
LABO RA TORY FOR tt·~ MASSACHUSETTS
INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

MIT/LCS/fM-411

ROUTING WITH POLYNOMIAL
COMMUNICATION-SPACE

TRADEOFF

Baruch Awerbuch
David Peleg

September 1989

545 TECHNOLOGY SQUARE. CAMBRIDGE. MASSACHUSETTS 02139

Routing with Polynomial Communication-Space

Tradeoff

Baruch A wer buch * David Peleg t

September 13, 1989

Abstract

This paper presents a family of memory-balanced routing schemes that use rela

tively short paths while storing relatively little routing information. The hierarchical

schemes 1ik (for every fixed k ~ l) guarantee a stretch factor of O(k2) on the length of

the routes and require storing at most 0(n½ log2 n log D) bits of routing information per

vertex in an n-processor network with diameter D. The schemes are name-independent

and applicable to general networks with arbitrary edge weights. This improves on pre

vious designs whose stretch bound was exponential in k.

Key words:

Communication networks, routing tables, communication-space trade-offs, graph covers.

*Dept. of Mathematics and Lab. for Computer Science, M.I.T., Cambridge, MA 02139; ARPANET:

baruch@theory.lcs.mit.edu. Supported by Air Force Contract TNDGAFOSR-86-0078, ARO contract

DAAL03-86-K-0171, NSF contract CCR8611442, and a special grant from IBM.
tDepartment of Applied Mathematics, The Weizmann Institute, Rehovot 76100, Israel. Supported in

part by an Alon Fellowship. Part of the work was done while visiting IBM T.J. Watson Research Center.

1 Introduction

Delivering messages between pairs of processors is a primary activity of any distributed com

munication network. This task is performed using a routing scheme, which is a mechanism

for routing messages in the network. It can be invoked at any origin vertex and be required

to deliver a message to some destination vertex.

Naturally, it is desirable to route messages along short paths. The straightforward ap

proach of storing a complete routing table in each vertex v in the network (specifying for

each destination u the first edge along some shortest path from v to u) guarantees optimal

routes, but is too expensive for large systems since it requires a total of O(n2 logn) memory

bits in an n-processor network. Thus, one basic goal in large scale communication networks

is the design of routing schemes that produce efficient routes and have relatively low memory

requirements. The efficiency of a routing scheme is measured in terms of its stretch, namely,

the maximum ratio between the length of a route produces by the scheme for some pair of

processors and t heir distance.

The problem of efficiency-memory tradeoffs for routing schemes was first raised in [KKl].

The solution given there and in several consequent papers (KK2, Pr, S, FJl, FJ2, SK,

vLTl, vLT2] applies only under some special assumptions or for special classes of network

topologies. In [P U] the problem is dealt with for general networks. The paper presents

a family of hierarchical routing schemes (for every fixed integer k 2 1) which guarantee

stretch 0 (k) and require storing a total of 0 (k3 n l+l/k log n) bits of routing information in

the network. This behavior is almost optimal, as implied from a lower bound given in [PU]

on the space requirement of any scheme with a given stretch.

While the method of [PU] is appropriate for designing a static routing scheme, it is not

suitable for situations in which the routing scheme needs to be updated from time to t ime.

Such updates may be needed when the topology of the network changes (due to failures or

recoveries or other reasons) . Each such update involves recomputing the edge costs in the

network and deciding on the new routes accordingly. (In this paper we ignore the issue of

determining the link costs and concentrate on the step of setting up a routing tables.)

In such situations it is necessary that the routing scheme be able to handle arbitrary

edge costs (as well as arbitrary network topologies.) Another crucial requirement is name

independence. By this we mean that the addresses used to describe the destination of mes

sages should be permanently fixed and independent of the routing scheme. This precludes

routing strategies in which the route design involves also selecting an addressing label for

each vertex (typically encrypting partial information necessary for determining the routes

1

leading to it). This approach clearly violates the principle that routing-related system ac

tivities need be transparent to the user. Finally, in the non-static case, a bound on the total

(or average) memory requirements is insufficient. This is because in such sett ing, vertices

may play different roles and thus require varying amounts of space. For instance, a vertex

may be designated as a "communication center" or just happen to be the crossing point of

many routes in a particular scheme. This forces every vertex to have sufficient memory for

performing the most demanding role it may ever need to perform. It is thus necessary to

guarantee a bound on the worst-case memory requirements of each vertex. (See [ABLP] for

a more detailed discussion of these issues.)

