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Section 1: Introduction

1. Introduction

The proliferation of distributed computer systems gives increasing importance
to correctness proofs of distributed algorithms. Techniques for verifying sequential
algorithms have been extended to handle concurrent and distributed ones—for ex-
ample, by Owicki and Gries [0G], Manna and Pnueli [MP], Lamport and Schneider
[LSc], and Alpern and Schneider [AS]. Practical algorithms are usually optimized
for efficiency rather than simplicity, and proving them correct may be feasible only if
the proofs can be structured. For a sequential algorithm, the proof is structured by
developing a hierarchy of increasingly detailed versions of the algorithm and prov-
ing that each correctly implements the next higher-level version. This approach
has been extended to concurrent algorithms by Lamport [L], Stark [S], Harel [H],
Kurshan [K], and Lynch and Tuttle [LT], where a single action in a higher-level
representation can represent a sequence of lower-level actions. The higher-level ver-
sions usually provide a global view of the algorithm, with progress made in large
atomic steps and a large amount of nondeterminism allowed. At the lowest level is
the original algorithm, which takes a purely local view, has more atomic steps, and
usually has more constraints on the order of events.

With its totally ordered chain of versions, this hierarchical approach usually
does not allow one to focus on a single task in the algorithm. The method described
in this paper extends the hierarchical approach to a lattice of versions. At the
bottom of the lattice is the original algorithm, which is a refinement of all other
versions. However, two versions in the lattice may be incommeasurable, neither one
being a refinement of the other.

Multiple higher-level versions of a communication protocol, each focusing on
a different function, were considered by Lam and Shankar [LSh]. They called each
higher-level version a “projection”. If the original protocol is sufficiently modular,
then it can be represented as the composition of the projections, and the correctness
of the original algorithm follows immediately from the correctness of the projections.
This approach was used by Fekete, Lynch, and Shrira [FLS] to prove the correctness
of Awerbuch’s synchronizer [A1].

Not all algorithms are modular. In practical algorithms, modularity is often
destroyed by optimizations. The correctness of a non-modular algorithm is not an
immediate consequence of the correctness of its higher-level versions. The method
presented in this paper uses the correctness of higher-level versions of an algorithm
to simplify its proof. The proofs of correctness of all the versions in the lattice
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Section 1: Introduction

(in which the original algorithm is the lowest-level version) constitute a structured
proof of the algorithm.

Any path through our lattice of representations ending at the original algo-
rithm is a totally-ordered hierarchy of versions that can be used in a conventional
hierarchical proof. Why do we need the rest of the lattice? Each version in the
lattice allows us to formulate and prove invariants about a separate task performed
by the algorithm. These invariants will appear somewhere in any assertional proof
of the original algorithm. Our method permits us to prove them at as high a level
of abstraction as possible.

The method proceeds inductively, top-down through the lattice. First, the
highest-level version is shown directly to have the original algorithm’s desired prop-
erty, which involves proving that it satisfies some invariant. Next, let A be any
algorithm in the lattice, let By,...,B; (i 2 1) be the algorithms immediately above
A in the lattice, and let @,...,Q; be their invariants. We prove that A satisfies
the same safety properties as each B;, and that a particular predicate P is invariant
for A. The invariant P has the form QA Q; A -+ - A Q; for some predicate Q). In this
way, the invariants Q); are carried down to the proof of lower-level algorithms, and
@ introduces information that cannot appear any higher in the lattice—information
about details of the algorithm that do not appear at higher levels, and relations be-
tween the B;. We provide two sets of sufficient conditions for verifying these safety
properties, one set for the case i = 1, and the other for ¢ > 1. We also provide
three techniques for verifying liveness properties; only one of them makes use of the
lattice structure.

The technique is used to prove Gallager, Humblet and Spira’s distributed min-
imum spanning tree algorithm [GHS)]. This algorithm has been of great interest for
some time. There appears in [GHS] an intuitive description of why the algorithm
should work, but no rigorous proof. There are several reasons for giving a formal
proof. First, the algorithm has important applications in distributed systems, so
its correctness is of concern. Second, the algorithm often appears as part of other
algorithms [A2 AG], and the correctness of these algorithms depends upon the cor-
rectness of the minimum spanning tree algorithm. Finally, many concepts and
techniques have been taken from the algorithm, out of context, and used in other
algorithms [A2,CT,G]. Yet the pieces of the algorithm interact in subtle ways, some
of which are not explained in the original paper. A careful proof of the entire
algorithm can indicate the dependencies between the pieces.

Our proof method helped us to find the correct invariants; it allowed us to
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Section 2: Foundations

describe the algorithm at a high level, yet precisely, and to use our intuition about
the algorithm to reason at an appropriate level of abstraction. A by-product of our
proof was a better understanding of the purpose and importance of certain parts of
the algorithm, enabling us to discover a slight optimization.

The complete proof of the correctness of this minimum spanning tree algorithm
is very long and can be found in [W]. One reason for its length is the intricacy of the
algorithm. Another reason is the duplication inherent in the approach: the code
in all the versions is repetitive, because of carry-over from a higher-level version
to its refinement, and because the original algorithm cannot be presented as a
true composition of its immediate projections; the repetition in the code leads to
repetition in the proof. The full proof also includes extremely detailed arguments—
detailed enough so we hope that, in the not too distant, future, they will be machine-
checkable. This level of detail seems necessary to catch small bugs in the program
and the proof.

Two other proofs of this algorithm have recently been developed. Stomp and
de Roever [SAR] used the notion of communication-closed layers, introduced by
Elrad and Francez [EF]. Chou and Gafni [CG] prove the correctness of a simpler,
more sequential version of the algorithm and then prove that every execution of the
original algorithm is equivalent to an execution of the more sequential version.

2. Foundations

This section contains the definitions and results that form the basis for our
lattice-structured proof method. Our method can be used with any state-based,
assertional verification technique. In this paper, we formulate it in terms of the
I/O automaton model of Lynch, Merritt, and Tuttle [LT,LM], which provides a
convenient, ready-made “language” for our use. A summary of the I/O automaton
model appears in the Appendix.

The first step is to design the lattice, using one’s intuition about the algorithm.
Each element in the lattice is a version of the algorithm, described as an I/O au-
tomaton, and has associated with it a predicate. The bottom element of the lattice
is the original algorithm. Next, we must show that all the predicates in the lattice
are invariants. The invariant for the top element of the lattice must be shown di-
rectly. Assuming that @,,...,Q; are invariants for the versions By,. .., B; directly
above A in the lattice, we verify that predicate P = QA Q@ A---AQ); is invariant for
A, by demonstrating mappings that preserve @ and take executions of A to execu-
tions of By,...,B; (thus preserve @, A--- A @;). (Finding these mappings requires

4



Section 2: Foundations

insight about the algorithm.) Finally, the lattice is used to show that the original
algorithm solves the problem of interest by showing directly that the top element
in the lattice solves the problem, and showing a path A,,..., 4; in the lattice from
top to bottom such that each version in the path satisfies its predecessor. To show
that A; satisfies 4;_;, we show that for every fair execution of 4;, there is a fair
execution of A;_; with the same sequence of external actions. The mapping used
to verify the invariants takes executions to executions; by adding some additional
constraints on the mapping, we can prove, using the invariants, that it takes fair
executions to fair executions with the same sequence of external actions, i.e., that
liveness properties are preserved.

Section 2.1 deals with safety properties. First, suppose there are two automata,
A and B, where B is offered as a “more abstract” version of A. We define a mapping
from executions of 4 to sequences of alternating states and actions of B; if the
mapping obeys certain conditions, we say A simulates B. Lemma 1 proves that this
definition preserves important safety properties, namely that executions of A map to
executions of B, and that a certain predicate is an invariant for A. Next we suppose
that there are several higher-level versions, A;, A,, etc., of one more concrete
automaton A. There are situations in which it is difficult to show independently
that A simulates 4, and A simulates 4;, but invariants about states of A, can help
show a mapping from A4 to A4,, and invariants about states of A; can help show
a mapping from A to A;. To capture this, we define a notion of simultaneously
simulates, which Lemma 2 proves preserves the same safety properties as in Lemma
1. Of course, to be able to apply Lemma 2, we must know what the invariants of
A; and A, are, which may require having already shown that A; and A; simulate
other automata.

Section 2.2 considers liveness properties. Given automata A and B, and a
locally-controlled action ¢ of B, a definition of A being equitable for ¢ is given;
Lemmas 3 and 4 show that this definition implies that in the execution of B obtained
from a fair execution of A by either of the simulation mappings, once ¢ becomes
enabled, it either occurs or becomes disabled. We are on our way to verifying the
fairness of the induced execution of B.

Three methods of showing that A is equitable for locally-controlled action ¢
of B are described. The first method is to show that there is an action p of A
that is enabled whenever ¢ is, and whose occurrence implies p’s occurrence. (Cf.
Lemma 3.)

The second method uses a definition of A being progressive for . The intu-
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ition behind the definition is that there is a set of “helping” actions of A that are
guaranteed to occur, and which make progress toward an occurrence of ¢ in the
induced execution of B. Lemma 6 shows that progressive implies equitable.

The third method for checking the equitable condition can be useful when
various automata are arranged in a lattice. (See Figure 1.) Suppose B and C are
more abstract versions of A, and D is a more abstract version of C. In order to
show that A is equitable for action ¢ of B, we demonstrate an action p of D that
is “similar™ to ¢, such that C is progressive for p using a set ¥ of helping actions,
and A is equitable for all the helping actions in ¥. (Cf. Lemma 7.)

G
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Figure 1

Theorems 8§ and 9 in Section 2.3 relate the definitions of simulates, simultane-
ously simulates, and equitable to the notion of satisfaction.

2.1 Safety

Let A and B be automata. Throughout this paper, we only consider automata
such that each locally-controlled action is in a separate class of the action partition.
(The definitions and results of this section can be generalized to avoid this assump-
tion, but the statements and proofs are more complicated, and the generalization
is not needed for the proof of the [GHS] algorithm.) Let alt-seq(B) be the set of
all finite sequences of alternating actions of B and states of B that begin and end
with an action, including the empty sequence (and the sequence of a single action).
An abstraction mapping M from A to B is a pair of functions, § and A, where §
maps states(A) to states(B) and A maps pairs (s, 7), of states s of 4 and actions
w of A enabled in s, to alt-seq(B).



Section 2.1: Safety
Given execution fragment e = som;s; ... of A, define M(e) as follows.
o If e = 50, then M(e) = S(s0).

e Suppose € = sg...8i—17;si, ¢ > 0. If A(s;-1,7;) is empty, then M(e) =
M(sp...8i-1). If A(si_1,7;) = ¢1t1---tm—-19Pm, then M(e) = M(sp...5;_1)
111 .. . tim—1@mS(8;). The t; are called interpolated states of M(e).

o If e is infinite, then M(e) is the limit of M(sgm1 ;... s;) as i increases without
bound.

We now define a particular kind of abstraction mapping, one tailored for show-
ing inductively that a certain predicate is an invariant of A, and that executions
of A map to (nontrivial) executions of B, (A predicaie is a Boolean-valued func-
tion. If @ is a predicate on states(B), and & maps states(A) to states(B), then
(Q o §), applied to state s of A, is the predicate “Q is true in 8(s),” and is also
written (Q(S(s)).) We give two sets of conditions on abstraction mappings, both of
which imply that executions map to executions, with the same sequence of external
actions. The first set of conditions applies when there is a single higher-level au-
tomaton immediately above. As formalized in Lemma 1, condition (2) ensures that
the sequences of external actions are the same, and conditions (1) and (3) ensure
that executions map to executions, and that a certain predicate is an invariant for
the lower-level algorithm. A key point about this predicate is that it includes the
higher-level invariant. Condition (1) is the basis step. Condition (3) is the inductive
step, in which the predicate, including the high-level invariant, may be used; part
(a) shows the low-level predicate is invariant, while parts (b) and (c) show execu-
tions map to executions, by ensuring that if there is no corresponding high-level
action, then the high-level state is unchanged, and if there is a corresponding high-
level action, then it is enabled in the previous high-level state and its effects are
mirrored in the subsequent high-level state. Since executions map to executions,

the high-level invariant, when composed with the state mapping, is also invariant
for A.

Definition: Let A and B be automata with the same external action signature. Let
M = (8, A) be an abstraction mapping from A to B, P be a predicate on states(A),
and @ be a predicate true of all reachable states of B. We say A simulates B via
M, P, and @ if the following three conditions are true.

(1) If s is in start(A), then
(a) P(s) is true, and
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Section 2.1: Safety
(b) &(s) is in start(B).

(2) If 5 is a state of A such that Q(S(s)) and P(s) are true, and 7 is any action of
A enabled in s, then A(s, 7)|ext(B) = w|ext(A).

(3) Let (s',7,3) be a step of A such that Q(S(s")) and P(s') are true. Then

(a) P(s) is true,

(b) if A(s',7) is empty, then S(s) = 8(s'), and

(c) if A(s',7) = ¢1t1...tm—19m. then S(s")p1t1 ... tm_19mS(s) is an execu-
tion fragment of B. m|

The first lemma verifies that if A simulates B via M, then M(e) is an execution
of B and a certain predicate is true of all states of e.

Lemma 1: If A simulates B via M = (S8, A), P and Q, then the following are true
for any execution e of A.

(1) M(e) is an execution of B.
(2) (Q 0 8) A P is true in every state of e.

Proof: Let e = sgmy8;.... If (1) and (2) are true for every finite prefix e; = sq...5;
of e, then (1) and (2) are true for e. We proceed by induction on i. We need to
strengthen the inductive hypothesis for (1) to be the following:

(1) M(e;) is an execution of B and &(s;) = t, where ¢ is the final state in M(¢;).

(Throughout this proof, “conditions (1), (2) and (3)” refer to the conditions in
the definition of “simulates™.)

Basis: i = 0. (1) M(eg) = S(sp). Since e is an execution of A, sp is in
start(A). Condition (1b) implies that §(sp) is in start(B), so M(ep) is an execution
of B. Obviously, the assertion about the final states is true.

(2) Condition (1a) states that P is true in sp. Since §(sg) is in start(B), it is
a reachable state of B, and Q(S(sg)) is true.

Induction: i > 0. By the inductive hypothesis for (2), @Q(S(si—1)) and P(si_;)
are true. Thus, conditions (3a), (3b) and (3c) are true.

(1) Let M(ei—1) = towrty...t; and M(e;) = tort; ... 1. Obviously, m > j.

8



Section 2.1: Safety

Suppose m = j. Then M(e;) = M(ei—1) and is an execution of B by the
inductive hypothesis for (1). We deduce that A(s;_;,7;) is empty, so by condition
(3b), &(s;) = S(si—1), and by the inductive hypothesis for (1), S(si—1) =t;.

Suppose m > j. By construction of M(e;), A(si—1,7i) = @jt1tjt1 -+ - tm-1Pm;
and t,, = S(s;). By the inductive hypothesis for (1), 8(si—1) = t;. By condition
(3¢), tj®@j+1 ... Pmtm is an execution fragment of B. Thus, M(e;) is an execution
of B. Obviously, the assertion about the final states is true.

(2) By the inductive hypothesis for (2), (Q o §) A P is true in every state of
ei, except (possibly) s;. By condition (3a), P(s;) is true. The final state in M(e;)
is S(s;). Since, by part (1), M(e;) is an execution of B and &(s;) equals the final
state of M(e;), S(s;) is a reachable state of B. By definition of Q, Q(S(s;)) is
true. O

Next we suppose that there are several higher-level versions, say B, and B,, of
automaton A, each focusing on a different task. There are situations in which it is
impossible to show that A simulates B; without using invariants about Bj's task,
and it is impossible to show that 4 simulates B, without using invariants about
B,’s task. One could cast the invariants about B,’s task as predicates of A, and
use the previous definition to show A simulates By, but this violates the spirit of
the lattice. Instead, we define a notion of simultaneously simulates, which allows
invariants about both tasks to be used in showing that A simulates B; and B,.
The definition differs from simply requiring A to simulate B; and A to simulate
B, in one important way: steps of A only need to be reflected properly in each
higher-level algorithm when ell the higher-level invariants are true (cf. condition

(3))-

Definition: Let I be an index set. Let A and A,, r € I, be automata with the
same external action signature. For all r € I, let M, = (&,, A,) be an abstraction
mapping from A to A,, and let @, be a predicate true of all reachable states of A,.
Let P be a predicate on states(A). We say A simultaneously simulates {A, :r € I}
via {M, :r € I}, P, and {Q, : r € I} if the following three conditions are true.

(1) If s is in start(A), then
(a) P(s) is true, and
(b) 8-(s) is in start(A,) for all r € I.

(2) If s is a state of A such that A\ .; Q.(S.(s)) and P(s) are true, and = is any
action of A enabled in s then A, (s, 7)|ext(A,) = wlext(A) for all r € 1.
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Section 2.2: Liveness

(3) Let (s',7,s) be a step of A such that A c; Q-(S(s')) and P(s') are true. Then
(a) P(s) is true,
(b) if A.(s',7) is empty, then S§.(s) = S,(s'), for all r € I, and
(¢) if A-(s',7) = 1ty ... tme1Pm, then 8§.(s'o1t1 ... tm—-19PmSr(8) is an exe-
cution fragment of A, for all r € I. u}

The statement “A simultaneously simulates {4,, A2} via {M;, M,}, P and
{@Q1,Q2}" is weaker than the statement “A simulates 4; via M;, P and @, and
A simulates 4, via M3, P and Q;” because the hypotheses of conditions (2) and
(3) in the simultaneous definition require that a stronger predicate be true.

Lemma 2 shows that the safety properties of interest are still preserved.

Lemma 2: Let I be an index set. If A simultaneously simulates {A, : r € I} via
{M, :r € I}, P, and {Q, : r € I}, where M, = (S, A,) for all r € I, then the
following are true of any execution e of A.

(1) M,(€) is an execution of A,, for all r € I.
(2) Aer(@ro8;) A P is true in every state of e.
2.2 Liveness

The following notation is introduced to define the basic liveness notion, “equi-
table”, and to verify that this definition has the desired properties.

We define an execution e = syms; ... of automaton A to satisfy § — (T, X),
where S and T are subsets of states(A) and X is a subset of states(A) x acts(A),
if for all ¢ with s; € S, there is a j > i such that either s; € T or (sj,7j4+1) € X.
In words, starting at any state of e, eventually either a state in T is reached, or a
state-action pair in X is reached.

If M =(8,A) is an abstraction mapping from A to B, then for each locally-
controlled action ¢ of B, we make the following definitions: E, is the set of all
states s of A such that ¢ is enabled in S(s); D,, is states(A) — E; Dy, is the set of
all states ¢ of B such that ¢ is not enabled in #; X is the set of all pairs (s, 7) of
states s of A and actions = of A such that p is in A(s, 7); and X, is states(B) x {¢}.

Definition: Suppose M is an abstraction mapping from A to B. Let ¢ be a locally-
controlled action of B. If every fair execution of A satisfies states(A) — (D, X;),
then A is equitable for ¢ via M. If A is equitable for ¢ via M for every locally-
controlled action ¢ of B, then A is equitable for B. O
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The next lemma motivates the equitable definition — in the induced execution
of B, if ¢ is ever enabled, then eventually ¢ either occurs or becomes disabled.

Lemma 3: Suppose A simulates B via M. Let ¢ be a locally-controlled action of
B. If A is equitable for ¢ via M, then M(e) satisfies states(B) — (D,,, X;,), for
every fair execution e of A.

Proof: Let M = (S5, A4). Let e = spmys;... be a fair execution of A, and let
M(e) = top1ty .... For any i > 0, define indez(i) to be j such that M(sg...s;) =
to...t;. Choose i > 0.

Case 1: t; is not interpolated. Choose any [ be such that indez(l) = i. Then
t; = S(s1), as argued in the proof of Lemma 1. Suppose there is an m > [ such that
$m € D,. Then thereis a j = indez(m) > i such that t; = S(sm, ), and by definition
of D, tj is in D|,. Suppose there is an m > [ such that (sm,Tm+1) € X,. Then
there is a j = index(m) > i such that ¢; = ¢, by definition of X, and (¢;,j+1)
is in X,.

Case 2: t; is interpolated. Let i’ be the smallest integer greater than i such
that ¢y is not interpolated. If either a state in D/, or ¢ occurs between i and ¢’ in
M(e), then we are done. Suppose not. Then the argument in Case 1, applied to t;,
shows that eventually after ¢;;, and thus after ¢;, either a state in D;, Or { oceurs
in M(e). o

The next lemma is the analog of Lemma 3 for simultaneously simulates. (D,
and X, are defined with respect to M,.)

Lemma 4: Suppose A simultaneously simulates {4, : r € I} via {M, : r € I}.
Let ¢ be a locally-controlled action of A, for some r. If A is equitable for ¢ via
M., then M,(e) satisfies states(B) — (Dy,, X,), for every fair execution € of A.

The rest of this subsection describes three methods of verifying that A is eg-
uitable for action ¢ of B. Lemma 5 describes the first method, which is to identify
an action of A that is essentially the “same” as ¢.

Lemma 5: Suppose M = (S, A) is an abstraction mapping from A to B, ¢ is a
locally-controlled action of B, and p is a locally-controlled action of A such that,
for all reachable states s of A,

(1) p is enabled in s if and only if  is enabled in state 8(s) of B, and
(2) if p is enabled in s, then ¢ is included in A(s, p).

11



Section 2.2: Liveness

Then A is equitable for ¢ via M.

Proof: Let e = som151... be a fair execution of A. Choose i > 0. If 5; € D, we
are done. Suppose s; € E,. By assumption, p is enabled in s;. Since e is fair, there
exists j > ¢ such that either 7; = p, in which case A(s;_;,7;) includes ¢, or else
p is not enabled in s;, in which case ¢ is not enabled in &(s;). Thus, e satisfies
states(A) — (D, X,). o

The second method uses the following definition, which is shown in Lemma 6
to imply equitable.

Definition: Suppose M = (§,.4) is an abstraction mapping from A to B. If ¢ is
a locally-controlled action of B, then we say A is progressive for ¢ via M if there
is a set W of pairs (s,9) of states s of A and locally-controlled actions ¥ of A, and
a function v from states(A4) to a well-founded set such that the following are true.

(1) For any reachable state s € E, of A, some action ¢ is enabled in s such that
(s,1p) is in 0.

(2) For any step (&',m,s) of A, where s' is reachable and in E,, (s',7) € X, and
s € E,,

(a) v(s) < v(s"),

(b) if (s',7) € T, then v(s) < v(s'), and

(c) if (s',7) &€ U, ¢ is enabled in ', and (s',1) is in ¥, then ¢ is enabled in s
and (s,v¢) is in P, m]

Lemma 6: If A is progressive for ¢ via M, then A is equitable for ¢ via M.

Proof: Let M = (8, A). By assumption, ¢ is a locally-controlled action of B, and
there exist ¥ and v satisfying conditions (1) and (2) in the definition of “progres-
sive”,

Let € = sgm18; ... be a fair execution of A. Choosei 2 0. If s; € D, we are
done. Suppose s; € E,. Assume in contradiction that for all j > i, (sj,7;4+1) € X,
and s; € E,. By condition (1), there is an action ¥ enabled in s; such that (s;,¢)
is in ¥. By condition (2c), as long as (sj,7j41) € ¥, ¢ is enabled in s;4; and
(sj+1,%) € ¥, for j > i. Since e is fair, there is #; > i such that (s;,—1,7;,) € L.
By conditions (2a) and (2b), v(s;,) < v(s;). Similarly, we can show that there is
i3 > t such that v(s;,) < v(s;,). We can continue this indefinitely, contradicting
the range of v being a well-founded set. O
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The next lemma demonstrates a third technique for showing that A is equitable
for locally-controlled action ¢ of B, in a situation when there are multiple higher-
level algorithms. The main idea is to show that there is some action p of D that
is “similar” to ¢ (cf. conditions (2) and (3)) such that C is progressive for p using
certain helping actions (cf. condition (4)), and A4 is equitable for all the helping
actions for p (cf. condition (3)). By “similar”, we mean that if ¢ is enabled in the
B-image of state s of A, then p is enabled in the D-image of the C-image of s; and
if p occurs in the D-image of the C-image of the pair (s',7), then ¢ occurs in the
B-image of (s', 7). Condition (1) is needed for technical reasons. (For convenience,
we define abstraction function M applied to the empty sequence to be the empty
sequence. To avoid ambiguity, we add the superscript AB to E,, D, and X when
they are defined with respect to the abstraction function from A to B.)

