
LABORATORY FOR It· ·1 MASSACHUSETTS
INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

MIT/LCS/fM-371

NATURAL RANDOM
NUMBERS

David K. Gifford

September 1988

545 TECHNOLOGY SQUARE, CAMBRIDGE. MASSACHUSETTS 02139

MIT /LCS/TM-371

Natural Random Numbers

David K. Gifford

August 1988

© 1988 Massachusetts Institute of Technology

Abstract

We present a method for generating random numbers from natural noise
sources that is able to produce random numbers to any desired level of perfec
tion. The method works by transducing a physical noise source to generate
a stream of biased natural bits, and then applying an unbiasing algorithm.
The Wiener-Kinchine relation is used to derive the autocorrelation present
in the stream of biased bits and to define safe sampling rates. Experimental
results from an implementation of our method support our analysis. One
consequence of our analysis is that a broad class of natural random num
ber generators, including ours, can not generate absolutely perfect random
numbers.

Categories and Subject Descriptions: G.3 [Mathematics of Computing]
Probability and Statistics: Random Number Generation

General Terms: Design, Experimentation, Theory

Additional Key Words and Phrases: natural random number, perfect random
number, pseudo-random number

1 Natural Random Bits

Random numbers are useful for a wide variety of computer applications, such
as cryptographic keys and simulation. The common intuition of a random
number is that it is impossible to predict its value, even with complete knowl
edge of all values that have been previously produced by its source. We will
slightly refine this intuitive notion with a few definitions, and then we will
discuss how one can generate random numbers.

We define a random number to be a discrete value that is a single trial of
a random process. A random process is a series of trials, with each trial using
identical process parameters. A process' parameters completely characterize
the possible outcomes of a trial, the respective probabilities of the possible
outcomes, and how trials depend on one another. For example, the series
of head-tail values that results from flipping a fair coin is a random process.
However, if an unfair coin is used for some flips then the series is not a
random process because a process parameter (the probability of heads) is
not identical for all of the trials. The parameters of a given random process
may or may not be known, but they can be estimated by observing the
process for a number of trials.

We will call a process random if and only if its parameters do not com
pletely determine the values of its trials. A related approach can be found in
Kolmogorov Complexity [Kol65] which measures the randomness of a string
by its shortest computational description.

In order to simplify our presentation we will focus on binary random
processes. We can do this without any loss of generality because integer
valued random numbers can be easily and efficiently generated from random
bits [Gill72].

We classify random bits into three categories based on their generating
processes:

• Perfect random bits are generated by an unbiased Bernoulli process
where trials are completely independent [Drake67]. Perfect random bits
represent a theoretical ideal that we would like a random bit generator
to achieve in practice. Consumers of random bits - algorithms and
systems - almost always assume a ready supply of perfect random bits.

• Pseudo-random bits are generated by an algorithmic process that 1s
completely determined by its seed. Thus an algorithmic process 1s

1

not random, and pseudo-random bits are not random. An observer
with unlimited computational resources can compute the "secret" seed
of a pseudo-random bit generator and thus know all of its past and
future values. However, an observer with bounded computational re
sources may not be able to tell the difference between pseudo-random
bits and perfectly random bits. For example, the cryptographically
strong pseudo-random number generator described by Blum and Mi
cali [Blum84a] will appear to produce perfect random bits to an ob
server that is limited to a probabilistic polynomial-time observation
algorithm, if the discrete logarithm problem can not be solved in prob
abilistic polynomial-time.

• Natural random bits are generated by transducing a natural random
process such as shot noise, radioactive decay, or coin flips. Natural
random bits are required by pseudo-random bit generators to serve as
seeds. Thus a source of natural random bits is an essential part of any
random bit generator.

We describe a technique for generating natural random bits where the
generated bits approach perfect random bits with an increase in the time
between observations. In the remainder of this paper we review previous work
(Section 2), present our method for random number generation (Section 3),
discuss experimental results from an implementation of our method (Section
4), and conclude with some implications of our analysis for a broad class of
natural random number generators (Section 5).

2 Previous work

The difference between our work and previous work lies in the way that we
sample and unbias bits from a natural noise source. As we will explain further
in Section 3, existing random number generators use unbiasing algorithms
that increase the dependence between output bits. The following is a brief
survey of some of these previous random number generation techniques:

• RAND periodically samples a counter that is incremented by a free run
ning oscillator [Rand55]. The original version of the machine had to be
modified before it produced statistically acceptable random numbers.

2

• ERNIE [Thomson59] periodically samples a counter that is incremented
by random pulses produced by neon discharge tubes. ERNIE was used
to produce Britan's Premium Savings Bond prize numbers.

