
LABO RA TORY FOR it~ MASSACHUSETTS
INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

MIT/LCS/TM-386

COMMUNICATION EFFECTS
FOR MESSAGE-BASED

CONCURRENCY

Pierre Jouvelot
David K. Gifford

February 1989

54 5 TECHNOLOGY SQUARE. CAMBRIDGE. MASSACHUSETTS 02139

MIT /LCS/TM-386

Communication Effects for
Message-Based Concurrency

Pierre Jouvelot
David K. Gifford

February 1989

© 1989 Massachusetts Institute of Technology

Abstract

We describe a new framework for explicit concurrency that uses an effect
system to describe the communication behavior of expressions in a typed
polymorphic programming language. Concurrency occurs between processes
connected by channels on which messages are t ransmitted. Communication
operations are characterized by two communication effect constructors, out
and in, depending on whether a message has been sent or received. Synchro
nization is only allowed by message-passing along shared channels; commu
nication via mutation of global variables is statically prohibited by our com
munication effect system, thus restricting the amount of non-determinacy in
user programs. Unobservable communication effects can be masked by the
effect system.

We show that this system is powerful enough to express many other par
allel paradigms, like systolic arrays or pipes, in a typed framework. The
programmer can thus express concurrency in a rather flexible way while pre
serving the correctness of implicit detection of parallelism and optimization
by the compiler. This new concurrency framework has been implemented in
the FX-81 programming language.

Categories and Subject Descriptions: D.1.3 [Programming Techniques]
- Concurrent Programming: Effect systems; D.l.m [Programming Tech
niques] - Miscellaneous: First-class channels; D.3.1 [Programming Lan
guages] - Formal Definitions and Theory; D.3.3 [Programming Langua
ges]-Language Constructs: Control structures, effect systems; D.3.4 [Pro
gramming Languages] - Processors: Compilers1 optimization.

General Terms: Languages, Theory, Verification.

Additional Key Words and Phrases: effect systems, type systems, communi
cation effects, effect masking, explicit parallelism, FX-87.

1 Introduction

Although quite a fair amount of parallelism can be automatically extracted
from sequential programs by smart compilers, there are some problems for
which an explicitly parallel algorithm is both more natural to express and eas
ier to efficiently implement. There are numerous parallel paradigms that can
be added to an otherwise sequential language to fulfill that goal like message
passing, systolic programming, data parallelism or fork/join. We propose in
this paper to show how a message-based communication framework based
on communication effects can be used to explicitly express parallelism in a
typed polymorphic language which uses an effect system [LG88] .

An effect system is based on a kinded type system for the second-order
lambda calculus [M79]. Kinds are the types of descriptions. Our type and
effect system has three base kinds: types, which describe the value that
an expression may return; effects, which describe the side-effects thait an
expression may have; and regions, which are used to describe where side
effects may occur. An expression that does not have an effect is said to be
pure. Expressions that are pure are referentially t ransparent.

Types, effects and regions are closely interrelated. In particular, a func
tion type incorporates a latent effect, which describes the side-effects that the
function may have when it is applied, and a reference type incorporates a
region, which describes where the reference is allocated. The kind system is
used to verify the well-formedness of descriptions; the type and effect system
is used to verify the well-formedness of expressions.

We can use an effect system for communication analysis by introducing
two types of communication effects, out and in, that describe the commu
nication properties of expressions. An expression that does not have an out
effect never sends messages to an outside process. An expression that does
not have an in effect never receives messages from an outside process. Un
observable communication effects can be masked by the effect system. Our
masking rule applies to expressions that don't communicate externally, even
though they might use communication internally.

Communication effects are useful to the programmer, the language de
signer and the compiler writer:

• Communication effects let the programmer specify, in machine-verifiable
form, the expected run-time communication behavior of a given pro-

I

1

gram, thus increasing documentation, modularity and maintainability
of programs. Communication effects also provide a programmer !with
a new framework in which to reason about languages with explicit
parallelism. Moreover, when unobservable communication effect~ are
masked, a programmer knows that an expression will not interact ith
other processes.

• Communication effects let the language designer limit the use of co± ur
rency to simplify the semantics of the language. For instance, by s ing
that concurrent processes are only allowed to communicate by mes] ages
and not via global mutable variables, the amount of non-determi,1istic
behavior of parallel programs is controlled. In consequence, prog ams
that do not use explicit concurrency constructs are sure to behave in a
deterministic sequential way.