Unfortunately, the routing strat egy of [PU] lacks all of t hese three properties. It deals only

with unit-cost edges, it is name-dependent, and there is no bound on the worst-case memory

requirements of each vertex. Consequently, these problems were tackled in [ABLP, P2]. The

schemes proposed in these two papers succeed in achieving these desirable properties but at

the cost of an inferior efficiency-space t radeoff. In an n-processor network of diameter D ,

the schemes HSk of [ABLP], fork 2: 1, use O(k - logn • n½) bits of memory per vertex and

guarantee a stretch of O(k2-9k) , while the schemes Rk of [P2], fork 2: 1, use O(log D-log n-nt)
bits of memory per vertex and guarantee a stretch of 0 (4k).

The schemes of [P2] are based on solving a certain graph problem (handled previously in

[Pl]) involving the construction of sparse covers. The schemes presented in the current paper

are basically the same as those of [P2], except that they employ a new, more efficient solution

to the underlying cover problem, and thus improves the tradeoff. Thus for every graph G

and every fixed int eger k 2: 1 we construct a hierarchical routing scheme Hk with stretch

O(k2) using O(n1
/ k log2 n log D)) memory bits per vertex. Let us comment that the schemes

of [ABLP] still have two advantages over the new schemes. First, their space complexity is

purely combinatorial, i.e., it does not depend on the edge weights. This may be significant if

we allow super-polynomial edge weights. Secondly, that scheme has an efficient distributed

preprocessing algorithm for setting t he routes, while the preprocessing stage of the current
schemes seems to be inherently sequential.

The rest of the paper is organized as follows. Section 2 formally defines the problem.

Section 3 presents the hierarchical routing scheme. Finally, Section 4 gives t he new solution
to the sparse cover problem.

2

2 Definition of the problem

We consider the standard model of a point-to-point communication network, described by

an undirected graph G = (V, E), V = {1, ... , n }. The vertices V represent the processors of

the network and the edges E represent bidirectional communication channels between the

vertices. A vertex may communicate directly only with its neighbors, and messages between

non-adjacent vertices are sent along some path connecting them in the network.

We assume the existence of a weight function w : E --t n+, assigning an arbitrary positive

weight w(e) to each edge e E E. Also, there exists a name function name: V --t U, which

assigns to each vertex v E V, an arbitrary name name(v) from some universe U of names.

We sometime abuse notation, referring to name(v) simply by v.

For two vertices u,w in a graph G let dista(u,w) denote the (weighted) length of a

shortest path in G between those vertices, i.e., the cost of the cheapest path connecting them,

where the cost of a path (e1 , ... , es) is I:i~i~s w(ei)- (We sometimes omit the subscript G

where no confusion arises.)

A routing scheme RS for the network G is a mechanism for delivering messages in the

network. It can be invoked at any origin vertex u and be required to deliver a message

M to some destination vertex v (which is specified by its name) via a sequence of message

transmissions. An elementary message is allowed to contain O(log n) bits.

We now give precise definitions for our complexity measures for stretch and memory. The

communication cost of transmitting a message over edge e is the weight w(e) of that edge.

The communication cost of a protocol is the sum of the communication costs of all message

transmissions performed during the execution of the protocol. Let C(RS, u, v) denote the

communication cost of the routing scheme when invoked at an origin u, w.r.t. a destination

v and an elementary (O(log n) bit) message, i.e., the total communication cost of all message

transmissions associated with the delivery of the message. Given a routing scheme RS for an

n-processor network G = (V, E), we say that RS stretches the path from u to v by ~~~f ~~~)) .
We define the stretch factor of the scheme RS to be

The memory requirement of a protocol is the maximum amount of memory bits used by

the protocol in any single processor in the network. We denote the memory requirement of

a routing scheme RS by Memory(RS).

Next let us define some basic graph notation. The j-neighborhood of a vertex v E V is

3

defined as

Nj(v) = {w I dist(w,v) ~ j}.