• The TX-2 computer included a natural random number generator that
is based on radioactive decay. This random number generator was
subjected to extensive empirical tests [Kleinrock60].

• Manelis [Manelis61] generates a random telegraph wave by triggering
a flip-flop with the output of a scintillation detector. The output is
designed to be used in conjunction with an analog computer.

• Vincent [Vincent70] periodically samples a one-bit counter that is in
cremented random sequence of bits derived from a natural noise source.
Vincent [Vincent71] notes that the "dead time" effects of a white noise
quantizer can introduce undesirable correlation. A single card version
of this random number generator was produced [Maddocks72].

• Borbas et al [Borbas76] periodically sample a free running counter.
The output of the counter is used to produce a random digit with a
prespecified maximum value.

• Castanie [Castanie78] periodically samples a one-bit counter that is in
cremented with the XOR of a sequence of random bits and a sequence
of alternating one and zero bits. The XOR combining step is an un
biasing process; because the fixed pattern is unbiased the result of the
XOR will also be unbiased. Bias is also reduced by regulating the noise
quantizer threshold level with feedback.

• Simmons [Simmons80] periodically samples a one-bit counter that is
incremented with pulses produced by a physical noise source. Sim
mons also describes how unbiased numbers can be processed to have a
specified bias.

• The AT&T T7001 [ATT85] periodically samples a one-bit counter that
is incremented with pulses produced by a physical noise source. The
bits are further processed by XORing output bits with previous bits.

3

,----=-i
I Natural -
I

Noise Source

I
L

Stage 1

Transducer l
I

_J

Unbiasing

Algorithm -Output

Stage 2

Figure 1: Random Number Generator Block Diagram

3 Natural Random Bit Generation

Our natural random bit generator (Figure 1) operates into two stages:

• Stage 1 transduces a physical noise source to generate a stream of
biased natural bits. The sampling time between observations is chosen
such that the observed bits are practically independent (see below).
Thus the output of Stage 1 is a binary random process with practically
independent trails and unknown bias. We assume that the parameters
of the natural random process we are observing do not change, and
that the threshold level of our transducer drifts very slowly.

Stage 1 could use multiple physical noise sources. Vazirani [Vazirani87]
shows how to combine the output of two independent imperfect random
sources to create a random sequence that has better properties than
either of the two input sources.

• Stage 2 unbiases the stream of biased and practically independent bits
from Stage 1. The first and simplest unbiasing algorithm is due to von
Neumann [vonNeumann51]. This algorithm consumes two input bits
at a time, and produces output values according to the function

00 ⇒ </>

4

01 =} 0

10 =} 1

11 =} </>

where </> represents no output value. If we assume that the input bits
are drawn from a random process (the bias of the input bits is fixed)
and the input bits are from independent trials, then it is easy to see
that the output of Stage 2 will be perfect random bits.

The maximum efficiency of von Neumann's algorithm is 4 input bits to
1 output bit on average. Elias [Elias72] and Gill [Gill72] present more
efficient unbiasing algorithms and show that the efficiency of unbiasing
can approach the entropy of the bits to be unbiased.

Blum [Blum84a] presents an algorithm that will unbias bits from a
Markov process with no hidden states. Unlike other unbiasing algo
rithms, Blum's algorithm does not assume independent trails. However,
it does make assumptions about the structure of the random process it
is observing.

The primary way that our two stage approach differers from previous
work is that we clearly separate the production of natural random bits (Stage
1) from unbiasing (Stage 2). Existing random number generators have not
clearly separated these two processes, and thus perform unbiasing in a man
ner that always increases output bit dependence:

• The most popular unbiasing algorithm is based on incrementing a
counter with with a natural noise source. In such a scheme output
bit n is the mod 2 sum of input samples intervals O through n. We
assume here without loss of generality that the input sampling rate
is greater than the Nyquist rate of the noise source. This unbiasing
algorithm is entropy preserving because the input string can be com
puted from the output string. Thus bits in the output string must be
more dependent than bits in the input string because the entropies of
the two strings are equal and the output string is less biased than the
input string.

• The technique due to Castanie [Castanie78] unbiases a string of input
bits by XORing it with a string that consists of alternating O and 1

5

bits. This technique converts all of the bias in the input bit string into
dependence in the output string, as the output string is unbiased.

The unbiasing technique we use does not necessarily increase the depen
dence of output bits. However, it does depend on having practically inde
pendent input bits. We will now determine how the rate at which Stage 1
samples its physical noise source will influence the independence of its out
put bits. At an intuitive level we must wait long enough between samples to
give our our noise source time to change, and thus the time we must wait is
directly related to how fast the noise source changes value. We will make this
reasoning about sampling rate bounds precise by relating the power spectral
density of a natural noise source to its autocorrelation.

