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Abstract 

We present a method for generating random numbers from natural noise 
sources that is able to produce random numbers to any desired level of perfec
tion. The method works by transducing a physical noise source to generate 
a stream of biased natural bits, and then applying an unbiasing algorithm. 
The Wiener-Kinchine relation is used to derive the autocorrelation present 
in the stream of biased bits and to define safe sampling rates. Experimental 
results from an implementation of our method support our analysis. One 
consequence of our analysis is that a broad class of natural random num
ber generators, including ours, can not generate absolutely perfect random 
numbers. 

Categories and Subject Descriptions: G.3 [Mathematics of Computing]
Probability and Statistics: Random Number Generation 

General Terms: Design, Experimentation, Theory 

Additional Key Words and Phrases: natural random number, perfect random 
number, pseudo-random number 



1 Natural Random Bits 

Random numbers are useful for a wide variety of computer applications, such 
as cryptographic keys and simulation. The common intuition of a random 
number is that it is impossible to predict its value, even with complete knowl
edge of all values that have been previously produced by its source. We will 
slightly refine this intuitive notion with a few definitions, and then we will 
discuss how one can generate random numbers. 

We define a random number to be a discrete value that is a single trial of 
a random process. A random process is a series of trials, with each trial using 
identical process parameters. A process' parameters completely characterize 
the possible outcomes of a trial, the respective probabilities of the possible 
outcomes, and how trials depend on one another. For example, the series 
of head-tail values that results from flipping a fair coin is a random process. 
However, if an unfair coin is used for some flips then the series is not a 
random process because a process parameter ( the probability of heads) is 
not identical for all of the trials. The parameters of a given random process 
may or may not be known, but they can be estimated by observing the 
process for a number of trials. 

We will call a process random if and only if its parameters do not com
pletely determine the values of its trials. A related approach can be found in 
Kolmogorov Complexity [Kol65] which measures the randomness of a string 
by its shortest computational description. 

In order to simplify our presentation we will focus on binary random 
processes. We can do this without any loss of generality because integer 
valued random numbers can be easily and efficiently generated from random 
bits [Gill72]. 

We classify random bits into three categories based on their generating 
processes: 

• Perfect random bits are generated by an unbiased Bernoulli process 
where trials are completely independent [Drake67]. Perfect random bits 
represent a theoretical ideal that we would like a random bit generator 
to achieve in practice. Consumers of random bits - algorithms and 
systems - almost always assume a ready supply of perfect random bits. 

• Pseudo-random bits are generated by an algorithmic process that 1s 
completely determined by its seed. Thus an algorithmic process 1s 
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not random, and pseudo-random bits are not random. An observer 
with unlimited computational resources can compute the "secret" seed 
of a pseudo-random bit generator and thus know all of its past and 
future values. However, an observer with bounded computational re
sources may not be able to tell the difference between pseudo-random 
bits and perfectly random bits. For example, the cryptographically 
strong pseudo-random number generator described by Blum and Mi
cali [Blum84a] will appear to produce perfect random bits to an ob
server that is limited to a probabilistic polynomial-time observation 
algorithm, if the discrete logarithm problem can not be solved in prob
abilistic polynomial-time. 

• Natural random bits are generated by transducing a natural random 
process such as shot noise, radioactive decay, or coin flips. Natural 
random bits are required by pseudo-random bit generators to serve as 
seeds. Thus a source of natural random bits is an essential part of any 
random bit generator. 

We describe a technique for generating natural random bits where the 
generated bits approach perfect random bits with an increase in the time 
between observations. In the remainder of this paper we review previous work 
(Section 2), present our method for random number generation (Section 3), 
discuss experimental results from an implementation of our method (Section 
4), and conclude with some implications of our analysis for a broad class of 
natural random number generators (Section 5). 

2 Previous work 

The difference between our work and previous work lies in the way that we 
sample and unbias bits from a natural noise source. As we will explain further 
in Section 3, existing random number generators use unbiasing algorithms 
that increase the dependence between output bits. The following is a brief 
survey of some of these previous random number generation techniques: 

• RAND periodically samples a counter that is incremented by a free run
ning oscillator [Rand55]. The original version of the machine had to be 
modified before it produced statistically acceptable random numbers. 
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• ERNIE [Thomson59] periodically samples a counter that is incremented 
by random pulses produced by neon discharge tubes. ERNIE was used 
to produce Britan's Premium Savings Bond prize numbers. 

• The TX-2 computer included a natural random number generator that 
is based on radioactive decay. This random number generator was 
subjected to extensive empirical tests [Kleinrock60]. 

• Manelis [Manelis61] generates a random telegraph wave by triggering 
a flip-flop with the output of a scintillation detector. The output is 
designed to be used in conjunction with an analog computer. 