Lemma T7: Let A, B, C and D be automata such that M 45 = (Sap, Ag) is an
abstraction function from A to B, and similarly for M 4c and Mgp. Let & be a
locally-controlled action of B. Suppose the following conditions are true.

(1) Macl(e) is an execution of C for every execution e of A.

(2) There is a locally-controlled action p of D such that for any reachable state
sof A, if s € EAB, then S4c(s) € o

(3) If (s',m,s) is a step of A, s' is reachable, and p is in M¢ep(M ac(s'Ts)),
then  is in Aap(s', 7).

(4) C is progressive for p via Mcp, using the set ¥, and the function v,.

(5) A is equitable for 1 via M 4¢, for all actions ¢ of C such that (t,%) € ¥,
for some statet of C.

Then A is equitable for ¢ via M 4p.

Proof: Let e = sqm15;... be a fair execution of A. Let M4c(e) = toprty.... By
assumption (1), ¢, is a reachable state of C for all m > 0. For any ¢ > 0, define
indez(i) to be m such that M c(semy...8)) =top1...tm-

Choose i > 0. If s; € DAP, we are done. Suppose s; € E2?. Assume in
contradiction that for all j > i, (s;,7,4+1) € X127 and s; € E2B. Let m = index(i).
By assumption (2), there is a locally-controlled action p of D such that ¢, € EED
for all n > m. By assumption (3), (tn,¢n41) € XSP for all n > m.

13
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By assumption (4), C is progressive for p via M¢p, using set ¥, and function
v,. Thus, there is a locally-controlled action ¥ of C enabled in Sac(s;) = tm such
that (£n,.%) € ¥,. By assumption (5), A is equitable for ¥ via M 4¢. Since e is fair
and s; € EJC, by Lemma 3 there exists iy > i such that either (s;,_1,7;,) € X$€
or 8; € Dﬁc. Let my = indez(y).

Case 1: (si;—1,7mi,) € X#C. Then Asc(si—1,7i,) includes . Since t, is
reachable, t, € EED, and (tn,¢ns1) € XS for all n > m, we conclude that

Vp(tm,) < vp(tm), by parts (2a) and (2b) of the definition of “progressive”.

Case 2: s;, € Dgc. Since t, is reachable, t, € EED, and (tn,¢n+1) € an
for all n > m, by part (2¢) of the definition of “ progressive”, the only way 7 can
go from enabled in t,, to disabled in t,,, is for some action in ¥, to occur between
@m+1 and ¢, . By part (2b) of the definition of “progressive”, v,(tm,) < vp(tm).

Similarly, we can show that there exists i > #; such that v,(Sac(si,)) <
vp(Sac(si,)). We can continue this indefinitely, contradicting the range of v, being
a well-founded set. O

2.3 Satisfaction

The next theorem shows that our definitions of simulate and equitable are
sufficient for showing that A satisfies B.

Theorem 8: If A simulates B via M, P and Q) and if A is equitable for B via M,
then A satisfies B.

Proof: We must show that for any fair execution e of A, there is a fair execution
f of B such that sched(e)|exzt(A) = sched(f)|ext(B). Given e, let f be M(e). We
verify that M(e) is a fair execution of B with the desired property. Lemma 1, part
(1), implies that f is an execution of B. Choose any locally-controlled action ¢ of
B. By Lemma 3, if ¢ is enabled in any state of f, then subsequently in f, either
a state occurs in which ¢ is not enabled, or ¢ occurs. Thus, f is fair. Finally,

sched(e)|ext(A) = sched(f)|ext(B) because of condition (2) in the definition of
“simulates”. O

The next theorem is the analog of Theorem 7 for simultaneously simulates.

Theorem 9: Let I be an index set. If A simultaneously simulates {A, : r € I} via
{M, :rel}, Pand{Q,:r € I}, and if A is equitable for A, via M, for some
r € I, then A satisfies A,.

14



Section 3: Problem Statement
3. Problem Statement
We define the minimum spanning tree problem as an external schedule module.

For the rest of this paper, let G be a connected undirected graph, with at
least two nodes and for each edge, a unique weight chosen from a totally ordered
set. Nodes are V(G) and edges are E(G). For each edge (p,¢q) in E(G), there are
two links (i.e., directed edges), (p,¢) and (g, p). The set of all links of G is denoted
L(G). The set of all links leaving p is denoted L,(G). The weight of (p, ¢) is denoted
wt(p, q); wt({p,q)) is defined to be wit(p, q); and wi(nil) is defined to be occ.

The following facts about minimum spanning trees will be useful.
Lemma 10: (Property 2 in [GHS]) The minimum spanning tree of G is unique.

Proof: Suppose in contradiction that Ty and T, are both minimum spanning trees
of G and T} # T,. Let e be the minimum-weight edge that is in one of the trees
but not both. Without loss of generality, suppose e is in E(T)). The set of edges
{e} U E(T>) must contain a cycle, and at least one edge, say €', of this cycle is not
in E(T;). Since e # €' and ¢’ is in one but not both of the trees, wi(e) < wt(e').
Thus replacing €' with e in E(T3) yields a spanning tree of G with smaller weight
than T3, contradicting the assumption. O

Let T(G) be the (unique) minimum spanning tree of G.

An ezternal edge (p,q) of subgraph F of G is an edge of G such that p € V(F)
and ¢ € V(F).

Lemma 11: (Property 1 in [GHS]) If F is a subgraph of T(G), and e is the
minimum-weight external edge of F, then e is in T(G).

Proof: Suppose in contradiction that e is not in T(G). Then a cycle is formed by
e together with some subset of the edges of T(G). At least one other edge €' of this
cycle is also an external edge of F. By choice of e, wi(e) < wit(e'). Thus, replacing
e’ with e in the edge set of T(G) produces a spanning tree of G with smaller weight
than T(G), which is a contradiction. a

The M ST(G) problem is the following external schedule module. Input actions
are {Start(p) : p € V(G)}. Output actions are {InTree(l), NotInTree(l) : | €
L(G)}. Schedules are all sequences of actions such that

¢ no output action occurs unless an input action occurs;

15
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¢ if an input action occurs, then exactly one output action occurs for each [ €

L(G);
e if InTree({p,q}) occurs, then (p, q) is in T(G); and

e if NotInTree((p,q)) occurs, then (p, ¢) is not in T(G).

4. Proof of Correctness

The verification of Gallager, Humblet and Spira’s minimum-spanning tree al-
gorithm [GHS] uses several automata, arranged into a lattice as in Figure 2.

N \\
3z

Figure 2: The Lattice

Each element of the lattice is a complete algorithm. However, the level of detail
in which the actions and state of the original algorithm are represented varies.
Working down the lattice takes us from a description of the algorithm that uses
global information about the state of the graph, and powerful, atomic actions, to a
fully distributed algorithm, in which each node can only access its local variables,
and many actions are needed to implement a single higher level action. A brief
overview of each algorithm is given below; a fuller description of each appears later.

HI is a very high-level description of the algorithm, and is easily shown in
Section 4.1 to solve the MST(G) problem. GHS is the detailed algorithm from

16
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[GHS]. We show a path in the lattice from GHS to HI, where each automaton in
the path satisfies the automaton above it. By transitivity of satisfaction, then GHS
will have been shown to solve M ST(G).

The essential feature of the state of HI is a set of subgraphs of G, initially
the set of singleton nodes of G. Subgraphs combine, in a single action, along
minimum-weight external edges, until only one subgraph, the minimum spanning
tree, remains.

The COM automaton introduces fragments, each of which corresponds to a
subgraph of HI, plus extra information about the global level and core (or identity)
of the subgraph. Two ways to combine fragments are distinguished, merging and
absorbing, and two milestones that a fragment must reach before combining are
identified. The first milestone is computing the minimum-weight external link of
the fragment, and the second is indicating readiness to combine.

The GC automaton expands on the process of finding the minimum-weight
external link of a fragment, by introducing for each fragment a set festset of nodes
that are participating in the search. Once a node has found its local minimum-
weight external link, it is removed from the testset.

TAR and DC expand on GC in complementary ways. DC focuses on how the
nodes of a fragment cooperate to find the minimum-weight external link of the whole
fragment in a distributed fashion. It describes the flow of messages throughout
the fragments: first a broadcast informs nodes that they should find their local
minimum-weight external links, and then a convergecast reports the results back.
In contrast, TAR is unconcerned with specifying exactly when each node finds its
local minimum-weight external link, and concentrates on the details of the protocol
performed by a node to find this link.

NOT is a refinement of COM that expands on the method by which the global
level and core information for a fragment is implemented by variables local to each
node. Messages attempt to notify nodes of the level and core of the nodes’ current
fragment.

CON, an orthogonal refinement of COM, concentrates on how messages are
used to implement what happens between the time the minimum-weight external
link of an entire fragment is computed, and the time the fragment is combined with
another one.

17
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Finally, the entire, fully distributed, algorithm is represented in automaton
GHS. It expands on and unites TAR, DC, NOT and CON.

The path chosen through the lattice is HI, COM, GC, TAR, GHS. Why
this path? Obviously, GHS must be shown to satisfy one of TAR, DC, NOT
and CON. However, it cannot be done in isolation; that is, invariants about the
other three are necessary to show that GH S satisfies one. (As mentioned in Section
2.1, the invariants about the other three could be made predicates about GHS,
but this approach does not take advantage of abstraction.) Thus, we show that
GH S simultaneously simulates those four automata. To show this, however, we
need to verify that certain predicates really are invariants for the four. In order to
do this, we show that TAR and DC (independently) simulate GC, and that NOT
and CON (independently) simulate COM. Likewise, in order to show these facts,
we need to know that certain predicates are invariants of GC' and COM, and the
way we do that is to show that GC simulates COM, and that COM simulates HI.
Thus, it is necessary to show safety relationships along every edge in the lattice.

The liveness relationships only need to be shown along one path from GHS to
HI. After inspecting GHS and the four automata directly above it, we decided on
pragmatic grounds that it would be easiest to show that GH S is equitable for TAR.
One consideration was that the output actions have exactly the same preconditions
in GHS and in TAR, and thus showing GH S is equitable for those actions is trivial.
Once TAR was chosen, the rest of the path was fixed.

First, the necessary safety properties are verified in Section 4.2. We show that
COM simulates HI (Section 4.2.1), that GC simulates COM (Section 4.2.2), that
TAR simulates GC (Section 4.2.3), that DC simulates GC (Section 4.2.4), that
NOT simulates COM (Section 4.2.5), that CON simulates COM (Section 4.2.6),
and that GH S simultaneously simulates TAR, DC, NOT and CON (Section 4.2.7).

Section 4.3 contains the liveness arguments. To show the desired chain of
satisfaction, we show that COM is equitable for HI (Section 4.3.1), that GC is
equitable for COM (Section 4.3.2), that TAR is equitable for GC (Section 4.3.3),
and that GHS is equitable for TAR (Section 4.3.6). In Section 4.3.6, the technique
of Lemma 7 is used in several places; thus we need to show that DC is progressive
for an action of GC (Section 4.3.4), and that CON is progressive for several actions
of COM (Section 4.3.5).

Section 4.4 puts the pieces together to show that GHS solves MST(G).
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4.1 HI Solves MST(G)

The main feature of the HI state is the data structure FST (for “forest™),
which consists of a set of subgraphs of G, partitioning V(G). The idea is that
the subgraphs of G are connected subgraphs of the minimum spanning tree T'(G).
Two subgraphs can combine if the minimum-weight external link of one leads to
the other. The awake variable is used to make sure that no output action occurs
unless an input action occurs. The answered variables are used to ensure that at
most one output action occurs for each link. InTree( (p,q)) can only occur if (p, ¢) is
already in a subgraph, or is the minimum-weight external edge of a subgraph (i.e.,
is destined to be in a subgraph). NoiInTree((p,q)) can only occur if p and g are in
the same subgraph but the edge between them is not.

Define automaton HI (for “High Level”) as follows.

The state consists of a set F.ST of subgraphs of G, a Boolean variable
answered(l) for each I € L(G), and a Boolean variable awake.

In the start state of HI, FST is the set of single-node graphs, one for each
p € V(G), every answered(l) is false, and awake is false.

Input actions:

o Siart(p), p € V(G)
Effects:

awake := true

Output actions:

o InTree((p,q)), (p,q) € L(G)

Preconditions:
awake = true
(p.q) € F or (p,q) is the minimum-weight external edge of F,
for some F € FST
answered((p, q)) = false
Effects:
answered((p, q)) := true

o NotInTree((p,q)), (p,q) € L(G)
Preconditions:

awake = true
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p.q € F and (p,q) € F, for some F € FST
answered((p, q)) = false

Effects:
answered((p, q)) := true

Internal actions:

e Combine(F,F',e), F,F' € FST, e € E(G)

Preconditions:

awake = true

F£F

e is an external edge of F

e is the minimum-weight external edge of F'
Effects:

FST:=FST - {F,F'}U{FUF'Ue}

Define the following predicates on states(HI). (A minimum spanning forest
of G is a set of disjoint subgraphs of G that span V(&) and form a subgraph of a
minimum spanning tree of G.)

¢ HI-A: Each F' in FST is connected.
e HI-B: F'ST is a minimum spanning forest of G.

Let Pyr = HI-A A HI-B. HI-B implies that the elements of FST form a par-
tition of V(G). Lemma 10 and HI-B imply that FST is a subgraph of T(G).

Theorem 12: HI solves the M ST(G) problem, and Py is true in every reachable
state of HI.

Proof: First we show that Py is true in every reachable state of HI. If s is a
start state of HI, then Py is obviously true. Suppose (s',7,3) is a step of HI and
Ppris true in §'. If ¥ % Combine( F, F',¢), then, since FST is unchanged, Py is
obviously true in s as well.

Suppose m# = Combine(F,F',e). By the precondition, F # F', e is the
minimum-weight external edge of F', and e is an external edge of F in s’. By
HI-A, F and F' are each connected in s'; thus, the new fragment formed in s by
joining F' and F' along e is connected, and HI-A is true. Since by HI-B and Lemma
10, F and F' are subgraphs of T(G), and since by Lemma 11 e is in T(G), the new
FST is a minimum spanning forest of G, and HI-B is true.
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We now show that HI solves M ST(G). Let e be a fair execution of HI. The
use of the variable awake ensures that no output action occurs in e unless an input
action occurs in €. The use of the variables answered(l) ensures that at most one
output action occurs in e for each link /. Suppose InTree((p,q)) occurs in e. Then
in the preceding state, either (p,q) is in F or (p, ¢) is the minimum-weight external
edge of F, for some F' € FST. By HI-B and Lemmas 10 and 11, (p,q) is in T(G).
Suppose NotInTree({p,q)) occurs in e. Then in the preceding state, p and ¢ are in
F and (p,g) is not in F', for some F € FST. By HI-A, there is path from p to ¢ in
F. By HI-B and Lemma 10, this path is in T(G). Thus (p,q) cannot be in T(G),
or else there would be a cycle.

Suppose an input action occurs in e. We show that an output action occurs in
e for each link. Let e = spmys;.... Obviously, m; is an input action. Only a finite
number of output actions can occur in e. Choose m such that =, is the last output
action occurring in e. (Let m = 1 if there is no output action in e.) It is easy to
see that s, = s; for all i > m. Since an input action occurs in e before s,,, awake
= true in $,,. |F'ST| =1 in s,,, because otherwise some Combine(F,F' ') action
would be enabled in s,,, contradicting e being fair. Let FST = {F}. By HI-A and
HI-B, F = T(G) in sy. Furthermore, answered(l) is true in s, for each I, because
otherwise some output action for [ would be enabled in s,,, contradicting e being
fair. Yet the only way answered(l) can be true in s,, is if an output action for [
occurs in e. O

4.2 Safety

Each algorithm in the lattice below HI is presented in a separate subsection.
Each subsection is organized as follows. First, an informal description of the algo-
rithm is given, together with a discussion of any particularly interesting aspects.
Then comes a description of the state of the automaton, both explicit variables, and
derived variables (if any). A derived variable is a variable that is not an explicit
element of the state, but is a function of the explicit variables. We employ the con-
vention that whenever the definition of a derived variable is not unique or sensible,
then the derived variable is undefined. The actions of the automaton are specified
next. Then predicates to be shown invariant for this automaton are listed. The
abstraction mapping to be used for simulating the higher-level automaton is de-
fined next. All our state mappings conform to the rule that variables with the same
name have the same value in all the algorithms. The only potential problem that
might arise with this rule is if a derived variable is mapped to an explicit variable,
but the derived variable is undefined. Although we will prove that this situation
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never occurs in states we are interested in, for completeness of the definition of
state mapping one can simply choose some default value for the explicit variable.
Often it is useful to derive some predicates about this automaton’s state that follow
from the invariant for this automaton and the higher-level one; these predicates
are true of any state of this automaton satisfying the invariant and mapping to a
reachable state of the higher-level algorithm. The proof of simulation completes the
subsection.

4.2.1 COM Simulates HI

The COM algorithm still takes a completely global view of the algorithm,
but some intermediate steps leading to combining are identified, and the state is
expanded to include extra information about the subgraphs. The COM state con-
sists of a set of fragments, a data structure used throughout the rest of the lattice.
Each fragment f has associated with it a subgraph of G, as well as other informa-
tion: level( f), core(f), minlink(f), and rootchanged(f). Two milestones must be
reached before a fragment can combine. First, the ComputeMin(f) action causes
the minimum-weight external link of fragment f to be identified as minlink( f), and
second, the ChangeRoot( f) action indicates that fragment f is ready to combine,
by setting the variable rootchanged( f). This automaton distinguishes two ways that
fragments (and hence, their associated subgraphs) can combine. The Merge(f,g)
action causes two fragments, f and g, at the same level with the same minimum-
weight external edge, to combine; the new fragment has a higher level and a new
core (i.e., identifying edge). The Absorb(f,g) action causes a fragment g to be en-
gulfed by the fragment f at the other end of minlink(g), provided f is at a higher
level than g.

Define automaton COM (for “Common™) as follows.

The state consists of a set fragments. Each element f of the set is called a
fragment, and has the following components:

e subtree( f), a subgraph of G;

e core( f), an edge of G or nil;

level( f), a nonnegative integer;

minlink( f), a link of G or nil;

rootchanged( f), a Boolean.

[~
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The state also contains Boolean variables, answered(]) one for each | € L(G), and
Boolean variable awake.

In the start state of COM, fragments has one element for each node in V(G); for
fragment f corresponding to node p, subiree( f) = {p}, core(f) = nil, level( f) =0,
minlink({ f) is the minimum-weight link adjacent to p, and rooichanged(f) is false.
Each answered(l) is false and awake is false.

Two fragments will be considered the same if either they have the same single-
node subtree, or they have the same nonnil core.

We define the following derived variables.

e For node p, fragment(p) is the element f of fragmenis such that p is in
subtree( f).

e A link (p,g) is an ezternal link of p and of fragmeni(p) if fragmeni(p) #
fragment(q); otherwise the link is internal.

o If minlink( f) = (p,q), then minedge(f) is the edge (p, ¢), minnode(f) = p, and
root( f) is the endpoint of core( f) closest to p.

e If (p, ¢) is the minimum-weight external link of fragment f, then mw-minnode( f)
= p and mw-roo#( f) is the endpoint of core( f) closest to p.

o subtree(p) is all nodes and edges of subtree(fragment(p)) on the opposite side
of p from core(fragment(p)).

o g is a child of p if ¢ € subtree(p) and (p, g) € subiree(fragment(p)).

Input actions:

o Start(p), p € V(G)
Effects:

awake = true

Output actions:

o InTree((p,q)), (p,q) € L(G)

Preconditions:
awake = true

(p.q) € subtree( fragment(p)) or (p, g} = minlink(fragment(p))
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answered((p, ¢)) = false
Effects:

answered((p,q)) := true

o NotInTree((p,q)), (p.q) € L(G)
Preconditions:
fragment(p) = fragmeni(q) and (p,q) ¢ subtree(fragment(p))
answered((p, q)) = false
Effects:

answered((p, q)) := true

Internal actions:

o ComputeMin(f), f € fragments
Preconditions:
minlink( f) = nil
[ is the minimum-weight external link of f
level( f) < level fragment(target(1)))
Effects:
minlink(f) := 1

o ChangeRoot(f), f € fragments
Preconditions:
awake = true
rootchanged( f) = false
minlink( f) # nil
Effects:
rootchanged(f) := true

o Merge(f,g), f,g € fragmenis

Preconditions:
f#y
rootchanged(f) = rooichanged(g) = true
minedge( f) = minedge(g)

Effects:
add a new element h to fragments
subtree(h) := subtree( f) U subtree(g) U minedge(f)
core( h) := minedge( f)
level(h) := level( f) + 1
minlink(h) := nil
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rootchanged(h) := false
delete f and g from fragments

o Absorb(f.g), f,g € fragments
Preconditions:
rootchanged(g) = true

level(g) < level( f)
fragment(target(minlink(g))) = f
Effects:
subtree( f) 1= subiree(f) U subtree(g) U minedge(g)
delete g from fragments

Define the following predicates on states of COM. (All free variables are uni-
versally quantified.)

o COM-A: If minlink(f) = l, then [ is the minimum-weight external link of f,
and levell f) < level( fragment(target(1))).

e COM-B: If rootchanged(f) = true, then minlink( f) # nil.

e COM-C: If awake = false, then minlink(f) # nil, rootchanged( f) = false, and
subtree( f) = {p} for some p.

e COM-D: If f # g, then subtree(f) # subtree(g).
o COM-E: If subtree(f) = {p} for some p, then minlink( f) # nil.

o COM-F: If |nodes(f)| = 1, then level( f) = 0 and core(f) = nil; if |nodes(f)| >
1, then level( f) > 0 and core( f) € subiree(f).

Let Pcoar be the conjunction of COM-A through COM-F.

In order to show that COM simulates HI, we define an abstraction mapping
My = (81,A4;) from COM to HI. Define the function 8§, from states(COM) to
states(HI) as follows. In conformance with our convention (cf. the beginning of
Section 4.2), the values of awake and answered(l) (for all 1) in S;(s) are the same
as in 8. The value of F'ST in 8;(s) is the multiset {subiree(f): f € fragments}.

Define the function A; as follows. Let s be a state of COM and = an action
of COM enabled in s.

o If m = Start(p), InTree(l), or NoilnTree(l), then A,(s, 7) = 7.
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o If 7 = ComputeMin(f) or ChangeRoot( f), then A;(s,7) is empty.

o If # = Merge(f,g) or Absorb(f,g), then Ay(s,7) = Combine(F, F', e), where
F = subtree(f) in s, F' = subtree(g) in s, and e = minedge(g) in s.

The following predicate is true in every state of COM satisfying (Pyr o S1) A
Peon. (Le., it is deducible from Peops and the HI predicates. )

o COM-G: The multiset {subtree(f): f € fragments} forms a partition of V(G),
and fragment(p) is well-defined.

Proof: Let s be a state of COM satisfying (Pgro 81) A Pcoym. In 81(s), FST =
{subtree( f) : f € fragments}. By HI-B, F ST forms a partition of V(G). By COM-
D, the multiset {subtree(f): f € fragments} = FST, and thus it forms a partition
of V(G). Consequently, fragmeni(p) is well-defined. O

Lemma 13: COM simulates HI via My, Pcoy. and Pyy.

