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Abstract 

A timing-based variant of the mutual ezclu.rion problem is considered. In this variant, only 
an upper-bound, m, on the time it takes to release the resource is known, and no explicit 
signal is sent when the resource is released; furthermore, the only mechanism to measure 
real time is an inaccurate clock, whose tick intervals take time between two constants, 
C1 ~ C2. 

When control is centralized it is proved that 

is an exact bound on the worst case response time for any such algorithm, where n is the 
number of contenders for the resource and l is an upper bound on process step time. On 
the other hand, when control is distributed among processes connected via communication 
lines with an upper bound, d, for message delivery time, it is proved that 

n [c:i (l(m + l)/c1J + 1) + d+ c:i + 2fj 

is an upper bound. A new technique involving ahifting and ah.rinking executions is combined 
with a careful analysis of the best allocation policy to prove a corresponding lower bound 
of 

n · c:i(m/c1) + (n - l)d. 

These combinatorial results shed some light on modeling and verification issues related to 
real-time systems. 

Keywords: distributed systems, I/0 automata, process control, real-time systems, resource 
allocation, timed I/0 automata., time bounds. 
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1 Introduction 

An importa.nt area of computer applications is real-time process control, in which a computer 
system interads with a real-world system in order to guarantee certain desirable real-world 
behavior. In most interesting cases, the real-world requirements involve timing properties, 
and so the behavior of the computer system is required to satisfy certain timing constraints. 
In order to be able to guarantee timing constraints, the computer system must satisfy some 
assumptions about time - for example, its various components should operate at known speeds. 

It is clear that good theoretical work in the area of real-time systems is necessary. In 
the past few years, several researchers have proposed new frameworks for specifying require
ments of such systems, describing implementations, and proving that the implementations 
satisfy the requirements. These frameworks are based on, among others, finite state machines 
([D85]), weakest precondition methods ([H81]), first-order logic ([JM86, JM87]), temporal logic 
([BH81]), Petri nets ([CR83, 1S87, S77]), and process algebra ([HGR87, KSRGA88, Z1G89]). 
Work is still needed in evaluating and comparing the various models for their usefulness in 
reasoning about important problems in this area and perhaps in developing new models if 
these prove to be inadequate. 

Work is also needed in developing the complexity theory of such systems; very little work 
has so far been done in this area. An example of the kind of work needed is provided by the 
theory of asynchronous concurrent systems. That theory contains many combinatorial results 
that show what can and cannot be accomplished by asynchronous systems; for tasks that can 
be accomplished, other combinatorial results determine the inherent costs. In addition to their 
individual importance, these results also provide a testbed for evaluating modeling decisions 
and a stimulus for the development of algorithm verification techniques. Similar results should 
be possible for real-time systems. Some examples of complexity results that have already 
been obtained for real-time systems are the many results on clock synchronization, including 
[DHS86, HMM85, 178, 1184, W188] (see [SW188] for a survey). 

In this paper, we embark on a study of complexity results for real-time systems. We begin 
this study by considering timing-based variations of certain problems that have previously been 
studied in asynchronous concurrent systems. In particular, in this paper, we study a variant of 
the mutual exclusion problem. This problem is one of the fundamental problems in distributed 
computing; it serves as an abstraction of a large class of hazard avoidance problems. We note 
that this particular problem appears in the real-time computing literature ( cf. [JM87]) as the 
"nuclear reactor problem". There, operators push different buttons to request the motion of 
different control rods in the same nuclear reactor. It is undesirable to have more than one 
control rod moving at the same time, presumably since in that case the nuclear reaction might 
be slowed down too much. 

More specifically, we consider a system consisting of some number, n, of identical moving 
parts ( e.g., control rods), no two of which are supposed to move at the same time. An opera.tor 
associated with each moving part ca.n request permission for the associated part to move by 
pushing a button that sends a REQUEST signal to the computer system. The system responds 
with GRANT signals; each GRANT signal gives permission to the designated moving part to 

2 



move, but such motion is expected to be finished no more than a fixed time, m, later. The 
system is only supposed to issue a GRANT signal when it knows that it is sa.fe to move the 
corresponding moving part, i.e., at least real time m has elapsed since the last GRANT signal. 
We assume, for simplicity, that a REQUEST signal is only issued by a particular operator 
if any preceding REQUEST by that operator has already been satisfied (by a corresponding 
GRANT signal). Our goal is to minimize the worst-case time between a REQUEST signal 
and the corresponding GRANT signal, i.e., the worst-case response time. 

The computer system might consist of a single process running on a dedicated proces
sor or might be a distributed system running on separate processors communicating over a 
message system. Solving the problem efficiently requires the computer system to make ac
curate estimates of the elapsed time since the last GRANT signal; the difficulty, however, is 
that the computer system only has inaccurate information about time, as given by inaccurate 
clock components within the system and by estimates of the time required for certain events. 
Specifically, the only information about time that the computer system has is the following: 

1. the knowledge that a moving part will stop moving within time m after a GRANT signal, 

2. the knowledge that the time between successive ticks of any clock is always in the interval· 
[c1 , c2], for known constants c1 and c2 , where O < c1 ~ c2, 

3. the knowledge that the time between successive steps of any process within the computer 
system is always in the interval [O, l], for a known constant l, 0 ~ l, and 

4. (if the system is distributed) the knowledge that the time to deliver the oldest message 
in each channel is no greater than a known constant d, 0 ~ d. 

In the cases we have in mind, we suppose that l < < c1 < c2 < < d < < m, but we state 
explicitly any assumptions that we require about relative sizes of the various constants. 

One way in which our problem differs from the mutual exclusion problem usually studied 
in a.synchronous systems is that we do not assume that an explicit signal is conveyed to the -
computer system when a moving part stops moving; the only information the system has a.bout 
the completion of the critical activity is based on its estimates of the elapsed time. It is fairly 
typical for real-time systems to use time estimates in order to make deductions a.bout real
world behavior. The results of this pa.per indicate some of the costs that result from using 
such estimates. 

We obtain the following results. First, we consider a centralized computer system, consist
ing of just a single process with a local clock. For that case, we show that 

n · c2 (l(m + l)/cd + 1) + l 
is an exact bound on the worst-case response time for the timing-based mutual exclusion prob
lem. The upper bound result arises from a careful analysis of a simple FIFO queue algorithm, 
while the matching lower bound result a.rises from explicitly constructing and "retiming" exe
cutions to obtain a contra.diction. 
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We then consider the distributed case, which is substantially more complicated. For that 
case, we obtain very close (but not exact) bounds: an upper bound of 

and a lower bound of 

Assuming that the parameters have the relative sizes described earlier, e.g., that d is much 
larger than l, c1 and c2 , the gap between these two bounds is just slightly more than a single 
message delay time. The upper bound arises from a simple token-passing algorithm, while 
the lower bound proof employs a new technique of shifting some of the events happening at a 
process while carefully retiming other events. 

The model that we use for proving our results is the I/ 0 automaton model [LT87], which 
has been extended recently to include timing [MMT88]. As noted earlier, many people are 
working on the development of other models and frameworks for reasoning about real-time 
systems. The most popular way of evaluating such frameworks involves their application to the_ 
specification and verification of substantial examples of practical utility. This paper, however, 
suggests a complementary approach. Since a framework for real-time processing should allow 
proof of combinatorial upper and lower bound and impossibility results, in addition to allowing 
specification and verification of systems, careful proofs of combinatorial results such as those 
in this paper should teach us a good deal about the appropriateness of a model for real-time 
processing. 

The rest of this paper is organized as follows. Section 2 presents the timed I/ 0 automaton 
model. Section 3 contains the general statement of the problem to be solved. Section 4 contains 
our results for the centralized case, Section 5 contains our results for the distributed case, and 
Section 6 contains some discussion and open problems. 

2 Model and Definitions 

2.1 I/0 Automata 

An I/O automaton consists of the following components: a set of actions, classified as output, 
input and internal, a set of states, including a distinguished subset called the start states, a 
set of ( state, action, state) triples called steps, and a partition of the locally controlled ( output 
and internal) actions into equivalence classes. An action 1r is said to be enabled in a state 
s' provided that there is a step of the form ( s', 1r, s ). An automaton is required to be input 
enabled, which means that every input action must be enabled in every state. The partition 
groups actions together that are to be thought of as under the control of the same underlying 
process. 

Concurrent systems are modeled by compositions ofl/0 automata, as defined in [LT87]. In 
order to be composed, automata must be strongly compatible; this means that no action can be 
an output of more than one component, that internal actions of one component are not shared 
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by any other component, a.nd tha.t no action is shared by infinitely ma.ny components. The 
result of such a. composition is another I/O automaton. The hiding operator ca.n be applied to 
reclassify output actions a.s internal actions. 

We refer the reader to [LT87] for a. complete presentation of the model and its properties. 

2.2 Timed Automata 

We augment the I/O a.utoma.ton model a.sin [MMT88] to allow discussion of timing properties. 
Namely, a. timed I/O automaton is a.n I/O automaton with a.n additional component called 
a. boundmap. The boundma.p associates a. closed subinterval of [0, oo] with ea.ch cla.ss in the 
a.utoma.ton's partition; to avoid certain boundary ca.ses we assume that the lower bound of each 
interval is not oo a.nd the upper bound is nonzero. This interval represents the range of possible 
differences between successive times at which the given cla.ss gets a cha.nee to perform a.n action. 
We sometimes use the notation bt( C) to denote the lower bound assigned by boundmap b to 
cla.ss C, a.nd bu(C) for the corresponding upper bound. 

A timed sequence is a. sequence of alternating states a.nd ( a.ction,time) pa.irs: 

so, ( 1r1, t1), s1, ( 1r2, t2) .. . 

Define t0 = 0. The times a.re required to be nondecreasing, i.e., for a.ny i ~ 1 for which ~ 
is defined, t, ~ t,_1 , a.nd if the sequence is infinite then the times a.re also required to be 
unbounded. For a.ny finite timed sequence a define tend( a ) to be the time of the la.st event in 
a, if a is nonempty, or 0, if a is empty; for a.n infinite timed sequence a, te,.ct( a) = oo. 

A timed sequence is said to be a timed e:,;ecution of a timed automaton A with boundma.p 
b provided that when the time components are removed, the resulting sequence is a.n execution 
of the I / 0 a.utoma.ton underlying A, a.nd it satisfies the following conditions for each cla.ss C 
of the partition of A and every i: 

1. Suppose bu ( C) < oo. If some action in C is enabled in s, and one of the following holds: 
either i = 0 or no action in C is enabled in s,_ 1 or 1r, is in C, then there exists j > i with 
t; ::; t, + bu( C) such that either 1r; is in C or no action of C is enabled in s;. 

2. If some action in C is enabled in s, a.nd either i = 0 or no action in C is enabled in s,_1 

or 71', is in C, then there does not exist j > i with t; < t, + bt( C) a.nd 1r; in C. 

The first condition says that, starting from when a.n action in C occurs or first becomes 
enabled, within time bu( C) either some action in C occurs or there is a point at which no such 
action is enabled. The second condition says that, a.gain starting from when a.n action in C 
occurs or first becomes enabled, no action in C can occur before time bt( C) has elapsed. The 
third condition merely requires tha.t the steps taken by the automaton a.re indeed legal. 

Note tha.t the definition of a timed execution includes a liveness condition (in l.) in addition 
to safety conditions (in both 1. and 2. ). For finite timed sequences, it is sometimes interesting 
to consider only the safety properties. Thus, we define a weaker notion, a.s follows. A finite 
timed sequence is said to be a timed semi-e:,;ecution provided tha.t when the time components 
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are removed, the resulting sequence is an execution of the I/ 0 automaton underlying A , and 
it satisfies the following conditions, for every class C and i. 