• Vincent [Vincent70] periodically samples a one-bit counter that is in
cremented random sequence of bits derived from a natural noise source. 
Vincent [Vincent71] notes that the "dead time" effects of a white noise 
quantizer can introduce undesirable correlation. A single card version 
of this random number generator was produced [Maddocks72]. 

• Borbas et al [Borbas76] periodically sample a free running counter. 
The output of the counter is used to produce a random digit with a 
prespecified maximum value. 

• Castanie [Castanie78] periodically samples a one-bit counter that is in
cremented with the XOR of a sequence of random bits and a sequence 
of alternating one and zero bits. The XOR combining step is an un
biasing process; because the fixed pattern is unbiased the result of the 
XOR will also be unbiased. Bias is also reduced by regulating the noise 
quantizer threshold level with feedback. 

• Simmons [Simmons80] periodically samples a one-bit counter that is 
incremented with pulses produced by a physical noise source. Sim
mons also describes how unbiased numbers can be processed to have a 
specified bias. 

• The AT&T T7001 [ATT85] periodically samples a one-bit counter that 
is incremented with pulses produced by a physical noise source. The 
bits are further processed by XORing output bits with previous bits. 
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Figure 1: Random Number Generator Block Diagram 

3 Natural Random Bit Generation 

Our natural random bit generator (Figure 1) operates into two stages: 

• Stage 1 transduces a physical noise source to generate a stream of 
biased natural bits. The sampling time between observations is chosen 
such that the observed bits are practically independent (see below). 
Thus the output of Stage 1 is a binary random process with practically 
independent trails and unknown bias. We assume that the parameters 
of the natural random process we are observing do not change, and 
that the threshold level of our transducer drifts very slowly. 

Stage 1 could use multiple physical noise sources. Vazirani [Vazirani87] 
shows how to combine the output of two independent imperfect random 
sources to create a random sequence that has better properties than 
either of the two input sources. 

• Stage 2 unbiases the stream of biased and practically independent bits 
from Stage 1. The first and simplest unbiasing algorithm is due to von 
Neumann [vonNeumann51]. This algorithm consumes two input bits 
at a time, and produces output values according to the function 

00 ⇒ </> 
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01 =} 0 

10 =} 1 

11 =} </> 

where </> represents no output value. If we assume that the input bits 
are drawn from a random process (the bias of the input bits is fixed) 
and the input bits are from independent trials, then it is easy to see 
that the output of Stage 2 will be perfect random bits. 

The maximum efficiency of von Neumann's algorithm is 4 input bits to 
1 output bit on average. Elias [Elias72] and Gill [Gill72] present more 
efficient unbiasing algorithms and show that the efficiency of unbiasing 
can approach the entropy of the bits to be unbiased. 

Blum [Blum84a] presents an algorithm that will unbias bits from a 
Markov process with no hidden states. Unlike other unbiasing algo
rithms, Blum's algorithm does not assume independent trails. However, 
it does make assumptions about the structure of the random process it 
is observing. 

The primary way that our two stage approach differers from previous 
work is that we clearly separate the production of natural random bits (Stage 
1) from unbiasing (Stage 2). Existing random number generators have not 
clearly separated these two processes, and thus perform unbiasing in a man
ner that always increases output bit dependence: 

• The most popular unbiasing algorithm is based on incrementing a 
counter with with a natural noise source. In such a scheme output 
bit n is the mod 2 sum of input samples intervals O through n. We 
assume here without loss of generality that the input sampling rate 
is greater than the Nyquist rate of the noise source. This unbiasing 
algorithm is entropy preserving because the input string can be com
puted from the output string. Thus bits in the output string must be 
more dependent than bits in the input string because the entropies of 
the two strings are equal and the output string is less biased than the 
input string. 

• The technique due to Castanie [Castanie78] unbiases a string of input 
bits by XORing it with a string that consists of alternating O and 1 
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bits. This technique converts all of the bias in the input bit string into 
dependence in the output string, as the output string is unbiased. 

The unbiasing technique we use does not necessarily increase the depen
dence of output bits. However, it does depend on having practically inde
pendent input bits. We will now determine how the rate at which Stage 1 
samples its physical noise source will influence the independence of its out
put bits. At an intuitive level we must wait long enough between samples to 
give our our noise source time to change, and thus the time we must wait is 
directly related to how fast the noise source changes value. We will make this 
reasoning about sampling rate bounds precise by relating the power spectral 
density of a natural noise source to its autocorrelation. 

Let X be the random process at the output of Stage 1 's transducer, 
assuming a perfect transducer. The power spectral density of X is defined 
by 

S ( ) 
_ 

1
. E[IFxT(jw)2I] 

x w - 1m 2T 
T-+oo 

(1) 

where FxT(jw) is the fourier transform of X over samples from the period 
-T to T. From an intuitive perspective, the spectral density Sx(w) is the 
average power of X within a bandwidth of one hertz centered at w in units 
of volts2 per hertz. 