• Communication effects let the compiler writer perform any usua op
t imization like common subexpression elimination or memoizatio m
the presence of explicit parallelism.

Communication effects can be introduced in any programming lang age
which uses an effect system [LG88]. For the sake of homogeneity in ~re
sentation, we will use the FX-87 language throughout this paper [GJLS~ 7] .

In the remainder of this paper, we sketch the main characteristics o the
effect system of the FX-87programming language (Section 2), introduce our
concurrency framework by defining channels, processes and communicat ion
effects (Section 3), show how other paradigms for parallelism can be ada ted
to ours (Section 4), describe the innards of our experimental parallel i
mentation (Section 5), stress the major benefits of our approach (Sectio
survey related work (Section 7) and summarize our results (Section 8).

2 The FX-87 Programming Language

FX-87 [GJLS87] is a programming language with a second-order polymor hie
type and effect system [LG88] and in which higher-order functionals are fi st
class values. The concrete syntax and standard operations of FX-87 are
reminiscent of the ones of Scheme [R86] . The static analysis of an F -87
program consists in the determination of a set of descriptions:

2

• Every ordinary variable is described by a type and a region. T; re
gion of a variable, optionally provided by a programmer, represen s an
abstract set of memory locations into which the variable is locate .

• Every FX-81 expression is described at compile-time by the type l f its
result and the effect of its evaluation. The effect of an expressiorl is a
static description of the observable store (as defined by regions) o , era
tions like read, write or alloc (for allocation) that may be perfo med
during its evaluation.

• Every FX-81 procedure is characterized by a type that includes a l tent
effect, the types of the arguments and the type of the result. A 1 tent
effect describes the effect that may occur when the procedure is c led.

FX-81 gives the programmer the ability to manipulate all these descrip~ions
(types, regions, effects), and the flexibility to build description functions An
example of such a description function is listof which maps a type exp
and a region rexp to the type (listof texp rexp) of lists, located in r xp,
of values of type texp. Ordinary expressions can be abstracted over any ind
of description.

As an example, consider the definition of a polymorphic map proce ure
that applies a function f to a list 1 of values. The function map can be de ned
as follows in FX-81:

(define map
(plambda ((r region))

(plambda ((e effect) (ti type) (t2 type))
(lambda ((f (subr e (t i) t2)) (1 (listof ti r)))

(the (maxeff e (alloc r) (read r)) (listof t2 r)
(if (null? 1)

()

((proj cons r) (f (car 1)) (map f (cdr 1))))))))

Note that map is abstracted (by plambda forms) over a region r , and an e ect
e and two types ti and t2; thus, map must be projected onto a region an
effect, and two types before it can be used. For example:

((proj (proj map ©=) pure int bool) odd? (list i 2 3))

3

yields a list allocated in the immutable region (noted ©=) and whose va ue is
the list (#t #f #t) where #t and #f are the FX-87 literals for the bo lean
values true and false. FX-87 uses implicit projection to allow users to mit
some of these projections; we used this in the body of map. The fact that
the function map is polymorphic over a region, an effect and two type can
be seen in its poly type:

map : (poly ((r region))
(pol y ((e effect) (ti t ype) (t2 type))

(subr (maxeff e (alloc r) (read r))
((subr e (ti) t2) (listof ti r))
(listof t2 r))))

Focusing on map's effect parameter e for a moment, map must be pro ided
with the effect of the procedure f it is going to map over a list . Note that
the latent effect e of the procedure f passed to map will also be part of the
latent effect of map (given as the first argument of the declarative t he Irm,
the second argument being the return type); (maxeff eexp1 eexp2) de otes
the cumulative effect of the effects eexp1 and eexp2 . Thus, if map is iven
a pure procedure to map over an immutable list (i.e., r is ©=), map wi 1 be
pure. However, if map is given a procedure with the latent effect (wfi t e
©s ample), then map will have (write ©s ample) in its latent effect. :Note
that in any case, map's latent effect will include both the effect Cal lo ! r)
for allocating the result list in the region r and (read r) for reading v lues
inside the argument list 1.

When regions or effects are abstract (as in the case of r and e in the ody
of map), the effect system ensures that they do not alias. Namely, region and
effect variables are mutually independent, so that polymorphic expres ions
can be efficiently compiled on parallel architectures. This property is enfo ced
at compile-time by the effect system of FX-87 whenever an expressi 1n is
projected on regions and effects.