Proof: By inspection, the types of COM, HI, M, and Pgops are correct. By
Theorem 12, Py is a predicate true in every reachable state of HI.

(1) Let s be in start{(COM). Obviously, Pcom is true in s, and Si(s) is in
start(HI).

(2) Obviously, Ai(s,w)|ezt(HI) = w|ext(COM) for any state s of A.

(3) Let (s', 7, s) be a step of COM such that Py is true of S;(s') and Pooy
is true of s'. We consider each possible value of 7.

i) 7 is Start(p), InTree(l), or NotInTree(l). .4;(s',7) = m. Obviously,
Pcowm is true in s, and 8 (s")78;(s) is an execution fragment of HI.

ii) = is ComputeMin(f) or ChangeRoot(f). A,(s', ) is empty. Obviously,
81(s") = &1(s). Obviously, COM-A, COM-B, COM-D and COM-F are true in s.
By COM-C for ComputeMin(f) and by precondition for ChangeRoot( f), awake =
true in ', and also in s; thus, COM-C is true in s.

Obviously, COM-E is true in s for any fragment f' # f. If 7 = Compute Min(f),
then minlink(f) # nil in s, and COM-E is vacuously true in s for f. If 7 =
ChangeRoot( f), then by COM-B, minlink(f) # nil in s' and also in s, so COM-E
is vacuously true in s for f.
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iii) = is Merge(f,g).

(3¢) Ai(s',7) = Combine( F, F',e), where F = subtree(f) in s', F' = subtree(g)
in ', and e = minedge(g) in ', for some fragments f and g.

Claims about s':

f # g, by precondition.

rootchanged( f) = rootchanged(g) = true, by precondition.

minedge( f) = minedge(g), by precondition.

awake = true, by Claim 2 and COM-C.

minedge( f) # nil and minedge(g) # nil, by Claim 2 and COM-B

manlink{ f) is an external link of f, by COM-A and Claim 5.

minlink{g) is the minimum-weight external link of g, by COM-A and Claim 5.

e ool o

= o o

Let F = subtree(f), F' = subiree(g) and e = minedge(g).
Claims about §;(s'): (All depend on the definition of §;.)

8. awake = true, by Claim 4.

9. F # F', by Claim 1 and COM-D.

10. e is an external edge of F, by Claims 3 and 6.

11. e is the minimum-weight external edge of F', by Claim 7.

By Claims 8 through 11, Combine(F, F', e) is enabled in &;(s'). Obviously, its
effects are mirrored in 8 (s).

(3a) More claims about s':

12, level(f) = 0, by COM-F.
13. subtree( f') and subtree(g') are disjoint, for all f' # ¢', by COM-G.

Claims about s:

14. subiree(h) = subiree(f) U subiree(g) U minedge( f), by code.

15. core(h) = minedge( f), by code.

16. level(h) = level( f) + 1, by code.

17. minlink(h) = nil, by code.

18. rootchanged(h) = false, by code.

19. f and g are removed from fragments, by code.

20. awake = true, by Claim 4.

21. subtree(f') and subtree(g') are disjoint, for all f' # ¢', by Claims 13, 14 and 19.
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22. |nodes(h)| > 1, by Claim 14.
23. level(h) > 1, by Claims 12 and 16.
24. core(h) € subiree(h), by Claims 14 and 15.

COM-A is vacuously true for h by Claim 17. COM-B is vacuously true for h
by Claim 18. COM-C is vacuously true by Claim 20. COM-D is true by Claim 21.
COM-E is vacuously true for A by Claim 22, COM-F is true for h by Claims 22, 23
and 24.

iv) = is Absorb(f.g).

(3c) Ay(s',w) = Combine(F, F',e), where F = subtree(f) in s', F' = subtree(g)
in &', and € = minedge(g) in s', for some fragments f and g.

Claims about 3’:

rootchanged(g) = true, by precondition.

level(g) < level( f), by precondition.

fragment(target(minlink(g))) = f. by precondition.

f # g, by Claim 2.

minlink(g) is an external link of f, by Claims 3 and 4.

minlink(g) # nil, by Claim 3.

minlink(g) is the minimum-weight external link of g, by Claim 6 and COM-A.
awake = true, by Claim 1 and COM-C.

ol

o

Let F = subtree(f), F' = subiree(g) and e = minedge(g).
Claims about S;(s'): (All depend on the definition of §;.)

9. awake = true, by Claim 8.

10. F # F’, by Claim 4 and COM-D.

11. e is an external edge of F, by Claim 5.

12. e is the minimum-weight external edge of F', by Claim 7.

By Claims 9 through 12, Combine(F, F', e) is enabled in 8;(s'). Obviously, its
effects are mirrored in &) (s).

(3a) COM-A: If minlink(f) = nil in &', then the same is true in s, and COM-A
is vacuously true for f. Suppose minlink( f) =l in s'. Let f' = fragmeni(targei(1)).

More claims about s':
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13. level(f) < level(f'), by COM-A.

14. f' # g, by Claims 2 and 13.

15. minedge( f) # minedge(g), by Claim 14.

16. minlink( f) is the minimum-weight external link of f, by COM-A.

17. If ¢’ # minedge(g) is an external edge of g, then wit(e') > wt(minedge(f)). Pf:
wi(e') > wit(minedge(g)) by Claim 7, and wt(minedge(g)) > wit(minedge(f)) by
Claims 3, 15 and 186.

Since minlink( f) is the same in s as in s', Claims 16 and 17 imply that in s,
minlink( f) is the minimum-weight external link of f. The only fragment whose level
changes in going from s' to s is g (since g disappears). Thus, Claim 14 implies that
in s, level( f) < level( f'). Finally, COM-A is true in s.

The next claims are used to verify COM-B through COM-F.

More claims about s':

18. subtree(f') and subtree(g') are disjoint, for all f' # ¢', by COM-G.
19. level(g) = 0, by COM-F.

20. level(f) > 0, by Claims 2 and 19.

21. |nodes(f)| > 1, by Claim 20 and COM-F.

22. core(f) € subtree(f), by Claim 21 and COM-F.

Claims about s:

23. awake = true, by Claim 1.

24. subtree(f) in s is equal to subtree(f) U subtree(g) U minedge(g) in s', by code.
25. subtree(f') and subtree(g') are disjoint, for all f' # ¢', by Claims 18 and 24.
26. |nodes(f)| > 1, by Claims 21 and 24.

27. level(f) > 0, by Claim 20.

28. core(f) € subiree( f), by Claims 22 and 24.

COM-B is unaffected. COM-C is vacuously true by Claim 23. COM-D is true
by Claim 25. COM-E is vacuously true for f by Claim 26. COM-F is true for f by
Claims 26, 27 and 28. O

Let Pooy = (Puro81) A Feom-

Corollary 14: Pg,, is true in every reachable state of COM.

Proof: By Lemmas 1 and 13. O
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4.2.2 GC Simulates COM

The GC automaton expands on the process of finding the minimum-weight
external link of a fragment, by introducing for each fragment f a set tesiset( f) of
nodes that are participating in the search. Once a node in f has found its minimum-
weight external link, it is removed from testset( f). A new action, TestNode(p), is
added, by which a node p atomically finds its minimum-weight external link —
however, the fragment at the other end of the link cannot be at a lower level than
p's fragment in order for this action to occur. The new variable acemin(f) (for
“accumulated minlink™) stores the link with the minimum weight over all links
external to nodes of f no longer in testset(f). ComputeMin(f) cannot occur until
testset( f) is empty. When an Absorbd(f, g) action occurs, all the nodes formerly in
g are added to testset(f) if and only if the target of minlink(g) is in testset( f). This
version of the algorithm is still totally global in approach.

Define automaton GC (for “Global ComputeMin”) as follows.

The state consists of a set fragments. Each element f of the set is called a
fragment, and has the following components:

e subiree( f), a subgraph of G;

core( f), an edge of G or nil;

level( f), a nonnegative integer;

minlink( f), a link of G or nil;

rootchanged( f), a Boolean;

testset( f), a subset of V(G); and
o accminf f), a link of G or nil.

The state also contains Boolean variables, answered(l), one for each | € L(G), and
Boolean variable awake.

In the start state of COM. fragments has one element for each node in V(G);
for fragment f corresponding to node p, subtree( f) = {p}, core(f) = nil, level( f) =
0, minlink(f) is the minimum-weight link adjacent to p, reotchanged(f) is false,
testset( f) is empty, and acemin(f) is nil. Each answered(l) is false and awake is
false.
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Input actions:

e Start(p), p € V(G)
Effects:
awake := true

Qutput actions:

o InTree((p,q)), (p,q) € L(G)
Preconditions:
awake = true
(p,q) € subtree( fragment(p)) or (p, ¢) = minlink(fragment(p))

answered((p, q)) = false
Effects:
answered((p, q)) := true

o NotInTree((p,q)), (p,q) € L(G)
Preconditions:
fragment(p) = fragment(q) and (p,q) & subtree(fragmeni(p))
answered((p,q)) = false
Effects:
answered((p, q)) := true

Internal actions:

o TestiNode(p), p € V(G)
Preconditions:
— let f = fragment(p) —
p € testset( f)
if (p, ¢), the minimum-weight external link of p, exists
then level( f) < level( fragment(q))
Effects:
testset( f) 1= testset(f) — {p}
if (p, ¢}, the minimum-weight external link of p, exists
and wi(p, q¢) < wt{acemin(f))
then acemin(f) := (p, q)

e ComputeMin(f), f € fragments
Preconditions:
minlink( f) = nil
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acemin( f) # nil
testset(f) =10
Effects:

minlink( ) := acemin( f)
acemin( f) := nil

o ChangeRool(f), f € fragments
Preconditions:
awake = true
rootchanged( f) = false
minlink( f) # nil
Effects:
rootchanged( f) := true

o Merge(f,q), f.g € fragments

Preconditions:
f#g
rootchanged( f) = rootchanged(g) = true
minedge( f) = minedge(g) # nal

Effects:
add a new element h to fragments
subtree( h) := subtree(f) U subtree(g) U minedge( f)
core(h) 1= minedge(f)
level(h) := level( f) + 1
minlink( h) := nil
rootchanged(h) := false
testset(h) := nodes(h)
acemin( h) = nil
delete f and g from fragments

o Absorb(f.g), f.g € fragments
Preconditions:

rootchanged(g) = true
level(g) < level(f)
— let p = target(minlink(g)) —
fragment(p) = f
Effects:
subtree( f) := subtree(f) U subtree(g) U minedge(g)
if p € testset(f) then testset(f) := testset(f) U testset(g)
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delete g from fragments

Define the following predicates on the states of GC. (All free variables are
universally quantified.)

e GC-A: If acemin(f) = (p.q), then (p,q) is the minimum-weight external link
of any node in nodes(f) — testset(f), and level( f) < level(fragment(q)).

e GC-B: If there is an external link of f, if minlink(f) = nil, and if testset(f) =
0, then acemin(f) # nil.

o GC-C: If testset(f) # 0, then minlink( f) = nil.
Let Pgc = GC-A A GC-B A GC-C.

In order to show that GC simulates COM, we define an abstraction mapping
M, = (83, A3) from GC to COM. Define the function S, from states(GC) to
states(COM) by simply ignoring the variables acemin(f) and testset(f) for all
fragments f when going from a state of GC to a state of COM.

Define the function A; as follows. Let s be a state of GC and = an action of GC
enabled in s. If # = TestNode(p), then A;(s,7) is empty. Otherwise, Ay(s,7) = 7.

Recall that PLgy = (Prro 8i) A Pcom. U Pogp(Sa(s)) is true, then the
COM predicates are true in Sz(s), and the HI predicates are true in §;(S52(s)).

Lemma 15: GC simulates COM via Ma, Pgc, and Phg )y

Proof: By inspection, the types of GC, COM, M., and Pgc are correct. By
Corollary 14, P,y is a predicate true in every reachable state of COM.

(1) Let s be in start(GC). Obviously, Pge is true in s, and S3(s) is in
start(COM).

(2) Obviously, Az(s, 7)lext(COM) = wlext(GC).

(3) Let (s', 7, ) be a step of GC such that Pgq), is true of S;(s') and Pge is
true of s'.

i) 7 is Start(p), InTree(1), NotInTree(l), or ChangeRoot(f). Obviously,
Sa(s')w82(s) is an execution fragment of COM, and Pge is true in s.

ii) = is ComputeMin(f).
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(3a) Obviously, Pgc is still true in s for any f' # f. GC-A is vacuously true
for f in s, since acemin(f) is set to nil. GC-B is vacuously true for f in s, since
minlink( f) # nil. By COM-C, ewake = true in S;(s') and thus in s'; the same is
true in s, so GC-C(a) is true in s for f. GC-C(b) is vacuously true for f in s, since

testset( f) = 0.
(3c) Az(s',7) = .
Claims about s':

. testset( f) = 0, by precondition.

acemin( f) # nil, by precondition.

. level( f) < level( fragment(target(acemin(f)))), by Claim 2 and GC-A.

acemin( f) is the minimum-weight external link of f, by Claim 2, GC-A, and
Claim 1.

5. level( f) < level(fragmeni(iarget(l))), where I is the minimum-weight external
link of f, by Claims 3 and 4.

[ S o

Using Claim 5, it is easy to see that Sy(s')wS2(s) is an execution fragment of
COM.

ili) 7 is TestNode(p).

(3a) Obviously, Pgc is still true in s for any f' # f. Inspecting the code verifies
that GC-A and GC-B are still true in s for f as well. By GC-C(b), minlink( f) = nil
in 8'; GC-C is true for f in s because minlink( f) is not changed.

(3b) Ax(s',7) is empty, and obviously Sa(s') = Sa(s).
iv) 7 is Merge(f,g).

(3a) Obviously, Pge is still true in s for any f' other than f and g. GC-A is
vacuously true in s for h, since acemin(h) = nil. GC-B is vacuously true in s for
h, since testset(h) # . GC-C is true in s for h since minlink(Rh) = nil.

(3c) Az(s',m) = w. Obviously, Sy(s')wS2(s) is an execution fragment of COM.
v) = is Absorb(f,g).
(3a) Obviously, Pge is still true in s for any f' other than f and g.

In going from s’ to s, testset( f) is either empty in both or non-empty in both,
minlink( f) remains the same, and the truth of the existence of an external link of
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f either stays true or goes from true to false. Thus GC-B and GC-C are true in s
for f.

We now deal with GC-A. If acemin(f) = nil in ', then the same is true in s,
so GC-A is vacuously true for f in s.

Assume accmin(f) = (r,t). Let minlink(g) = (g,p).
Claims about s':

level(g) < level( f), by precondition.

fragment(p) = f, by precondition.

level( f) < level(fragment(t)), by GC-A.

fragment(t) # g, by Claims 1 and 3.

(g, p} # (t,r), by Claim 4 and COM-A.

wi(g, p) < wi(l), for any I # (g, p) that is an external link of g, by COM-A.

If p & testset( f), then wi(r.t) < wi(g,p), by Claim 5 and GC-A.

. If p & testsei(f), then wi(r,t) < wi(l), for any I that is an external link of g, by
Claims 6 and 7.

B DR On 50 3

If p & testset(f) in &', then any node p' € nodes(f) is not in testset( f) in s
exactly if, in s', p' is either in nodes( f)— testset(f) or in nodes(g). Claim 8 implies
that in s, (r,t) is still the minimum-weight external link of any node in f that is
not in testset( f).

If p € testset(f) in s, then any node p’' € nodes(f) is not in testset(f) in s
exactly if p' is in nodes(f)— testsei( f) in s'. Thus in s, (r,f) is still the minimum-

weight external link of any node in f that is not in testset{ f).

Since g is the only fragment whose level changes in going from s’ to s, Claim 4
implies that level( f) < level(fragment(t)) in s. Thus, since acemin(f) = (r,1) in s,
GC-A is true in s for f.

(3¢) Az(s,m) = w. Obviously 8(s')7S2(s) is an execution fragment of
COM. -

Let Pge = (Péoa © S2) A Pac.
Corollary 16: P is true in every reachable state of GC.
Proof: By Lemmas 1 and 15. O
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4.2.3 TAR Simulates GC

This automaton expands on the method by which a node finds its local
minimum-weight external link. Some local information is introduced in this ver-
sion, in the form of node variables and messages. Three FIFO message queues are
associated with each link (p,¢): farqueuey((p,q)), the outgoing queue local to p;
tarqueuep,((p, q)), modelling the communication channel; and tarqueue,((p, q)), the
incoming queue local to g. The action ChannelSend(l, m) transfers a message m
from the outgoing local queue of link [ to the communication channel of I; and the
action ChannelRecv(l,m) transfers a message m from the communication channel
of link [ to the incoming local queue of [.

Each link [ is classified by the variable lstatus(l) as branch, rejected, or un-
known. Branch means the link will definitely be in the minimum spanning tree;
rejected means it definitely will not be; and unknown means that the link’s status
is currently unknown. Initially, all the links are unknown.

The search for node p’s minimum-weight external link is initiated by the ac-
tion SendTest(p), which causes p to identify its minimum-weight unknown link as
testlink(p), and to send a TEST message over its testlink together with information
about the level and core (identity) of p's fragment. If the level of the recipient
¢'s fragment is less than p’s, the message is requeued at ¢, to be dealt with later
(when ¢'s level has increased sufficiently). Otherwise, a response is sent back. If
the fragments are different, the response is an ACCEPT message, otherwise, it is a
REJECT message. An optimization is that if ¢ has already sent a TEST message over
the same edge and is waiting for a response, and if p and ¢ are in the same fragment,
then ¢ does not respond — the TEST message that ¢ already sent will inform p that
the edge (p, ¢) is not external.

When a REJECT message (or a TEST in the optimized case described above) is
received, the recipient marks that link as rejected, if it is unknown. It is possible
that the link is already marked as branch, in which case it should not be changed
to rejected.

When a ChangeRoot(f) occurs, minlink(f) is marked as branch; when an
Absorb(f,g) occurs, the reverse link of minlink{g) is marked as branch. As soon as
a link [ is classified as branch, the InTree(l) output action can occur; as soon as a
link [ is classified as rejected, the NotInTree(l) output action can occur.

The requeuing of a message is a delicate aspect of this (as well as the original)
algorithm. When p receives a message that it is not yet ready to handle, it cannot
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simply block receiving any more messages on that link, but instead it must allow
other messages to jump over that message, as the following example shows. Suppose
p is in a fragment at level 3, ¢ is in a fragment at level 4, p sends a TEST message
to ¢ with parameter 3, and before it is received, g sends a TEST message to p with
parameter 4. When p receives ¢'s TEST message, it is not ready to handle it. When
g receives p’s TEST message, it sends back an ACCEPT message. In order to prevent
deadlock, p must be able to receive this ACCEPT message, even though it was sent
after the TEST message. Thus, the correctness of the algorithm depends on a subtle
interplay between FIFO behavior, and occasional, well-defined, exceptions to it.

The following scenario demonstrates the necessity of checking that lstafus(l) is
unknown before changing it to rejected, when a TEST or REJECT is received. (The
reason for the check, which also appears the full algorithm, is not explained in
[GHS].) Suppose p is in fragment f with level 8 and core ¢, ¢ is in fragment g with
level 4 and core d, and (g¢,p) is the minimum-weight external link of g. First, ¢
determines that (g,p) is its local minimum-weight external link. Then p sends a
TEST(8, ¢) message to p, which is requeued, since 8 > 4. Eventually, ComputeMin(g)
occurs, and minlink(g) is set equal to (g,p). Then ChangeRoot(g) occurs, and (g, p)
is marked as branch. Then Absord( f, g) occurs, and (p, ¢) is marked as branch. The
next time that g tries to process p’s TEST(8, d) message, it succeeds, determines that
(¢, p) is not external, since d is the core of ¢’s fragment, and sends REJECT to ¢. But
g had better not change the classification of (¢, p) from branch to rejected. Similarly,
when p receives ¢’s REJECT message, it had better not change the classification of
(p, q) from branch to rejected.

Define automaton TAR (for “Test-Accept-Reject”) as follows.

The state consists of a set fragments. Each element f of the set is called a
fragment, and has the following components:

o subtree( f), a subgraph of G;

e core(f), an edge of G or nil;

e level( f), a nonnegative integer;
o manlink( f), a link of G or nil;
o rootchanged( f), a Boolean; and
o testsel( f), a subset of V(G).

37



Section 4.2.3: TAR Simulates GC
For each node p, there is a variable testlink(p), which is either a link of G or nil.
For each link (p, ¢), there are associated four variables:
o Istatus((p, q)), which takes on the values “unknown”, “branch” and “rejected”;
o tarqueuey({p,q)), a FIFO queue of messages from p to ¢ waiting at p to be sent;

o tarqueuey,({p,q)), a FIFO queue of messages from p to ¢ that are in the com-
munication channel; and

o tarqueney((p,q)), a FIFO queue of messages from p to ¢ waiting at ¢ to be
processed.

The set of possible messages M is {TEsT(l,¢) : | = 0,¢c € E(G)} U {accEPT,
REJECT}.

The state also contains Boolean variables, answered(l), one for each I € L(G),
and Boolean variable awake.

In the start state of TAR, fragments has one element for each node in V(G); for
fragment f corresponding to node p, subtree(f) = {p}, core(f) = nil, level(f) =0,
minlink(f) is the minimum-weight link adjacent to p, reotchanged( f) is false, and
testset( f) is empty. For all p, testlink(p) is nil. For each link [, Istatus(!) = unknown.
The message queues are empty. Each answered(l) is false and awake is false.

The derived variable farqueue((p,q)) is defined to be tarqueuey((p,q)) || tar-
queuepg((p, q)) || tarqueue,((p.q)). *

The derived variable acemin(f) is defined as follows. If minlink(f) # nil, or
if there is no external link of any p € nodes(f) — testset(f), then acemin(f) = nil.

Otherwise, accmin(f) is the minimum-weight external link of all p € nodes(f) —
testset( f).

