each state by av­
eraging the asymptotic probabilities of transitions into that state from all states, so 
that 

n 
CX) ~ CX) 

P, = LJPj, · 
j=O 

We can model knowledge about the initial states as a probability distribution -6.(.s,) 
over qualitative states. This distribution may be viewed as derived from a distribution 
S over phase space, with .6., = .6.(.s,) = J •• S. Knowledge of initial conditions modifies 
the probabilities of asymptotic behaviors very simply, with p00 = .6. • P00

, that is 

n 

pf' = L.6.(s5)p~. 
j=O 

For example, a common case is when the initial state is known to occur in some 
subset S' of S, with the modeler ignorant about which state in S' it is. This might 
be modeled as a distribution uniform over S' and zero over S - S'. In this case, the 
asymptotic probabilities are given by equation ( 4), in which k = IS'I and states have 
been relabeled so that all states in S' appear before states in S - S'. 

,. 
CX) k- 1 ~ CX) 

P, = LJP5, (4) 
j=O 

4.5 Analytic procedure and algorithms 

We divide the computation of predictions into qualitative and quantitative stages. 
The qualitative stage derives the basic judgments of asymptotic probability or improb­
ability solely from information widely available in qualitative reasoning formalisms. 
We assign positive and zero transition probabilities from adjacent regions to attrac­
tors and other fixed points respectively, using the dimensional analysis explained in 
Section 3. We assign a zero transition probability to all pairs of states that have no 
connecting edge in the transition graph, such as (-, - } and ( +, +} in Figure 5. We 
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assign a positive probability to transitions between adjacent regions, such as (-, -) 
and (-, +). This decision is justified by the continuous dependence of trajectories 
on initial conditions and by the definition of the transition graph [14]. Using these 
probabilities, we partition the associated Markov chain into ergodic sets and transient 
states, drawing the qualitative conclusions that the former, but not the latter, persist 
asymptotically. We employ the topological sorting algorithm of Tarjan [1, Sec. 5.5] 
to find the ergodic sets. When nonuniform initial conditions are specified, we filter 
the sorted graph to find the ergodic states reachable from initial states with posi­
tive probabilities. The entire analysis takes time and space linear in the size of the 
transition graph. 

The quantitative stage derives symbolic or numeric refinements of the qualitative 
judgements when corresponding estimates of the transition probabilities are avail­
able. It obtains the mean and variance of the settling times of the system from each 
transient state and the asymptotic distribution of ergodic states. All these quantities 
are given by simple matrix equations and can be computed in a constant number 
of matrix multiplications, inversions, and triangularizations. For numeric probability 
estimates, straightforward implementations of these operations require O(n3 ) time 
and 0( n 2

) space for a graph with n nodes (1, Chap. 6]. The analysis may be carried 
out using probability estimates that are polynomials in indeterminate parameters, 
although at the price of exponential-time worst-case performance, since inverses of 
matrices with symbolic entries can have entries exponential in the size of the original 
matrix. The examples presented in the next section illustrate the use of parametric 
analysis in judging the sensitivity of relative asymptotic probabilities under varia­
tion in transition probabilities. A full sensitivity analysis using standard statistical 
techniques might constitute a third stage of the analytic procedure, but we have not 
automated it. 

5 Examples 

Each of the following three examples illustrates a different aspect of the stochastic 
analysis. The first example makes precise the analysis of the damped gravitational 
pendulum, and adds calculations of settling times and an analysis of their sensitivity 
to the earlier determination of asymptotic behavior. The second example, that of a 
charged pendulum in the presence of two other charges, is representative of a large 
class of everyday systems in which there are several asymptotic behaviors of nonzero 
probability. The analysis of the charged pendulum calculates these probabilities, and 
examines the dependence of their sizes on the magnitude of the charges. The third 
example, the quadratic map, illustrates the applicability of the stochastic analysis to 
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Figure 7: A damped pendulum. 

discrete systems, including those exhibiting chaotic behaviors. 