The FX-87 effect system masks unobservable effects. An effect of a ex
pression is unobservable if the effect is performed on a region that is not
accessible outside of the scope of the expression. This can be detected s ati
cally by the FX-87 system; for instance, a wr ite effect on rexp can be m~ked
if there are no free variables that have rexp in their type. Thus it is possi
ble for an expression to perform arbitrary side-effects in the heap and till
have effect pure. Effect masking is useful because it allows mutable obj cts

4

to be used for efficiency where necessary without forcing the serializati n of
expressions.

3 Message-Based Concurrency

The use of an effect system allows a compile-time detection of parallelis in
a language with first-class functions. Expressions that don't have inter£ ring
effects can be scheduled in parallel. We show how an effect system can b ex
tended with communication effects in order to deal with explicit paralle ism.
In this paper, concurrency occurs between processes connected by cha nels
on which messages are transmitted.

Before going into a precise definition of the few new concepts tha are
needed to deal with explicit concurrency, we first begin by a simple e am
ple, a logical system, which gives a flavor of the constructs we are abo t to
introduce:

(pdefine wire (channelof bool ©wire))

(define (and- gate (x wire) (y wire) (xy wire))
((to xy) (and? (from x) (from y))))

(define (not-gate (x wire) (- x wire))
((to - x) (not? (from x))))

(define (nand-gate (x wire) (y wire) (-xy wire))
(let ((xy (proj (proj channel ©wire) bool)))

(cobegin (and- gate x y xy)
(not- gate xy - xy))))

Logical gates like and- gate are implemented as functions that receive ar
guments the wires (i.e. channels) used to connect them to the outside w ld.
On these wires, boolean values are t ransmitted by the primitives to, for ut
put, and from, for input; each of these constructs has a latent communica ion
effect, respectively (out ©wire) and (in ©wire). The nand- gate func ion
shows how new channels can be created with the channel polymorphic f nc
t ion and how parallel function invocations (i.e. processes) can be create by
the cobegin construct.

5

3.1 Channels

A channel is a typed asynchronous unbounded error-free FIFO corn.mu 1ca
tion medium. It is introduced in FX-87 by the type constructor chann lof
of kind:

channelof:: (dfunc (type region) type)

For any type texp and region rexp, (channelof texp rexp) is the ty e of
channels located in region rexp on which values of type texp are transmi ted.
For instance, a value of type (channelof int ©request) denotes a ch nnel
on which values of type int can be transmitted. Any FX-87 type ca be
used within the channelof constructor (even channels) .

Whenever some expression performs a communication over a chann 1 (in
a way which is described in the next subsection), then a communication ide
effect has to be reported. If not reported, an only-communicating expre sion
could be dead-code eliminated, which could create a starvation situatio for
the processes with which it was supposed to communicate. These effect are
defined by the following effect constructors:

in (dfunc (region) effect)
out (dfunc (region) effect)

For a region rexp, an (in rexp) (resp. (out rexp)) effect will be cha ged
to an expression that gets (resp. puts) a value from (resp. into) a cha nel
located in the region rexp. Note that the usual read and write e ects
cannot be used here since the communication side-effects (called herein fter
communication effects) are not subjected to the same effect-masking and
interfering rules as the one used for store side-effects. Communication e cts
have the following properties:

• An out effect is a static error on channels that are located in the im
mutable region.

• A communication effect of an expression E can be masked if the re ion
it is referring to doesn't appear free in the type of any free variabl of
E.

• An in (resp. out) effect is only a subeffect of another in (resp.
effect; the subeffect rule is that its region has to be a (possibly
proper) subregion of the other one.

6

• The communication effects distribute over maxeff and runion1 i the
same way the other effects do, e.g. (in (runion rexp1 rexpz) =

(maxeff (in rexp1) (in rexpz)) .

• The interference relation between effects can be extended in the fo low
ing way to deal with communication effects: Communication effec in
terfere only with other communication effects. The effects (in re P1)
and (out rexp1) both interfere with (in rexpz) and (out rexp) iff
rexp1 and rexp2 aliase.

3.2 Communication

Three functions are provided to manipulate channels: channel creates a new
channel, to puts a value into a given channel and from gets a value fr m a
given channel.