Input actions:

e Start(p), p € V(G)
Effects:

1 Given two FIFO queues ¢; and g, define q||¢gz to be the FIFO queue obtained
by appending ¢» to the end of q;. Obviously this operation is associative.
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awake := true

Output actions:

o InTree((p,q)), (p.q) € L(G)
Preconditions:
Istatus((p,q)) = branch
answered((p, q)) = false
Effects:
answered((p, q)) := true

o NoiInTree((p,q)), (p.q) € L(G)
Preconditions:
Istatus((p, ¢)) = rejected
answered((p, q)) = false
Effects:

answered((p, q)) := true
Internal actions (and a procedure):

e ChannelSend((p, q),m), (p.q) € L(G), me M
Preconditions:
m at head of tarqueune,((p,q))
Effects:
dequeue(tarqueue,({p, q}))
enqueue(m, tarqueune,.((p,g)))

o ChannelRecv((p,q),m), (p.q) € L(G),m e M
Preconditions:
m at head of tarqueueyqy((p,q))
Effects:

dequeue(tarqueue,,((p.q)))
enqueue(m, tarqueue,((p, q)))

o SendTest(p), p € V(G)
Preconditions:
p € testsei( fragmeni(p))
testlink{p) = nil
Effects:
execute procedure Test(p)
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e Procedure Tesi(p), p € V(G)
— let f = fragmeni(p) —
if [, the minimum-weight link of p with Istatus(!) = unknown, exists then |
testlink(p) :=1
enqueue(TEST(level(f), core(f)), tarqueue (1)) |
else [
remove p from testset( f)

testlink(p) := nil |

o ReceiveTest((q,p},l,c), (p,q) € L(G)
Preconditions:
TEST(I, ¢) at head of tarqueue,({q, p))
Effects:
dequeue(tarqueue,((q.p)))
if I > level(fragmeni(p)) then
enqueue(TEST(I, ¢), tarqueuey({g, p)))
else
if ¢ # core( fragmeni(p)) then
enqueue(ACCEPT, tarqueue,((p, q)))
else |
if lstatus((p,q)) = unknown then Istatus({p, ¢)) := rejected
if testlink(p) # (p, ¢) then
enqueue(REJECT, tarqueuey((p, ¢)))
else execute procedure Test(p) |

® ReceiveAccept((q,p)), (¢.p) € L(G)
Preconditions:

ACCEPT at head of tarqueue,((q, p))
Effects:

dequeue( tarqueue,((g, p)))

testlink(p) := nil

remove p from testsei( fragment(p))

o ReceiveReject({q,p)), (q,p) € L(G)
Preconditions:
REJECT at head of tarqueuey((q, p))
Effects:

dequeue( tarqueuey((q,p)))
if Istatus((p,¢)) = unknown then Istatus((p,q)) := rejected
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execute procedure Test(p)

o ComputeMin(f), f € fragments
Preconditions:

minlink( f) = nil
acemin( f) # nil
testset(f) =0

Effects:
manlink( f) := acemin(f)

¢ ChangeRool(f), f € fragments

Preconditions:
awake = true
rootchanged( f) = false
minlink( f) # nil

Effects:
rootchanged(f) := true
Istatus( minlink(f)) := branch

o Merge(f,g), f,g € fragments

Preconditions:
f#g
rootchanged( f) = rooichanged(g) = true
minedge( f) = minedge(g)

Effects:
add a new element h to fragments
subtree(h) := subtree(f) U subiree(g) U minedge(f)
core(h) := minedge( f)
level(h) := level( f) + 1
manlink(h) ;= nil
rootchanged(h) := false
testset(h) := nodes(h)
delete f and ¢ from fragments

o Absorb(f,q), f.g € fragments
Preconditions:

rootchanged(g) = true

level(g) < level( f)
— let (g, p) = minlink(g) —

fragment(p) = f
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Effects:
subtree( f) := subtree(f) U subtree(g) U minedge(g)
if p € testset(f) then testset(f) := testset(f) U nodes(g)
Istatus((p, ¢)) := branch
delete g from fragments

A message m is defined to be a protocol message for link (p,q) in a state if m
is one of the following:
(a) a TEST message in tarqueue((p,q)) with Istatus({p. q)) # rejected.
(b) an ACCEPT message in tarqueue( (g, p))
(c) a REJECT message in tarqueue((q,p))
(d) a TEST message in tarqueue((q,p)) with Istatus((q, p)) = rejected.
A protocol message for (p,gq) can be considered a message that is actively helping
p to discover whether (p,q) is external.

Define the following predicates on states of TAR. (All free variables are uni-
versally quantified. )

e TAR-A:
(a) If Istatus((p, ¢)) = branch, then either (p,q) € subiree(fragment(p)) or min-

link (fragment(p)) = (p,q).
(b) If (p,q) € subiree(fragment(p)), then lstatus((p,q)) = Istatus({g,p)) =
branch.

o TAR-B: If lstatus((p,q)) = rejected, then fragment(p) = fragmeni(q) and
(p,q) & subtree(fragment(p)).

o TAR-C: If testlink(p) # nil, then
(a) testlink(p) = (p, ¢) for some g;
(b) p € testsei(fragment(p));
(c) there is exactly one protocol message for (p, ¢);

(d) if lstatus((p, g}) # branch, then (p,q) is the minimum-weight link of p with
Istatus unknown;

(e) if lstatus((p,q)) = branch, then lstatus({g,p)) = branch and iestlink(q) #
(a,p).

o TAR-D: If there is a protocol message for (p, g}, then testlink(p) = (p,q).

o TAR-E: If TEsT(l, ¢) is in tarqueue((p,q)) then
(a) (p,q) # core(fragment(p));
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(b) if Istatus((p,q)) # rejected, then ¢ = core(fragment(p)) and | = level(frag-

ment(p)); and

(c) if Istatus({p,q)) = rejected, then ¢ = core(fragment(q)) and | = level( frag-

ment(q)).

My

TAR-F: If AcCEPT is in tarqueue((p,q)), then fragmeni(p) # fragment(q) and
level (fragment(p)) = level( fragment(q)).

TAR-G: If REJECT is in tarqueue((p, ¢)), then fragment(p) = fragment(q) and
Istatus ({p,q)) # unknown.

TAR-H: rootchanged( f) is true if and only if lstatus(minlink(f)) = branch.

TAR-I: If p ¢ testset(fragment(p)), then either no (p,q) has Istetus((p.q)) =
unknown, or else there is an external link (r,t) of fragmeni(p) with level( frag-
ment(p)) < level( fragment(t)).

TAR-J: If awake = false, then Istatus((p,q)) = unknown.
Let Pragr be the conjunction of TAR-A through TAR-J.

In order to show that TAR simulates GC, we define an abstraction mapping
= (83, A3) from TAR to GC. Define the function 83 from states(TAR) to

states(GC') by ignoring the message queues, and the testlink and lsfatus variables.
The derived variables acemin of TAR map to the (non-derived) variables acemin of
GC. Define the function .A; as follows. Let s be a state of TAR and # an action
of TAR enabled in s. The GC action TestNode(p) is simulated in TAR when p
receives the message that tells p either that this link is external or that p has no
external links.

o If # = ReceiveAccept((q,p)), then Az(s,w) = TesiNode(p).

e If 7 = SendTest(p) or ReceiveReject((q,p)), then As(s,w) = TesiNode(p) if

there is no link (p,r), r # ¢, with Istatus((p,r)) = unknown in s; otherwise,
Asz(s, ) is empty.

o If @ = ReceiveTest((q,p),l,c), then As(s,7) = TestNode(p) if | < levelfrag-

ment(p)), c = core(fragment(p)), testlink(p) = (p, ), and there is no link (p, ),
r # g, with lstatus({p,r)) = unknown in s; otherwise, A3(s,w) is empty.

o If 7 = ChannelSend((p,q),m) or ChannelRecv((p,q),m), then Az(s,7) is

empty.
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e For all other values of 7, A3(s,7) = 7.

The following predicates are true in every state of TAR satisfying (P5-083) A
Prar. Recall that Pgo = (Pgoar © $2) A Pge. I Pge(S3(s)) is true, then the
GC predicates are true in S3(s), the COM predicates are true in S2(Ss(s)), and the
HI predicates are true in &1(S2(S3(s))). Thus, these predicates are derivable from
Pr g, together with the HI, COM and GC predicates.

e TAR-K: If testlink(p) = (p.q), then Istatus({p, ¢)) # rejected.
Proof: By TAR-C(d) and TAR-C(e).

e TAR-L: If minlink(f) = nil and [ is an external link of f, then lstatus(l) =
unknown.

Proof: By TAR-A(a), if lstatus(l) = branch, then [ is internal. By TAR-B, if
Istatus(l) = rejected, then [ is internal. u}

o TAR-M: If TesT(l, ¢) is in farqueue((p,q)), then I > 1 and ¢ # nil.

Proof: Let f = fragmeni(p) and g = fragment(q).
1. TesT(l,¢) is in tarqueue((p,q)), by assumption.

Case 1: Istaius((p,q)) # rejected.

Istatus((p, q)) # rejected, by assumption.

¢ = core( f) and [ = level(f), by Claim 2 and TAR-E(b).

testlink(p) = (p, q), by Claims 1 and 2 and TAR-D.

p € testset( f), by Claim 4 and TAR-C(b).

manlink( f) = nil, by Claim 5 and GC-C.

. subtree( f) # {p}, by Claim 6 and COM-E.

. core( f) # nil and level( f) # 0, by Claim 7 and COM-F.
. level( f) > 1, by Claim 8 and COM-F.

10. ¢# nil and | > 1, by Claims 3, 8 and 9.

oo

~ o o

o oo

Case 2: Istatus({p, q)) = rejected.
11. Ilstatus((p, q)) = rejected, by assumption.
12. ¢ = core(g) and [ = level(g), by Claim 11 and TAR-E(c).
13. testlink(q) = (g,p), by Claims 1 and 11 and TAR-D
14. g € testset(g), by Claim 13 and TAR-C(b).
15. minlink(g) = nil, by Claim 14 and GC-C.
16. subiree(g) # {q¢}, by Claim 15 and COM-E.
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17. core(g) # nil and level(g) # 0, by Claim 16 and COM-F
18. level(g) = 1, by Claim 17 and COM-F.
19. e # nil and I > 1, by Claims 12, 17 and 18. O

e TAR-N: If TEsT(l,¢) is in tarqueue((g,p)) and ¢ = core(fragment(p)), then
fragmeni(p) = fragment(q).

Proof:

TEST(l,¢) is in tarqueue({qg,p)), by assumption.

¢ = core( fragment(p)), by assumption.

¢ # nil, by Claim 1 and TAR-M.

If Istatus((g, p)) # rejected, then ¢ = core(fragment(q)), by TAR-E(b).

o 09

5. If Istatus((g,p)) # rejected, then fragment(q) = fragment(p), by Claims 2, 3 and
4, and COM-F.
6. If Istatus((q,p)) = rejected, then fragment(q) = fragmeni(p), by TAR-B. 0

e TAR-O: If minlink( f) # nil, then there is no protocol message for any link of
any node in nodes( f).

Proof:

1. minlink( f) # nil, by assumption.

2. testset( f) = 0, by Claim 1 and GC-C.

3. testlink(p) = nil for all p € nodes( f), by Claim 2 and TAR-C(b).

4. There is no protocol message for any link (p, q), p € nodes(f), by Claim 3 and
TAR-D. O

o TAR-P: If TeST(I, ¢) is in tarqueue((q, p)), ¢ = core(fragment(p)), testlink(p) =
(p.q), and lstatus({q,p)) # rejected, then a TEST(I',c') message is in tar-
queue((p, q)) and Istetus({p,q)) = unknown.

Proof:

. TEST(l,c) is in tarqueue((q,p)), by assumption.

¢ = core( fragment(p)), by assumption.

testlink(p) = (p. ¢), by assumption.

Istatus({q, p)) # rejected, by assumption.

fragment(p) = fragment(q), by Claims 1 and 2 and TAR-N.

No ACCEPT message is in tarqueue((g, p}), by Claim 5 and TAR-F.

The TEST(l,c) message in tarqueue((q,p)) is a protocol message for (g,p), by
Claim 4.

8. testlink(q) = (g.p), by Claim 7 and TAR-D.

B 1o

ol o
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9. Istatus((g, p)) # branch, by Claims 3, 8 and TAR-C(e).

10. Istatus( (g, p)) = unknown, by Claims 4 and 9.

11. No REJECT message is in tarqueue((q,p)), by Claim 10 and TAR-G,

12. There is exactly one protocol message for (p, ¢). by Claim 3 and TAR-C(c).
13. A TEST(l',¢') message is in tarqueue((p,q)) and Istatus((p,q)) # rejected, by
Claims 6, 7, 11 and 12.

14. Istatus((p, q)) # branch, by Claims 3 and 8 and TAR-C(e).

15. Istatus((p,q)) = unknown, by Claims 13 and 14.

Claims 13 and 15 give the result. O
Lemma 17: TAR simulates GC via M3, Prag, and Pge.

Proof: By inspection, the types of TAR, GC, Mj3, and Prap are correct. By
Corollary 16, P is a predicate true in every reachable state of COM.

(1) Let s be in start(TAR). Obviously, Prar is true in s, and S3(s) is in
start(GC).

(2) Obviously, As(s, 7)|ext(GC) = w|ext(TAR).

(3) Let (s',m,s) be a step of TAR such that Pf is true of S3(s') and Prup
is true of s’. Condition (3a) is only shown below for those predicates that are not
obviously true in s.

i) = is ChannelSend((p,q),m) or ChannelRecv((p,q),m). As(s'.7) is
empty. (3a) and (3b) are obviously true.

ii) 7 is Start(p) or InTree(l) or NotInTree(l).

(3c) Aa(s',7) = w. If # = InTree(l), then by TAR-J and TAR-A(a), 7 is
enabled in S3(s'). If # = NotInTree(l), then by TAR-J and TAR-B, r is enabled in
S3(s"). Thus, S3(s')7S3(s) is an execution fragment of GC.

(3a) Obviously, Prag is still true in s.

iii) = is SendTest(p). Let f = fragment(p) in s'.

Case 1: There is a link (p, ¢) with Istaius({p,¢q)) = unknown in s'.

(3b) As(s',w) is empty. It is easy to see that S3(s’) = S3(s).
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(3a) By TAR-D and precondition that testlink(p) = nil, there is no protocol
message for any link of p in s'.

TAR-C(c): In s, there is exactly one protocol message for (p,q), namely the
TEST message in farqueue((p,q)).

TAR-D: The TEST message added in s is a protocol message for (p, ¢}, and is
not a protocol message for any other link. By the code, testlink(p) = (p.q).

TAR-E(a): By TAR-A(b), (p,q) € subtree( f). By COM-F, (p,q) # core(f).

Case £: There is no link (p, g) with lstatus((p,¢)) = unknown in s'.
(3¢c) Az(s',w) = TesiNode(p).
Claims about s':

1. p € testset( ), by precondition.
2. minlink( f) = nil, by Claim 1 and GC-C.
3. There is no external link of p, by Claim 2, TAR-L, and assumption.

By Claims 1 and 3, TestNode(p) is enabled in S3(s’).

Claims about s:

. p & testset( f), by code.
. There is no external link of p, by Claim 3 and code.

accmin( f) does not change, by Claim 5.

o Ot

By Claims 4, 5, and 6, the effects of TestNode(p) are mirrored in S3(s).

(3a) TAR-I: By assumption for Case 2, p has no unknown links in s', and the
same is true in s.

iv) 7 is ReceiveTest((q,p),l,c). Let f = fragment(p) in s'.

Case 1: | < level(f), ¢ = core(f), testlink(p) = (p,q), and there is no link
(p,r), r # ¢, with Istatus({p,r)) = unknown in s'.

(3c) As(s',7) = TestNode(p).

Claims about s°:
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¢ = core( f), by assumption.
testlink(p) = {(p, ¢}, by assumption.
There is no link (p,r), r # g, with Istatus((p,r)) = unknown, by assumption.
TEST(1,¢) is in tarqueue((g,p)), by preconditions.
p € testsei( f), by Claim 2 and TAR-C(b).
minlink( f) = nil, by Claim 5 and GC-C.
No link {p,r}, r # g, is external, by Claims 6 and 3 and TAR-L.
(p, ¢} is not external, by Claims 2, 3 and 4 and TAR-N.
By Claims 5, T and 8, TestNode(p) is enabled in s'.
Claims about s:
9. p & testset( f), by code.
10. There is no external link of p, by Claims 7 and 8 and code.
11. aceman(f) does not change, by Claim 10.

PO ST e i ke B =

By Claims 9, 10 and 11, the effects of TestNode(p) are mirrored in s.

(3a) TAR-B: The only case of interest is when lstatus({p.q)) changes from
unknown in s’ to rejected in s. By TAR-N, f = fragment(q) in s’ and the same is
still true in s. By TAR-A(b), (p,q) € subtree(f) in s', and the same is still true in
&

TAR-D:
Claims about s':

TEST(l, ¢) is in tarqueue((q,p)), by precondition.

¢ = core( f), by assumption.

testlink(p) = (p, q), by assumption.

There is exactly one protocol message for (p, ¢), by Claim 3 and TAR-C(c).
There is no protocol message for any link (p,r), r # ¢, by Claim 3 and TAR-D.

LB L o

Case A: Istatus((g,p)) = rejected. The TEST(I,c) message in tarqueue({q, p))
is the protocol message for (p,q) in s'. Since it is removed in s, by Claims 4 and
5 there is no protocol message for any link of p in s. Concerning ¢q: by TAR-K,
testlink(q) # (g, p); thus, the predicate is still true for ¢ in s, even if Istatus({p, q})
is changed to rejected.

Case B: lstatus({(g,p)) # rejected.

6. A TEST(l',¢') is in tarqueue((p,q)) and lstatus((p,¢)) = unknown, by Claims 1,
2, 3, assumptions for Case B, and TAR-P.
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7. testlink(q) = (g,p), by Claim 1, assumption for Case B and TAR-D.

In s, the TEST(I',¢') message in tarqueue((p,q)), which exists by Claim 6, be-
comes a protocol message for (g, p), since lstatus((p, q)) is changed to rejected. By
Claim 7, testlink(q) has the correct value. By Claims 4 and 5, the predicate is
vacuously true for p in s.

TAR-E(c): The only case of interest is when lstatus((p, q)) goes from unknown
in &' to rejected in s, while there is a TEST(!',¢') message in tarqueue({p,q)). By
TAR-E(b), ¢ = core(f) and I' = level(f) in s'. By TAR-N, fragment(q) = f. Thus
¢' = core(fragment(q)) and I' = level( fragmeni(q)).

TAR-I: By the assumption for Case 1 and code, p has no unknown links in s.

TAR-J: The TEsST message in tarqueue((g,p)) is a protocol message for ei-
ther (p.q) or (g,p). Without loss of generality, suppose for (p.q). By TAR-
D, festlink(p) = (p,q), and by TAR-C(b), p € testset(f). Thus, by GC-C,
minlink( f) = nil, and by COM-C awake = true.

Case 2: 1 > level(f), or ¢ # core(f), or testlink(p) # (p,q), or there is a link
(p, ), r # g, with lstatus((p,r)) = unknown in s'.

(3b) As(s',w) is empty. The only variables that are possibly changed are
Istatus({p,q)), tarqueue’s, and testlink(p), none of which is reflected (directly) in
the state of GC. Thus acemin(f) does not change and S3(s') = Sa(s).

(3a) TAR-B: As in Case 1.

TAR-C(b): If testlink(p) # nil in s, then by inspecting the code, the same is
true in s'. So the predicate is true in s because it is true in s'.

TAR-C(c): If | > level( f) in ', nothing affecting the predicate changes in going
from s' to s. Suppose | < level(f) in 5.

Claims about s':

1. TEST(l,¢) is in tarqueue({g,p)), by precondition.
Case A: ¢ # core(f).

2. Istatus((g, p)) # rejected, by TAR-E(c).
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3. The TEST(l,¢) message in tarqueue((q, p)) is a protocol message for (q,p), by
Claim 2.

The ACCEPT message added in s is a protocol message for (¢,p). There is no
change that affects the truth of the predicate for p.

Case B: ¢ = core(f).
Case B.1: testlink(p) # (p, q)-

4. There is no protocol message for (p. ¢), by TAR-D.
5. The TEsT(L, ¢) message in tarqueue((g,p)) is a protocol message for (g,p), by
Claim 4.

The REJECT message added in s is a protocol message for (g,p). No change
affects the truth of the predicate for p.

Case B.2: testlink{p) = (p, q).

6. There is a link (p,r), r # q, with lstatus((p,r}) = unknown, by assumption for
Case B.2.

7. There is no protocol message for (p,r), by Claim 6 and TAR-D.
Case B.2.1: Istatus({q, p)) # rejected.

8. There is a TEST(!', ¢') message in taerqueue((p, ¢)) and Istatus({p, ¢)) = unknown,
by assumptions for Case B.2.1 and TAR-P.

9. The TEST(l,c) message in tarqueue((g,p)) is a protocol message for (g,p), by
assumptions for Case B.2.1.

The TEST(I', ¢') message of Claim 8 becomes a protocol message for (g, p) in s,
since lstatus((p, ¢)) is changed to rejected. Concerning p: testlink(p) = (p,r) in s,

and a TEST message is added to farqueue((p,r)) and is the sole protocol message
for (p,r) by Claim 7.

Case B.2.2 Istatus({q, p)) = rejected.

10. The TEST(I, ¢) message in tarqueue( (g, p)) is the protocol message for (p, ¢), by
assumptions for Case B.2.2.

11. testlink(q) # (g, p). by assumption for Case B.2.2 and TAR-K.

The predicate is true for p in s because the TEST(I, ¢) message, which was the
sole protocol message for (p, ¢) by Claim 10, is removed in s; testlink(p) is now (p,r),
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and (p,r) has exactly one protocol message, by inspecting the code. No change is
made that affects the truth of the predicate for g, by Claim 11.

TAR-D: If | > level(f) in s', nothing affecting the predicate changes in going
from s’ to s. Suppose | < level(f) in s'.

Claims about s':
1. TeST(l,¢) is in farqueue({q,p)), by precondition.
Case A: ¢ # core( f).

2. lstatus({g, p)) # rejected, by assumption for Case A and TAR-E(c).
3. testlink(g) = (g, p), by Claims 1 and 2 and TAR-D.

Then testlink(q) is still (g, p) in s, and there is an ACCEPT message in tarqueue((p, q)). *
No change affects the truth of the predicate for p.

Case B: ¢ = core( f).

Case B.1: testlink(p) # (p,q).

4. The TEST(l,c) message in tarqueue((q,p)) is a protocol message for (g, p), by
assumptions for Case B.1 and TAR-D.
5. testlink(q) = (g.p), by Claim 4 and TAR-D.

Then in s, there is a REJECT message in tarqueue((p,q)) and testlink(q) is still
(¢,p). No change affects the truth of the predicate for p.

Case B.2: testlink(p) = (p,q).

6. There is a link (p.r), r # ¢, with lstatus((p,r)) = unknown, by assumption for
Case 2.

7. There is exactly one protocol message for (p, ¢}, by TAR-C(c).
Case B.2.1: lstatus({q,p)) = rejected.
8. testlink(q) # (q,p), by TAR-K.

No changes affect the truth of the predicate for ¢. For p: The TEST(I, ¢) message
in tarqueue((g,p)) is the protocol message for (p,¢). It is removed in s. A TEST
message is added to tarqueue((p,r)) in s, where lstetus((p,r)) = unknown, and
testlink(p) = (p.r) by code.
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Case B.2.2: lstatus((q,p)) # rejected.

9. A TeEST(!',c') message is in tarqueue((p,q)) and lstatus((p,q)) = unknown, by
Claim 1, the assumption for Case B.2.2 and TAR-P.
10. testlink({q) = (g, p), by Claim 8 and TAR-D.

For ¢: In s, since Istatus({g, p)) is changed to rejected, the TEST(I'. ¢) message
in tarqueue((p,q)) (of Claim 9) becomes a protocol message for (g,p). This is OK
by Claim 10.

For p: The TEsT(l', ') message of Claim 9 is the protocol message for (p,q).
The rest of the argument is as in Case B.2.1.

TAR-E: (a) Suppose a TEST message is added to tarqueue((p,r)). Asin 7 =
SendTest(p), Case 1. (¢) As in Case 1.

TAR-F: The only case of interest is when an ACCEPT message is added to
tarqueue( (p,q)) in s.

Claims about s';

TEST(l,c) is in tarqueue({g,p)), by precondition.

I < level(f), by assumption.

¢ # core( f), by assumption.

lstatus({q, p)) # rejected, by Claims 1 and 3 and TAR-E(c).
¢ = core( fragment(q)), by Claims 1, 4 and TAR-E(b).

l = level(fragmeni(q)), by Claims 1, 4 and TAR-E(b).

core( f) # core( fragment(q)), by Claims 3 and 5.

level( f) < level(fragment(q)), by Claims 2 and 6.

adie BB S I L

Claims 7 and 8 are still true in s.

TAR-G: The only case of interest is when a REJECT message is added to
tarqueue((p,q)).

Clatms about 5';

1. TEsT(l,¢) is in tarqueue((q,p)), by precondition.
2. ¢ = core(f), by assumption.
3. testlink(p) # (p, q), by assumption.

4. If Istatus((q, p)) # rejected. then ¢ = core(fragment(q)), by Claim 1 and TAR-
E(b).
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5. If Istatus({q,p)) # rejected, then f = fragment(q), by Claim 4 and COM-F.
6. If lstatus((q.p)) = rejected, then f = fragmeni(q), by TAR-B.
7. f = fragmeni(g), by Claims 5 and 6.

Claim 7 is still true in s.