Let X be the random process at the output of Stage 1 's transducer,
assuming a perfect transducer. The power spectral density of X is defined
by

S ()
_

1
. E[IFxT(jw)2I]

x w - 1m 2T
T-+oo

(1)

where FxT(jw) is the fourier transform of X over samples from the period
-T to T. From an intuitive perspective, the spectral density Sx(w) is the
average power of X within a bandwidth of one hertz centered at w in units
of volts2 per hertz.

Sx(w) can be estimated by computing Equation 1 over an observation pe
riod of a few seconds with a spectrum analyzer. Sx(w) can also be estimated
from the power spectral density information provided by the manufacturer
of the natural noise source and transducer in use. The estimated spectrum
must be reduced by the noise introduced by the transducer in order for the
spectral estimate to correspond to the natural noise source.

The autocorrelation function Rx (r) of X is defined to be

Rx(r) = E[X(t)X(t + r)] (2)

If the expected value of X is zero, then Rx (r) must be zero for trials taken
r seconds apart to be completely independent.

The autocorrelation function Rx (r) can be shown to be the inverse Fourier
transform of Sx(w):

Rx(r) = p-1 {Sx(w)} (3)

which is known as the Wiener-Kinchine relation.

6

3
Sx(omega)

2.5

2

1.5

0.5

0 ';-~---"':---':-____JL__._____JL_-'-_J
-4 -3 -2 -1 0 2 3 4

2

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

Rx(tau)

-3 -2 -1 0

Figure 2: Sx(w) and Rx(r). The Sx(w) x-axis is in units of /3 and the y-axis
is in units of A/ /3. The Rx(r) x-axis is in units of /3 and the y-axis is in units
of A.

If we assume that our random process X has a power spectral density
function of

2A/3
Sx(w) = 2 132

w +
then its autocorrelation function will be

A> 0,/3 > 0 (4)

(5)

The plot of S x (w) and Rx (r) in Figure 2 shows that Rx (r) decreases
exponentially with time and only reaches O in the limit. Equation 5 provides
a way of bounding the autocorrelation at the output of our transducer after
timer given a noise source of bandwidth /3.

7

Figure 3: Power spectrum at the output of the CA3140 amplifier. Each
vertical division is lOdb of power, and each horizontal division is 1 MHz. DC
is in the center of the figure.

4 Experimental Results

Stage 1 of our natural random number generator consists of a KN1201 noise
diode and supporting circuitry [KSW], followed by a CA3140 amplifier, and
an AMD686 comparator. The comparator samples the output of the CA3140
every lOOns to see if it is above zero and latches the resulting value.

The random number generator was included on a cryptography board for
the Xerox DO computer, and care was taken to provide the random number
generator with an isolated power supply. Each section of the random number
generator was further decoupled with RC components in order to reduce
unwanted correlation.

Figure 3 shows the power spectral density of our natural noise source as
measured by a spectrum analyzer. Figure 4 shows autocorrelation of the
natural random bit stream at the output of the comparator. The estimates

8

I I I I

'
0 -

I I I I

-1 0 20 40 60 . 80 _ 10_0_ _12,() . 140

Figure 4: Autocorrelation of the comparator output bit stream that was
computed from a sample of 1048576 bits observed 100 nanoseconds apart
over 104 milliseconds. X-axis units are 10-7 seconds.

9

of f3 derived from Figures 3 and 4 are about a factor of five different. Figure
3 interpreted with respect to Equation 4 suggests that /3 is about 500 Khz.
Figure 4 interpreted with respect to Equation 5 suggests that /3 is 2.3 Mhz.
We are unsure why these two figures are different, but one possibility is
that Figure 3 is not an accurate reflection of the power spectral density as
seen by the AMD686 comparator. This could result if the measurement was
performed at an improper impedance.

Stage 2 is implemented by software that performs the von Neumann un
biasing algorithm. We ensured that the time between observations of the
Stage 1 output value were always greater than 25 microseconds. Thus by
Equation 5 and the observed f3 of 500 KHz (Figure 3) we expect that the
autocorrelation of the bit stream that is input to Stage 2 is less than e-12 .

In retrospect we would lower the sampling rate in order to further reduce
autocorrelation.

We subjected a Stage 2 output sequence of 262144 bits to frequency tests
on individual bits, pairs of bits, and bytes. The Chi-Square statistics were
0.41 for the bias test (52% confidence), 5.59 for the pair test (13% confidence),
and 244.25 for the byte test (46% confidence). We also computed the lengths
of sequences of zeros between ones from O to 24. The Chi-Square statistic
for the gap test was 19.3 (72% confidence). These statistics are not good
enough to accept the null hypothesis that the Stage 2 output sequence is in
fact random. Unfortunately we no longer have access to the random number
generator to conduct further tests.