1. Suppose b,.(C) < oo. If some action in C is enabled in si and one of the following 
holds: either i = 0 or no action in C is enabled in s,_1 or 1r, is in C, then either 
t~,.a(a) ~ t, + b,.(C) or there exists j > i with t; ~ t, + b,.(C) such that either 1r; is in C 
or no action of C is enabled in s;. 

2. Condition 2. above. 

Intuitively, timed semi-executions represent sequences in which the safety conditions de
scribed by the boundmap are not violated. The following lemmas say that such a sequence can 
be extended to a timed execution in which the liveness conditions described by the boundmap 
are also satisfied. 

Lemma 2.1 If a is a timed semi-execution of a timed automaton A and no locally controlled 
action of A is enabled in the final state of a, then a is a timed execution of A. 

Proof: Straightforward. • 
Lemma 2.2 Let {a,}~1 be a sequence of timed semi-executions of a timed automaton A such 
that 

1. for any i ~ 1, a. is a prefix of 0:.+1, and 

2. lim, .. 00 t~,.a(a.) = 00. 

Then there exists an infinite timed execution a of A such that for any i ~ 1, a. is a prefix of 
a. 

Proof: Straightforward. ■ 

Lemma 2.3 Let A be a timed automaton having finitely many classes in its partition, and let 
a be a timed semi-execution of A. Then there is a timed execution a' of A that extends a, 
such that only events from classes with finite upper bound occur in a' after a . 

Proof: First, for each class C and each finite timed semi-execution {3, we define a time 
deadline({3, C) to represent the latest time after the end of {3 by which an action of C must 
occur in order to satisfy the liveness requirements. The definition is by induction on the number 
of events in /3 . In the base case {3 consists of a single start state, s0 , and we define, for any 
class C such that some action in C is enabled in s0 , deadline(/3,C) = b,.(C) . Otherwise, let 
deadline(/3 , C ) = oo. Let 

/3 = so,(1r1,t1),s1, ... ,(1r;,t;),s; 

and assume we have defined deadline for all finite timed semi-executions with j - 1 events. 
Denote 
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Let 1r; E C; then deadline(/3,C) = t; + b,.(C) if some action in C is enabled in s;, and 
deadline(/3,C) = oo, otherwise. For any class D =/. C, deadline(/3,D) = t; + b,.(D) if some 
action in D is enabled in s; and no action in D is enabled in s; _ 1; if some action in D is enabled 
in s; and also some action in D is enabled in s; _ 1, then deadline(/3, D) = deadline(/31

, D); if 
no action in D is enabled in s;, then deadline(/3, D) = oo.1 

We construct a' as the limit of a. sequence { a.}~1 of timed semi-executions, where a 1 = a. 
Starting from a., we define a.+1 as follows. Let C be a. class that has an action enabled in 
the final state of a., for which the value of deadline( a., C) is minimum among all such classes. 
Then U.+1 is obtained from a. by appending a. single enabled action from C, occurring a.t time 
deadline(a.,C). H there is no such class, then we define U.+1 = a_. Clearly, a. is a. timed 
semi-execution. 

It remains to verify that a', the limit of the a., is a timed execution. There are three cases. 

1. a' is a. finite sequence. Then a' = a. for some i such that no action in any class is enabled 
in the final state of a_. Then Lemma 2.1 implies that a' is a timed execution. 

2. a' is an infinite execution in which the time component is unbounded. Then Lemma 2.2 
implies that a' is a timed execution. 

3. a' is an infinite execution in which the time component is bounded. The facts that there 
are only finitely many classes and the values of b,.( C) are nonzero imply that there is 
some bound € > 0 such that tend( U.+1) ~ t,nd( a.)+€ for all i. This implies that this case 
cannot occur. 

■ 

For any timed execution or semi-execution o: we define sched{o:) to be the sequence of 
(action,time) pairs occurring in a, i.e., a with the states removed. We say that a sequence of 
( action, time) pairs is a timed schedule of A if it is sched(_ a), where o: is a timed execution of 
A. We also define beh( a) to be the subsequence of sched( o:) consisting of external (input and 
output) actions and associated times, and say that a sequence of (action,time) pairs is a timed 
behavior of A if it is beh(o:), where o: is a timed execution of A. 

Definitions for composing timed automata to yield another timed automaton, analogous to 
those for I/ O automata, are developed in [MMT88]. We model real-time systems as composi
tions of timed automata.. (Real-time systems were also modeled in this way in [188].) 

2.3 Adding Time Information to the States 

We would like to use standard proof techniques such as invariant assertions to reason about 
timed automata. In order to do this, we find it convenient to define an ordinary I/O automaton 
time( A) corresponding to a given timed automaton A. This new automaton has the timing 
restrictions of A built into its state, in the form of predictions a.bout when the next event 

lThese rules are similar to the rules given for maintaining the variable Ltime(C) in the time(A) definition 
in the following subsection. 
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in each class will occur. Thus, given any timed I/ 0 automaton A having boundmap b, the 
ordinary I / 0 automaton time(A ) is defined as follows. 

The automaton time(A) has actions of the form (1r, t ), where ?r is an action of A and t 
is a nonnegative real number. Each of its states consists of a state of A, augmented with a 
time called Ctime and, for each class C of the partition, two times, Ftime( C ) and Ltime( C ). 
Ctime (the "current time") represents the time of the last preceding event, initially O. The 
Ftime( C ) and Ltime( C) components represent, respectively, the first and last times at which 
an action in class C is scheduled to be performed (assuming some action in C stays enabled). 
(We use record notation to denote the various components of the state of time( A); for instance, 
s.Astate denotes the state of A included in state s of time(A ).) More precisely, each initial 
state of time(A) consists of an initial states of A, plus Ctime = O, plus values of Ftime(C ) 
and Ltime( C ) with the following properties. If there is an action in C enabled in s, then 
Ftime(C ) = bt(C) and Ltime(C) = b,..(C). Otherwise, Ftime(C) = 0 and Ltime(C) = oo. 

If ( ?r , t) is an action of time( A), then ( s', ( ?r , t), s) is a step of time( A) exactly if the following 
conditions hold. 

1. ( s' .Astate, ?r, s.Astate) is a step of A. 

2. s' .Ctime ~ t = s.Ctime. 

3. If ?r is a locally controlled action of A in class C, then 

(a) s'.Ftime(C) ~ t ~ s' .Ltime(C), 

(b) if some action in C is enabled in s.Astate, then s.Ftime( C) = t + bt( C ) and 
s.Ltime(C) = t + b,..(C ), and 

( c) if no action in C is enabled in s.Astate, then s.Ftime( C) = 0 and s.Ltime( C ) = oo. 

4. For all classes D such that ?r is not in class D, 

(a) t ~ s'.Ltime(D) , 

(b) if some action in D is enabled in s.Astate and some action in D is enabled in 
s' .Astate then s.Ftime(D) = s'.Ftime(D) and s.Ltime(D) = s' .Ltime(D). 

( c) if some action in D is enabled in s.Astate and no action in D is enabled in s' .Astate 
then s .Ftime(D) = t + bt(D) and s.Ltime(D) = t + b,..(D), and 

( d) if no action in Dis enabled in s.Astate, then s.Ftime(D) = 0 and s.Ltime(D ) = oo. 

Note that property 4( a) ensures that an action does not occur if any other class has an action 
that must be scheduled first . The partition classes of time(A) are derived one-for-one from the 
classes of A (although we will not need them in this paper). 

The finit e executions of time(A), when the states are projected onto their Astate compo
nents, are exactly the same as t he finite prefixes of the timed executions of A. This implies 
that safety properties of a timed automaton A can be proved by proving them for time(A ), 
e.g. , using invariant assertions. 
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operator(i) RE UEST(i) 

GRANTi 

computer 
system 

Figure 1: The system architecture. 

3 Problem Statement 

For either the centralized or distributed ca.se, we assume tha.t there are n modules called moving 
parts, n modules called operators, plus some modules comprising the computer system. The 
actions of the complete system, exclusive of any internal actions of the computer system, are 
REQUEST(i), GRANT(i) and FINISH(i), for O ~ i ~ n-1. Each operator(i) ha.s input action 
GRANT(i) and output action REQUEST(i). Ea.ch mO'IJingpart(i) has input action GRANT(i) 
and output action FINISH(i). The computer system has input actions REQUEST(i) for all i 
and output actions GRANT( i) for all i . See Figure 1. 

Let mO'Uingpart( i) be a particular timed automaton with the given signature, having a 
state consisting of one component, GRANTED, a Boolean variable, initially false. 

GRANT(i) 
Effect: 

GRANTED:=true 

FINISH(i ) 
Precondition: 

GRANTED = true 
Effect: 

GRANTED := false 
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There is only one class in the partition for movingpart( i), a singleton containing the one 
action FINISH( i). The boundmap associates the interval [O, m] with this class. As described in 
the Introduction, the timed executions of this timed automaton have the property that, within 
time m after a GRANT(i) occurs, a FINISH(i) must also occur - that is, movingpart(i) "stops 
moving". 

Now consider operator(i). It is described as an automaton with the maximum amount 
of freedom we want to allow to the operator. Let operator(i) be the timed automaton with 
the appropriate signature, having a state consisting of one component, PUSHED, a Boolean 
variable, initially false. 

GRANT(i) 
Effect: 

PUSHED := false 

REQUEST(i) 
Precondition: 

PUSHED = false 
Effect: 

PUSHED := true 

Again, there is only one (singleton) class in the partition for operator(i). We do not want to 
insist that the operator push the button within a particular amount of time after a GRANT. 
(It may never do so, in fact.) Thus, we define the boundmap to assign the interval [O,oo] to 
this one class. 

The requirement for the computer system is that when it is composed with the given 
operators and moving parts, the resulting system has all its behaviors satisfying the following 
conditions: 

1. Request well-formedness: For any O ~ i ~ n - 1, REQUEST(i) and GRANT(i) actions 
alternate, starting with a REQUEST( i). 

2. Moving part well-formedness: For any O ~ i ~ n - 1, GRANT(i) and FINISH(i) actions 
alternate, starting with GRANT( i). 

3. Mutual ezclusion: There are never two consecutive GRANT events without an interven
ing FINISH event. 

4. Eventual granting: Any REQUEST(i) event has a following GRANT(i) event. 

We measure the performance of the system by the worst cas.e response time, i.e., the longest 
time between REQUEST(i) and the next subsequent GRANT(i) in any timed behavior. 
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COMPUTER SYSTEM 

RE UEST(i) 

GRANT(i) 
manager TICK 

Figure 2: The architecture of the centralized control system. 

4 A Centralized System 

We first consider the case of a. "centralized" computer system to solve this exclusion problem. 
In this case, the architecture is a.s follows. There are two modules (timed I/ 0 automata.), the· 
manager and the clock. The clock ha.s only one action, the output TICK, which is always 
enabled, and ha.s no effect on the clock's state. It can be described a.s the particular one-state 
automaton with the following steps. 

TICK 
Precondition: 

true 
Effect: 

none 

The boundma.p a.ssociates the interval [c1, c:i] with the single class of the partition. This means 
that successive TICK events will occur with intervening times in the given interval. 

The manager has input actions TICK and REQUEST(i) for all i, and output actions 
GRANT( i). It is an arbitrary automaton, subject to the restriction that it has only a single 
class in its partition. (This says that it is really a sequential process - it cannot be running 
several processes in parallel.) We a.ssocia.te the boundmap [O, l] with the single cla.ss of locally 
controlled actions. This means that successive locally-controlled steps of the manager are done 
within the given intervals (if there are any enabled). 