Given a subset of vertices R ~ V, denote Nm(R) = {Nm(v) I v E R} . Let D = Diam(G)
denote the diameter of the network, i .e., maxu,vEv(dist(u, v)) . For a vertex v EV, let

Rad(v,G) = max(dista(v,w)).
wEV

Let Rad(G) denote the radius of the network, i.e., minvEv(Rad(v,G)). A center of G is

any vertex v realizing the radius of G (i.e. , such that Rad(v, G) = Rad(G)) . In order to

simplify some of the following definitions we avoid problems arising from 0-diameter or 0-

radius graphs, by defining Rad(G) = Diam(G) = 1 for the single-vertex graph G = ({ v }, 0).
Observe that for every graph G, Rad(G) ~ Diam(G) ~ 2Rad(G). (Again, in all of the

above notations we may sometimes omit the reference to G where no confusion arises.)

Finally, let us introduce some definitions concerning covers. Given a set of vertices

S ~ V, let G(S) denote the subgraph induced by S in G. A cluster is a subset of vertices

S ~ V such that G(S) is connected. We use Rad(v,S) (respectively, Rad(S), Diam(S))
as a shorthand for Rad(v, G(S)) (resp., Rad(G(S)), Diam(G(S))). A cover is a collection

of clusters S = { S1 , ... , Sm} such that US; = V. Given a collection of clusters S, let

Diam(S) = max; Diam(S;) and Rad(S) = maxi Rad(S;) . For every vertex v E V, let

degs(v) denote the degree of v in the hypergraph (V, S), i.e., the number of occurrences of

v in clusters S E S.

Given two covers S = {Si, .. . , Sm} and T = {Ti, ... , Tk}, we say that T subsumes S if

for every Si E S there exists a Ti E T such that S; ~ Ti.

3 The routing scheme

In this section we describe our routing strategy and the structures it uses in t he network.

Our approach is based on constructing a hierarchy of covers in the network, and using this

hierarchy for routing. In each level, the graph is covered by clusters (namely, connected

subgraphs), each managed by a center vertex. Each cluster has its own internal routing

mechanism (described in the following subsection), enabling routing to and from the center.

Messages are always transferred to their destinat ions using the internal routing mechanism

of some cluster, along a route going through the cluster center. It is clear that this approach

reduces the memory requirements of the routing schemes, since one has to define routing

paths only for cluster centers, but it increases the communication cost, since messages need

4

not be moving along shortest paths. Through an appropriate choice of the cluster cover we

guarantee that both overheads are low.

3.1 Tree routing

In this subsection we discuss the basic routing component used inside clusters. This com

ponent is based on a shortest path tree T rooted at a vertex r and spanning the cluster.

Routing messages to the root is a straightforward task. We need a mechanism enabling us

to route a message from the root, where the destination is not necessarily in the tree (in

which case the message is to be returned to the root with an appropriate notification).

This subproblem was treated in previous papers using a simple scheme called the interval

routing scheme or IT R [SK,PU]. This scheme is based on assigning the vertices v ET a DFS

numbering DFS(v) and storing at a vertex u its DFS number and the DFS numbers DFS(w)

of each of its children w in the tree. Then routing a message from the root r to a vertex

v (assuming that r knows the value DFS(v)) involves propagating the message from each

intermediate vertex u with children w1 , ... , wk (ordered by increasing DFS numbering) to

the child wi such that DFS(wi) ~ DFS(v) < DFS(wi+i) (setting DFS(wk+i) to oo).

Using the IT R scheme for our purposes poses some new technical problems. First, the

scheme requires using the DFS numbers as routing labels, which interferes with the name

independence requirement. Secondly, the memory stored at a vertex depends linearly on

its degree, and thus may be as high as O(n) in the worst case. This interferes with the

balanced-memory requirement.

The two problems are solved in [ABLP] as follows. In order to avoid the need to know the

DFS labels in advance by the origins, the scheme uses a distributed data structure enabling

the root to retrieve the DFS label of a vertex using its original name as a key. The second

problem is handled by proving that one can embed into any tree a tree of "small" degrees,

without paying too high a price in memory and without increasing the depth of the tree "too

much", where the degrees and depth are controlled by some parameter k.