TAR-I: The only case of interest is when p is removed from testset(f). But
when that happens, there are no unknown links of p.

TAR-J: Suppose Istatus((p.q)) is changed to rejected. As in Case 1.
v) = is ReceiveAccept({q,p)). Let f = fragment(p) in s'.
(3c) As(s',7) = TestNode(p).

Claims about s':

ACCEPT is in tarqueue((q,p)), by precondition.

fragment(q) # f, by Claim 1 and TAR-F.

level( f) < level( fragment(q)), by Claim 1 and TAR-F.

(p, ) is an external link of f, by Claim 2.

testlink(p) = (p, q), by Claim 1 and TAR-D

p € testset( f), by Claim 5 and TAR-C(b).

minlink( f) = nil, by Claim 6 and GC-C.

lstatus((p, ¢)) # branch, by Claims 4 and 7 and TAR-L.

. {p,q) is the minimum-weight link of p with Istatus unknown, by Claims 5 and 8
and TAR-C(d).

10. (p, q) is the minimum-weight external link of p, by Claims 7 and 9 and TAR-L.

oo o

© W o o

By Claims 6, 10, and 3, TestNode(p) is enabled in s'.
Claims about s:

11. p & testset( f), by code.
12. (p.q) is the minimum-weight external link of p, by Claim 10.

13. If wi(p,q) < wi(acemin(f)) in &', then acemin(f) = (p,q) in s, by Claims 11
and 12.

By Claims 11 and 13, the effects of TestNode(p) are mirrored in s.
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(3a) TAR-D: In &', ACCEPT in tarqueue((g,p)) is a protocol message for (p,g).
By TAR-C(c) and TAR-D, it is the only protocol message for any link of p in s'.
Thus in s, there is no protocol message for any link of p, and the predicate is
vacuously true in s for p. No other node is affected.

TAR-I: By Claims 3 and 4, it is OK to remove p from testset( f).
vi) 7 is ReceiveReject((q,p)). Let f = fragment(p) in s'.

Case 1: There is a link (p,r), r # ¢, with lstatus((p,r)) = unknown.
(3b) As(s',7) is empty. Obviously S3(s') = Sa(s).

(3a) Clatms about s':

1. REJECT is in tarqueue({g,p)). by assumption.

2. The REIECT in tarqueue((g,p)) is a protocol message for (p,q), by Claim 1.

3. testlink(p) = (p, q), by Claim 2 and TAR-D.

4. There is only one protocol message for (p, ¢), by Claim 3 and TAR-C(c).

5. There is no protocol message for any other link of p, by Claim 3 and TAR-D.
6. p € testset(f), by Claim 3 and TAR-C(b).

TAR-B: Suppose Ilstatus((p, q)) goes from unknown in s’ to rejected in s. By

TAR-G, f = fragmeni(q) in s'. By TAR-A(b), (p,q) € subtree(f) in s'. Both facts
are still true in s.

TAR-C(b): By Claim 6.

TAR-C(c): In s, testlink(p) = (p,r), and the TEST message is the sole protocol
message for (p,r) by Claim 5.

TAR-D: In s, the REJECT message is removed and a TEST message is added to
tarqueue((p,r)) with Istatus((p,r)) = unknown. So there is a protocol message for
(p,r) and no other link of p by Claims 4 and 5. By code, testlink(p) = (p,r).

TAR-E(a): Suppose a TEST messge is added to some tarqueue((p,r)). As in
7 = SendTesi(p), Case 1.

TAR-E(c): The only case of interest is when Istatus((p,¢)) goes from un-
known in s' to rejected in s. But by Claims 2 and 4, there is no TEST message
in tarqueue((p,q)) in &' if lstatus({p, ¢)) = unknown.
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TAR-I: By Claim 6, the predicate is vacuously true.

TAR-J: Suppose Istatus((p,q)) is changed from unknown to rejected. Similar
to = = ReceiveTest({q, p), 1, c), Case 1, with REJECT being the protocol message for

(p.q)-

Case 2: There is no link (p,r), r # ¢, with lstatus((p,r)) = unknown.
(3c) As(s',7m) = TestNode(p).
Claims about s':

REJECT is in tarqueue({g,p)), by precondition.

testlink(p) = (p, q), by Claim 1 and TAR-D.

p € testset( f), by Claim 2 and TAR-C(b)

minlink( f) = nil, by Claim 3 and GC-C.

fragment(q) = f, by Claim 1 and TAR-G.

{p,q) is not external, by Claim 3.

. There is no external link (p,r), r # g, of p, by Claim 4, TAR-L, and assumption
for Case 2.

N ok W

By Claims 3, 6 and 7, TestNode(p) is enabled in s'.
Claims about s:

8. p & testset( f), by code.
9. There is no external link of p, by Claims 6 and 7 and code.
10. acemin(f) does not change, by Claim 9.

By Claims 8, 9 and 10, the effects of TestNode(p) are mirrored in s.

(3a) TAR-B: Same as Case 1.

TAR-D: In s, testhnk(p) = nil. We must show there is no protocol message
for any link of p. In s, the REJECT message in tarqueue((g, p)) is the sole protocol
message for any link of p, as in Case 1. The REJECT message is removed in s and
no protocol message is added.

TAR-E(c): As in Case 1.
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TAR-I: By assumption for Case 2 and code, there are no unknown links of p
in s.

TAR-J: As in Case 1.
vii) = is ComputeMin(f).

(3c) As(s',7) = . Since accmin( f) = nil in s because minlink( f) = nil in s,
it is easy to see that 7 is enabled in S3(s') and that its effects are mirrored in S3(s).

(3a) TAR-H: By GC-A, acemin(f) = I is an external link of f in s'. Since
minlink(f) = nil in s', Istatus(l) # branch by TAR-A(a). Also, by COM-B,
rootchanged(f) = false in s'. Thus in s, reotchanged(f) = false and Istatus(min-
link( f)) # branch.

viii) = is ChangeRoot(f).

(3¢) Az(s',7) = m. It is easy to see that 7 is enabled in S3(s') and that its
effects are mirrored in Ss(s).

(3a) Only TAR-A(a), TAR-H and TAR-J are affected. Obviously TAR-A(a)
and TAR-H are still true in s. For TAR-J: by precondition awake = true in §’, and
is still true in s.

ix) = is Merge(f,g).

(3c) As(s’,7) = 7. After noting that acemin(h) = nil in s because testsei(h) =
nodes(h) in s, it is easy to see that = is enabled in S3(s') and that its effects are
mirrored in S3(s).

(3a) TAR-A(b): The predicate is true for h by TAR-H.
TAR-B: The predicate is true for h by TAR-H.

TAR-C: By GC-C, no r in nodes(f) or nodes(g) is in testset( f) or testset(g) in
s'. By TAR-C(b), testlink(r) = nil for all such r. So the predicate is vacuously true
in h.

TAR-E(a): By TAR-O, there is no TEST message in tarqueue((p,q)) or in
tarqueue( (g, p)), where (p,¢) = minlink({f), in s'. Since (p,q) = core(h) in s, done.

TAR-E(b): By TAR-O, there is no TEST(l, ¢) message in farqueue((p,q)) with
Istatus((p,q)) # rejected in s', for any p in nodes( f) or nodes(g). Thus, the same is
true in s for any p in nodes(h), and the predicate is vacuously true in s for h.
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TAR-E(c): If TEST(],¢) is in targueue((p,q)) and lstatus({p,q)) = rejected in
s', then it is a protocol message for (g,p) in s'. By TAR-O. fragment(q) is neither
f nor g in s'. So the predicate is still true in s.

TAR-F: If AccEPT is in tarqueue((p,q)) in &', it is a protocol message for (g, p)
in s'. By TAR-O, fragment(q) is neither f nor ¢ in s'. If fragmeni(p) is neither
f nor g in s', then the predicate is still true in s. Without loss of generality,
suppose fragment(p) = f in s'. By TAR-F, level(f) > level(fragment(q)) in s'.
Then fragment(p) = h # fragmeni(q) in s, and level(h) (in s) > level( f) (in ') >
level( fragment(q)) (in s' and s).

TAR-H: By code, rootchanged(h) = false. Since minlink(h) = nil by code,
lstatus (minlink(f)) # branch.

TAR-I: For nodes in h, the predicate is vacuously true since testset(h) =
nodes(h). For nodes not in h, the predicate is still true since the level of every
node formerly in nodes(f) or nodes(g) is increased.

x) = is Absorb(f,g).

(3c) As(s',7) = 7. It is easy to see that = is enabled in S3(s’). Below we show
that accmin(f) is the same in s as in s', which together with inspecting the code,
shows that the effects of 7 are mirrored in S3(s).

Let (g, p) = minlink(g). If p € testsei( f) in s', then every node in nodes(g) in
s' is added to testset( f) in s. No change is made to any of the criteria for defining
acemin f).

Suppose p € testset(f) in &'. If minlink(f) # nil in ', then the same is true in
s, and acemin(f) = nil in s' and s. Suppose minlink( f) = nil in s'.

Claims about s':

level(f) < level(g), by precondition.

p € nodes( f). by precondition.

p €& testset( f), by assumption.

minlink( f) = nil, by assumption.

q € nodes(g), by COM-A.

f # g, by Claim 1.

acemin(f) = (r,t), for some r and ¢, by Claims 2 through 6.
. fragment(t) # g, by Claims 1 and 7 and GC-A.

w1

o o
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9. (r.t) # (p, q), by Claims 5 and 8.

10. wi(r,t) < wt(p,q), by Claims 2, 3, 5, 6, 7, and 9 and GC-A.

11. wt(p,q) < wit(u,v) for any external link (u,v) of g, by COM-A.

12. wi(r,t) < wi(u,v) for any external link (u,v) of g, by Claims 10 and 11.

By Claims 7, 8 and 12, acemin(f) = (r,t) in s.

(3a) TAR-A(b): The predicate is true in s for f by TAR-H.
TAR-B: The predicate is true in s for f by TAR-H.

TAR-C(b): By GC-C, since minlink(g) # nil, testset(g) = 0 in s'. By TAR-
C(b), testlink{p) = nilin s’ for all p € nodes(g). There is no change for p € nodes( f)
in &' in going from s’ to s. Thus the predicate is true in s for f.

TAR-C(e): Suppose (g, p) = minlink(g) in s' and lstatus((p, ¢)) becomes branch
in s. By TAR-H, Istatus({g, p)) = branch in s'. Asin TAR-C(b), testlink(q) # (g, p),
so the predicate is still true in s.

TAR-E(a): OK because core( f) does not change.

TAR-E(b): Let (g,p) = minlink{g) in s'. If we can show Istatus({p,q)) #
rejected in s', we'd be done. If lstatus({p, q)) = rejected in s', then fragmeni(p) =
fragment(q). This contradicts level(g) < level( f), which implies that g # f.

TAR-E(c): Suppose TEST(l,c) is in tarqueue((p,q)) and lstatus((p,q)) = re-
jected in s', for some link (p,q) in L(G). This is a protocol message for (g,p).
By TAR-O, fragment(q) # ¢ in s'. Thus fragment(q) is the same in s’ and s, and
¢ = core(fragment(q)) and I = level( fragment(q)) in s.

TAR-F: Suppose ACCEPT is in tarqueue((p,q)) in s', for some link (p, ¢) in L(G).
This is a protocol message for (g, p). By TAR-O, fragment(q) # g in s'. By TAR-F,
fragmeni(p) # fragment(q) in s'. By preconditions, level(g) < level( f), so it cannot
be the case that fragmeni(p) = g and fragment(q) = f.

Suppose fragment(p) = g. Since level( fragmeni(p)) in s is greater than it is in
s', and since fragmenit(q) # f in s', the predicate is still true in s.

Suppose fragment(q) = f. Since fragment(q) is the same in s as in s, and since
fragmeni(p) # ¢ in s', the predicate is still true in s.
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If fragment(p) # g and fragment(q) # f in s', the predicate is obviously still
true in s.

TAR-G: Suppose REJECT is in tarqueue((p,q)) in s', for some link (p, ¢) in L(G).
This is a protocol message for (g, p). By TAR-O, fragment(q) # ¢ in s'. By TAR-G,
fragment(p) # g in §', since otherwise fragment(p) = fragment(q) = g in s'. So the
predicate is still true in s.

TAR-H: Let (g, p) = minlink(g). Since level(f) > level(g) by COM-A, (p,q) #
minlink(g). So it is OK to set Istatus((p,q)) to branch.

TAR-I: First note that if there is some node r € nodes(f) — testset(f) in s'
with an unknown link, then by TAR-I there is an external link (t,u) of f, and
level( f) < level(fragment(u)). Thus fragment(u) # g, so in s, the predicate is still
true for nodes that were in nodes( f) in s'.

To show that the predicate is true in s for nodes that were in nodes(g) in s': we
only need to consider the case when p ¢ testset(f) in &', i.e., when nodes formerly in
nodes(g) are not added to festset(f). Since level f) > level(g), minlink(f) # (p, q),
by COM-A. Thus, by TAR-A(a) and TAR-B, Istetus((p,q)) = unknown, and the
argument in the previous paragraph holds,

To show that the predicate is true in s for nodes that are not in either nodes( f)
or nodes(g) in ', it is enough to note that the only relevant change is that the level
of every node formerly in nodes(g) is increased. o

Corollary 18: Pr,p is true in every reachable state of TAR.

Proof: By Lemmas 1 and 17. O
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4.2.4 DC Simulates GC

This automaton focuses on how the nodes of a fragment cooperate to find the
minimum-weight external link of the fragment in a distributed fashion. The variable
minlink{ f) is now a derived variable, depending on variables local to each node,
and the contents of message queues. There is no action ComputeMin(f). The two
nodes adjacent to the core send out FIND messages over the core. These messages
are propagated throughout the fragment. When a node p receives a FIND message,
it changes the variable destatus(p) from unfind to find, relays FIND messages, and
records the link from which the FIND was received as its inbranch(p). Then the node
atomically finds its local minimum-weight external link using action TestNode(p) as
in GC, and waits to receive REPORT(w) messages from all its “children” (the nodes
to which it sent FIND). The variable findcouni(p) records how many children have
not yet reported. Then p takes the minimum over all the weights w reported by its
children and the weight of its own local minimum-weight external link and sends
that weight to its “parent” in a REPORT message, along inbranch(p); the weight and
the link associated with this minimum are recorded as bestwi(p) and bestlink(p),
and destatus(p) is changed back to unfind. When a node adjacent to the core has
heard from all its children, it sends a REPORT over the core. This message is not
processed by the recipient until its destatus is set back to unfind. When a node p
adjacent to the core receives a REPORT(w) over the core with w > bestwi(p), then
minlink({ f) becomes defined, and is the link found by following bestlinks from p.

The ChangeRoot( f) action is the same as in GC. When two fragments merge, a
FIND message is added to one link of the new core. A new action, AfterMerge(p, q).
adds a FIND message to the other link of the new core. When an Absorb(f,g)
action occurs, a FIND message is directed toward the old ¢ along the reverse link of

minlink(g) if and only if the target of minlink(g) is in testse?(f) and its destatus is
find.

This algorithm (as well as the original one) correctly handles “leftover” REPORT
messages. Recall that a REPORT message is sent in both directions over the core
(p,q) of a fragment f. Suppose the root p receives its REPORT message first, and
the other REPORT message, the “leftover” one, which is headed toward ¢, remains
in the queue until after f merges or is absorbed. Since the queues are FIFO relative
to REPORT and FIND messages, the state of ¢ remains such that when the leftover
REPORT message is received, the only change is the removal of the message.

Define automaton DC (for “Distributed ComputeMin”) as follows.
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The state consists of a set fragments. Each element f of the set is called a
fragment, and has the following components:

e subtree( f), a subgraph of G;
e core(f), an edge of G or nil;
e level( f), a nonnegative integer;
e rootchanged(f), a Boolean; and
o lestset( f), a subset of V(G).
For each node p, there are the following variables:
o destatus(p), either find or unfind;
e findcount(p), a nonnegative integer;
o bestlink(p), a link of G or nil;
o bestwi(p), a weight or oo; and
o inbranch(p), a link of G or nil.
For each link (p, ¢), there are associated three variables:
o dequeuey((p, g)), a FIFO queue of messages from p to ¢ waiting at p to be sent;

o dequeueyy((p.q)), a FIFO queue of messages from p to ¢ that are in the com-
munication channel; and

o dequeuney({p,q)), a FIFO queue of messages from p to ¢ waiting at ¢ to be
processed.

The set of possible messages M is {REPORT(w) : w a weight or co} U {FIND}.

The state also contains Boolean variables, answered(l), one for each | € L(G),
and Boolean variable awake.

In the start state of DC, fragments has one element for each node in V(G); for
fragment f corresponding to node p, subiree(f) = {p}, core(f) = nil, level(f) =0,
rootchanged( f) is false, and festset( f) is empty. For each p, destatus(p) = unfind,
findeount(p) = 0, bestlink(p) is the minimum-weight external link of p, bestwi(p) is
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the weight of bestlink(p), and inbranch(p) = nil. The message queues are empty.
Each answered(l) is false and awake is false.

The derived variable dcqueue{(p,q)) is defined to be degqueune,({(p,q)) || de-
queneng((p, q)) || deguene,((p.q)).

A REPORT(w) message is headed toward p if either it is n dequeune((q, p)) for
some ¢, or it is in some dequeue({g.r)), where g € subiree(r) and r € subtree(p). A
FIND message is headed toward p if it is in some dequeune({g,r)) and p is in subtree(r).
A message is said to be in subtree( f) if it is in some dequeune( (g, p)) and p € nodes( f).

Now minlink({ f) is a derived variable, defined as follows. If noedes( f) = {p}. then
minlink( f) is the minimum-weight external link of p. Suppose nodes( f) contains
more than one node. If f has an external link, if desfaius(p) = unfind for all
p € nodes(f), if no FIND message is in subfree(f), and if no REPORT message is
headed toward mw-root( f), then minlink({f) is the first external link reached by
starting at mw-reot( f) and following bestlinks; otherwise, minlink( f) = nil,

Also acemin(f) is a derived variable, defined as in TAR as follows. If
minlink( f) # nil, or if there is no external link of any p € nodes(f) — testset(f),
then acemin( f) = nil. Otherwise, accmin(f) is the mininnmum-weight external link

of all p € nodes( f) — testset( f).

Note below that ReceiveFind({q,p)) is only enabled if AfterMerge(p,q) is not
enabled; without this precondition on ReceiveFind, p could receive the FiNnD before
sending a FIND to ¢, and thus ¢’s side of the subtree would not participate in the
search.

Input actions:

o Stari(p), p € V(&)
Effects:
awake 1= true

Output actions:

e InTree((p,q)), (p,q) € L(G)
Preconditions:

awake = true

(p,q) € subtree( fragment(p)) or {p, q¢) = minlink(fragmeni(p))
answered( (p, g)) = false
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Effects:
answered( {p, g)) 1= true

o NoilnTree((p.q)), {p.q) € L(G)
Preconditions:
fragment(p) = fragment(q) and (p,q) € subtree(fragment(p))

answered((p, ¢}) = false
Effects:
answered({p, g)) := true

Internal actions:

e ChannelSend({p,q),m), (p.q) € L(G), me M
Preconditions:
m at head of dequeue,({p.q))
Effects:
dequene(dequene ((p, q)))
enqueue(m, dequene,, ((p,q)))

e ChannelRecv({p,q), m), {p,q) € L(G), m € M
Preconditions:
m at head of dequeuneyq,({p,q))
Effects:
dequeue(dequene,, ({p,q}))
enquene(m, dequeue ({(p, q)))

o TestNode(p), p e V(G)
Preconditions:
— let f = fragment(p) —

p € testsel( f)
if (p, g¢), the minimum-weight external link of p, exists

then levell f) < level( fragmeni(q))
destatus(p) = find
Effects:
testsed( f) := testset( f) — {p}
if {p, q), the minimum-weight external link of p, exists then
if wt(p, g) < bestwi(p) then |
bestlink(p) := (p, q)
bestwi(p) := wi(p, q) |
execute procedure Report(p)
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e ReceiveReport({q, p).w), {¢,p) € L(G)
Preconditions:
REPORT(w) message at head of dequeuney((q,p))
Effects:
dequene(dcqueune,({g.p)))
if (p,q) # inbranch(p) then [
Sfindcouni(p) := findcount(p) — 1
if w < bestwi(p) then |
bestwi(p) := w
bestlink(p) 1= {p. q) |
execute procedure Repori(p) |

else
if destatus(p) = find then enqueue(REPORT(w), dequeune,({g,p}))

o ReeeiveFind({q.p)), {q.p) € L(G)
Preconditions:
FIND message at head of dequeue,((q,p))
AfterMerge(p, q) not enabled
Effects:
dequeue( dcgu:uep( {g.2)))
destatus(p) := find
inbranch(p) := (p, q)
bestlink(p) = nil
bestwt(p) := oo
— let § = {{p.r) : (p,r) € subtree(fragment(p)),r # g} —
findeounit(p) := |S|
enqueue(FIND, dequene,(l)) forall T € §

® Procedure Report(p), p€ V(G)
if findecount(p) = 0 and p & testset{ fragmeni(p)) then |
destatus(p) ;= unfind
enquene(REPORT(bestwi(p)), dequeune (inbranch(p))) ]

o ChangeRoot(f), f € fragments
Preconditions:
awake = true

rootchanged( f) = false

minlink( f) # nil
Effects:
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rootchanged( f) := true

o Merge(f.g), f.g € fragments

Preconditions:
f#g
rootchanged( f) = rootchanged(g) = true
minedge( f) = minedge(g)

Effects:
add a new element h to fragments
subtree(h) := sublree( f) U subtree(g) U minedge( f)
core(h) := minedge( f)
level h) := level( f) + 1
rootehanged(h) := false
testset( h) := nodes(h)
— let {p,q) = minlink(f) —
enqueue(FIND, dequeue,((p, q)))
delete f and g from fragments

o AfterMerge(p.q), p.q € V(G)
Preconditions:
(P, ¢) = core(fragment(p))
FIND message in degqueue( (g, p))
no FIND message in dequeune({p, g))
destatus(gq) = unfind
no REPORT message in dcequeue({g, p))
Effects:
enqueue(FIND, dequeune,((p, q)))

o Abszsorb(f,q), f.g € fragments
Preconditions:
rootchanged(g) = true
level(g) < level( f)
— let (g, p) = minlink(g) —
fragment(p) = f
Effects:
subtree( f) := subtree( f) U subtree(g) U minedge(g)
if p € testset(f) then |
testsed f) 1= testset( f) U nodes(g)
if destatus(p) = find then |
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enqueue(FIND, dequene,({p,q)))
findeount(p) := findeount(p)+1]]
delete g from fragments

Define the following predicates on states(DC'), using these definitions.

A child g of p is completed if no node in subiree(q) is in testsed( fragment(p)),
and no REPORT is headed toward p in subtree(q) or in degueune({g,p)). Node p is up-
to-date if either subiree( fragment(p)) = {p}, or the following two conditions are met:
(1) following inbranches from p leads along edges of subtree( fragment(p)) toward and
over core( f), and (2) if p € testsei(fragment(p)), then destatus(p) = find. Given
node p, define C, to be the set {r : either » = p and p & testset(fragmeni(p)), or r
is in subiree(q) for some completed child ¢ of p}.