The computer system is the composition of the ma.nager and the clock, (with the I/0 
automaton hiding opera.tor applied to hide the TICK actions). See Figure 2. 

Note that the timed automaton model forces us to model the step time of the ma.na.ger 
process explicitly. Other models (e.g., the one used for clock synchronization in (WL88]) might 
avoid this level of detail by hypothesizing that the ma.nager's steps are triggered only by input 
events such a.s clock ticks or requests. We regard such a model (informally) as a limiting case 
of our model, a.s the upper bound on manager step time approaches zero. 
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4.1 Upper Bound 

4.1.1 The Algorithm 

The following simple algorithm for the ma.na.ger process solves the problem. The ma.na.ger 
simply puts requests on a. FIFO queue. H there is a. pending request, the ma.na.ger issues a. 
GRANT signal to the node whose request is first on the queue, a.nd sets a. timer to measure 
the time until the moving pa.rt stops moving. When the timer goes off, the ma.na.ger repeats. 

There is some subtlety in determining the minimum number of clock ticks that gua.ra.ntee 
that time m ha.s elapsed since the GRANT. At first gla.nce, one might be tempted to count 
L m/ ciJ + 1 ticks, but a. careful exa.mina.tion shows that this might ca.use a. violation of the 
exclusion property, if a. TICK happens immediately after the GRANT, a.nd the next GRANT 
happens immediately after the la.st TICK. Waiting for L m/ ciJ + 2 suffices to overcome this 
difficulty, but the lower bound presented in Subsection 4.2 suggests that this might not be 
optimal. In order to achieve the best possible timing performa.nce, the algorithm only grants 
immediately after a. clock tick, a.nd the timer is set to l( m + l)/ ciJ + 1 clock ticks. 

In addition to the REQUEST a.nd TICK inputs a.nd GRANT outputs already specified, 
the ma.na.ger ha.s a.n internal a.ction ELSE. This action is enabled exactly when no output 
action is enabled; this ha.s the effect of ensuring that locally controlled steps of the ma.na.ger 
occur a.t ( a.pproxima.tely) regular intervals, a.s determined by the ma.na.ger's boundmap. 

The ma.na.ger's state is divided into components: 

TICKED 
QUEUE 
TIMER 

holding a. boolean value, initially troe; 
holding a. queue of indices i E [O .. n - 1], initially empty; 
holding a.n integer, initially O; 

The ma.na.ger's algorithm is a.s follows: 

REQUEST(i ), 0 ~ i ~ n - 1 
Effect: 

add i to QUEUE 

TICK 
Effect: 

TIMER := TIMER -1 
TICKED := troe 

GRANT(i), 0 ~ i ~ n-1 
Precondition: 

i is first on QUEUE 
TIMER~ 0 ~-
TICKED = true 

Effect: 
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remove i from front of QUEUE 
TIMER:=: l(m + l)/ c1J + 1 
TICKED :== false 

ELSE 
Precondition: 

QUEUE is empty or TIMER> 0 or TICKED== false 
Effect: 

TICKED :== false 

4.1.2 Correctness Proof 

Let A be the composition of the four given kinds of timed automata. - opera.tors, moving parts, 
manager and clock. This subsection is devoted to proving the following theorem. 

Theorem 4.1 Algorithm A is a correct centralized resource allocation algorithm. 

We prove correctness using automaton time(A), a.s defined a.hove. In this case, the system 
state is augmented with the variable Ctime, plus the variables Ftime and Ltime, for the 
following partition classes: 

1. REQUEST(i) for ea.chi, which conta.ins the single action REQUEST(i), 

2. FINISH( i) for ea.ch i, which contains the single action FINISH( i), 

3. TICK, which contains the single action TICK, and 

4. LOCAL, the locally controlled actions, which contains all the actions GRANT( i), 0 ~ 
i ~ n - l and the ELSE action. 

Initially, we have Ftime( REQUEST( i)) == 0, Ltime( REQUEST( i)) == oo, Ftime( FINISH ( i)) == 
0 a.nd Ltime(FINISH(i)) == oo, Ftime(TICK) == c1 , Ltime(TICK) == c:.i, Ftime(LOCAL) == 0 a.nd Ltime(LOCAL) == l. 

The proof of mutual exclusion rests on the following invariant for time(A). 

Lemma 4.2 Let s be a reachable state of time( A). Then the following all hold: 

1. If FINISH(i) is enabled in s.Astate, then 

(a) s.TIMER > O, 

{b) s.Ftime(TICK) + (s.TIMER- l)c1 > s.Ltime(FINISH(i)), and 

{c) FINISH(j) is not enabled in s.Astate, for any j =/: i. 

2. Ifs.TICKED then s.Ftime(TICK) ~ s.Ltime(LOCAL) + c
1 

- l. 
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Thus, if a part is moving, the manager's TIMER is positive. Moreover, the TIMER is large 
enough so that yvaiting that number of ticks would cause enough time to elapse so that the 
part would be guaranteed to have stopped moving. Property l(c) implies mutual exclusion, 
while property 2 guarantees a lower bound on the time till the next TICK, if no LOCAL step 
has occurred since the previous TICK. 

The proof of correctness is done in careful detail; since it is quite straightforward, we include 
it in Appendix A.l. 

Proof: ( of Theorem 4.1) Lemma 4.2 implies mutual exclusion. Moving part well-formedness 
follows easily from the same lemma and the definition of the moving part. Request well
formedness follows from the definitions of the operators and the manager. The remaining 
condition, eventual granting, can be argued from the queue-like behavior of the manager and 
the fact that the clock keeps ticking. (This latter property also follows from the formal proof 
of the upper bound on response time in the following subsection.) ■ 

4.1.3 Response Time 

Now we prove our upper bound on response time for the given algorithm A. 

Theorem 4.3 Assume that l < c1 • The worst case response time for algorithm A is at most 

The proof of this theorem requires several lemmas. 

Lemma 4.4 In any reachable state there are at most n entries in QUEUE. 

Proof: We have already argued that all timed executions of the system are request well
formed, i.e., REQUEST(i) and GRANT(i) alternate for any O ~ i ~ n - 1, starting with 
REQUEST(i). The preconditions for REQUEST(i) and the operation of the manager imply 
that when REQUEST(i) happens, i is not in the queue. A simple induction implies that in 
any reachable state of the system, i appears only once in QUEUE. ■ 

Lemma 4.5 In any reachable states, s.TIMER $ l(m + l)/c1J + 1. 

Proof: By an easy induction. • 
Lemma 4.6 Let s be any state occurring in a timed e:cecution, in which s. TIMER ~ k, for 
k 2: 1. Then (at least) one of the following two conditions holds. 

1. s. TIMER~ 0 ands. TICKED= true, or 

2. the time from the given occurrence of s until a later TICK event resulting in TIMER$ 0 

is bounded above by c2 · k. 
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Proof: Suppose that it is not the case that s.TIMER $ 0 ands.TICKED = true. Then a 
GRANT cannot occur until a state is reached in which TIMER $ 0 and TICKED = true , 
and this condition requires at least one TICK to occur after the given occurrence of s. The 
bound follows from the upper bound on clock time, the way the TICK actions manipulate the 
TIMER, and the way the variable TICKED gets set. ■ 

Proof: ( of Theorem 4.3) When a request arrives, it is at worst in position n on the QUEUE, 
by Lemma 4.4. By Lemmas 4.5 and 4.6, either TIMER $ 0 and TICKED = true at the time 
when the request arrives, or else within time c:i l(m + l)/c1J + 1) a TICK event (call it 1r1 ) 

occurs which sets TIMER to 0. In the former case, there must be a TICK event occurring 
prior to the request that sets TIMER$ 0, with no intervening local events; let 1r1 denote this 
TICK event . In either case, within time l after 1r1 (but after the request ) the first entry gets 
its request granted and gets removed from the QUEUE, and TIMER is set to 

l(m + l)/ciJ + 1. 

Since l < c1, within time c2 after 1r1, another TICK event <.p1 occurs, this one decreasing 
TIMER to (l(m + l)/ c1J). 

Immediately after <.p1, either TIMER= 0, or l(m+l)/ c1J ~ 1; in this latter ca.se, by Lemma 
4.6, within at most time c2 ( l(m + l)/ c1J) after <.p1, a TICK event occurs that sets TIMER$ 0. 
Thus, in either case, from event 1r1 until another TICK event 1r2 that sets TIMER $ 0, at 
most 

time elapses. The next entry in the queue is enabled immediately after 1r2• In this manner, we 
can construct a sequence of TICK events, 71"1 , . .. , ?rn, such that the time between 1ri and 1ri+1, 

for each i, 1 $ i < n, is at most 

c2 (l(m + Z)/ciJ + 1), 

and for any 1 $ i $ n, the i'th entry on the original queue (if there is any) is enabled after 1ri. 

Hence, within time 

n [c:i (l(m+l)/ ciJ + 1)], 

the enabling condition is satisfied for the given request. Then within time at most l afterwards, 
the request is granted. This completes the proof of the upper bound on response time. ■ 

Note that this proof requires the assumption that l < c1 ; in ca.se this assumption is not 
made, an analysis similar to the one in the proof above yields a slightly higher upper bound of 

Also, note that the limit of the given upper bound, as l approaches 0, is n · c2( l m/ ciJ + 1 ). 
We think of this as an upper bound for this algorithm when it is run on an interrupt-driven 
model. 
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It follows from the lower bound in Section 4.2 that algorithm A ha.s optima.I response time. 
This seems to imply that the best policy is to issue a. GRANT right after a. TICK. This is 
apparently because a. time estimate done immediately after a. clock TICK is the most accurate. 

Although this proof is currently written in terms of executions, it seems tha.t the inva.ri
a.nt assertion techniques for time-augmented automata. developed a.hove could be extended to 
handle response time a.na.lysis; preliminary results in that direction a.ppea.r in [LA]. 

4.2 Lower Bound 

Now we turn to proving lower bounds. We begin with a. fairly simple lower bound result that is 
quite close to the upper bound proved in the preceding subsection, but does not match exactly. 
The ga.p between this lower bound a.nd the upper bound depends on the ma.na.ger's step time 
a.nd the roundo:ffs. Since we consider these to be very sma.11, for practical purposes one might 
be satisfied with this simpler lower bound. However, it is interesting theoretica.lly to note that 
in this case, we ca.n obtain a. tight bound by a. related but somewhat more difficult argument. 

Theorem 4. 7 The worst case response time of any centralized resource allocation algorithm. 
is at least 

In order to see why this is so, define a. timed execution or timed semi-execution to be slow 
if the times between successive TICK events ( and the time of the first TICK event) a.re exactly 
c2• We have: 

Lemma 4.8 Let a be a slow timed e:z:ecution of a correct centralized resource allocation al
gorithm. Then the time between any two consecutive GRANT events in a is strictly greater 
than 

Proof: If this were not so, then we could "retime" the whole timed execution by multiplying 
the time a.t which ea.ch event occurs by cif c2 ( without changing the ordering of events), result
ing in a. new timed execution in which the time between the two GRANT events is a.t most 
m . The time between clock ticks is now c1, so the resulting sequence is a. timed execution. 
Then moving the FINISH event corresponding to the first GRANT event to the point just 
after the second GRANT event (to occur a.t sa.me time) yields another timed execution, this 
one viola.ting mutual exclusion. ■ 

Proof: (of Theorem 4.7) We create a. slow timed semi-execution in which a. REQUEST(O) 
event occurs, a.nd immediately after the corresponding GRANT(O) event (a.nd at the sa.me 
time) a. sequence of 

REQUEST(O), ... , REQUEST(n - 1) 
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events occur. Now extend this timed semi-execution (keeping it slow) until all these requests 
are fulfilled. By_ Lemma 4.8 the time between any two of these GRANT events is at least 

m(c2/ c1 ). 