In fact, the scheme as described in [ABLP] is aimed at solving a somewhat harder task

then ours. It therefore uses a special type of stratified tree structure, which increases the

resulting complexity. This feature is not needed here. Consequently, we may use a simplified

version of the mechanism of [ABLP]. We do not describe the mechanism in detail, but rather

state the complexity of the resulting tree routing component. Define the depth of the tree

T, depth(T), as the maximum distance of any vertex in T from the root. The memory

requirements of the tree routing scheme for Tare O(n1/k logn) bits per vertex. The length

5

of the resulting paths is up to 4k • depth(T) for any u E V, whether or not u E T . (In

the scheme as presented in (ABLP) both complexities are higher by a factor of k due to the

stratified structure.)

3.2 Regional routing schemes

Each level in our hierarchy constitutes a regional (C,m) -routing scheme, which is a scheme

wit h t he following properties. For every two processors u, v, if dist(u, v) ::; m then the

scheme succeeds in delivering messages from u to v. Otherwise, the routing might end in

failure, in which case the message is returned to u. In either case, the communication cost

of the entire process is at most C.

In this subsection we describe how to construct a regional (O(k2m),m)-routing scheme,

for any integers k, m 2:: 1. We rely on the following Theorem, to be proved in Section 4.

Theorem 3 .1 Given a graph G = (V, E), !VI = n and integers m, k, it is possible to construct

a cover T that satisfies the following properties:

(1) T subsumes Nm(V) ,

(2) R ad(T) ::; (4k + l)m for every TE T, and

(3) de97 (v) = O(n1fk logn) for every v E V.

We start by constructing a cover T as in the Theorem. Next, we provide internal routing

services in each cluster T by selecting a center R(T) and constructing a tree routing compo

nent for T rooted at this center. By Property (1) of the Theorem, t he cover T subsumes

Nm(V), that is, for every vertex v E V there is a cluster T E T such that Nm(v) ~ T.
Consequently, we associate with every vertex v EV a home cluster, home(v) E T , which is

the cluster containing Nm(v). (In case there are several appropriate clusters, select one arbi

trarily.) A processor v routes a message by sending it to its home cluster leader, R(home(v)) .

The leader uses the tree routing mechanism to forward the message to its destination. If

that destination is not found in the cluster, the message is returned to the root and from

there to t he originator.

The correctness and complexity of the constructed regional scheme are dealt with in

the following two lemmas, relying on the properties of the tree routing mechanism and the

constructed cover .

Lemma 3.2 The mechanism described above is a regional (O(k2m) , m)-routing scheme.

6

Proof: Suppose that dist(u,v) ::; m for some processors u,v. By definit ion, v E Nm(u) .

Let T be the home cluster of u. Then Nm(u) ~ T, so v E T . Hence t he tree routing

on T will succeed in passing the message from u to v. Furthermore, as discussed in the

previous Subsection, the routing proceeds along a path of length at most 8k · depth(T) =
8k · Rad(l(T), T). By Property (2) of Theorem 3.1, 8k · Rad(l (T), T) ::; 8k(4k + l)m. I

Lemma 3 .3 For every graph G and integers m,k ~ 1, t he regional (O(k2m), m)-routing

scheme described a bove ca n be implemented using O(n2fk log2 n) memory bits per vertex.

P roof: Implementing the routing scheme involves the following space requirements. Each

vertex v needs to store up to O(n1 fk logn) bits for every T cluster to whom it belongs, (i.e.,

for deg7 (v) clusters). By Property (3) of Theorem 3.1 this degree is O(n1 fk log n). This gives

a total of O(n2 fk log2 n) bits per vertex. I

3.3 The hierarchical rout ing scheme

Finally we present our family of hierarchical routing schemes. For every fixed integer k ~ l ,

construct t he hierarchical scheme 1{k as follows. Let 5 = flog Diam(G)l For 1 ::; i ::; 5

construct a regional (O(k2mi),mi)-routing scheme~ where mi = 2i. Each processor v

participates in all 5 regional routing schemes Ri. In particular, v has a home cluster homei(v)

in each~' and it stores all the information it is required to store for each of these schemes.