All free variables are universally quantified, except that f = fragmeni(p), in
these predicates. (The fact that an old REPORT message, in a link that was formerly
the core of a fragment, can remain even after that fragment has merged or been
absorbed, complicated the statement of some of the predicates.)

e DC-A: If reEPoRT(w) is in degueve( (g, p)) and inbrench(p) # {p, g}, then
(a) if (p,q) = core(f), then a FIND message is ahead of the REPORT in
dequeue({g.p));
(b) (g, p) = inbranch(q);
(c) bestwi{qg) = w;
(d) destatus(g) = unfind;
(e) every child of g is completed;
(f) g &€ testset(f); and
(g) if (p,g) # core( f), then destatus(p) = find, and ¢ is a child of p.

e DC-B: If repORT(w) is in dequene((q,p)) and inbranch(p) = (p,q), then
(a) either (p, ) = core( f) or p is a child of ¢; and
(b) if (p. q) 3 core( f), then destatus(p) = unfind.

e DC-C: If rREPORT(w) is in degqueune({q,p)) and (p,q) = core(f), then
(a) g is up-to-date;
(b) destatus(q) = unfind; and
(e) bestwi{qg) = w.

e DC-D: If FIND is in dequeune((qg, p)). then
(a) if (p,q) # eore(f) then p is a child of ¢ and destatus(g) = find;
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(b) destatus(p) = unfind; and
(c) every node in subtree(p) is in testset{ f).

e DC-E: If p € tesiset( f), then a FIND message is headed toward p, or destatus(p)

= find, or A fterMerge(g,r) is enabled, where p € subtree(r).

e DC-F: If (p,q) = core(f) and inbranch(q) # (q¢.p), then either a FIND is in

dequeune({p,q)), or AfterMerge(p, q) is enabled.

e DC-G: If AfterMerge(p,q) is enabled, then every node in subiree(q) is in

testset( f).

o DC-H: If destatus(p) = unfind, then
(a) destatus(g) = unfind for all ¢ € subtree(p); and
(b) findecount(p) = 0.

o DC-L: If destatus(p) = find, then
(a) p is up-to-date; and

(b) either a REPORT message is in subiree(p) headed toward p, or some q €

subtree(p) is in testset( f).

o DC-J: If destatus(p) = find and core(f) = (p,q), then a FIND message is In
dequene((p, q)), or destatus(g) = find, or a REPORT message is in dequeue({g,p)).

e DC-K: If p is up-to-date, then
(a) findcouni(p) is the number of children of p that are not completed;

(b) if bestlink(p) = nil, then bestwi{p) = oo, and there is no external link ¢

any node in Cp.

(e) if bestlink(p) # nil, then following bestlinks from p leads along edges i

subtree( f) to the minimum-weight external link ! of all nodes in C,: wt(l)
bestwi{p), and level( fragmeni(targei(l))) = level f).

o DC-L: If inbranch(p) # nil, then inbranch{p) = {p. ¢} for some g, and (p.q) €

subtree( ).

e DC-M: findcount(p) = 0.

o DC-N: If mw-minnode( f) is not in testset( f), then mw-minnode( f) is up-to-

date.

e DC-O: The only possible values of dequeue((p,q)) are empty, or FIND, or
REPORT, or FIND followed by rREPORT (only if (p,q) = core(f)), or REPORT

followed by FIND (only if (p,g) # core( f)).
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Let Ppe be the conjunction of DC-A through DC-0.

In order to show that DC simulates GC, we define an abstraction mapping
My = (84, .44) from DC to GC.

Define the function §; from states( DC') to states(GC') by ignoring the message
queues, and the variables dcstatus, findcount, bestlink, bestwi, and inbranch. The

derived variables rmuinlink and acemin of DC map to the (non-derived) variables
manlink and acemin of GC.

Define the function .44 as follows. Let s be a state of DC and n an action of
DC enabled in 5. The GC action ComputeMin(f) is simulated in DC when a node
adjacent to the core, having already heard from all its children, receives a REPORT
message over the core with a weight larger than its own bestwt. Then the node
knows that the minimum-weight external link of the fragment is on its own side of
the subtree.

e Suppose m = ReeceiveReport({q,p),w). If (p,q) = core( f) and destatus(p) = un-
find and w > bestwi(p), then A4(s, w) = ComputeMin( fragment(p)). Otherwise
Ay(s, ™) is empty.

o If # = ChannelSend({q,p).m), ChannelRecv((q,p),m), ReceiveFind({q,p)) or
AfterMerge(p,q), then A4(s,7) is empty.

e For all other values of 7, A4(s,7) = =.

The following predicates are true in any state of DC satisfying ( PL-08:)A Ppe.
Recall that Pl = (PLoae82)APge. If PL(S4(s)) is true, then the GC predicates
are true in Si(s), the COM predicates are true in &2(5;5(s)), and the HI predicates
are true in §;(852(84(s))). Thus, these predicates are deducible from Ppe., together
with the GC, COM and HI predicates.

e DC-P: If rEPORT(w) is at the head of dequeue( (g, p)) and (p,q) = core( f) and
destatus{p) = unfind, then
(a) if w < bestwi(p), then the minimum-weight external link [ of f is closer to
g than to p, and wi(l) = w;
(b) if w > bestwi(p), then the minimum-weight external link [ of f is closer to
p than to ¢, and wi(l) = bestwi(p); and
(c) if w = bestwi(p), then w = oo and there is no external link of f.

Proof:
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rREPORT(w) is at head of deguene( (g, p)), by assumption.

destetus(p) = unfind, by assumption.

(P, q) = core( f). by assumption.

g is up-to-date, by Claims 1 and 3 and DC-C(a).

destatus(qg) = unfind, by Claims 1 and 3 and DC-C{b).

w = bestwit(qg), by Claims 1 and 3 and DC-C(c).

g & testset( f), by Claims 4 and 5.

No FIND 15 in deguene({g, p)). by Claims 1 and 3 and DC-O.

p is up-to-date, by Claims 2, 3, 4 and 8 and DC-T.

10. p & testset( f), by Claims 2 and 9.

11. findcouni(p) = 0, by Claim 2 and DC-H(b).

12. findecount(g) = 0, by Claim 5 and DC-H(b).

13. All children of p are completed, by Claims 9 and 11 and DC-K(a).

14. All children of g are completed, by Claims 4 and 12 and DC-K(a).

15. If bestwi(p) = oo, then there is no external link of subtree(p), by Claims 9, 10
and 13 and DC-K(b) and (c).

16. If bestwi(p) # oo, then following bestlinks from p leads to the minimum-weight
external link ! of subtree(p) and wit(l) = bestwi(p), by Claims 9, 10 and 13, and
DC-K(b) and (c).

17. If bestwi(g) = w = oc, then there is no external link of subiree(q), by Claims 4,
6, 7 and 14 and DC-K(b) and (c).

18. If bestwi(q) = w 3 oo, then following bestlinks from ¢ leads to the minimum-
weight external link ! of subtree(q) and wi(l) = w, by Claims 4, 6, T and 14 and
DC-K(b) and (¢).

©WNO O EN

Claims 3 and 15 through 18 give the result, together with the fact that edge
weights are distinct, O

e DC-Q: If a rREPORT is at the head of dequeune((q, p)) and is not headed toward
mw-root f), then inbranchip) = (p,q).

Proof: If (p,q) = core(f), then inbranch(p) = {(p,q) by DC-A{a). Suppose
(p,a) # core(f), and, in contradiction, that inbranch(p) # (p,q¢). By DC-A(g),
destatus(p) = find. and by DC-I(a) p is up-to-date, i.e., following inbranches from p
leads toward and over core( f). Thus the REPORT in deguene((g, p)is headed toward
both endpoints of core( f)., contradicting the hypothesis. ]

o DC-R: If destatus(p) = find, then no REPORT is in dequene(inbranch(p)).
Proof: Let inbranch(p) = {p, q).
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1. destatus(p) = find, by assumption.

2. pis up-to-date, by Claim 1 and DC-I(a).

3. Following inbranches from p leads toward and over core( f), by Claim 2.

4. Either (p,q) = core( f), or inbranch{q) # (g, p), or no REPORT is in dequeue({p, q)),
by Claim 3 and DC-B(b).

5. If (p, ¢) = core( f), then no REPORT is in degqueue({p, q}), by Claim 1 and DC-C(b).
6. If imbranch(q) £ (g,p), then no REPORT is in dequene({p,q)), by Claim 1 and
DC-A(d).

7. No REPORT is in dequeue({p,q)), by Claims 4, 5 and 6. O

e DC-S: At most one FIND message is headed toward p.

Proof: Suppose a FIND message is headed toward p.

1. A FIND is in dequeue({g, r}). by assumption.

2. p € subiree(r), by assumption.

3. destatus(r) = unfind, by Claim 1 and DC-D(b).

4. dcstatus(t) = unfind for all ¢ € subtree(r), by Claim 3 and DC-H(a).

5. No FIND message is in dequeune({t,u)), for any (¢, u) € subtres(r), by Claim 4 and
DC-D(a).

If (g,7) = core(f), Claim 5 proves the result. Suppose (q,r) # core( f).

6. (gq,7) # core( f). by assumption.

7. destatus(g) = find, by Claims 1 and 6 and DC-D(a).

8. dcstatus(t) = find for all ¢+ between g and the endpoint of cere( f) closest to g, by
Claim 7 and DC-H(a).

9. No FIND message is in dequene((f,u)) for any (¢, u) between core{f) and g, by
Claim 8 and DC-D(b).

Claim 9 completes the proof. o

e DC-T: If (p,q) = core( f). no FIND is in degqueue((p,q)), p is up-to-date, and
destatus{g) = unfind, then g is up-to-date.

Proaf:

(py q) = core(f), by assumption.

No FIND is in dequene((p,q)), by assumption.

p is up-to-date, by assumption.

destatus(qg) = unfind, by assumption.

No FiND is headed toward ¢, by Claims 1 and 2 and DC-D(a).

il R
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6. No FIND is in degueune({q, p}). by Claim 3 and DC-D(b) and (c).

7. AfterMerge(p, q) is not enabled, by Claim 6.

8. inbranch(q) = (g, p). by Claims 5 and 7 and DC-F.

9. g & testsei( f), by Claims 4, 5 and 7 and DC-E.

10. g is up-to-date, by Claims 1, 8 and 9. o

Lemma 19: DC simulates GC via My, Ppe, and FPhe..

Proof: By inspection, the types of DC, GO, My, and Ppo are correct. By Corol-
lary 16, Pf.~ is a predicate true in every reachable state of GC.

(1) Let s be in start(DC). Obvicusly, Ppc is true in s, and Sy(s) is in
start( GC).

(2) Obviously, Au(s, ®)lext{GC) = w|ext(DC).

{3) Let (s',7,5) be a step of DC such that PL. is true of Si(s') and Ppe is
true of s'. For (3a) we verify below only those DC predicates whose truth in = is
not obvious.

i) = is Start(p), ChangeRoot(f), InTree(l), or NotInTree(l). A, (s",7) =
7. Obvicusly &i(s')rSi(s) is an execution fragment of GC and Ppe is true in s.

ii) 7 is ChannelSend(l,m) or ChannelRecv(l,m). .4,(s',7) is empty.
Obvicusly Si(s) = &4(s') and Ppe is true in s.

iii) = is TestNode(p). Let f = fragment(p) in s'.

(3c) Au(s',7w) = w. Obvicusly, = is enabled in S;(s’). To show the effects
are mirrored in S4(s), we must show that acemin( f) is updated properly {which is
obvious) and that minlink f) is unchanged. Since p € testset(f) in s', minlink( f) =
nil in s’ by GC-C. If acemin{f) # nil, or if p has an external link in s'. then
acemin( f) # nil in s, and minkink{f) is still nil in s. If some ¢ 3 p is in testset( f)
in &', then by DC-E either a FIND is in subtree( f) or destatus(q) = find; since the
same is true in 5, minlink( f) is still ndl in s. Finally, if ecemin{ f) = nil, p has no
external link, and p is the sole clement of testset( f) in s', then f has no extemnal
link in &' or in s, and minlink( f) is still nil in s.

(3a) Two cases are considered. First we prove some facts true in both cases,
Claims about s';
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1. destatus(p) = find, by precondition.

2. p € testzet( f), by precondition.

3. I {(p,u), the minimum-weight external link of p, exists, then level(f) <
levell fragment{u)), by precondition.

4. p is up-to-date, by Claim 1 and DC-I{a).

5. No FIND is headed toward p, by Claim 1 and DC-D{c).

6. If (p,r) = core( f), then no REPORT is in degueune({p,r)), for any r, by Claim 1
and DC-C(b).

7. If a reporT is in dequene({p,r}), then inbranch(r) = {r,p), for any r, by Claim
1 and DC-A(d).

8. AfterMerge(r.t), where p € subtree(t), is not enabled, by Claim 1 and DC-H{a).
9, If bestlink{p) = nil, then bestwi(p) = oo and there iz no external link of any node
r. where r is in the subtree of any completed child of p, by Claims 2 and 4 and
DC-K(b).

10. If bdesthnk(p) ¥ nil, then following bestlinks from p leads to the minimum-weight
external link ! of all nodes r, where r iz in the subtree of any completed child of p;
wi(l) = bestwi(p) and levell f}) = level( fragment(target(l})})., by Claims 2 and 4 and
DC-K(c).

Case 1: findcouni(p) #£ 0 in s'.
More claims about 5';

11. findecount(p) £ 0, by assumption.

12. findcount(p) > 0, by Claim 11 and DC-M.

13. Some child r of p is not completed, by Claims 4 and 12 and DC-EK(a).

14. There is a child » of p such that either some node in subtree(r) is in testset( f),
or a REPORT is in subiree(r) or degqueue({r,p)) headed toward p, by Claim 13.

DC-A(c): By Claim 7, changing bestw#(p) and removing p from testset( f) are
OK.

DC-C: By Claim 6, changing bestwi{p) is OK.
DC-D(ec): By Claim 5, removing p from festset] f) is O

DC-G: By Claim 8 and the fact that destatus(p) is still find in 5. removing p
from testset( f) is OK.

T2



Section 4.2.4: DC Simulates GC
DC-I(b): By Claim 14, removing p from testset{ f) is OK.
DC-K: (b) By Claim 9 and code. (¢) by Claims 3 and 10 and code.

DC-N: If p is mw-minnode( f), then by Claim 4. removing p from testset(p) is
OK.

Case 2: findcount(p) = 0 in s'. Let {p,q) = inbranch(p).
More claims about s':

15. findeouni(p) = 0, by assumption.

16. If (p,q) = core(f) and inbranch(g) # {¢.p), then a FIND is In dequene({p, q}),
by Claim 5 and DC-F,

17. All children of p are completed, by Claims 3 and 15 and DC-K(a).

18. If (p, q) # core{ f), then destatus(qg) = find, by Claim 1 and DC-H(a).

19. If REPORT is in dequeune({q, p)), then (p,g) = core{ f), by Claim 4 and DC-B(a).
20. No REPORT is in dequeune({p,q}), by Claim 1 and DC-R.

21. If FIND is in degqueune({p,q)). then (p, g) = core( f), by Claim 4 and DC-D(a).
22. Every node r # p in subiree(p) has destatus(r) = unfind, by Claims 1 and 17
and DC-I(b).

23. Every node r 2 p in subtree(p) has findcount(r) = 0 by Claim 22 and DC-H(b).

DC-A: By Claim 7 and the fact that inbranch(p) = (p, q), we need only consider
the REPORT added to dequeune({p,q)). (a) by Claim 16. (b), (c) and (d) by code.
(e) by Claim 17. (f) by code. (g) by Claims 4 and 18.

DC-B for rePorT added to dequewne((p, g} ): If inbranch(q) = (g, p), then (p.g) =
core( f). by Claim 4.

DC-B for repoRT that might be in deguene({g, p}): by Claim 19.

DC-C: By Claim 4, inbranch(p) is the only relevant link; by Claim 20, the new
message is the only REPORT in that queue. (a) by Claim 4. (b) and (¢) by code.

DC-D(a) and (¢): By Claim 5, it is OK to change decstatus(p) to unfind and
remove p from festsel( f).

DC-E: The addition of a REPORT to dequeune((p,q¢)) in s cannot cause Affer
Merge(q, p) to go from enabled in s’ to disabled in s, by Claim 1.
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DC-F: Cf. DC-E.

DC-G: By Claim 8 and the addition of REFPORT to dequeune((p,q)), removing p
from testset{ f) is OK.

DC-H: (a) By Claim 22 and code. (b) By Claim 23.

DC-I(b): Suppose r 3# g is some node such that p € subtree(r) and destatus(r) =
find in s'. By Claun 4, removing p from festset( f) i= compensated for by adding
REPORT to dequeue((p.q}).

DC-J: By Claim 4, the only link of p that can be part of core(f) is {p,q). If
(p,q) = core(f) and destatus(g) = find, then the fact that dcstatus(p) becomes
unfind in s is compensated for by the addition of REPORT to degueue( (p,g)).

DC-K(b) and (¢): As in Case 1.

DC-N: As in Case 1.

DC-0O: By Claims 20, 21 and code.

iv) = is ReceiveReport({q.p),w). Let f = fragmeni(p) in s'.

(3b)/(3c) Case 1: (p,q) = core(f) and destatus(p) = unfind and w > bestwi(p)
in 8. Ai(s',w) = ComputeMin( f).

Let {r,?) be the minimum-weight external link of f in s'. (Below we show it
exists.)

Clatms about s';

REPORT(w) is at the head of degueune({q,p)), by precondition.
(p,q) = core( f), by assumption.

destatus(p) = unfind, by assumption.

w > besiwi(p), by assumption.

No FiND is in dequeue({qg, p}). by Claim 1 and DC-O.

¢ is up-to-date, by Claims 1 and 2 and DC-C(a).

P is up-to-date, by Claims 2, 3, 5 and 6 and DC-T.
destatus(g) = unfind, by Claims 1 and 2 and DC-C(b).

. bestwi(g) = w, by Claims 1 and 2 nad DC-C(c).

10. p = mw-root(f) (so (r,t) exists), by Claims 1, 2, 3 and 4 and DC-P(b).
11. manlink( f) = nil, by Claims 1 and 10.

o

Mook
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12. findcount(p) = 0, by Claim 3 and DC-H(b).

13. findcount(qg) = 0, by Claim 8 and DC-H(b).

14. Every child of p is completed, by Claims 7 and 12 and DC-EK(a).
15. Every child of g is completed, by Claims 6 and 13 and DC-K(a).
16. p & testset( f), by Claims 3 and 7.

17. g & testset( f), by Claims 6 and 8.

18. testsel( f) = B, by Claims 14 through 17.

19. aceman( f) = {r,t}, by Claims 11 and 18,

By Claims 11, 18 and 19, ComputeMin( f) is enabled in s'.

Now we must show that the effects of ComputeMin( f) are mirrored in 5. All
that must be shown is that minlink( f) and accmin{ f) are updated properly.

Moaore elaims about s':

20. destatus(u) = unfind, for all u € subtree(p), by Claim 3 and DC-H(a).

21. destatus(u) = unfind, for all u € subtree(q), by Claim 8 and DC-H(a).

22. No rREPORT is headed toward p in subtree(p), by Claim 14.

23. No rREPORT is headed toward ¢ in subtree(qg), by Claim 15,

24. Only one REPORT is in subiree(p), by DC-0.

25. No FIND is in subtree( f), by Claim 18 and DC-D(c).

26. Following bestlinks from p leads to (r,t}, by Claims 7, 10, 14 and 16 and DC-K(b)
and (c).

By Claims 10 and 20 through 26, minlink{ f) = (. %) in s. By Claim 19, this is
the correct value. Thus, acemin(f) = nil in s.

Case 2: (p.q) 3 core(f) or destatus(p) = find or w < bestwi(p) in s'. Ay(s",7)
is empty. We just need to verify that minlink({ f) and acemin( f) are unchanged in
order to show that S;(s") = S4(s).

Subcase 2a: (p,q) # core( f) in s'.

Suppose (p,q) = inbranch(p) in s'. By DC-B(b), destatus(p) = unfind, so the
only effect is to remove the rREPORT, By DC-B(a), p € subiree(q), so this REPORT
message is not headed toward mw-reot( f) in s'. Thus minlink( f) is unchanged, and
accrman( f) is alse unchanged.

Suppose (p,q) # inbranch(p) in s’.
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Claims about s':

1. rEPORT(w) is at the head of dequeue({g,p)). by precondition.

2. {p.qg) # inbranch(p), by assumption.

3. (p,gq) # core( f). by assumption.

4. destatus(p) = find, by Claims 1, 2 and 3 and DC-A(g).

5. p is up-to-date, by Claim 4 and DC-I(a).

6. Following inbranches from p leads toward and over core( f), by Claim 5.

7. A REPORT message is headed toward mw-reot( f), by Claims 1 and 6.

8. minlink( f) = nil, by Claim 7.

9. If core( f) = (p,t) for some %, then FIND is in dequeue({p,t)), dcstatus(i) = find,
or REPORT is in degquene((t,p)), by Claim 4 and DC-I.

Claims aboul s

10. subiree( f), core( f), nodes( f), and testsei( f) do not change, by code.

11. REPORT is In inbranch{p), by code.

12. Following inbranches from p leads toward and over core( f), by Claims 6 and 10
and code.

13. If p # mw-reot{f), then REPORT is headed toward mw-reot( f), by Claims 11
and 12.

14. If p = mw-reot( f), then FIND is in dequeune({p,t)). destatus(t) = find, or REPORT
is in degquene((t,p)), where (p,t) = core( f), by Claim 9 and code.

15. minlink{ f) = nil, by Claims 13 and 14.

16. acemin(f) does not change, by Claims 8, 10 and 15.

Claims 15 and 16 give the result.

Subease 2b: (p,q) = core(f) and destatus(p) = find in s'. Since REPORT(w)
is at the head of degueune({g,p)), DC-A(a) implies that inbranch(p) = (p.q). The
only change is that the REPORT message is requeued. Obviously minlink( f) and
acernin( f) are unchanged.

Subcase 2¢: (p.q) = core(f) and destatus(p) = unfind and w < bestwi(p) in
s'. As in Subcase 2b, inbranch(p) = (p,q). The only change is that the REPORT
message is removed. If w = bestwi(p), then by DC-P(e), there is no external link of
fin &' or in s. Thus minlink( f) and acemin(f) are both nil in s’ and s.
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Suppose w < bestwi(p). By DC-Pla), ¢ = mw-root#(f}). Thus the rREPORT
message in dequene({g, p}) is not headed toward mw-roet( f) in 3, and no criteria

for minlink{ ), or acemin( f) changes.

{3a) Case I: {p.q} = inbranch(p) in s'.

Suppose destatus(p) = find. By DC-D(b), no FivD is in deguene({q,p}) in &',
so by DC-Q, dequewe( (g, p}) contains just the one REPORT message in s'. Since the
only effect is to requeue the message, the DC state is unchanged.

Suppose destatus(p) = unfind. The only change is the removal of the REPORT
message from dequenwe({g, p)). By DC-B(a), either (p, ¢) = core( f), or p € subtree(q)
in ¢’. In both caszes, the REPORT is not headed toward any node whose subtree it is
in.

DC-I(b): By remark above.

DC-J: Even though REPORT is removed from degqueune({q,p}). destatus(p) =
unfind in s.

DC-K{a): By remark above, removing the REPORT does not affect the com-
pleteness of any node's child.

Case 2: (p,q) # inbranch(p). Let {p,r) = inbranch{p).

Claims about s’

REPORT(w) iz at head of degueue({q, p)). by precondition.

. {p,q) # inbranch(p), by assumption.

(., q) # core( f), by Claims 1 and 2 and DC-A(a).

{g,p} = inbranch(g), by Claims 1 and 2 and DC-A(b).

w = bestwi(g), by Claims 1 and 2 and DC-A(e).

destatus(q) = unfind, by Claims 1 and 2 and DC-A(d).

Every child of ¢ is completed, by Claims 1 and 2 and DC-A(e).
q & testzet( f), by Claims 1 and 2 and DC-A(f).

. destatus{p) = find, by Claim 3 and DC-A(g).

I'D If REPORT is in dequeune(p,t), then inbranch(t) = (¢, p), for any ¢, by Claim 9
and DC-A(d).

CHLNRU R W
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11. p is up-to-date, by Claim 9 and DC-I(a).

12. inbranch(p) leads toward and over core( f), by Claim 11.