Let GRANT(j ) be the last GRANT. The time from REQUEST(j) until the corresponding 
GRANT(j) is at lea.st 

n · m( c2/ c1) . 

• 
Now we present the more delicate arguments needed to prove a lower bound that matches 

the upper bound given in Section 4.1. Note that the only differences between the lower bound 
to be proved and the one already proved in Theorem 4. 7 a.re the presence of the l terms 
describing bounds on the manager's step time and the careful treatment of roundoff. Still, it is 
interesting that the bound can be improved in these ways to match the upper bound exactly. 

Theorem 4.9 Assume that l $ c1 •
2 Then the worst case response time of any centralized 

resource allocation algorithm is at least 

An I/ 0 automaton is called active if in every state there is a locally-controlled action 
enabled. (Recall, for example, that the manager in the algorithm of the preceding subsection 
was made active by the inclusion of the ELSE action.) Before proceeding with the proof of 
the theorem, it is useful to prove the following lemma., which claims that there is no loss 
of generality in assuming that the manager is active. As in the previous subsection, denote 
by LOCAL the class of all the actions that a.re locally controlled by the manager (including 
GRANT(i), for all i). 

Lemma 4.10 Suppose that A is a centralized resource allocation algorithm with response time 
~ b, for a real number b. Then there is another such algorithm A', with response time $ b, in 
which the manager is active. 

Proof: Given A, we produce A' by adding a. new internal action NULL to the manager. 
The steps associated with this action a.re exactly those triples of the form ( s', NULL, s ), where 
s' = s and no other locally controlled action of the manager is enabled in s'. Clearly, the 
manager is active in A'. We claim that A' solves the problem and has response time $ b. In 
order to see this, is suffices to show that every timed behavior of A' is also a. timed behavior 
of A. 

,Notice that a non-strict inequality is used in this assumption, whereas a corresponding assumption for 
Theorem 4.3 uses a strict inequality. This reflects the difference in the kinds of reasoning ne~ded for lower and 
upper bound results. 
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So let 

be any timed execution of A'. Construct a, a. new timed sequence, by removing all NULL 
steps from a'. Assume 

and let II be the mapping from the indices of events in a to the indices of the corresponding 
events in a', and set II(O) = 0. Note that, for i ~ 1, if j = II(i), then si = si, f; = t,, and 
1r; = 1r, . We claim that a is a timed execution of A. Then it follows that every timed behavior 
of A' is a. timed behavior of A. 

All we have to show is that a satisfies the boundma.p of A. The only interesting case is the 
class LOCAL, and since the lower bound for this class is O, we have to check only the upper 
bound, l. 

Fix some i such that in s, some locally controlled action of the manager is enabled, and 
either i = 0 or no locally controlled action of the manager is enabled in s,_1 , or 1r, is a. locally 
controlled action of the manager. We must show that within time l after ti either a. locally· 
controlled action of the manager occurs, or there is a. state in which no such action is enabled. 
Let j = II( i). It must be that some locally controlled action of the manager is enabled in 
si, since some such action is enabled in all states of the manager in A'. We first show that 
a. locally controlled event 1r of the manager must occur in a' within a.t most l time after f;. 
There a.re two cases: 
Case 1: i = 0 or 1r, is a. locally controlled action of the manager in A. 

Hi = 0, then it must be that j = 0. H 1r, is a. locally controlled action of the manager in A, 
then it must be that ?!'i = 1ri. In either case, a.s the manager in A' is active, a. locally controlled 
event 1r of the manager must occur in a' within time a.t most l after f;, by the fact that a' is 
a. timed execution of A' and satisfies the boundmap. 
Case 2: i ~ 1 and no locally controlled action of the manager is enabled in s,_1 . 

Then 1r, r/. LOCAL, a.nd hence ?!'i r/. LOCAL. Let k be the largest index of a locally 
controlled event in a' that has an index ~ j ( 0 if there is no such event). The fact that the 
class LOCAL is always enabled in a' implies that within time l from t'1 a locally controlled 
event of the manager must occur in a'. By the way k was selected this event must happen 
after s1, so the fact that f; ~ t'. implies that a. locally controlled event 71' of the manager must 
occur in a' within time a.t most l after f;. 

In both cases, if 1r f:. NULL, then 1r, with the same time, appears in a, which suffices. ff 
1r = NULL, then the definition of A' implies that in the state just prior to 1r in a', no non-null 
locally controlled action of the manager A is enabled. Then no locally controlled action of the 
manager is enabled in the corresponding state in a, which suffices. ■ 

Now we return to the task of proving Theorem 4.9. The proof will proceed by iterative 
construction of a. particular slow timed execution. A major step in the construction is forcing 
a. GRANT event to happen only in certain situations, as specified and proved in the following 
technical lemma.. 
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Hi is an index with O $ i $ n - 1, we sa.y tha.t i is unfulfilled in a. timed semi-execution a if 
the number of REQUESTi events in a is strictly greater than the number of GRANTi events 
in a. We sa.y tha.t a. timed execution or timed semi-execution a is heavily loaded starting from 
time t if for a.ll times t $ t1 < tena(a), all indices a.re unfulfilled in the prefix of a consisting of 
all the events occurring up to and including time t1. We sa.y tha.t an action is an ELSE action 
if it is a. locally controlled action of the manager other than a. GRANT; ELSE events and steps 
a.re defined simila.rily. 

Lemma 4.11 Let A be a centralized resource allocation algorithm with an active manager, 
and let a be a slow timed semi-execution of A. Assume that there are unfulfilled indices in 
a, and LOCAL and TICK events occur in a at time tena( a). Then there exists a slow timed 
semi-execution /3 extending a, such that for some i, 0 $ i $ n - 1, 

schedf_/3) = schedf_aa) ( GRANT(i), t) (REQUEST(i), t) (FINISH(i), t), 

where t = tena(aa), LOCAL and TICK events occur in aa at time t, and there are no 
REQUEST or GRANT events in a. 

Notice tha.t if a is a. heavily loaded starting from time t then /3 is a.lso heavily loaded starting 
from time t . 

Proof: Assume by wa.y of contra.diction tha.t there does not a. exist a. timed semi-execution 
with the desired properties. We will extend a to an infinite timed execution in which no 
GRANT events occur. As there a.re unfulfilled indices in a: this contra.diets the eventual 
granting property. 

This is done by constructing, inductively starting from j = O, successive slow timed semi-
executions, aa;, ea.ch extending the previous one, such tha.t for every j: 

1. There a.re no REQUEST or GRANT events in a;. 

2. LOCAL and TICK events occur in a;- a.t time tend( aa; ). 

3. ff j > 0 then tena( aa;) 2: tend( aa;- 1) + cl. 

We start with a0 being the empty sequence. Clearly, 1. and. 3. hold, and .the assumptions of 
the lemma. imply tha.t 2. holds. Now, assume we have constructed a;, and lets; be the system 
state resulting after aa;. There a.re two cases: 
Case 1: There is an execution fragment of the manager a.lone, a1

, starting from state s;, which 
consists of a. sequence of zero or more ELSE events followed by some GRANT( i) event. 

Then let /3 be any timed semi-execution that extends aa; such that 

where the events of <7
1 a.re a.11 timed to occur exactly a.t time tena( aa; ). Then /3 has the 

properties required by the lemma.: it ends with GRANT(i), REQUEST(i) and FINISH(i) 
events, LOCAL and TICK events occur in /3 a.t time t,na( aa;) = tena(/3), a.nd there a.re no 
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REQUEST or GRANT events in the prefix of <J;<J1 preceding the final GRANT(i) event. This 
is a contradiction to the assumed nonexistence of such a timed semi-execution. 
Case 2: There is no such execution fragment. 

In this case, we can extend a<J; by allowing ELSE events to occur, at arbitrary allowable 
times, ending with an ELSE event and a TICK event, (occurring in that order) at time 
tend( a<J;) + c2. This is possible since the algorithm is active. Let a<J;+i be an execution 
extending a<J; such that 

sched(_a<J;+1) = sched(_a<J;5) (1r, tenia<J;) + cl) (TICK, tenci(a<J;) + c2) , 

where all events (if any) of 5 are ELSE events, and 1r is an ELSE event. 
From the way <J;+i was constructed, it follows that CL<J;+i is slow, and that it has the 

following properties: 

1. There are no REQUEST or GRANT events in <J;+i• 

2. LOCAL and TICK events occur in <7;+1 at time t.na(a<J;+i), 

3. t.nci(a<J;+i) 2'. tenci(a<J; ) + cl . 

This completes the construction of the timed semi-executions a<J;, 0 ~ j < oo. 
Now Lemma 2.2 implies that there exists an infinite timed execution a<J extending all 

the aa; . Since there are no GRANT events in a and there are unfulfilled indices in a, this 
contradicts the eventual granting property. ■ 

Now we are ready to present the main proof. 

Proof: ( of Theorem 4.9) Assume that we have a particular centralized resource allocation 
algorithm. By Lemma 4.10, we may assume without loss of generality that the manager is 
active. We explicitly construct a (slow) timed execution in which the response time for a 
particular grant is at least 

n (l(m + l)/ ciJ + 1) c2 + l. 

We first construct an initial section, {30 • We begin by allowing some LOCAL events to 
occur ( at arbitrary allowable times), ending with both a LOCAL event and a TICK event 
occurring at exactly time cl, in that order. Notice that by the grant well-formedness property 
these LOCAL events must be ELSE events. We let 

REQUEST(0),REQUEST(l), .. . , REQUEST(n - 1) 

events happen immediately after these ELSE and TICK events, also at time c2. Formally, 
let {30 be a timed semi-execution that extends another timed semi-execution 5 containing only 
ELSE events, such that 
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where 1r is a.n ELSE event. Note that 0, . .. , n - 1 are unfulfilled indices in /30 , a.nd that LOCAL 
and TICK events occur in /30 at time c2 = tena(/30); furthermore, note that /30 is heavily loaded 
starting from time to = tenif3o) = C2. 

Starting from /30 , we construct successive proper extensions /31 , . • . , /3-,. , . . . , such that for 
each k 2: 1, /31r. is a slow timed semi-execution of the form /3-,._1-y-,. that ends at time t-,. = tena(/3-,. ), 
that is heavily loaded starting from time t0 , a.nd that has the following properties: 

1. /3-,. ends with GRANT(j-,. ), REQUEST(j-,.) a.nd FINISH(j-,.) events, occurring in that 
order at time t-,.. 

2. There are no other REQUEST or GRANT events in -y-,.. 

3. A LOCAL event (other tha.n the GRANT(j-,. )) a.nd a TICK event occur in /3-,. at time t-,. . 

The construction is done inductively; the base case is the construction of /31 . Since /30 has 
a LOCAL a.nd a TICK event at time tena(/3) , a.nd there are unfulfilled indices in {30 , we ca.n 
apply Lemma 4.11 to get a.n execution /31 with the properties above. 