Sx(w) can be estimated by computing Equation 1 over an observation pe
riod of a few seconds with a spectrum analyzer. Sx(w) can also be estimated 
from the power spectral density information provided by the manufacturer 
of the natural noise source and transducer in use. The estimated spectrum 
must be reduced by the noise introduced by the transducer in order for the 
spectral estimate to correspond to the natural noise source. 

The autocorrelation function Rx ( r) of X is defined to be 

Rx(r) = E[X(t)X(t + r)] (2) 

If the expected value of X is zero, then Rx ( r) must be zero for trials taken 
r seconds apart to be completely independent. 

The autocorrelation function Rx ( r) can be shown to be the inverse Fourier 
transform of Sx(w): 

Rx(r) = p-1 {Sx(w)} (3) 

which is known as the Wiener-Kinchine relation. 
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Figure 2: Sx(w) and Rx(r). The Sx(w) x-axis is in units of /3 and the y-axis 
is in units of A/ /3. The Rx(r) x-axis is in units of /3 and the y-axis is in units 
of A. 

If we assume that our random process X has a power spectral density 
function of 

2A/3 
Sx(w) = 2 132 

w + 
then its autocorrelation function will be 

A> 0,/3 > 0 (4) 

(5) 

The plot of S x ( w) and Rx ( r) in Figure 2 shows that Rx ( r) decreases 
exponentially with time and only reaches O in the limit. Equation 5 provides 
a way of bounding the autocorrelation at the output of our transducer after 
timer given a noise source of bandwidth /3. 
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Figure 3: Power spectrum at the output of the CA3140 amplifier. Each 
vertical division is lOdb of power, and each horizontal division is 1 MHz. DC 
is in the center of the figure. 

4 Experimental Results 

Stage 1 of our natural random number generator consists of a KN1201 noise 
diode and supporting circuitry [KSW], followed by a CA3140 amplifier, and 
an AMD686 comparator. The comparator samples the output of the CA3140 
every lOOns to see if it is above zero and latches the resulting value. 

The random number generator was included on a cryptography board for 
the Xerox DO computer, and care was taken to provide the random number 
generator with an isolated power supply. Each section of the random number 
generator was further decoupled with RC components in order to reduce 
unwanted correlation. 

Figure 3 shows the power spectral density of our natural noise source as 
measured by a spectrum analyzer. Figure 4 shows autocorrelation of the 
natural random bit stream at the output of the comparator. The estimates 
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Figure 4: Autocorrelation of the comparator output bit stream that was 
computed from a sample of 1048576 bits observed 100 nanoseconds apart 
over 104 milliseconds. X-axis units are 10-7 seconds. 
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of f3 derived from Figures 3 and 4 are about a factor of five different. Figure 
3 interpreted with respect to Equation 4 suggests that /3 is about 500 Khz. 
Figure 4 interpreted with respect to Equation 5 suggests that /3 is 2.3 Mhz. 
We are unsure why these two figures are different, but one possibility is 
that Figure 3 is not an accurate reflection of the power spectral density as 
seen by the AMD686 comparator. This could result if the measurement was 
performed at an improper impedance. 

Stage 2 is implemented by software that performs the von Neumann un
biasing algorithm. We ensured that the time between observations of the 
Stage 1 output value were always greater than 25 microseconds. Thus by 
Equation 5 and the observed f3 of 500 KHz (Figure 3) we expect that the 
autocorrelation of the bit stream that is input to Stage 2 is less than e-12 . 

In retrospect we would lower the sampling rate in order to further reduce 
autocorrelation. 

We subjected a Stage 2 output sequence of 262144 bits to frequency tests 
on individual bits, pairs of bits, and bytes. The Chi-Square statistics were 
0.41 for the bias test (52% confidence), 5.59 for the pair test (13% confidence), 
and 244.25 for the byte test (46% confidence). We also computed the lengths 
of sequences of zeros between ones from O to 24. The Chi-Square statistic 
for the gap test was 19.3 (72% confidence). These statistics are not good 
enough to accept the null hypothesis that the Stage 2 output sequence is in 
fact random. Unfortunately we no longer have access to the random number 
generator to conduct further tests. 

5 In search of perfect random bits 

One consequence of Equation 5 is that our random number generation tech
nique can not generate perfect random bits. We can approach perfection by 
waiting longer and longer between Stage 1 samples, but the autocorrelation 
in our samples will never reach zero. Thus our output bit stream will al
ways contain some dependence, although we may not be able to detect it. 
This dependence is caused by the finite bandwidth of our transducer and the 
natural noise source we are observing. 

It appears that in order to produce absolutely perfect random bits an 
algorithm will have to be developed that can unbias and uncorrelate bits 
from a random process of unknown structure. The existence of such an 
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algorithm is an interesting open question. 
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