13. ¢ is an uncompleted child of p, by Claims 1, 2 and 12.

14. findcouni(p) = 1, by Claims 11 and 13 and DC-K(a).

15. Only one REPORT is in degqueune({q,p)), by Claim 1 and DC-0O.

16. ¢ is up-to-date, by Claims 4, 8 and 12.

17. If REPORT is in dequene({p,1)), then (p,t) # core(f), for all ¢, by Claim 9 and
DC-C(b).

18. If bestwip) = oo, then there is no external link of p (if p & tesisel( f)) or of any
node in the subtree of any completed child of p, by Claim 11 and DC-F(b) and ().
19. If bestwi{p) 3 oo, then following bestlinks from p leads to the minimum-
weight external link [ of all nodes in Cp; wi(l) = bestwi(p); and level f) <
level( fragment(target(l))), by Claim 11 and DC-F(b) and (c).

20. If w = oo, then there is no external link of subtree(g), by Claims 5, 7, 8 and 16
and DC-K(b) and (c).

21. If w £ oo, then following bestlinks from g leads to the minimum-weight external
link I of subtree(q); wi(l) = w, and level( f) < level( fragment(target(l))), by Claims
5, 7, § and 16 and DC-F(b) and (c).

Subcase 2a: p € testset( f) or findcounit(p) # 1 in <'.
More claims about s':

22. p € testsetl(f) or findcouni(p) # 1, by assumption.

23. If findcouni(p) # 1, then findecouni(p) > 1, by Claim 14.

24, If findcount{p) # 1, then some child ¢ £ ¢ of p is not completed, by Claims 11
and 23 and DC-K(a).

25. If findcount(p) = 1, then p € testsei( f), by Claim 22,

DC-A(e): by Claim 10, any change to besiwi(p) is OK.
DC-C: By Claim 17, changing bestwit(p) is OK.
DC-F: Cf. DC-G.

DC-G: Removing REPORT from degqueune((q,p)) does not cause AfterMerge(p, q)
to become enabled, by Claim 3.

DC-I(b): Let ¢ be some node such that p € subtree(?) and destatus(t) = find in
s’. By Claims 24 and 25, either a REPORT message is in subfree(p) headed toward
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p (and hence toward t), or some node in subiree(p) (and hence in subtree(t)) is in

testset( f).
DC-J: The removal of the REPORT message is OK by Claim 3.

DC-K(a): Since findcount(p) is decremented by 1, we just need to show that the
number of uncompleted children of p decreases by 1: by Claim 1, g is not completed
in s'. By Claims 7, 8 and 15 and code, ¢ i5s completed in s.

DC-K(b) and (¢): by Claims 18, 19, 20 and 21 and code.

DC-M: By Claim 14 and code.

Subcase 2b: p & testset( f) and findcouni(p) = 1.

26. p & testset( f), by assumption.

27. findcouni(p) = 1, by assumption.

28. No FIND is headed toward p, by Claim 9 and DC-D(b).

29. If (p,r) = core(f) and inbranch{r) £ (r,p),then FIND is in dequene({p,r)), by
Claim 28 and DC-F.

30. No rREPORT is in dequeune((p,r)), by Claim 9 and DC-R.

31. Every child of p but ¢ is completed, by Claims 11, 13, 27 and DC-K(a).

32. No FIND is in dequene({p,t}), t # r, by Claims 7, 8 and 31 and DC-D(c).

33. If REPORT is in dequeue({r,p)), then (p,r) = core( f), by Claim 9 and DC-B(a)
and (b).

34. If (p,r) # core( f), then destatus(r) = find, by Claims 9 and 12 and DC-H(a).
35. If FIND is in dequeune({p,r}), then (p,r) = core( f), by Claim 12 and DC-D(a).

DC-A: By Claim 10 and the fact that inbranch(p) = (p,r}), we need only
consider the REPORT added to dequeune({p.r)). (a) by Claim 29. (b), (¢) and (d) by
code. (e) by Claim 31 for any child of p except ¢; by Claims 7, 8 and 15 and code
for ¢. (f) by Claim 8. (g) by Claims 12 and 34.

DC-B for rerPoRT added to degueue({p,r)): if inbranch(r) = (r.p), then by
Claim 12, ecore(f) = (p, 7).

DC-B for REPORT in degqueue((r,p)): By Claim 33, core(f) = (p,7).

DC-C: By Claim 12, inbranch(p) is the only relevant link; by Claim 30, the
new message is the only REPORT message in its quene. (a) by Claim 11. (b) and (c)
by code.
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DC-D{a): By Claims 32 and 35, changing destatus(p) to unfind is ORK.

DC-E: The addition of the rReEPoRrT to deguene({p,v)) in s cannot cause
AfterMerge(r,p) to go from enabled in s' to disabled in s, because destatus(p) =
find in s' by Claim 9.

DC-F: Cf. DC-E.

DC-H(a): By Claims 7 and 8, no node in subfree{g) is in testsed{ f). By Claim
31, no node in subtree(t), for any child ¢ £ g of p, is in festset{ f). By Claim 23,
p & testset( f).

DC-H(b): By Claim 2T and code.

DC-I{b}): Let ¢ # p be such that p € subtree(t) and destatus(t) = find in s'. By
Claim 12, removing the REPoORT from dequene({q, p}) is compensated for by adding
the REPORT to dequene({p,r}).

DC-J: By Claim 12, the only link of p that can be part of core( f) is {p,r}. If
(p,7v) = core( f) and destatus{g) = find in 5', then changing dcstatus(p) to unfind in
s is compensated for by adding the REPORT to degueue( {p.7}).

DC-K: As in Subcase 2a.

DC-M: Claim 27 and code.

DC-0O: by Claim 30 and DC-0O and code.

v) = is ReceiveFind((q,p)). Let f = fragment(p).

(3b) As(s’,7) is empty. To show that Si(s') = Sy(s), we just need to show
that minlink( f) and acemin(f) are unchanged. Because of the FIND message,
minlink( f) = nil in &', and minlink(f)}) = nil in s since destatus(p) = find. Since
there is no change to minlink( f), nodes( ), testset( f), or subtree( f), acemin(f) is
unchanged.

(3a) Claims about s':

FIND is at head of dequeue({q.p)), by precondition.

AfterMerge(p, q) is not enabled, by precondition.

If (p, g) # eore(f), then pis a child of ¢, by Claim 1 and DC-D(a).
If (p,q) # core( f), then destatus(q) = find, by Claim 1 and DC-D(a).

oo
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5. destatus(p) = unfind, by Claim 1 and DC-D(b).

6. Every node in subtree(p) is in testset( f), by Claim 1 and DC-D(e).

7. No REPORT is in dcqueue({p,r)) with inbranch(r) %= (r.p), for all r, by Claim 6
and DC-A(f).

8. If rEPORT is in dequeune({p,r}), then (p,r) $# core(f), for all r, by Claim 6 and
DC-C.

9. If REPORT is in dequeue({g.p)), then (p,gq) = core( f), by Claim 1 and DC-O,
10. If (r,p) € subtree( f), r # g, then r is a child of p, by Claim 3.

11. No REPORT is in dequeue({r,p)), r # g, with inbranch(p) # {p,r)), by Claims &
and 10 and DC-A(f).

12. No REPORT is in degqueune({r,p)), r # q, with inbranch(p) = (p,r), by Claim 10
and DC-B(a).

13. If {p,r) € S, then r is a child of p, by Claim 10.

14. destatus(r) = unfind for all r € subtree(p), by Claim 5 and DC-H(a).

15. I (p.q) # core(f), then decstatus(r) = find, for all r such that g € subtree(r),
by Claim 4 and DC-H(a).

16. degqueue({p,r)) is either empty or contains only a rREPORT for all r such that
{p.7) € 5, by Claims 5 and 13 and DC-D(a) and DC-O.

17. I (p,q) # core(f)., then following inbranches from ¢ leads toward and over
core( ), by Claim 4 and DC-I{a).

DC-A(a): By Claim 7, we need not consider any REPORT in a link leaving p.
By Claim 11 we need not consider any REPORT in a link coming into p, except for

{g.p). Since inbranch(p) is set to (p,q) in s, removing FIND from decqueue({g.p)) is
OK.

DC-B: By Claim 9 and 12, changing destaius(p) is OK.
DC-C: By Claim 8, changing destatus(p) and bestwi{p) is OK.
DC-D: (a) by Claim 13 and code. (b) by Claim 14. (¢) by Claim 6.

DC-E: By Claim 12 and code (adding FIND messages and setting destatus(p)
to find), removing FIND from degquene({g, p)) is OK.

DC-F: As argued for DC-I{a), the only possible link of p that is part of core( f)
is (p, ¢). Since code sets inbranch(p) to (p, ¢), removing the FIND is OK.

DC-H(a): If (p, q) = core( f). then changing destatus(p) to find is OK. If (p, ¢) #
core( f), then Claim 15 implies that it i¢ OK to change dcstatus(p) to find.
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DC-I: (a) If (p,g) = eore( f), then code gives the result, since inbranch(p) is set
to {p,q) and destatus(p) is set to find. If (p,q) # core(f), then Claim 17, the fact
that p is a child of ¢ by DC-D(a), and code give the result. (b) by Claim 6.

DC-J: By Claims 1 and 2.

DC-K: (a) findcouni(p) = |5| = number of children of p. None is complete, by
Claim 6. (b) and (¢) are true by code, since no children are complete.

DC-L: by code and Claim 3.
DC-M: by code.

DC-0O: Removing the FIND from dequene({qg,p)) is OK. Adding FIND to de-
queue({p, 7)), {(p,r) € 5, is OK by Claim 16.

vi) = is Merge(f,g)-

(3c) Ay(s’,7) = 7. Obviously = is enabled in S;(s"). Effects are mirrored in
S4(s) if we can show acemin{ i) = minlink(h) = nil in 5. Inspecting the code reveals
that in s, a FIND message is in subiree(h), so minlink(h) = nil, and neodes(h) =
testset( h), so acemin(h) = nil.

{(3a) Claims about s':

1. f # g, by precondition.
2. rootchanged( f) = true, by precondition.
3. rooichanged(g) = true, by precondition.
4. minedge( f) = minedge(g), by precondition.
5. minlink( f) $# nil, by Claim 2 and COM-B.
Let (p, g) = minlink( f).
6. minlink(g) = {(g.p), by Claims 1, 4 and 5.
7. No REPORT is headed toward reei( f), by Claim 5.
8. No REPORT is headed toward root(g), by Claim 6.
9. No FIND is in subtree( f), by Claim 5.
10. No FIND is in subtree(g), by Claim 6.
11. destatus(r) = unfind for all r € nodes(f), by Claim 5.
12. destatus(r) = unfind for all r € nodes(g), by Claim 6.
13. {p,q) is the minimum-weight external link of f, by Claim 5 and COM-A.
14. {g,p) is the minimum-weight external link of g, by Claim 6 and COM-A.
15. testse#( f) = B, by Claim 5 and GC-C.
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16. testsei(g) = (), by Claim 6 and GC-C.

17. If REPORT is in degqueue((r,t)), then inbranch(t) = (t,r}, for all (r,t) €
subiree( f), by Claims 9 and 11 and DC-A(a) and (f).

18. If REPORT is in dequeue((r.t}), then inbranch(t) = (t,r), for all (r.t) €
subtree( ), by Claims 10 and 12 and DC-A(a) and (f).

19. If REPORT is in dequeue((r.t}) and (r,t) = core(f), then r = root(f), by Claim
i

20. If REPORT is in dequeue({r,t}) and (r, 1) = core(g). then r = reot(g), by Claim
=,
21. If REPORT is in dequewe((r,t)) and (r,t) s core(f), then ¢ is a child of r, for all
(r,t) € subtree( f), by Claim 17 and DC-B(a).

22, If REPORT is in degqueune{(r.t)) and (r,1) £ core(g), then ¢ is a child of r, for all
(r,1) € subiree(g), by Claim 18 and DC-B(a).

23. If REPORT is in dequeue({r,t)), then (r.t) is not on the path between rooi(f)
and p, for all (r,t) € subtree(f), by Claims 5, 7, 13, 15 and 17 and DC-N.

24. If REPORT is in dequeue((r,t)), then (r,#) is not on the path between root(g)
and ¢, for all (r,t) € subtree(g), by Claims 6, 8, 14, 16 and 18 and DC-N.

25. degquene((p,g)) is empty, by Claim 13 and DC-A(g), DC-B(a) and DC-D(a).
26. degqueue({g,p)) is empty, by Claim 14 and DC-A(g), DC-B(a) and DC-D(a).
27. findcount(r) = O for all r € nodes(f), by Claim 11 and DC-H(b).

28. findcount(r) = 0 for all r € nedes(g), by Claim 12 and DC-H(b).

Claims about s:

29. subtree(h) is the old subtree( f) and subtree(g) and (p, ¢), by code.

30. eore(h) = (p,q), by code.

31. testset{h) = nodes(h), by code.

32. degueune({p,q)) contains only a FIND, by Claim 25 and code.

33. No FIND is in any other link of subiree(h), by Claims 9, 10 and 29.

34. destatus(r) = unfind for all r € nedes(h), by Claims 11, 12 and 29.

35. If reEPORT is in dequeue((r,t}), then inbranch(t) = (t,r}, for all (r,t) €
subtree(h), by Claims 17, 18, 25, 26 and 29,

36. If REPORT is in dequene((r.t)), then t is a child of r, for all (r,t) € subtree(h),
by Claims 21 through 26 and 28.

37. AfterMerge(q, p) is enabled, by Claims 30, 32, 33 and 34.

38, degqueune({g,p)) is empty, by Claim 26.

39. findeount(r) = 0 for all r € nodes(h), by Claims 27, 28 and 29.

DC-A: Vacuously true, by Claim 35.
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DC-B: By Claims 34 and 36,
DC-C: By Claims 30, 32 and 38.

DC-D: The only FIND is in dequene({p, ¢}), by Claims 32 and 33. (a) by Claim

30. (b) by Claim 34. (¢) by Claim 31.

DC-E: By Claim 32 for subtree(q); by Claim 37 for subtree(p).
DC-F: By Claims 32 and 37.

DC-G: By Claim 31.

DC-H: (a) by Claim 34. (b}): by Claim 39.

DC-I: Vacuously true by Claim 34.

DC-J: Vacuously true by Claim 34.

DC-K: By Claims 31 and 34, none is up-to-date.
DC-M: By Claim 39.

DC-N: Vacuously true by Claim 31.

DC-O: By Claim 30.

vii) = is AfterMerge(p.q). Let f = fragmeni(p).

(3b) As(s',w) is empty. We just need to show that ascemin( f) and minlink( f)

do not change. The FIND message(s) imply that minlink f) = nil in both &' and s.
Sinece there is no change to manlink( f), nodes( f), testset{ f). or subtree( f), accemin{ f)
does not change.

b R s

(3a) Claims about s':

{(p,g) = core( f), by precondition.

FIND is in degqueue({qg, p)), by precondition.

No FIND is in degquene({p,q}), by precondition.

destatus(q) = unfind, by precondition.

Ne reroRrT is in dequene({qg, p}), by precondition.

Every node in subtree(q) 1s in testset{ f), by Claims 1 through 5 and DC-G.
P € testset( ), by Claim 2 and DC-D{c).
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8. No REPORT is in degquene({p, q}), by Claim 7 and DC-C.

9. degueune({g, p}) consists solely of a FIND, by Claims 2 and 5 and DC-0.
10. dequeue({p,q)) is empty, by Claims 3 and 8 and DC-0O.

11. (p,q) € subtree( f), by Claim 1 and COM-F.

Clairns aboul s:

12. (p,q) = care(f), by Claim 1.

13. Every node in subtree{yg) i= in testsed( ), by Claim 6.

14. dequeune{{qg,p)) consists solely of FinD, by Claim 9.

15. degquene((p,q)) consists solely of FinD, by Claim 10 and code.
16. destaius(g) = unfind, by Claim 4.

17. AfterMerge(p,g) is not enabled, by Claim 15.

18. AfferMerge(q, p) is not enabled, by Claim 14.

DC-D: (a) by Claim 12. (b) by Claim 16. (c) by Claim 13.

DC-E: By Claim 15 (FiND in dequene({p,q}) replaces AfterMerge(p,q) being
enabled).

DC-F: By Claim 15 (FIND in dequene({p,q)) replaces AfterMerge(p,q) being
enabled).

DC-G: vacuously true by Claims 17 and 18.
DC-0: By Claim 15.
viii) = is Absorb(f.g).

(3¢c) A4(s',7) = 7. Obviously 7 is enabled in S;(s'). Effects are mirrored in
&4(s) if we can show that acemin(f) and minlink( f) do not change.

Case 1: p € testsel(f) in s'. By GC-C, minlink( f) = nil in s'. By inspecting
the code, a FIND message is in subiree( f) in s, so minlink{ f) = nil in = also.

Suppose acemin(f) = nil in s'. Then there is no external link of any ¢ €
nodes( f)—testset( f) in &', Since tesiset( f) does not change and no formerly internal
links become external, eccmin{ f) = nil in s also.

Suppose acemin(f) = {g,r) in 5. By GC-A, levell f) = level(fragmeni(r}). So
by precondition, fragment(r) £ g. Since all of nodes(g) iz added to testset( f), there
is no change to nodes( f) — testset(f). Thus acemin( f) is unchanged.




Section 4.2.4: DC Simulates GO
Cuese 2: p & testset(f) in &'.

Claimsz about 3':

i

. rootchanged(g) = true, by precondition.

level(g) < level( f), by precondition.

manlink{g) = {q.p) # nil, by precondition.

. fragment(p) = fF, by precondition.

. destatus(r) = unfind for all » € nodes(y), by Claim 3.

. No FIND message is in subtree(g), by Claim 3.

No REPORT message iz headed toward mw-reet(g), by Claim 3.
reoi{g) = mw-reoi(g), by Claim 3 and COM-A,

. wi{l) = witiq, p) for all external links ! of g, by Claim 3 and COM-A.
lﬂ If minlink( f) = {r,t}, then level{ fragment(t)) = level( f), by COM-A.
11. ¥ wminlink(f) = {r,t), then g # fragmeni(t), by Claims 2 and 10.
12, If seceminl f) = {r,t), then levell fragment(t)) = level( ), by GC-A.
13. I accmin(f) = {r,t), then g # fragmeni(i), by Claims 2 and 12.

w 1

O~ oo

If minlink{ f) = nd in s', then obvicusly it is still nel in 5. Suppose minlink( f) =
{r.£) in &'. By Claims 5, 6, 7, 8 and 11 (and code), minlink( f} = (r 4} in 5 as well.

If eecemin(f) = {(r,t) in &', then it is unchanged in & by Claims 9 and 13.
Suppose accemin(f) = nil in s'. If this is because minlink{ f) #£ nil in s', then,
since we just showed that minlink{ f) does not change, accmin{f) is still nil in s
Suppose acemin(f) = nil not because manlink{ f) = nil, but because no node in
nodes{ f) — testsei( f) has an external link. But by the assumption for this case,
p € testset( f), yet it is in nodes(f) by Claim 4, and (p, g} is an external link of p
by Claim 3 and COM-A,

(3a) We consider two cases. First we prove some facts true in both cases.
Clatms about 5';

1. reotchanged(g) = true, by precondition.

2, level(g) < level( f), by precondition.

3. minlink{g) = {g.p), by precondition.

4. p € nodes( f), by precondition.

5. No REPORT iz headed toward reot(g), by Claim 3.
G. No FIND iz in subiree(g), by Claim 3.
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7. destatus(r) = unfind, for all r € nedes(g), by Claim 3.

8. {q,p) is the minimun-weight external link of g, by Claim 3 and COM-A,

9. testset(g) = @, by Claim 3 and GC-C.

10. g is up-to-date, by Claim 9 and DC-N.

11. Following bestlinks from g leads toward and over core(g), by Claim 10.

12. If rEPORT is in deguene((r,t)), then inbranch(t) = {t,r), for all (r,1) €
subtree(g), by Claims 6 and 7 and DC-A(a) and (f).

13. If merorT is in dequene({r,t)) and (r,z) = core(f), then r = roei(g), for all
(r.t) € subtree(g), by Claim 5.

14. If rREPORT is in dequene({r,t}) and (r,t) £ core(f), then ¢ is a child of +, for all
(r,t) € subtree(g), by Claim 9 and DC-B(a).

15. If REPORT is in degueue({r,t}), then (r,?) is not on the path between roci(g)
and g, for all (r,t) € subtree(g), by Claims 3, 5, 8, 9 and DC-N.

16. No REPORT is headed toward g, by Claims 5, 14 and 15.

17. dequene({p.q)) and dequeune({g,p}) are empty. by Claim 8 and DC-A(g), DC-
B(a) and DC-D{a).

Case 1: p & testset{f).
More claims about 5':

18. p & testsei( f), by assumption.
19. AfierMerge(r.t), where p € subiree(i), is not enabled, by Claim 18 and DC-G.
20. No FIND is headed toward p, by Claim 18 and DC-C(a).

DC-A: By Claim 12, vacuously true for any REPORT in old g. For a REPORT
that could be in some degquene({r,¢}) with p € subtree(t): (e) by Claims 16 and 17.

DC-B: By Claim 16, change in loeation of core for nodes formerly in g is OK.

DC-D(a): by Claim 6, change in location of core for nodes formerly in g is OK.
By Claim 20, it is OK not to add nodes(g) to testsel( f).

DC-G: By Claim 19, vacuously true.
DC-H{a): By Claim 7.

DC-K: Choose any up-to-date node r in nodes{ f) in 5. By Claims 7 and 11
and code, no node that is in nedes(g) in 3’ is up-to-date in 5. Thus r is in nodes( f)
in ', and is up-to-date.
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{a) If r = p, then findcouni(p) is changed (incremented by 1) if and only if the
number of children of p that are not completed is changed (increased by 1). If r 3 p,
then neither findcount({r) nor the number of children of r that are not completed is
changed.

(b) Suppose bestlink(r) = nil in s. Then the same is true in s'. By DC-K(b),
bestwi{r) = oo and there is no external link of C, in &'. In going to s, there is no
change to bestwi{r), and no internal links become external.

(c) Suppose bestlink(r) # nil in s. Then the same is true in s’. Let [ be the
minimum-weight external link of C, in s'. By DC-K(c), following bestlinks from r
leads to [, wi(l) = bestwi(r), and level(h) = level( f), where h = fragmeni(target(l)),
in s'. By the precondition on level(g), h # g in &', and thus ! is still external in s.
If p &€ C, in &', then C, is unchanged in s, and the predicate is still true. Suppose
pe Crin s'. By COM-A, wi(p,q) is less than the weight of any other external link
of g, and thus wi(l) is less than the weight of any external link of g in s'. Thus
adding all the nodes of g to C;, in going to s does not falsify the predicate.

DC-0O: By Claim 6, the former core(g) is OK.

DC-N: Let ! be the minimum-weight external link of f in s'. If [ 3 (p, q), then
wi(l) < wi(p, q), and by Claim 8, wit(!) < wi(l') for any external link !’ of g. Thus,
in =, [ is still the minimum-weight external link of s, and DC-N is true in s.

Now suppose | = (p,g). By DC-N and Claim 18, p is up-to-date. But by DC-
K(b) and (c), bestlink(p) = (p,q) and levell f) < level(g). wich contradicts Claim
2.

Case 2: p € testset(f).
More claims about s':

21. p € testsel( f), by assumption.

22. For all {r,?} such that p € subtree(r) and inbranch(f) = {t,r), no REPORT is in
dequene({r,t})), by Claim 21 and DC-A(e).

23. A FIND is headed toward p, or destaius(p) = find, or AfterMerge(r,t) is enabled,
where p € subtree(t), by Claim 21 and DC-E.