For the inductive step, assume we have constructed a slow timed semi-execution /3-,._1 , for_ 
k > 1, with the above propert ies; we show how to construct /3-,.. Since /3-,._1 is heavily loaded 
starting at time t0 , and LOCAL a.nd TICK events occur in /3-,._1 at time t1,_1 , we ca.n apply 
Lemma 4.11 to /3-,._ 1 , and get a slow timed semi-execution /3-,. that extends /3-,._1 such that 

where t-,. = tend(/31:- 1u-,.), LOCAL a.nd TICK events occur in f3-,._1u1: at time t,,, and there are 
no REQUEST or GRANT events in "1c• Let 'Y1c be such that 

f3 ,. = /3-,.-n-,. . 

Clearly, /3-,. has the required properties. 
The timed execution /3-,. is depicted in Figure 3. 

Claim 4.12 For any k > 1, there are at least 

l(m + l)/ciJ + 1 

ticks in segment -y-,. of /3-,.. 

Proof: Suppose this is not the case, for some fixed k. Then we modify /3-,. to get a new timed 
semi-execution /3~ , in which the mutual exclusion property is violated. 

First , we do some retiming without changing the order of any of the events. Segment ,1: of 
/31: is "shrunk" in /3~ so that all ticks contained within segment "'(1: take time exactly c1 (rather 
than c2 as in /3-,. ). Moreover, the GRANT(j-,._1), REQUEST(j1:- i) and the FINISH(j-,._1 ) 

events occurring at time t1c_ 1 are timed to occur at time t1,_1 + l; some ELSE steps after 
FINISH(j-,._ 1 ) and before the next TICK may need also to have their times increased slightly 
to maintain monotonicity. By the fact that l ::; c1, and the fact that there is a LOCAL event 
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r ~k 

' ~l r 
~o 'Y1 ' 'Yk r y 

't1 
I ' 1

to tk-1 lh I I - - - -
GRANT(j1) GRANT(jk-1) GRANT(jk) 

Figure 3: The timed execution /3,.. 

preceding GRANT(j,._1), with the same time assignment, it follows tha.t the resulting sequence 
is a. timed execution. 

We now obtain /3~ by moving FINISH(j,._1) from time t,._ 1 +l to time t,., a.fter GRANT(j,.). 
We show that /3~ is a. timed semi-execution, by showing that moving the FINISH event to a. 
later time does not violate the m upper bound on the time between GRANT(ji:-i) and the 
corresponding FINISH(j,._1 ). By the assumption, there are a.t most L(m + l)/ciJ ticks in 
section 7,. . As GRANT(j,._1 ) occurs a.t time t,._1 + l, while FINISH(ji:-i) occurs at time t,., 
the total time between these two events is at most 

So we ha.ve obtained a. timed semi-execution in which the mutual exclusion property is violated. 
By Lemma. 2.3, /3~ can be extended to a. timed execution; this contra.diets the correctness of 
the algorithm, thus proving the Claim. ■ 

The claim implies tha.t 

t1r.+1 - t,. ~ cl(l(m+ l)/ ciJ + 1) , 
( 

for any k ~ 1, becua.se /31r.+i is slow. 
We continue the proof of Theorem 4.9. Since for every k ~ 1, /31: is heavily loaded starting 

from time t0 a.nd the algorithm satisfies the eventual granting property, there exists k' such 
that for every i, 0 ~ i ~ n - 1 at least one GRANT( i) event appears in /3,., a.t or a.fter time t1 . 
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By the same reasoning, there exists k" > k' such tha.t for every i, 0 ~ i ~ n - 1 a.t least one 
GRANT( i) event a.ppea.rs in f31r.11 after time t1r,,. It follows tha.t there is some i, 0 ~ i ~ n - 1 
for which there a.re two consecutive GRANT( i) events in f3k" having a.t lea.st n - 1 intervening 
GRANT(j ) events for j f, i. Suppose tha.t the first of these GRANT( i) events occurs a.t time 
tk1 , and the second a.t time tk,; it must be tha.t k'J - k1 ~ n. Note tha.t the REQUEST( i) event 
corresponding to the second of these GRANT( i) events occurs a.t time ti:

1
• By the remark after 

Claim 4.12 the tota.l amount of time from time ti:1 in f3k,, when REQUEST( i) occurs, until 
the corresponding GRANT( i) occurs, a.t time t1:

2 
is a.t lea.st 

We now construct from f31:2 a. timed semi-execution 8 in which the GRANT(j1:
2

) event 
occurs at time ti:2 + l, retiming later events a.s necessary to ma.inta.in monotonicity. The timed 
sequence 8 is a. timed semi-execution since l ~ c'J, and since there is a. LOCAL event preceding 
GRANT(j1:2 ) a.t time tk, in f3k,· It follows that the tota.l amount of time from time ti:

1 
in 8, 

when REQUEST(i) occurs, until the corresponding GRANT(i) occurs a.t time ti:,+ l, is a.t 
lea.st 

Since 8 can be extended to a. timed execution (By Lemma. 2.3) the Theorem follows. ■ 

We note tha.t Theorem 4.7 seems quite robust in that it can be extended to a.ny reasonable 
model, including those in which the manager takes steps only in response to inputs. However, 
the better lower bound in Theorem 4.9 depends more heavily on the features of the timed 
automaton model. Note that the limiting case of the lower bound in Theorem 4.9 is 

which is slightly better than the lower bound given by Theorem 4.7. 

5 A Distributed System 

Now we consider the ca.se where the computer system is distributed. We assume that the events 
concerning the different moving pa.rts occur at separate manager processes Pi, 0 ~ i ~ n - 1, 
which communicate over unidirectional channels. More precisely, for ea.ch ordered pa.ir ( i, j), 
i -::/ j, we assume that there is a. channel automaton channel( i, j) representing a. channel from Pi 
to Pi, having SEND events as inputs and RECEIVE events as outputs. The channel operates 
as a. FIFO queue; when the queue is nonempty, the channel is a.lwa.ys enabled to deliver the first 
item. All RECEIVE actions a.re in the same partition class, with associated bounds [O, d]; this 
means that the channel will deliver the first item on the queue within time d. Also, we assume 
that there is a. separate clock, clock( i), for ea.ch process Pi· It is similar to the centralized 
clock described earlier, with output action TICK( i) tha.t is an input to Pi, and with associated 
bounds [c1 , c2] . See Figure 4. 
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COMPUTER SYSTEM 
clock(i) clock(j) 

channel(i,j) 

process(i) process(j) 

channel(j,i) 
GRANT(i) REQUEST(i) GRANT(j) REQUEST(j) 

Figure 4: The architecture of the distributed control system. 

If the clocks are perfectly a.ccura.te, i.e., c1 = c2 , then since all processes start a.t the sa.me 
time, there is a. very simple algorithm tha.t assigns to each process a periodic predetermined 
"time slice" a.nd whose worst case response time is n • m (plus some terms involving a.nd c2 

a.nd l). This is optimal.3 So, for our lower bound we will assume that c1 < c2 • 

5.1 The Upper Bound 

5.1.1 The Algorithm 

The following algorithm implements a round-robin granting policy: The processes issue grants 
when they are in possession of a. token that circulates on a. ring. 

Assume processes are numbered 0, ... , n-1 in clockwise order, a.nd interpret i + 1 to be i + 
1 mod n. Ea.ch process Pi has input actions REQUEST(i), TICK(i) a.nd RECEIVE-TOKEN(i), 
output actions GRANT(i) and SEND-TOKEN(i), and internal action ELSE(i ). The state of 
process i is divided into components: 

REQUESTED holding a Boolean value, initially false; 
TIMER holding an integer, initially O; 
TICKED holding a. Boolean value, initially true; 
TOKEN holding a. value in {not..h.ere, available, used}, 

3In fact, even if we deviate from the model by allowing accurate clocks with non-synchroI!llled starts, there is 
an algorithm which selects synchroillllation points so that its worst case response time is at most n • ( m + ( d/ 2)) 
(plus some terms involving and c2 and l). A corresponding lower bound can also be proved. A formal 
treatment of these results requires several changes to our model, and we prefer not to present it here. The clock 
synchroI!lllation algorithm of [1184] yields synchroI!lllation points that can be used by a distributed allocation 
algorithm whose response time is at most n • m + (n - l)d. Since the lower bound of (1184] implies that this 
clock synchroI!lllation algorithm is optimal, it does not appear that a. naive use of clock synchroI!lllation produces 
optimal resource allocation algorithms. 
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initially used for Po, not_here for the other processes. 

Process Pi executes the following algorithm: 
REQUEST(i) 
Effect: 

REQUESTED:= true 

TICK(i) 
Effect: 

TIMER := TIMER -1 
TICKED : = true 

GRANT(i) 
Precondition: 

REQUESTED= true 
TOKEN = available 
TICKED = true 

Effect: 
REQUESTED:= false 
TOKEN:= used 

TWER := l(m + l)/ciJ + 1 
TICKED := false 

SEND-TOKEN(i) /* to process P,+1 */ 
Precondition: 

TOKEN= used 
TIMER;:; 0 

Effect: 
TOKEN := not_here 
TICKED := false 

ELSE(i) 
Precondition: 

neither GRANT(i) nor SEND-TOKEN(i) is enabled 
Effect: 

TICKED := false 

RECEIVE-TOKEN(i) 
Effect: 

if REQUESTED then TOKEN:= available else TOKEN:= used 
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5.1.2 Correctness Proof 

Now let B be the composition of all the given timed automata: operators, moving parts, 
processes, channels and clocks. This subsection is devoted to proving the following theorem. 

Theorem 5.1 Algorithm B is a correct distributed resource allocation algorithm. 

As in the proof of the centralized algorithm, we construct the I/O automaton time(B). 
This time, the new state components are Ctime, plus, for each i, Ftime and Ltime for the 
following partition classes: 

1. REQUEST(i), which contains the single action REQUEST(i), 

2. FINISH(i), which contains the single action FINISH(i), 

3. TICK(i), which contains the single action TICK(i), and 

4. LOCAL( i), the class of locally controlled actions of process i, which contains all the 
actions GRANT(i), SEND-TOKEN(i) and ELSE(i). 

Initially, we have Ftime(REQUEST(i)) = 0, Ltime(REQUEST(i)) = oo, Ftime(FINISH(i)) = 
0 and Ltime(FINISH(i)) = oo, Ftime(TICK(i)) = c1 , Ltime(TICK(i)) = c2 , Ftime(LOCAL(i)) = 
0 and Ltime( LOCAL( i)) = l. 

Let #tokens( i) be the length of the queue in channel( i, i+ l ). We first prove a lemma giving 
an invariant for time(B); this invariant happens not to involve any of the state components 
that encode time information. The proof appears in Appendix A.2. 

Lemma 5.2 Let s be a reachable state of time(B) . Then the total number of processes at 
which TOKEN f:- noLhere plus the sum of #tokens(i), over O::; i < n, is exactly 1. 

We now prove another invariant, this one involving the timing information. The result is 
similar to Lem:i:na 4.2. The proof is in Appendix A.3. 

Lemma 5.3 Lets be a reachable state of time(B), and let O::; i::; n - 1. Then the following 
all hold: 

1. If FINISH(i) is enabled in s.Astate, then 

(a) s.TIMER(i) > 0, 

{b) s.Ftime(TICK(i)) + (s.TIMER(i)- l)c1 > s .Ltime(FINISH(i)), and 

{c) s.TOKEN(i) = used. 

2. If s .TICKED(i) = true then s.Ftime(TICK(i))? s.Ltime(LOCAL(i)) + c1 - l. 

The following corollary implies that mutual exclusion is maintained by the algorithm. 
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Corollary 5.4 In any reachable state s of B, if FINISH(i) is enabled, for some i, then 
FINISH(j) is not enabled for all j =/ i. 