5.1 The gravitational pendulum 

With the Markov theory in hand, we can make precise our intuitive analysis of the 
transition graph of the pendulum equation 

()" + !!:_e, + !!.. sin() = 0, 
m l 

shown in Figure 7. We begin with a qualitative analysis. Dimensional analysis pro­
vides the signs of the transition probabilities, as discussed in Section 2. The transition 
probabilities into {1r, 0) are zero. The transition probabilities into {0, 0) are positive 
in the damped case (µ > 0) and zero in the undamped case(µ= 0). In the damped 
case, the transition graph forms an absorbing chain with absorbing states {0, 0) and 
{1r, 0). The pendulum eventually approaches {0, 0) with probability one from any tran­
sient state; it cannot cycle between the transient states forever. In the undamped 
case, the transition graph decomposes into three ergodic chains: { {0, 0)}, { {1r, 0)}, 
and { { +, + ), { +, -), {- , - ), {- , +) }. Trajectories in the third chain, which comprises 
essentially the entire phase space, oscillate around the origin forever. 

Given additional information about the transition probabilities, we can estimate 
the absorption times for the damped case and the asymptotic distribution of states in 
the undamped case. For example, suppose that the transition probability into {0, 0) 
is p and that all other probabilities are equally distributed (Fig. 8). The matrix of 
absorption times is given by equation (5) for p > 0. 

(
2-p) 

- 1 2+ p T = p 
2-p 2+p 
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q 
(-,+)---(+,+) 

1

~ ~ 
.5 {0,0} .5 (7r,0) 

'z q 
(- , - )--(+, - ) 

0 

Figure 8: Prototypical transition probabilities for the pendulum with q = (1 - p)/2. 
Self-loop probabilities are not shown. 

1 2 

Figure 9: A positively charged pendulum attracted by two negative charges. 

The equation shows that the settling time of the pendulum increases toward oo as 
friction decreases toward zero. Equation (5) does not apply in the limiting case 
of p = 0, since (0, 0) ceases to be an absorbing state. Under our equiprobability 
assumption, trajectories are equally likely to be in any of the four regions in the third 
ergodic chain at any given time. 

5 .2 The two-charge pendulum 

The gravitational pendulum model presupposes that the force on the bob is indepen­
dent of the bob's location. The model for the variable attraction between a positively 
charged pendulum bob and two negative charges is more complicated (Fig. 9). Each 
negative charge exerts a force 

f(a, k) = k(d + l)Z- 5 (sino:)(d2 + dl + 212 
- 2l(d + l) cos at312 
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Figure 10: Qualitative dynamics for the two-charge pendulum. 

along the line between it and the bob, with a the angle between that line and the 
pendulum, k the coefficient of electrostatic attraction between the bob and the charge, 
l the length of the arm, and d the vertical distance from the bob's orbit to the line 
connecting the two negative charges. The two-charge pendulum obeys the equation 

()" + J!:....o, + f(O + a, k1) + f(O - a, k2) = 0 
m 

with a the angle between each pole and the vertical, k1 and k2 corresponding to the left 
and right charges,µ> 0 the damping coefficient, and m the mass of the bob. Figure 10 
contains the qualitative dynamics for the case of equal charges (k1 = k2). Saddles 
appear at ( 1r, 0) and (0, 0) where the charges cancel each other. A sink appears where 
each charge is strongest. The pendulum can spin (A-B-C-D and E-F-G-H), oscillate 
around both negative charges (A-B-C-D-E-F-G-H), oscillate around the left charge 
(A-B-G-H), or oscillate around the right charge (C-D-E-F). It can also switch from 
spinning to oscillating and from oscillating around both charges to oscillating around 
either charge. When the charges are unequal, the unstable equilibria move away from 
{0, 0} and (1r, 0} and the stable equilibria are positioned asymmetrically around the 
()' axis, but otherwise the qualitative dynamics appears just as in Figure 10. 

The qualitative analysis of the two-charge pendulum resembles that of the gravi­
tational pendulum. Dimensional analysis determines that the transition probabilities 
are zero into the saddles and positive into the sinks. The transition graph forms an 
absorbing chain whose absorbing states are the fixed points. The pendulum eventu­
ally approaches one of the sinks with probability one from the remaining, transient 
states. It is more likely to end up at the sink with the larger charge. If the charges 
are equal, it is equally likely to end up at either one. 
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8 

Figure 11: Transition probabilities for the two-charge pendulum. The probabilities 
from the adjacent regions of Si are Pi• The unmarked transitions of each node have 
equal probabilities. 