The routing procedure operates as follows. Suppose a vertex u wishes to send a message

to a vertex v. Then u first t ries using t he lowest-level regional scheme R1 , i.e., it forwards

t he message to its first home cluster leader, l(home1 (v)) . If this trial fails, u retries sending

its message, this time using regional scheme R2 , and so on, until it finally succeeds.

Lemma 3 .4 The hierarchical routing scheme 1{k has Stretch(1ik) = O(k2).

P roof: Suppose that a processor u sends a message to some other processor v . Let d =
dist(u, v) and j = flog dl (i.e., 2i-1 < d ::; 2i) . The sender u successively tries forwarding

the message using the regional schemes R 1 , R2 etc. , until t he message finally succeeds in

arriving v . By Lemma 3.2, the regional scheme Rj will necessarily succeed, if no previous

level did. (Note that the highest-level scheme, Rs, has m s = 2s ~ Diam(G) ~ d, and

t herefore will always succeed .)

Denote the total length of the combined path traversed by the message by p. By Lemma

3.2), p satisfies (for some constant c > 0)

j

p ::; :Eck22i < ck22i+1 < O(k2)dist(u, v) .
i=l

7

I

Theorem 3.5 For every graph G and every fixed integer k ~ 1 it is possible to construct (in

polynomial time) a hierarchical routing scheme 'Hk with Stretch('Hk) = O(k2) using Memory('H.k) =

0(n l/k log2 n log Diam(G)) bits per vertex.

Proof: Construct the 8 = flog Diam(G)l regional schemes Ri as in the previous subsection.

By Lemma 3.3, the total memory requirements are

8 Lo(n1
fk log2 n) = O(n1

fk log2 n log Diam(G)).
i=l

I

4 Constructing a sparse cover

4.1 The construction of the cover

In this subsection we present the algorithm Main, whose task is to construct a cover as in

Theorem 3.1. The construction revolves on covering them-neighborhoods Nm(v) of vertices

v. The input to the algorithm is a graph G = (V, E), IVI = n, and integers m, k. The

output collection of cover clusters, T, is initially empty. The algorithm maintains the set of

"remaining" vertices R. These are the vertices whose m-neighborhood is not yet subsumed

by the constructed cover. Initially, R = V, and the algorithm terminates once R = 0. The

algorithm operates in at most n1 fk log n phases. Each phase consists of the activation of the

procedure Cover, which adds a subcollection of clusters Y to T and removes a set of vertices

H from R.

Algorithm Main is formally described in Figure 1.

The role of Procedure Cover is to construct a partial collection of clusters used as part

of the output cover T. When activated, the procedure constructs a collection of clusters Z

of a special structure. Each cluster Z E Z is composed of three layers, namely, it has an

internal kernel X = X(Z) and an external kernel Y = Y(Z), such that X ~ Y ~ Z.

The general structure of the procedure is similar to the algorithms presented in [Pl,

P2]. The procedure first constructs the collection of all m-neighborhoods of vertices in R,
S = Nm(R). The goal is to compute a sparse collection Z of clusters covering S. The

procedure operates in iterations. Each iteration begins by arbitrarily picking a cluster Z in

S and removing it from S. The cluster is then repeatedly merged with intersecting clusters

8

R f--V

Tf--0

repeat

(H,Y) f-- Cover (R)

Tf--TUY

Rf--R\H

until R = 0

/* R is the set of "remaining" vertices * /
/* T is the output cover * /

Figure 1: Algorithm Main.

S f--Nm(R)

Y f-- 0; H f-- 0
repeat

Select an arbitrary cluster Z E S.

Sf-- S - {Z}

repeat

xf--z

Q f-- {S' I S' Es, S' n x =I= 0}.

Y f-- X u Us'eQ S'
Sf--S-Q

Q f-- {S' I S' Es, S'nY i-0}.

Z f-- Y u Us'eQ S'
Sf--S-Q

until IR n ZI ~ n 1/klR n XI
Y f--YU {Y}
H f-- H U (R n X)

until S = 0
Output (H,Y).

Figure 2: Procedure Cover(R, H, Y).