Proof: Assume to the contrary that FINISH(j) is enabled in s, for j =/ i, Since FINISH( i) 
and FINISH(j) are both enabled in s, invariant le (proved in Lemma. 5.3) implies that 

s.TOKEN(i) = s.TOKEN(j) =used. 

But this implies that the number of processes for which TOKEN =/ not..here is at least two, 
contradicting Lemma 5.2. Therefore, this case cannot occur. ■ 

Proof: ( of Theorem 5.1) Corollary 5.4 implies mutual exclusion. Moving part well-formedness 
follows from the same corollary and the definition of the moving part. Request well-formedness 
follows from the definitions of the operators and the processes. Eventual granting can be ar
gued from the round-robin behavior of the processes; it also follows from the upper bound on 
response time proved formally in the following subsection. ■ 

5.2 Response Time 

Now we prove the upper bound on response· time for the given distributed algorithm B. 

Theorem 5.5 The worst case response time for algorithm B is at most 

We use the following lemmas. 

Lemma 5.6 In any reachable states, and for any i, 

s.TIMER(i) ~ l(m + l)/ c1J + 1. 

Proof: By an easy induction. ■ 

Lemma 5.7 Lets be any state occurring in a timed ezecution, in which s . TIMER(i) ~ k, for 
k ~ 1. Then ( at least) one of the following two conditions holds. 

1. s. TIMER(i) ~ 0 and s.TICKED(_i) = true, or 

2. the time from the given occurrence of s until a later TICK( i) event resulting in TIMER( i) ~ 
0 is bounded above by c:i • k. 

Proof: As for Lemma 4.6. 
■ 

Say that process p, is operative in states if s .TOKEN(i) = used. By Lemma 5.2 at any 
time there is at most one operative process. 
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Lemma 5.8 If process Pi is operative, then the time until process Pi+i becomes operative is at 
most 

c2( l(m+l)/ ciJ +l)+d+c:2+21 . 

Proof: By Lemmas 5.6 and 5.7, either TIMER(i) ~ 0 and TICKED(i) = true, or else within 
time 

c:2 ( l(m + l)/cd + 1) , 

a. TICK(i) event occurs setting TIMER(i) < O; in either case, SEND-TOKEN(i) will be 
enabled within time 

c:2 ( l(m + l)/ciJ + 1) 

Within time l after that, SEND-TOKEN(i) will occur and RECEIVE-TOKEN(i + 1) will be 
enabled (since it is the only message in the channel), and within an additional time d, it will 
be executed. If there is a. pending request a.t process Pi+l when this RECEIVE-TOKEN( i + 1) 
occurs, i.e., if REQUESTED(i+l) = true a.t this point, then this RECEIVE-TOKEN(i+l) will 
set TOKEN(i+l) =available. Then within time c:2, GRANT(i+l) will be enabled and within. 
time l it will be executed, ca.using process Pi+t to become operative. On the other hand, if there 
is no pending request, i.e., REQUESTED(i + 1) = false, then the RECEIVE-TOKEN(i + 1) 
will set TOKEN(i + 1) = used and thereby ca.use process Pi+i to become operative. ■ 

Define the distance from process Pi to process Pi to be the distance between them a.long 
the ring (in the clockwise direction); if i = j we define the distance to be n. 

Proof: ( of Theorem 5.5) Consider the point in the timed execution a.t which a. request arrives, 
sa.y a.t process Pi· We consider ca.ses (one of which must hold, by Lemma. 5.2). 

l. There is some operative process, Pi, when the request arrives (where it is possible tha.t 
i = j ). Then the distance from p, to P; is a.t most n. Applying Lemma. 5.8 repeatedly 
( a.t most n times) yields the claimed bound. 

2. The va.lue of TOKEN(i) = available for some i. If i = j, then the request will be 
granted within time c:2 + l. If i =/- j, then within time c2 + l, process p, becomes operative. 
Applying Lemma. 5.8 repeatedly ( a.t most n - 1 times) yields the claimed bound. 

3. There is a. message in one of the channels, sa.y channel( i-1, i). If i = j, then the request 
will be granted within time d + c2 + l. If i =/- j, then within time d + c2 + l, process 
p, becomes operative. Applying Lemma. 5.8 repeatedly ( a.t most n - 1 times) yields the 
claimed bound. 

• 
Aga.in, we note that the limiting case of the upper bound a.s l a.pproa.ches O, is 
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5.3 Lower Bound 

Now we prove our lower bound on worst case response time for arbitrary distributed resource 
allocation algorithms. This proof is similar to that of the simple lower bound for centralized 
algorithms (Theorem 4.7) rather than the more complicated tight bound (Theorem 4.9) in that 
we do not concern ourselves with process step time or with roundoffs. As a result, this proof 
seems sufficiently robust to extend to other reasonable models for timing-based computation. 

Note that the gap between our upper and lower bounds for the distributed case does not 
only involve process step times and roundoffs, but also involves additive terms of d and of n • c;i . 

In order to prove this lower bound we must make the assumption that the moving time is 
much larger than the message delivery time, more precisely, that (n - 1) · d:::; m(c2/c1). 

Theorem 5.9 Assume that c1 < c:i and that (n - 1) · d:::; m • (c:i/c1). Then the worst case 
response time of any distributed resource allocation algorithm is at least 

The lower bound is proved under the assumption that every message is delivered within. 
time d. This is a stronger assumption than the one used for the upper bound; there, we 
only insist that this upper bound hold for the first message on any link. Since the present 
assumption is stronger, it only serves to strengthen the lower bound. 

' In the proof we first show that the round-robin granting policy used by the algorithm of 
Section 5.1 is optimal in the following sense: for any "efficient" algorithm, in any execution 
in which requests arrive continuously, the order in which requests are first granted must be 
repeated in a round-robin fashion. 

Once such an order has been established, we extend the execution while fixing a particular 
pattern of message delays. After doing this for a sufficiently long time, we retime parts of the 
execution by carefully "shifting" certain events, while appropriately retiming other events, to 
get the desired time bound. 

Recall the definition of a heavily loaded timed execution or timed semi-execution from 
Section 4.2. In a manner similar to the centralized case, we define a timed execution or timed 
semi-execution to be slow if, for each i, the times between successive TICK( i) events ( and the 
time of the first TICK( i) event) are exactly c;i. The following lemma is the distributed version 
of Lemma. 4.8. 

Lemma 5.10 Let a be a slow timed e:z:ecution of a correct distributed resource allocation al
gorithm. Then the time between any two consecutive GRANT events in a is strictly greater 
than 

The next lemma shows that if an execution is heavily loaded, the best policy (for a "ef
ficient" algorithm) is to grant the resource in a round robin manner, because changing the 
granting order will ca.use the response time to exceed a bound higher than the one we are 
attempting to prove a.s a lower bound. 
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Lemma 5 .11 Let B be a distributed resource allocation algorithm with response time at most 
(n + 1) · c2(m/ c1). Let a be a slow timed execution of B that is heavily loaded starting from 
time t. Then there exists some permutation, p, of {O, . .. , n - 1} such that the subsequence of 
all GRANT events that occur in a after time t is of the form 

GRANT(po), ... , GRANT(Pn-1), GRANT(po), ... , GRANT(Pn-1), . ... 

Proof: Suppose by way of contradiction that there is no such permutation p. Then there is 
some index, i, for which two GRANT(i) events 1r1 a.nd -ir2 occur (at times t 1 and t 2 respectively) 
after time t, where there are at least n GRANT(j) events, j # i, intervening between -ir1 and 
7r2. 

By Lemma 5.10, the time between any two consecutive GRANT events from among this 
set of n + l GRANT events is strictly greater than c2(m / c1). Therefore, the time between -ir1 
and -ir2 is strictly greater than 

Since a is heavily loaded, a REQUEST(i) event must follow 1r1 and occur at time t1 . Since 
that REQUEST(i) is fulfilled by 1r2 at time t2 , the response time for tha.t REQUEST(i) is 
strictly greater than (n + 1) · c,J(m/ c1), which contra.diets the assumed bound on the response 
time of the algorithm. ■ , 

Proof: ( of Theorem 5.9) Assume by way of contra.diction tha.t there is some algorithm tha.t 
always responds within time 

By assumption 

which implies that 

n . c2(m / c1) + (n - 1) ~ (n + 1) . c:i(m/c1) . 

Thus, the response time for the algorithm is at most 

We will construct a slow timed execution of the algorithm that either exceeds the claimed 
bound on response time or violates the mutual exclusion property. We begin by considering 
a slow timed execution a' tha.t is heavily loaded starting from some time t, and letting a be 
the shortest prefix of this timed execution tha.t ends just after exactly n GRANT events ha.ve 
occurred after time t . Lemma. 5.11 implies tha.t there is some permutat ion p, such that a.11 
GRANT event s that appear in a' after time t occur in the order p0 , •• • , Pn-l, p0 , ••• In fa.ct, 
Lemma. 5.11 implies that GRANT events tha.t occur after time tin any timed semi-execution 
that extends a and is heavily loaded starting from time t, appear in the order Po, . .. , Pn-l• 
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We sometimes a.buse nota.tion a.nd write PP, < Pp; when i < j, tha.t is Pp, precedes PP; in the 
the order esta.blished by p. 

We now consider the "ring" of processes formed by the round-robin order defined a.hove. 
We extend the execution in such a. wa.y tha.t messa.ges a.re delivered with ma.ximum dela.y when 
sent from lower numbered processes to higher numbered processes (in the order esta.blished by 
p), while messa.ges going the other wa.y a.re delivered immedia.tely. Intuitively, this ena.bles us 
to "postpone" notifi.ca.tion of the gra.nting as long a.s possible. 

More forma.lly, we extend a to get a. slow timed execution a{3' which is hea.vily loa.ded 
starting from time t a.nd such tha.t the messa.ge delivery times for messa.ges sent in {3' a.re a.s 
follows: 

• If i < j, then a. messa.ge from Pp, to Pp; ta.kes exa.ctly time d. 

• If i > j, then a. messa.ge from Pp, to PP; ta.kes exa.ctly time 0. 

Let a{3 be a. "sufficiently long" prefix of a{3', specifi.ca.lly, one for which 

C1 tend( a{3) - tend( a) - d - < ----:--:---,........,...-. 
C:i - tend( a{3) - tend( a) 

This ca.n be ea.sily done since, by a.ssumption, ci/ c:i < 1. Let r 1 = tend( a) a.nd r:i = tend.( a{3). 
Let 1 be such tha.t a{31 = a{3'. We know tha.t 1 con ta.ins a. subsequence of n + 1 consecutive 

GRANT events, in order 

GRANT(po), GRANT(p1), . .. , GRANT(Pn-1), GRANT(po). 

Now divide , into n + 2 segments, 10, ... , r'n+i, where 

1. 10 ends with the first of these GRANT(p0) events, 

2. for ea.ch i, 1 :=:; i :=:; n - 1, 1, sta.rts just a.fter GRANT(p;_1) a.nd ends with GRANT(p,), 

3. ,'n sta.rts just a.fter GRANT(Pn-i) a.nd ends with the second GRANT(p0), a.nd 

4. r'n+i includes the rest of 1 . 

For each i, 0 :=:; i $ n + 1, let t, = tena( a{310 . .. 1;). For a.ny 1 $ i $ n, define the length of a.ny 
segment 1;, to be l.; = t, - t,_1 • Intuitively, l; is the amount of time tha.t pa.sses during 1,. 

Figure 5 depicts the timed execution a{31 . Each horizontal line represents events ha.ppening 
at one process, the a.rrows show delay times between pa.irs of processes ( after time r 0 ), while 
da.shed vertical lines ma.rk time points tha.t a.re used in the proof. 