To estimate the relative likelihoods of the two sinks, we assign transition proba­
bilities of p1 and p2 to transitions into s1 and s2 from adjacent regions and assume 
that the remaining transitions are equally distributed (Fig. 11). Let pf' and pf rep­
resent the asymptotic probabilities of appearing in states s1 and s2 , averaged over all 
possible transient starting states. Calculating the ratio r 00 = pf' /pf yields 

r= = (Pi) ((P1 ~ l)p~ - (3p1 + 21)p2 + 2p1 - 14) 
P2 (P1 - 3p1 + 2)p2 - Pi - 2lp1 - 14 

The dependence of r 00 on p1 and p2 agrees with our intuitions. The ratio increases 
monotonically from O as p1 increases from O to 1 and decreases monotonically from 
oo as pz increases from O to 1. It equals O when p1 = O, oo when p2 = O, and 1 when 
P1 equals P2. 

5.3 The quadratic map 

Markov analysis handles discrete dynamic systems as well as continuous ones. The 
evolution law of a discrete system maps states to their immediate successors. Given 
initial state x0 and map/, the system is in state x 1 = f(x0 ) at time 1, x2 = J(f(x0 )) 

at time 2, and Xi= Ji(x0 ) at time i. The set of iterates {xi} is called the trajectory 
of x 0 • Dynamic systems theory seeks to determine the qualitative properties of a 
system's trajectories from its evolution law. For example, a trajectory is fixed if 
f ( x) = x and periodic with period p if f P( x) = x. Devaney [2] provides a good 
elementary introduction to discrete dynamic systems, including the example below. 

Discrete systems are useful in modeling population dynamics. Here x 0 denotes an 
initial population, xi denotes the population after i generations, and f ( x) expresses 
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the birth rate. May [9] studies the system f ( x) = ax - bx2 with a and b positive 
parameters that represent natural reproduction and the negative effects of overcrowd­
ing. The birth rate increases from Oto a maximum then decreases to O as x increases 
from O to a/b. Even this system, arguably the simplest nonlinear one possible, can 
exhibit extremely complicated behavior. 

Following May, we substitute bx/a for x to obtain the canonical form 

f(x) = ax(l - x), 

which is called the quadratic map. Trajectories that leave the interval [O, 1] approach 
-oo monotonically and f(l) = O, implying that large enough populations always die 
out. The problem is to identify and characterize the trajectories that remain in (0, 1) 
forever, which represent the stable patterns of population :fluctuation. The answer 
depends on a. The point (a - 1)/a is always fixed. For a< 3, all trajectories in (0, 1) 
approach ( a - 1) / a asymptotically. This means that populations below a certain size 
approach a stable equilibrium, whereas larger populations die out. New phenomena 
arise within (0, 1) for 3 :::; a :::; 4, including periodic orbits with arbitrarily large 
periods and chaos, but trajectories still cannot escape because f :::; 1. In physical 
terms, the population can vary erratically, but cannot die out. For a > 4, almost 
all trajectories escape and the remainder form a chaotic Cantor set; almost all initial 
populations die out, but some persist and vary erratically. 

Rigorous derivation of these conclusions requires great mathematical expertise. 
More complicated equations defy analysis altogether. Markov analysis, although more 
limited, provides many of the same answers and applies uniformly to all equations. We 
define a Markov chain with two states [O, 1] and its complement C = (-oo, O)U(l, oo ). 
For a :::; 4, we obtain two absorbing states because trajectories never cross between 
regions. For a > 4, we obtain an absorbing chain with absorbing state C, implying 
that trajectories in [O, 1] eventually escape to C with probability 1. In physical terms, 
the population survives for a < 4 and dies out otherwise. 

Markov theory also predicts the extinction time for a > 4, which equals the 
absorption time into C. The transition probability from [O, 1] to C equals the measure 
of the set of points in [O, 1] that map directly into C. This set is the subinterval 

so the transition probability is p = ✓1 - 4/ a. The expected absorption time equals 
1/p, as explained in Section 4.1. Figure 12 compares the predicted mean absorption 
times with the average absorption times derived by numerically simulating trajectories 
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a Markov prediction observed % error 
4.1 6.40 6.49 1.4 
4.2 4.58 4.58 0.0 
4.5 3.00 2.98 0.6 
5 2.24 2.22 0.9 
6 1.73 1.75 1.1 

Figure 12: Stochastically predicted time for the quadratic map to leave [0, 1] compared 
with the average observed time for 20000 pseudorandom starting points. 

for 20000 pseudorandom initial points. The small relative error indicates that the 
chain assumption applies well. 