The creation of a channel is performed by the function channel:

channel: (poly ((r region))
(poly ((t type))

(vsubr (alloc r) t (channelof tr))))

The channel function accepts an optional argument (it is a dynamic rror
if more than one argument is provided) and returns a new channel pos ibly
initialized with the optional value. The alloc effect reports the ere 10n
of a new data structure and is moreover necessary to avoid common uh
expression elimination on newly created (and mutable) channel values.

The to function is used to put a value onto a given channel:

to (poly ((r region))
(poly ((t type))

(subr pure
((channelof tr))
(subr (out r) (t) unit))))

Performing a to operation on an immutable channel is a static error. to
operation is never blocking since channels are unbounded. The messag 1s

1 (runion rexp1 rexp2) denotes the region that includes rexp1 and rexp2

7

queued in a FIFO manner onto the given channel except if it is the first es
sage sent on an initialized channel; in that case, the initial value is disc ded
and replaced by the incoming message.

The from function is used to get a value from a given channel:

from: (poly ((r region))
(poly ((t type))

(subr (in r) ((channelof tr)) t)))

If the channel is in its initial state, then its initial value is returned and
the state of the channel remains unaltered. If the channel has at least one
message available, the first one is returned by the from function an the
channel keeps only the rest of the queue. If the channel is empty, the the
process that performs the from function is blocked and will be awake as
soon as a value is input into the channel.

3.3 Processes

A process is a single thread of control2. They are created by the cob gin
special form:

(cobegin exp1 exp2)

A cobegin construct creates two new child processes that will concurr
(in a fair way [F86]) evaluate their unevaluated arguments. The parent ro
cess is blocked up to the completion of its two children. The value retu ned
(if it exists) is an immutable pair made with the result values of the ild
processes.

The type of a co begin expression is void if the type of one of its chil ren
has type void, else (pairof texp1 texp2 ©:) where texpi is the type of e Pi·

In FX-87, void is the type of certain non-terminating expressions. Thee ect
of a cobegin expression is the maxeff of the effects of its children.

The two child processes are not allowed to communicate except via sh red
channels. T his property can be enforced at compile-time by the FX-87 e ect
system which is extended with the following rule:

In (co begin exp1 exp2), the effects of exp1 and exp2 must not
interfere, except via communication effects.

2We don't take into account here the presence of other processes implicitly introd ced
by the FX-87 compiler on the basis of memory effect constraints.

8

4 Examples of Other Parallel Paradigms

We will give here four examples of programs written with the previous con
structs: F ibonacci, systolic sorting, pipeline and fair merge. They inte d to
show how different styles of parallel programming can be used withi our
framework. All these examples have been run on the experimental i ple
mentation described in the next section.

4 .1 Fibonacci

Our first example is an explicitly parallel version of the Fibonacci func ion.
Note that this code could very well be what an FX-87 compiler would en
erate after effect analysis of a sequential version of the Fibonacci functi n :

(define (fibo (n int))
(the pure int

(if (<= n 1)

n
(let ((fn- 1/fn-2 (cobegin (fibo (- n 1))

(fibo (- n 2)))))
(+ (car fn-1/fn- 2) (cdr fn- 1/ fn- 2))))))

It is also possible to use the continuation-passing style popularized in [78]
to code a parallel version of Fibonacci. The idea is to pass as continuati n a
function that will put the return value in the appropriate channel:

(define fibo-c
(plambda ((e effect))

(lambda ((cont (subr e (int) unit)) (n int))
(thee unit

(if(<= n 1)

(cont n)
(let ((local ((proj (pr oj channel ©l ocal) it))))

(cont
(car

(cobegin
(+ (from l ocal) (from local))
(cobegin

9

(fibo- c (to l ocal) (- n 1))
(fibo- c (to l ocal) (- n 2)))))))))))

Here the fibo- c function has to be provided with both the continuatio and
the number n whose F ibonacci's value fn is to be computed. The recursive
fibo-c either calls the continuation with n in the basis case or launche~ the
parallel evaluation of fn-1, fn - 2 and the expression that will computllie fn
from these partial results.

The interesting aspect of this definition is that the continuation paissed
to the child processes will send the result value to a local channel that1 will
be read by the first child process. This internal communication is not visible
outside of fibo-c because of communication effect masking.

4 .2 Sy stolic sorting

Using an asynchronous systolic array of N processes, we describe here in our
new typed framework an algorithm to sort N elements in t ime O(N) [Md 80] .