We now prove a. key lemma. tha.t provides a lower bound for the length of ea.ch segment 

1'1, • · ·, r'n- 1· 

Lemma 5.12 For any i, 1 $ i $ n - 1, 
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Figure 5: The timed execution a{3-y. 
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Proof: Assume by way of contradiction that 

for some particular i, 1 $ i $ n - l. 

From a/3, we construct a new timed execution, ao, in which the mutual exclusion property 
is violated. We first construct an intermediate timed execution ao' in which we "shift" back 
in time the events occurring at processes Pp., ... ,Pp.,_

1
, in the following way: 

1. Each event occurring at any of the processes Ppo, ... ,Pp,_
1 

that occurs in /3, at time u, 
also occurs in 01 at time 'IL. 

2. Each event occurring at any of the processes Pp., ... ,Pp,._
1 

that occurs in /3, at time u, 
occurs in o' at time u' where: 

(a) If u > Tl then u' = u - d. 

(b) If r 1 $ u $ Tl then 

rl - r1 - d 
u' = T1 + ---- · ( u - r1), 

Tl - T1 . 

I.e. u'-r1 = r 2-r1-d . 
, u-,-1 "2-1'1 

That is, the events occurring at processes 2:'. Pp, at times > Tl are moved d earlier; notice that 
events occurring in a ( at times $ r 1) are not moved. All the intermediate events are shifted 
back proportionally. 

The resulting sequences of timed events must be merged into a single sequence consistently 
with the order of the times; events occurring at different processes at the same time can be 
merged in arbitrary order, except that a SEND event that corresponds to a RECENE event 
in a/3, must precede it in ao'. 

Claim 5.13 ao' is a timed execution of the system. 

Proof: The key things that need to be shown are: 

• No message is received before it is sent. 

• No message takes more than time d to be delivered. 

• No clock tick takes time less than c
1

. 

For the first two conditions, notice that in /3, we have that messages take time: 

• d from all processes $ Pp;_, to all processes 2:'. pp., and 

• 0 in the reverse direction. 

33 



We are only shifting events of processes ~ Pp, earlier by at most d, so message delivery time is 
kept :S d, and no message is received before.it is sent. 

For the third condition, note that all clock tick intervals are of length c2 in a.{31 , and no 
portion of this timed execution is shrunk by more than the ratio 

T2 - T1 - d 

T2 - T1 

As the original length of the tick interval was c2 , the new length of a clock tick interval is at 
least 

r2 - r 1 - d 
C2 • ---- ~ C1, 

T2 -T1 

by the way f3 was selected. This completes the proof of Claim 5.13. • 
Now we resume the proof of Lemma 5.12. Note the following additional properties of a.8': 

• Any clock tick interval at a process :S Pp,_
1 

takes time exactly c2 • 

• Any clock tick interval at a process ~ Pp, that begins at a time ~ r2 - d takes time 
exactly c2. 

• Any clock tick interval at a process ~ Pp, that begins at a time :S r2 - d and ends at a 
time u > r 2 takes time at lea.st u - r2 + ( c2 - ( u - r 2))( cif c2). 

• The length of the new segment corresponding to,, is at most c2(m/c1 ) . 

Now to get a.8 from a.8', we "shrink" the portion of a.8' after time r 2 by the ratio ( ci/ c2 ) 

and move the FINISH(p,_1 ) event (of segment,,) after the GRANT(p,) event (at the end of 
segment ,,), thus creating a violation of the mutual exclusion property. More precisely, if an 
event happens at time u' in a.8', then the corresponding event happens at time u in a.8, where: 

1. If u < r 2 , then u' = u. 

Claim 5.14 a.8 is a timed execution of the system. 

Proof: The key things that need to be shown are: 

• No clock ·tick interval is smaller than c1 • 

• The FINISH(p,_1) event occurs within time m after the corresponding GRANT(p,_ 1) 

event. 
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For the first condition, if a. tick interval. happens a.t process P; ~ Pp,_
1 

or· a. tick interval. 
starts no sooner than time r2 - d in a81

, then this clearly holds, since the properties of a81 

stated above implies that those intervals a.re of length c2 • 

The only case left is that of a. tick interval. that occurs a.t a. process ~ Pp, and starts before 
r 2 - din a81

• Let u be the time a.t which the interval. ends in a81
• If u ~ r 2 , then the interval is 

not shrunk a.t all, so we can assume that u > r 2 • Then by the properties of a81 stated above, 
the length of this interval. in a81 is a.t least u - r:i + (c:i - (u - r:i))(ci/c:i)- But in going from 
a81 to ao, only the portion of the interval. after time r:i gets shrunk; therefore, the length of 
the new interval. is a.t lea.st 

as needed for the first condition. 
For the second condition, the time between the GRANT(p,_1 ) and the GRANT(p,) in 

ao, i.e., the length of the segment corresponding to '"t, in ao, is a.t most m; hence moving 
FINISH(p,_ 1 ) after GRANT(p,) does not violate them upper bound. 

This completes the proof of Claim 5.14. ■ 

To complete the proof of Lemma. 5.12, we need only observe that ao is a. timed execution 
of the system in which the mutual ezclusion property is violated, a. contra.diction. ■ 

To complete the proof of Theorem 5.9, consider the execution a/3'"( and consider the 
REQUEST(po) that occurs just after the first of the designated GRANT(p0 ) events in '1· 
From Lemma. 5.10 it follows that 

ln > c2(m/c1), 

Together with Lemma. 5.12 this implies that the total time from that REQUEST(p0 ) event 
until the corresponding GRANT(p0 ) event is strictly greater than 

as claimed. ■ 

6 Discussion and Open Problems 

In this pa.per, we have defined a. timing-based variant of the mutual exclusion problem, a.nd 
have considered both centralized a.nd distributed solutions to this problem. We have proved 
upper bounds for both cases, based on simple algorithms; these bounds a.re fairly complicated 
functions of clock time, manager or process step time, moving time for the moving parts, a.nd 
(in the distributed case) message delivery time. 

We also have proved corresponding lower bounds for both cases. In the centralized case, 
the lower bound exactly matches the upper bound, even when the manager step time and the 
roundoffs a.re considered. In the more complicated distributed setting, the lower bound is very 
close to the upper bound, but does not match it exactly. 
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The bounds a.re all proved using the timed automaton model for timing-based concurrent 
systems. It is interesting to ask how dependent the results are on this choice of model. The 
timed automaton model differs from some others in modeling process steps explicitly (rather 
than assuming the algorithms a.re interrupt-driven); thus, our results involving this process step 
time would not be expected to extend immediately to such interrupt-driven models ( except 
possibly in the limit, as this step time approaches zero). However, some of our results - most 
notably, the lower bound for the distributed case - do not involve process step times and thus 
appear to be quite model-independent. An alternative approach would be to use a general 
model that describes interrupt-driven computation, but we do not yet know (in general) how 
to define such model. 

There are several open questions directly related to the work presented in this paper. First, 
there is a gap remaining between the upper and lower bound results for the distributed resource 
allocation problem. Even neglecting process step time, there is a difference of an additive terms 
of d, the upper bound on message delivery time, and n · cl, then number ofprocesses times the 
upper bound on the clock tick time. Preliminary results suggest that under certain assumptions 
about the relative sizes of the parameters, the upper bound can be reduced by approximately 
d. However, we do not yet have a general result about this. 

Our lower bound for the distributed resource allocation problem assumes that ( n - 1) • d ~ 
m · (cl/ c1). It would be interesting to see if this assumption can be removed. 

It would also be interesting to consider the same problem in a model in which there a.re 
nontrivial lower bounds on the time for message delivery ( and perhaps for process steps). 
While our upper bound proofs still work in this situation, the same is not t rue for our lower 
bound proofs. The strategy of shrinking and shifting timed executions to produce other timed 
executions becomes much more delicate when lower bounds on these various kinds of events 
must also be respected. 

Our results imply that the ratio c3 / c1 has a significant impact on the response time of the 
system. It would also be interesting to consider the case where a process has more than one 
clock, say an additional clock with bounds [c~, c;]. We would like to understand how the results 
depend on the four parameters c1 , cl, c~ and~-

Other related problems can also be studied using the models and techniques of this paper. 
One could define timing-based analogs of other problems besides mutual exclusion that have 
been studied in the asynchronous setting (for example, other exclusion problems such as the 
dining philosophers problem, distributed consensus problems, or synchronization problems such 
as the session problem of [AFL81]); it should be possible to obtain combinatorial results a.bout 
them in the style of the results of this paper. In addition to defining variants of asynchronous 
problems, one can also extract prototypical problems from practical real-time systems research 
and use them as a basis for combinatorial work. 

In another direction, the algorithm proofs presented here suggests general approaches to 
verification of real-time systems. As mentioned in Section 4.1.3, we believe that there may be 
a. unified method for treating correctness and performance analysis of timing-based algorithms, 
and a.re currently exploring this possibility in [LA]. 

Work of the sort presented here (and the extensions proposed above) should provide an 
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excellent basis for evaluating the timed automaton model as a general model for reasoning 
about timing-based systems (and comparing it with alternative models for timing-based com-
putation). · 
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A Proofs of Lemmas 

A.1 Proof of Lemma 4.2 

The proof is by induction on the length of a finite execution, a, that ends in state s. The 
base, length 0, is trivial since FINISH( i) is not enabled in any initial state. So suppose that 
a = a'( s', ( 1r, t), s) and the result holds for a' and s' . We show it holds for a and s. We 
consider cases. 
Case 1: 1r =· REQUEST(j), for some j, 0::; j::; n - 1, or 1r = ELSE. 

First suppose that FINISH(i) is enabled in s.Astate, for some i, 0 ::; i ::; n - 1 (where 
i might or might not be equal to j). Then it is also enabled in s' .Astate. The inductive 
hypothesis implies that 

1. (a) s'.TIMER > 0, 

(b) s'.Ftime(TICK) + (s'.TIMER - l)c1 > s'.Ltime(FINISH(i)), and 

( c) FINISH(k) is not enabled in s' .Astate, for any k =/= i. 

Since s.TIMER = s'.TIMER, we haves.TIMER> 0. Since 

s.Ftime(TICK) = s'.Ftime(TICK), 

and 

s.Ltime(FINISH(i)) = s'.Ltime(FINISH(i)), 

we have that 

s.Ftime(TICK) + (s.TIMER - l)c1 > s.Ltime(FINISH(i)). 

Also, FINISH(k) is not enabled in s.Astate, for any k =/= i . 
Now suppose that s.TICKED = true. Then it must be that 1r is REQUEST(j) and 

s'. TICKED = true. Then 

s'.Ftime(TICK);:::: s'.Ltime(LOCAL) + c1 - 1. 

Since 

s.Ftime(TICK) = s'.Ftime(TICK), 

and 

s.Ltime(LOCAL) = s'.Ltime(LOCAL), 

we have that 

s.Ftime(TICK);:::: s.Ltime(LOCAL) + c1 - l. 

Case 2: 1r = FINISH(j), for some j, 0::; j::; n - 1. 
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First suppose that FINISH(i) is enabled in s .Astate, for some i, 0 ~ i ~ n - 1. It cannot 
be that i = j so j =/: i. But then both FINISH(i) and FINISH(j) are enabled in s'.Astate, 
which contradicts the inductive hypothesis. Therefore, this ca.se cannot occur. 

Second, suppose thats.TICKED= true. Then the same argument a.sin Case 1 shows that 

s.Ftime(TICK) ~ s.Ltime(LOCAL) + c1 - l. 