5 In search of perfect random bits

One consequence of Equation 5 is that our random number generation tech
nique can not generate perfect random bits. We can approach perfection by
waiting longer and longer between Stage 1 samples, but the autocorrelation
in our samples will never reach zero. Thus our output bit stream will al
ways contain some dependence, although we may not be able to detect it.
This dependence is caused by the finite bandwidth of our transducer and the
natural noise source we are observing.

It appears that in order to produce absolutely perfect random bits an
algorithm will have to be developed that can unbias and uncorrelate bits
from a random process of unknown structure. The existence of such an

10

algorithm is an interesting open question.

Acknowledgments: I would like to thank Manuel Blum, Peter Elias, John Gill,
Shafi Goldwasser, Silvio Micali, Ron Rivest, Larry Stewart, Gerry Sussman,
and Chuck Thacker for useful discussions. A portion of the work described
here was performed at the Xerox Palo Alto Research Center.

11

References

[ATT85] AT&T, "Data Sheet, T7001 Random Number Generator", Berkeley
Rights, New Jersey, May 1985.

[Blum84a] Blum, M., "Independent Unbiased Coin Flips from a Correlated
Biased Source: a Finite State Markov Chain", Proc. 25th ACM Founda
tions of Computer Science Conference, October 1984, pp. 425-433.

[Blum84b] Blum, M., and Micali, S. "How to Generate Cryptographically
Strong Sequences of Pseudo-Random Bits", SIAM J. Computing 13, 4
(November 1984), pp. 850-864.

[Castanie78] Castanie, F., "Generation of Random Bits with Accurate and
Reproducible Statistical Properties", Proceedings of the IEEE, Vol. 66,
No. 7, July 1978, pp. 865-870.

[Drake67] Drake, A., Fundamentals of Applied Probability Theory, McGraw
Hill, New York, 1967.

[Elias72] Elias, P., "The Efficient Construction of an Unbiased Random
Source", Annals of Math. Statistics 1972, Vol. 43, No. 3, pp. 865-870.

[Gill72] Gill, J.T., "Probabilistic Turing Machines and Complexity of Com
putation", Ph.D. Thesis, University of California, Berkeley, 1972.

[Kleinrock60] Kleinrock, L., "A Program for Testing Sequences of Random
Numbers", Report 51G-0018, MIT Lincoln Laboratory, October 25, 1960.

[Kol65] Kolmogorov, A., "Three Approaches to the Concept of 'The Amount
of Information"', Prob. Inf. Transmission 1, 1 (1965).

[KSW] "Noise Diodes: KN1201, KN1201A, KN1301, KN1401", KSW Elec
tronics Corporation, Burlington, MA.

[Maddocks72] Maddocks, R.S., et al, "A compact and accurate generator for
truly random binary digits", Journal of Physics E: Scientific Instruments,
Vol. 5, pp. 542-544.

[Manelis61] Manelis, J.B., "Generating random noise", Electronics, Septem
ber 8, 1961, pp. 66-69.

12

[Murray70] Murray, H.F., "A General Approach for Generating Natural
Random Variables", IEEE Transactions on Computers, December, 1970,
pp. 1210-1213.

[Rand55] Rand Corporation, "A Million Random Digits", Glencoe, Illinois:
The Free Press, 1955.

[Simmons80] Simmons, R.E., "Random Number Generator", U.S. Patent
No. 4,183,088; January 8, 1980.

[Thomson59] Thomson, W.E., "ERNIE - A Mathematical and Statistical
Analysis", Journal of the Royal Statistical Society A, Vol. 133, Part 3, pp.
301-333.

[Vazirani87] Vaziranni, U.V., "Strong Communication Complexity or Gener
ating Quasi-Random Sequences from Two Communicating Semi-Random
Sources", Combinatorica Vol. 7, No. 4, pp. 375-392.

[Vincent70] Vincent, C.H., "The generation of truly random binary num
bers", Journal of Physics E: Scientific Instruments, Vol. 3, pp. 594-598.

[Vincent71] Vincent, C.H., "Precautions for accuracy in the generation of
truly random binary numbers", Journal of Physics E: Scientific Instru
ments, Vol. 4, pp. 825-828.

[vonNeumann51] von Neumann, J., "Various Techniques Used in Connection
With Random Digits", Monte Carlo Applied Math Series No. 12, 1951, pp.
36-38.

13