The processing elements are arranged in a linear array. Each processor,
implemented as a function, is connected to its two neighbors by four channels.
The first two (dat a- i n to the left and data- out on the right) are used in
the first phase of the algorithm. The last two (result - out to the left \and
result - i n on the right) are only used to output sorted values during the
second phase of the algorithm.

data- i

(sor t - processor i max)

result-out

The type of a processor element is defined by:

(pdefine sor t - pr ocessor

data- out

e sult - in

(s ubr (maxeff (in ©sort) (out ©sort) (alloc ©sor t))
((channelof int ©s or t) data- in

(channelof int ©sor t) dat a- out
(channelof int ©sort) result - out

10

(channelof int ©sort)) result-in
unit))

Each processor is responsible for one element of the input data. rn\ the
first phase, each processor, defined by its position in the systolic array
of max-position elements, inputs value from data-in, compares it t0 its
current value, keeps the smaller one and output the greater one to its ~ight
via data-out. At the end of phase one, processor i will have in its stord the
i-th element of the sorted vector. The second phase will transfer this vf lue
on the left result-out and forward to the same channel all the superior ones
coming from result- in.

(define (sort-processor (position int) (max-position int))
(lambda ((data- in (channelof int ©sort))

(data-out (channelof int ©sort))
(result- out (channelof int ©sort))
(result-in (channelof int ©sort)))

(let ((final (do ((i O (+ i 1))
(v (from data-in)

(let* ((new (from data-in))
(min (if(< new v) new v))
(max (if(< v new) new v)))

((to data- out) max)
min))

((= (+ i position) max-position) v)))O)

((to result-out) final)
(do ((i O (+ i 1)))

((= (+ i position) max-position) #u)
((to result- out) (from result-in))))))

The N processors will be glued together by using a reduction-like opera ion
with the glue-sort-processor. Note that all the intermediate channels will
be created at the time of the setting of the systolic array, and not during the
sorting phase.

(define (glue- sort-processor (f1 sort-processor)
(f2 sort-processor))

(let ((inter- data ((proj (proj channel ©sort) int)))

11

(inter-result ((proj (proj channel ©sort) i nt))))
(lambda ((data- in (channelof int ©s ort))

(data- out (channelof int ©sort))
(result- out (channelof int ©s or t))
(result - in (channelof i nt ©sort)))

(cobegin (f1 data- in inter- data result-out i nt er- result)
(f2 inter-data data- out i nter- resul t r esul t - i n))

#u)))

The sort function receives as input a list of values to sort. It creates an
appropriate systolic array proc and two channels on which to input and
output values. T hen, the main program is forked into two processes:

• A driver expression that inputs the values to be sorted in the input
channel and outputs them to create a new sorted list,

• T he systolic array connected to input and output. (Note that two
dummy channels are used as t he right channels result- in and data- out.)

(define (sort (to- sort (listof int©=)))
(let* ((max- posit ion (- (length to- s or t) 1))

(proc (do ((i O (+ i 1))
(proc (the sort- processor

(sort- processor O max-posit ion))
(glue- s ort- pr ocessor

proc
(sort- processor (+ i 1) max- position))))

((= i max- position) proc)))
(dummy ((proj (proj channel ©sort) int)))
(input ((proj (proj channel ©sort) int)))
(output ((proj (proj channel ©sort) int))))

(car
(cobegin

(do ((s t o- sort (cdr s)))
((null? s) (do ((i O (+ i 1))

(s (t he (listof int ©=) ())
(cons (from output) s)))

((> i max- posit i on) ((reverses)))))

12

((to input) (cars)))
(proc input dummy output dummy)))))

The evaluat ion of sort terminates because every loop used in each process
is bounded. Note that generating an efficient code for this kind of commu
nication pattern should not be too difficult because of its regularity.

4.3 Pipeline

We show here how to use the message-based approach to implement a pipeline
style parallel programming in FX-87.

A pipe is a process that repetitively takes a single input and returns
a processed value. If t is the type of the processed value (to simplify the
presentation, we will suppose that the incoming value has also this type),
then a pipe has type (pipeof t):

(pdefine (pipeof (t type))
(subr (maxeff (in ©pipe) (out ©pipe))

((channelof t ©pipe)
(channelof t ©pipe))

unit))

input
output

P ipes with mutually disjoint store effects (to simplify, we will suppose here
that they are pure) can be connected together to create larger pipes. Each
elementary pipe operates in parallel with the others.