Case 3: 7r = TICK. 
First suppose that FINISH(i) is enabled in s.Astate, for some i, 0 ~ i ~ n - 1. Then it is 

also enabled in s' .Astate, so the inductive hypothesis implies tha.t 

1. (a) s'.TIMER > 0, 

(b) s'.Ftime(TICK) + (s'.TIMER - l)c1 > s'.Ltime(FINISH(i)), and 

( c) FINISH( k) is not enabled in s' .Astate, for any k =/: i. 

We first prove thats.TIMER> 0. If not, then it must be tha.t s'.TIMER = 1. Then the 
inductive hypothesis implies that 

s' .Ftime(TICK) > s'.Ltime(FINISH(i)). 

But then the definition of time(A) implies tha.t (TICK, t) is not enabled ins', since a. FINISH(i) 
must happen first. This is a contra.diction. 

For invariant lb, we see that 

Thus, 

s.Ftime(TICK) + (s.TIMER- l)c1 

t + c1 + (s'.TIMER- 1 - l)c1 

t + (s'.TIMER- l)c1, 

> t + s'.Ltime(FINISH(i)) - s'.Ftime(TICK) 

by inductive hypothesis, 

~ s'.Ltime(FINISH(i)) 

by the definition of time(A), 

s.Ltime(FINISH(i)). 

s.Ftime(TICK) + (s.TIMER- l)c1 > s.Ltime(FINISH(i)). 

The third clause carries over easily. 
Now suppose (actually, it must happen) tha.t s.TICKED = true. Then s .Ftime(TICK) = 

t + c1 a.nd s.Ltime(LOCAL) ~ t + l, so 

s.Ftime(TICK) ~ s.Ltime(LOCAL) + c1 - l. 

Case 4: 7r = GRANT(j), for some j, 0 ~ j ~ n - 1. 
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First suppose that FINISH(i) is enabled in s.Astate, for some i, O ~ i ~ n - l. ff if. j , 
then FINISH(i) is also enabled in s'.Astate, so by the inductive hypothesis, s'.TIMER > O. 
But this contradicts the preconditions of GRANT(j). Therefore, it must be that i = j . 

Then the effects of GRANT(i) imply thats.TIMER> 0. Note that 

s'.Ltime(LOCAL) 2: t 

(since GRANT is a locally controlled action) and that 

s'.Ftime(TICK) = s.Ftime(TICK). 

Then 

s.Ftime(TICK) + (s.TIMER- l)c1 

Thus, 

s'.Ftime(TICK) + (s.TIMER- l)c1 

> s' .Ltime( LOCAL) + c1 - l + ( s. TIMER - 1 )c1 

by inductive hypothesis, since s'.TICKED = true, 

> t + c1 - l + (s.TIMER- l)c1 

by the inequality above, 

t+c1 -l+ (l(m+l)/ciJ)c1 

> t + m = s .Ltime(FINISH(i)). 

s.Ftime(TICK) + (s.TIMER- l)c1 > s.Ltime(FINISH(i)) 

as needed. 
The mutual exclusion condition has already been shown. 
It is not possible for TICKED = true in s, by the effects of the GRANT. 

A.2 Proof of Lemma 5.2 

• 

The proof is by induction on the length of a finite execution, a, that ends in state s. The base, 
length 0, is trivial. So suppose that a= a1(s1 ,(1r,t),s) and the result holds for a' ands' . We 
show it holds for a ands, by considering cases. 
Case 1: 1r is·a REQUEST,ELSE,FINISH, TICK or GRANT action. 

These steps do not change the contents of any channel or the number of processes i for 
which s.TOKEN(i) f. not...here. 
Case 2: 1r = RECENE-TOKEN(j), for some j, 0 ~ j ~ n - 1. 

Since RECENE-TOKEN(j) is enabled in s'.Astate we have that #tokens(j - 1) 2: l. By 
the induction hypothesis, this implies that for all processes i, s'.TOKEN(i) = not...here. The 
length of one channel queue is decreased by one, while one token state ( of j) is changed from 
not_here to available; thus, the total number of tokens on channels plus the number of processes 
holding the token (i.e., having TOKEN f. not...here), is preserved. 
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Case 3: ?r = SEND-TOKEN(j), for some j, O ~ j ~ n - 1. 
The number of processes for which s.TOKEN(j) = noLhere is decreased by one relative 

to s', while the-number of messages on the channels is increased by one. This implies that the 
sum we are interested in remained the same. ■ 

A.3 Proof of Lemma 5.3 

The proof is by induction on the length of a finite execution, a, that ends in states. The base, 
length 0, is trivial. So suppose that a= a'(s',(?r,t),s) and the result holds for a' ands'. We 
show it holds for a and s, by considering cases. 
Case 1: ?r = REQUEST(j) or 7r = ELSE(j), for some j, O ~ j ~ n - 1. 

First suppose that FINISH(i) is enabled in s.Astate, for some i, 0 ~ i ::; n - 1 (where 
i might or might not be equal to j). Then it is also enabled in s' .Astate. The inductive 
hypothesis implies that: 

1. (a) s'. TIMER( i) > O, 

(b) s'.Ftime(TICK(i)) + (s'.TIMER(i)- l)c1 > s' .Ltime(FINISH(i)), and 

(c) s'.TOKEN(i) = used. 

Since s.TIMER(i) = s'.TIMER(i) we have s.TIMER(i) > 0, showing la. Since 

s.Ftime( TICK( i)) = s' .Ftime( TICK( i) ), 

and 

s.Ltime(FINISH(i)) = s'.Ltime(FINISH(i)), 

we have that 

s.Ftime(TICK(i)) + (s.TIMER(i) - l)c1 > s.Ltime(FINISH(i)). 

So we have invariant lb. Invariant le carries over as this step does not change token states. 
Now suppose that s.TICKED(i) = true. 
Then s'.TICKED(i) = true, and 

s'.Ftime(TICK(i)) ~ s'.Ltime(LOCAL(i)) + c1 - l. 

Since 

s.Ftime(TICK(i)) = s'.Ftime(TICK(i)) 

and 

s.Ltime(LOCAL(i)) = s'.Ltime(LOCAL(i)) 

we have that 

s.Ftime(TICK(i)) ~ s.Ltime(LOCAL(i)) + c1 - l. 
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So we have invariant 2. 
Case 2: 1r = FINISH(j), for some j, 0 ~ j ~ n - 1. 

First suppose that FINISH(i) is enabled in s.Astate, for some i, 0 ~ i ~ n - 1. It cannot 
be that i = j so j-=/ i. Then FINISH(i) is also enabled ins'. As FINISH(j) is also enabled in 
s', we have, by invariant le, that s' .TOKEN(j) = used. Similarly, as FINISH( i) is enabled in 
s', we have, by invariant le, that s'.TOKEN(i) = used. But this implies that the number of 
processes for which TOKEN -=/ not..here is at least two, contradicting Lemma 5.2. Therefore, 
this case cannot occur, and we have invariant 1. 

For invariant 2, suppose that s.TICKED(i) = true. Then the same argument as in Case 1 
shows that, for a.11 i, 

s.Ftime(TICK(i)) 2: s.Ltime(LOCAL(i)) + c1 - l. 

Case 3: 1r = TICK(j), for some j, 0 ~ j ~ n - 1. 
First suppose that FINISH( i) is enabled in s.Astate. Then it is also enabled in s' .Astate, 

so the inductive hypothesis implies that 

1. (a) s'.TIMER(i) > O, 

(b) s' .Ftime(TICK(i)) + (s'.TIMER(i) - l)c1 > s'.Ltime(FINISH(i)), and 

(c) s'.TOKEN(i) = used. 

We first prove that s.TIMER(i) > 0. Hnot, then it must be that s'.TIMER(i) = 1, and 
j = i. Then the inductive hypothesis implies that 

s'.Ftime(TICK(i)) > s'.Ltime(FINISH(i)). 

But then the definition of time( B) implies that TICK ( i) is not enabled in s' ( since FINISH ( i) 
must happen first). This is a contradiction, so we have invariant la. 

For the invariant lb, if i = j, then 

s.TIMER(i) = s'.TIMER(i)- 1 

and we see that 

s.Ftime(TICK(i)) + (s.TIMER(i) - l)c1 

Therefore, 

t + c1 + (s'.TIMER(i) - 1- l)c1 

= t + (s' .TIMER(i)- l)c1 

> t + s'.Ltime(FINISH(i))- s'.Ftime(TICK(i)) 

by inductive hypothesis, 

> s' .Ltime( FINISH ( i)) 
s.Ltime(FINISH(i)). 

s.Ftime(TICK(i)) + (s.TIMER(i) - l)c1 > s.Ltime(FINISH(i)), 
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and we have invariant lb. If i # j then invariant lb follows as in Case 1. Invariant le carries 
over as this step does not change token states. 

Now suppose that s.TICKED(i) = true. If i = j, then s.Ftime(TICK(i)) = t + c1 and 
s.Ltime(LOCAL(i)) ~ t + l, so 

s.Ftime(TICK(i)) ~ s.Ltime(LOCAL(i)) + c1 - l, 

as needed for invariant 2. On the other hand, if i # j, then s'. TICKED( i) = true and the 
induction hypothesis on invariant 2 implies that 

s'.Ftime(TICK(i)) ~ s'.Ltime(LOCAL(i)) + c1 - l . 

Then invariant 2 for s follows as in Case 1. 
Case ,4: 1r = GRANT(j), for some j, 0 ~ j ~ n - 1. 

Then s'.TOKEN = available. First suppose that FINISH(i) is enabled in s .Astate, for 
some i, 0 ~ i ~ n - 1. If i # j then FINISH( i) is also enabled in s' .Astate, so by inductive 
hypothesis (invariant le), s'.TOKEN(i) = used. But this contradicts Lemma 5.2, soi = j. 

Then the effects of GRANT(j) imply that s.TIMER(j) > 0, so we have invariant la. Note. 
that 

s'.Ltime(LOCAL(j)) ~ t 

and that 

Then 

s'.Ftime(TICK(j)) = s.Ftime(TICK(j)). 

s.Ftime(TICK(j)) + (s.TIMER(j) - l)c1 
s' .Ftime(TICK(j)) + (s.TIMER(j) - l)c1 

> s'.Ltime(LOCAL(j)) + c1 - l + (s.TIMER(j)- l)c1 

by inductive hypothesis, 

> t + c1 - l + (s.TIMER(j) - l)c1 

t + c1 - l + (l(m + l)/ciJ)c1 

> t + m = s.Ltime(FINISH(j)). 

Thus, 

s.Ftime(TICK(j)) + (s.TIMER(j) - l)c1 > s.Ltime(FINISH(j)) 

and we have invariant lb. 
Invariant le follows from the effects of the GRANT. 
Now suppose that s.TICKED(i) = true. Then the effects of GRANT(j) implies that j-:/: i. 

Then invariant 2 follows as in Case 3. 
Case 5: 1r = RECEIVE-TOKEN(j), for some j, 0 ~ j ~ n - 1. 
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From the inductive hypothesis on inva.riant le and Lemma 5.2 it follows that FINISH(i) is 
not enabled in s', hence it is not enabled in s. So we have invariant 1. 

Invariant 2 follows as in Case 1. 
Case 6: 1r = SEND-TOKEN(j), for some j, 0 $ j $ n - l. 

H FINISH ( i) is enabled in s, then it is also enabled in s', but then from inva.riant la it follows 
that s'.TIMER(j) > 0, so SEND-TOKEN(j) is not enabled ins'. This is a contradiction, so 
invariant 1 holds . 

Invariant 2 follows as in Case 1. • 
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