DC-A(e): by Claim 22, the addition of uncompleted child ¢ to p is QK.
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DC-B: As in Case 1.
DC-D: As in Case 1.
DC-E: By Claim 23.
DC-G: By code, since all of nedes(g) is added to testset( f).
DC-H: By Claim 7.
DC-K: As in Case 1.
DC-M: By code, since findcouni(p) is incremented.
DC-N: By code, since all of nodes(g) is added to testset f).
DC-0O: By Claim 17 and code. o
Let Phe = (Phe 0 81) A Ppe.
Corollary 20: Pp, is true in every reachable state of DC.

Proof: By Lemmas 1 and 19. O

4.2.5 NOT Simulates COM

This automateon refines on COM by implementing the level and core of a
fragment with local variables nlevel(p) and nfrag(p) for each node p in the fragment.
and with NOTIFY messages. When two fragments merge, 2 NOTIFY message is sent
over one link of the new core, carrying the level and core of the newly created
fragment. The action AfierMerge(p.q) adds such a NOTIFY message to the other
link of the new core. A ComputeMin(f) action cannot occur until the source of
minlink( f) has the correct nlevel, and the target of minlink( f) has an nlevel at least
as big as the source’s. The preconditions for Abserd( f, g) now include the fact that
the level of fragment ¢ must be less than the nlevel of the target of minlink(yg).
When an Absorb(f, g) occurs, a NOTIFY message is sent to the old fragment g, over
the reverse link of minlink({yg), with the nlevel and nfrag of the target of minlink(g).

Define automaton NOT (for “Notify™) as follows.

The state consists of a set fragments. Each element f of the set is called a
fragment, and has the following components:
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e subtree( f), a subgraph of &;
o minhink(f), a link of G or nil: and
e rooichanged(f), a Boolean.
For each node p, there are associated two variables:
e nlevel(p), a nonnegative integer; and
e nfrag(p), an edge of &G or nil.
For each link (p, ¢), there are associated three variables:
e ngueuney((p,q)), a FIFO queue of messages from p to ¢ waiting at p to be sent;

e nqueney,((p.q)), a FIFO queue of messages from p to ¢ that are in the com-
munication channel; and

o ngueuey((p,q)), a FIFO queue of messages from p to ¢ waiting at ¢ to be
processed.

The set of possible messages M is {noTiFY(l,c) : | = 0,c € E(G)}. The state

also contains Boolean variables, answered(l), one for each I € L(G), and Boolean
variable awake.

In the start state of NOT, fragments has one element for each node in V(&): for
fragment f corresponding to node p, subtree( f) = {p}. minlink( f) is the minimum-
weight link adjacent to p, and reotchanged( f) is false. For each node p, nlevel{p) =0
and nfrag(p) = nil. The message queues are empty. Each answered(l) is false and
awake 1s false.

We say that a message m is in subtree( f) if m is in some nqueue({g,p)) and
p € nodes(f). A NOTIFY message is headed toward p if it is in ngueue({g,r})) and
p € subtree(r). The following are derived variables:

e For link (p,q), nqueue((p. q)) is defined to be nqueue,({p, q)) || nquene,,({p, q))
I| nqueuep({p, q))-

e For fragment f, level(f) = max{l : nlevel(p) = [ for p € nodes(f), or a
NOTIFY(!l, ¢) message is in subtree( f) for some c}.
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o For fragment f, core( f) = nfrag(p) if nlevel(p) = levell ) for some p € nodes( f),
and eore( f) = ¢, if a noTiFY(level( f). ¢) message is in subtree( f).

As for the DC action ReceiveFind, ReceiveNotify((q. p), 1, ¢) is only enabled if
AfterMerge(p, ) is not enabled, in order to make sure that ¢'s side of the subtree
is notified of the new information.

Input actions:

e Start(p), p € V(G)
Effects:
awake 1= true

Output actions:

o InTree((p,q)), (p.q) € L(G)
Preconditions:
awake = true
(P, g) € sublree( fragmenit(p)) or {p, g} = minlink( fragment(p))
answered({p, g}) = false
Effects:
answered({p, g)) 1= true

o NotInTree((p,q)), (r,q) € L(G)
Preconditions:
fragmeni(p) = fragment(q) and (p, q) € subtree(fragment(p))
answered( {p, g)) = false
Effects:
answered({p, g)) := true

Internal actions:

o ChannelSend({p,q).m), {p.g) € L{G), me M
Preconditions:
m at head of ngueune,({p.q))
Effects:
dequeue(ngueue,({p,q)))
enquene(m, ngueue, ((p,¢)))

e ChannelRecv((p,q),m), (p,q) € L(G), me M
Preconditions:
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m at head of nqueuney,((p,q))
Effects:

dequeue(nqueue,,((p, ¢)))

enquene(m, nqueue ((p,q}))

o ReceiveNotify({q, p). 1, e), {q.p) € L(G), 1 =2 0, c € E(G)
Preconditions:
NoTIFY(!l, ¢} at head of nquene,({g,p})
AfterMerge(p, q) not enabled
Effects:
dequeue(nqueune,({(g, p)))
nlevel( p) := 1
nfraglp) := ¢
—let 5= {{p,r}: (p,7) € subiree( fragmeni(p)).r £ g} —
enqueue(NOTIFY(l, c), nquene (k)) for all k € §

o ComputeMin( f), f € fragmenis
Preconditions:
minlink( ) = nil
{p.q) is the minimum-weight external link of f
nlevel(p) = levell f)

levell ) < nlevellq)
Effects:

minlink( f) = 1

o ChangeRool( f), f € fragments
Preconditions:
awake = true
reotchanged( f) = false
manlink( f) #£ nil
Effects:
rootchanged( f) 1= true

e Merge(f.g). f.9 € fragments
Preconditions:
f#g
rootehanged( f) = rootchanged(qg) = true
minedge( f) = manedge(g)
Effects:
add a new element i to fragments
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subtree( h) := subtree( f) U subtree(g) U minedge( f)
minlink( i) := nil

reatchanged( k) ;= false

— let (p,g) = minedge( f) —
enqueune(NOTIFY(nlevel(p) + 1,(p, q)), nquene ,({p,q)))
delete f and g from fragments

o AfterMerge(p,q), p,g € V(G)
Preconditions:
(p, @) = core(fragment(p))
woTIFY(nlevel(p) + 1, (p. q)) message in nguene (g, p))
no NoTIFY(nlevel(p) + 1, (p, g)) message in ngueune((p, g})

nlevellg) # nlevel(p) + 1
Effects:

enqueue(NOTIFY(nlevel(p) + 1,(p, g)), nqueune,((p, ¢)))

o Absorb(f,g), f.g € fragmenis
Preconditions:
rootehanged(g) = true
— let {g,p) = minkink(g) —
levell g) < nlevel(p)

fragment(p) = f
Effects:

subtree( f) := subtree( f) U subtree(g) U minedge(g)

enqueue(NOTIFY(nlevel(p), nfrag(p)), nquene ,({p, q}))
delete g from fragments

Define the following predicates on states of NOT. (All free variables are uni-
versally guantified.)

o NOT-A: core(f) is well-defined. (Le., the set of all ¢ such that a voTIFY(lev-
el fl.c) is in subtree(f) or some p € nodes(f) has nlevellp) = level(f) and
nfragip) = ¢, has exactly one element.)

e NOT-B: If g € subtree(p), then nlevelq) = nlevel(p).

s NOT-C: If (p.g) = core( f), then nlevellp) = level( f) — 1.

e NOT-D: If minlink(f) = {p, ¢}, then nlevelp) = levell f) < nlevel(q).

o NOT-E: If nfrag(p) = core(fragment(p)), then nlevel(p) = level fragment(p)).
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e NOT-F: Either nievel(p) = 0 and nfrag(p) = nil, or else nlevel(p) > 0 and
nfreglp) € subtree(fragment(p)).

o NOT-G: If nlevellp) < level{fragmeni(p)), then either a woTwy(level (frag-
ment(p)), core(fragment{p))) message is headed toward p, or else AfterMerge
(g.7) is enabled, where p € subtree(r).

e NOT-H: If a noTIFY(l,c) message is in nqueuel( {g,p}}, then
(a) nlevellp) < I;
(k) if (p, q) # core( fragmeni(p)), then nlevel(g) = I;
(e) if ¢ = core(fragmenit(p))) then ! = level( fragment({p));
(d} if moTIFY(I', ') is ahead of the noTIFY(l, ¢} in ngueune({g.p)). then I' < [;
(e) pis a child of ¢, or (p,q) = core(fragment(p));
(f) if (p,q) = core( fragment(p)), then I = level( fragment(p));
(g) ¢ € subtree( fragment(p)); and
(h) I=0.

Let PyoT be the conjunction of NOT-A through NOT-H.

In order to show that ¥VOT simulates COM, we define an abstraction mapping
My = (85, As) from NOT to COM. Define the function S from states{NOT) to
states(COM ) by simnply ignoring the message queues, and mapping the derived vari-
ables levell f) and core( f) in the NOT state to the (non-derived) variables level{ f)
and core( f) in the COM state. Define the function A5 as follows. Let s be a state
of NOT and = an action of NOT enabled in s.

o If w = ChaennelSend(k, m), ChannelRecv(k, m), ReceiveNotify( k.1, ), or After
Merge(p,q), then Az(=,7) is empty.

» For all other values of =, As(s, 7)) = =.

The following predicates are true in any state of NOT satisfying (Phoparo8s)A
ProT. Recall that Pl = (Psy 0 S1) A Peoasr. If Phgpy(Ss(s)) is true, then the
COM predicates are true in Sg(s), and the 51 predicates are true in &, (Ss(s)). Thus,
these predicates follow from Pyor, together with the HI and COM predicates.

s NOT-I: If p = minnode( f). then no NOTIFY message is headed toward p.

« NOT-I: For all p, at most one NOTIFY (!, c) message 1s headed toward p, for a
fixed 1.

Lemma 21: NOT simulates COM via My, Pyor, and Pl
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Proof: By inspection, the types of NOT, COM, Mj;, and Pyor are correct. By
Corollary 14, PLoar is a predicate true in every reachable state of COM.

(1) Let s be in start(NOT). Obviously Pyor is true in s and Sg(s) is in
start(COM).

(2) Obwviously, As(s, 7)|ext(COM) = wlext(NOT).

(3) Let (&', 7, 5) be a step of NOT such that PhLg,, is true of Ss(s') and Pyor
is true of s'. Below, we only show (3a) for those predicates that are not obviously
true in s.

i) = is Start(p), InTree(l), NotInTree(l), or ChangeRoot(f). As;(s',7) =
7. Obviously, Ss(s')785(s) is an execution fragment of COM, and Pnor is true in
s,

ii) = is ChannelSend(l,m) or ChannelRecv(l,m). .As;(s',7) is empty.
Obviously, 8s(s') = Sz(s), and Pyeor is true in s,

iii) 7 is ReceiveNotify{{q,p),l,c). Let f = fragmeni(p).

(3b) As(s',w) is empty. To show that Ss(s) = S5(s'), we only need to show
that level( f) and core( f) don’t change. By NOT-H(a), nlevel(p) < [ in s', and thus
nlevel(p) # level( f). So changing nlevel(p) is OK. Also, since nlevel(p) and nfrag(p)
are set to [ and ¢, removing the noTiFy(l, ¢) from ngueue({q, p)) is OK.

(3a) NOT-A: By code.

NOT-B: By NOT-B, nlevel(g) < nlevel(r) for all r such that g € subtree(r) in
s'. By NOT-H(b), if (p, q) # core(f), then nlevel(q) = I in s'. Since nlevel(p) = I in
s, the predicate is true.

NOT-C: Since this predicate is true in s’ and fact that nlevel(p) increases.

NOT-D: As argued in (3b), nlevellp) < I < level(f). By NOT-D, p £

minnoede( f) in s', or in s. Suppose p = target(minlink(g)) in s', for some g. Since
nlevel(p) increases in going from &' to s, the predicate is still true in s.

NOT-E: By NOT-H(c), ¢ = core(f) implies that I = level(f) in 5. So in s,
e = nfrag(p) = core( f) implies that | = nlevel(p) = level( f).

NOT-F: By NOT-H(g), ¢ # nil, and by NOT-H(h), ! > 0 in s'. Thus in s,
e = nfrag(p) # nil and | = nlevel(p) # 0.
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NOT-G: The noTiFy(l, ¢} message removed from ngueue({g,p)) is replaced by
the NoTIFY(l, ) messages added to nguene({p,r)), for all {p,r) € 5.

NOT-H: Suppose NoTIFY(l, ¢) iz added to nqueune(p,r) in 5. (Le., (p,r} € 5.}
Claims about s':

NoTIFY(l, ¢} is at head of ngueue( (g, p}), by precondition.

p € subiree(q) or (p,g) = ecore( f), by Claim 1 and NOT-H(e).

r € subtree(p), by Claim 2 and definition of 5.

nlevel(r) < nlevel(p), by Claim 3 and NOT-B.

nlevel(p) < I, by Claim 1 and NOT-H(a).

If woTiFy(l', ') is in nquene({p,r}), then I = I, by Claims 3 and 5 and NOT-H(b).
nlevel(r) < I, by Claims 4 and 3.

<ol e

(a) by Claim 7. (b) by Claim 3. (d) by Claim 7. (e) by Claim 3. (f) vacuously
true by Claim 3. (e), (g) and (h) since the same iz true for the woTiFy(l, ¢} in
nguene({g. p}) n &'

iv) w is ComputeMin(f).

(3c) As(s',m) = w. Obviously w is enabled in &5(s'), since by definition
nlevel( q) < level( fragmeni(g)). The effects are obviously mirrored in Ss(s).

(3a) By the preconditions, NOT-D is true in s. No other predicate is affected.
v} w is Merge(f,g).

(3c) As(s',7m) = 7. Obviously = is enabled in Ss(s'). To show that its effects are
mirrored in S5(s), we show that level(h) and core(h) are correct. Let minlink(f) =
(p, q) and ! = level(f) in s'.

Clazms about s5';

minedge( f) = minedge(g). by precondition.

levellg) = I, by Claim 1 and COM-A.

rootchanged( f) = true, by precondition.

minlink( f) £ nil, by Claim 3 and COM-B.

nlevel(p) = I, by Claim 4 and NOT-D.

nlevel(r) < I for all v € nodes( f), by definition of levell f).

If noTiFY(m, ¢) is in subtree( f), then m < [, by definition of levell f).
rootchanged(g) = true, by precondition.

N oW
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9. minlink{g) £ rnil, by Claim 8 and COM-B.

10. nlevel{g) = I, by Claims 2 and 9 and NOT-D.

11. nlevel(r) = Il for all r € noedes(g), by definition of levelg).

12. If noTIFY(m, e) is in subiree(q), then m < [, by definition of level(g).

13. {p,q) is an external link of f, by COM-A,

14. nguene({p, q}) and nguene({q,p)) are empty, by Claim 13 and NOT-H(e).
Clatms about s:

15. nlevel(r) < I + 1, for all » € noedes(h), by Claims 6 and 11 and code.

16, The only NOTIFY message in subfree(h) with level greater than I is the noTiFy(l4
1.(p, q)) message added to nguene({p, g}), by Claims 7, 12 and 14 and code.
17. levellh) = 1 + 1, by Claims 15 and 16.

18. core(h) = (p.g), by Claims 15 and 186.

Claims 17 and 18 give the result.

(3a) Only fragment i needs to be checked.

NOT-A: By Claims 15 and 16.

NOT-B: As argued in the proof of NOT-I, nlevel(r) = [ for all » on the path
from core( f) to p, and all r on the path from core(g) to g. Since these are the only
nodes affected by the change of core, the predicate is still true in s.

NOT-C: By Claims 5, 10 and 17.
NOT-D: vacucusly true since minlink{h) = nil by code.

NOT-E: By NOT-F and Claim 13, nfrag(r) #£ (p,q) for all r in nodes(f) or
nodes(g). So the predicate is vacuously true.

NOT-F: No relevant change.

NOT-G: If r is in nodes(g) in s, the predicate is true in s because of Claims 17
and 18 and the voTiey(I + 1,(p. q)) added to nguene((p,q)) in s. If r is in nodes( f)
in &', then AfferMerge(q, p) is enabled in s, by code and Claims 5, 10, 14 and 18.

NOT-H for the noTiFry({+1, (p. q)) added to nguene( {p. g} ): (a) nlevel(qg) < I+1,
by Claim 15. (b) By Claim 18. (c) By Claim 17. (d) Vacuously true by Claim 14.
(e) By Claim 18. (f) By Claims 17 and 18. (g) By code. (h) By COM-F, ! = 0, =0
I+1=0.
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NOT-H for any noTiFry({', ') message in subtree( f) in 5’ (similar argument for
g): (a), (d), (g) and (h) No relevant change,

{(b) Suppose the message is in a link of core( f) = (r,t). Suppose p € subiree(t).
By NOT-I, the message is not in nguene({r,#}). As argued in the proof of NOT-I,
nlevel(1) = [. If the message is in nguewe({¢,r)), then, since I' < I, the predicate is
true in s.

{c) By Claim 13 and NOT-H(g), ¢ #£ (p, g), so the predicate is vacuously true
in s.

(e) The only nodes for which the subtree relationship changes are those along
the path from core( f) to p. By NOT-1, there is no NOoTIFY message in this path.

(f) Vacuously true, by Claim 18.

vi) 7 is AfterMerge(p.,q). Let f = fragment(p).
(3b) As(s') is empty. Obviously Ss(s') = Ss(s).
(3a) Let | = nlevel(p) + 1 and ¢ = (p, gq).

NOT-A: Obvious.

NOT-B, C, D, and E: No relevant changes.

NOT-G: The noTiFy(l,c) message added to ngueue({p,q}) in s compensates
for the fact that AfterMerge(p, g) goes from enabled in = to disabled in =.

NOT-H: Let ¢ = (p, q) and I = nlevel(p) + 1. Consider the noTiry(l, ¢) added
to nqueue{ (p.q) ).

1. {p.q) = core( f), by precondition.

2. noTIFY(l, £} 15 in ngueue( (g, p)), by precondition.

3. No nNoTIFY(l, ¢) is in ngueue((p. ¢}), by precondition.

4. nlevel(q) ## |, by precondition.

5. 1 = level( f), by Claims 1 and 2 and NOT-H(f).

G. nlevel(q) = 1, by Claims 4 and 3.

7. EnoTiFry(l',¢') is in nqueune({p, g} ), then I' = [, by Claims 1 and 5 and NOT-H(d).
B. If woTIFY (I, ¢') is in ngueue({p, g}), then ¢’ = ¢, by Claim 7 and NOT-A.

9. No NOTIFY is in ngueue({p,q)), by Claims 3, 7 and 8.

10. nlevel(p) = 0, by NOT-F.
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(a) by Claim 6. (b) vacuously true, by Claim 1. (¢) by Claim 5. (d) by Claim
(e) by Claim 1. (f) by Claim 5. (g) by Claim 1 and COM-F. (h) by Claim 10.

vii) = is Absorb(f.g).

(3c) A(s",7) = .

Claims about s':

RS RR e

rootchanged(g) = true, by precondition.

level(g) < nlevel(p), by precondition.

fragmeni(p) = f, by precondition.

nlevel(p) < level( ). by Claim 3 and definition of level.

nlevel(r) < level(g), for all r € nodes(g), by definition of level.

If NoTIFY(], ) is in subiree(g), then ! < level(g), by definition of level.
{g, p) is an external link of g, by COM-A,

nquene({(p, g)) and ngueuwe((g.p)) are empty, by Claim 7 and NOT-H(e).

By Claim 4, m is enabled in S5(s'). The effects of = are mirrored in Ss(s)

if ecore( f) and level( f) are unchanged; by code and Claims 6, 7 and 8, they are
unchanged.

(3a) Let [ = nlevel(p) and e = nfrag(p) in s'.

More claims about s':

9.

10.
11,
12,
13.
14.

f # g, by Claims 7 and 3.
level( f) = 0, by Claims 2 and 3 and COM-F.
core( f) € sublree( f), by Claim 10 and COM-F.
nfrag(r) # core( f), for all r € nodes(g), by Claim 11 and NOT-F.
nlevel(q) < level(g), by definition.
nfrag(p) € subiree( f), by Claims 2 and 10 and NOT-F.

NOT-A: by code and Claims 6, 7 and 8.

NQT-B: Same argument as for Merge( f,qg).

NOT-D: No relevant changes.

NOT-E: By Claim 12, vacuously true for nodes formerly in nodes(g).
NOT-F: No relevant changes.

99



Section 4.2.5: NOT Simulates COM

NOT-G: Suppose nlevel(p) = level(f) in s'. By code, in s there is a
NOTIFY(level( f), ¢) message headed toward every node formerly in nedes(g).

Suppose nlevel(p) # level( f) in s'. By NOT-G, either a NoTiFy(level( f), e)
message 15 headed toward p in s', and thus is headed toward all nodes formerly in
nodes(g) in s, or AfterMerge(r,t) is enabled in &' with p € subtree(t), and thus in s,
AfterMerge(r,t) is still enabled and every node formerly in nodes(g) is in subtree(t).

NOT-H for the NoTIFY(l,c) added to ngueue({p.q)): (a) by Claims 2 and 12.
{b) by ecode. (c) by NOT-E. (d) vacuously true by Claim 8. (e) ¢ is a child of p, by
Claim 11. (f) vacuously true, by Claim 11. (g) by Claim 14. (h) by Claims 2 and
10.

NOT-H for any NoTiFyY(l',¢') in subiree(g) in s': (a), (d), (g) and (h): no
relevant change. (b) and (e) same argument as for Merge( f, g). (c) vacuously true,
by Claim 11. (f) vacuously true, by code. O

Let Phor = (Pcom @ Ss) A Pnor-
Corollary 22: P}, is true in every reachable state of NOT.

Proof: By Lemmas 1 and 21. o
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4.2.6 CON Simulates OM

This automaton concentrates on what happens after minlink({ f) is identified,
until fragment f merges or is absorbed, i.e., the ChangeRool( f,g), Merge(f,g) and
Absorb(g, f) actions are broken down into a series of actions, involving message-
passsing. The variable rootchanged( f) is now derived. As soon as ComputeMin(f)
occurs, the node adjacent to the core closest to minlink{ f) sends a CHANGEROOT
message on its outgoing link that leads to minlink{ f). A chain of such messages
makes its way to the source of minlink( f), which then sends a conNecT(level(f))
message over minlink( f). The presence of a CONNECT message in minlink( ) means
that reetchanged(f) is true. Thus, the ChangeRoo#{ f) action is only needed for
fragments f consisting of a single node. Two fragments can merge when they have
the same minedge and a CONNECT message is in both its links; the result is that one of
the cONNECT messages is removed. The action AfterMerge(p, ¢) removes the other
CONNECT message from the new core. (A delicate point is that Computelin(f)
cannot occur until the appropriate AfterMerge(p, ¢) has, in order to make sure old
CONNECT messages are not hanging around.) Absord(f,g) can ocecur if there is a
coNNECT(!) message in minlink{g), and minlink{g) points to a fragment whose level
is greater than [,

Define automaton CON (for “Connect™) as follows.

The state consists of a set fragments. Each element f of the set is called a
fragment, and has the following components:

e subtree( f), a subgraph of G;

e core( f), an edge of G or nil;

e level( f), 2 nonnegative integer; and
o minlink( f), a link of G or nil.

For each link (p, g), there are associated three variables:

cqueney({p, q)), a FIFO queue of messages from p to ¢ waiting at p to be sent;

cquenepe((p, q)), a FIFO queue of messages from p to ¢ that are in the commu-
nication channel; and

cqueune,((p,q}), a FIFO queue of messages from p to ¢ waiting at ¢ to be
processed.
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The set of possible messages M is {connecT({) : | = 0} U {cHANGEROOT}. The
state also contains Boolean variables, answered(!), one for each [ € L{&), and
Boolean variable awake.

In the start state of COM ., fragmenis has one element for each node in V({G&'); for
fragment f corresponding to node p, subtree( f) = {p}. core( f) = 