In our framework, a pipe is constructed with the pipe constructor It
takes a processing function f as argument and returns a value of type (p i peof
t). To terminate a pipe process, we provide the pipe constructor with a sec
ond argument eop? that is a function that tests whether a received value
denotes the "end-of-pipe" value. On reception of such a value, the pipe
sends this distinguished value to its follower in the pipeline and terminates.
Another approach could have been to rely on some sort of automatic pro
cess garbage collection; we preferred an explicit termination system in this
example.

(define pipe
(plambda ((t type))

(lambda ((f (subr pure (t) t)) (eop? (subr pure (t) bool)))

13

(lambda ((c- in (channelof t ©pipe))
(c- out (channelof t ©pipe)))

(do ((c (from c - in) (from c - in)))
((eop? c) ((to c - out) c))

((to c - out) (f c)))))))

A pipeline can be b uilt from these pipe basic blocs. This can be done with
the pipeline function that takes a variable number of pipes and connect
their channels t ogether:

(define pipeline
(plambda ((t type))

(vlambda (pipes (pipeof t))
(if (nul l? pipes)

(error "PIPELINE expects at least one arg"))
(let ((rpipes ((reverse pipes))))

(reduce
(lambda ((p (pipeof t))

(pipe s (pipeof t)))
(let ((inter ((proj (proj channel ©pipe) t))))

(lambda ((c- in (channelof t ©pipe))
(c-out (channelof t ©pipe)))

(cobegin (pc- in inter)
(pipes inter c - out))

#u)))
((reverse (cdr rpipes)))
(car rpip es))))))

Note that the intermediate channels are created when t he whole pipeline is
set, and not when t he values are processed. The pipeline function returns,
when called, a value of type (pipeof t).

To connect a pipe to an I/0 stream, we provide two □-connect and
I -connect functions. For instance, the function □-connect expects a pipe
p that computes values to be output, an ID- out function t o perform the
output operation and an eop? function to test when the pipe has become
useless:

(define □-connect

14

(plambda ((t type))
(lambda ((p (pipeof t))

(IO- out (subr
(maxeff (read ©IO) (alloc ©IO) (write ©IO))
(t)

unit))
(eop? (subr pure (t) bool)))

(let ((inter ((proj (proj channel ©pipe) t))))
(lambda ((c- in (channelof t ©pipe)))

(cobegin (pc- in inter)
(do ((c (from inter) (from inter)))

((eop? c) #u)
(IO- out c))))))))

We now have all the necessary facilities to create a toy processing pipe:

(define (by- 2- plus- 1 (1 (listof int ©=)))
(let* ((eop - 1)

(eop? (lambda ((x int)) (= x eop)))
(add- 1 (pipe (lambda ((x int)) (+ x 1)) eop?))
(mul- 2 (pipe (lambda ((x int)) (* x 2)) eop?))
(a- pipe (pipeline mul- 2 add- 1))
(input ((proj (proj channel ©pipe) int))))

(cobegin
(do ((1 1 (cdr 1)))

((null? 1) ((to input) eop))
((to input) (car 1)))

(((proj 0- connect int) a-pipe write- int eop?) input))))

The function by- 2-plus-1 expects a list 1 of integers i and outputs the list
of processed integers 2 * i + 1. The multiplication by 2 and the increment are
performed in two parallel pipes.

4.4 Merge

The current proposal doesn't allow explicit non-deterministic constructs.
However, non-determinacy comes implicitly from scheduling race conditions

15

on shared channels. It is then easy to define a non-deterministic merge opera
tor which will take five arguments: two pairs of (input channel, end of channel
function) and the merged channel. T his function will non-deterministically
shuffle, in a fair way, the data coming from the two input channels and output
a value of merged type to the output channel:

(pdefine (merged (t1 t ype) (t2 type))
(oneof ((left t1) (right t2)) ©=))

A value of merged type is a variant value whose tag can be either left or
right indicating from which channel the value came from. The merge is
performed via t he cobegin construct in a straightforward way:

(define merge
(plambda ((r1 region) (r2 region) (r region))

(plambda ((t1 type) (t2 type))
(lambda ((c1 (channelof t1 r1)) (c2 (channelof t 2 r 2))

(c (channelof (merged t1 t 2) r)))
(cobegin

(do ((v (from c1) (from c1)))
(#f)

((to c) (one (merged t1 t2) left v)))
(do ((v (from c2) (from c2)))

(#f)

((to c) (one (merged t1 t2) right v))))))))

Note that the merge function (not a real mathematical function because
of the non-determinism) doesn't terminate. A terminating version of merge
could be easily designed by providing supplementary arguments which would
test for "end-of-channel" marker values.