9

/* invoke procedure Cover * /

(removing each such cluster from S as well) . This is done in a layered fashion, adding two

layers at a time. At each stage, the original cluster is viewed as the internal kernel X(Z)
of the resulting cluster Z, and the cluster plus the first layer is considered as the external

kernel Y(Z) of Z. The merging process is carried repeatedly until reaching a certain sparsity

condition. The procedure then adds the external kernel Y of the resulting cluster Z to a

collection Y- In addition, every vertex of R that belongs to the internal kernel X is added

to H (as its m-neighborhood is now covered by Y). Then a new iteration is started. These

iterations proceed until S is exhausted. The procedure then outputs the sets H and Y-

Note that them-neighborhood Nm(v) of every vertex v ER is covered by some cluster

Z constructed during the execution of the procedure. However, we take into our output set

only the external kernels. Therefore not all of the neighborhoods in Nm(R) are covered, so

there may be vertices left in R after the main algorithm removes the elements of H.

Procedure Cover is formally described in Figure 2. (Note that the collection Z is not

explicitly mentioned in the code.)

4.2 Correctness and analysis of the regional cover

The properties of Procedure Cover are summarized by the following lemma.

Lemma 4.1 Given a graph G = (V, E) , IVI = n , an integer k and a subset R ~ V, the collec

tion Y and the set H constructed by Procedure Cover(R, H , Y) satisfy the following properties:

(1) Y subsumes Nm(H),

(2) Y n Y' = 0 for every Y, Y ' E Y,

(3) IHI ~ IRl/n1
fk , and

(4) Rad(Y) :S (4k + l)m for every YE Y.

Proof: First let us note that since the elements of S at the beginning of the procedure are

neighborhoods, the construction process guarantees that every set Z added to Z and every

set Y added to Y is a cluster (i.e., its induced graph is connected). Furthermore, every

vertex v E H belongs to some internal cluster X(Z), so its entire m-neighborhood Nm(v)
is covered by the corresponding external kernel Y(Z) which is in Y- This implies that the

clusters of Y subsume Nm(H), and Property (1) holds.

Let us now prove Property (2). Suppose, seeking to establish a contradiction, that there

is a vertex v such that v E Y n Y'. Without loss of generality suppose that Y was created

10

in an earlier iteration than Y' . Since v E Y', there must be a cluster S' such that v E S'
and S' was still in S when the algorithm started constructing Y'. But every such cluster S'
satisfies S' n Y =f 0, and therefore the final construction step creating the cluster Z from Y
should have merged S' into Z and eliminated it from S ; a contradiction.

Property (3) is derived from the last two properties as follows. First note that every

vertex of R occurs in some cluster of S, hence it is also included in some cluster Z E Z.

Hence R = UzEz(R n Z) and

IRI = I U (RnZ)I ~ I: IRnz1.
ZEZ ZEZ

It is immediate from the termination condition of the internal loop that for all Z E Z,

IR n ZI ~ n11klR n X(Z)I .

Therefore

IRI ~ L n11klR n X(Z)j .
ZEZ

By Property (2) we get, since X(Z) ~ Y(Z) for every Z E Z,

IRl~nl/kl u (RnX(z))l=n11klHI.
ZEZ

Finally we analyze the increase in the radius of clusters in the cover. Consider some

iteration of the main loop of Procedure Cover in Figure 2, starting with the selection of

some cluster Z E S . Let J denote the number of times the internal loop was executed.

Denote the initial set Z by Z0 • Denote the set Z (respectively, X, Y) constructed on the i'th

internal iteration (1 ~ i ~ J) by Zi (resp., Xi,~) . Note that for 1 ~ i ~ J , Zi is constructed

on the basis of Xi, and Xi = Zi-l • We proceed along the following chain of claims.

Claim 4.2 IR n Zi l ~ ni/k for every 0 ~ i ~ J - l, and strict inequality holds for i ~ 1.

Proof: By induction on i. The claim is immediate for i = 0. Assuming the claim for
i - 1 ~ 0, it remains to prove that

which follows directly from the fact that the termination condition of the internal loop was
not met. I

Corollary 4 .3 J::; k.

Claim 4.4 For every 0 ~ i ~ J, Rad(Zi) ~ (4i + l)m.