In a more refined analysis, we could investigate the behavior of the quadratic 
map within the interval [0, 1] by partitioning that interval into small subintervals. 
Markov analysis would estimate the distribution of states within each region. This 
approach provides a statistical understanding of systems whose individual trajectories 
defy analysis . For example, it demonstrates that most iterates of the map 4x(l - x) 
on [0, 1] cluster near the endpoints, a result that Lasota and Mackey [8] confirm by 
analytic means. In contrast, the chaotic behavior of the quadratic map implies that 
some trajectories cross between every pair of regions, thus reducing its qualitative 
dynamics to a complete graph, devoid of predictive power. 

6 Conclusions and future work 

We apply the theory of Markov chains to estimate the relative likelihoods of possible 
behaviors of a system, thereby filling a serious gap in the predictions of qualitative 
simulation. Our method provides a formal justification and an efficient algorithm for 
commonsense and quantitative reasoning about relative likelihoods. It enables us to 
draw the best possible conclusions from the available information. We can determine 
the possible long term behaviors of a system directly from its qualitative dynamics in a 
simple qualitative analysis that runs in linear time. More detailed information, such as 
the likelihoods of the possible behaviors and the expected settling times for each initial 
state, require estimates of the transition probabilities between qualitative states. The 
estimates can be numeric or symbolic; the analysis is formally identical in both cases, 
but has O(n3

) time-complexity in the former and exponential time-complexity in the 
latter. We exhibit the utility of our method in several examples, and analyze the 
robustness of its conclusions to perturbations in the transition probabilities. The 
likelihoods of the long term behaviors are never sensit ive to perturbations in the 
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transition probabilities, whereas the expected settling times can be sensitive. 
Our current analysis is only a first step towards full exploitation of the stochastic 

approach to qualitative reasoning. We have not fully explored the potential of Markov 
theory. Further investigation may yield simple ways of determining other qualitative 
properties of systems through application of known techniques, or purely qualitative 
algorithms for obtaining qualitative predictions of relative likelihoods. One might also 
relax the chain assumption underlying our treatment and instead view the qualitative 
dynamics as describing a more general Markov process in which transitions depend 
on past states. There is a rich theory of these processes which may support many of 
the same conclusions as above in the more general setting. 

Incorporating global properties of flows into stochastic analysis is another topic 
for future research. Our current analysis derives the qualitative dynamics of a system 
from local properties of its flow: where it vanishes and whether it crosses certain 
curves. Sacks [11] shows how to increase the accuracy of the qualitative dynamics by 
ruling out locally consistent behaviors that violate global constraints, thus reducing 
the size of a transition graph. For example, his program uses an energy argument to 
prove that a pendulum cannot spin forever. One could make this argument within the 
qualitative dynamics by partitioning phase space along level curves of the pendulum's 
total energy. Energy conservation then rules out transitions from a region to higher 
energy regions. This dynamics eliminates the spurious behaviors of wobbling and 
unbounded oscillation, which the original dynamics permits. It facilitates stochas­
tic analysis by reducing the size of the transition graph and by providing trapping 
regions for sinks without the estimation problems discussed in Section 5.2. Energy 
conservation also implies that the pendulum cannot spin forever without resort to the 
chain assumption, thus lightening the burden on stochastic analysis. Deriving and 
exploiting the relations between the stochastic model and the global phase flow is a 
more ambitious task. 

Incorporating global analysis [15] with stochastic analysis is another direction for 
future research. Global analysis considers not just one flow, but a class of flows. This 
is useful when we do not know the exact equations describing a system, and wish 
to make predictions based on what we do know about them. One global concept is 
that of structurally stable system, all of whose perturbations have the same qualita­
tive behavior. Global analysis formalizes such notions by considering measures over 
classes of flows. When the measures considered are probability densities over sys­
tems, the stochastic analysis presented above can be directly extended to the case of 
indeterminate dynamics. For example, the set of flows for the Lottka-Volterra model 
of population sizes of competing species divides into four classes of flows, each with 
qualitatively different dynamics [6]. Each of these has a small number of attractors, 
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and can be analyzed for expected asymptotic behavior just as was done with the 
charged pendulum in section 5.2. If we can estimate (by some means) the proba­
bility that the actual system falls into each class, we can then calculate the overall 
probability of each possible asymptotic behavior in each of the different dynamics. 

Automating the model refinement procedure for stochastic qualitative analysis is 
a major challenge. To do so requires answering some fundamental questions about 
the stability of the stochastic predictions under changes in the underlying qualitative 
graph, such as dividing phase space into overly-fine regions. Yip [16] presents some 
methods for sampling and observing the behaviors of dynamical systems. Perhaps 
they can be extended to the model construction task. Machine learning techniques 
may also prove relevant. 
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