5 Implementation

The four previous examples were tested on an experimental implementa
tion of this message-based facility included in the current FX-81 Int erpreter
[JG88). We will briefly describe the Symbolics Lisp Machine implementation.

The basic type-checker was augmented to know about in and out effects,
in particular to deal with effect masking and algebraic properties of these

16

effect constructors. The cobegin special form was included in the type
checking of standard types, which was an easy task to do, except for testing
the anti-aliasing property.

But the most interesting part is the extension of the run-time library to
support channels and processes.

A channel is implemented as a CommonLISP [S84] structure that includes
a lock (managed by Symbolics locf construct), a list of pending messages
and a flag ini tial- p to memorize the state of the channel (initial or not) .
The structure is allocated by the fx- channel function.

Every process that performs a to or fr om function call on a given channel
tries to acquire the lock of the channel and, as soon as it succeeds (this may
induce the blocking of the process), updates the channel information and
unlocks. These two functions are respectively implemented by fx- t o and
fx- from.

A process is implicitly created by the cobegin special form. The Scheme
program generated by t he FX-87 Interpreter during the intermediate code
generation phase looks like this:

(code- gen cobegin) =
(let ((chi (gensym "chi"))

(ch2 (gensym "ch2")))
'(let ((,chi (fx-channel))

(, ch2 (fx- channel)))
(fx- process- run- function

(lambda ()
((fx- to ,chi) , (code- gen (cobegin- left cobegin)))))

(fx- process- run- function
(lambda ()

((fx- to ,ch2) , (code- gen (c obegin- right c obegin)))))
(cons (fx- from ,chi) (fx- from ,ch2))))

Note that channels are used to implement the semantics of cobegin re
turn value. T he fx- process- run- function uses the Symbolics funct ion
process- run- function to launch processes; this function performs a fork
to evaluate its argument concurrently. No join operation is possible.

17

6 Benefits of Communication Effects

We saw that channels are powerful enough to express many other paral
lel paradigms; we showed above how other typical paradigms can easily be
interpreted within the framework of channels. Communication effects are
useful in many other different ways:

• Communication effects allow explicit parallelism to be expressed by the
programmer in a typed language that permits higher-order functions
and mutations while preserving the possibility of implicit parallelism
detection by the compiler. More specifically, if two expressions only
interfere via communication effects, they can be implicitly scheduled in
parallel if they operate on channels located in different regions. More
over, by using regions inside of communication effects, this implicit
parallelism can be detected at a finer grain than would have been pos
sible with less sophisticated frameworks.

• By only allowing processes to communicate via channels (i .e., not via
shared data structures), communication effects permit efficient imple
mentations of FX-87 on distributed computer architectures that don't
provide a large global shared memory. Moreover, since these restric
tions are compile-time checkable, a compiler can enforce such a policy
of use of explicit parallelism.

• By eliminating race-conditions on global data structures between pro
cesses, communication effects help the programmer write parallel pro
grams. One of the major problems in the design of parallel or con
current algorithms is the mastering of non-determinacy. Rest rictions
on communication between processes enforced at compile-time by the
FX-87 effect system limit non-determinacy to shared access to channels,
thus limiting the amount and spread of its usage. Moreover, with com
munication effect masking, subroutines that use internal parallelism
will have no communication effects in their latent effect.

• Via communication effect masking, communication effects help reason
about programs. Subroutines that use internal and masked parallelism
can be understood and manipulated as if they were sequential, thus al
lowing standard reasoning techniques to be used in these cases. In case

18

of non-determinacy induced programming errors, the programmer can
limit his attention to subroutines that exhibit communication effects.

• By appearing in the types of values, communication effects improve the
documentation of programs. For instance, by using region within chan
nel types, t he programmer can expose the intended semantics of a chan
nel (e.g., exchanging request messages if use the region is ©r equest).

• Communication effects can be used to enforce other correctness condi
tions. For instance, no top-level expression should be allowed to have
a (in rexp) and no (out rexp) effect, or vice-versa. If this condition
were not verified, then an inside process could be indefinitely waiting
for an impossible communication on the "orphan" channel.