11

Proof: We first note that for 1 ~ i ~ J,

since l'i is created from Xi by merging into it some neighboring clusters from S, and Z; is

created from l'i by a similar process. The proof now follows by straightforward induction on

i, since Zo ES and xi = zi-l for 1 ~ i ~ J. I

Since XJ = ZJ_1 , it follows from Corollary 4.3 and Claim 4.4 that

Corollary 4 .5 Rad(XJ) ~ (4k - l)m.

This finally enables us to prove the last property of the Lemma, upon noting that by

arguments similar to the proof of Claim 4.4, Rad(YJ) ~ Rad(XJ) + 2m. I

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1: We need to prove that given a graph G = (V, E), JVJ = n and

integers m, k, the cover T constructed by Algorithm Main satisfies the three properties of

the Theorem.

Let Ri denote the contents of the set R at the beginning of phase i , let Y denote the

collection Y added to Tat the end of phase i, and let Hi be the set H removed from Rat

the end of phase i .

Property (1) follows from the fact that T = Ui Y, V = Ui Hi and hence Nm(V) =
UiNm(Hi) , and by Property (1) of Lemma 4.1 Yi subsumes Nm(Hi) for every i. Property

(2) follows directly from Property (4) of Lemma 4.1. It remains to prove P roperty (3). This

property relies on the fact that by Property (2) of Lemma 4.1, each vertex v participates

in at most one cluster in each collection Y. Therefore it remains to bound the number of

phases performed by the algorithm. This bound relies on the following observations. By

Property (3) of Lemma 4.1, in every phase i, at least JH i J ~ JRiJ/n1/k vertices of Ri are

removed from the set Ri, i.e., JRi+l J ~ (1 - l/n1fk)JRiJ. Consequently, since R0 = V,

. (1)i
IRil < 1- - - n

- nl/k '

hence R is exhausted after no more than 0(n l/k log n) phases of Algorithm Main. This

completes the proof of the Theorem. I

12

References

(ABLP] B. Awerbuch, A. Bar-Noy, N. Lin.ial, and D. Peleg, Compact Distributed Data Structures

for Adaptive Routing, 21st Symp. on Theory of Computing, May 1989.

(FJl] G.N. Frederickson and R. Janardan, Designing Networks with Compact Routing Tables,

Algorithmica 3, (1988), 171-190.

(FJ2] G.N. Frederickson and R. Janardan, Separator-Based Strategies for Efficient Message

Routing, 27th Symp. on Foundations of Computer Science, 1986, 428- 437.

(KKl] L. Kleinrock and F. Kamoun, Hierarchical Routing for Large Networks; Performance

Evaluation and Optimization, Computer Networks 1 , (1977), pp. 155-174.

(KK2] L. Kleinrock and F . Kamoun, Optimal Clustering Structures for Hierarchical Topological

Design of Large Computer Networks, Networks 10 , (1980), pp. 221-248.

(Pl] D. Peleg, Sparse Graph Partitions, Report CS89-01, Dept. of Applied Math., The Weiz

mann Institute, Rehovot, Israel, February 1989.

[P2] D. Peleg, Distance-Dependent Distributed Directories, Report CS89-10, Dept. of Ap

plied Math., The Weizmann Institute, Rehovot, Israel, May 1989.

[PU] D. Peleg and E. Upfal, A Tradeoff between Size and Efficiency for Routing Tables, J. of

the ACM, to appear. (Extended abstract in 20th Symp. on Theory of Computing, pp.

43- 52, May 1988.)

[Pr] R. Perlman, Hierarchical Networks and the Subnetwork Partition Problem, Proc. 5th

Conf. on System Sciences, Hawaii, 1982.

[SK]

[S]

[vLTl]

[vLT2]

N. Santoro and R. Khatib, Labelling and implicit Routing in Networks, The Computer

Journal 28, (1985), pp. 5--8.

C.A. Sunshine, Addressing Problems in Multi-Network Systems, Proc. IEEE INFO

COM, Las-Vegas, 1982.

J. van Leeuwen and R.B. Tan, Routing with Compact Routing Tables, in The Book of

L, G. Rozenberg and A. Salomaa (eds.) , Springer-Verlag, New York, 1986, pp. 259-273.

J . van Leeuwen and R.B. Tan, Interval Routing, The Computer Journal 30, (1987),

298- 307.

13