• By sequentializing accesses to channels located in the same region
within the same process, communication effects can be used to en
force semantic constraints between communications. For instance, if a
programmer used two different channels located in the same region to
monitor the same device, the FX-81 system would correctly prohibit
these commands to be reordered.

• Communication effects are easy to implement in a language that uses
a type and effect systems. Simple modifications to the type and effect
check phases can accommodate these new type and effect constructors.
We showed that a simulation of explicit parallelism on a sequential
computer is easy to implement.

7 Related Work

Message-based concurrency systems, based on CSP [H78], have been used in
a large variety of systems ranging from transputers to VLSI [M85] . These
systems are generally limited to messages of basic types, like characters or
bytes. We allow any value (even channels and functions) to be transmitted
on channels; we gave an example of this in the second Fibonacci parallel
implementation. Moreover, these systems do not provide the rich expressive
power of an effect system.

Lucassen's thesis [187] introduces a system for explicit concurrency in
MFX, a minimal subset of FX-87, based on monitors [H74]. This approach

19

is well suited to a parallel architecture with a global shared memory. To
deal with massive parallelism, such a framework may not be realistic. We
believe that using a distributed memory model may lead to a more efficient
use of a large number of processors. In such a model, processes have only an
immediate access to local memories and communicate via messages sent on
channels.

8 Conclusion

We described a new framework to express concurrency. It uses an effect sys
tem to describe the communication behavior of expressions in a typed poly
morphic programming language. Concurrency occurs between processes con
nected by polymorphic channels on which messages are transmitted. Commu
nication behaviors are characterized by two communication effect construc
tors, out and in, depending on whether a message has been sent or received.
Data synchronization is only allowed by message-passing on shared chan
nels; communication via mutation of shared global variables is automatically
ruled out at compile-time by the effect system. Unobservable communication
effects are masked.

We used this system to express other parallel paradigms and gave ex
amples for systolic and pipelined programming. The programmer can thus
express concurrency in its own way while preserving the correctness of de
tection of implicit parallelism and optimizations by the compiler.

This new concurrency framework was added to the FX-81 programming
language and implemented on Symbolics Lisp Machine, by extending the FX-
87Interpreter with a few definitions for the typechecking phase and providing
a simple run-time support for parallel execution.

References

(F86) Francez, N. Fairness. Springer Verlag, 1986.

(GJLS87) Gifford, D. K., Jouvelot, P. , Lucassen, J. M., and Sheldon, M. A.
The FX-81 Reference Manual. MIT / LCS/ TR-407, 1987.

20

[H7 4) Hoare, C. A. R. Monitors: An Operating System Structuring Con
cept. Communications of the A CM 10, 17 (1974).

[H78] Hoare, C. A. R. Communicating Sequential Processes. Communica
tions of the ACM 8, 21 (1978).

[JG88) Jouvelot, P. and Gifford, D. K. The FX-81 Interpreter. In Pro
ceedings of the 2nd IEEE International Conference on Computer Lan
guages. IEEE, New York, 1988, pp. 65-72.

[L87] Lucassen, J. M. Types and Effects: Towards the Integration of Func
tional and Imperative Programming. PhD Dissertation, MIT / LCS/ TR-
408, 1987.

[LG88) Lucassen, J. M., and Gifford, D. K. Polymorphic Effect Systems.
In Proceedings of the 15th Annual A CM Conference on Principles of
Programming Languages. ACM, New York, 1988, pp. 47-57.

[M79] McCracken, N. J. An Investigation of a Programming Language with
a Polymorphic Type Structure. PhD Dissertation, Syracuse University,
1979.

[M85) Milne, G. J. CIRCAL and the Representation of Communication,
Concurrency and T ime. ACM Trans. on Prog. Lang. and Syst. 2, 7
(1985).

[MC80) Mead, C., and Conway, L, Introduction to VLSI Design, Addison
Wesley, 1980.

[R86) Rees, J. A., and Clinger, W. Eds. The Revise<f Report on the Algo
rithmic Language Scheme. MIT/ AI Memo 848a, 1986.

[S78] Steele, G. L. , and Sussman, G. J. The Art of the Interpreter or, The
Modularity Complex (Parts Zero, One and Two) . MIT/AI Lab Memo
453, 1978.

[S84] Steele, G. L. CommonLISP. Digital Press, 1984.

21

